Nothing Special   »   [go: up one dir, main page]

WO2006057344A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2006057344A1
WO2006057344A1 PCT/JP2005/021697 JP2005021697W WO2006057344A1 WO 2006057344 A1 WO2006057344 A1 WO 2006057344A1 JP 2005021697 W JP2005021697 W JP 2005021697W WO 2006057344 A1 WO2006057344 A1 WO 2006057344A1
Authority
WO
WIPO (PCT)
Prior art keywords
pores
pore diameter
catalyst
porous ceramic
average pore
Prior art date
Application number
PCT/JP2005/021697
Other languages
English (en)
French (fr)
Inventor
Yukio Oshimi
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to JP2006547860A priority Critical patent/JP5142532B2/ja
Priority to EP05809600A priority patent/EP1818098A4/en
Publication of WO2006057344A1 publication Critical patent/WO2006057344A1/ja
Priority to US11/513,149 priority patent/US7540898B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/30Porosity of filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/05Methods of making filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the present invention relates to a filter for removing particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine, and a honeycomb structure used as a catalyst carrier and the like.
  • Patent Document 1 a method using a pore forming agent
  • a pore-forming agent there are used particles called an organic substance such as a resin, or a so-called balloon made of an organic substance or an inorganic substance in which a cavity is formed.
  • these pore-forming agents are mixed with the raw material ceramic powder, etc., and molded and fired, the organic particles and balloons burn and disappear. As a result, a Hercam structure having large pores inside is obtained.
  • Patent Document l WO 02Z96827 pamphlet
  • the present invention has been made in view of the above-described problems, and the catalyst support layer is provided so that the initial pressure loss does not increase and the pressure loss is not easily increased even when particulates are collected. It is an object of the present invention to provide a hard cam structure which is attached and can be satisfactorily contacted with exhaust gas and the like and can sufficiently perform a catalytic function.
  • the porous ceramic member formed by sealing one end of a plurality of cells penetrating in the longitudinal direction across the wall is an adhesive layer. And a plurality of pores formed in the porous ceramic member having a relatively large pore diameter. And the pore diameter is relatively small and consists of small pores,
  • the thickness of the catalyst support layer is X (/ z m),
  • the ratio of the average pore diameter of the atmospheric pores to the average pore diameter of the small pores (the average pore diameter of the atmospheric pores Z and the average pore diameter of the small pores) multiplied by the porosity (%) of the porous ceramic member Is Y
  • the her cam structure of the second aspect of the present invention has one end portion of a plurality of cells penetrating in the longitudinal direction across the wall portion, and the wall portion is provided with a catalyst supporting layer.
  • a Herm cam structure that also has a porous ceramic force
  • the pores formed in the porous ceramic are composed of atmospheric pores having a relatively large pore diameter and small pores having a relatively small pore diameter.
  • the thickness of the catalyst support layer is X (/ z m),
  • the ratio of the average pore diameter of the atmospheric pores to the average pore diameter of the small pores (the average pore diameter of the atmospheric pores Z and the average pore diameter of the small pores) multiplied by the porosity (%) of the porous ceramic member Is ⁇ ,
  • the first hard-cam structure of the present invention has a silicon carbide ceramic force.
  • the second hard-cam structure of the present invention is preferably made of cordierite.
  • a hermetic structure having a structure in which a plurality of porous ceramic members are combined via an adhesive layer such as the hermetic structure of the first aspect of the present invention
  • a combined type such as the hermetic structure of the first aspect of the present invention
  • a honeycomb structure having a structure in which the whole is integrally formed such as the her cam structure of the second invention
  • an integral honeycomb structure when it is not necessary to distinguish between the integral honeycomb structure and the aggregated honeycomb structure, they are simply referred to as a “her cam structure”.
  • the small pore means a pore having a pore diameter of less than 30 m observed with a scanning electron microscope (hereinafter referred to as SEM).
  • SEM scanning electron microscope
  • the average pore diameter means the average value of the pore diameters of the small pores.
  • the atmospheric hole formed in the her cam structure of the present invention includes a super atmospheric hole having a diameter of 40 to 90% with respect to the thickness of the partition wall of the her cam structure. Better ,.
  • the superatmospheric pores are formed due to the fact that a plurality of pore forming agents in the ceramic molded body used for firing are close to each other, and the aspect ratio thereof is 2 or more. I want it.
  • the shape of the superatmospheric hole is elongated, it is a force that facilitates the passage of gas.
  • the pore-forming agent is a material mainly used for forming air holes in the porous ceramic (porous ceramic member), and is contained in the ceramic molded body used for firing. .
  • honeycomb structures of the first and second present inventions (average pore diameter of atmospheric pores Z, average pore diameter of small pores) X porosity of porous ceramic (porous ceramic member) and honeycomb
  • the honeycomb structure has sufficient mechanical strength and has sufficient catalytic strength when it collects particulates with low initial pressure loss and has a catalytic ability. Can be provided.
  • the porous ceramic member formed by sealing one end of a plurality of cells penetrating in the longitudinal direction across the wall is an adhesive layer. And a plurality of pores formed in the porous ceramic member having a relatively large pore diameter. And the pore diameter is relatively small and consists of small pores,
  • the thickness of the catalyst support layer is X (/ zm), The ratio of the average pore diameter of the atmospheric pores to the average pore diameter of the small pores (the average pore diameter of the atmospheric pores Z and the average pore diameter of the small pores) multiplied by the porosity (%) of the porous ceramic member Is ⁇ ,
  • FIG. 1 is a perspective view schematically showing a her cam structure according to the first aspect of the present invention
  • FIG. 2 (a) is a diagram showing a porous structure constituting the her cam structure shown in FIG.
  • FIG. 2B is a cross-sectional view of the porous ceramic member shown in FIG.
  • the her cam structure of the first aspect of the present invention is a collective her cam structure 10, and a porous ceramic member 20 having silicon carbide isotropic force is used as an adhesive layer.
  • a plurality of cylinders 11 are combined to form a cylindrical ceramic block 15, and a sealing material layer (coat layer) 12 is formed around the ceramic block 15.
  • the shape of the ceramic block is a columnar shape.
  • the ceramic block is limited to a columnar shape as long as it is columnar.
  • it may be of any shape such as an elliptical columnar shape or a prismatic shape.
  • the porous ceramic member 20 has a large number of cells 21 arranged in the longitudinal direction, and a wall portion (cell wall) 23 separating the cells 21 from each other. It is functioning as a filter. That is, in the cell 21 formed in the porous ceramic member 20, as shown in FIG. 2 (b), either the inlet side or the outlet side end of the exhaust gas is sealed with the sealing material 22, The exhaust gas flowing into the cell 21 always passes through the wall portion (cell wall) 23 separating the cells 21 and then flows out from the other cells 21.
  • the Hercam structure according to the first aspect of the present invention mainly has a porous ceramic force.
  • the material include nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, and carbonized carbon.
  • carbide ceramics such as silicon, zirconium carbide, titanium carbide, tantalum carbide, and tandene carbide, and oxide ceramics such as alumina, zircoure, cordierite, mullite, and silica.
  • the hard cam structure 10 is formed of a composite of silicon and silicon carbide, aluminum titanate, and two or more kinds of material forces. It may be. When using a composite of silicon and silicon carbide, it is desirable to add silicon in an amount of 0 to 45% by weight of the whole! /.
  • Silicon carbide-based ceramic means silicon carbide with a content of 60 wt% or more.
  • the Hercam structure 10 according to the first aspect of the present invention is a Hercam structure to which a catalyst support layer is attached, and a catalyst is supported on the catalyst support layer.
  • the catalyst is not particularly limited, but it can reduce the activity energy of the particulate combustion and make it easy to burn the particulate, and remove harmful gas components in the exhaust gas such as CO, HC and NOx.
  • noble metals such as platinum, palladium and rhodium can be mentioned. Of these, platinum, palladium, and so-called three-way catalysts, which can also be used as a vacuum, are desirable.
  • alkali metals Group 1 of the Periodic Table of Elements
  • alkaline earth metals Group 2 of the Periodic Table of Elements
  • rare earth elements Group 3 of the Periodic Table of Elements
  • transition metal elements and the like may be supported.
  • Such a hard cam structure 10 can purify CO, HC, NOx and the like in the exhaust gas.
  • the her cam structure 10 can filter the particulate matter in the exhaust gas. As well as a catalytic converter for purifying CO, HC, NOx, etc. contained in the exhaust gas.
  • the catalyst when the catalyst is attached to the hard cam structure 10, it is desirable to attach the catalyst after the surface is previously coated with a catalyst carrier such as alumina. As a result, the specific surface area can be increased, the degree of dispersion of the catalyst can be increased, and the number of reaction sites of the catalyst can be increased. Further, since the catalyst carrier can prevent sintering of the catalyst metal, the heat resistance of the catalyst is also improved.
  • a catalyst carrier such as alumina
  • Examples of the catalyst-supporting layer include oxide ceramics such as alumina, titer, zirconium, silica, and ceria.
  • the pores formed in the porous ceramic member are composed of atmospheric pores having a relatively large pore diameter and small pores having a relatively small pore diameter, and the catalyst support layer. And the ratio of the average pore diameter of the atmospheric pores to the average pore diameter of the small pores (the average pore diameter of the atmospheric pores Z and the average pore diameter of the small pores) of the porous ceramic member.
  • Y is the value multiplied by the porosity (%)
  • X and Y satisfy the following formulas (1) and (2).
  • FIG. 5 is a graph showing the relationship between the layer thickness of the catalyst support and the like and (average pore diameter of atmospheric pores) (average pore diameter of small pores) X porosity of the porous ceramic member.
  • 6 ⁇ +80.5
  • 6 ⁇ + 230.5
  • —6 ⁇ + 330
  • —6 ⁇ + 474
  • the honeycomb structure according to the first aspect of the present invention (the average pore diameter of the atmospheric pores and the average pore diameter of the small pores) X of the porosity of the porous ceramic member and the layer of the catalyst carrier or the like formed on the honeycomb structure
  • the relationship with the thickness is included in the region in the parallelogram shown in FIG. 5 (when the above formulas (1) and (2) are satisfied)
  • the honeycomb structure has sufficient mechanical strength and the pressure loss hardly rises even when particulates having a low initial pressure loss are collected.
  • the small pores are too large and the atmospheric pores are too small. If the small pores are too large, the particulates are deep-filtered in the small pores when the particulates are collected. As the particulate deposition layer becomes thicker, the pressure loss increases.
  • the air hole is too small, the gas permeability may deteriorate and the transient pressure loss may increase. If the air holes are too small, the super-atmospheric holes formed by the close proximity of two or three air holes are less likely to appear, so the gas permeability is higher than when there are super-atmospheric holes. Tend to get worse.
  • the thickness of the layer of the catalyst carrier or the like that satisfies the equations (1) and (2) is in the range of 8.3 to 33 / ⁇ ⁇ as shown in FIG.
  • the thickness of the catalyst carrier layer is less than 8.3 m, the amount of the catalyst carrier is too small, so that the dispersibility of the noble metal catalyst is deteriorated and the honeycomb structure having sufficient catalyst durability and
  • the thickness of the catalyst carrier layer exceeds 33 m, the thickness of the catalyst carrier layer becomes too thick, and even if the diameter of the small pores is increased, the small pores are almost blocked. As a result, gas passes through the surface of the small pores, causing a catalytic reaction.
  • the porosity of the porous ceramic member 20 is not particularly limited, but the lower limit is preferably 40%, and the preferable upper limit is 75%. If the porosity is less than 40%, it will be difficult to increase the proportion of the atmospheric pores, and the effect of forming the atmospheric pores will not appear. On the other hand, if the porosity exceeds 75%, the mechanical strength of the honeycomb structure will be reduced. It will be difficult to maintain.
  • the upper limit of the porosity of the porous ceramic member 20 is more preferably 65%.
  • the porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • the pore diameters of the atmospheric pores constituting the Hercam structure 10 are those with a pore diameter of 30 to LOO ⁇ m observed by SEM, but the pore diameters of the atmospheric pores are desirable.
  • the lower limit is 40 ⁇ m. If the average pore diameter of the atmospheric pores is less than 30 m, the pore size of the atmospheric pores is small, so if the layer of the catalyst carrier or the like is slightly thicker, the pores are likely to be clogged, resulting in pressure loss. On the other hand, when the average pore diameter exceeds 100 m, the pore diameter becomes too large, so that the mechanical strength can be sufficiently increased.
  • the Hercam structure 10 includes superatmospheric holes whose pore diameters observed by SEM exceed 100 ⁇ m. The effect of reducing the pressure loss is increased.
  • Fig. 6 is a SEM photograph showing the result of observing pores formed in the cell wall by SEM by cutting the cell wall. As shown in the figure, a catalyst layer is formed so as to cover the SiC particles. Small pores of less than 0 m are formed, and atmospheric pores of 30 to 100 m that are thought to have been formed mainly by the pore-forming agent are also observed.
  • a large space that can be considered as a pore is formed in addition to small pores and atmospheric pores, and the diameter (length in the longitudinal direction) of the space exceeds 100 m.
  • pores which are called superatmospheric pores.
  • the her cam structure 10 includes superatmospheric holes having a diameter of 40 to 90% with respect to the thickness of the wall portion (cell wall) separating the cells of the her cam structure 10. I hope that. If the diameter is less than 0%, the effect of suppressing an increase in pressure loss does not sufficiently appear, and if it exceeds 90%, it becomes difficult to maintain the mechanical strength of the honeycomb structure 10.
  • the thickness of the cell wall is preferably 0.6 mm or less, and the diameter of the superatmospheric hole is preferably 540 m or less.
  • the air holes formed in the honeycomb structure 10 include superatmospheric holes having a diameter of 65 to 80% with respect to the thickness of the wall portion (cell wall) separating the cells of the honeycomb structure 10. I hope it will be.
  • the proportion of superatmospheric pores is preferably 30-80 vol%.
  • the pore diameter of the small pores formed in the Hercam structure 10 is 30 pore diameters observed by SEM.
  • the force is less than ⁇ m and is 5 ⁇ m or more.
  • the average pore diameter of the small pores is 30 ⁇ m or more, the small pores become too large and the particulates are filtered through the depth, and the accumulated particulate layer becomes thick and the pressure loss becomes large. If the pore size of the small pores is less than 5, the pore size becomes too small, and the pressure loss increases even if the layer of the catalyst carrier or the like is thin.
  • the pore-forming agent include balloons that are fine hollow spheres composed of acid ceramics, organic particles composed of organic substances such as spherical acrylic particles (eg, resin), and inorganic particles such as graphite. Etc.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the particle size of the ceramic used in the production of the Hercam structure 10 is not particularly limited, but it is desirable that the ceramics have less shrinkage in the subsequent firing step, for example, 0.3 to 50 / A combination of 100 parts by weight of powder having an average particle diameter of about ⁇ and 5 to 65 parts by weight of powder having an average particle diameter of about 0.1 to 1.0 m is desirable.
  • a ceramic structure having a porous ceramic force can be produced by mixing the ceramic powder having the above particle diameter in the above-described composition.
  • the porosity and the proportion of pores having a pore size of 10 m or less can be controlled to some extent.
  • the sealing material 22 and the wall portion 23 constituting the porous ceramic member 20 are made of the same porous ceramic.
  • the adhesive strength between the two can be increased, and the thermal expansion coefficient of the wall 23 and the thermal expansion coefficient of the sealing material 22 can be adjusted by adjusting the porosity of the sealing material 22 in the same manner as the wall 23.
  • the gap between the sealing material 22 and the wall 23 due to thermal stress during manufacturing or use, or the wall of the portion that contacts the sealing material 22 or the sealing material 22 It is possible to prevent the portion 23 from being cracked.
  • the wall portion means both the cell wall and the outer peripheral portion that separate the cells 21 from each other.
  • the thickness of the sealing material 22 is not particularly limited.
  • the sealing material 22 is made of porous silicon carbide, it is desirable that the thickness is 1 to 20 mm. Is more desirable
  • the thickness of the cell wall 23 is not particularly limited, but the desirable lower limit is 0.1 mm, and the desirable upper limit is 0.6 mm. If the thickness is less than 1 mm, the strength of the her cam structure 10 may not be sufficient. If it exceeds 0.6mm, the pressure loss increases.
  • the adhesive layer 11 is provided between the porous ceramic members 20.
  • the sealing material layer 12 is formed on the outer peripheral surface of the her cam block 15, while functioning as an adhesive (or sealing material) that binds the plurality of porous ceramic members 20 to each other.
  • the outer peripheral surface force of the her cam block 15 also has a sealing material and shape for preventing the exhaust gas passing through the cell from leaking out. It functions as a trimming or reinforcing material.
  • the adhesive layer 11 and the sealing material layer 12 may have the same material strength or different materials. Furthermore, when the adhesive layer 11 and the sealing material layer 12 are made of the same material, the blending ratio of the materials may be the same or different. Also, it may be dense or porous, but it is desirable to be dense when the emphasis is on the sealing ability to prevent the inflow of gas.
  • the material constituting the adhesive layer 11 and the sealing material layer 12 is not particularly limited, and examples thereof include those composed of an inorganic binder, an organic binder, inorganic fibers and / or inorganic particles.
  • Examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among the inorganic binders, silica zonole is desirable.
  • organic binder examples include polybulal alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among the above organic binders, carboxylmethylcellulose is desired.
  • examples of the inorganic fibers include ceramic fibers such as silica alumina, mullite, alumina, silica, and the like. These may be used alone or in combination of two or more. Among the inorganic fibers, silica alumina fibers are desirable.
  • Examples of the inorganic particles include carbides, nitrides, and the like. Specific examples include inorganic powders or whiskers such as silicon carbide, silicon nitride, and boron nitride. These may be used alone or in combination of two or more. Of the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • the paste used for forming the sealing material layer or the adhesive layer may be used as necessary.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, or graphite may be added.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the Hercam structure of the present invention on which the catalyst is supported functions as a gas purifier similar to a conventionally known DPF (diesel “particulate” filter) with a catalyst. Therefore, the detailed description in the case where the integrated her-cam structure of the present invention also functions as a catalyst carrier is omitted here.
  • extrusion molding is performed using a raw material paste mainly composed of ceramic as described above.
  • the raw material paste is not particularly limited, but it is desirable to have a porosity force of 0 to 75% of the manufactured Hercum structure.
  • a powder having a ceramic force as described above examples include a pore-forming agent and a dispersion medium.
  • the particle size of the ceramic powder is not particularly limited, but it is preferable that the ceramic powder has less shrinkage in the subsequent firing step.
  • a combination of 5 to 65 parts by weight of powder having an average particle size of about 1 to 1.0 m is preferred.
  • the porosity and the pore diameter can be adjusted by adjusting the particle size of the ceramic powder.
  • the binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin.
  • the amount of the binder is usually preferably about 1 to about LO parts by weight with respect to 100 parts by weight of the ceramic powder.
  • the dispersion medium liquid is not particularly limited, and examples thereof include organic solvents such as benzene, methanol, and the like. Examples thereof include alcohol, water and the like.
  • the dispersion medium liquid is blended in an appropriate amount so that the viscosity of the raw material paste is within a certain range.
  • a molding aid may be added to the raw material paste as necessary.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid sarcophagus, and polyvinyl alcohol.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, and graphite to the raw material paste.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, and graphite
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the ceramic molded body is dried using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like to obtain a ceramic dried body.
  • a predetermined amount of a sealing material paste as a sealing material is filled in the end of the inlet side cell group on the outlet side and the end of the outlet side cell group on the inlet side, and the cells are sealed.
  • the above-mentioned sealing material paste is not particularly limited, but it is desirable that the sealing material produced through a subsequent process has a porosity of 0 to 75%. Can be used.
  • the porous ceramic member 20 having a porous ceramic force and having a single sintered body force as a whole can be manufactured.
  • the conditions for degreasing and firing the ceramic dried body the conditions conventionally used for producing a filter made of a porous ceramic can be applied.
  • the adhesive is then applied to the side surface of the porous ceramic member 20.
  • the adhesive paste used to form the material layer 11 is applied with a uniform thickness to form an adhesive paste layer, and the other porous ceramic member 20 is sequentially laminated on the adhesive paste layer.
  • a porous ceramic member assembly having a predetermined size is produced.
  • this porous ceramic member assembly is heated to dry and solidify the adhesive paste layer to form the adhesive layer 11.
  • the porous ceramic member assembly in which a plurality of porous ceramic members 20 are bonded via the adhesive layer 11 is cut to produce a cylindrical ceramic block 15.
  • a catalyst support layer is formed. It is desirable that a catalyst such as a noble metal is applied to the catalyst support layer.
  • Examples thereof include a method of impregnating a ceramic fired body with a solution containing alumina powder and heating.
  • a metal compound containing rare earth elements such as Ce (NO) is used.
  • a method for imparting a catalyst to the alumina membrane for example, a method in which a ceramic fired body is impregnated with a dinitrodiammine platinum nitrate solution ([Pt (NH) (NO)] HNO) or the like is heated.
  • a dinitrodiammine platinum nitrate solution [Pt (NH) (NO)] HNO
  • Etc. can be mentioned.
  • the use of the her cam structure of the first aspect of the present invention is not particularly limited, but it is desirable to use it in a vehicle exhaust gas purification device. The same applies to the second hard cam structure of the present invention described below.
  • FIG. 3 is a cross-sectional view schematically showing an example of an exhaust gas purifying device for a vehicle in which the her cam structure of the present invention is installed.
  • the exhaust gas purifying device 70 mainly includes a her cam structure 10, a casing 71 covering the outer side of the her cam structure 10, and the her cam structure 10. It is composed of a holding sealing material 72 arranged between the casing 71 and an introduction pipe 74 connected to an internal combustion engine such as an engine is connected to the end of the casing 71 on the side where exhaust gas is introduced. A discharge pipe 75 connected to the outside is connected to the other end of the casing 71. In Fig. 3, the arrows indicate the flow of exhaust gas.
  • exhaust gas discharged from an internal combustion engine such as an engine is introduced into the casing 71 through the introduction pipe 74, and the inlet side cell power After flowing into the two-cam structure and passing through the wall, particulates are collected and purified by this wall, and then the outlet cell force is also discharged out of the hard-cam structure, and the discharge pipe 75 is discharged. It will be discharged to the outside.
  • a catalyst is attached to the Hercam structure, so that harmful gas components in exhaust gas such as CO, HC and NOx can be purified.
  • the particulates may be burned and removed using a post-injection method, or a catalyst support layer and a catalyst layer may be formed in front of the her cam structure and the reaction heat may be used. Good.
  • a heating means not shown
  • the heart cam structure is heated and the particulates deposited on the walls are removed by combustion. Even so.
  • the particulates can be burned and removed at a temperature lower than the normal temperature depending on the type of the catalyst.
  • the her cam structure of the second aspect of the present invention comprises a plurality of cells penetrating in the longitudinal direction across a wall portion. Any one of the following is sealed, and the above-mentioned wall portion is a her cam structure having a porous ceramic force with a catalyst supporting layer attached thereto,
  • the pores formed in the porous ceramic are composed of atmospheric pores having a relatively large pore diameter and small pores having a relatively small pore diameter.
  • the thickness of the catalyst support layer is X m
  • the ratio of the average pore diameter of the atmospheric pores to the average pore diameter of the small pores (the average pore diameter of the atmospheric pores Z and the average pore diameter of the small pores) multiplied by the porosity (%) of the porous ceramic member Is ⁇ ,
  • Fig. 4 (a) is a perspective view schematically showing a specific example of an integrated her cam structure which is another example of the her cam structure of the second invention, ) Is a cross-sectional view taken along the line B-B.
  • the hard cam structure 30 of the present invention includes a porous ceramic in which a large number of cells 31 are arranged in parallel in the longitudinal direction with a wall portion (cell wall) 33 therebetween.
  • a cylindrical ceramic block 35 is formed.
  • the wall means both the cell wall separating the cell 31 and the outer peripheral part.
  • the ceramic block 35 is sealed by the sealing material 32 so that the end of the cell 31 is! /, Or shifted, as shown in FIG. 4 (b). Stopped! /
  • a predetermined cell 31 is sealed with the sealing material 32 at one end, and the sealing material 32 is sealed at the other end of the ceramic block 35.
  • the cells 31 that are not sealed by the sealing are sealed with the sealing material 32.
  • the exhaust gas flowing into one cell 31 always passes through the cell wall 33 separating the cells 31 and then flows out from the other cells 31.
  • the cell wall 33 separating the two can function as a particle collecting filter.
  • a sealing material layer may be formed around the ceramic block 35 in the same manner as the hard structure 10 shown in FIG.
  • the porous ceramic constituting the above-mentioned Hercam structure is not particularly limited, for example, Cordierite, alumina, silica, mullite, zirconium oxide, yttria, etc., oxide ceramics, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, etc. carbide ceramics, aluminum nitride, silicon nitride, boron nitride, Examples thereof include nitride ceramics such as titanium nitride.
  • an oxide ceramic such as cordierite is preferable. It can be manufactured at a low cost and has a relatively small coefficient of thermal expansion.For example, it can not be broken during the use of the her cam structure of the present invention as the above-mentioned her cam filter. It is never done.
  • the shape of the ceramic block 35 is a columnar force.
  • the ceramic block is limited to a columnar shape if it is a columnar shape.
  • an arbitrary shape such as an elliptical columnar shape or a prismatic shape may be used.
  • the second cam structure 30 of the present invention is a two-cam structure configured such that a catalyst support layer adheres and a catalyst is supported on the catalyst support layer.
  • the catalyst is not particularly limited, but can reduce the combustion energy of particulates, and can purify harmful gas components in exhaust gases such as CO, HC and NOx.
  • noble metals such as platinum, palladium, rhodium and the like can be mentioned. Of these, a so-called three-way catalyst composed of platinum, palladium, and rhodium is desirable.
  • alkali metals Group 1 of the Periodic Table of Elements
  • alkaline earth metals Group 2 of the Periodic Table of Elements
  • rare earth elements Group 3 of the Periodic Table of Elements
  • transition metal elements etc.
  • Such a hard cam structure 30 can purify CO, HC, NOx and the like in the exhaust gas.
  • the her cam structure 10 Since the catalyst is supported on the catalyst support layer of the her cam structure 30, the her cam structure 10 functions as a filter that collects particulates in the exhaust gas and is contained in the exhaust gas. It functions as a catalytic converter for purifying CO, HC and NOx.
  • the surface is previously removed. It is desirable to adhere the catalyst after coating with a catalyst support layer such as alumina. As a result, the specific surface area can be increased, the degree of dispersion of the catalyst can be increased, and the number of reaction sites of the catalyst can be increased. Further, since the catalyst carrier can prevent sintering of the catalyst metal, the heat resistance of the catalyst is also improved.
  • Examples of the catalyst support layer include oxide ceramics such as alumina, titer, zircoure, silica, and ceria.
  • the pores formed in the porous ceramic are composed of atmospheric pores having a relatively large pore diameter and small pores having a relatively small pore diameter.
  • the thickness of the catalyst support layer is X (/ z m),
  • the ratio of the average pore diameter of the atmospheric pores to the average pore diameter of the small pores (the average pore diameter of the atmospheric pores Z and the average pore diameter of the small pores) multiplied by the porosity (%) of the porous ceramic member Is ⁇ 2,
  • the thickness of the layer of the catalyst carrier and the like (the average pore diameter of the atmospheric pores minus the average pore diameter of the small pores)
  • X the pores of the porous ceramic member
  • the small pores are too large and the atmospheric pores are too small. If the small pores are too large, the particulates are deep-filtered in the small pores when the particulates are collected. As the particulate deposition layer becomes thicker, the pressure loss increases.
  • the air hole is too small, the gas permeability is poor and the transient pressure loss may be increased. If the air holes are too small, the super-atmospheric holes formed by the close proximity of two or three air holes are less likely to appear, so the gas permeability is higher than when there are super-atmospheric holes. Tend to get worse.
  • the thickness of the layer of the catalyst carrier or the like that satisfies the expressions (3) and (4) is in the range of 8.3 to 33 m, as in the cases of the expressions (1) and (2).
  • the thickness X of the catalyst carrier layer is less than 8.3 m, the amount of the catalyst carrier is small.
  • the dispersibility of the noble metal catalyst is deteriorated and the honeycomb structure does not have sufficient catalyst durability.
  • the thickness X of the catalyst carrier layer exceeds 33 m, the catalyst support
  • the porosity of the porous ceramic is not particularly limited, but a desirable lower limit is 40% and a desirable upper limit is 75%. If the porosity force is less than 0%, it becomes difficult to increase the proportion of the atmospheric pores, and the effect of forming the atmospheric pores does not appear, while if the porosity exceeds 75%, the mechanical structure of the honeycomb structure It will be difficult to maintain strength.
  • the upper limit of the porosity of the porous ceramic is more preferably 65%.
  • the porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • the pore diameters of the atmospheric pores constituting the Hercam structure 30 are those having a pore diameter of 30 to LOO ⁇ m observed by SEM, but the pore diameters of the atmospheric pores are desirable.
  • the lower limit is 40 ⁇ m. If the average pore diameter of the atmospheric pores is less than 30 m, the pore size of the atmospheric pores is small, so if the layer of the catalyst carrier or the like is a little thicker, the pores are more likely to be clogged, resulting in pressure loss. On the other hand, when the average pore diameter exceeds 100 m, the pore diameter becomes too large, so that the mechanical strength can be sufficiently increased.
  • the Hercam structure 10 includes superatmospheric holes whose pore diameters observed by SEM exceed 100 ⁇ m. The effect of reducing the pressure loss is increased.
  • the her cam structure 10 includes superatmospheric holes having a diameter of 40 to 90% with respect to the thickness of the wall portion (cell wall) separating the cells of the her cam structure 10. Better ,. If the diameter is less than 0%, the effect of suppressing an increase in pressure loss does not sufficiently appear, and if it exceeds 90%, it becomes difficult to maintain the mechanical strength of the honeycomb structure 10.
  • the thickness of the cell wall is preferably 0.6 mm or less, and the diameter of the superatmospheric hole is preferably 540 m or less.
  • the air holes formed in the honeycomb structure 10 include superatmospheric holes having a diameter of 65 to 80% with respect to the thickness of the wall portion (cell wall) separating the cells of the honeycomb structure 10. I hope it will be.
  • the proportion of superatmospheric pores is preferably 30-80 vol%.
  • the pore size of the small pores of the porous ceramic is less than 30 ⁇ m as observed by SEM, but is preferably 5 ⁇ m or more.
  • the average pore diameter of the small pores is 30 ⁇ m or more, the small pores become too large, the particulates are filtered through the depth, and the accumulated particulate layer becomes thick, resulting in a large pressure loss.
  • the pore size of the small pores is less than 5, the pore size becomes too small, and the pressure loss increases even if the layer of the catalyst carrier or the like is thin.
  • a balloon which is a fine hollow sphere containing an acid oxide ceramic as a component And organic particles composed of organic substances such as spherical acrylic particles (eg, resin) and inorganic particles such as graphite.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the particle size of the ceramic used in the production of the Hercam structure 30 is not particularly limited, but it is desirable that the ceramics have less shrinkage in the subsequent firing step, for example, 0.3 to 50 / A combination of 100 parts by weight of powder having an average particle diameter of about ⁇ and 5 to 65 parts by weight of powder having an average particle diameter of about 0.1 to 1.0 m is desirable.
  • the porosity and the proportion of pores having a pore diameter of 10 m or less can be controlled to some extent.
  • Examples of the pore-forming agent include the same as those mentioned in the first aspect of the present invention.
  • the sealing material of the ceramic block 35, the thickness of the partition wall, the material of the sealing material layer, the size and type of the cell, and the like are the same as in the first aspect of the invention, and therefore detailed description thereof is omitted here. To do.
  • extrusion molding is performed using a raw material paste mainly composed of the ceramic as described above to produce a cylindrical ceramic molded body that becomes a ceramic block.
  • a raw material paste mainly composed of the ceramic as described above
  • the shape of the molded body is a cylinder and the size is larger than that of the first invention
  • molding is performed in the same manner using the same binder, pore former, dispersion medium, etc. as in the first invention. Since the body is manufactured, the detailed explanation is omitted here.
  • the ceramic molded body is used by using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like. Dry to make a ceramic dry body.
  • a predetermined amount of a sealing material paste serving as a sealing material is filled in the outlet side end portion of the inlet side cell group and the inlet side end portion of the outlet side cell group, and the cells are sealed.
  • a ceramic block is manufactured by degreasing and firing, a catalyst carrier is attached to the wall, and the catalyst is supported.
  • ⁇ -type silicon carbide powder SiC coarse powder
  • ⁇ -type silicon carbide powder having an average particle size of 11 m
  • 30 parts by weight of ⁇ -type silicon carbide powder having an average particle size of 0.5 m are wet-mixed, and the resulting mixture is 100 parts by weight.
  • 10 parts by weight of acrylic particles having an average particle size of 0 m, 5.7 parts by weight of organic binder (methylcellulose), and 26.6 parts by weight of water were added and kneaded to obtain a mixed composition. It was.
  • the generated shaped body was dried using a microwave dryer or the like to form a ceramic dried body, and then a sealing material paste having the same composition as that of the generated shaped body was filled in a predetermined cell.
  • alumina fiber having a fiber length of 20 ⁇ m, 21% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 15% by weight of silica sol, 5.6% by weight of carboxymethylcellulose, and 28.4% of water
  • a large number of porous ceramic members 20 were bonded using a heat-resistant adhesive paste containing wt%, and then cut using a diamond cutter to produce a cylindrical ceramic block 15.
  • ceramic fiber made of alumina silicate as inorganic fiber shot content: 3%, fiber length: 5 to: ⁇ / ⁇ ⁇ ) 23. 3% by weight, carbonization of inorganic particles with average particle size of 0. Silicon powder 30.2% by weight, silica sol as inorganic binder (content of SiO in sol: 3
  • a sealing material paste layer having a thickness of 0.2 mm was formed on the outer peripheral portion of the ceramic block 15 using the sealing material paste. Then, this sealing material paste layer is dried at 120 ° C to produce a cylindrical aggregate type hard structure 10 having a diameter of 143.8 mm and a length of 150 mm.
  • ⁇ -alumina was mixed with water and a nitric acid solution as a dispersant, and further pulverized with a ball mill at 90 min _ 1 for 24 hours to prepare an alumina slurry having an average particle diameter of 2 m. Then, the Hercam structure was immersed in the obtained slurry, pulled up, and dried at 200 ° C.
  • alumina layer (catalyst support layer) reached a thickness of 10 m and fired at 600 ° C.
  • Table 3 shows the average pore size, atmospheric pore size, porosity, (atmospheric pore size Z average pore size) X porosity after catalyst loading.
  • FIG. 5 is a plot of the values for each example when the catalyst thickness is taken on the X axis and the value of (atmospheric pore diameter Z average pore diameter) X porosity after catalyst loading is taken on the y axis.
  • Table 3 shows the average pore diameter, atmospheric pore diameter, porosity, (atmospheric diameter Z average pore diameter) X porosity, etc. after catalyst loading.
  • FIG. 5 is a plot of the values for each example when the catalyst thickness is plotted on the X axis and the value of the (atmospheric pore diameter Z average pore diameter) X porosity after catalyst loading is plotted on the y axis. .
  • talc powder with an average particle size of 10 ⁇ m 10 parts by weight of kaolin powder with an average particle size of 9 ⁇ m, 17 parts by weight of alumina powder with an average particle size of 9.5 m, and water with an average particle size of 5 m 16 parts by weight of acid mineral powder and 15 parts by weight of silica powder having an average particle size of 10 m are wet-mixed, and 10 parts of acrylic particles having an average particle diameter of 0 m are added to 98 parts by weight of the resulting mixture.
  • the generated shaped body was dried using a microwave dryer or the like to form a ceramic dried body, and then a sealing material paste having the same composition as that of the generated shaped body was filled in a predetermined cell.
  • a sealing material paste having the same composition as that of the generated shaped body was filled in a predetermined cell.
  • a cylindrical honeycomb structure 30 made of Wright was manufactured. When the particle size of the ceramic particles in the hard cam structure 30 was observed by SEM, it was 10 ⁇ m.
  • the Hercam structure 30 was dipped in an alumina slurry having an average particle diameter of 2 ⁇ m prepared in the same manner as in Example 1, pulled up, and dried at 200 ° C.
  • alumina layer (catalyst support layer) reached a thickness of 10 m and fired at 600 ° C.
  • platinum concentration 4. 53 weight 0/0 dinitrodiammine platinum nitrate ([Pt (NH) (NO )] HNO)
  • Table 3 shows the average pore size, atmospheric pore size, porosity, (atmospheric pore size Z average pore size) X porosity after catalyst loading.
  • FIG. 5 is a plot of the values for each example when the catalyst thickness is taken on the X axis and the value of (atmospheric pore diameter Z average pore diameter) X porosity after catalyst loading is taken on the y axis.
  • a molded body When forming a molded body, the components as shown in Table 2 were mixed to form a mixed composition, and a molded body was prepared by extrusion molding. The body 30 was manufactured, and a catalyst supporting layer having a thickness as shown in Table 3 was attached to the resulting her cam structure 30 to support the catalyst.
  • Table 3 shows the average pore size, atmospheric pore size, porosity, (atmospheric pore size Z average pore size) X porosity after catalyst loading.
  • FIG. 5 is a plot of the values for each example when the catalyst thickness is taken on the X axis and the value of (atmospheric pore diameter Z average pore diameter) X porosity after catalyst loading is taken on the y axis.
  • porous ceramic member used in each example and comparative example was cut out at about 1 cm square, placed in a plastic container, further degassed with an epoxy resin hardener, and then allowed to stand at normal pressure.
  • the cured epoxy resin-containing sample was polished with a diamond disk so that the wall section of the porous ceramic member appeared on the surface.
  • the sample prepared in this way is observed with a scanning electron micrograph (SEM) of 100 pores and small pores in the porous ceramic member, the diameters are measured, and the average value is measured in the atmosphere.
  • the pore diameter and small pore diameter were used.
  • the lengths of the major and minor axes of the pores were measured, and the length of the major axis was taken as the pore diameter.
  • the aspect ratio of the major axis and minor axis length was calculated.
  • the honeycomb structure to which the catalyst supporting layer according to each of the examples and the comparative examples was attached was processed in the same manner, and the portion where the thickness could be measured by SEM, 100 locations were observed, and the average value was defined as the thickness of the catalyst supporting layer. .
  • the pore size of the small pores was used as the catalyst layer. The results are shown in Table 3 below.
  • the porosity was measured by the Archimedes method for the Hercam structures according to each Example and Comparative Example. The results are shown in Table 3 below.
  • honeycomb structures according to the respective examples, reference examples and comparative examples were placed in a pine furnace and heat-treated at 800 ° C. for 10 hours. Thereafter, disposed in an exhaust oven engine, as an exhaust gas Kiyoshii spoon device, ha - after placing the thermometer in the center of the cam structure, the rotation speed 3000 min _1 the engine, the particulates in the torque 50 Nm 8 g / L was collected.
  • Example 1 20 90 Yes 2 or more 60 30 10 18 85 58 273.89 91 16 24
  • Example 2 20 90 Yes 2 or more 60 60 15 17 90 57 301.76 93 18 24
  • Example 3 20 90 Yes 2 or more 60 90 20 15 90 55 330.00 96 20 26
  • Example 4 20 90 Yes 2 or more 60 120 25 14 80 49 280.00 98 22 27
  • Example 5 20 90 Yes 2 or more 60 150 30 13 80 45 276.92 96 24 28
  • Example 6 25 100 Yes 2 or more 65 90 20 22 90 55 225.00 97 18 20
  • Example 7 25 100 Yes 2 or more 65 120 25 19 90 50 236.84 97 20 20
  • Example 8 18 80 Yes 2 or more 60 30 15 15 80 56 298.67 90 18 28
  • Example 9 20 90 Yes 2 or more 60 30 10 18 85 59 278.61 90 10
  • Example 10 20 90 Yes 2 or more 60 90 17 17 80 57 268.24 93 16 10 Compar
  • FIG. 1 is a perspective view schematically showing an example of a her cam structure of the first present invention.
  • FIG. 2 (a) is a perspective view schematically showing a porous ceramic member constituting the her cam structure of the first invention, and (b) is a cross-sectional view taken along line AA.
  • FIG. 2 (a) is a perspective view schematically showing a porous ceramic member constituting the her cam structure of the first invention, and (b) is a cross-sectional view taken along line AA.
  • FIG. 3 is a cross-sectional view schematically showing an example of an exhaust gas purifying device for a vehicle provided with the her cam structure of the present invention.
  • FIG. 4 (a) is a cross-sectional view schematically showing the second structure of the present invention, and (b) is a cross-sectional view taken along the line BB.
  • FIG. 5 is a graph showing the relationship between the thickness of the catalyst carrier layer and the value obtained by multiplying the ratio of (atmospheric pore diameter Z small pore diameter) by the porosity.
  • FIG. 6 is a SEM photograph showing the result of observing pores formed in the cell wall by SEM after cutting the cell wall.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Structural Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

本発明は、初期圧力損失が増大せず、パティキュレート捕集時にも、圧力損失が増加しにくいように触媒担持層が付着し、かつ、排気ガス等との接触が良好に行われ、触媒機能を充分に果たすことが可能なハニカム構造体を提供することを目的とし、本発明のハニカム構造体は、壁部を隔てて長手方向に貫通する複数のセルのいずれか一方の端部が封止されてなる多孔質セラミック部材が接着剤層を介して複数個接着され、壁部には、触媒担持層が付着したハニカム構造体であって、多孔質セラミック部材に形成された気孔は、気孔径が相対的に大きい大気孔と、気孔径が相対的に小さい小気孔とからなり、触媒担持層の厚さをX1(μm)、小気孔の平均気孔径に対する大気孔の平均気孔径の比(大気孔の平均気孔径/小気孔の平均気孔径)に多孔質セラミック部材の気孔率(%)を乗じた値をY1とした際、X1及びY1は、(1)式及び(2)式を満足することを特徴とするものである。 6X1+80.5≦Y1≦6X1+230.5・・・(1) -6X1+330≦Y1≦-6X1+474・・・(2)

Description

明 細 書
ノヽニカム構造体
技術分野
[0001] 本発明は、ディーゼルエンジン等の内燃機関カゝら排出される排気ガス中のパティキュ レート等を除去するフィルタや、触媒担体等として用いられるハニカム構造体に関す る。
背景技術
[0002] バス、トラック等の車両や建設機械等の内燃機関力も排出される排気ガス中に含有さ れるスス等のパティキュレートが環境や人体に害を及ぼすことが最近問題となってい る。
そこで、排気ガス中のパティキュレートを捕集して、排気ガスを浄ィ匕するフィルタとして 多孔質セラミック力 なるハ-カム構造体を用いたものが種々提案されて 、る。
[0003] また、ハ-カム構造体に触媒を担持することにより、パティキュレートの燃焼の活性ィ匕 エネルギーを低下させ、パティキュレートを燃えやすくしたものや、 CO、 HC及び NO X等の排気ガス中の有害なガス成分を浄ィ匕する機能を有するものが提案されている。
[0004] 最近では、触媒の担持量を多くするために、高気孔率のハニカム構造体の製造が試 みられている。
このような高気孔率のハニカム構造体を製造する際には、大きな気孔を形成する必 要があるが、大きな気孔を形成するための方法として、造孔剤を用いる方法がある( 特許文献 1参照)。
[0005] このような造孔剤として、榭脂等の有機物力もなる粒子や、内部に空洞が形成された 有機物や無機物からなるバルーンと呼ばれるものが用いられる。これら造孔剤を原料 のセラミック粉末等に混合し、成形、焼成すると、有機物からなる粒子やバルーンは、 燃焼、消失することにより、無機のノ レーンは、内部に形成されている空洞がそのま ま維持されることにより、内部に大きな気孔を有するハ-カム構造体が得られる。
[0006] また、原料のセラミック粉末として、通常よりも大きな粒子径のものを用いた場合にも、 大きな気孔を有するハ-カム構造体が得られる。この場合には、焼成工程で大きな 粒子同士が結合していく際に、粒子径に比例して、充填された粒子間の隙間も大きく なるため、大きな気孔を有するものが得られるのである。
[0007] 特許文献 l :WO 02Z96827号パンフレット
発明の開示
発明が解決しょうとする課題
[0008] このような高気孔率のハニカム構造体に触媒 (触媒担体)を担持する場合には、比較 的多量の触媒 (触媒担体)を担持することができるはずであるが、ハニカム構造体の 構造によっては、触媒を担持することにより、気孔が塞がれやすくなつてしまい、初期 の圧力損失が高くなるという問題があった。また、初期の圧力損失は余り高くならない ものの、排ガスとの接触反応を充分に起こさせることができず、充分な触媒能力を有 するものとならな 、と 、う問題があった。
[0009] 本発明は、上記課題に鑑みてなされたものであり、初期の圧力損失が増大せず、パ ティキュレートを捕集した場合にも、圧力損失が増加しにくいように触媒担持層が付 着しており、かつ、排気ガス等との接触が良好に行われ、触媒機能を充分に果たすこ とが可能なハ-カム構造体を提供することを目的とする。
課題を解決するための手段
[0010] 第一の本発明のハ-カム構造体は、壁部を隔てて長手方向に貫通する複数のセル のいずれか一方の端部が封止されてなる多孔質セラミック部材が接着剤層を介して 複数個接着され、上記壁部には、触媒担持層が付着したハ-カム構造体であって、 上記多孔質セラミック部材に形成された気孔は、気孔径が相対的に大きい大気孔と 、気孔径が相対的に小さ 、小気孔とからなり、
上記触媒担持層の厚さを X ( /z m)、
上記小気孔の平均気孔径に対する上記大気孔の平均気孔径の比(上記大気孔の 平均気孔径 Z上記小気孔の平均気孔径)に上記多孔質セラミック部材の気孔率 (% )を乗じた値を Yとした際、
X及び Yは、下記の(1)式及び(2)式を満足することを特徴とする。
6X +80. 5≤Y≤6Χ + 230. 5 · · · (1)
— 6Χ + 330≤Υ≤-6Χ +474· · · (2) [0011] 第二の本発明のハ-カム構造体は、壁部を隔てて長手方向に貫通する複数のセル のいずれか一方の端部が封止され、上記壁部には、触媒担持層が付着した多孔質 セラミック力もなるハ-カム構造体であって、
上記多孔質セラミックに形成された気孔は、気孔径が相対的に大きい大気孔と、気 孔径が相対的に小さい小気孔とからなり、
上記触媒担持層の厚さを X ( /z m)、
2
上記小気孔の平均気孔径に対する上記大気孔の平均気孔径の比(上記大気孔の 平均気孔径 Z上記小気孔の平均気孔径)に上記多孔質セラミック部材の気孔率 (% )を乗じた値を γとした際、
2
X及び Yは、下記の(3)式及び (4)式を満足することを特徴とする。
2 2
6X +80. 5≤Y≤6Χ + 230. 5 · · · (3)
2 2 2
-6Χ + 330≤Υ≤-6Χ +474· · · (4)
2 2 2
[0012] 第一の本発明のハ-カム構造体は、炭化珪素質セラミック力 なることが望ましぐ第 二の本発明のハ-カム構造体は、コーディエライトからなることが望ましい。
なお、以下においては、第一の本発明のハ-カム構造体のような、多孔質セラミック 部材が接着剤層を介して複数個組み合わされた構造を有するハ-カム構造体を集 合体型ハ-カム構造体ともいい、一方、第二の本発明のハ-カム構造体のような、全 体が一体として形成された構造を有するハニカム構造体を一体型ハニカム構造体と もいう。また、一体型ハニカム構造体と集合体型ハニカム構造体とを特に区別する必 要がない場合には、単にハ-カム構造体という。
[0013] 本明細書にぉ 、て、上記小気孔とは、走査型電子顕微鏡 (以下、 SEMと 、う)で観 察した気孔の気孔径が 30 m未満のものをいい、上記大気孔とは、 SEMで観察し た気孔の気孔径が 30 m以上 100 m以下のものをいい、上記超大気孔とは、 SE Mで観察した気孔の気孔径が 100 mを超えるものをいうものとする。また、平均気 孔径とは、小気孔の気孔径の平均値をいうものとする。
[0014] なお、原料のセラミック粉末として、粗粉と微粉とを組み合わせたものを使用してセラ ミック成形体を作製し、焼成により上記多孔質セラミック部材又は上記多孔質セラミツ クを製造した際には、上記多孔質セラミック部材又は上記多孔質セラミックを構成す るセラミック粒子は、粗粉の粒子径とほぼ同じ粒子径になる。
[0015] 本発明のハ-カム構造体に形成された大気孔は、ハ-カム構造体の隔壁の厚さに 対して 40〜90%の径を有する超大気孔を含んで 、ることが望まし 、。
ハニカム構造体中に超大気孔が存在すると、ハニカム構造体中にガスの抜けやす 、 部分が生じるため、ハ-カム構造体のガス透過性が改善され、パティキュレートを捕 集した際にも、圧力損失が上昇しにくくなる。
[0016] また、上記超大気孔は、焼成に用いられるセラミック成形体中の複数の造孔剤が互 いに近接していたことに起因して形成され、そのアスペクト比が 2以上であることが望 ましい。
超大気孔の形状が細長くなるため、ガスが通過しやすくなる力 である。
後で詳しく説明するが、造孔剤とは、多孔質セラミック (多孔質セラミック部材)に、主 として大気孔を形成するために用いられる材料であり、焼成に用いられるセラミック成 形体中に含有させる。
発明の効果
[0017] 第一及び第二の本発明のハニカム構造体によれば、(大気孔の平均気孔径 Z小気 孔の平均気孔径) X多孔質セラミック(多孔質セラミック部材)の気孔率とハニカム構 造体に形成した上記触媒担持層の層の厚さとの関係が、上記(1)、(2)式、又は、上 記 (3)、(4)式を満たした場合には、充分な触媒能力を有するとともに、フィルタ等と して使用した場合、初期圧力損失が低ぐパティキュレートを捕集した際にも圧力損 失が上昇しにくぐかつ、充分な機械的強度を有するハニカム構造体を提供すること ができる。
発明を実施するための最良の形態
[0018] 第一の本発明のハ-カム構造体は、壁部を隔てて長手方向に貫通する複数のセル のいずれか一方の端部が封止されてなる多孔質セラミック部材が接着剤層を介して 複数個接着され、上記壁部には、触媒担持層が付着したハ-カム構造体であって、 上記多孔質セラミック部材に形成された気孔は、気孔径が相対的に大きい大気孔と 、気孔径が相対的に小さ 、小気孔とからなり、
上記触媒担持層の厚さを X ( /z m)、 上記小気孔の平均気孔径に対する上記大気孔の平均気孔径の比(上記大気孔の 平均気孔径 Z上記小気孔の平均気孔径)に上記多孔質セラミック部材の気孔率 (% )を乗じた値を γとした際、
X及び Yは、下記の(1)式及び(2)式を満足することを特徴とする。
6X +80. 5≤Y≤6Χ + 230. 5 · · · (1)
— 6Χ + 330≤Υ≤-6Χ +474· · · (2)
[0019] 図 1は、第一の本発明に係るハ-カム構造体を模式的に示す斜視図であり、図 2 (a) は、図 1に示したハ-カム構造体を構成する多孔質セラミック部材の斜視図であり、 ( b)は、(a)に示した多孔質セラミック部材の A— A線断面図である。
[0020] 図 1に示すように、第一の本発明のハ-カム構造体は、集合型のハ-カム構造体 10 であり、炭化珪素等力もなる多孔質セラミック部材 20が、接着剤層 11を介して複数個 組み合わされて円柱状のセラミックブロック 15を構成し、このセラミックブロック 15の周 囲にシール材層(コート層) 12が形成されている。
[0021] 図 1に示した第一の本発明のハ-カム構造体 10では、セラミックブロックの形状は円 柱状である力 本発明において、セラミックブロックは、柱状であれば円柱状に限定さ れることはなぐ例えば、楕円柱状や角柱状等任意の形状のものであってもよい。
[0022] 多孔質セラミック部材 20は、図 2 (a)、 (b)に示したように、長手方向に多数のセル 21 が並設され、セル 21同士を隔てる壁部(セル壁) 23がフィルタとして機能するようにな つている。即ち、多孔質セラミック部材 20に形成されたセル 21は、図 2 (b)に示したよ うに、排気ガスの入口側又は出口側の端部のいずれかが封止材 22により目封じされ 、一のセル 21に流入した排気ガスは、必ずセル 21を隔てる壁部(セル壁) 23を通過 した後、他のセル 21から流出するようになっている。
[0023] 第一の本発明のハ-カム構造体は、主として多孔質セラミック力もなり、その材料とし ては、例えば、窒化アルミニウム、窒化ケィ素、窒化ホウ素、窒化チタン等の窒化物 セラミック、炭化珪素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タンダステ ン等の炭化物セラミック、アルミナ、ジルコユア、コージユライト、ムライト、シリカ等の酸 化物セラミック等を挙げることができる。また、ハ-カム構造体 10は、シリコンと炭化珪 素との複合体、チタン酸アルミニウムと 、つた 2種類以上の材料力も形成されて 、るも のであってもよい。シリコンと炭化珪素との複合体を用いる場合には、シリコンを全体 の 0〜45重量%となるように添加することが望まし!/、。
上記多孔質セラミックの材料としては、耐熱性が高ぐ機械的特性に優れ、かつ、熱 伝導率も高い炭化珪素質セラミックが望ましい。なお、炭化珪素質セラミックとは、炭 化珪素が 60wt%以上のものをいうものとする。
[0024] 第一の本発明のハ-カム構造体 10は、触媒担持層が付着したハ-カム構造体であ り、該触媒担持層に触媒を担持させる。
上記触媒としては特に限定されな 、が、パティキュレートの燃焼の活性ィ匕エネルギー を低下させパティキュレートを燃えやすくするものや、 CO、 HC及び NOx等の排気ガ ス中の有害なガス成分を浄ィ匕することができるもの等が望ましぐ例えば、白金、パラ ジゥム、ロジウム等の貴金属等を挙げることができる。なかでも、白金、パラジウム、口 ジゥム力もなる、いわゆる三元触媒が望ましい。また、貴金属に加えて、アルカリ金属 (元素周期表 1族)、アルカリ土類金属 (元素周期表 2族)、希土類元素 (元素周期表 3族)、遷移金属元素等を担持させてもよい。
[0025] このようなハ-カム構造体 10は、排気ガス中の CO、 HC及び NOx等を浄化すること ができる。
このようなハ-カム構造体 10に触媒担持層が付着し、該触媒担持層に触媒が担持さ れることにより、ハ-カム構造体 10は、排気ガス中のパティキュレートを捕集するフィ ルタとして機能するとともに、排気ガスに含有される CO、 HC及び NOx等を浄ィ匕する ための触媒コンバータとして機能する。
[0026] また、ハ-カム構造体 10に上記触媒を付着させる際には、予めその表面をアルミナ 等の触媒担体で被覆した後に、上記触媒を付着させることが望ましい。これにより、 比表面積を大きくして、触媒の分散度を高め、触媒の反応部位を増やすことができる 。また、触媒担体によって触媒金属のシンタリングを防止することができるので、触媒 の耐熱性も向上する。
[0027] 上記触媒担持層としては、例えば、アルミナ、チタ-ァ、ジルコユア、シリカ、セリア等 の酸ィ匕物セラミックが挙げられる。
[0028] また、上記触媒が担持されることにより、触媒上で酸化反応等が進行し、反応熱が発 生するため、ハ-カム構造体 10の温度を上昇させることができる。
[0029] 第一の本発明では、上記多孔質セラミック部材に形成された気孔は、気孔径が相対 的に大きい大気孔と、気孔径が相対的に小さい小気孔とからなり、上記触媒担持層 の厚さを X ( m)、上記小気孔の平均気孔径に対する上記大気孔の平均気孔径の 比(上記大気孔の平均気孔径 Z上記小気孔の平均気孔径)に上記多孔質セラミック 部材の気孔率(%)を乗じた値を Yとした際、 X及び Yは、下記の(1)式及び(2)式 を満足する。
6X +80. 5≤Y≤6Χ + 230. 5 · · · (1)
— 6Χ + 330≤Υ≤-6Χ +474· · · (2)
[0030] 図 5は、触媒担体等の層の厚さと (大気孔の平均気孔径 Ζ小気孔の平均気孔径) X 多孔質セラミック部材の気孔率との関係を示したグラフであり、図 5に示したように、触 媒担体等の層の厚さを X軸に、(大気孔径 Ζ小気孔径の比) X気孔率を Υ軸にとった 際、 Υ =6Χ +80. 5、Υ =6Χ + 230. 5、 Υ =—6Χ + 330、 Υ =—6Χ +474 の 4本の線で囲まれた平行四辺形の中の領域が本願発明の範囲となる。
[0031] 第一の本発明のハニカム構造体では、(大気孔の平均気孔径 Ζ小気孔の平均気孔 径) X多孔質セラミック部材の気孔率とハニカム構造体に形成した触媒担体等の層 の厚さとの関係が、図 5に示した平行四辺形の中の領域に含まれる場合に(上記(1) 、(2)式を満たす場合に)、充分な触媒能力を有するとともに、フィルタ等として使用し た場合、初期圧力損失が低ぐパティキュレートを捕集した際にも圧力損失が上昇し にくぐかつ、充分な機械的強度を有するハニカム構造体となる。
[0032] Υ力 Υ≤6Χ + 230. 5、 Υ≤— 6Χ +474を満たさない場合、すなわち、 Υ >6 X + 230. 5、又は、 Υ > -6Χ +474の場合(図 5参照)には、以下のような不都合 が生じる。
Υ力 Υ >6Χ + 230. 5の場合には、大気孔の径が大きすぎて、基材の強度が低 くなり、フィルタの耐久性が不充分となる。一方、 Y 1S Υ >— 6Χ +474の場合に は、小気孔が触媒によって閉塞してしまい、触媒反応が起こりにくくなる。
[0033] また、 Y iS 6X +80. 5≤Y及び一 6Χ + 330≤Υを満たさない場合、すなわち、 Υ < 6Χ +80. 5、又は、 Υ < 6Χ + 330の場合(図 5参照)には、以下のような不都 合が発生する。
この場合には、小気孔が大きすぎる場合と、大気孔が小さすぎる場合とが考えられる 小気孔が大きすぎる場合には、パティキュレートを捕集した際、小気孔内でパティキ ュレートが深層ろ過されるようになり、パティキュレートの堆積層が厚くなつて、圧力損 失が大きくなつてしまう。
[0034] 一方、大気孔が小さすぎる場合には、ガスの透過性が悪くなつて、過渡圧損が高くな るおそれがある。なお、大気孔が小さすぎる場合には、 2〜3個の大気孔が近接する ことにより形成される超大気孔も出現しにくくなるため、超大気孔が存在する場合と比 ベてよりガスの透過性が悪くなる傾向にある。
[0035] (1)、 (2)式を満たす触媒担体等の層の厚さは、図 5に示したように、 8. 3〜33 /ζ πι の範囲になる。
上記触媒担体等の層の厚さが 8. 3 m未満であると、触媒担体等の量が少なすぎる ために貴金属触媒の分散性が悪くなり、充分な触媒の耐久力を有するハニカム構造 体とならず、一方、上記触媒担体等の層の厚さが 33 mを超えると、触媒担体等の 層の厚さが厚くなりすぎ、小気孔の径を大きくしても、小気孔がほぼ閉塞してしまい、 小気孔の表面をガスが通過しに《なって、触媒反応が起こりに《なる。
[0036] 多孔質セラミック部材 20の気孔率は特に限定されな 、が、望ま 、下限は 40%であ り、望ましい上限は 75%である。気孔率が 40%未満であると、大気孔の割合を多く するのが難しくなり、大気孔を形成した効果が現れず、一方、気孔率が 75%を超える と、ハニカム構造体の機械的強度を保つことが困難となってしまう。
多孔質セラミック部材 20の気孔率の上限は、 65%がより望ましい。
なお、上記気孔率は、例えば、水銀圧入法、アルキメデス法及び走査型電子顕微鏡 (SEM)による測定等の従来公知の方法により測定することができる。
[0037] ハ-カム構造体 10を構成する大気孔の気孔径は、上述したように、 SEMで観察した 気孔径が 30〜: LOO μ mのものであるが、大気孔の気孔径の望ましい下限は 40 μ m である。大気孔の平均気孔径が 30 m未満であると、大気孔としては、気孔径が小 さいため、触媒担体等の層の厚さが少し厚くなると、気孔が閉塞しやすくなり、圧力損 失が高くなり、一方、平均気孔径が 100 mを超えると、気孔径が大きくなりすぎるた め、機械的な強度を充分に上げることができに《なる。
[0038] 上記大気孔とは別に、ハ-カム構造体 10は、 SEMで観察した気孔径が 100 μ mを 超える超大気孔を含んで 、ることが望ま 、。圧力損失を低下させる効果が大きくな るカゝらである。
図 6は、セル壁を切断し、セル壁に成形された気孔を SEMにより観察した結果を示 す SEM写真であり、図示するように SiC粒子を覆うように触媒層が形成されており、 3 0 m未満の小気孔が形成されるとともに、主に造孔剤により形成されたと考えられる 30〜 100 mの大気孔も観察される。
[0039] さらに、図 6に示すように、小気孔、大気孔以外に気孔と考えてもよい大きな空間を形 成し、その空間の径 (長手方向の長さ)が 100 mを超える極めて大きな気孔が存在 するが、この気孔を超大気孔という。
[0040] また、ハ-カム構造体 10は、ハ-カム構造体 10のセルを隔てる壁部(セル壁)の厚さ に対して 40〜90%の径を有する超大気孔を含んで 、ることが望まし 、。その径カ 0 %未満であると、圧損上昇を抑制する効果が充分に現れず、 90%を超えると、ハニ カム構造体 10の機械的強度を保つことが困難となってしまう。
後述するように、セル壁の厚さは、 0. 6mm以下が望ましいので、超大気孔の径は、 540 m以下が望ましい。さらには、ハ-カム構造体 10に形成される大気孔は、ハニ カム構造体 10のセルを隔てる壁部(セル壁)の厚さに対して 65〜80%の径を有する 超大気孔を含んで 、ることが望ま 、。
30 μ m以上の気孔のなかで、超大気孔の割合は、 30〜80vol%であることが望まし い。
[0041] ハ-カム構造体 10に形成される小気孔の気孔径は、 SEMで観察した気孔径が 30
μ m未満である力 5 μ m以上であることが望ましい。小気孔の平均気孔径が 30 μ m 以上になると、小気孔が大きくなりすぎ、パティキュレートが深層ろ過されるようになり 、パティキュレートの堆積層が厚くなつて、圧力損失が大きくなりやすぐ一方、小気 孔の気孔径が 5未満では、気孔径が小さくなりすぎ、触媒担体等の層の厚さが薄くて も圧力損失が大きくなつてしまう。 [0042] 上記造孔剤としては、酸ィ匕物系セラミックを成分とする微小中空球体であるバルーン 、球状アクリル粒子等の有機物 (榭脂等)からなる有機粒子、グラフアイト等の無機粒 子等が挙げられる。
上記上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイ クロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)及びムライトバ ルーン等を挙げることができる。これらのなかでは、アルミナバルーンが望ましい。
[0043] ハ-カム構造体 10を製造する際に使用するセラミックの粒径としては特に限定されな いが、後の焼成工程で収縮が少ないものが望ましぐ例えば、 0. 3〜50 /ζ πι程度の 平均粒径を有する粉末 100重量部と、 0. 1〜1. 0 m程度の平均粒径を有する粉 末 5〜65重量部とを組み合わせたものが望ましい。
上記粒径のセラミック粉末を上記配合で混合することで、多孔質セラミック力 なるハ 二カム構造体を製造することができる。また、それぞれの粉末の平均粒径を選択する ことにより、気孔率や気孔径が 10 m以下の細孔の割合をある程度制御することが できる。
[0044] 多孔質セラミック部材 20を構成する封止材 22と壁部 23とは、同じ多孔質セラミックか らなることがより望ましい。これにより、両者の密着強度を高くすることができるとともに 、封止材 22の気孔率を壁部 23と同様に調整することで、壁部 23の熱膨張率と封止 材 22の熱膨張率との整合を図ることができ、製造時や使用時の熱応力によって封止 材 22と壁部 23との間に隙間が生じたり、封止材 22や封止材 22に接触する部分の壁 部 23にクラックが発生したりすることを防止することができる。なお、壁部は、セル 21 同士を隔てるセル壁及び外周部分の両方を意味するものとする。
[0045] 封止材 22の厚さは特に限定されないが、例えば、封止材 22が多孔質炭化珪素から なる場合には、 l〜20mmであることが望ましぐ 3〜: LOmmであることがより望ましい
[0046] セル壁 23の厚さは特に限定されないが、望ましい下限は 0. 1mmであり、望ましい上 限は 0. 6mmである。 0. 1mm未満であると、ハ-カム構造体 10の強度が充分でな いことがある。 0. 6mmを超えると、圧力損失が高くなる。
[0047] 本発明のハ-カム構造体 10において、接着剤層 11は、多孔質セラミック部材 20間 に形成され、複数個の多孔質セラミック部材 20同士を結束する接着剤 (又は、封止 材)として機能するものであり、一方、シール材層 12は、ハ-カムブロック 15の外周面 に形成され、ハ-カム構造体 10を内燃機関の排気通路に設置した際、ハ-カムプロ ック 15の外周面力もセルを通過する排気ガスが漏れ出すことを防止するための封止 材、形状を整えたり、補強材として機能するものである。
[0048] なお、多孔質セラミック部材 10にお 、て、接着剤層 11とシール材層 12とは、同じ材 料力もなるものであってもよぐ異なる材料からなるものであってもよい。さらに、接着 剤層 11及びシール材層 12が同じ材料カゝらなるものである場合、その材料の配合比 は同じであってもよぐ異なっていてもよい。また、緻密質でも、多孔質でもよいが、ガ スの流入を防止すベぐシール性に重きを置く場合は、緻密質であることが望ましい。
[0049] 接着材層 11及びシール材層 12を構成する材料としては特に限定されず、例えば、 無機バインダーと有機バインダーと無機繊維及び/又は無機粒子とからなるもの等 を挙げることができる。
[0050] 上記無機バインダーとしては、例えば、シリカゾル、アルミナゾル等を挙げることがで きる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機バインダー のなかでは、シリカゾノレが望ましい。
[0051] 上記有機バインダーとしては、例えば、ポリビュルアルコール、メチルセルロース、ェ チルセルロース、カルボキシメチルセルロース等を挙げることができる。これらは、単 独で用いてもよぐ 2種以上を併用してもよい。上記有機バインダーのなかでは、カル ボキシメチルセルロースが望まし 、。
[0052] 上記無機繊維としては、例えば、シリカ アルミナ、ムライト、アルミナ、シリカ等のセラ ミックファイバ一等を挙げることができる。これらは、単独で用いてもよぐ 2種以上を併 用してもよい。上記無機繊維のなかでは、シリカ アルミナファイバーが望ましい。
[0053] 上記無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には 、炭化珪素、窒化珪素、窒化硼素等力 なる無機粉末又はウイスカ一等を挙げること ができる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機粒子 のなかでは、熱伝導性に優れる炭化珪素が望ま 、。
[0054] さらに、シール材層ゃ接着剤層を形成するために用いるペーストには、必要に応じて 酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子 、グラフアイト等の造孔剤を添加してもよい。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバ ルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等 を挙げることができる。これらのなかでは、アルミナバルーンが望ましい。
[0055] 上記触媒が担持された本発明のハ-カム構造体は、従来公知の触媒付 DPF (ディ ーゼル 'パティキュレート'フィルタ)と同様のガス浄ィ匕装置として機能するものである。 従って、ここでは、本発明の一体型ハ-カム構造体が触媒担持体としても機能する場 合の詳しい説明を省略する。
[0056] 次に本発明のハ-カム構造体の製造方法の一例について説明する。
まず、上述したようなセラミックを主成分とする原料ペーストを用いて押出成形を行い
、四角柱形状のセラミック成形体を作製する。
[0057] 上記原料ペーストとしては特に限定されないが、製造後のハ-カム構造体の気孔率 力 0〜75%となるものが望ましぐ例えば、上述したようなセラミック力もなる粉末に、 ノインダー、造孔剤及び分散媒液等を加えたものを挙げることができる。
[0058] 上記セラミック粉末の粒径は特に限定されないが、後の焼成工程で収縮の少ないも のが好ましぐ例えば、 0. 3〜50 111程度の平均粒径を有する粉末100重量部と0.
1〜1. 0 m程度の平均粒径を有する粉末 5〜65重量部とを組み合わせたものが好 ましい。
多孔質セラミック部材の気孔率等を調節するためには、焼成温度を調節する必要が あるが、セラミック粉末の粒径を調節することにより、気孔率や気孔径を調節すること ができる。
[0059] 上記バインダーとしては特に限定されず、例えば、メチルセルロース、カルボキシメチ ルセルロース、ヒドロキシェチルセルロース、ポリエチレングリコール、フエノール榭脂 、エポキシ榭脂等を挙げることができる。
上記バインダーの配合量は、通常、セラミック粉末 100重量部に対して、 1〜: LO重量 部程度が望ましい。
[0060] 上記分散媒液としては特に限定されず、例えば、ベンゼン等の有機溶媒、メタノール 等のアルコール、水等を挙げることができる。
上記分散媒液は、上記原料ペーストの粘度が一定範囲内となるように適量配合され る。
[0061] これらセラミック粉末、バインダー及び分散媒液は、アトライター等で混合し、ニーダ 一等で充分に混練した後、押出成形される。
[0062] また、上記原料ペーストには、必要に応じて成形助剤を添加してもよい。
上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、 脂肪酸石鹼、ポリビニルアルコール等を挙げることができる。
[0063] さらに、上記原料ペーストには、酸化物系セラミックを成分とする微小中空球体である バルーンや、球状アクリル粒子、グラフアイト等の造孔剤を添加することが望ましい。こ の造孔剤の添カ卩により、ハ-カム構造体中に大気孔を形成することができる。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバ ルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等 を挙げることができる。これらのなかでは、アルミナバルーンが望ましい。
[0064] 次に、上記セラミック成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧 乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させ、セラミック乾燥体とする。次 いで、入口側セル群の出口側の端部、及び、出口側セル群の入口側の端部に、封 止材となる封止材ペーストを所定量充填し、セルを目封じする。
[0065] 上記封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材 の気孔率力 0〜75%となるものが望ましぐ例えば、上記原料ペーストと同様のもの を用いることができる。
[0066] 次に、上記封止材ペーストが充填されたセラミック乾燥体に対して、所定の条件で脱 脂(例えば、 200〜500°C)、焼成(例えば、 1400〜2300°C)を行うことにより、多孔 質セラミック力 なり、その全体が一の焼結体力 構成された多孔質セラミック部材 20 を製造することができる。
上記セラミック乾燥体の脱脂及び焼成の条件は、従来から多孔質セラミックからなる フィルタを製造する際に用いられている条件を適用することができる。
[0067] また、本発明のハ-カム構造体では、次に、多孔質セラミック部材 20の側面に、接着 材層 11となる接着剤ペーストを均一な厚さで塗布して接着剤ペースト層を形成し、こ の接着剤ペースト層の上に、順次他の多孔質セラミック部材 20を積層する工程を繰 り返し、所定の大きさの多孔質セラミック部材集合体を作製する。
なお、上記接着剤ペーストを構成する材料としては、既に説明しているのでここでは その説明を省略する。
[0068] 次に、この多孔質セラミック部材集合体を加熱して接着剤ペースト層を乾燥、固化さ せて接着材層 11とする。
次に、ダイヤモンドカッター等を用い、多孔質セラミック部材 20が接着材層 11を介し て複数個接着された多孔質セラミック部材集合体に切削加工を施し、円柱形状のセ ラミックブロック 15を作製する。
[0069] そして、ハ-カムブロック 15の外周に上記シール材ペーストを用いてシール材層 12 を形成することで、多孔質セラミック部材 20が接着材層 11を介して複数個接着され た円柱形状のセラミックブロック 15の外周部にシール材層 12が設けられたノヽ-カム 構造体 10を製造することができる。
[0070] 本発明は、触媒担持層が形成されてなるが、この触媒担持層には、貴金属等の触媒 が付与されることが望ましい。
[0071] なお、こののち、触媒を担持するが、上記集合体を製作する前でも力まわない。
上記セラミック焼成体の表面にアルミナ力 なる触媒担持層を形成する方法としては
、例えば、アルミナ粉末を含有する溶液をセラミック焼成体に含浸させて加熱する方 法等を挙げることができる。
[0072] その後に、更に、 Ce (NO )等の希土類元素等を含有する金属化合物の溶液をセラ
3 3
ミック焼成体に含浸させてもよ 、。
なお、アルミナ粉末を作る際に、 Ce (NO )等の希土類元素等を含有する金属化合
3 3
物の溶液と、 Al (NO ) 等のアルミニウムを含有する金属化合物の溶液を混ぜて、予
3 3
め、混在させ、粉砕して、担持させてもよい。
上記アルミナ膜に触媒を付与する方法としては、例えば、ジニトロジアンミン白金硝酸 溶液([Pt (NH ) (NO ) ]HNO )等をセラミック焼成体に含浸させて加熱する方法
3 2 2 2 3
等を挙げることができる。 [0073] 第一の本発明のハ-カム構造体の用途は特に限定されないが、車両の排気ガス浄 化装置に用いることが望ましい。下記する第二の本発明のハ-カム構造体も同様で ある。
図 3は、本発明のハ-カム構造体が設置された車両の排気ガス浄ィ匕装置の一例を模 式的に示した断面図である。
[0074] 図 3に示したように、排気ガス浄化装置 70は、主に、ハ-カム構造体 10、ハ-カム構 造体 10の外方を覆うケーシング 71、ハ-カム構造体 10とケーシング 71との間に配 置される保持シール材 72から構成されており、ケーシング 71の排気ガスが導入され る側の端部には、エンジン等の内燃機関に連結された導入管 74が接続されており、 ケーシング 71の他端部には、外部に連結された排出管 75が接続されている。なお、 図 3中、矢印は排気ガスの流れを示している。
[0075] このような構成力もなる排気ガス浄ィ匕装置 70では、エンジン等の内燃機関から排出さ れた排気ガスは、導入管 74を通ってケーシング 71内に導入され、入口側セル力ゝらハ 二カム構造体内に流入し、壁部を通過して、この壁部でパティキュレートが捕集され て浄化された後、出口側セル力もハ-カム構造体外に排出され、排出管 75を通って 外部へ排出されることとなる。また、ハ-カム構造体には、触媒が付着しており、 CO、 HC及び NOx等の排気ガス中の有害なガス成分を浄ィ匕することができる。
[0076] また、排気ガス浄ィ匕装置 70では、ハ-カム構造体の壁部に大量のパティキュレート が堆積し、圧力損失が高くなると、ハ-カム構造体の再生処理が行われる。
上記再生処理では、ポストインジェクション方式を用いてパティキュレートを燃焼除去 してもよいし、更にハ-カム構造体の前に触媒担持層及び触媒層を形成し、その反 応熱を利用してもよい。また、図示しない加熱手段を用いて加熱されたガスをハ-カ ム構造体のセルの内部へ流入させることで、ハ-カム構造体を加熱し、壁部に堆積し たパティキュレートを燃焼除去してもよ 、。
触媒を付着させた本発明のハ-カム構造体では、触媒の種類等により、通常の温度 より低い温度でパティキュレートを燃焼除去することが可能となる。
[0077] 次に、第二の本発明について説明する。
第二の本発明のハ-カム構造体は、壁部を隔てて長手方向に貫通する複数のセル のいずれか一方の端部が封止され、上記壁部には、触媒担持層が付着した多孔質 セラミック力もなるハ-カム構造体であって、
上記多孔質セラミックに形成された気孔は、気孔径が相対的に大きい大気孔と、気 孔径が相対的に小さい小気孔とからなり、
上記触媒担持層の厚さを X m)、
2
上記小気孔の平均気孔径に対する上記大気孔の平均気孔径の比(上記大気孔の 平均気孔径 Z上記小気孔の平均気孔径)に上記多孔質セラミック部材の気孔率 (% )を乗じた値を γとした際、
2
X及び Yは、下記の(3)式及び (4)式を満足することを特徴とする。
2 2
6X +80. 5≤Y≤6Χ + 230. 5 · · · (3)
2 2 2
-6Χ + 330≤Υ≤-6Χ +474· · · (4)
2 2 2
[0078] 図 4 (a)は、第二の本発明のハ-カム構造体の別の一例である一体型ハ-カム構造 体の具体例を模式的に示した斜視図であり、(b)は、その B— B線断面図である。
[0079] 図 4 (a)に示したように、本発明のハ-カム構造体 30は、多数のセル 31が壁部(セル 壁) 33を隔てて長手方向に並設された多孔質セラミック力 なる円柱状のセラミックブ ロック 35を構成している。なお、壁部は、セル 31を隔てるセル壁及び外周部分の両 方を意味するものとする。
[0080] 第二の本発明のハ-カム構造体 30では、セラミックブロック 35は、図 4 (b)に示したよ うに、セル 31の端部の!/、ずれかが封止材 32により封止されて!/、る。
即ち、本発明のハ-カム構造体 30のセラミックブロック 35では、一方の端部で所定 のセル 31が封止材 32により封止され、セラミックブロック 35の他方の端部では、封止 材 32により封止されていないセル 31が封止材 32により封止されている。
[0081] この場合、一のセル 31に流入した排気ガスは、必ずセル 31を隔てるセル壁 33を通 過した後、他のセル 31から流出されるようになっており、これらのセル 31同士を隔て るセル壁 33を粒子捕集用フィルタとして機能させることができる。
また、図 4には示していないが、セラミックブロック 35の周囲には、図 1に示したハ-カ ム構造体 10と同様に、シール材層が形成されて 、てもよ!/、。
[0082] 上記ハ-カム構造体を構成する多孔質セラミックとしては特に限定されず、例えば、 コージエライト、アルミナ、シリカ、ムライト、ジルコ-ァ、イットリア等の酸ィ匕物セラミック 、炭化珪素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭 化物セラミック、窒化アルミニウム、窒化珪素、窒化ホウ素、窒化チタン等の窒化物セ ラミック等が挙げられる。
[0083] これらのなかでは、コージエライト等の酸ィ匕物セラミックが好ましい。安価に製造するこ とができるとともに、比較的熱膨張係数が小さぐ例えば、本発明のハ-カム構造体を 上記ハ-カムフィルタとして使用している途中に破壊されることがなぐまた、酸化され ることもないからである。
[0084] 図 4に示した第二の本発明のハ-カム構造体 30では、セラミックブロック 35の形状は 円柱状である力 本発明において、セラミックブロックは、柱状であれば円柱状に限 定されることはなく、例えば、楕円柱状や角柱状等任意の形状のものであってもよい
[0085] 第二の本発明のハ-カム構造体 30は、触媒担持層が付着し、該触媒担持層に触媒 が担持されるように構成されたノ、二カム構造体である。
上記触媒としては特に限定されな 、が、パティキュレートの燃焼の活性ィ匕エネルギー を低下させるものや、 CO、 HC及び NOx等の排気ガス中の有害なガス成分を浄ィ匕 することができるもの等が望ましぐ例えば、白金、パラジウム、ロジウム等の貴金属等 を挙げることができる。なかでも、白金、パラジウム、ロジウムからなる、いわゆる三元 触媒が望ましい。また、貴金属に加えて、アルカリ金属 (元素周期表 1族)、アルカリ 土類金属 (元素周期表 2族)、希土類元素 (元素周期表 3族)、遷移金属元素等を担 持させてもよい。
[0086] このようなハ-カム構造体 30は、排気ガス中の CO、 HC及び NOx等を浄化すること ができる。
このようなハ-カム構造体 30の触媒担持層に触媒が担持されることで、ハ-カム構造 体 10は、排気ガス中のパティキュレートを捕集するフィルタとして機能するとともに、 排気ガスに含有される CO、 HC及び NOx等を浄ィ匕するための触媒コンバータとして 機能する。
[0087] セラミックブロック 35に上記触媒を付着させる際には、上述のように、予めその表面を アルミナ等の触媒担持層で被覆した後に、上記触媒を付着させることが望ましい。こ れにより、比表面積を大きくして、触媒の分散度を高め、触媒の反応部位を増やすこ とができる。また、触媒担体によって触媒金属のシンタリングを防止することができる ので、触媒の耐熱性も向上する。
[0088] 上記触媒担持層としては、例えば、アルミナ、チタ-ァ、ジルコユア、シリカ、セリア等 の酸ィ匕物セラミックが挙げられる。
[0089] また、上記触媒が担持されることにより、触媒上で酸化反応等が進行し、反応熱が発 生するため、ハ-カム構造体 30の温度を上昇させることができる。
[0090] 第二の本発明では、多孔質セラミックに形成された気孔は、気孔径が相対的に大き ぃ大気孔と、気孔径が相対的に小さい小気孔とからなり、
上記触媒担持層の厚さを X ( /z m)、
2
上記小気孔の平均気孔径に対する上記大気孔の平均気孔径の比(上記大気孔の 平均気孔径 Z上記小気孔の平均気孔径)に上記多孔質セラミック部材の気孔率 (% )を乗じた値を γ 2とした際、
X及び Yは、下記の(3)式及び (4)式を満足することを特徴とする。
2 2
6X +80. 5≤Y≤6Χ + 230. 5 · · · (3)
2 2 2
— 6Χ + 330≤Υ≤-6Χ +474· · · (4)
2 2 2
[0091] 第二の本発明のハ-カム構造体では、第一の本発明のハ-カム構造体と同様に、触 媒担体等の層の厚さを X軸に、大気孔径 Ζ小気孔径の比に多孔質セラミック部材の 気孔率(%)を乗じた値を Υ軸にとった際、 Υ =6Χ +80. 5、 Υ =6Χ + 230. 5、 Υ
2 2 2 2
= -6Χ + 330、 Υ = -6Χ +474の 4本の線で囲まれた平行四辺形の中の領域
2 2 2 2
が本願発明の範囲となる。
[0092] 第二の本発明のハニカム構造体では、上述のように、触媒担体等の層の厚さと(大気 孔の平均気孔径 Ζ小気孔の平均気孔径) X (多孔質セラミック部材の気孔率)との関 係が、上記 (3)、 (4)式を満たす場合、充分な触媒能力を有するとともに、フィルタ等 として使用した場合、初期圧力損失が低ぐパティキュレートを捕集した際にも圧力損 失が上昇しにくぐかつ、充分な機械的強度を有するハニカム構造体となる。
[0093] Y 1S Υ≤6Χ + 230. 5、 Υ≤— 6Χ +474を満たさない場合、すなわち、 Υ >6 X + 230. 5、又は、 Y > -6Χ +474の場合には、以下のような不都合が生じる。
2 2 2
Υ力 Υ >6Χ + 230. 5の場合には、大気孔の径が大きすぎて、基材の強度が低
2 2 2
くなり、フィルタの耐久性が不充分となる。一方、 Y 1S Y >— 6X +474の場合に
1 2 2
は、小気孔が触媒によって閉塞してしまい、触媒反応が起こりにくくなる。
[0094] また、 Y力 6X +80. 5≤Y及び 6Χ + 330≤Υを満たさない場合、すなわち、
2 2 2 2 2
Υ < 6Χ +80. 5、又は、 Υ < 6Χ + 330の場合には、以下のような不都合が発生
2 2 2 2
する。
この場合には、小気孔が大きすぎる場合と、大気孔が小さすぎる場合とが考えられる 小気孔が大きすぎる場合には、パティキュレートを捕集した際、小気孔内でパティキ ュレートが深層ろ過されるようになり、パティキュレートの堆積層が厚くなつて、圧力損 失が大きくなつてしまう。
[0095] 一方、大気孔が小さすぎる場合には、ガスの透過性が悪くなつて、過渡圧損が高くな るおそれがある。なお、大気孔が小さすぎる場合には、 2〜3個の大気孔が近接する ことにより形成される超大気孔も出現しにくくなるため、超大気孔が存在する場合と比 ベてよりガスの透過性が悪くなる傾向にある。
[0096] (3)、 (4)式を満たす触媒担体等の層の厚さは、(1)、 (2)式の場合と同様に、 8. 3 〜33 mの範囲になる。
上記触媒担体等の層の厚さ Xが 8. 3 m未満であると、触媒担体等の量が少なす
2
ぎるために貴金属触媒の分散性が悪くなり、充分な触媒の耐久力を有するハニカム 構造体とならず、一方、上記触媒担体等の層の厚さ Xが 33 mを超えると、触媒担
2
体等の層の厚さが厚くなりすぎ、小気孔の径を大きくしても、小気孔がほぼ閉塞して しまい、小気孔の表面をガスが通過しに《なって、触媒反応が起こりにくくなる。
[0097] 多孔質セラミックの気孔率は特に限定されないが、望ましい下限は 40%であり、望ま しい上限は 75%である。気孔率力 0%未満であると、大気孔の割合を多くするのが 難しくなり、大気孔を形成した効果が現れず、一方、気孔率が 75%を超えると、ハニ カム構造体の機械的強度を保つことが困難となってしまう。
多孔質セラミックの気孔率の上限は、 65%がより望ましい。 なお、上記気孔率は、例えば、水銀圧入法、アルキメデス法及び走査型電子顕微鏡 (SEM)による測定等の従来公知の方法により測定することができる。
[0098] ハ-カム構造体 30を構成する大気孔の気孔径は、上述したように、 SEMで観察した 気孔径が 30〜: LOO μ mのものであるが、大気孔の気孔径の望ましい下限は 40 μ m である。大気孔の平均気孔径が 30 m未満であると、大気孔としては、気孔径が小 さいため、触媒担体等の層の厚さが少し厚くなると、気孔が閉塞しやすくなり、圧力損 失が高くなり、一方、平均気孔径が 100 mを超えると、気孔径が大きくなりすぎるた め、機械的な強度を充分に上げることができに《なる。
[0099] 上記大気孔とは別に、ハ-カム構造体 10は、 SEMで観察した気孔径が 100 μ mを 超える超大気孔を含んで 、ることが望ま 、。圧力損失を低下させる効果が大きくな るカゝらである。
また、ハ-カム構造体 10は、ハ-カム構造体 10のセルを隔てる壁部(セル壁)の厚さ に対して 40〜90%の径を有する超大気孔を含んで 、ることが望まし 、。その径カ 0 %未満であると、圧損上昇を抑制する効果が充分に現れず、 90%を超えると、ハニ カム構造体 10の機械的強度を保つことが困難となってしまう。
後述するように、セル壁の厚さは、 0. 6mm以下が望ましいので、超大気孔の径は、 540 m以下が望ましい。さらには、ハ-カム構造体 10に形成される大気孔は、ハニ カム構造体 10のセルを隔てる壁部(セル壁)の厚さに対して 65〜80%の径を有する 超大気孔を含んで 、ることが望ま 、。
30 μ m以上の気孔のなかで、超大気孔の割合は、 30〜80vol%であることが望まし い。
[0100] 多孔質セラミックの小気孔の小気孔の気孔径は、 SEMで観察した気孔径が 30 μ m 未満であるが、 5 μ m以上であることが望ましい。小気孔の平均気孔径が 30 μ m以 上になると、小気孔が大きくなりすぎ、パティキュレートが深層ろ過されるようになり、 パティキュレートの堆積層が厚くなつて、圧力損失が大きくなりやすぐ一方、小気孔 の気孔径が 5未満では、気孔径が小さくなりすぎ、触媒担体等の層の厚さが薄くても 圧力損失が大きくなつてしまう。
[0101] 上記造孔剤としては、酸ィ匕物系セラミックを成分とする微小中空球体であるバルーン 、球状アクリル粒子等の有機物 (榭脂等)からなる有機粒子、グラフアイト等の無機粒 子等が挙げられる。
上記上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイ クロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)及びムライトバ ルーン等を挙げることができる。これらのなかでは、アルミナバルーンが望ましい。
[0102] ハ-カム構造体 30を製造する際に使用するセラミックの粒径としては特に限定されな いが、後の焼成工程で収縮が少ないものが望ましぐ例えば、 0. 3〜50 /ζ πι程度の 平均粒径を有する粉末 100重量部と、 0. 1〜1. 0 m程度の平均粒径を有する粉 末 5〜65重量部とを組み合わせたものが望ましい。
上記粒径のセラミック粉末を配合で選択し、混合することで、気孔率や気孔径が 10 m以下の細孔の割合をある程度制御することができる。
[0103] 上記造孔剤としては、第一の本発明で挙げたものと同様のものが挙げられる。
セラミックブロック 35の封止材の材料、隔壁の厚さ、シール材層の材料、セルの大き さ、種類等に関しては、第一の本発明と同様であるので、ここでは、詳しい説明を省 略する。
[0104] 次に、第二の本発明のハ-カム構造体の製造方法の一例について説明する。
まず、上述したようなセラミックを主成分とする原料ペーストを用いて押出成形を行い 、セラミックブロックとなる円柱形状のセラミック成形体を作製する。この際、成形体の 形状が円柱で、寸法が第一の本発明と比べて大きい他は、第一の本発明と同様の バインダー、造孔剤、分散媒等を用い、同様の方法で成形体を製造するので、ここで は、その詳しい説明を省略する。
[0105] 次に、第一の本発明と同様に、上記セラミック成形体を、マイクロ波乾燥機、熱風乾 燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させ、セ ラミック乾燥体とする。次いで、入口側セル群の出口側の端部、及び、出口側セル群 の入口側の端部に、封止材となる封止材ペーストを所定量充填し、セルを目封じする その後、本発明と同様に、脱脂、焼成を行うことによりセラミックブロックを製造し、壁 部に触媒担体を付着させ、触媒を担持する。 実施例
[0106] 以下に実施例を掲げ、本発明を更に詳しく説明するが、本発明はこれら実施例のみ に限定されるものではない。
[0107] (実施例 1)
平均粒径 11 mの α型炭化珪素粉末 (SiC粗粉) 70重量部と、平均粒径 0. 5 m の α型炭化珪素粉末 30重量部とを湿式混合し、得られた混合物 100重量部に対し て、平均粒子径カ 0 mのアクリル粒子を 10重量部、有機バインダー(メチルセル口 ース)を 5. 7重量部、水を 26. 6重量部加えて混練して混合組成物を得た。
次に、上記混合組成物に可塑剤 (日本油脂社製 ュニループ)を 2重量部、潤滑剤と して (グリセリン)を 5重量部加えてさらに混練した後、押出成形を行い、図 2に示した 角柱形状の生成形体を作製した。なお、上記アクリル粒子は、気孔を形成するため の造孔剤として添加して 、る。
[0108] 次に、マイクロ波乾燥機等を用いて上記生成形体を乾燥させ、セラミック乾燥体とし た後、上記生成形体と同様の組成の封止材ペーストを所定のセルに充填した。
次いで、再び乾燥機を用いて乾燥させた後、 400°Cで脱脂し、常圧のアルゴン雰囲 気下 2250°C、 3時間で焼成を行うことにより、平均気孔径が 20 /ζ πι、大気孔の気孔 径カ 90 m、気孔率 60%、その大きさが 34. 3mm X 34. 3mmX 150mm、セル 2 1の数が 28個 Zcm2、実質的に全ての壁部 23の厚さが 0. 30mmの炭化珪素焼結 体力もなる多孔質セラミック部材 20を製造した。この多孔質セラミック部材 20を構成 するセラミック粒子の大きさを、 SEMにより観察したところ、 SiC粗粉の大きさとほぼ同 し、 11 mであつ 7こ。
[0109] 繊維長 20 μ mのアルミナファイバー 30重量%、平均粒径 0. 6 μ mの炭化珪素粒子 21重量%、シリカゾル 15重量%、カルボキシメチルセルロース 5. 6重量%、及び、 水 28. 4重量%を含む耐熱性の接着剤ペーストを用いて多孔質セラミック部材 20を 多数接着させ、続いて、ダイヤモンドカッターを用いて切断することにより、円柱状の セラミックブロック 15を作製した。
[0110] 次に、無機繊維としてアルミナシリケートからなるセラミックファイバー(ショット含有率: 3%、繊維長: 5〜: ίΟΟ /ζ πι) 23. 3重量%、無機粒子として平均粒径 0. の炭化 珪素粉末 30. 2重量%、無機バインダーとしてシリカゾル (ゾル中の SiOの含有率: 3
2
0重量%) 7重量%、有機バインダーとしてカルボキシメチルセルロース 0. 5重量%及 び水 39重量%を混合、混練してシール材ペーストを調製した。
[0111] 次に、上記シール材ペーストを用いて、セラミックブロック 15の外周部に厚さ 0. 2mm のシール材ペースト層を形成した。そして、このシール材ペースト層を 120°Cで乾燥 して、直径 143. 8mm X長さ 150mmの円柱状の集合体型ハ-カム構造体 10を製 •laし 7こ。
[0112] 次に、 γ —アルミナを、水と分散剤である硝酸溶液と混合し、さらにボールミルで 90 min_ 1で 24時間粉砕して、平均粒径 2 mのアルミナスラリーを調製し、次に、得ら れたスラリー中にハ-カム構造体を浸し、引き上げた後、 200°Cで乾燥させた。
上記工程をアルミナ層(触媒担持層)が 10 mの厚さに達するまで繰り返し、 600°C で焼成した。
[0113] 白金濃度 4. 53重量%のジニトロジアンミン白金硝酸([Pt (NH ) (NO ) ]HNO )
3 2 2 2 3 を蒸留水で希釈し、上記希土類酸ィ匕物含有アルミナ層が形成された上記セラミック 焼成体を浸漬した後、 110°Cで 2時間、窒素雰囲気中 500°Cで 1時間加熱して、上 記セラミック焼成体の表面に、平均粒子直径 2nmの白金触媒を 5gZL担持させ、触 媒を担持したハニカム構造体の製造を終了した。
触媒担持後の平均気孔径、大気孔径、気孔率、(大気孔径 Z平均気孔径) X気孔率 を表 3に示した。図 5は、触媒厚さを X軸に、触媒担持後の (大気孔径 Z平均気孔径) X気孔率の値を y軸にとった際の各実施例の値をプロットしたものである。
[0114] (実施例 2〜8、比較例 1〜: L 1)
成形体を作製する際、表 1に示したような各成分を混合して混合組成物を形成し、押 出成形により成形体を作製し、焼成条件を表 1に示したように設定したほかは、実施 例 1と同様にしてハ-カム構造体 10を製造し、得られたノヽ-カム構造体 10に表 3に 示すような厚さの触媒担持層を付着させ、触媒を担持させた。
触媒担持後の平均気孔径、大気孔径、気孔率、(大気孔径 Z平均気孔径) X気孔率 等を表 3に示した。また、図 5は、触媒厚さを X軸に、触媒担持後の(大気孔径 Z平均 気孔径) X気孔率の値を y軸にとった際の各実施例の値をプロットしたものである。 SiC隨 SiCl籠 アクリル粒子 メチル 焼成温度
水 可塑剤 潤滑剤
平均粒子 平均粒子 平均粒子 セルロース (°C)
(重量部) (重量部) (重量部)
径( m)
Figure imgf000026_0001
(重量部) 径( / m) (重量部) 径( m) (重量部) (重量部) 3時間
実施例 1 1 1 70 0.5 30 40 10 5.7 26.6 2 5 2250 実施例 2 1 1 70 0.5 30 40 10 5.7 26.6 2 5 2250 実施例 3 1 1 70 0.5 30 40 10 5.7 26.6 2 5 2250 実施例 4 1 1 70 0.5 30 40 40 5.7 26.6 2 5 2250 実施例 5 1 1 70 0.5 30 40 40 5J 26.6 2 5 2250 実施例 6 22 70 0.5 30 60 14 5 26.6 2 5 2250 実施例 7 22 70 0.5 30 60 14 5.7 26.6 2 5 2250 実施例 8 1 1 70 0.5 30 40 10 5J 26.6 2 5 2200 比較例 1 1 1 70 0.5 30 40 10 5.7 26.6 2 5 2250 比較例 2 1 1 70 0.5 30 40 10 5.7 26.6 2 5 2250 比較例 3 1 1 70 0.5 30 40 10 5.7 26.6 2 5 2250 比較例 4 22 70 0.5 30 60 10 5.7 26.6 2 5 2200 比較例 5 1 1 70 0.5 30 40 10 5.7 26.6 2 5 2100 比較例 6 22 70 0.5 30 60 22 5.7 26.6 2 5 2250 比較例 7 30 80 0.5 20 - 一 10 26.6 2 5 2300 比較例 8 30 80 0.5 20 一 ― 10 26.6 2 5 2200 比較例 9 1 1 70 0.5 30 - 5.5 18 2 3 2200 比較例 10 22 70 0.5 30 60 22 5.7 26.6 2 5 2250 比較例 1 1 1 1 70 0.5 30 60 20 10 26.6 2 5 2250
1501 平均粒径 10 μ mのタルク粉末 40重量部と、平均粒径 9 μ mのカオリン粉末 10重量 部と、平均粒径 9. 5 mのアルミナ粉末 17重量部と、平均粒径 5 mの水酸ィ匕アル ミニゥム粉末 16重量部と、平均粒径 10 mのシリカ粉末 15重量部とを湿式混合し、 得られた混合物 98重量部に対して、平均粒子径カ 0 mのアクリル粒子を 10重量 部、有機ノインダ (カルボキシメチルセルロース)を 5重量部、分散剤(日本油脂社製 ュニループ)を 4重量部、溶媒 (ox— 20)を 11重量部、他の分散剤を 2重量部加え て混練した後、押出成形を行い、図 2に示した角柱形状の生成形体を作製した。な お、上記アクリル粒子は、気孔を形成するための造孔剤として添加している。
[0117] 次に、マイクロ波乾燥機等を用いて上記生成形体を乾燥させ、セラミック乾燥体とし た後、上記生成形体と同様の組成の封止材ペーストを所定のセルに充填した。 次いで、再び乾燥機を用いて乾燥させた後、 400°Cで脱脂し、常圧の大気雰囲気下 1400°C、 3時間焼成を行うことにより、平均気孔径が 20 /ζ πι、大気孔の気孔径が 90 ^ m,気孔率 60%、セル 21の数が 28個 Zcm2、実質的に全ての壁部 23の厚さが 0 . 30mm力らなる直径 143. 8mmX長さ 150mmのコーディエライト製の円柱状のハ 二カム構造体 30を製造した。なお、ハ-カム構造体 30中のセラミック粒子の粒子径 を SEMで観察したところ、 10 μ mであった。
[0118] このハ-カム構造体 30を、実施例 1と同様に調製した平均粒径 2 μ mのアルミナスラ リー中に浸し、引き上げた後、 200°Cで乾燥させた。
上記工程をアルミナ層(触媒担持層)が 10 mの厚さに達するまで繰り返し、 600°C で焼成した。
[0119] 白金濃度 4. 53重量0 /0のジニトロジアンミン白金硝酸([Pt (NH ) (NO ) ]HNO )
3 2 2 2 3 を蒸留水で希釈し、上記希土類酸ィ匕物含有アルミナ層が形成された上記セラミック 焼成体を浸漬した後、 110°Cで 2時間、窒素雰囲気中 500°Cで 1時間加熱して、上 記セラミック焼成体の表面に、平均粒子直径 2nmの白金触媒を 5gZL担持させ、触 媒を担持したハニカム構造体の製造を終了した。
触媒担持後の平均気孔径、大気孔径、気孔率、(大気孔径 Z平均気孔径) X気孔率 を表 3に示した。図 5は、触媒厚さを X軸に、触媒担持後の (大気孔径 Z平均気孔径) X気孔率の値を y軸にとった際の各実施例の値をプロットしたものである。 [0120] (実施例 10、比較例 12〜13)
成形体を作製する際、表 2に示したような各成分を混合して混合組成物を形成し、押 出成形により成形体を作製したほかは、実施例 9と同様にしてハ-カム構造体 30を 製造し、得られたハ-カム構造体 30に表 3に示すような厚さの触媒担持層を付着さ せ、触媒を担持させた。
触媒担持後の平均気孔径、大気孔径、気孔率、(大気孔径 Z平均気孔径) X気孔率 を表 3に示した。図 5は、触媒厚さを X軸に、触媒担持後の (大気孔径 Z平均気孔径) X気孔率の値を y軸にとった際の各実施例の値をプロットしたものである。
[0121] [表 2]
タルク カオリン アルミナ 水酸化アルミニゥム シリカ ァクリリレ粒子 分散剤 焼成温度 溶媒 分散剤 ^インタ * 粒子径 里 粒子径 粒子径 粒子径 里 粒子径 粒子径 (重量部) (。C)
(部) (部) (部)
( im) (部) m) (部) ( im) (部) ( m) (部) (^m) (部) (Aim) (部) ュニル-フ, 3時間 実施例 9 10 40 9 10 9.5 17 5 16 10 15 40 10 4 11 2 5 1400 実施例 10 10 40 9 10 9.5 17 5 16 10 15 40 10 4 11 2 5 1400 比較例 12 10 40 9 10 9.5 17 5 16 10 15 - - 4 11 2 5 1400 比較例 13 10 40 9 10 9.5 17 5 16 10 15 40 10 4 11 2 5 1400 注) 粒子径は、平均粒子径を意!!末し、 二(部)は、重量部を意 ミする。
[0122] (評価)
(1)気孔径の測定
各実施例及び比較例で用いた多孔質セラミック部材を約 lcm角で切り出し、プラス チック容器に入れ、さらに、エポキシ榭脂硬化剤を入れて脱気し、その後、常圧で一 晚放置した。
硬化したエポキシ榭脂入りサンプルをダイヤモンドディスクで研磨し、多孔質セラミツ ク部材の壁部断面が表面に現れるようにした。
このようにして調製したサンプルにっき、走査型電子顕微鏡写真(SEM)で、多孔質 セラミック部材の大気孔と小気孔とを、それぞれ 100個観察して、その径を測定し、平 均値を大気孔径、小気孔径とした。なお、気孔径の決定に関しては、気孔の長軸と 短軸の長さを測定し、長軸の長さを大気孔径とした。また、超大気孔の場合には、上 記長軸と短軸の長さの比力 そのアスペクト比を算出した。
また、触媒を担持させた後も同様にして気孔径等を測定した。
その結果を下記の表 3に示す。
[0123] (2)触媒担持層の厚さの測定
各実施例及び比較例に係る触媒担持層を付着させたハニカム構造体を同様に処理 し、 SEMによりその厚さを測定できる部分、 100箇所について観察し、平均値を触媒 担持層の厚さとした。また、小気孔が触媒で閉塞している場合には、小気孔の気孔 径を触媒層とした。その結果を下記の表 3に示す。
[0124] (3)気孔率等の測定
各実施例及び比較例に係るハ-カム構造体につき、アルキメデス法により気孔率を 測定した。その結果を下記の表 3に示す。
[0125] (4)パティキュレート捕集前後の圧力損失の測定
各実施例及び比較例に係るハ-カム構造体をエンジンの排気通路に配設して排気 ガス浄化装置とし、上記エンジンを回転数 3000min_1、トルク 50Nmで 100分間運 転し、パティキュレート捕集量と圧力損失との関係を測定した。初期の圧力損失及び 過渡圧力損失 (パティキュレートを 8gZL捕集した際の圧力損失)のデータを下記の に した。 [0126] (5)基材強度の測定
インストロン 5582を用い、スパン間距離: 135mm、スピード ImmZminで 3点曲げ 試験を行い、各実施例及び比較例に係るハニカム構造体の曲げ強度を測定した。そ して、得られた結果カゝら断面 2次モーメントを計算して、セル構造を含まない基材とし ての強度に換算したものを、基材強度とした。
その結果を下記の表 3に示す。
[0127] (6)フィルタ再生率の測定
各実施例、参考例及び比較例に係るハニカム構造体をマツフル炉内に入れ、 800°C で 10時間熱処理した。その後、エンジンの排気炉に配設し、排ガス浄ィ匕装置として、 ハ-カム構造体の中心部に温度計を設置した後、エンジンを回転数 3000min_1、ト ルク 50Nmでパティキュレートを 8g/L捕集した。
その後、エンジンを回転数 1250min_1、トルク 60Nmとし、フィルタの温度が一定と なった状態で、 1分間保持した後、ポストインジェクションを行ない、前方にある酸ィ匕 触媒を利用して排気温度を上昇させ、パティキュレートを燃焼させた。
[0128] 上記ポストインジェクションの条件は、開始後 1分間にハ-カム構造体の中心温度が 600°Cでほぼ一定になるように設定した。そして、フィルタ再生前後の重量変化から フィルタ再生率を計算した。結果を下記の表 3に示す。
[0129] [表 3]
大 3 触媒 触媒 平均気孔径 大気孔径 5 孑し率 (大気孔径 / 過渡圧損 基材 小気孔 大気孔 超大気孔 気孔率 フィルタ
孔のァス 媒担持 a) 強度 径 m) 担持量 厚さ (触 (触媒担持 (触媒担持 小気孔径) * (kP 径( ) の有無 (%) 再生率
へ'外比 (g/L) ( m) 後)( m) 後) m) 後) (%) soot.8g/L (MPa) 実施例 1 20 90 有 2以上 60 30 10 18 85 58 273.89 91 16 24 実施例 2 20 90 有 2以上 60 60 15 17 90 57 301.76 93 18 24 実施例 3 20 90 有 2以上 60 90 20 15 90 55 330.00 96 20 26 実施例 4 20 90 有 2以上 60 120 25 14 80 49 280.00 98 22 27 実施例 5 20 90 有 2以上 60 150 30 13 80 45 276.92 96 24 28 実施例 6 25 100 有 2以上 65 90 20 22 90 55 225.00 97 18 20 実施例 7 25 100 有 2以上 65 120 25 19 90 50 236.84 97 20 20 実施例 8 18 80 有 2以上 60 30 15 15 80 56 298.67 90 18 28 実施例 9 20 90 有 2以上 60 30 10 18 85 59 278.61 90 10 実施例 10 20 90 有 2以上 60 90 17 17 80 57 268.24 93 16 10 比較例 1 20 90 有 2以上 60 5 5 20 90 60 270.00 75 12 22 比較例 2 20 90 有 2以上 60 10 8 19 90 59 279.47 77 13 22 比較例 3 20 90 有 2以上 60 180 35 10 70 40 280.00 85 26 28 比較例 4 25 90 有 2以上 60 20 8 25 90 58 208.80 80 18 20 比較例 5 15 80 有 2以上 60 10 9 14 80 59 337.14 75 15 29 比較例 6 30 110 有 2以上 70 90 15 25 90 63 226.80 85 18 12 比較例 7 30 100 ― 50 160 30 20 90 38 171.00 88 28 18 比較例 8 20 100 無 ― 50 60 20 1フ 85 40 200.00 87 26 22 比較例 9 11 20 無 ― 42 20 11 10 18 40 72.00 75 26 48 比較例 10 30 110 有 2以上 70 120 20 17 100 60 352.94 85 18 14 比較例 11 20 90 有 約 1 60 30 10 18 80 58 257.78 87 28 26 比較例 12 15 30 無 ― 50 30 13 13 17 46 60.15 82 30 15 比較例 13 20 90 有 約 1 60 90 17 16 70 50 218.75 85 18 12 注) (大気孔径 /小気孔径) *気孔率の式において、小気孔径とは、小気孔の平均気孔径であり、大気孔径とは、大気孔の平均気孔径である
[0130] 表 3に示したように、上記(1)、(2)式、又は、上記(3)、(4)式を満足する実施例に 係るハ-カムフィルタ(図 5の平行四辺形の内部領域に X、Yが存在するもの)は、 過渡圧力損失が小さぐ基材強度も要求される値 (20MPa)を超えており、触媒活性 も示し再生率も高力つた力 比較例に係るハ-カムフィルタ(図 5の平行四辺形の外 側の領域に X、 Yが存在するもの)は、過渡圧力損失が小さぐ再生率も低力つた。 図面の簡単な説明
[0131] [図 1]第一の本発明のハ-カム構造体の一例を模式的に示した斜視図である。
[図 2] (a)は、第一の本発明のハ-カム構造体を構成する多孔質セラミック部材を模 式的に示した斜視図であり、(b)は、その A— A線断面図である。
[図 3]本発明のハ-カム構造体が設置された車両の排気ガス浄化装置の一例を模式 的に示した断面図である。
[図 4] (a)は、第二の本発明のハ-カム構造体を模式的に示した断面図であり、 (b) は、その B— B線断面図である。
[図 5]触媒担体等の層の厚さと、(大気孔径 Z小気孔径)の比に気孔率を乗じた値と の関係を示したグラフである。
[図 6]図 6は、セル壁を切断し、セル壁に成形された気孔を SEMにより観察した結果 を示す SEM写真である。
符号の説明
[0132] 10、 30 ハ-カム構造体
11 接着剤層
12 シール材層
15 セラミックブロック
20 多孔質セラミック部材
21、 31 セノレ
22 封止材
23、 33 壁咅
35 セラミックブロック

Claims

請求の範囲
[1] 壁部を隔てて長手方向に貫通する複数のセルのいずれか一方の端部が封止されて なる多孔質セラミック部材が接着剤層を介して複数個接着され、前記壁部には、触媒 担持層が付着したノヽ-カム構造体であって、
前記多孔質セラミック部材に形成された気孔は、気孔径が相対的に大きい大気孔と 、気孔径が相対的に小さ 、小気孔とからなり、
前記触媒担持層の厚さを X ( /z m)、
前記小気孔の平均気孔径に対する前記大気孔の平均気孔径の比 (前記大気孔の 平均気孔径 Z前記小気孔の平均気孔径)に前記多孔質セラミック部材の気孔率 (% )を乗じた値を Yとした際、
X及び Yは、下記の(1)式及び(2)式を満足することを特徴とするハ-カム構造体。 6X +80. 5≤Y≤6Χ + 230. 5 · · · (1)
— 6Χ + 330≤Υ≤-6Χ +474· · · (2)
[2] 前記ハ-カム構造体は、炭化珪素質セラミック力 なる請求項 1に記載のハ-カム構 造体。
[3] 壁部を隔てて長手方向に貫通する複数のセルのいずれか一方の端部が封止され、 前記壁部には、触媒担持層が付着した多孔質セラミックからなるハ-カム構造体であ つて、
前記多孔質セラミックに形成された気孔は、気孔径が相対的に大きい大気孔と、気 孔径が相対的に小さい小気孔とからなり、
前記触媒担持層の厚さを X ( /z m)、
2
前記小気孔の平均気孔径に対する前記大気孔の平均気孔径の比 (前記大気孔の 平均気孔径 Z前記小気孔の平均気孔径)に前記多孔質セラミック部材の気孔率 (% )を乗じた値を γとした際、
2
X及び Yは、下記の(3)式及び (4)式を満足することを特徴とするハ-カム構造体。
2 2
6X +80. 5≤Y≤6Χ + 230. 5 · · · (3)
2 2 2
-6Χ + 330≤Υ≤-6Χ +474· · · (4)
2 2 2
[4] 前記ハ-カム構造体は、コーディエライトからなる請求項 3に記載のハ-カム構造体
[5] 前記ハニカム構造体に形成された大気孔は、 100 μ mを超える径を有する超大気孔 を含んで 、る請求項 1〜4の!、ずれか 1に記載のハ-カム構造体。
[6] 前記超大気孔は、焼成に用いられるセラミック成形体中の複数の造孔剤が互いに近 接していたことに起因して形成され、そのアスペクト比が 2以上である請求項 5に記載 のハニカム構造体。
PCT/JP2005/021697 2004-11-26 2005-11-25 ハニカム構造体 WO2006057344A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006547860A JP5142532B2 (ja) 2004-11-26 2005-11-25 ハニカム構造体
EP05809600A EP1818098A4 (en) 2004-11-26 2005-11-25 hONEYCOMB STRUCTURE
US11/513,149 US7540898B2 (en) 2004-11-26 2006-08-31 Honeycomb structured body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004343042 2004-11-26
JP2004-343042 2004-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/513,149 Continuation US7540898B2 (en) 2004-11-26 2006-08-31 Honeycomb structured body

Publications (1)

Publication Number Publication Date
WO2006057344A1 true WO2006057344A1 (ja) 2006-06-01

Family

ID=36498077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021697 WO2006057344A1 (ja) 2004-11-26 2005-11-25 ハニカム構造体

Country Status (4)

Country Link
US (1) US7540898B2 (ja)
EP (1) EP1818098A4 (ja)
JP (1) JP5142532B2 (ja)
WO (1) WO2006057344A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438967B2 (en) 2005-02-04 2008-10-21 Ibiden Co., Ltd. Ceramic honeycomb structural body
JP2009000663A (ja) * 2007-06-25 2009-01-08 Honda Motor Co Ltd 排ガス浄化フィルタ及びその製造方法
US7550026B2 (en) 2005-09-28 2009-06-23 Ibiden Co., Ltd. Honeycomb filter
US7732366B2 (en) 2006-02-23 2010-06-08 Ibiden Co., Ltd. Honeycomb structure and exhaust gas purifying device
US7803312B2 (en) 2005-02-04 2010-09-28 Ibiden Co., Ltd. Ceramic honeycomb structural body and method of manufacturing the same
US7824629B2 (en) 2005-08-26 2010-11-02 Ibiden Co., Ltd. Honeycomb structure and manufacturing method for honeycomb structure
US7883759B2 (en) 2006-01-27 2011-02-08 Ibiden Co., Ltd. Honeycomb structure and method for manufacturing honeycomb structure
JP2011121051A (ja) * 2009-11-13 2011-06-23 Fujifilm Corp 凹凸構造体及びその製造方法
JP2011525579A (ja) * 2008-02-05 2011-09-22 ビー・エイ・エス・エフ、コーポレーション 微粒子トラップを有するガソリンエンジン排出ガス処理システム
JP2013184088A (ja) * 2012-03-06 2013-09-19 Cataler Corp 担持触媒製造用組成物
JP2014104421A (ja) * 2012-11-27 2014-06-09 Ngk Insulators Ltd ハニカム触媒体
CN113262582A (zh) * 2015-11-30 2021-08-17 康宁股份有限公司 复合蜂窝主体、尾气处理制品、排放系统及其制造方法
WO2024204078A1 (ja) * 2023-03-30 2024-10-03 三井金属鉱業株式会社 排ガス浄化用触媒

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1508355B1 (en) * 1999-09-29 2007-01-10 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
EP1724448B2 (en) * 2002-02-05 2013-11-20 Ibiden Co., Ltd. Honeycomb filter for purifyng exhaust gases, adhesive, coating material, and manufacturing method of honeycomb filter for purifying exhaust gases
ATE376880T1 (de) * 2002-03-22 2007-11-15 Ibiden Co Ltd Herstellungsverfahren eines wabenfilters zur reinigung von abgas
CN1326593C (zh) 2003-02-28 2007-07-18 揖斐电株式会社 陶瓷蜂窝状结构体
WO2005026074A1 (ja) * 2003-09-12 2005-03-24 Ibiden Co., Ltd. セラミック焼結体およびセラミックフィルタ
US7981475B2 (en) 2003-11-05 2011-07-19 Ibiden Co., Ltd. Manufacturing method of honeycomb structural body, and sealing material
PL1626037T3 (pl) * 2004-05-06 2008-11-28 Ibiden Co Ltd Struktura ulowa i sposób jej wytwarzania
CN100462126C (zh) * 2004-05-18 2009-02-18 揖斐电株式会社 蜂窝结构体及废气净化装置
DE602005009099D1 (de) * 2004-07-01 2008-10-02 Ibiden Co Ltd Verfahren zur herstellung von porösen keramischen körpern
JPWO2006013651A1 (ja) * 2004-08-04 2008-05-01 イビデン株式会社 焼成炉及びこれを用いた多孔質セラミック部材の製造方法
WO2006041174A1 (ja) * 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体
JP2006223983A (ja) * 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
WO2006103786A1 (ja) 2005-03-28 2006-10-05 Ibiden Co., Ltd. ハニカム構造体およびシール材
JP4937116B2 (ja) * 2005-04-28 2012-05-23 イビデン株式会社 ハニカム構造体
WO2006132011A1 (ja) * 2005-06-06 2006-12-14 Ibiden Co., Ltd. 梱包材及びハニカム構造体の輸送方法
WO2007015550A1 (ja) * 2005-08-03 2007-02-08 Ibiden Co., Ltd. 炭化珪素質焼成用治具及び多孔質炭化珪素体の製造方法
CN101242937B (zh) * 2005-10-05 2011-05-18 揖斐电株式会社 挤压成形用模具和多孔质陶瓷部件的制造方法
WO2007043245A1 (ja) * 2005-10-12 2007-04-19 Ibiden Co., Ltd. ハニカムユニット及びハニカム構造体
WO2007058007A1 (ja) * 2005-11-18 2007-05-24 Ibiden Co., Ltd. ハニカム構造体
WO2007074508A1 (ja) * 2005-12-26 2007-07-05 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007074528A1 (ja) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
WO2007086143A1 (ja) * 2006-01-30 2007-08-02 Ibiden Co., Ltd. ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2007094075A1 (ja) * 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
WO2007097004A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
WO2007097000A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007096986A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
EP1826517B1 (en) * 2006-02-28 2008-08-13 Ibiden Co., Ltd. Drying jig, drying method of honeycomb molded body, and manufacturing method of honeycomb structured body
WO2007102217A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007102216A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) * 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
WO2007116529A1 (ja) * 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) * 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) * 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122715A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007122716A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) * 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
WO2007132530A1 (ja) * 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) * 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1864774A1 (en) * 2006-06-05 2007-12-12 Ibiden Co., Ltd. Method and apparatus for cutting honeycomb structure
PL1875997T3 (pl) * 2006-07-07 2009-08-31 Ibiden Co Ltd Urządzenie do obróbki powierzchni czołowej, sposób obróbki powierzchni czołowej formowanego korpusu o strukturze plastra miodu oraz sposób wytwarzania struktury o kształcie plastra miodu
EP2058042B2 (en) * 2006-08-30 2017-05-03 Hitachi Metals, Ltd. Ceramic honeycomb filter
ATE470649T1 (de) * 2006-09-14 2010-06-15 Ibiden Co Ltd Verfahren zur herstellung eines wabenkörpers und zusammensetzung für sinterwabenkörper
WO2008032391A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
WO2008032390A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
WO2008047404A1 (fr) * 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
JP5084517B2 (ja) * 2007-01-26 2012-11-28 イビデン株式会社 外周層形成装置
WO2008120291A1 (ja) * 2007-02-28 2008-10-09 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008105082A1 (ja) * 2007-02-28 2008-09-04 Ibiden Co., Ltd. ハニカム構造体
WO2008105081A1 (ja) * 2007-02-28 2008-09-04 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126333A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
JPWO2008126321A1 (ja) * 2007-03-30 2010-07-22 イビデン株式会社 排ガス浄化システム
WO2008126330A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
WO2008126320A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
JP5063604B2 (ja) * 2007-03-30 2012-10-31 イビデン株式会社 ハニカムフィルタ
WO2008126332A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126334A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
JPWO2008126335A1 (ja) * 2007-03-30 2010-07-22 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2008136078A1 (ja) * 2007-04-20 2008-11-13 Ibiden Co., Ltd. ハニカムフィルタ
WO2008139581A1 (ja) * 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008139608A1 (ja) * 2007-05-14 2008-11-20 Ibiden Co., Ltd. ハニカム構造体及び該ハニカム構造体の製造方法
WO2008149435A1 (ja) * 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) * 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
JP5180835B2 (ja) * 2007-10-31 2013-04-10 イビデン株式会社 ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
WO2009066388A1 (ja) * 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
WO2009101683A1 (ja) 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2009101682A1 (ja) * 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JPWO2009107230A1 (ja) * 2008-02-29 2011-06-30 イビデン株式会社 ハニカム構造体用シール材、ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009118814A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカムフィルタ
WO2009118813A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2009118862A1 (ja) * 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体の製造方法
FR2931697B1 (fr) * 2008-05-29 2011-04-29 Saint Gobain Ct Recherches Filtre ou support catalytique a base de carbure de silicium et de titanate d'aluminium
KR20100064876A (ko) * 2008-12-05 2010-06-15 현대자동차주식회사 배기가스 필터 시스템
WO2010110010A1 (ja) * 2009-03-26 2010-09-30 日本碍子株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
JPWO2011052676A1 (ja) * 2009-10-30 2013-03-21 住友大阪セメント株式会社 内燃機関の排気浄化装置
EP2573061B1 (en) 2010-05-17 2016-02-24 Sumitomo Chemical Company Limited Method for manufacturing ceramic honeycomb fired body
JP5486539B2 (ja) * 2011-03-30 2014-05-07 日本碍子株式会社 ハニカム構造体及びその製造方法
JP5964564B2 (ja) * 2011-09-05 2016-08-03 日本碍子株式会社 ウォールフロー型排ガス浄化フィルタ
JP2013132585A (ja) * 2011-12-26 2013-07-08 Ngk Insulators Ltd ハニカム構造体及びその製造方法
JP5875997B2 (ja) * 2012-03-22 2016-03-02 日本碍子株式会社 ハニカム構造体及びハニカム構造体の製造方法
JP5883410B2 (ja) 2013-03-29 2016-03-15 日本碍子株式会社 ハニカム構造体の製造方法
DE102017106374A1 (de) * 2016-04-01 2017-10-05 Johnson Matthey Public Limited Company Abgasreinigungsfilter
US10857504B2 (en) * 2017-03-31 2020-12-08 Toyota Motor Engineering & Manufacturing North America, Inc. Two-stage catalyst for removal of NOx from exhaust gas stream
US10316722B2 (en) * 2017-03-31 2019-06-11 Toyota Motor Engineering & Manufacturing North America, Inc. Two-stage catalyst for removal of NOx from exhaust gas stream
EP3717442B1 (en) * 2017-11-30 2021-12-22 Corning Incorporated Ceramic articles with bleed-through barrier and methods of manufacture thereof
US11189851B2 (en) 2019-01-03 2021-11-30 Toyota Motor Engineering & Manufacturing North America, Inc. Catalyst layer composition for improved performance of membrane assembly electrode with ionic liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220423A (ja) * 1996-02-15 1997-08-26 Nippon Soken Inc ディーゼル排ガス浄化フィルタおよびその製造方法
JP2002349234A (ja) * 2001-05-25 2002-12-04 Toyota Motor Corp ディーゼル排ガス浄化フィルタ
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
JP2003210922A (ja) * 2002-01-23 2003-07-29 Ibiden Co Ltd セラミックハニカムフィルタ

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2512004A1 (fr) * 1981-08-27 1983-03-04 Rhone Poulenc Spec Chim Composition d'alumine pour le revetement d'un support de catalyseur, son procede de fabrication et le support de catalyseur obtenu
JPS61129015A (ja) * 1984-11-24 1986-06-17 Nippon Denso Co Ltd 排出ガス浄化用フイルタおよびその製造方法
US5958829A (en) * 1992-02-14 1999-09-28 Degussa-Huls Aktiengesellschaft Coating dispersion for exhaust gas catalysts
WO1997025203A1 (fr) 1994-07-14 1997-07-17 Ibiden Co., Ltd. Structure ceramique
JP3387290B2 (ja) * 1995-10-02 2003-03-17 トヨタ自動車株式会社 排ガス浄化用フィルター
DE69733702T2 (de) * 1996-08-13 2006-05-18 Toyota Jidosha K.K., Toyota Katalysator zur Abgaskontrolle für Dieselmotoren
JP2002530175A (ja) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
JP4642955B2 (ja) 1999-06-23 2011-03-02 イビデン株式会社 触媒担体およびその製造方法
EP1508355B1 (en) 1999-09-29 2007-01-10 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
US6995268B2 (en) 2000-06-20 2006-02-07 Wayne State University N- and O-substituted 4-[2-(diphenylmethoxy)-ethyl]-1- (phenyl) methyl) piperidine analogs and methods of treating CNS disorders therewith
JP4007058B2 (ja) * 2001-08-06 2007-11-14 株式会社デンソー 排ガス浄化フィルタ
EP1724448B2 (en) 2002-02-05 2013-11-20 Ibiden Co., Ltd. Honeycomb filter for purifyng exhaust gases, adhesive, coating material, and manufacturing method of honeycomb filter for purifying exhaust gases
ES2312794T5 (es) 2002-02-05 2012-12-18 Ibiden Co., Ltd. Filtro de tipo panal para purificar gases de escape
ES2300563T3 (es) 2002-03-04 2008-06-16 Ibiden Co., Ltd. Filtro de tipo para purificacion de gas de escape y aparato de purificacion de gas de escape.
DE60316608T2 (de) 2002-03-15 2008-06-26 Ibiden Co., Ltd., Ogaki Keramikfilter zur Abgasreinigung
ATE376880T1 (de) 2002-03-22 2007-11-15 Ibiden Co Ltd Herstellungsverfahren eines wabenfilters zur reinigung von abgas
CN1320943C (zh) 2002-03-25 2007-06-13 揖斐电株式会社 废气净化用过滤器
US7510588B2 (en) 2002-03-29 2009-03-31 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
WO2003084640A1 (fr) 2002-04-09 2003-10-16 Ibiden Co., Ltd. Filtre en nid d'abeille pour la clarification d'un gaz d'echappement
EP2020486A3 (en) 2002-04-10 2009-04-15 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
ES2295617T3 (es) 2002-04-11 2008-04-16 Ibiden Co., Ltd. Filtro de nido de abejas para clarificar gas de escape.
CN1326593C (zh) 2003-02-28 2007-07-18 揖斐电株式会社 陶瓷蜂窝状结构体
US20060073970A1 (en) 2003-05-06 2006-04-06 Ibiden Co., Ltd. Honeycomb structure body
WO2005026074A1 (ja) 2003-09-12 2005-03-24 Ibiden Co., Ltd. セラミック焼結体およびセラミックフィルタ
EP1676621A4 (en) 2003-10-20 2006-07-05 Ibiden Co Ltd hONEYCOMB STRUCTURE
WO2005047210A1 (ja) 2003-11-12 2005-05-26 Ibiden Co., Ltd. セラミック構造体、セラミック構造体の製造装置、及び、セラミック構造体の製造方法
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
JP4429756B2 (ja) * 2004-02-10 2010-03-10 株式会社キャタラー フィルタ触媒
KR100637298B1 (ko) 2004-04-05 2006-10-24 이비덴 가부시키가이샤 벌집형 구조체, 벌집형 구조체의 제조 방법 및 배기 가스정화 장치
PL1626037T3 (pl) 2004-05-06 2008-11-28 Ibiden Co Ltd Struktura ulowa i sposób jej wytwarzania
CN100462126C (zh) 2004-05-18 2009-02-18 揖斐电株式会社 蜂窝结构体及废气净化装置
JPWO2006001509A1 (ja) 2004-06-25 2008-04-17 イビデン株式会社 多孔体の製造方法、多孔体及びハニカム構造体
WO2006001503A1 (ja) 2004-06-25 2006-01-05 Ibiden Co., Ltd. フィルタ、その製造方法及び排気浄化装置
KR100865101B1 (ko) * 2004-09-14 2008-10-24 니뽄 가이시 가부시키가이샤 다공질 허니컴 필터
EP1795262B1 (en) * 2004-09-30 2010-01-27 Ibiden Co., Ltd. Honeycomb structure
EP1795261A4 (en) 2004-09-30 2009-07-08 Ibiden Co Ltd ALVEOLAR STRUCTURE
JP4874812B2 (ja) 2004-12-28 2012-02-15 イビデン株式会社 フィルタ及びフィルタ集合体
WO2006082684A1 (ja) 2005-02-01 2006-08-10 Ibiden Co., Ltd. ハニカム構造体
CN101010266A (zh) 2005-02-04 2007-08-01 揖斐电株式会社 陶瓷蜂窝结构体
WO2006082938A1 (ja) 2005-02-04 2006-08-10 Ibiden Co., Ltd. セラミックハニカム構造体およびその製造方法
JP4812316B2 (ja) 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
WO2006103786A1 (ja) 2005-03-28 2006-10-05 Ibiden Co., Ltd. ハニカム構造体およびシール材
WO2006103811A1 (ja) 2005-03-28 2006-10-05 Ibiden Co., Ltd. ハニカム構造体
CN101146742B (zh) 2005-03-30 2013-05-01 揖斐电株式会社 含碳化硅颗粒、制造碳化硅质烧结体的方法、碳化硅质烧结体以及过滤器
KR100822246B1 (ko) 2005-04-07 2008-04-16 이비덴 가부시키가이샤 허니컴 구조체
JP2006289237A (ja) 2005-04-08 2006-10-26 Ibiden Co Ltd ハニカム構造体
WO2007023653A1 (ja) 2005-08-26 2007-03-01 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
CN101146589B (zh) 2005-09-28 2010-11-24 揖斐电株式会社 蜂窝式过滤器
US20070116902A1 (en) * 2005-11-18 2007-05-24 Fujifilm Corporation Optical film, anti-reflection film, polarizing plate and image display device
WO2007058007A1 (ja) 2005-11-18 2007-05-24 Ibiden Co., Ltd. ハニカム構造体
JPWO2007058006A1 (ja) 2005-11-18 2009-04-30 イビデン株式会社 ハニカム構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220423A (ja) * 1996-02-15 1997-08-26 Nippon Soken Inc ディーゼル排ガス浄化フィルタおよびその製造方法
JP2002349234A (ja) * 2001-05-25 2002-12-04 Toyota Motor Corp ディーゼル排ガス浄化フィルタ
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
JP2003210922A (ja) * 2002-01-23 2003-07-29 Ibiden Co Ltd セラミックハニカムフィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1818098A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438967B2 (en) 2005-02-04 2008-10-21 Ibiden Co., Ltd. Ceramic honeycomb structural body
US7803312B2 (en) 2005-02-04 2010-09-28 Ibiden Co., Ltd. Ceramic honeycomb structural body and method of manufacturing the same
US7824629B2 (en) 2005-08-26 2010-11-02 Ibiden Co., Ltd. Honeycomb structure and manufacturing method for honeycomb structure
US7550026B2 (en) 2005-09-28 2009-06-23 Ibiden Co., Ltd. Honeycomb filter
US7883759B2 (en) 2006-01-27 2011-02-08 Ibiden Co., Ltd. Honeycomb structure and method for manufacturing honeycomb structure
US7732366B2 (en) 2006-02-23 2010-06-08 Ibiden Co., Ltd. Honeycomb structure and exhaust gas purifying device
JP2009000663A (ja) * 2007-06-25 2009-01-08 Honda Motor Co Ltd 排ガス浄化フィルタ及びその製造方法
JP2011525579A (ja) * 2008-02-05 2011-09-22 ビー・エイ・エス・エフ、コーポレーション 微粒子トラップを有するガソリンエンジン排出ガス処理システム
JP2011121051A (ja) * 2009-11-13 2011-06-23 Fujifilm Corp 凹凸構造体及びその製造方法
JP2013184088A (ja) * 2012-03-06 2013-09-19 Cataler Corp 担持触媒製造用組成物
JP2014104421A (ja) * 2012-11-27 2014-06-09 Ngk Insulators Ltd ハニカム触媒体
CN113262582A (zh) * 2015-11-30 2021-08-17 康宁股份有限公司 复合蜂窝主体、尾气处理制品、排放系统及其制造方法
CN113262582B (zh) * 2015-11-30 2022-09-20 康宁股份有限公司 复合蜂窝主体、尾气处理制品、排放系统及其制造方法
WO2024204078A1 (ja) * 2023-03-30 2024-10-03 三井金属鉱業株式会社 排ガス浄化用触媒

Also Published As

Publication number Publication date
US20070044444A1 (en) 2007-03-01
JP5142532B2 (ja) 2013-02-13
JPWO2006057344A1 (ja) 2008-06-05
EP1818098A4 (en) 2008-02-06
US7540898B2 (en) 2009-06-02
EP1818098A1 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP5142532B2 (ja) ハニカム構造体
JP5142529B2 (ja) ハニカム構造体
JP4812316B2 (ja) ハニカム構造体
KR100882767B1 (ko) 허니컴 구조체 및 그 제조 방법
JP5001009B2 (ja) セラミックハニカム構造体
KR100632161B1 (ko) 세라믹 하니컴 구조체
US7449427B2 (en) Honeycomb structured body
EP1710015B1 (en) Ceramic honeycomb structure
KR100884517B1 (ko) 허니콤 구조체
JP4386830B2 (ja) 排気ガス浄化用ハニカムフィルタ
JPWO2005108328A1 (ja) ハニカム構造体及びその製造方法
JPWO2003067042A1 (ja) 排気ガス浄化用ハニカムフィルタ
WO2007043245A1 (ja) ハニカムユニット及びハニカム構造体
WO2007058006A1 (ja) ハニカム構造体
WO2007058007A1 (ja) ハニカム構造体
JPWO2003081001A1 (ja) 排気ガス浄化用ハニカムフィルタ
WO2002096827A1 (fr) Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
WO2006087932A1 (ja) ハニカム構造体
WO2009095982A1 (ja) ハニカム構造体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005809600

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11513149

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006547860

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 11513149

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005809600

Country of ref document: EP