Nothing Special   »   [go: up one dir, main page]

WO2006059361A1 - 不揮発性記憶装置、およびその製造方法 - Google Patents

不揮発性記憶装置、およびその製造方法 Download PDF

Info

Publication number
WO2006059361A1
WO2006059361A1 PCT/JP2004/017751 JP2004017751W WO2006059361A1 WO 2006059361 A1 WO2006059361 A1 WO 2006059361A1 JP 2004017751 W JP2004017751 W JP 2004017751W WO 2006059361 A1 WO2006059361 A1 WO 2006059361A1
Authority
WO
WIPO (PCT)
Prior art keywords
control gate
layer
layers
voltage
pair
Prior art date
Application number
PCT/JP2004/017751
Other languages
English (en)
French (fr)
Inventor
Atsushi Yokoi
Masao Nakano
Original Assignee
Spansion Llc
Spansion Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spansion Llc, Spansion Japan Limited filed Critical Spansion Llc
Priority to DE112004003019T priority Critical patent/DE112004003019T5/de
Priority to PCT/JP2004/017751 priority patent/WO2006059361A1/ja
Priority to GB0710432A priority patent/GB2436234B/en
Priority to CN2004800448578A priority patent/CN101111943B/zh
Priority to JP2006546527A priority patent/JP4794462B2/ja
Priority to US11/291,048 priority patent/US7307879B2/en
Publication of WO2006059361A1 publication Critical patent/WO2006059361A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • G11C16/0475Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] comprising two or more independent storage sites which store independent data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0411Manufacture or treatment of FETs having insulated gates [IGFET] of FETs having floating gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/687Floating-gate IGFETs having more than two programming levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/6891Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode
    • H10D30/6892Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode having at least one additional gate other than the floating gate and the control gate, e.g. program gate, erase gate or select gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/69IGFETs having charge trapping gate insulators, e.g. MNOS transistors
    • H10D30/691IGFETs having charge trapping gate insulators, e.g. MNOS transistors having more than two programming levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/69IGFETs having charge trapping gate insulators, e.g. MNOS transistors
    • H10D30/694IGFETs having charge trapping gate insulators, e.g. MNOS transistors characterised by the shapes, relative sizes or dispositions of the gate electrodes
    • H10D30/696IGFETs having charge trapping gate insulators, e.g. MNOS transistors characterised by the shapes, relative sizes or dispositions of the gate electrodes having at least one additional gate, e.g. program gate, erase gate or select gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/69IGFETs having charge trapping gate insulators, e.g. MNOS transistors
    • H10D30/694IGFETs having charge trapping gate insulators, e.g. MNOS transistors characterised by the shapes, relative sizes or dispositions of the gate electrodes
    • H10D30/697IGFETs having charge trapping gate insulators, e.g. MNOS transistors characterised by the shapes, relative sizes or dispositions of the gate electrodes having trapping at multiple separated sites, e.g. multi-particles trapping sites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/031Manufacture or treatment of data-storage electrodes
    • H10D64/035Manufacture or treatment of data-storage electrodes comprising conductor-insulator-conductor-insulator-semiconductor structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/561Multilevel memory cell aspects
    • G11C2211/5611Multilevel memory cell with more than one control gate

Definitions

  • Nonvolatile memory device and manufacturing method thereof are nonvolatile memory devices and manufacturing method thereof.
  • the present invention relates to a nonvolatile memory device having nonvolatile memory cells capable of multi-value storage, and a method for manufacturing the same.
  • this is a method that enables multi-value storage by gradually controlling the amount of charge injected into the floating gate and varying the threshold voltage of the nonvolatile memory cell step by step.
  • a first voltage is applied to the memory cell in the erased state to inject a charge as a first stage charge amount into the floating gate.
  • the second-stage charge amount or the third-stage charge amount having a larger charge amount is set for each memory cell.
  • Charge is injected by applying a voltage or a third voltage higher than the second voltage.
  • the nonvolatile memory cell holds three write states having different threshold voltages according to the injection charge amount.
  • the erased state is added to this, and the two states of 2-bit data are stored. Data reading is performed by detecting the difference in the read current amount from the difference in threshold voltage of the nonvolatile memory cell.
  • Patent Document 1 shown below, as shown in FIG. 25, the memory transistor portion Trmc having a gate insulating film 120 including a discrete trap and a control gate electrode 170 is provided on both sides thereof. , A diffusion layer 140-1 and 140-2 having a switch transistor portion Trsw having switch gate electrodes 160-1 and 160-2, and being connected to the source line Z bit line on the outside thereof Is formed. Local writing is performed on the gate insulating film 120, and one memory cell performs multi-storage that stores information of at least two bits.
  • the charges trapped in the gate insulating film including the discrete traps hardly move in the horizontal direction with respect to the surface force substrate surface captured first.
  • a material of a gate insulating film including discrete traps what is apparent today is a silicon nitride film and a gate insulating film including fine particles of silicon nitride.
  • the write operation is performed by a source side injection method.
  • the carrier is accelerated to increase energy, and the carriers that jump into the channel of the memory transistor Trmc feel a high bias toward the control gate electrode 170, Captured in discrete traps. Charges are accumulated with a certain distribution in the source region of the memory transistor Trmc.
  • the channels below the switch gate electrodes 160-1, 160-2 provided on both sides of the memory transistor Trmc are made conductive, charges are accumulated on both sides of the gate insulating film 120, and 2-bit data is stored.
  • the read operation is a source side injection method
  • the write operation is performed on the source side, so the read channel current may be in the same direction as it is.
  • Floating gates 270a and 270b Floating gates 270a and 270b, an ONO film 280 formed so as to cover the floating gate 270 and the silicon oxide films 250 and 260, and a control gate 290 as a word line formed on the ONO film 280.
  • the pair of floating gates 270a and 270b are independently arranged on the source 230 and the drain 240, respectively, so that electrons from the source 230 and the drain 240 can be injected and extracted, respectively.
  • the floating gates 270a and 270b are sidewalls formed on the sidewalls of the insulating film to be removed later.
  • the channel In the read operation, the channel is connected when there is no electron in the floating gates 270a and 270b, and a current flows between the source 230 and the drain 240, and is read as data “1”. In the state in which electrons are injected, the channel is disconnected, and no current flows between the source 230 and the drain 240, and data “0” is read.
  • the amount of memory is doubled by independently writing, erasing, and reading to the pair of floating gates 270a and 27Ob.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-156275
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-282741
  • the memory cell includes a memory transistor portion and switch transistor portions on both sides thereof. 3 transistor configuration.
  • the area occupied by memory cells must be large, which is a problem.
  • Patent Document 2 a sidewall is used for the floating gate.
  • the memory cell has two floating gates and a control gate between them. For this reason, in multilevel storage, the drain terminal and the source terminal must be exchanged by the virtual ground method, and the operation is complicated. Also between floating gates The configuration includes a control gate and a diffusion layer region. For this reason, it is necessary to provide an interval for arranging the control gate and the diffusion layer region between the floating gates.
  • the present invention has been made to solve at least one of the problems of the background art described above, and has a small cell size with low current consumption during writing or Z and high-speed writing operation. It is an object of the present invention to provide a non-volatile memory device including various memory cells and a manufacturing method thereof.
  • the nonvolatile memory device of the present invention made to achieve the above object is a pair of diffusion layers arranged on the substrate surface at a predetermined interval, and on the substrate surface and sandwiched between the pair of diffusion layers.
  • a plurality of control gate layers formed in a region apart from each other, and formed between the control gate layer and the substrate surface, and each control gate layer has a region where charge is uniquely injected or Z and released.
  • a memory cell including a charge storage layer.
  • a plurality of control gate layers are formed apart from each other in a region on the substrate surface sandwiched between the pair of diffusion layers, and between the control gate layer and the substrate surface.
  • a unique charge storage region is formed for each control gate layer.
  • charge injection Z emission that is, electron or hole injection Z emission
  • charge injection Z emission can be performed on the charge accumulation region formed uniquely for each control gate layer. It is possible to store a number of data bits depending on the number of combinations of states with or without charge in the region where charge is injected or z and emitted.
  • Multi-value storage can be performed by selecting a control gate layer to perform charge injection, Z emission, and it is not necessary to change the first voltage applied to the control gate layer according to the data value to be written. Multi-value storage can be performed by one write operation.
  • a data value having the number of bits corresponding to the number of control gate layers can be stored.
  • the area occupied by the memory cell can be reduced as compared to Patent Document 1, which requires a switch transistor portion for the number of bits to be stored in addition to the memory transistor portion.
  • a channel can be formed under the control gate layer adjacent to the control gate layer to which pressure is applied, and the charge can be accelerated to achieve a source injection operation based on a hot electron phenomenon or a hot hole phenomenon.
  • the channel injection operation enables a low current consumption write operation associated with the FN tunneling phenomenon, and the source injection operation allows a high speed and low current consumption write operation.
  • the nonvolatile memory cell has a small cell size and consumes less current during writing.
  • a nonvolatile memory device including a memory cell that can perform Z and high-speed writing operation, and a method for manufacturing the nonvolatile memory device.
  • FIG. 1 is a cross-sectional view showing the principle structure of a memory cell provided in a nonvolatile memory device of the present invention.
  • FIG. 2 is a cross-sectional view of the memory cell of the embodiment.
  • FIG. 3 is a diagram (1) when a first multi-value storage write operation is performed on the memory cell of the embodiment.
  • FIG. 4 is a diagram (2) when a first multi-value storage write operation is performed on the memory cell of the embodiment.
  • FIG. 5 is a diagram (3) when a first multi-value storage write operation is performed on the memory cell of the embodiment.
  • FIG. 6 is a diagram (1) when a read operation of the first multi-value storage is performed on the memory cell of the embodiment.
  • FIG. 7 is a diagram (2) when the first multi-value storage read operation is performed on the memory cell of the embodiment.
  • FIG. 8 is a diagram (3) when the first multi-value storage read operation is performed on the memory cell of the embodiment.
  • FIG. 9 is a diagram (1) when performing a second multi-value storage write operation on the memory cell of the embodiment.
  • FIG. 10] is a diagram (2) when performing the second multi-value storage write operation on the memory cell of the embodiment.
  • FIG. 11] is a diagram (1) when performing a read operation of the second multi-value storage on the memory cell of the embodiment.
  • FIG. 12B is a diagram (2) when performing the second multi-value storage read operation on the memory cell of the embodiment.
  • FIG. 13 is a diagram when an erase operation (channel erase) is performed on the memory cell of the embodiment.
  • FIG. 14 is a diagram when performing an erase operation (source erase) on the memory cell of the embodiment.
  • FIG. 15 is a diagram showing a layout when the memory cell of the embodiment is configured in a NAND type.
  • FIG. 16 is a diagram showing a layout when the memory cell of the embodiment is configured in a NOR type.
  • FIG. 17 is a layout diagram in the case where the control gate layers of the memory cells of the embodiment are wired in parallel in the channel direction.
  • FIG. 18 is a diagram showing a plan view and a cross-sectional structure of the memory cell of the embodiment.
  • FIG. 19 is a cross-sectional view (1) showing a manufacturing step of the memory cell of FIG. 18 (until deposition of a mask layer).
  • FIG. 20 is a cross-sectional view (2) showing the manufacturing process of the memory cell of FIG. 18 (the mask layer deposition is also performed up to anisotropic etching).
  • FIG. 21 is a diagram showing a planar structure of a memory cell at the time when the manufacturing steps up to FIG. 20 are completed.
  • FIG. 22 is a plan structural view of a memory cell showing a configuration of a control gate layer and a wiring lead base.
  • FIG. 23 is a diagram showing voltage conditions during each operation in the memory cell of the present invention.
  • FIG. 24 is a cross-sectional view showing a further principle structure of a memory cell provided in the nonvolatile memory device of the present invention.
  • FIG. 25 is a cross-sectional view of a memory cell of Patent Document 1.
  • FIG. 26 is a cross-sectional view of the memory cell of Patent Document 2. Explanation of symbols
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present invention.
  • the cross-sectional view shown in FIG. 1 shows the principle structure of a memory cell provided in the nonvolatile memory device of the present invention.
  • the substrate 11 has a pair of diffusion layers 13A and 13B with a spacing of 1.5F. Has been placed. Each diffusion layer has a width of 0.5 F shared with the diffusion layer of the adjacent memory cell.
  • a first insulating layer 15, a charge storage layer 17, and a second insulating layer 19 are stacked in this order, and on the second insulating layer 19, Two control gate layers 21A and 21B spaced apart with a gap G1 are arranged in the middle in the channel width direction.
  • the minimum feature size is F
  • the memory cell is formed by the area 2. 5F 2.
  • the substrate 11 is made of a P-type semiconductor material
  • the diffusion layers 13A and 13B are made of an N-type semiconductor material.
  • control gate layers 21A and 21B separated by the gap G1 are separated in the middle portion in the channel length direction, and a voltage can be individually applied to each control gate layer 21A and 21B. is there.
  • the control gate layer 21A is disposed adjacent to the diffusion layer 13A
  • the control gate layer 21B is disposed adjacent to the diffusion layer 13B.
  • the charge storage layer 17 under the control gate layers 21A and 21B is formed in common between the control gate layers 21A and 21B.
  • Data is stored in the memory cell based on the presence or absence of charges in the charge storage layer 17.
  • Charge injection into the charge storage layer 17 Z emission is performed in response to voltage application to the control gate layers 21A and 21B, as described later in FIGS. 3 to 5, FIGS. 9 to 10, and FIGS. Is called.
  • a nitride film or a small-diameter conductor having discrete charge traps for the charge storage layer 17, or / and between the charge storage layer 17 and the first or / and second insulating layer
  • the charge trap that exists in the vicinity of the interface the movement of the charge injected into the charge storage layer 17 in the charge storage layer 17 can be limited.
  • the charge injected into the charge storage layer 17 in accordance with the write voltage applied to each of the control gate layers 21A and 21B is controlled by the control gate that has applied the write voltage. It can be localized under layers 21A, 21B. The presence / absence of charge can be controlled for each charge storage region under the control gate layers 21A and 21B in the charge storage layer 17, and multi-value storage in the memory cell becomes possible.
  • the memory cell since the memory cell has two control gate layers 21A and 21B, four states, that is, two-bit data can be stored.
  • the gap G1 may be a gap that can reliably separate the control gate layers 21A and 21B in the manufacturing process.
  • the gap can be made smaller than when a diffusion layer is formed on the substrate surface via the gap G1 or when a connection region with the upper layer is secured.
  • the control gate layers 21A and 21B disposed above the charge storage layer 17 are not formed so as to extend beyond the charge storage layer 17 to the diffusion layers 13A and 13B side.
  • the gap G1 can be minimized, and contacts on the diffusion layers 13A and 13B for connection to the upper wiring layer can be connected to the peripheral portion of the contacts at the end of the charge storage layer 17.
  • the memory cells can be reduced by reducing the memory cell size.
  • the first insulating layer 15 and the second insulating layer 19 are made of, for example, silicon oxide (Si02), and the charge storage layer 17 is made of, for example, silicon nitride (Si3N4)
  • the first insulating layer 15, the charge storage layer 17, and the second insulating layer 19 constitute a so-called ONO film. It functions as a floating gate layer of the memory cell and also functions as a gate insulating film. Also, it has a function of electrically insulating the charge storage layer 17 and the control gate layers 21A and 21B.
  • the charge storage layer 17 has a charge trapping function and also has an insulating performance between the substrate 11 and / or the control gate layers 21A and 21B, the first insulating layer 15 or Z and the second insulating layer 19 Can be eliminated.
  • the charge storage layer 17 uses a structure having a charge trap in which the movement of charges within the layer is limited, so that the charge storage layer 17 is not separated between the control gate layers 21A and 21B.
  • the second insulating layer 19 and the charge storage layer 17 and / or the first insulating layer 15 can be separated according to the gap G1 in which the control gate layers 21A and 21B are separated.
  • each control gate layer 21A, 21B has an independent charge storage layer.
  • Each of the control gate layers 21A and 21B is injected / released into an independent charge storage layer.
  • the charge storage layer can be made of the above-described material having charge traps, or can be made of a conductive material such as a polycrystalline silicon material.
  • a material having a charge trap it is possible to more reliably prevent charges moving between the charge storage layers below the control gate layers 21A and 21B.
  • the movement of the injected charge is limited even if the charge storage layer is not sufficiently separated due to processing variations, etc. There is no problem such as disappearance.
  • a conductive material such as a polycrystalline silicon material is used, it can be configured in the same manner as a floating gate of a normal nonvolatile memory cell that stores 1-bit data. Therefore, the manufacturing process can be simplified.
  • the gap G1 is formed for the purpose of separating the control gate layers 21A and 21B, and the separation of the control gate layers 21A and 21B is controlled by the electric charge injected.
  • the positional force in the load accumulation layer 17 may be separated by both. Therefore, the formation position of the gap G1 and the width of the gap G1 can be formed by a simple manufacturing process which does not need to be strictly defined.
  • the cross-sectional view shown in FIG. 2 is an embodiment of a memory cell.
  • a mask layer (not shown) on the diffusion layers 13A and 13B
  • a charge storage deposition layer (not shown) on the diffusion layers 13A and 13B
  • a second insulating deposition layer (not shown) on the diffusion layers 13A and 13B
  • a gate is formed on the entire surface.
  • a deposition layer is laminated.
  • the channel region sandwiched between the pair of diffusion layers 13A and 13B is sandwiched between the mask layers deposited on the diffusion layers 13A and 13B to form a recess. It is also deposited in the channel region.
  • the layers up to the charge accumulation layer are removed by anisotropic etching. Since it is anisotropic etching, it is selectively etched in the stacking thickness direction. When etching is performed in the channel region in addition to the upper part of the mask layer, the portion deposited along the side wall of the mask layer has a deep thickness with respect to the etching direction, so that it is not etched. There is a remaining part. This is a so-called sidewall structure. The closer to the side wall of the mask layer, the less etching occurs, and the amount of etching increases as the side wall force increases, and a gap G2 is formed in the middle. As a result, the control gate layers 21A and 21B, the second insulating layers 19A and 19B, and the charge storage layers 17A and 17B are separated from each other in the middle portion of the channel region having arcuate shapes facing each other.
  • the gap G2 may be a gap that can reliably separate at least the control gate layers 21A and 21B in the manufacturing process.
  • a conductive material such as a polycrystalline silicon material is used for the charge storage layer
  • at least the control gate layers 21A and 21B, the second insulating layers 19A and 19B, and the charge storage layers 17A and 17B are included in the manufacturing process. Any void that can be reliably separated is acceptable.
  • the space can be made smaller, and the memory cell size can be reduced.
  • the control gate layers 21A and 21B and the charge storage layers 17A and 17B can be separated at the middle portion of the channel region by the sidewall structure of the mask layer side wall formed by anisotropic etching. The memory cell size can be reduced.
  • FIGS. 3 to 14 show voltage application states, charge injection into the charge storage layer, and discharge of charge from the charge storage layer when performing a write operation, a read operation, and an erase operation to the memory cell.
  • FIG. The voltage application state will be described using a memory cell array in which memory cells A to D are arranged in a matrix as an example, and charge injection Z emission will be described using the cross-sectional view of the memory cell shown in FIG. 2 as an example.
  • FIGS. 3 to 5 and FIGS. 9 to 10 show a write operation
  • FIGS. 6 to 8 and FIGS. 11 to 12 show a read operation.
  • FIGS. 13 to 14 show the erase operation. Each shows channel erase Z source erase.
  • the first multi-value storage operation will be described.
  • a memory cell is provided with a plurality of control gate layers, by applying a write voltage independently for each control gate layer, charge is injected into a unique charge accumulation region under each control gate layer, This is a case where multi-value storage is realized by storing data values according to combinations of the presence or absence of charges in the lower charge accumulation region for each control gate layer. Due to the FN tunneling phenomenon, charges are injected from the channel.
  • FIGS. 3 to 5 show the case of the write operation. Two control gate layers are provided per memory cell, and three write states can be realized.
  • memory cells A and B source line SL1 and bit line BL1 are connected to each of the pair of diffusion layers, and memory cells C and D are connected to source line SL2 and bit line in each of the pair of diffusion layers.
  • BL2 is connected.
  • the pair of control gate layers of the memory cells A and C are connected to the word lines WL11 and WL21 which are control lines, respectively, and the pair of control gate layers of the memory cells B and D are respectively connected to the control lines. It is assumed that they are connected to certain word lines WL12 and WL22. It is assumed that the memory cell A is a write target.
  • FIG. 1 source line SL1 and bit line BL1 are connected to each of the pair of diffusion layers
  • memory cells C and D are connected to source line SL2 and bit line in each of the pair of diffusion layers.
  • BL2 is connected.
  • charge is injected into the charge storage layer indicated by a circle in memory cell A.
  • the source line SL1 connected to the memory cell A is maintained at the third voltage OV or floating state
  • the bit line BL1 is maintained at the fourth voltage OV or floating state
  • the substrate is at the fifth voltage.
  • OV, word line WL11, which is the control gate is set to 9V, the first voltage. In this case, no reverse bias is applied between the diffusion layer and the substrate, and the depletion layer does not extend, so that an electric field is also applied to the control gate layer force to which the word line WL11 is connected. Accelerated by this electric field, charges are injected from the substrate by the FN tunneling current into the charge storage layer under the control gate layer to which the word line WL11 is connected.
  • the other control gate layer of the memory cell A When the other control gate layer of the memory cell A is connected to the word line WL21 which is the other control gate, the second voltage OV is applied to the word line WL21. No charge is injected into the charge storage layer below the word line WL21 which is not accelerated to the charge storage layer. Since OV is also applied to the word lines 12 and 22, no charge is injected into the memory cell B. In other words, the other control gate should be given a voltage without causing FN tunneling between the charge storage layer and the substrate!
  • OV or 6V is applied to the source line SL2 to which the diffusion layers of the memory cells C and D are connected, and 6V is applied to the bit line BL2.
  • 9V is applied to the control gate layer connected to the word line WL11, while 6V is applied to the adjacent diffusion layer with the bit line BL2 connected.
  • the diffusion layer and the substrate are reverse-biased to form a depletion layer, and the electric field between the control gate layer and the substrate is relaxed.
  • the disturb phenomenon in the memory cell C is prevented without charge being injected into the charge storage layer according to the word line WL11 applied to 9V.
  • FIG. 4 shows a case where, in the memory cell A, charge is injected into the charge storage layer indicated by a circle by applying 9V as the first voltage to the word line WL21.
  • 9V is applied to the word line 21 which is one control gate instead of the word line WL11
  • OV which is the second voltage is applied to the word line WL11 which is the other control gate.
  • the source line SL is changed according to the replacement of the word line to which 9V is applied.
  • FIG. 5 shows a case where, in memory cell A, charge injection is performed on the charge storage layer indicated by a circle by applying 9 V, which is the first voltage, to word lines WL11 and WL21. This is a case where charge is injected into both of the two charge storage layers of the memory cell A.
  • 9V is applied to word line 21 in addition to word line WL11.
  • the word lines WL11 and WL21 biased to 9V are connected!
  • the source line SL2 and the bit line BL2 are applied to 6V. Since the “action” and effect are the same as in the case of FIG. 3, a description thereof is omitted here.
  • the first voltage write voltage (9V) is applied to each control gate layer, so that it is localized in the charge storage layer immediately below each control gate layer.
  • charge injection can be performed.
  • 2-bit data that is, 4-state data can be stored in one memory cell having two control gate layers. Since the substrate force is also injected into the charge storage layer in the range located under the control gate layer by the FN tunneling current, the local area for the gate oxide film is smaller than the charge injection method using the hot electron phenomenon. There is little damage.
  • 6 to 8 show the case of the read operation.
  • 3 to 5 show the case where the contents of the memory cell A in which the write operation has been performed are read out.
  • the source line side and the bit line side are fixed for the pair of diffusion layers. 6 to 8, the source line SL1 is connected to one diffusion layer, and the bit line BL1 is connected to the other diffusion layer.
  • the seventh voltage OV is applied to the source line SL1
  • the eighth voltage 1.5V is applied to the bit line BL1
  • the word lines WL11 and WL21 are applied.
  • a read voltage of 3V which is the sixth voltage, is applied to bias the two control gate layers to 3V, and a read operation is performed according to the amount of current flowing through the diffusion layer.
  • FIG. 6 shows a case where charges are injected and stored in the charge storage layer below the control gate layer connected to the word line WL11.
  • memory cell A charges are accumulated in the charge accumulation layer on the bit line BL1 side, and charges are accumulated in the charge accumulation layer on the source line SL1 side. Absent.
  • the potential lower than 3V due to charge accumulation faces the channel region.
  • the 3V potential faces the channel region, and 3V is applied between the gate and source. Applied.
  • a sufficient gate bias is applied on the source line SL1 side, a sufficiently large first current flows in the channel.
  • FIG. 7 shows a case where charges are injected and stored in the charge storage layer below the control gate layer connected to the word line WL21.
  • the memory cell A no charge is stored in the charge storage layer on the bit line BL1 side, and charge is stored in the charge storage layer on the source line SL1 side.
  • the 3V potential faces the channel region.
  • the potential lower than 3V due to charge accumulation faces the channel region, and the gate 'source has a 3V potential. A lower voltage is applied.
  • the current flowing in the channel is the second current that is limited by the first current value in FIG.
  • FIG. 8 shows a case where charges are injected and stored in the charge storage layer below the control gate layer connected to the word lines WL11 and WL21.
  • the memory cell A charges are stored in the charge storage layers on both the bit line B L1 side and the source line SL1 side.
  • a potential lower than 3 V due to charge accumulation opposes the channel region.
  • the gate bias is limited on both the bit line BL1 side and the source line SL1 side, and the third current that is further limited than the second current value of FIG. 7 flows through the channel.
  • connection relationship between the source line and the bit line is fixed between the pair of diffusion layers in the memory cell.
  • the gate bias is made variable along the channel length in accordance with the injection of charges into the charge storage layers below the two control gate layers arranged along the channel length direction.
  • the channel current becomes variable according to the combination of charge storage layers in which charge is stored, and multi-value data is read out.
  • FIGS. 9 to 10 show the case of the write operation.
  • a basic configuration is provided with two control gate layers in the channel length direction. Charges input from the lower side of the other control gate layer are injected below one control gate layer.
  • a write operation is performed on each of the two control gate layers.
  • lead lines Ll and L2 are connected to each of the pair of diffusion layers
  • lead lines L3 and L4 are connected to each of the pair of diffusion layers.
  • the pair of control gate layers of the memory cells A and C are respectively connected to the word lines WL11 and WL21 which are control lines
  • the pair of control gate layers of the memory cells B and D are respectively control lines. It is assumed that it is connected to word lines WL12 and WL22.
  • memory cell A is a write target.
  • the charge is injected into the charge storage layer indicated by a circle in memory cell A.
  • the lead line L 1 connected to one of the diffusion layers adjacent to the charge storage layer indicated by a circle is connected to the eleventh voltage 3 V
  • the lead line L2 connected to the other diffusion layer is applied to the seventh voltage 0V and the substrate is set to the fifth voltage 0V.
  • the word line WL connected to one control gate layer on the charge storage layer indicated by ⁇ . 11 is the 9th voltage, 6V
  • the word line WL21 connected to the other adjacent control gate layer is the 10th voltage, 3V.
  • the other control gate layer to which the word line WL21 is connected constitutes an auxiliary transistor as a function of accelerating charges.
  • the charge input from the lead line L2 accelerates through the channel region under the control gate layer to which 3V is applied, and has high kinetic energy at the stage of reaching the control gate layer to which 6V is applied.
  • the voltage of 3V which is the tenth voltage applied to the word line WL21, is a voltage for forming a channel in the channel region under the other control gate layer connected to the word line WL21.
  • the charge is accelerated in the direction of one control gate layer connected to the charge power word line WL11 input from the lead line L2.
  • the lead lines L3 and L4 are OV.
  • Memory cell C is connected to memory cell A and common word lines WL11 and WL21, but the lead lines L3 and L4 are both OV, preventing the disturb phenomenon that charges are not accelerated in the channel. Is done.
  • the write operation is not performed in combination with the word lines WL12 and WL22 being OV.
  • FIG. 10 shows a case where, in the memory cell A, charge injection is performed on the charge storage layer indicated by a circle by applying 6V as the ninth voltage to the word line WL21.
  • the bias relationship of the word lines WL11 and WL21 is reversed so that the other control gate, word line WL11, is the 10th voltage, 3V, and one control gate, word line 21, is the ninth voltage. Apply 6V.
  • the bias relationship between the lead lines Ll and L2 is reversed and connected to the other diffusion layer !, the seventh voltage OV is applied to the lead line L1, and the charge storage layer indicated by the ⁇ mark
  • the eleventh voltage of 3 V is applied to the lead line L2 connected to one adjacent diffusion layer.
  • OV is applied to the lead lines L3 and L4 as in FIG. In the case of Fig. 10, it is connected to one control gate layer on the charge storage layer indicated by ⁇ .
  • the other control gate layer to which the word line WL21 and the word line WL11 are connected constitutes an auxiliary transistor, and charge is input from the lead line L1.
  • Other operations and effects are the same as those in the case of FIG. 9, and a description thereof is omitted here.
  • a write voltage (6V) as the ninth voltage is applied to one control gate layer on the charge storage stack to which charges are to be injected
  • a tenth voltage equivalent to the read voltage is applied to the other control gate layer adjacent in the channel length direction to form a channel in the channel region.
  • the other control gate layer becomes an auxiliary transistor.
  • the charge input from the diffusion layer adjacent to the auxiliary transistor is accelerated along the channel of the auxiliary transistor and reaches below the charge storage layer to be written. At this point, the electric charge is a high-energy hot electron, and the electric charge is injected into the charge storage layer by the hot electon phenomenon.
  • the other control gate layer In order to inject charge into the charge storage layer below each control gate layer, the other control gate layer is used as an auxiliary transistor to serve to accelerate the charge. It is necessary to change the charge input direction according to the position of the charge storage layer where charge is stored.
  • Data can be stored for each control gate layer. Data can be stored for each word line, and one memory cell having two control gate layers can store two bits of data with two addresses.
  • FIGS. 11 to 12 show the case of a read operation.
  • Each of FIGS. 9 to 10 shows a case where the contents of the memory cell A in which the write operation has been performed are read.
  • a so-called reverse read operation is required. This is because, in the read operation, the diffusion layer adjacent to the charge storage layer to be read is on the source terminal side to which OV is applied.
  • the gate bias changes according to the presence or absence of charge in the charge storage layer, the change in the channel bias increases when the gate bias changes on the source terminal side, and the sensitivity of the presence or absence of charge storage can be improved. Because it can.
  • the leader line adjacent to one diffusion layer adjacent to the charge storage layer to be read is connected to the seventh voltage OV and the other diffusion layer is connected!
  • Set the I lead-out line to the 8th voltage, 1.5V.
  • a read voltage of 3V which is the sixth voltage, is applied to both word lines, and a read operation is performed depending on the presence or absence of current flowing through the diffusion layer.
  • FIG. 11 shows a case where charges are injected and stored in the charge storage layer below the control gate layer connected to the word line WL11.
  • the charge storage layer on the lead line L1 side is the read target.
  • 3V is applied to both word lines WL11 and WL21.
  • the potential lower than 3V due to charge accumulation is opposed to the channel region on the lead line L1, and a voltage lower than 3V is applied between the gate and source.
  • the second current flows through the channel with a small amount of current.
  • the third current is minimized as in FIG. 8 described above, or a channel does not form in the channel region and no current flows! / ⁇ .
  • FIG. 12 shows a case where charges are injected and stored in the charge storage layer below the control gate layer connected to the word line WL21. Compared to the case of Fig. 11, the bias relationship of lead lines Ll and L2 is reversed. Apply 1.5V to lead wire L1 and OV to lead wire L2. Also, 3V is applied to both word lines WL11 and WL21. The effect at the time of reading is the same as in the case of FIG. 11, and a description thereof is omitted here.
  • the pair of diffusion layers in the memory cell is read using the diffusion layer adjacent to the charge storage layer to be read as a source terminal.
  • the force to apply OV to the diffusion layer serving as the source terminal This becomes the diffusion layer opposite to the diffusion layer to which OV is applied during writing, and so-called reverse read operation is performed.
  • the gate bias changes depending on the presence or absence of charge in the charge storage layer to be read, and the presence or absence of a channel in the channel region is inverted. Charge accumulation In some cases, there is little current or no channel is formed and no current flows. When there is no charge accumulation, a channel is formed and a large current flows. As a result, one bit is read for each control gate that selects the charge storage layer.
  • FIGS. 13 to 14 show the erase operation.
  • Figure 13 shows a case where memory cells in a chip or sector are erased at once.
  • V an erase operation called so-called chip erase or sector erase.
  • a bias application is shown when performing channel reraising in which the charge stored in the charge storage layer is released toward the substrate.
  • a similar bias is applied between the memory cells.
  • the source lines S Ll, SL2 and bit lines BL1, BL2 in the floating state which is the 13th voltage
  • OV which is the 12th voltage
  • 9V which is the 14th voltage
  • FIG. 14 shows a case where memory cells sharing a word line are erased collectively. V, so-called page erase.
  • the figure shows bias application when performing source erase, in which the charge stored in the charge storage layer is released to the adjacent diffusion layer.
  • source erase in which the charge stored in the charge storage layer is released to the adjacent diffusion layer.
  • a similar bias is applied between the memory cells.
  • the substrate is set to OV which is the fifth voltage
  • the lead lines L1 to L4 are set to 9V which is the 17th voltage
  • the word lines WL11 and WL21 are set to OV which is the 15th voltage.
  • an electric field between the word line and the diffusion layer and between the word line and the substrate is restricted by applying 6 V to the word lines WL12 and WL22, thereby erasing operation. Biased so that is not done.
  • the page erase method is not limited to this method, and although not shown in FIG. 23, channel erase can be performed in which the charge accumulated in the charge accumulation layer of an arbitrary word line is released toward the substrate.
  • channel erase can be performed in which the charge accumulated in the charge accumulation layer of an arbitrary word line is released toward the substrate.
  • OV the 12th voltage, to the word line to be page erased, 6V, the 16th voltage, to the word line not to be page erased, and 9V, the 14th voltage, to the substrate.
  • the word line WL11 is set to OV, which is the fifteenth voltage, and the word line WL21 is By setting the voltage to 16V, which is 16V, the electric field is limited between the word line WL21 and the diffusion layer and between the word line WL21 and the substrate, and the charge storage layer under the word line WL21 is restricted. The erase operation is not performed!
  • the lead-out line of the memory cell that is not erased is set to OV, so that the erase operation in bit units can be performed.
  • the erasing operation described above has an advantageous effect such that erasing can be performed in block units, chip batches, or bit units, and a high-speed erasing operation can be realized.
  • FIGS. 15 to 17 show layout diagrams of the diffusion layers and the word lines.
  • the control gate layer is shared between adjacent memory cells in the row direction to form a word line that is a control line.
  • the shaded portion in the figure is the channel of the memory cell sandwiched between a pair of diffusion layers. Indicates the area.
  • FIG. 15 shows a layout in the NAND flash memory.
  • the diffusion layers Dll and D22 are alternately arranged with the channel region, and two are arranged so as to intersect with a pair of word lines (WL11 and WL21, WL12 and WL22, etc.).
  • a pair of word lines and a source terminal S and drain terminal D on both sides thereof constitute a memory cell, and the memory cells are arranged in series.
  • Diffusion layers Dll and D21 and diffusion layers D13 and D23 are connected to both ends of the diffusion layers D12 and 22, respectively.
  • contact contours SL for connection to the source lines are formed, and in the diffusion layers D13 and D23, contacts BL1 and BL2 for connection to the bit lines are formed.
  • a pair of word lines (WL11 and WL21, WL12 and WL22, etc.) are arranged adjacent to each other in parallel, and a pair of word lines are also arranged in parallel.
  • different word line pairs may be connected to each memory cell.
  • FIG. 16 shows a layout in the NOR type flash memory.
  • the diffusion layers Dl and D2 are alternately arranged with the channel region, and two are arranged so as to intersect with a pair of word lines (WL11 and WL21, WL12 and WL22, etc.). Between the pair of word lines, connection contacts Ll and L2, and L3 and L4 are formed alternately. The alternately formed contact is connected to the lead line for each contact. A pair of word lines and both A memory cell is formed including the contact.
  • a pair of word lines (WL11 and WL21, WL12 and WL22, etc.) are arranged adjacent to each other in parallel, and a pair of word lines are also arranged in parallel. For memory cell groups connected to the same bit line, different word line pairs are connected to each memory cell.
  • a pair of word lines are adjacently arranged in parallel and cross a diffusion layer constituting a memory cell group connected to the same bit line or the same lead line, a pair of word lines is provided for each memory cell group.
  • the number of memory cells selected by the word line is limited to one. Therefore, there is no possibility that unselected memory cells will not be biased at the same time, causing erroneous reading of the power of unselected memory cells, or disturbing of unselected memory cells.
  • a memory cell when crossing a pair of adjacent word line force diffusion layers arranged in parallel, a memory cell is formed in parallel with the word line wiring direction.
  • the word lines WL11 to WL22 are wired orthogonally to the lead lines L1 to L3.
  • the control gate layer forms a rectangular region connecting adjacent lead lines along the channel length direction so as to delimit the channel width Formed in one row.
  • a memory cell is formed by a pair of adjacent lead lines and a pair of control gate layers between the lead lines. Under each of the two control gate layers arranged in the channel length direction, the presence or absence of charges in the charge storage layer is controlled, and the formation of the channel path is controlled.
  • the channel path at the time of reading can be made variable when two paths are formed, when one path is formed, and when not formed.
  • the amount of current at the time of reading can be made variable, and multilevel storage is realized.
  • the lead lines L1 to L3 are used as a source Z bit line by forming a diffusion layer (this is defined as a buried diffusion layer) shared between a plurality of memory cells continuous in a direction orthogonal to the word line. It can be pulled out.
  • a diffusion layer this is defined as a buried diffusion layer
  • FIG. 18 shows a planar structure and AAZBB cross-sectional structure of the memory cell of the embodiment, and FIGS. 19 to 21 show the manufacturing process.
  • FIG. 18 is a layout diagram of the memory cell.
  • the transistor region 31 is a memory cell array in which a plurality of memory cells are developed.
  • the transistor region 31 is a region where the field oxide film 16B is not deposited.
  • a pair of diffusion layers 13A and 13B forming a memory cell and a channel region therebetween are formed.
  • ONO films and control gate layers 21A, 21B, 21B_, and 21A + formed thereon are arranged along the ends.
  • Control gate layers 21A, 21B force arranged on channel regions sandwiched between opposing diffusion layers 13A, 13B are control gate layers of the memory cell of interest.
  • the control gate layers 21A and 21B extend in one direction beyond the transistor region 31.
  • control gate layers 21B_ and 21A + arranged along the outer edges of the diffusion layers 13A and 13B are control gate layers of adjacent memory cells (not shown). This is a case where a large number of memory cell force diffusion layers are shared and repeatedly arranged in the AA direction in FIG.
  • the control gate layers 21B_ and 21A + extend beyond the transistor region 31 in the opposite direction to the control gate layers 21A and 21B.
  • Control gate layer 21A, 21B, 21B_, 21A extended beyond transistor region 31
  • FIG. 18 also shows an AA sectional view and a BB sectional view.
  • the control gate layers 21A and 21B have a so-called sidewall structure in which the opposing surfaces form curved surfaces.
  • an ONO film having a laminated structure of the first insulating layer 15, the charge storage layer 17 and the second insulating layer 19 is deposited under the control gate layers 21A and 21B.
  • the first insulating layer 15 is also formed on the diffusion layers 13A and 13B.
  • a field oxide film 16 B is formed outside the transistor region 31.
  • a wiring lead base 22B is laminated on a portion where the control gate layer 21B and the ONO film on the channel region in the memory cell are stretched and bent. Since the control gate layer 21B and the wiring lead-out base 22B are made of the same material, ohmic contact can be obtained by stacking them.
  • a manufacturing process for the memory cell of the embodiment is shown.
  • Fig. 19 (a) Odor
  • the oxide film 41 and the nitride film 43 are stacked on the substrate 11, the nitride film 43 in the region other than the transistor region 31 is removed. Using the remaining nitride film 43 as a mask, a field oxide film 16 is formed on the substrate (b). Thereby, element isolation on the substrate surface is performed.
  • a gate oxide film (first insulating layer) 15 is formed on the entire surface by thermal oxidation (d), and a nitride film 44 is further deposited thereon.
  • the nitride film 44 is a mask layer for anisotropic etching when forming the sidewall structure of the control gate layer 21 formed on the channel region.
  • the resist 45 applied on the nitride film 44 is exposed and removed, leaving the resist 45 between the part where the diffusion layer is formed and the bow I part of the control gate layer. Then, the nitride film 44 is etched using the resist 45 as a mask (f). The width of the channel region between the diffusion layers is 1.5F. The width of the diffusion layer is F.
  • the lead-out portion of the control gate layer is a portion that extends beyond the transistor region 31 in the word line wiring direction. The nitride film 44 is left to extend to the transistor region 31 where the diffusion layer is formed and to the outside of the transistor region 31 where the field oxide film is formed.
  • the upper two layers of the ONO film are sequentially stacked over the entire surface. That is, they are a nitride film (charge storage layer) 17 and an oxide film (second insulating film) 19. Further, a conductive material film (control gate layer) 21 such as a polycrystalline silicon layer constituting the control gate layer is stacked thereon (h).
  • the conductive material film (control gate layer) 21 and the upper two layers of the ONO film (the oxide film (second insulation) are stacked on the upper surface of the substrate.
  • (Film) 19 and nitride film (charge storage layer) 17) are etched (i).
  • the upper two layers of the ONO film and the control gate layer 21 can be formed as a sidewall structure by being stacked on the side wall of the nitride film 44 which is a mask layer.
  • the sidewall structure is formed so as to face a portion that becomes a channel region in the transistor region 31, and is similarly formed on the sidewall of the nitride film 44 outside the transistor region 31.
  • FIG. 21 shows a planar structure after step (i).
  • the charge storage layer 17, the second insulating layer 19, and the control gate layer 21 are formed in a sidewall structure on the outer peripheral side wall of the nitride film 44 that is a mask layer.
  • the nitride film 44 is removed, diffusion layers 13 A and 13 B are formed by ion implantation or the like, and a sidewall structure formed by surrounding the outer periphery of the nitride film 44 is obtained.
  • Control gate layers 21A, 21B, 21B_, and 21A + are formed separately for the left and right edges of the diffusion layers 13A and 13B.
  • each control gate layer is separated outside the transistor region 31, and the separated ends of the control gate layers 21A, 21B, 21B_, and 21A + are formed so as to surround the diffusion layers 13A and 13B. It is preferred that As a result, the control gate layers 21A, 21B, 21B_, 21 A + having a sidewall structure are formed outward from the transistor region 31, and the control gate layers 21A, 21B, 21B_, 21A + The connection to the wiring lead bases 22A, 22B, 22B_, 22A + when pulling out as a word line can be made more reliable.
  • the charge storage region 17 includes a unique charge storage region (FIG. 1) for each of the control gate layers 21A and 21B, or provided separately.
  • Charge injection / release can be performed on the charge storage layers 17A and 17B (FIG. 2).
  • the number of data corresponding to the combination of the presence / absence of charge can be stored in the intrinsic region of the charge storage stack 17 and the charge storage layers 17A and 17B. That is, 2-bit data can be stored in a memory cell having two control gate layers 21A and 21B.
  • the write voltage applied to the control gate layers 21A and 21B is changed according to the write data value. There is no need to change it, and multi-value storage can be performed with a single write operation.
  • the present invention is not limited to this. It is possible to have more than two control gate layers per memory cell.
  • the control gate layer is arranged in one column along the channel length direction or the channel width direction on the channel region sandwiched between the diffusion layers. It is necessary to be arranged.
  • the amount of current in the read operation is changed by changing the region of the charge storage layer where charge is stored according to the bias applied to the control gate layer along the channel length direction or the channel width direction on the channel region. It is a necessary force.
  • there are three control gate layers and one of the control gate layers to be written applies the first voltage as “one control gate”, Two control gate layers not to be written give the fifth voltage lower than the first voltage as “the other control gate”.
  • control gate layers are arranged in pairs along the channel length direction.
  • one of the control gate layers is used as an auxiliary gate, and the charge is accumulated in the charge storage layer under the other control gate layer according to the write voltage to the other control gate layer while accelerating the charge. Can be injected.
  • the present invention is not limited to this.
  • a write Z erase method in which hot holes are injected into the charge storage layer is also possible.
  • writing by a so-called interband tunneling current between the charge storage layer and the diffusion layer is also possible.
  • FIG. 24 shows the developed principle structure of the memory cell provided in the nonvolatile memory device of the present invention.
  • the first insulating layer 15, the charge storage layer 17, and the second insulating layer 19 are laminated in this order on the channel region sandwiched between the diffusion layers 13A and 13B.
  • the two control gate layers 21 A and 21 B are arranged apart from each other so as to overlap each other in the channel length direction.
  • the feature of this principle structure is that the charge storage layer 17 having discrete charge traps remains the same as the principle structure of FIG. 1, and two control gate layers 21A and 21B are partially overlapped, An insulating layer is disposed between some overlapping portions.
  • the gap G1 provided in the principle structure of FIG. 1 can be eliminated, and by arranging a part of the gap G1, the gap between the pair of diffusion layers 13A and 13B can be significantly narrowed with the spacing of 1.5F. As a result, not only the cell size can be reduced, but also the channel resistance can be reduced and the electrical characteristics during the write and read operations can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

 一対の拡散層13A、13Bで挟まれたチャネル領域上には、第1絶縁層15、電荷蓄積層17、第2絶縁層19がこの順番に積層され、第2絶縁層19上には、チャネル幅方向の中間部にギャップG1を有して離間した2つの制御ゲート層21A、21Bが配置されている。電荷蓄積層17には離散的な電荷トラップを有し、層内での電荷の移動が制限される。電荷蓄積層17において、制御ゲート層21A、21Bごとに印加された書き込み電圧に応じて注入された電荷は、書き込み電圧を印加した制御ゲート層21A、21B下に局在させることができる。制御ゲート層21A、21B下の電荷蓄積領域ごとに電荷有無を制御することができ、メモリセルへの多値記憶が可能となる。

Description

明 細 書
不揮発性記憶装置、およびその製造方法
技術分野
[0001] 本発明は、多値記憶が可能な不揮発性メモリセルを有する不揮発性記憶装置、お よびその製造方法に関するものである。
背景技術
[0002] 不揮発性メモリセルに対して多値記憶が可能な不揮発性記憶装置を実現するため に、従来より、不揮発性メモリセルに複数の状態を持たせることが考案されている。す なわち、フローティングゲートに注入される電荷量を段階的に制御して、不揮発性メ モリセルの閾値電圧を段階的に異ならせることにより、多値記憶を可能とする方法で ある。
[0003] 例えば、書き込み電荷量を 4段階に調整すれば、記憶セルあたり 2ビットのデータを 記憶することができる。この場合の書き込みは、以下に示す、少なくとも 2段階の書き 込み電圧印加のステップにより行われる。
[0004] 第 1のステップでは、消去状態の記憶セルに対して第 1電圧を印加して、フローティ ングゲートへ、第 1段階の電荷量となる電荷の注入を行う。次に、第 2のステップにお いては、記憶すべきデータに応じて、第 2段階の電荷量、または更に電荷量の多い 第 3段階の電荷量にするため、記憶セルごとに、第 2電圧、または第 2電圧より高電圧 の第 3電圧を印加して電荷の注入を行う。これにより、不揮発性メモリセルは、注入電 荷量に応じて、閾値電圧の異なる 3つの書き込み状態を保持する。これに消去状態 を加えて、 4つの状態である 2ビットデータが記憶される。データの読み出しは、不揮 発性メモリセルの閾値電圧の違いから、読み出し電流量の違いを検出することにより 行われる。
[0005] また、下記に示す特許文献 1では、図 25に示すように、離散的なトラップを含むゲ ート絶縁膜 120及びコントロールゲート電極 170を有するメモリトランジスタ部 Trmcを 有し、その両側に、スィッチゲート電極 160— 1、 160— 2を備えたスィッチトランジスタ 部 Trswを備え、その外側にソース線 Zビット線に接続される拡散層 140— 1、 140-2 が形成される。ゲート絶縁膜 120に、局所的な書き込みを行い、 1メモリセルは少なく とも 2ビット分の情報を蓄積するマルチストレージをなす。
[0006] ここで、離散的なトラップを含むゲート絶縁膜に捕獲された電荷は、最初に捕獲さ れた位置力 基板表面に対して水平方向への移動がほとんどない。また、離散的な トラップを含むゲート絶縁膜の材料として、今日明白であるのは、窒化シリコン膜と、 窒化シリコンの微小粒子を含むゲート絶縁膜である。
[0007] 書き込み動作は、ソースサイド注入方式により行われる。何れか一方のスィッチトラ ンジスタ部 Trswの絞られたチャネルをキャリアが通過するとき加速されてエネルギが 高められ、メモリトランジスタ部 Trmcのチャネルに飛び込んだキャリアは高バイアスを コントロールゲート電極 170方向に感じて、離散的トラップに捕獲される。メモリトラン ジスタ部 Trmcのソース領域にある程度の分布をもって電荷は蓄積される。メモリトラ ンジスタ部 Trmcの両側に備えられるスィッチゲート電極 160— 1、 160— 2下のチヤネ ルがそれぞれが導通することにより、ゲート絶縁膜 120の両側に電荷の蓄積が行わ れ、 2ビットのデータが記憶される。
[0008] 読み出し動作は、ソースサイド注入方式であることにより、ソース側に書き込み動作 を行うため、読み出しのチャネル電流もそのまま同じ方向でよい。
[0009] また、下記の特許文献 2では、図 26に示すように、シリコン (Si)基板 210上に形成 されたゲート絶縁膜 (SiO膜) 250、 260と、シリコン酸化膜 260上に形成された一対
2
の浮遊ゲート 270a、 270bと、浮遊ゲート 270とシリコン酸ィ匕膜 250、 260を覆うように 形成された ONO膜 280と、 ONO膜 280上形成されたワード線として制御ゲート 290 とを備えて ヽる。ここで、一対の浮遊ゲート 270a、 270bは、ソース 230、ドレイン 240 上にそれぞれ独立して配置されており、ソース 230、ドレイン 240からの電子をそれぞ れ注入'引き抜きできるようになつている。浮遊ゲート 270a、 270bは、後に除去され る絶縁膜の側壁に形成されたサイドウォールである。
[0010] 書き込み動作は、チャネル中をソース 230からドレイン 240に向力つて進む電子が 、ドレイン 240の近傍で高いエネルギを獲得してホットエレクトロンとなり、その一部が シリコン酸ィ匕膜 260を飛び越えて浮遊ゲート 270bに注入されて行なわれる。浮遊ゲ ート 270bへの注入は、ソース 230とドレイン 240とのバイアス関係を逆転させれば同 様である。
[0011] 読み出し動作は、浮遊ゲート 270a、 270bに電子がない状態ではチャネルは繋が つており、ソース 230とドレイン 240との間に電流が流れ、データ「1」として読み出さ れる。電子が注入されている状態ではチャネルが切断され、ソース 230とドレイン 240 との間に電流が流れず、データ「0」として読み出される。一対の浮遊ゲート 270a、 27 Obに、それぞれ独立して書き込み、消去、読み出しを行うことにより、記憶量を 2倍と する。
[0012] 特許文献 1 :特開 2001— 156275号公報
特許文献 2:特開 2003— 282741号公報
発明の開示
発明が解決しょうとする課題
[0013] し力しながら、上記の背景技術に示す、不揮発性メモリセルの閾値電圧を段階的に 変えて多値記憶を行う場合には、データ値に応じた閾値電圧とするために、書き込 み電圧をデータ値に応じて変化させる必要がある。書き込み動作に 2ステップ以上の 多段階のステップが必要となり、書き込み時間が長くなるおそれがある。また、データ 値ごとに異なる多段階の書き込み電圧を発生させる電圧発生回路が必要となる。加 えて、 1つの不揮発性メモリセルに対して多段階の閾値電圧を設定する際、各閾値 電圧での読み出し余裕を確保する必要から、書き込み電圧は非多値記憶の場合より も高電圧とせざるを得ない。電圧発生回路の回路構成が複雑、大規模となり、消費 電流も大きなものとなるおそれがある。
[0014] また、上記特許文献 1では、ソースサイド注入方式により、高速、低消費電流の書き 込み動作が可能となるものの、メモリセルは、メモリトランジスタ部と、その両側にスイツ チトランジスタ部を備える、 3トランジスタ構成となる。メモリセルの占有面積が大きくな らざるを得ず問題である。
[0015] また、上記特許文献 2では、浮遊ゲートにサイドウォールを利用するのものである。
メモリセルに対して、 2つの浮遊ゲートと、その間に制御ゲートを備える構成である。こ のため、多値記憶に当たっては、仮想接地方式によりドレイン端子とソース端子とを 入れ替えて読み出し動作を行わねばならず、動作が煩雑である。また、浮遊ゲート間 には、制御ゲートおよび拡散層領域を備える構成である。このため、浮遊ゲート間に 制御ゲートや拡散層領域を配置するための間隔を備える必要がある。
課題を解決するための手段
[0016] 本発明は前記背景技術の少なくとも 1つの問題点を解消するためになされたもので あり、小さなセルサイズであって、書き込み時の消費電流が少なくまたは Zおよび高 速な書き込み動作が可能なメモリセルを備える不揮発性記憶装置、およびその製造 方法を提供することを目的とする。
[0017] 前記目的を達成するためになされた本発明の不揮発性記憶装置は、基板表面に 所定間隔で配置される一対の拡散層と、基板表面上であって、一対の拡散層に挟ま れる領域に、互いに離間して形成される複数の制御ゲート層と、制御ゲート層と基板 表面との間に形成され、制御ゲート層ごとに、固有に電荷が注入または Zおよび放 出される領域を有する電荷蓄積層と、を有して構成されるメモリセルを備えることを特 徴とする。
[0018] 本発明の不揮発性記憶装置では、一対の拡散層に挟まれた基板表面上の領域に 、互いに離間して複数の制御ゲート層が形成され、制御ゲート層と基板表面との間に 備えられる電荷蓄積層は、制御ゲート層ごとに固有な電荷蓄積領域が形成される。
[0019] これにより、制御ゲート層ごとに固有に形成される電荷蓄積領域に対して、電荷の 注入 Z放出、つまり、電子またはホールの注入 Z放出を行うことができ、各制御ゲー ト層に固有に備えられる、電荷が注入または zおよび放出される領域における電荷 有無の状態の組み合わせ数に応じた数のデータビットを記憶することができる。電荷 の注入 Z放出を行うべき制御ゲート層を選択することで多値記憶を行うことができ、 書き込むべきデータ値に応じて制御ゲート層に印加する第 1電圧を変える必要がなく 、また、 1回の書き込み動作で多値記憶を行うことができる。
[0020] また、制御ゲート層数に応じたビット数のデータ値を記憶することができる。メモリトラ ンジスタ部のほかに、記憶すべきビット数分のスィッチトランジスタ部が必要となる特 許文献 1に比して、メモリセルの占有面積の縮小を図ることができる。
[0021] また、電荷蓄積層への電荷注入については、第 1電圧が印加される制御ゲート層 下の基板より FNトンネリング現象に基づくチャネル注入動作とすることの他、第 9電 圧が印加される制御ゲート層に隣接する制御ゲート層下にチャネルを形成して、電 荷を加速してホットエレクトロン現象またはホットホール現象に基づいてソース注入動 作とすることができる。チャネル注入動作により、 FNトンネリング現象に伴う低消費電 流の書き込み動作を行うことができ、ソース注入動作により、高速で低消費電流の書 き込み動作を行うことができる。
発明の効果
[0022] 本発明によれば、多値記憶が可能な不揮発性メモリセルを有する不揮発性記憶装 置において、不揮発性メモリセルとして、小さなセルサイズであって、書き込み時の消 費電流が少なぐまたは Zおよび高速な書き込み動作が可能なメモリセルを備える不 揮発性記憶装置、およびその製造方法を提供することが可能となる。
図面の簡単な説明
[0023] [図 1]本発明の不揮発性記憶装置に備えられるメモリセルの原理構造を示す断面図 である。
[図 2]実施形態のメモリセルの断面図である。
[図 3]実施形態のメモリセルに対して第 1多値記憶の書き込み動作を行う際の図(1) である。
[図 4]実施形態のメモリセルに対して第 1多値記憶の書き込み動作を行う際の図(2) である。
[図 5]実施形態のメモリセルに対して第 1多値記憶の書き込み動作を行う際の図(3) である。
[図 6]実施形態のメモリセルに対して第 1多値記憶の読み出し動作を行う際の図(1) である。
[図 7]実施形態のメモリセルに対して第 1多値記憶の読み出し動作を行う際の図(2) である。
[図 8]実施形態のメモリセルに対して第 1多値記憶の読み出し動作を行う際の図(3) である。
[図 9]実施形態のメモリセルに対して第 2多値記憶の書き込み動作を行う際の図(1) である。 圆 10]実施形態のメモリセルに対して第 2多値記憶の書き込み動作を行う際の図(2) である。
圆 11]実施形態のメモリセルに対して第 2多値記憶の読み出し動作を行う際の図(1) である。
圆 12]実施形態のメモリセルに対して第 2多値記憶の読み出し動作を行う際の図(2) である。
[図 13]実施形態のメモリセルに対して消去動作 (チャネルィレーズ)を行う際の図であ る。
[図 14]実施形態のメモリセルに対して消去動作 (ソースィレーズ)を行う際の図である
[図 15]実施形態のメモリセルを NAND型に構成する場合のレイアウトを示す図である
[図 16]実施形態のメモリセルを NOR型に構成する場合のレイアウトを示す図である。
[図 17]実施形態のメモリセルの制御ゲート層をチャネル方向に並行に配線する場合 のレイアウト図である。
[図 18]実施形態のメモリセルの平面および断面構造を示す図である。
[図 19]図 18のメモリセルの製造工程を示す断面図(1)である(マスク層の堆積まで)。
[図 20]図 18のメモリセルの製造工程を示す断面図(2)である(マスク層の堆積カも異 方性エッチングまで)。
[図 21]図 20までの製造工程を終了した時点でのメモリセルの平面構造を示す図であ る。
圆 22]制御ゲート層と配線引き出し基部との構成を示すメモリセルの平面構造図であ る。
[図 23]本発明のメモリセルにおける各動作時の電圧条件を示す図である。
[図 24]本発明の不揮発性記憶装置に備えられるメモリセルの更なる原理構造を示す 断面図である。
[図 25]特許文献 1のメモリセルの断面図である。
[図 26]特許文献 2のメモリセルの断面図である。 符号の説明
[0024] 11 基板
13 A, 13B 拡散層
15 ゲート酸化膜 (第 1絶縁層)
16、 16B フィールド酸化膜
17 窒化膜 (電荷蓄積層)
17A、 17B 電荷蓄積層
19 酸化膜 (第 2絶縁膜)
19A、 19B 第 2絶縁層
21 導電性材料膜 (制御ゲート層)
21A、 21B、 21B―、 21A+ 制御ゲート層
22A, 22B、 22B―、 22A+ 配線引き出し基部
31 トランジスタ領域
41 酸化膜
43 窒化膜
44 窒化膜
45 レジスト
BL1、 BL2 ヒ、、ッ卜線
Dl l、 D21、 D22、 D13、 D23 拡散層
G1、G2 ギャップ
L1、L2 L3、L4 引き出し線
SL1、 SL2 ソース線
WL11、 WL12、 WL21、 WL22 ワード線
発明を実施するための最良の形態
[0025] 以下、本発明の不揮発性記憶装置、およびその製造方法について具体ィヒした実 施形態を図 1乃至図 24に基づき図面を参照しつつ詳細に説明する。
[0026] 図 1に示す断面図は、本発明の不揮発性記憶装置に備えられるメモリセルの原理 構造を示している。基板 11には、 1. 5Fの間隔を有して一対の拡散層 13A、 13Bが 配置されている。各拡散層は、隣接するメモリセルの拡散層と共有する 0. 5Fの幅を 有している。拡散層 13A、 13Bで挟まれたチャネル領域上には、第 1絶縁層 15、電 荷蓄積層 17、第 2絶縁層 19がこの順番に積層されており、第 2絶縁層 19上には、チ ャネル幅方向の中間部にギャップ G 1を有して離間した 2つの制御ゲート層 21A、 21 Bが配置されている。ここで、 Fとは最小加工寸法であり、メモリセルは面積 2. 5F2で 構成されている。ここで、一般的に、基板 11は P型半導体材料で構成され、拡散層 1 3A、 13Bは N型半導体材料で構成される。
[0027] ギャップ G1にて離間される制御ゲート層 21A、 21Bは、チャネル長方向の中間部 において切り離されており、各々の制御ゲート層 21A、 21Bへは、個別に電圧の印 加が可能である。制御ゲート層 21Aは拡散層 13Aに隣接して配置され、制御ゲート 層 21Bは拡散層 13Bに隣接して配置されている。制御ゲート層 21A、 21B下にある 電荷蓄積層 17は、制御ゲート層 21A、 21B間で共通に形成されている。
[0028] メモリセルへのデータの記憶は、電荷蓄積層 17での電荷の有無により行なわれる。
電荷蓄積層 17に対する電荷の注入 Z放出は、図 3乃至図 5、図 9乃至図 10、および 図 13乃至図 14において後述するように、制御ゲート層 21A、 21Bへの電圧印加に 応じて行われる。電荷蓄積層 17に、離散的な電荷のトラップを有する、窒化膜や小 粒径導電体を使用することにより、または/および電荷蓄積層 17と第 1または/およ び第 2絶縁層との界面近傍に存在する電荷トラップを利用することにより、電荷蓄積 層 17に注入される電荷の電荷蓄積層 17内での移動を制限することができる。
[0029] これにより、 1つの電荷蓄積層 17において、制御ゲート層 21A、 21Bごとに印加さ れた書き込み電圧に応じて電荷蓄積層 17に注入された電荷は、書き込み電圧を印 カロした制御ゲート層 21A、 21B下に局在させることができる。電荷蓄積層 17における 制御ゲート層 21A、 21B下の電荷蓄積領域ごとに、電荷の有無を制御することがで き、メモリセルへの多値記憶が可能となる。図 1の場合、メモリセルに 2つの制御ゲート 層 21A、 21Bを有するので、 4状態、すなわち 2ビットデータの記憶が可能となる。
[0030] ここで、ギャップ G1は、製造工程上、制御ゲート層 21A、 21Bを確実に電気的に分 離できる空隙であればよい。ギャップ G1を介して、基板表面に拡散層を形成する場 合や、上位層との接続領域を確保する場合に比して、僅少な空隙とすることができる 。また、電荷蓄積層 17の上方に配置される制御ゲート層 21A、 21Bは、電荷蓄積層 17を越えて拡散層 13A、 13B側に回り込んで形成されることはない。これにより、ギ ヤップ G1を必要最小限とすることができると共に、拡散層 13A、 13B上に、上位配線 層との接続を行うためのコンタクトを、その周縁部を電荷蓄積層 17の端部に詰めて配 置することができ、メモリセルサイズの縮小を図ることができる。
[0031] また、第 1絶縁層 15と第 2絶縁層 19とは、例えば、酸化シリコン (Si02)で構成され 、電荷蓄積層 17は、例えば、窒化シリコン (Si3N4)で構成されている場合、第 1絶縁 層 15、電荷蓄積層 17、および第 2絶縁層 19で、いわゆる ONO膜が構成される。メモ リセルの浮遊ゲート層として機能すると共に、ゲート絶縁膜として機能する。また、電 荷蓄積層 17と制御ゲート層 21A、 21Bとを電気的に絶縁する機能を奏するものであ る。電荷蓄積層 17が、電荷のトラップ機能を有すると共に、基板 11または/および 制御ゲート層 21A、 21Bとの間で絶縁性能を有する場合には、第 1絶縁層 15または Zおよび第 2絶縁層 19を不要とすることも可能である。
[0032] また、電荷蓄積層 17は、層内での電荷の移動が制限された電荷トラップを有する 構造を使用することにより、制御ゲート層 21A、 21B間で電荷蓄積層 17を分離せず 共通に備える場合を示したが、本発明はこれに限定されるものではない。制御ゲート 層 21A、 21Bが離間されているギャップ G1に応じて、第 2絶縁層 19と電荷蓄積層 17 、または/および第 1絶縁層 15が離間される構成とすることも可能である。この場合、 制御ゲート層 21A、 21Bごとに独立した電荷蓄積層を有することとなる。制御ゲート 層 21A、 21Bごと〖こ、各々、独立の電荷蓄積層に電荷が注入/放出される。
[0033] この場合、電荷蓄積層として、上述の電荷トラップを有する材料を使用することがで きる他、多結晶シリコン材のような導電性材料により構成することもできる。電荷トラッ プを有する材料を使用する場合には、制御ゲート層 21A、 21B下の電荷蓄積層間を 移動する電荷を更に確実に阻止することができる。また、電荷トラップを有する材料を 使用する場合には、加工ばらつき等により電荷蓄積層の離間が不十分になってしま う場合にも、注入された電荷の移動は制限されるため、記憶データの消失等の不具 合はない。また、多結晶シリコン材等の導電性材料を使用すれば、 1ビットデータを記 憶する通常の不揮発性メモリセルのフローティングゲートと同様な構成とすることがで き、製造工程の簡略ィ匕を図ることができる。
[0034] また、ギャップ G1は、制御ゲート層 21A、 21Bを分離することを目的に形成されるも のであり、制御ゲート層 21A、 21Bの分離は、各々に制御されて注入される電荷の電 荷蓄積層 17での位置力 両者で分離されればよい。従って、ギャップ G1の形成位 置、およびギャップ G1の幅は、厳密に規定する必要はなぐ簡易な製造工程で形成 することができる。
[0035] 図 2に示す断面図はメモリセルの実施形態である。図 19乃至図 22の製造工程にお いて後述するように、拡散層 13A、 13B上にマスク層(不図示)を堆積した上で、全面 に電荷蓄積堆積層、第 2絶縁堆積層、およびゲート堆積層を積層する。一対の拡散 層 13A、 13Bに挟まれたチャネル領域は、拡散層 13A、 13B上に堆積されたマスク 層に挟まれて凹部を形成している力 上記の堆積層は、マスク層に沿って、チャネル 領域にも堆積される。
[0036] その後、電荷蓄積堆積層までを異方性エッチングにより取り除く。異方性エッチング であるため、積層厚み方向に選択的にエッチングされる。マスク層の上部の他、チヤ ネル領域において、エッチングされるところ、マスク層の側壁に沿って堆積されている 部分は、エッチング方向に対して深い厚みを有していることから、エッチングされずに 残る部分が存在する。いわゆるサイドウォール構造である。マスク層の側壁に近いほ どエッチングがされず、側壁力 離れるに従ってエッチング量が増大し、中間部にお いて、ギャップ G2の空隙が形成される。これにより、チャネル領域の中間部において 、互いに対向する円弧状形状を有して、制御ゲート層 21A、 21B、第 2絶縁層 19A、 19B、および電荷蓄積層 17A、 17Bが分離される。
[0037] ここで、ギャップ G2は、電荷蓄積層に電荷トラップを有する材料を使用する場合に は、製造工程上、少なくとも制御ゲート層 21A、 21Bを確実に分離できる空隙であれ ばよ ヽ。電荷蓄積層に多結晶シリコン材のような導電性材料を使用する場合には、 製造工程上、少なくとも制御ゲート層 21A、 21B、第 2絶縁層 19A、 19B、および電 荷蓄積層 17A、 17Bを確実に分離できる空隙であればよい。ギャップ G2を介して、 基板表面に拡散層を形成する場合や、上位層との接続する場合に比して、僅少な空 隙とすることができ、メモリセルサイズの縮小を図ることができる。 [0038] 異方性エッチングにより形成される、マスク層側壁のサイドウォール構造をもって、 制御ゲート層 21A、 21Bカゝら電荷蓄積層 17A、 17Bを、チャネル領域の中間部で分 離することができ、メモリセルサイズの縮小を図ることができる。
[0039] 図 2のメモリセルにおける他の作用.効果については、図 1に示すメモリセルの原理 構造図において説明した内容と同様であるので、ここでの説明は省略する。
[0040] 図 3乃至図 14は、メモリセルへの書き込み動作、読み出し動作、および消去動作を 行う際の電圧の印加状態と、電荷蓄積層への電荷の注入、電荷蓄積層からの電荷 の放出について説明した図である。電圧の印加状態は、メモリセル A乃至 Dをマトリク ス状に配置したメモリセルアレイを例にとり説明し、電荷の注入 Z放出に関しては、図 2に示すメモリセルの断面図を例にとり説明する。図 3乃至図 5、および図 9乃至図 10 に書き込み動作を、図 6乃至図 8、および図 11乃至図 12に読み出し動作を示す。こ こで、前者がチャネル力 電荷注入により書き込み動作を行う第 1多値記憶動作の場 合であり、後者力 Sソース力も電荷注入により書き込み動作を行う第 2多値記憶動作の 場合である。また、図 13乃至図 14に消去動作を示す。各々、チャネルィレーズ Zソ ースィレーズを示す。
[0041] 先ず、第 1多値記憶動作について説明する。メモリセルに複数の制御ゲート層を備 える場合、制御ゲート層ごとに独立して書き込み電圧を印加することにより、各制御ゲ 一ト層下ごとに固有な電荷蓄積領域に電荷の注入を行い、制御ゲート層ごとに、下 方の電荷蓄積領域での電荷の有無の組み合わせに応じてデータ値を記憶して多値 記憶を実現する場合である。 FNトンネリング現象により、チャネルカゝら電荷が注入さ れる。
[0042] 図 3乃至図 5は書き込み動作の場合である。メモリセルあたり 2つの制御ゲート層を 備えており、 3通りの書き込み状態を実現することができる。メモリセル Aおよび Bは、 一対の拡散層の各々に、ソース線 SL1とビット線 BL1とが接続され、メモリセル Cおよ び Dは、一対の拡散層の各々に、ソース線 SL2とビット線 BL2とが接続されている。ま た、メモリセル Aおよび Cの一対の制御ゲート層は、各々、制御線であるワード線 WL 11および WL21に接続され、メモリセル Bおよび Dの一対の制御ゲート層は、各々、 制御線であるワード線 WL12および WL22に接続されているものとする。 [0043] メモリセル Aが書き込み対象であるとする。図 3では、メモリセル Aにおける、〇印で 示す電荷蓄積層に電荷を注入する場合である。メモリセル Aが接続されて ヽるソース 線 SL1が第 3電圧である OVまたはフローティング状態に、ビット線 BL1が第 4電圧で ある OVまたはフローティング状態に維持されると共に、基板を第 5電圧である OV、一 方の制御ゲートであるワード線 WL11を第 1電圧である 9Vとする。この場合、拡散層 と基板との間に逆バイアスは印加されず、空乏層が伸びることはないため、ワード線 WL11が接続される制御ゲート層力も基板に向力つて電界が印加される。この電界 に加速されて、基板より、ワード線 WL11が接続されている制御ゲート層下の電荷蓄 積層に、 FNトンネリング電流により電荷が注入される。
[0044] メモリセル Aの他方の制御ゲート層には、他方の制御ゲートであるワード線 WL21 が接続されているところ、ワード線 WL21には第 2電圧である OVが印加されるので、 電荷が電荷蓄積層に加速されることはなぐワード線 WL21下の電荷蓄積層には電 荷の注入は行われない。ワード線 12、 22にも OVが印加されるので、メモリセル Bへの 電荷の注入は行われない。つまり、他方の制御ゲートには、電荷蓄積層と基板間に、 FNトンネリング作用を起こさな 、電圧を与えればよ!、。
[0045] また、メモリセル C、 Dの拡散層が接続されているソース線 SL2には OV、または 6V が印加され、ビット線 BL2には 6Vが印加される。メモリセル Cに着目すると、ワード線 WL11に接続される制御ゲート層に 9Vが印加されるところ、隣接する拡散層にはビ ット線 BL2が接続されて 6Vが印加される。これにより、拡散層と基板とが逆バイアスさ れて空乏層が形成されて、制御ゲート層と基板との間の電界が緩和される。メモリセ ル Cにお 、て、 9Vに印加されたワード線 WL11に応じて電荷蓄積層に電荷注入がさ れることはなぐメモリセル Cにおけるディスターブ現象が防止される。
[0046] 図 4は、メモリセル Aにおいて、ワード線 WL21への第 1電圧である 9V印加により、 〇印で示す電荷蓄積層に電荷注入が行われる場合を示す。図 3において、ワード線 WL11に代えて一方の制御ゲートであるワード線 21に 9Vを印加すると共に、他方の 制御ゲートであるワード線 WL11には第 2電圧である OVを印加する。また、第 1電圧 である 9Vが印加されたワード線 WL21が接続されているメモリセル Cのディスターブ 現象を防止するために、 9Vが印加されるワード線の入れ替えに応じて、ソース線 SL 2を 6Vに、ビット線 BL2を OVまたは 6Vに印加する。作用 '効果については、図 3の場 合と同様であるので、ここでの説明は省略する。
[0047] 図 5は、メモリセル Aにおいて、ワード線 WL11および WL21への第 1電圧である 9 V印加により、〇印で示す電荷蓄積層に電荷注入が行われる場合を示す。メモリセ ル Aが有する 2つの電荷蓄積層の双方に電荷の注入を行う場合である。図 3におい て、ワード線 WL11に加えてワード線 21に 9Vを印加する。また、 9Vにバイアスされ たワード線 WL11および WL21が接続されて!、るメモリセル Cのディスターブ現象を 防止するために、ソース線 SL2およびビット線 BL2を 6Vに印加する。作用'効果につ いては、図 3の場合と同様であるので、ここでの説明は省略する。
[0048] 第 1多値記憶動作における書き込み動作では、制御ゲート層ごとに第 1電圧であ る書き込み電圧(9V)を印加することにより、各制御ゲート層の直下にある電荷蓄積 層に局在させて電荷の注入を行うことができる。これにより、 2つの制御ゲート層を有 する 1つのメモリセルに対して、 2ビットデータ、すなわち 4状態のデータを記憶するこ とができる。基板力も制御ゲート層下に位置する範囲の電荷蓄積層に FNトンネリン グ電流により電荷が注入されるため、ホットエレクトロン現象を利用した電荷の注入方 法に比して、ゲート酸ィ匕膜に対する局所的なダメージが少な 、。
[0049] 図 6乃至図 8は読み出し動作の場合である。各々、図 3乃至図 5により書き込み動作 が行われたメモリセル Aの内容を読み出す場合を示して!/、る。第 1多値記憶動作で は、読み出し動作を行う際、一対の拡散層については、ソース線側とビット線側とが 固定されている。図 6乃至図 8においては、一方の拡散層にソース線 SL1が接続され 、他方の拡散層にビット線 BL1が接続されている。読み出し動作の際には、記憶され ているデータに関わらず、ソース線 SL1に第 7電圧である OV、ビット線 BL1に第 8電 圧である 1. 5Vを印加すると共に、ワード線 WL11および WL21に第 6電圧である読 み出し電圧 3Vを印加して 2つの制御ゲート層を共に 3Vにバイアスし、拡散層間を流 れる電流の多寡に応じて読み出し動作が行われる。
[0050] 図 6は、ワード線 WL11に接続されている制御ゲート層下の電荷蓄積層に電荷が 注入されて蓄積されている場合である。メモリセル Aにおいて、ビット線 BL1側の電荷 蓄積層に電荷が蓄積され、ソース線 SL1側の電荷蓄積層には電荷は蓄積されて!ヽ ない。これにより、ビット線 BL1側では、電荷の蓄積により 3Vより低下した電位がチヤ ネル領域に対向するところ、ソース線 SL1側では、 3V電位がチャネル領域に対向し て、ゲート'ソース間に 3Vが印加される。ソース線 SL1側において、充分なゲートバイ ァスが印加されることにより、チャネルには充分に大きな第 1電流が流れることとなる。
[0051] 図 7は、ワード線 WL21に接続されている制御ゲート層下の電荷蓄積層に電荷が 注入されて蓄積されている場合である。メモリセル Aにおいて、ビット線 BL1側の電荷 蓄積層には電荷が蓄積されず、ソース線 SL1側の電荷蓄積層に電荷が蓄積される。 これにより、ビット線 BL1側では、 3V電位がチャネル領域に対向するところ、ソース線 SL1側では、電荷の蓄積により 3Vより低下した電位がチャネル領域に対向して、ゲ ート 'ソース間に 3Vより低い電圧が印加される。ソース線 SL1側でのゲートバイアスが 制限されることにより、チャネルに流れる電流は前記図 6の第 1電流値よりも制限され る第 2電流が流れることとなる。
[0052] 図 8は、ワード線 WL11および WL21に接続されている制御ゲート層下の電荷蓄積 層に電荷が注入されて蓄積されている場合である。メモリセル Aにおいて、ビット線 B L1側およびソース線 SL1側の両者の電荷蓄積層に電荷が蓄積される。これにより、 ビット線 BL1側およびソース線 SL1側の両者において、電荷の蓄積により 3Vより低 下した電位がチャネル領域に対向する。ビット線 BL1側およびソース線 SL1側の両 者においてゲートバイアスが制限され、チャネルに流れる電流は、前記図 7の第 2電 流値よりも更に制限される第 3電流が流れることとなる。
尚、図示しないがメモリセル Aにおいて、ワード線 WL11および WL21に接続され て 、る制御ゲート層下の電荷蓄積層に電荷が蓄積されて 、な 、場合、ビット線 BL1 側およびソース線 SL1側の両者にぉ 、て、制御ゲート層の 3 V電位がチャネル領域 に対向して、充分なゲートバイアスが印加されることにより、チャネルには前記図 6の 第 1電流値よりも大きな第 4電流が流れることとなる。
[0053] 尚、読み出し動作においては、基板には、第 5電圧である OVを印加しておくことが 一般的である。
[0054] 第 1多値記憶動作における読み出し動作では、メモリセルにおける一対の拡散層 について、ソース線およびビット線への接続関係が固定されるところ、拡散層間にチ ャネル長方向に沿って配置される 2つの制御ゲート層下の電荷蓄積層への電荷の注 入に応じて、チャネル長に沿ってゲートバイアスが可変とされる。これにより、電荷の 蓄積が行われる電荷蓄積層の組み合わせに応じてチャネル電流が可変となり、多値 データが読み出される。
[0055] 次に、第 2多値記憶動作について説明する。メモリセルのチャネル領域に、チヤネ ル長方向に沿って 2つ(一対)の制御ゲート層を備える場合、一方の制御ゲート層に 第 9電圧である書き込み電圧を印力!]しながら、他方の制御ゲート層に第 10電圧であ る補助電圧を印加する。これにより、補助電圧が印加された制御ゲート層を補助トラ ンジスタとして、隣接する拡散層から入力された電荷が加速されながら、書き込み電 圧が印加されている制御ゲート層下の電荷蓄積層に電荷の注入が行われる。何れ か一方の拡散層から電荷を注入して他方の拡散層に隣接する制御ゲート層に注入 する場合である。補助トランジスタで加速された電荷が、一方の制御ゲート層下でホ ットエレクトロン現象を発生し、得られた電荷がチャネルに注入される。
[0056] 図 9乃至図 10は書き込み動作の場合である。チャネル長方向に 2つの制御ゲート 層を備えて基本構成とする。一方の制御ゲート層下に対して、他方の制御ゲート層 下側から入力された電荷が注入される。 2つの制御ゲート層の各々に対して書き込み 動作が行われる。メモリセル Aおよび Bは、一対の拡散層の各々に、引き出し線 Ll、 L2が接続され、メモリセル Cおよび Dは、一対の拡散層の各々に、引き出し線 L3、 L 4が接続されている。また、メモリセル Aおよび Cの一対の制御ゲート層は、各々、制 御線であるワード線 WL11および WL21に接続され、メモリセル Bおよび Dの一対の 制御ゲート層は、各々、制御線であるワード線 WL12および WL22に接続されている ものとする。
[0057] メモリセル Aが書き込み対象であるとする。図 9では、メモリセル Aにおける、〇印で 示す電荷蓄積層に電荷を注入する場合である。メモリセル Aが接続されて ヽる引き出 し線 Ll、 L2のうち、〇印で示す電荷蓄積層に隣接する一方の拡散層に接続されて いる引き出し線 L 1を第 11電圧である 3 Vに、他方の拡散層に接続されて!ヽる引き出 し線 L2を第 7電圧である 0Vに印加すると共に、基板を第 5電圧である 0Vとする。更 に、〇印で示す電荷蓄積層上の一方の制御ゲート層に接続されているワード線 WL 11を第 9電圧である 6V、隣接する他方の制御ゲート層に接続されて!ヽるワード線 W L21を第 10電圧である 3Vとする。この場合、ワード線 WL21が接続されている他方 の制御ゲート層が電荷を加速させる機能としての補助トランジスタを構成する。引き 出し線 L2から入力された電荷は、 3Vが印加されている制御ゲート層下のチャネル領 域を加速して進み、 6Vが印加されている制御ゲート層下に至る段階では高い運動 エネルギを備えた、ホットエレクトロンとなる。このホットエレクトロンにより生成された電 荷力 6Vに印加されて 、る一方の制御ゲート層方向に加速され電荷蓄積層に注入 される。ホットエレクトロン電流により電子が注入される。
[0058] ここで、ワード線 WL21に印加される第 10電圧である 3Vの電圧は、ワード線 WL21 に接続されている他方の制御ゲート層下のチャネル領域にチャネルを形成する電圧 である。例えば、補助トランジスタとして読み出し状態と同様な電圧が印加される結果 、引き出し線 L2より入力された電荷力 ワード線 WL11に接続されている一方の制御 ゲート層の方向に加速される。
[0059] メモリセル C、 Dに関しては引き出し線 L3、 L4が OVである。メモリセル Cは、メモリセ ル Aと共通のワード線 WL11、 WL21が接続されているものの、引き出し線 L3、 L4が 共に OVであるため、チャネル内を電荷が加速されることはなぐディスターブ現象が 防止される。また、メモリセル B、 Dに関しては、ワード線 WL12、 WL22が OVであるこ ととも相俟って、書き込み動作は行われない。
[0060] 図 10は、メモリセル Aにおいて、ワード線 WL21への第 9電圧である 6V印加により 、〇印で示す電荷蓄積層に電荷注入が行われる場合である。図 9において、ワード 線 WL11、 WL21のバイアス関係を逆転して、他方の制御ゲートであるワード線 WL1 1に第 10電圧である 3V、一方の制御ゲートであるワード線 21に第 9電圧である 6Vを 印加する。また、引き出し線 Ll、 L2のバイアス関係を逆転して、他方の拡散層に接 続されて!、る弓 Iき出し線 L 1に第 7電圧である OV、〇印で示す電荷蓄積層に隣接す る一方の拡散層に接続されて ヽる引き出し線 L2に第 11電圧である 3 Vを印加する。 ワード線 WL11、WL21が接続されているメモリセル Cのディスターブ現象を防止す るために、引き出し線 L3、 L4には、共に OVが印加されていることは図 9と同様である 。図 10の場合は、〇印で示す電荷蓄積層上の一方の制御ゲート層に接続されてい るワード線 WL21とワード線 WL 11が接続されている他方の制御ゲート層が補助トラ ンジスタを構成し、引き出し線 L1から電荷が入力される。この他の作用'効果につい ては、図 9の場合と同様であるので、ここでの説明は省略する。
[0061] 第 2多値記憶動作における書き込み動作では、電荷を注入する対象である電荷蓄 積層の上にある一方の制御ゲート層に第 9電圧である書き込み電圧 (6V)を印加す ると共に、チャネル長方向に隣接する他方の制御ゲート層に読み出し電圧と同等な 第 10電圧を印加して、チャネル領域にチャネルを形成する。他方の制御ゲート層が 補助トランジスタとなる。補助トランジスタに隣接する拡散層から入力された電荷は、 補助トランジスタのチャネルに沿って加速され、書き込み対象の電荷蓄積層下に至る 。この時点で電荷は高工ネルギ状態のホットエレクトロンとなっており、ホットエレクト口 ン現象により電荷蓄積層に電荷注入が行われる。各制御ゲート層下の電荷蓄積層に 電荷を注入するために、他方の制御ゲート層を補助トランジスタとして使用して電荷 を加速する役割を持たせる。電荷の蓄積を行う電荷蓄積層の位置に応じて、電荷の 入力方向を変えることが必要である。制御ゲート層ごとにデータを記憶することができ る。ワード線ごとにデータを記憶することができ、 2つの制御ゲート層を有する 1つのメ モリセルにつ 、て、 2アドレスを有して 2ビットのデータを記憶することができる。
[0062] 図 11乃至図 12は読み出し動作の場合である。各々、図 9乃至図 10により書き込み 動作が行われたメモリセル Aの内容を読み出す場合を示している。第 2多値記憶動 作では、引き出し線のバイアス関係を、読み出し動作と書き込み動作で逆転する必 要がある。いわゆるリバースリード動作が必要である。読み出し動作において、読み 出し対象の電荷蓄積層に隣接する拡散層を、 OVが印加されるソース端子側とするた めである。電荷蓄積層への電荷の有無に応じてゲートバイアスが変化するところ、ソ ース端子側においてゲートバイアスの変化が生ずるほうがチャネル電流の変化を大 きくし、電荷蓄積の有無の感度を向上させることができるからである。読み出し動作の 際には、読み出し対象の電荷蓄積層に隣接する一方の拡散層に隣接されている引 き出し線を第 7電圧である OVに、他方の拡散層に接続されて!ヽる弓 Iき出し線を第 8 電圧である 1. 5Vとする。 2つのワード線には、共に第 6電圧である読み出し電圧 3V を印加して、拡散層間を流れる電流の有無により読み出し動作が行われる。 [0063] 図 11は、ワード線 WL11に接続されている制御ゲート層下の電荷蓄積層に電荷が 注入されて蓄積されている場合である。メモリセル Aにおいて、引き出し線 L1側の電 荷蓄積層が読み出し対象である。引き出し線 L1に OV、引き出し線 L2に 1. 5Vを印 加する。またワード線 WL11、 WL21には、共に 3Vを印加する。読み出し対象の電 荷蓄積層に電荷が蓄積されていれば、引き出し線 L1側では、電荷の蓄積により 3V より低下した電位がチャネル領域に対向して、ゲート'ソース間に 3Vより低い電圧が 印加され、前述の図 7同様にチャネルに流れる電流は少ない第 2電流が流れる。更 に隣接する電荷蓄積層に電荷が蓄積されていれば、前述の図 8同様に最も少ない 第 3電流となるか、チャネル領域にチャネルが形成されず電流は流れな!/ヽ。
読み出し対象の電荷蓄積層に電荷が蓄積されていなければ、引き出し線 L1側で は、 3V電位がチャネル領域に対向して、ゲート'ソース間に 3Vが印加され充分なゲ ートバイアスが印加されることにより、チャネルには前記図 7の第 2電流よりも大きく最 も大きな第 4電流が流れることとなる。読み出し対象の電荷蓄積層に電荷が蓄積され ていなく、且つ隣接する電荷蓄積層に電荷が蓄積されていれば、前述の図 6同様に 、前記図 7の第 2電流よりも大きく且つ前記第 4電流よりも少ない第 1電流が流れる。
[0064] 図 12は、ワード線 WL21に接続されている制御ゲート層下の電荷蓄積層に電荷が 注入されて蓄積されている場合である。図 11の場合に比して、引き出し線 Ll、 L2の バイアス関係が逆転される。引き出し線 L1に 1. 5V、引き出し線 L2に OVを印加する 。またワード線 WL11、 WL21には、共に 3Vを印加する。読み出し時の作用'効果は 、図 11の場合と同様であり、ここでの説明は省略する。
[0065] 尚、読み出し動作においては、基板には、第 5電圧である OVを印加しておくことが 一般的である。
[0066] 第 2多値記憶動作における読み出し動作では、メモリセルにおける一対の拡散層 について、読み出し対象となる電荷蓄積層に隣接する拡散層をソース端子として読 み出しを行う。この場合、ソース端子とする拡散層に OVを印加する力 これは、書き 込み時に OVが印加される拡散層とは反対側の拡散層となり、いわゆるリバースリード 動作が行われる。読み出し対象の電荷蓄積層における電荷の有無に応じてゲートバ ィァスが変化し、チャネル領域におけるチャネルの有無が反転する。電荷の蓄積が ある場合には、少ない電流かもしくはチャネルは形成されず電流は流れない。電荷 の蓄積がない場合には、チャネルが形成され大きな電流が流れる。これにより、電荷 蓄積層を選択する制御ゲートごとに 1ビットが読み出される。
[0067] 図 13乃至図 14は消去動作である。図 13は、チップまたはセクタ内のメモリセルを 一括して消去する場合である。 V、わゆるチップ消去またはセクタ消去と称せられる消 去動作である。電荷蓄積層に蓄積されている電荷を基板に向カゝつて放出するチヤネ ルイレーズを行う際のバイアス印加を示して 、る。メモリセル A乃至 Dの各電荷蓄積 層を一括して消去するため、メモリセル間で同様のバイアスが印加される。ソース線 S Ll、 SL2、ビット線 BL1、 BL2を第 13電圧であるフローティング状態とした上で、ヮー ド線 WL11乃至 WL22に第 12電圧である OVを、基板に第 14電圧である 9Vを印加 する。
[0068] 図 14は、ワード線を共有するメモリセルを一括して消去する場合である。 V、わゆる ページ消去と称せられる消去動作である。電荷蓄積層に蓄積されている電荷を、隣 接する拡散層に向力つて放出するソースィレーズを行う際のバイアス印加を示してい る。メモリセル A、 Cの各両側の電荷蓄積層を一括して消去するため、メモリセル間で 同様のバイアスが印加される。基板を第 5電圧である OVとした上で、引き出し線 L1乃 至 L4を第 17電圧である 9 Vとし、ワード線 WL11、 WL21を第 15電圧である OVとす る。消去対象ではないメモリセル B、 Dについては、ワード線 WL12、 WL22に 6Vを 印加することにより、ワード線と拡散層との間、ワード線と基板との間での電界を制限 して消去動作が行われな 、ようにバイアスされる。
また、ページ消去方法はこの方法に限られず、図 23には図示しないが、任意ワード 線の電荷蓄積層に蓄積されている電荷を基板に向カゝつて放出するチャネルィレーズ を行うこともできる。ページ消去するワード線に第 12電圧である OVを、ページ消去し ないワード線に第 16電圧である 6Vを、基板に第 14電圧である 9Vを印加する。 また、メモリセル A、 Cの各片側の電荷蓄積層、すなわち、ワード線 WL11下の電荷 蓄積層のみを消去する場合は、ワード線 WL 11を第 15電圧である OVとし、ワード線 WL21を第 16電圧である 6Vとすることにより、ワード線 WL21と拡散層との間、ワード 線 WL21と基板との間で電界を制限して、ワード線 WL21下の電荷蓄積層に対する 消去動作が行われな!/ヽようにバイアスされる。
尚、ワード線を共有するメモリセルのうち、消去しないメモリセルの引き出し線を OV とすることにより、ビット単位の消去動作を行うことができる。
また、チップまたはセクタ一内のメモリセルを一括して消去する場合においても、 消去対象でないワード線を 6Vとすることにより、同様に、ページ単位の消去が可能で ある。
[0069] 以上に説明した消去動作では、ブロック単位またはチップ一括、ビット単位の消去 が可能であり、高速な消去動作が実現できること等の有利な効果を有している。
[0070] 図 15乃至図 17には、拡散層とワード線とについてのレイアウト図を示している。尚、 制御ゲート層は、行方向に隣接するメモリセル間で共有することにより、制御線である ワード線を構成し、図中の斜線部分は、一対の拡散層で挟まれたメモリセルのチヤネ ル領域を示す。
[0071] 図 15は NAND型フラッシュメモリにおけるレイアウトである。拡散層 Dl l、 D22はチ ャネル領域と交互に配置され、 2本で一対のワード線 (WL11および WL21、 WL12 および WL22、等)と交差して配置される。一対のワード線と、その両側のソース端子 Sおよびドレイン端子 Dとでメモリセルが構成され、メモリセルが直列に接続されて配 置されている。拡散層 D12、 22の両端には、各々、拡散層 Dl l、 D21、および拡散 層 D13、 D23が接続されている。拡散層 Dl l、 D21には、ソース線との接続用コンタ タト SLが形成され、拡散層 D13、 D23には、ビット線との接続用コンタクト BL1、 BL2 が形成されている。一対のワード線 (WL11および WL21、 WL12および WL22、等) は、互いに隣接して並行に配置されると共に、一対のワード線間も並行に配置されて いる。また、同じビット線に接続されるメモリセル群については、メモリセルごとに異な るワード線対が接続されて ヽる。
[0072] 図 16は NOR型フラッシュメモリにおけるレイアウトである。拡散層 Dl、 D2はチヤネ ル領域と交互に配置され、 2本で一対のワード線 (WL11および WL21、 WL12およ び WL22、等)と交差して配置される。一対のワード線間には、引き出し線との接続用 コンタクト Ll、 L2、および L3、 L4が交互に形成されている。交互に形成されるコンタ タトは、コンタクトごとに引き出し線に接続されている。一対のワード線と、その両側の コンタクトを含んでメモリセルが構成される。一対のワード線 (WL11および WL21、 WL12および WL22、等)は、互いに隣接して並行に配置されると共に、一対のヮー ド線間も並行に配置されている。また、同じビット線に接続されるメモリセル群につい ては、メモリセルごとに異なるワード線対が接続されている。
[0073] 一対のワード線が隣接して並行に配置され、同じビット線や同じ引き出し線に接続 されるメモリセル群を構成する拡散層と交差しているので、メモリセル群ごとに、一対 のワード線により選択されるメモリセルは 1つに限定される。従って、非選択のメモリセ ルが同時にバイアスされることはなぐ非選択メモリセル力 の誤読み出しや、非選択 メモリセルのディスターブ現象が発生する等のおそれはない。
[0074] 尚、図 17に示すように、隣接して並行に配置されている一対のワード線力 拡散層 と交差する場合において、ワード線の配線方向と並行にメモリセルが形成される構成 とすることもできる。すなわち、ワード線 WL11乃至 WL22が引き出し線 L1乃至 L3に 直交して配線される。隣接する引き出し線 L1および L2、または L2および L3の間に あるチャネル領域において、制御ゲート層が、チャネル長方向に沿って隣接する引き 出し線を結ぶ矩形領域を為し、チャネル幅を区切るように 1列に形成される。隣接す る一対の引き出し線と、引き出し線間の一対の制御ゲート層とでメモリセルが形成さ れる。チャネル長方向に配置される 2本の制御ゲート層下の各々で、電荷蓄積層へ の電荷の有無が制御され、チャネル径路の形成が制御される。各チャネル電流の径 路として、読み出し時のチャネル径路が、 2径路形成される場合、 1径路形成される 場合、および形成されない場合で可変とすることができる。読み出し時の電流量を可 変とすることができ多値記憶が実現される。
この場合、引き出し線 L1乃至 L3をワード線に直交する方向に連続する複数のメモ リセル間で共有する拡散層(これを埋め込み拡散層と定義する)とすることにより、ソ ース Zビット線として引き出すことができる。
[0075] 図 18には、実施形態のメモリセルの平面構造、および AAZBB断面構造を示し、 図 19乃至図 21には、その製造工程を示す。
[0076] 図 18は、メモリセルのレイアウト図である。トランジスタ領域 31は、複数のメモリセル が展開されたメモリセルアレイであり、フィールド酸ィ匕膜 16Bを堆積しな 、領域であつ て、メモリセルを形成する一対の拡散層 13A、 13B、およびその間のチャネル領域が 形成される領域である。一対の拡散層 13A、 13Bにおける AA方向の両端辺には、 端辺に沿って ONO膜とその上に形成される制御ゲート層 21A、 21B、 21B_、 21A +とが配置されている。対向する拡散層 13A、 13Bに挟まれるチャネル領域上に配 置される制御ゲート層 21A、 21B力 注目しているメモリセルの制御ゲート層である。 制御ゲート層 21A、 21Bは、トランジスタ領域 31を越えて一方向に延伸されている。 拡散層 13A、 13Bの外方端辺に沿って配置されている制御ゲート層 21B_、 21A+ は、隣接する不図示のメモリセルの制御ゲート層である。メモリセル力 拡散層を共有 して図 18中の AA方向に多数繰り返して配置される場合である。制御ゲート層 21B_ 、 21A+は、トランジスタ領域 31を越えて、制御ゲート層 21A、 21Bとは逆方向に延 伸されている。
[0077] トランジスタ領域 31を越えて延伸されている制御ゲート層 21A、 21B、 21B_、 21A
+は、複数のメモリセルが展開されたメモリセルアレイの端部の部分で拡散層 13A, 13Bを囲むように屈曲されている。屈曲された部分には、ワード線との配線引き出し 基部 22A, 22B、 22B_、 22A+が接続されている。最小カ卩ェ寸法を Fとする場合、 配線引き出し基部間の間隔は F、配線引き出し基部の幅は 1. 5F、配線引き出し基 部の端辺力 制御ゲート層の端辺までの余裕は FZ4で構成することができる。
[0078] 図 18では、合せて、 AA断面図、および BB断面図を示している。 AA断面図にお いて、制御ゲート層 21A、 21Bは、対向面が曲面をなす、いわゆるサイドウォール構 造で構成されている。制御ゲート層 21A、 21B下には、第 1絶縁層 15、電荷蓄積層 1 7、および第 2絶縁層 19の積層構造である ONO膜が堆積されている。第 1絶縁層 15 は、拡散層 13A、 13B上にも形成されている。
[0079] BB断面図において、トランジスタ領域 31の外部にはフィールド酸ィ匕膜 16Bが形成 されている。メモリセルにおけるチャネル領域上の制御ゲート層 21Bと ONO膜とが、 延伸されて屈曲した部分上に、配線引き出し基部 22Bが積層されている。制御ゲー ト層 21Bと配線引き出し基部 22Bとは、同じ組成の材質であるため、積層することによ りォーミックコンタクトをとることができる。
[0080] 次に、実施形態のメモリセルについての製造工程の概略を示す。図 19 (a)におい て、基板 11上に酸ィ匕膜 41と窒化膜 43とを積層した上で、トランジスタ領域 31以外の 領域にある窒化膜 43を除去する。残された窒化膜 43をマスクとして、基板上にフィー ルド酸化膜 16を形成する (b)。これにより、基板表面上の素子分離が行われる。窒化 膜 43および酸ィ匕膜 41を除去 (c)した上で、全面に、熱酸化によりゲート酸化膜 (第 1 絶縁層) 15を形成し (d)、更にその上に窒化膜 44を堆積する(e)。窒化膜 44は、チ ャネル領域上に形成される制御ゲート層 21のサイドウォール構造を形成する際の異 方性エッチングのマスク層である。
[0081] 図 20に移って、窒化膜 44上に塗布されたレジスト 45を露光、除去することにより、 拡散層が形成される部分と制御ゲート層の弓 Iき出し部分とのレジスト 45を残し、レジ スト 45をマスクとして窒化膜 44をエッチングする(f)。拡散層間のチャネル領域の幅 は、 1. 5Fで構成される。拡散層の幅は Fである。ここで、制御ゲート層の引き出し部 分とは、トランジスタ領域 31を越えて、ワード線の配線方向に延伸された部分である。 窒化膜 44は、拡散層が形成されるトランジスタ領域 31と、その外方であって、フィー ルド酸化膜が形成されている領域まで延伸して残される。
[0082] レジスト 45の除去後(g)、 ONO膜の上位 2層を全面に渡って順次積層する。すな わち、窒化膜 (電荷蓄積層) 17、および酸ィ匕膜 (第 2絶縁膜) 19である。更にその上に 制御ゲート層を構成する多結晶シリコン層等の導電性材料膜 (制御ゲート層) 21を積 層する (h)。
[0083] 次に、異方性エッチングを行い、基板上端面に積層されている、導電性材料膜 (制 御ゲート層) 21、および ONO膜の上位 2層(酸ィ匕膜 (第 2絶縁膜) 19、窒化膜 (電荷 蓄積層) 17)をエッチングする (i)。これにより、マスク層である窒化膜 44の側壁に積 層されて 、る、 ONO膜の上位 2層および制御ゲート層 21をサイドウォール構造として 形成させることができる。サイドウォール構造は、トランジスタ領域 31内のチャネル領 域となる部分に対向して形成されると共に、トランジスタ領域 31の外方にある窒化膜 44の側壁にも同様に形成される。
[0084] 図 21が、工程 (i)の後の平面構造である。マスク層である窒化膜 44の外周側壁に、 電荷蓄積層 17、第 2絶縁層 19、および制御ゲート層 21がサイドウォール構造をなし て形成される。 [0085] 図 22に示すように、窒化膜 44を除去して、イオン注入等により拡散層 13 A、 13Bを 形成すると共に、窒化膜 44の外周を取り巻いて形成されているサイドウォール構造を 、拡散層 13A、 13Bにおける左右端辺ごとに分離して、制御ゲート層 21A、 21B、 21 B_、 21A+を形成する。このとき、各制御ゲート層の分離はトランジスタ領域 31の外 で行うところ、分離された、各制御ゲート層 21A、 21B、 21B_、 21A+の端部が、拡 散層 13A、 13Bを取り囲むように形成されることが好ましい。これにより、トランジスタ 領域 31の外部で、サイドウォール構造を有した制御ゲート層 21A、 21B、 21B_、 21 A+が外方に向かって形成されることとなり、制御ゲート層 21A、 21B、 21B_、 21A +をワード線として引き出す際の配線引き出し基部 22A、 22B、 22B_、 22A+との 接続を、より確実とすることができる。
[0086] 以上の説明から明らかなように本実施形態によれば、電荷蓄積層 17のうち制御ゲ ート層 21A、 21Bごとに固有な電荷蓄積領域(図 1)、または個別に備えられている電 荷蓄積層 17A、 17B (図 2)に対して、電荷の注入/放出を行うことができる。電荷蓄 積層 17の固有領域や電荷蓄積層 17A、 17Bごとに、電荷有無の組み合わせに応じ た数のデータを記憶することができる。すなわち、 2つの制御ゲート層 21A、 21Bを有 するメモリセルについて、 2ビットデータの記憶を行うことができる。電荷の注入/放出 を行うべき制御ゲート層 21A、 21Bを選択することで所定のビットデータを記憶する 第 1多値記憶動作を行うことができる。
[0087] また、制御ゲート層 21A、 21Bごとに電荷の蓄積を行うことにより、各制御ゲート層 2 1A、 21B下の電荷蓄積層 17の固有領域 (図 1)や、電荷蓄積層 17A、 17B (図 2)ご とに、電荷の有無に応じて 1ビットデータを記憶することができる。また、書き込み時、 他方の制御ゲート層に補助電圧を印加してやれば、入力された電荷を加速すること ができる。
[0088] 2つの制御ゲート層 21A、 21Bを有するメモリセルについて、制御ゲート層 21A、 2 IBごとに別アドレスによる選択をすることにより、各制御ゲート層 21A、 21Bに対して 、 1ビットデータの記憶を行うことができる。 1つのメモリセルに 2つのアドレスにより識 別されて、 2つの 1ビットデータを記憶する第 2多値記憶動作を行うことができる。
[0089] 書き込みデータ値に応じて制御ゲート層 21A、 21Bに印加する書き込み電圧を変 更する必要はなぐまた 1回の書き込み動作で多値記憶を行うことができる。
[0090] 本実施形態のメモリセルの書き込み動作、読み出し動作、消去動作の各動作にお いて、開示された主要な方法での、メモリセルトランジスタの各電極に印加される電圧 条件をまとめると図 23に示すようになる。ここで、第 1電圧乃至第 17電圧は、書き込 み動作、読み出し動作、消去動作における、メモリセルトランジスタの各電極に印加さ れる電圧の一例である。
[0091] 尚、本発明は前記実施形態に限定されるものではなぐ本発明の趣旨を逸脱しな い範囲内で種々の改良、変形が可能であることは言うまでもない。
[0092] 例えば、本実施形態では、メモリセルに 2つの制御ゲート層を備える場合を例に説 明をしたが、本発明はこれに限定されるものではない。メモリセルあたり 3つ以上の制 御ゲート層を備えることも可能である。
[0093] この場合、第 1多値記憶動作を行う場合には、メモリセルにおいて、拡散層に挟ま れたチャネル領域上に、チャネル長方向またはチャネル幅方向に沿って 1列に制御 ゲート層が配置されていることが必要である。制御ゲート層へのバイアス印加に応じ て電荷の蓄積が行われる電荷蓄積層の領域が、チャネル領域上のチャネル長方向 またはチャネル幅方向に沿って変化することにより、読み出し動作における電流量を 変化させる必要がある力 である。更に、第 1多値記憶動作での書き込みの場合、例 えば制御ゲート層が 3つであり、書き込み対象のどれか 1つの制御ゲート層が"一方 の制御ゲード 'として前記第 1電圧を与え、書き込み非対象の 2つの制御ゲート層が" 他方の制御ゲード 'として前記第 1電圧よりも低い前記第 5電圧を与える。
[0094] また、第 2多値記憶動作を行う場合には、チャネル長方向に沿って 2つ 1組で配置 される制御ゲート層を、多数組備える構成とする必要がある。各組ごとに、何れか一 方の制御ゲート層を補助ゲートとし、電荷を加速しながら他方の制御ゲート層への書 き込み電圧に応じて、他方の制御ゲート層下の電荷蓄積層に電荷の注入を行うこと ができる。
[0095] 実施形態では、書き込み動作および消去動作につ!、て、電荷蓄積層に対して電荷 を注入 Z放出させる場合について説明したが、本発明はこれに限定されるものでは ない。電荷蓄積層へホットホールを注入する書き込み Z消去方法も可能である。また 、電荷蓄積層と拡散層間の、いわゆるバンド間トンネル電流による書き込みも可能で ある。
また、基本原理である図 1の原理構造を更に発展させて、セルサイズを縮小させる ことも可能である。図 24に示す断面図は、本発明の不揮発性記憶装置に備えられる メモリセルの発展型の原理構造を示している。この原理構造は、拡散層 13A、 13Bで 挟まれたチャネル領域上には、第 1絶縁層 15、電荷蓄積層 17、第 2絶縁層 19がこの 順番に積層されており、第 2絶縁層 19上には、チャネル長方向に 2つの制御ゲート 層 21 A、 21Bがー部重なるように離間して配置されて!、る。
この原理構造の特徴は、離散的な電荷のトラップを有する電荷蓄積層 17は、図 1の 原理構造と同様そのままとし、 2つの制御ゲート層 21A、 21Bを一部重ねて配置した 点であり、一部の重なり部分の間には、絶縁層が配置される。
図 1の原理構造で備えるギャップ G1をなくすことができる上、一部重ねて配置する ことにより、前記 1. 5Fの間隔を有して一対の拡散層 13A、 13B間を大幅に狭めるこ とができるので、セルサイズの縮小のみならず、チャネル抵抗を低減できるなど書き 込み動作や読み出し動作時の電気的特性を向上させることができる。

Claims

請求の範囲
[1] 基板表面に配置され、所定長のチャネル領域で隔てられた一対の拡散層と、 前記チャネル領域上に、互いに離間して形成される複数の制御ゲート層と、 前記制御ゲート層と前記基板表面との間に形成され、前記制御ゲート層ごとに固有 に電荷が注入または/および放出される領域を有する電荷蓄積層と、
を有して構成されるメモリセルを備えることを特徴とする不揮発性記憶装置。
[2] 前記基板表面と前記電荷蓄積層との間に形成される第 1絶縁層、または Zおよび 前記電荷蓄積層と前記制御ゲート層との間に形成される第 2絶縁層とを、更に備える ことを特徴とする請求項 1に記載の不揮発性記憶装置。
[3] 前記電荷蓄積層は離散的な電荷トラップを有し、固有に電荷が注入または Zおよ び放出される前記領域が区画されることを特徴とする請求項 1に記載の不揮発性記 憶装置。
[4] 前記電荷蓄積層は、前記制御ゲート層ごとに相互に離間して備えられることを特徴 とする請求項 1に記載の不揮発性記憶装置。
[5] 前記電荷蓄積層は、導電性材料により構成されていることを特徴とする請求項 4に 記載の不揮発性記憶装置。
[6] 所定数の前記メモリセルごとに、同じビット線に接続され、
前記複数の制御ゲート層の各々に接続される複数の制御線は、前記所定数のメモ リセル間では、メモリセルごとに別配線とされることを特徴とする請求項 1に記載の不 揮発性記憶装置。
[7] 前記メモリセルの複数の制御ゲート層は、前記メモリセルにおける前記一対の拡散 層に接続されるビット線と交差する方向に連続するメモリセル間で共有される複数の 制御線を構成することを特徴とする請求項 1に記載の不揮発性記憶装置。
[8] 前記複数の制御線は、前記ビット線と交差すると共に、互いに隣接 ·並行して配線 されることを特徴とする請求項 6または請求項 7に記載の不揮発性記憶装置。
[9] 前記複数の制御ゲート層の各々に印加される第 1電圧により、前記制御ゲート層ご とに固有に電荷が注入または Zおよび放出される領域を有する前記電荷蓄積層に、 電荷の注入または Zおよび放出が行われることを特徴とする請求項 1に記載の不揮 発性記憶装置。
[10] 前記領域ごとの電荷の有無の組み合わせ数に応じて、前記メモリセルに記憶される データビット数が定まることを特徴とする請求項 9に記載の不揮発性記憶装置。
[11] 前記メモリセルからのデータの読み出しは、前記複数の制御ゲート層に第 6電圧を 印加した上で、前記一対の拡散層の間に流れる電流値に応じて行われることを特徴 とする請求項 9に記載の不揮発性記憶装置。
[12] 前記複数の制御ゲート層は、前記一対の拡散層を結ぶチャネル径路方向に前記 基板表面を 2つに区切る一対の制御ゲート層を、少なくとも 1組備えて配置されると共 に、前記制御ゲート層ごとに異なるアドレスが割り当てられ、
前記異なるアドレスにより選択される前記制御ゲート層に印加される第 9電圧により
、前記制御ゲート層下に固有な前記領域に、電荷の注入または Zおよび放出がなさ れ、書き込みが行なわれることを特徴とする請求項 1に記載の不揮発性記憶装置。
[13] 前記制御ゲート層ごとに備えられる前記電荷蓄積層での電荷の有無に応じて、前 記メモリセルにおいて、前記制御ゲート層ごとに 1ビットが記憶されることを特徴とする 請求項 12に記載の不揮発性記憶装置。
[14] 書き込みの際、前記選択される制御ゲート層と対をなす前記制御ゲート層に対して は、前記第 9電圧に比して低電圧の第 10電圧が印加されることを特徴とする請求項
12に記載の不揮発性記憶装置。
[15] 書き込みの際、前記選択される制御ゲート層と対をなす前記制御ゲート層に隣接 する前記拡散層から、電荷が入力されることを特徴とする請求項 12に記載の不揮発 性記憶装置。
[16] 書き込みの際、書き込まれる電荷は、前記第 10電圧に応じて、前記選択される制 御ゲート層に向力つて加速されることを特徴とする請求項 14に記載の不揮発性記憶 装置。
[17] 前記制御ゲート層ごとに記憶されているデータの読み出しは、前記選択される制御 ゲート層に隣接する前記拡散層をソース端子とした上で、前記一対の制御ゲート層 に第 6電圧を印カロして行われることを特徴とする請求項 12に記載の不揮発性記憶装 置。
[18] 前記電荷蓄積層の電荷の注入または Zおよび放出は、少なくとも前記メモリセルに 対して一括して行われることを特徴とする請求項 1に記載の不揮発性記憶装置。
[19] 前記制御ゲート層が 2つ備えられる場合、
前記制御ゲート層は、
前記一対の拡散層が形成される前記基板表面の領域を含んで、前記基板表面上 に前記拡散層ごとに一対のマスク層が形成された上で、
前記一対のマスク層を含む前記基板表面上の全面に渡って、前記制御ゲート層の 形成材料であるゲート堆積層が堆積され、
前記ゲート堆積層に対する異方性エッチングが行われて、
前記ゲート堆積層が前記一対の拡散層間の中間部で離間して、前記マスク層の側 壁に形成されるサイドウォール構造として形成されることを特徴とする請求項 1に記載 の不揮発性記憶装置。
[20] 前記ゲート堆積層の下層には、前記一対のマスク層を含む前記基板表面上の全 面に渡って、前記電荷蓄積層の形成材料である電荷蓄積堆積層が更に堆積される ことを特徴とする請求項 19に記載の不揮発性記憶装置。
[21] 前記異方性エッチングは、前記ゲート堆積層に加えて、前記電荷蓄積堆積層に対 して行われ、
前記電荷蓄積堆積層は、前記一対のマスク層間の中間部で離間して、前記制御ゲ ート層ごとに独立した前記電荷蓄積層として形成されることを特徴とする請求項 19に 記載の不揮発性記憶装置。
[22] 前記一対のマスク層は、前記一対の拡散層が形成される領域と、該領域力 前記メ モリセルのチャネル幅方向に延伸された領域とをマスクして形成され、
前記一対のマスク層の側壁に形成されるサイドウォール構造の前記ゲート堆積層 は、前記一対の拡散層に隣接して前記制御ゲート層を構成する部分と、前記制御ゲ 一ト層カゝらの配線引き出し基部を構成する部分とを残して、除去されることを特徴とす る請求項 19に記載の不揮発性記憶装置。
[23] 前記配線引き出し基部は、前記制御ゲート層が、前記メモリセルのチャネル幅方向 に延伸されて引き出された上で、前記メモリセルのチャネル長方向に屈曲されて形成 されることを特徴とする請求項 22に記載の不揮発性記憶装置。
[24] 前記制御ゲート層は、前記拡散層の両端辺に形成され、各々の前記制御ゲート層 に対して、前記配線引き出し基部が備えられることを特徴とする請求項 22に記載の 不揮発性記憶装置。
[25] 前記複数の制御ゲート層のうち、一方の制御ゲート層を第 1電圧とし、他方の制 御ゲート層を前記第 1電圧よりも低い第 2電圧とし、前記基板を前記第 1電圧よりも低 い第 5電圧として、前記一方の制御ゲート層下の前記電荷蓄積層に電荷が注入また は Zおよび放出されることを特徴とする請求項 1に記載の不揮発性記憶装置。
[26] 前記複数の制御ゲート層を第 1電圧とし、前記基板を前記第 1電圧よりも低い第 5 電圧として、前記複数の制御ゲート層下のそれぞれの前記電荷蓄積層に電荷が注 入または Zおよび放出されることを特徴とする請求項 1に記載の不揮発性記憶装置
[27] 前記複数の制御ゲート層のうち、一方の制御ゲート層を第 9電圧とし、他方の制御 ゲート層を第 9電圧よりも低い第 10電圧とし、前記一対の拡散層のうち、前記一方の 制御ゲート層に隣接する一方の拡散層を第 11電圧、前記他方の制御ゲートに隣接 する他方の拡散層を前記第 11電圧よりも低い第 7電圧とし、前記一方の制御ゲート 層下の前記電荷蓄積層に電荷が注入または Zおよび放出されることを特徴とする請 求項 1に記載の不揮発性記憶装置。
[28] 前記複数の制御ゲート層を第 6電圧とし、前記一対の拡散層のうち、一方の拡散 層を第 8電圧、他方の拡散層を前記第 8電圧よりも低い第 7電圧として、前記一対の 拡散層間に流れる電流の多寡に応じて読み出し動作が行われることを特徴とする請 求項 1に記載の不揮発性記憶装置。
[29] 前記複数の制御ゲート層を第 6電圧とし、前記複数の制御ゲート層のうち一方の 制御ゲート層に隣接する、前記一対の拡散層のうち一方の拡散層を第 8電圧、前記 複数の制御ゲート層のうち他方の制御ゲートに隣接する、前記一対の拡散層のうち 他方の拡散層を前記第 8電圧よりも低い第 7電圧として、前記一対の拡散層間に流 れる電流の多寡に応じて読み出し動作が行われることを特徴とする請求項 1に記載 の不揮発性記憶装置。
[30] 前記複数の制御ゲート層を第 12電圧とし、前記基板を前記第 12電圧よりも高い第 1 4電圧として、前記複数の制御ゲート層下のそれぞれの前記電荷蓄積層に電荷が注 入または Zおよび放出されることを特徴とする請求項 1に記載の不揮発性記憶装置
[31] 前記複数の制御ゲート層のうち、選択された一方の制御ゲート層を第 15電圧とし 、非選択の制御ゲート層を前記第 15電圧よりも高い第 16電圧とし、前記一対の拡散 層または前記基板を、前記第 15電圧よりも高い第 17電圧として、前記選択された一 方の制御ゲート層下の前記電荷蓄積層に電荷が注入または Zおよび放出されること を特徴とする請求項 1に記載の不揮発性記憶装置。
[32] 選択される前記メモリセルに備えられる前記複数の制御ゲート層を第 15電圧とし、 前記一対の拡散層または前記基板を、前記第 15電圧よりも高い第 17電圧として、選 択される前記メモリセルにおける前記複数の制御ゲート層下の前記電荷蓄積層に、 電荷が注入または Zおよび放出されることを特徴とする請求項 1に記載の不揮発性 記憶装置。
[33] 一対の拡散層に挟まれる基板表面上に、互いに離間して形成される 2つの制御ゲ ート層と、前記制御ゲート層ごとに固有に電荷が注入または Zおよび放出される領域 を有する電荷蓄積層とを備えて構成されるメモリセルを備える不揮発性記憶装置の 製造方法であって、
前記一対の拡散層が形成される領域を含む前記基板表面上に、一対のマスク層を 形成するステップと、
前記一対のマスク層を含む前記基板表面上の全面に渡って、前記制御ゲート層の 形成材料であるゲート堆積層を堆積するステップと、
前記ゲート堆積層に対して異方性エッチングを行 、、前記ゲート堆積層を前記一 対のマスク層間の中間部で離間すると共に、前記一対のマスク層の側壁にサイドゥォ ール構造として残留させることにより、前記 2つの制御ゲート層を形成するステップと、 を有することを特徴とする不揮発性記憶装置の製造方法。
PCT/JP2004/017751 2004-11-30 2004-11-30 不揮発性記憶装置、およびその製造方法 WO2006059361A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112004003019T DE112004003019T5 (de) 2004-11-30 2004-11-30 Nicht-flüchtiges Speicherbauelement und Verfahren zu dessen Herstellung
PCT/JP2004/017751 WO2006059361A1 (ja) 2004-11-30 2004-11-30 不揮発性記憶装置、およびその製造方法
GB0710432A GB2436234B (en) 2004-11-30 2004-11-30 Nonvolatile memory device and its manufacturing method
CN2004800448578A CN101111943B (zh) 2004-11-30 2004-11-30 非易失性存储装置及其制造方法
JP2006546527A JP4794462B2 (ja) 2004-11-30 2004-11-30 不揮発性記憶装置、およびその製造方法
US11/291,048 US7307879B2 (en) 2004-11-30 2005-11-29 Nonvolatile memory device, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/017751 WO2006059361A1 (ja) 2004-11-30 2004-11-30 不揮発性記憶装置、およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/291,048 Continuation US7307879B2 (en) 2004-11-30 2005-11-29 Nonvolatile memory device, and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2006059361A1 true WO2006059361A1 (ja) 2006-06-08

Family

ID=36564806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017751 WO2006059361A1 (ja) 2004-11-30 2004-11-30 不揮発性記憶装置、およびその製造方法

Country Status (6)

Country Link
US (1) US7307879B2 (ja)
JP (1) JP4794462B2 (ja)
CN (1) CN101111943B (ja)
DE (1) DE112004003019T5 (ja)
GB (1) GB2436234B (ja)
WO (1) WO2006059361A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003395A (ja) * 2008-06-23 2010-01-07 Spansion Llc 半導体装置およびその制御方法
JP2010034241A (ja) * 2008-07-28 2010-02-12 Spansion Llc 半導体装置及びその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973366B2 (en) * 2006-02-13 2011-07-05 Macronix International Co., Ltd. Dual-gate, sonos, non-volatile memory cells and arrays thereof
JP5379366B2 (ja) * 2007-09-20 2013-12-25 スパンション エルエルシー 半導体装置およびその製造方法
KR100895854B1 (ko) * 2007-10-25 2009-05-06 한양대학교 산학협력단 2개의 제어 게이트들을 가지는 플래시 메모리의 제조 방법
US7968935B2 (en) * 2008-08-25 2011-06-28 Seoul National University Research & Development Business Foundation Reconfigurable semiconductor device
US8861273B2 (en) * 2009-04-21 2014-10-14 Macronix International Co., Ltd. Bandgap engineered charge trapping memory in two-transistor nor architecture
US8913445B2 (en) 2012-02-13 2014-12-16 Macronix International Co., Ltd. Method and apparatus for adjusting drain bias of a memory cell with addressed and neighbor bits
US9396770B2 (en) 2012-02-13 2016-07-19 Macronix International Co., Ltd. Method and apparatus for adjusting drain bias of a memory cell with addressed and neighbor bits
TWI473094B (zh) * 2012-03-21 2015-02-11 Macronix Int Co Ltd 具有定址及相鄰位元之記憶胞的汲極偏壓調整方法與裝置
US9576671B2 (en) 2014-11-20 2017-02-21 Western Digital Technologies, Inc. Calibrating optimal read levels
US9720754B2 (en) 2014-11-20 2017-08-01 Western Digital Technologies, Inc. Read level grouping for increased flash performance
US9905302B2 (en) * 2014-11-20 2018-02-27 Western Digital Technologies, Inc. Read level grouping algorithms for increased flash performance
JP5951096B1 (ja) * 2015-10-01 2016-07-13 株式会社フローディア 不揮発性半導体記憶装置
JP2017139336A (ja) * 2016-02-03 2017-08-10 渡辺 浩志 フラッシュメモリの構造とその動作法
US10726922B2 (en) 2018-06-05 2020-07-28 Sandisk Technologies Llc Memory device with connected word lines for fast programming

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253375A (ja) * 1991-01-29 1992-09-09 Fujitsu Ltd 不揮発性半導体記憶装置およびその製造方法
JPH0582793A (ja) * 1991-09-20 1993-04-02 Sumitomo Metal Ind Ltd 半導体記憶素子
JPH06104447A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd 強誘電体トランジスタ
JPH06275790A (ja) * 1993-03-19 1994-09-30 Rohm Co Ltd 半導体装置の動作方法
JP2000138300A (ja) * 1998-10-30 2000-05-16 Sony Corp 不揮発性半導体記憶装置及びその書き込み方法
JP2000150862A (ja) * 1998-08-31 2000-05-30 Toshiba Corp 半導体素子
JP2001024074A (ja) * 1999-07-13 2001-01-26 Matsushita Electric Ind Co Ltd 強誘電体ゲートデバイスとその駆動方法
JP2003059279A (ja) * 2001-08-23 2003-02-28 Matsushita Electric Ind Co Ltd 半導体記憶装置
JP2003176003A (ja) * 2002-10-28 2003-06-24 Shoji Yuyama 薬液入り容器の自動払出装置
JP2004327937A (ja) * 2003-04-28 2004-11-18 Toshiba Corp 不揮発性半導体記憶装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457875A (en) * 1977-10-17 1979-05-10 Hitachi Ltd Semiconductor nonvolatile memory device
JP4058219B2 (ja) * 1999-09-17 2008-03-05 株式会社ルネサステクノロジ 半導体集積回路
JP4923318B2 (ja) * 1999-12-17 2012-04-25 ソニー株式会社 不揮発性半導体記憶装置およびその動作方法
JP2002050703A (ja) 2000-08-01 2002-02-15 Hitachi Ltd 多値不揮発性半導体記憶装置
JP4904631B2 (ja) * 2000-10-27 2012-03-28 ソニー株式会社 不揮発性半導体記憶装置およびその製造方法
KR100389130B1 (ko) * 2001-04-25 2003-06-25 삼성전자주식회사 2비트 동작의 2트랜지스터를 구비한 불휘발성 메모리소자
JP3640176B2 (ja) * 2001-06-04 2005-04-20 セイコーエプソン株式会社 不揮発性半導体記憶装置
US6885585B2 (en) * 2001-12-20 2005-04-26 Saifun Semiconductors Ltd. NROM NOR array
JP4370749B2 (ja) 2002-01-07 2009-11-25 ソニー株式会社 不揮発性半導体メモリ装置およびその動作方法
JP4424886B2 (ja) 2002-03-20 2010-03-03 富士通マイクロエレクトロニクス株式会社 半導体記憶装置及びその製造方法
US6765260B1 (en) * 2003-03-11 2004-07-20 Powerchip Semiconductor Corp. Flash memory with self-aligned split gate and methods for fabricating and for operating the same
US7387932B2 (en) 2004-07-06 2008-06-17 Macronix International Co., Ltd. Method for manufacturing a multiple-gate charge trapping non-volatile memory
US7209386B2 (en) 2004-07-06 2007-04-24 Macronix International Co., Ltd. Charge trapping non-volatile memory and method for gate-by-gate erase for same
US7106625B2 (en) 2004-07-06 2006-09-12 Macronix International Co, Td Charge trapping non-volatile memory with two trapping locations per gate, and method for operating same
US20060007732A1 (en) 2004-07-06 2006-01-12 Macronix International Co., Ltd. Charge trapping non-volatile memory and method for operating same
US7120059B2 (en) 2004-07-06 2006-10-10 Macronix International Co., Ltd. Memory array including multiple-gate charge trapping non-volatile cells
TWI241017B (en) * 2005-01-03 2005-10-01 Powerchip Semiconductor Corp Non-volatile memory device and manufacturing method and operating method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253375A (ja) * 1991-01-29 1992-09-09 Fujitsu Ltd 不揮発性半導体記憶装置およびその製造方法
JPH0582793A (ja) * 1991-09-20 1993-04-02 Sumitomo Metal Ind Ltd 半導体記憶素子
JPH06104447A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd 強誘電体トランジスタ
JPH06275790A (ja) * 1993-03-19 1994-09-30 Rohm Co Ltd 半導体装置の動作方法
JP2000150862A (ja) * 1998-08-31 2000-05-30 Toshiba Corp 半導体素子
JP2000138300A (ja) * 1998-10-30 2000-05-16 Sony Corp 不揮発性半導体記憶装置及びその書き込み方法
JP2001024074A (ja) * 1999-07-13 2001-01-26 Matsushita Electric Ind Co Ltd 強誘電体ゲートデバイスとその駆動方法
JP2003059279A (ja) * 2001-08-23 2003-02-28 Matsushita Electric Ind Co Ltd 半導体記憶装置
JP2003176003A (ja) * 2002-10-28 2003-06-24 Shoji Yuyama 薬液入り容器の自動払出装置
JP2004327937A (ja) * 2003-04-28 2004-11-18 Toshiba Corp 不揮発性半導体記憶装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003395A (ja) * 2008-06-23 2010-01-07 Spansion Llc 半導体装置およびその制御方法
JP2010034241A (ja) * 2008-07-28 2010-02-12 Spansion Llc 半導体装置及びその製造方法

Also Published As

Publication number Publication date
GB2436234A (en) 2007-09-19
US20060114722A1 (en) 2006-06-01
CN101111943B (zh) 2012-06-27
DE112004003019T5 (de) 2008-01-03
US7307879B2 (en) 2007-12-11
GB2436234B (en) 2010-04-28
JP4794462B2 (ja) 2011-10-19
CN101111943A (zh) 2008-01-23
GB0710432D0 (en) 2007-07-11
JPWO2006059361A1 (ja) 2008-06-05

Similar Documents

Publication Publication Date Title
US11569256B2 (en) Memory device with transistors above memory stacks and manufacturing method of the memory device
US9343152B2 (en) Cell array with a manufacturable select gate for a nonvolatile semiconductor memory device
JP4846979B2 (ja) 誘電体格納エレメントを用いる多状態不揮発性メモリ及び電荷レベルを格納する方法
US8432719B2 (en) Three-dimensional stacked and-type flash memory structure and methods of manufacturing and operating the same hydride
JP4923321B2 (ja) 不揮発性半導体記憶装置の動作方法
JP4282248B2 (ja) 半導体記憶装置
JP4794462B2 (ja) 不揮発性記憶装置、およびその製造方法
CN105895636A (zh) 电荷俘获非易失性存储器件及其制造方法和操作方法
JP2006310868A (ja) 多ビット仮想接地nandメモリデバイス、メモリデバイス
JP2009076680A (ja) 不揮発性半導体記憶装置及びその動作方法
KR20090006174A (ko) 메모리 디바이스들을 소거하고 메모리 디바이스를 멀티 레벨로 프로그램하기 위한 방법들
JP2005056889A (ja) 半導体記憶装置およびその製造方法
US9390799B2 (en) Non-volatile memory cell devices and methods, having a storage cell with two sidewall bit cells
JP2008118040A (ja) 不揮発性半導体記憶装置及びその製造方法とこれを用いた情報の書き込み方法
US6242306B1 (en) Dual bit isolation scheme for flash memory devices having polysilicon floating gates
US6355514B1 (en) Dual bit isolation scheme for flash devices
CN107093457B (zh) 半导体器件
US6839278B1 (en) Highly-integrated flash memory and mask ROM array architecture
JP2006253650A (ja) 不揮発性半導体記憶装置
JP2008508662A (ja) フラッシュメモリユニット、およびフラッシュメモリ素子のプログラミング方法
JP2005191542A (ja) 半導体記憶装置
KR100912517B1 (ko) 비휘발성 메모리 디바이스 및 그 제조 방법
KR100731076B1 (ko) 수직형 스플리트 게이트 구조의 플래시 메모리 소자 및 그제조 방법
KR100950044B1 (ko) 멀티비트 플래시 메모리 소자 및 플래시 메모리, 그리고플래시 메모리 소자의 구동 장치 및 방법
JP5801049B2 (ja) 半導体記憶装置へのデータの書込み方法及び半導体記憶装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11291048

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11291048

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006546527

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 0710432

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20041130

WWE Wipo information: entry into national phase

Ref document number: 0710432.6

Country of ref document: GB

Ref document number: 1120040030196

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077015042

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200480044857.8

Country of ref document: CN

REG Reference to national code

Ref country code: GB

Ref legal event code: 789A

Ref document number: 0710432

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 04822496

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112004003019

Country of ref document: DE

Date of ref document: 20080103

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607