Nothing Special   »   [go: up one dir, main page]

WO2005101388A1 - 光ディスク記録再生装置 - Google Patents

光ディスク記録再生装置 Download PDF

Info

Publication number
WO2005101388A1
WO2005101388A1 PCT/JP2005/006948 JP2005006948W WO2005101388A1 WO 2005101388 A1 WO2005101388 A1 WO 2005101388A1 JP 2005006948 W JP2005006948 W JP 2005006948W WO 2005101388 A1 WO2005101388 A1 WO 2005101388A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracking drive
drive offset
offset amount
signal
recording
Prior art date
Application number
PCT/JP2005/006948
Other languages
English (en)
French (fr)
Inventor
Naoki Yumiyama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/547,252 priority Critical patent/US20070206454A1/en
Publication of WO2005101388A1 publication Critical patent/WO2005101388A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • G11B7/0053Reproducing non-user data, e.g. wobbled address, prepits, BCA

Definitions

  • the present invention relates to an optical disk recording / reproducing device used for a CD / DVD recording / reproducing drive and the like.
  • a tracking control circuit that detects and corrects a manufacturing error in an optical disk reproducing device is disclosed in Japanese Patent Application Laid-Open No. 63-173237. The following techniques are used for this.
  • an offset voltage (tracking drive offset amount) is generated in the tracking control circuit. If this offset voltage is not compensated, the control circuit will operate asymmetrically, but the tracking control circuit must operate symmetrically and its control region must be symmetrical. It is said.
  • the optical scanning apparatus of the optical disc reproducing apparatus is designed to automatically and quickly compensate for the offset voltage by simple means so that the control circuit can operate symmetrically. And realizes this.
  • FIG. 2 shows a conventional general optical disk (CD) recording / reproducing apparatus.
  • Reference numeral 7 denotes a photodetector, which is divided into four areas A to D.
  • “Characteristic 1” indicated by a dashed line in FIG. 3 indicates a relationship between a tracking drive offset amount and a jitter value of a biphase signal obtained by extracting time information from a wobble signal (the wobble signal in FIG. 2 being reproduced). ing.
  • the tracking drive offset amount in FIG. 3 is based on a shift amount of a beam spot position formed on the photodetector 7 due to the offset amount being added to the tracking drive.
  • the relationship between the tracking drive offset amount and the jitter value is not necessarily on a certain axis.
  • the wobble signal is binarized and converted into digital data.
  • the binary signal converted to digital data is decoded, error-corrected, and then extracted as data. Therefore, even if the reproduced signal is deteriorated to some extent, if error correction is performed normally, there is no problem in reading performance of ATIP (Absolute Time In Pre-Groove) information.
  • ATIP Absolute Time In Pre-Groove
  • the tracking drive is controlled so that the tracking drive offset amount “0 m” determined as described above is obtained.
  • the read performance of ATIP information is poor.
  • “Characteristic 3” indicated by a dashed line assumes that the read performance has deteriorated for the reasons described above.
  • the quality of the recording / reproducing signal is such that the tracking drive offset amount at which the number of errors is minimized when the track tracing is performed on an unrecorded optical disc, and the error count when the track tracing is performed on the recorded optical disc.
  • the minimum tracking drive offset does not always match. In other words, this indicates the following contents.
  • “Characteristic 4” indicated by a dashed line in FIG. 4 indicates the position of the laser beam spot connected to the photodetector 7 in FIG. 2 when the optical disc on which pits are recorded is track-traced. Then, track trace is performed by gradually shifting the direction of the area D or the areas B and C of FIG. 2 to show how the jitter value changes.
  • [Characteristic 5] indicated by a solid line in FIG. 4 indicates that, while tracing an optical disk on which no pit is recorded, the beam spot is gradually changed in the direction of the A region, the D region in FIG. It shows how the cobble jitter value changes when shifting in the direction of the regions B and C in FIG.
  • the results show that the tracking drive offset amounts at which the cobble jitter value is minimum do not match.
  • the tracking drive offset is set to +200 m, which is the minimum amount of the wobble jitter value on the optical disc, and the optical disc without the pits is traced.
  • the wobbled jitter value is set to 200 ⁇ m, which indicates that the jitter is worse than when tracing is performed.
  • the tracking drive offset amount of the optical disk it is necessary to set the tracking drive offset amount of the optical disk to 200 ⁇ m where the pit is recorded and the tracing is performed, so that the tracing is performed.
  • An object of the present invention is to provide an optical disk recording / reproducing apparatus capable of stabilizing a recording and reproducing state of an optical disk.
  • An optical disk recording / reproducing apparatus includes a photodetector for receiving and detecting reflected light from an optical disk, a means for generating a tracking error signal based on the output of the photodetector, An optical disc recording / reproducing apparatus having a means for generating a tracking drive signal based on the tracking drive signal; and a means for shifting a beam spot position irradiated on a photodetector by giving a tracking drive offset to the tracking drive signal; A beam spot to be irradiated thereon is shifted, and a pit is recorded or a pit is recorded.
  • the optical disk recording / reproducing apparatus further comprises: means for giving a tracking drive offset to the tracking drive signal to shift a beam spot position applied to a photodetector; and a beam applied to the photodetector.
  • a means for detecting a lens error signal using an optical disk, and the lens based on the lens error signal and the tracking drive offset amount are used.
  • the optical disk recording / reproducing apparatus of the present invention may further comprise a means for giving a tracking drive offset amount to the tracking drive signal to shift a beam spot position irradiated on a photodetector, and a beam irradiated on the photodetector.
  • Tracking drive that minimizes the wobble signal jitter value based on the Means for storing an offset amount, and wherein the tracking drive offset amount is added to the tracking drive signal when recording and reproducing on an optical disk.
  • the optical disc recording / reproducing apparatus of the present invention further comprises means for giving a tracking drive offset amount to the tracking drive signal to shift a beam spot position irradiated on a photodetector, and a beam irradiated on the photodetector.
  • tracking drive signal It is characterized in that the cormorants configuration.
  • the optical disc recording / reproducing apparatus of the present invention calculates a final tracking drive offset by multiplying a difference between two tracking drive offsets derived by different methods by a fixed ratio, stores the calculated final tracking drive offset, and records the final tracking drive offset on the optical disc. , When reproducing, the final tracking drive offset is added to the tracking drive signal.
  • the tracking lens drives the objective lens to focus the light on the optical disk, and the reflected light of the optical disk is detected by a photodetector.
  • a tracking drive signal for controlling the tracking actuator so that the laser beam power condensed on the optical disk by the objective lens comes to the center of the S track
  • the position of the beam spot irradiated on the photodetector is shifted to use an optical disc in which pits are recorded or in which no pits are recorded, and based on at least one of the following tracking drive offset amounts obtained below.
  • the tracking drive offset amount for stabilizing the recording / reproducing state is obtained, and during recording and reproduction, the obtained tracking drive offset amount is added to the tracking drive signal, so that the individual optical disk recording / reproducing is performed.
  • the recording and reproduction state of the device can be made more stable.
  • FIG. 1 is a configuration diagram of an optical disk recording / reproducing apparatus according to the present invention.
  • FIG. 2 Configuration diagram of a general optical disk recording / reproducing apparatus
  • FIG. 3 is an explanatory diagram of a tracking drive offset amount, an address error, and a jitter value for explaining a problem of the conventional technology.
  • FIG. 4 is an explanatory diagram of a tracking drive offset amount and a jitter value for explaining a problem of the conventional technology.
  • FIG. 1 shows an optical disk recording / reproducing apparatus according to the present invention.
  • the laser light emitted from the laser diode 3 of the optical pickup 2 is focused on a track on the optical disk 1 by the objective lens 5.
  • the laser light reflected from the optical disk 1 passes through the objective lens 5 again and is received by the photodetector 7.
  • the photodetector 7 converts the received laser beam into an electric signal, and in a FEP (Front End Processor: an optical disk device), data reading, laser control, and servo control are generally performed based on the electric signal whose optical power is also converted by an optical pickup. Ana mouth necessary for control and address reproduction This is called an LSI that has the function of extracting the analog signal.) Output to 8.
  • the FEP 8 that determines the physical shape of the optical disc 1 and the brightness of the reflection and the like from the laser light reflected from the optical disc 1 and converts it into an electrical signal generates a tracking error signal 10 from the input signal.
  • the level of the generated tracking error signal 10 changes according to the relative distance between the track and the laser beam converged on the optical disc 1 by the objective lens 5.
  • the tracking error signal 10 generated by the FEP 8 is output to the servo controller 18, and the servo controller 18 uses the tracking drive signal 19 to drive the tracking actuator based on the information of the tracking error signal 10.
  • the device 20 is controlled, and the tracking actuator 4 is moved so that the relative distance between the laser beam focused on the optical disc 1 and the track becomes constant.
  • the servo controller 18 has a function of adding an offset to the tracking drive signal.
  • the spot position of the laser light focused on the photodetector 7 is determined. It can be controlled to keep it constant while being shifted to any position.
  • the recording data encoding circuit 13 receives an instruction from the CPU 16, and encodes data to be recorded on the optical disc.
  • the data encoded by the recording data encoding circuit 13 is sent to FEP8.
  • a signal based on the encoded data is sent to the laser drive circuit 6 of the optical pickup 2.
  • the laser drive circuit 6 drives the laser diode 3 based on the signal sent from the FEP 8.
  • the laser emitted from the laser diode 3 driven by the laser driving circuit 6 is focused on the optical disk 1 through the objective lens 5. Pits are recorded on the optical disc 1 by the focused laser.
  • a photodetector 7 divided into four regions A, B, C, and D will be described below as an example. It will be explained. Areas A, B, C, and D oscillate as shown in A, B, C, and D shown in “Waveform 1” in Figure 2. Each signal is amplified by a fixed amount by amplifiers 30A, 30B, 30C and 30D, and A signal and D signal are added by adder 31A to obtain (A + D) signal. Adder 31B adds signal B and signal C to obtain signal (B + C). “Waveform 2” in Figure 2 shows the (A + D) signal and the (B + C) signal.
  • the (A + D) signal passes through a high-pass filter (HPF) 32A, an automatic gain control circuit (AGC1) 33A, and an HPF 34A to remove noise and make the waveform amplitude uniform.
  • HPF high-pass filter
  • AGC1 automatic gain control circuit
  • HPF 34A HPF 34A
  • HPF32B high-pass filter
  • AGC2 automatic gain control circuit
  • HPF34B HPF34B
  • the subtractor 35 performs an operation of (A + D) ⁇ (B + C).
  • the waveform up to the result is shown in “Waveform 2” in FIG.
  • the output signal of the subtractor 35 passes through a band-pass filter (BPF) 36, an automatic gain control circuit (AGC3) 37, and an HPF 38 to remove noise and to keep the amplitude constant.
  • BPF band-pass filter
  • AGC3 automatic gain control circuit
  • HPF 38 HPF 38
  • a mechanism for adjusting the tracking drive offset 21 using the wobble signal (A + D, B + C) 22 generated inside the FEP 8 so that the tracking drive offset 21 is stabilized during recording and reproduction on the optical disc 1 is provided. explain.
  • the CPU 16 instructs the servo controller 18 to gradually add the tracking drive offset 21 to the tracking drive signal 19.
  • the servo controller 18 adds a tracking drive offset 21 to the tracking drive signal 19 in accordance with an instruction given from the CPU 16.
  • the tracking actuator 4 is moved via the tracking actuator driving device 20, and collected on the photodetector 7 by the objective lens 5.
  • the spot position of the emitted laser light shifts.
  • the required range of the tracking drive offset 21 is calculated. After the measurement, the measurement operation ends. During the above process, the laser light reflected from the optical disk 1 passes through the objective lens 5 and is received by the photodetector 7. The photodetector 7 converts the received laser light into an electric signal and outputs it to the FEP8. In FEP8, a wobble signal (A + D, B + C) 22 is generated from the electric signal input from the photodetector 7. The generated wobbled signal (A + D, +22,? 1116) is input and the amplitude is measured.
  • the wobbled signal according to the amount of the tracking drive offset 21 added to the tracking drive signal 19 The signal amplitude of (A + D, B + C) 22 is detected, and the tracking drive offset amount SCPU 16 at which the balance of the divided wobble signals (A + D, B + C) 22 becomes uniform is obtained.
  • the obtained tracking drive offset amount is stored in the memory 17.
  • the CPU 16 may perform the tracking drive offset amount by which the wobble signal balance recorded in the memory 17 becomes equal.
  • the beam spot position is shifted from the center so that recording and reproduction are performed.
  • the CPU 16 controls the pits to be recorded or the pits are recorded.
  • the optical disk 1 is used, and the divided wobbled signals (A + D, B + C) 22 are balanced.
  • the tracking drive offset amount at which the beam spot becomes even is calculated and stored in the memory 17, and when accessing the optical disc 1, the beam spot position is shifted from the center by the tracking drive offset amount recorded in the memory 17 and recorded. The same effect can be expected even if the CPU 16 configured to reproduce is configured as follows.
  • the (A + D) signal generated at the addition point 41 from the A signal, B signal, C signal, and D signal output from the photodetector 7 and the (B + C) signal generated at the addition point 42 The signal is processed by the subtractor 43 to calculate (A + D)-(B + C), and further through a VGA (variable gain amplifier) 44 and a GCA (gain control amplifier) 45. Rent Error signal 25 is extracted.
  • VGA variable gain amplifier
  • GCA gain control amplifier
  • the beam spot is adjusted to the reference voltage, and when the beam spot is shifted in the tracking drive direction (A, D side or C, D side), The voltage changes according to the shift amount. That is, if the lens error signal 25 is adjusted to the reference voltage, the position of the beam spot formed on the photodetector 7 comes to the center, and the recording and reproducing states can be stabilized.
  • the CPU 16 instructs the servo controller 18 to gradually reduce the tracking drive offset 21 to the tracking drive signal 19. put out.
  • the servo controller 18 adds a tracking drive offset 21 to the tracking drive signal 19 according to the instruction given from the CPU 16. By adding the tracking drive offset 21 to the tracking drive signal 19, the spot position of the laser beam focused on the photodetector 7 by the objective lens 5 is shifted.
  • the measurement operation is terminated.
  • the laser beam reflected from the optical disk 1 passes through the objective lens 5 again and is received by the photodetector 7.
  • the photodetector 7 converts the received laser into an electric signal and outputs it to the FEP8.
  • a lens error signal 25 is generated from the electric signal input from the photo detector 7.
  • the generated lens error signal 25 is input to the CPU 16.
  • the voltage of the lens error signal 25 corresponding to the tracking drive offset amount is detected, and the tracking drive offset amount force CPU 16 with the lens error signal 25 set to the reference potential is obtained.
  • the obtained tracking drive offset amount is stored in the memory 17.
  • the CPU 16 accesses the optical disk 1 after storing the tracking drive offset amount in the memory 17, the CPU 16 operates in a state where the lens error signal 25 recorded in the memory 17 is set to the reference potential. Beam spot by tracking drive offset Recording and reproduction are performed with the position shifted by the center force, so that when recording and reproducing data on the optical disk 1, recording and reproduction can be performed in a more stable state.
  • the CPU 16 is used to record pits or to record pits, and to use the optical disk 1 to balance the divided wobbled signals (A + D, B + C) 22.
  • the tracking drive offset amount at which the beam spot becomes even is calculated and stored in the memory 17, and when accessing the optical disc 1, the beam spot position is shifted from the center by the tracking drive offset amount recorded in the memory 17 and recorded.
  • the same effect can be expected even if the CPU 16 configured to reproduce is configured as follows.
  • the output current of the laser drive circuit 6 controlled by the FEP 8 flows through the laser diode 3.
  • a laser beam having an output amount corresponding to the amount of current flowing is emitted from the laser diode 3.
  • the emitted laser light is focused on the optical disc 1 by the objective lens 5.
  • the laser beam reflected from the optical disc 1 passes through the objective lens 5 again and is received by the photodetector 7.
  • the photodetector 7 converts the received laser light into an electric signal and outputs the electric signal to the FEP 8.
  • FEP8 the signal strength input from the photodetector 7 also generates a wobble signal.
  • the wobble signal generated by the FEP 8 is input to the bi-phase data generation circuit 11.
  • the bi-phase data generation circuit 11 extracts bi-phase data from the input signal. More specifically, both ends of the group on the optical disc 1 are wavy in a frequency-modulated form, and the above-described wobble signal contains this frequency-modulated component.
  • the bi-phase data generation circuit 11 is a circuit for extracting the frequency-modulated component, demodulating the frequency, and extracting bi-phase data.
  • the bi-phase data extracted by the bi-phase data generation circuit 11 is input to the noise data jitter detection circuit 15, and a signal corresponding to the amount of the input bi-phase data jitter is output to the CPU 16. I do.
  • the recording / reproducing A description will be given of a configuration for performing recording and reproduction processing so that the state becomes the most stable state.
  • the tracking drive signal 19 is gradually added to the tracking drive signal 19 by the CPU 16 to the servo controller 18.
  • the servo controller 18 adds a tracking drive offset 21 to the tracking drive signal 19 in accordance with an instruction given from the CPU 16.
  • the laser light reflected from the optical disc 1 passes through the objective lens 5 and is received by the photo detector 7.
  • the photodetector 7 converts the received laser into an electric signal and outputs it to the FEP8.
  • FEP8 a wobble signal is generated from the electric signal input from the photodetector 7.
  • the address information included in the generated signal is converted into bi-phase data by the noise-phase data generation circuit 11. After that, it is input to the if-data jitter detector 15 to detect the value of the wobble jitter.
  • the detected wobble jitter value is input to the CPU 16.
  • the wobble jitter value corresponding to the amount of the tracking drive offset 21 added to the tracking drive signal 19 is detected, and the CPU 16 calculates the tracking drive offset amount that minimizes the wobble jitter value.
  • the obtained tracking drive offset amount is stored in the memory 17.
  • the CPU 16 accesses the optical disc 1 after storing the tracking drive offset amount in the memory 17, the CPU 16 operates in a state where the lens error signal 25 recorded in the memory 17 is set to the reference potential. It is configured to record and reproduce by shifting the beam spot position by the center force by the amount of the tracking drive offset. When recording and reproducing data on the optical disc 1, recording and reproducing can be performed in a more stable state. Can be.
  • the CPU 16 controls the pits to be recorded or the pits to be recorded.
  • the disk 1 is used to calculate the amount of tracking drive offset that equalizes the balance of the divided wobble signals (A + D, B + C) 22 and stores it in the memory 17.
  • a similar effect can be expected by configuring the CPU 16 as follows to shift the beam spot position from the center by the amount of the tracking drive offset recorded in 17 for recording and reproduction.
  • the output current of the laser drive circuit 6 controlled by the FEP 8 flows through the laser diode 3.
  • a laser beam having an output amount corresponding to the amount of current flowing is emitted from the laser diode 3.
  • the emitted laser light is focused on the optical disc 1 by the objective lens 5.
  • the laser reflected from the optical disk 1 passes through the objective lens 5 again and is received by the photodetector 7.
  • the photodetector 7 converts the received laser light into an electric signal and outputs the electric signal to the FEP 8.
  • FEP8 the signal strength input from the photodetector 7 also generates a wobble signal.
  • the wobble signal generated by the FEP 8 is input to the bi-phase data generation circuit 11.
  • the bi-phase data generation circuit 11 extracts bi-phase data from the input pebble signal. More specifically, both ends of the group on the optical disc 1 are wavy in a frequency-modulated form, and the above-described wobble signal contains this frequency-modulated component.
  • the bi-phase data generation circuit 11 is a circuit for extracting the frequency-modulated component, demodulating the frequency, and extracting bi-phase data.
  • the bi-phase data extracted by the bi-phase data generation circuit 11 is input to the ATIP decoder 9 and is converted into address information. At this time, the number of errors is counted by the ATIP read error detection circuit 14, Output to CPU16.
  • a configuration for performing the recording and reproduction processes using the ATIP read error detection circuit 14 so that the recording and reproduction states on the optical disk 1 are most stable will be described.
  • the track driving trace 19 is gradually applied to the tracking drive signal 19 from the CPU 16 to the servo controller 18 in the state where the optical disk 1 is track traced.
  • the tracking drive offset 19 is added to the tracking drive signal 19.
  • the laser light reflected from the optical disk 1 passes through the objective lens 5 and is received by the photo detector 7.
  • the photodetector 7 converts the received laser into an electric signal and outputs it to the FEP8.
  • FEP8 a wobble signal is generated from the electric signal input from the photodetector 7.
  • the address information included in the generated signal is converted into bi-phase data by the noise-phase data generation circuit 11. After that, it is input to the ATIP reading detection circuit 15, and the number of ATIP errors is detected. The number of detected ATIP errors is input to the CPU 16.
  • the CPU 16 determines the amount of the tracking drive offset at which the number of ATIP errors becomes the minimum. Is required.
  • the obtained tracking drive offset amount is stored in the memory 17.
  • the CPU 16 accesses the optical disk 1 after storing the tracking drive offset amount in the memory 17, the CPU 16 operates in a state where the lens error signal 25 recorded in the memory 17 is set to the reference potential. It is configured to record and reproduce by shifting the beam spot position by the center force by the amount of the tracking drive offset. When recording and reproducing data on the optical disc 1, recording and reproducing can be performed in a more stable state. Can be.
  • the absolute time address information ATIP used for a CD recordable disc is described as an example.
  • the absolute time address information is called differently for each type of optical device.
  • DVD-R, RW, LPP (Land Pre-Pit), for DVD + R, RW, ADIP (Address In Pre-Groove), and for DVD-RAM, CAPA (Complementary Allocated Pit Address), etc. are listed as equivalent information. In other words, this content can be implemented for all absolute time address information regardless of the type of optical disc.
  • Embodiment 5 Embodiment 5
  • a force that configures the CPU 16 to add the tracking drive offset that minimizes the number of absolute time address information reading errors to the tracking drive signal 19 when recording and reproducing on the optical disk By configuring the CPU 16 as follows, Recording and playback can be performed in a more stable state with good overall quality.
  • the CPU 16 of the optical disk recording / reproducing apparatus determines the tracking drive offset amount at which the divided cobbled signal balances are equal according to the contents of the first embodiment. Similarly, the tracking drive offset amount at which the lens error signal 25 becomes the reference voltage is obtained in accordance with the contents of the above (Embodiment 2), for example, stored separately in the memory 17, and the difference between these two tracking drive offset amounts is calculated. Is multiplied by a constant ratio a5 to determine the final tracking drive offset amount that is stable overall.
  • the value of a5 is set so that the value of z5 takes a value between yl and y2.
  • the final tracking drive offset zl obtained by this equation is stored in the CPU 16 memory 17.
  • the CPU 16 shifts the beam spot position from the center by the last tracking drive offset z5 to record and reproduce.
  • the recording / reproducing is performed in a more stable state with good overall quality. Can be played.
  • the CPU 16 When the CPU 16 is configured to add to the tracking drive signal 19 when recording and reproducing the data on and from the optical disk, the CPU 16 can be configured and configured as follows, so that the overall quality is good and the recording and reproduction can be performed in a more stable state. .
  • the CPU 16 of the optical disk recording / reproducing apparatus obtains the tracking drive offset amount at which the divided cobbled signal balance becomes equal according to the content of the (Embodiment 1). Similarly, the tracking drive offset amount at which the wobble signal jitter value is minimized is determined in accordance with the above (Embodiment 3) and, for example, is separately stored in the memory 17 and the difference between these two tracking drive offset amounts is calculated. Then, multiply by a fixed ratio a6 to determine the final tracking drive offset amount that is stable overall.
  • the value of a6 is set so that the value of z6 takes a value between yl and y3.
  • the CPU 16 causes the memory 17 to store the final tracking drive offset amount obtained by this equation.
  • the CPU 16 shifts the beam spot position from the center by the final tracking drive offset z6 to record and reproduce. Consisting of optical disks 1 When recording and reproducing data in a computer, it can be recorded and reproduced in a more stable state with good overall quality.
  • the pits are recorded or pits are recorded !, a V, and an optical disk is used.
  • a force that configures the CPU 16 to add the tracking drive offset that minimizes the number of absolute time address information reading errors to the tracking drive signal 19 when recording and reproducing on the optical disk By configuring the CPU 16 as follows, Recording and playback can be performed in a more stable state with good overall quality.
  • the CPU 16 of the optical disc recording / reproducing apparatus determines the tracking drive offset amount at which the divided cobbled signal balance becomes equal according to the content of the first embodiment. Similarly, the tracking drive offset amount at which the number of absolute time address information reading errors is minimized is determined in accordance with the above (Embodiment 4), and, for example, is separately stored in the memory 17 and the two tracking drive offset amounts are determined. By multiplying the difference by a fixed ratio, the final tracking drive offset amount that is stable overall is determined.
  • the value of a7 is set so that the value of z7 takes a value between yl and y4.
  • the CPU 16 causes the memory 17 to store the final tracking drive offset amount obtained by this equation.
  • the CPU 16 adjusts the beam by the final tracking drive offset z7.
  • the recording and reproduction are performed with the spot position shifted from the center.
  • the recording and reproduction can be performed in a more stable state with good overall quality.
  • the CPU 16 of the optical disc recording / reproducing apparatus of the (Embodiment 8) obtains the tracking drive offset amount at which the lens error signal 25 becomes the reference voltage according to the contents of the (Embodiment 2), and A tracking drive offset amount y3 at which the value of the wobble signal jitter is minimized is determined in accordance with the above (Embodiment 3) and, for example, is separately stored in the memory 17, and the difference between these two tracking drive offset amounts is calculated as follows. By multiplying by a fixed ratio, the final tracking drive offset amount that is stable overall is determined.
  • the value of a8 is set so that the value of z8 takes a value between ⁇ 2 and y3.
  • the CPU 16 causes the memory 17 to store the final tracking drive offset amount obtained by this equation. Further, when accessing the optical disc 1 after the final tracking drive offset z8 is determined, the CPU 16 shifts the beam spot position from the center by the last tracking drive offset z8 to record and reproduce. When recording / reproducing data on / from the optical disc 1, the recording / reproducing can be performed in a more stable state with good overall quality.
  • a force that configures the CPU 16 to add the tracking drive offset that minimizes the number of absolute time address information reading errors to the tracking drive signal 19 when recording and reproducing on the optical disk By configuring the CPU 16 as follows, Recording and playback can be performed in a more stable state with good overall quality.
  • the CPU 16 of the optical disc recording / reproducing apparatus determines the tracking drive offset amount at which the lens error signal 25 becomes a reference voltage according to the contents of the second embodiment, and An absolute time address information reading error is determined along with the contents of the embodiment 4) .
  • a tracking drive offset amount that minimizes the number of errors is obtained, for example, individually stored in the memory 17, and a difference between these two tracking drive offset amounts is fixed. By multiplying by the ratio, the final tracking drive offset amount that is stable overall is calculated.
  • the CPU 16 shifts the beam spot position from the center by the final tracking drive offset z9 to record and reproduce.
  • recording / reproducing data on / from the optical disc 1 recording / reproducing can be performed in a more stable state with good overall quality.
  • a force that configures the CPU 16 to add the tracking drive offset that minimizes the number of absolute time address information reading errors to the tracking drive signal 19 when recording and reproducing on the optical disk By configuring the CPU 16 as follows, Recording and playback can be performed in a more stable state with good overall quality.
  • the CPU 16 of the optical disk recording / reproducing apparatus calculates the tracking drive offset amount at which the jitter value of the wobble signal is minimized in accordance with the contents of the third embodiment.
  • a tracking drive offset amount that minimizes the number of errors in reading the absolute time address information is obtained along with the contents of the form 4), and for example, the tracking drive offset amount is separately stored in the memory 17, and the difference between the two tracking drive offset amounts is fixed. By multiplying by the ratio of, the final tracking drive offset amount that is stable overall is calculated.
  • the value of alO is set to take a value between y3 and y4 of zlO.
  • the CPU 16 causes the memory 17 to store the final tracking drive offset amount zlO obtained by this equation.
  • the CPU 16 records the beam spot position with the center force shifted by the final tracking drive offset amount zlO.
  • data can be recorded and reproduced in a more stable state with good overall quality.
  • the present invention can be used to improve the reliability of CD and DVD recording / reproducing drives and various devices equipped with these.

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

 トラッキング駆動信号(19)に対してトラッキング駆動オフセット量(21)を与えてフォトディテクタ(7)上に照射されるビームスポット位置をサーボコントローラ(18)がずらして、ピットが記録されている、またはピットが記録されていない光ディスクを使用し、分割されたウォーブル信号バランス、レンズエラー信号、ウォブルジッター値、ATIP読み取りエラー数の全て、または、何れかをCPU(16)が検出する光ディスク記録再生装置である。CPU(16)は、それぞれウォーブル信号バランス、レンズエラー信号、ウォブルジッター値、ATIP読み取りエラー数と、前記それぞれに対するトラッキング駆動オフセット量をもとにウォブル信号バランスが均等、レンズエラー信号基準電圧、ウォブルジッター値が最小、ATIP読み取りエラー数が最小となるトラッキング駆動オフセット量の少なくも1つをメモリ(17)に記憶させる。さらに、CPU(16)は、光ディスクに記録,再生する時にはメモリ(17)から読み出したトラッキング駆動オフセット量をトラッキング駆動信号(19)に加えてビームスポット位置を制御する。

Description

明 細 書
光ディスク記録再生装置
技術分野
[0001] 本発明は、 CD、 DVD記録再生型ドライブ等に用いられる光ディスク記録再生装置 に関するものである。
背景技術
[0002] 例えば、光ディスク再生装置の内部の製造誤差を検出し、補正するトラッキング制 御回路においては、特開昭 63— 173237号公報に記載されたものが知られている。 これには次のような技術が使われて 、る。
[0003] 誤差を有する部品が作用すると、トラッキング制御回路にオフセット電圧(トラッキン グ駆動オフセット量)が生じてしまう。このオフセット電圧を補償しないと制御回路は非 対称的に動作することとなるが、トラッキング制御回路は対称的に動作することが必 要とされており、その制御領域が対称的となることが必要とされる。
[0004] そのため、光ディスク再生装置の生産の場合に、制御回路が対称的に動作できる ようにオフセット電圧を簡単な手段で迅速に自動的に補償するように、光ディスク再 生装置の光学的走査装置を構成し、これを実現している。
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、前述のようにオフセット電圧(トラッキング駆動オフセット量)を、制御 領域が対称的になるように与えると、記録再生を行う場合に、次のような問題が発生 する。なお、図 2は従来の一般的な光ディスク (CD)記録再生装置を示しており、 7は フォトディテクタで、 A〜Dの 4つ領域に分割されて 、る。
[0006] 図 3に波線で示す「特性 1」は、トラッキング駆動オフセット量と、ゥォブル信号 (再生 中の図 2のゥォブル信号)より時間情報を取り出したバイフェーズ信号のジッター値と の関係を示している。なお、図 3のトラッキング駆動オフセット量は、トラッキング駆動 にオフセット量をカ卩えたために起こる、フォトディテクタ 7の上に結ばれるビームスポッ ト位置のずれ量を単位として 、る。 [0007] 通常の記録再生装置を考えた場合、記録再生装置のばらつき、記録再生装置を 構成する回路特性の偏りなどがあり、トラッキング駆動オフセット量とジッター値との関 係は、必ずしもある軸に対して対称に変化するものでは無い。むしろ非対称な変化を 示すものがほとんどであると云って良い。この図 3の「特性 1」で示したような特性を持 つ記録再生装置を考えた場合、ジッター値が最小になるポイント、即ち、リード性能 力 Sもっとも良くなるトラッキング駆動オフセット量は、 + 200 mの所になる。
[0008] ところで、アドレス情報取得処理の流れは、次のようになって!/、る。
[0009] ゥォブル信号を 2値ィ匕し、ディジタルデータに変換する。ディジタルデータに変換さ れた 2値化信号をデコードし、エラー訂正が行われた後、データとして取り出されるよ うになる。よって、再生信号がある程度悪化しても、エラー訂正が正常に行われれば 、 ATIP (Absolute Time In Pre-Groove)情報の読み取り性能としては問題にはなら ない。
[0010] このエラー訂正後の ATIPの読み取り性能と、トラッキング駆動オフセット量の関係 は、図 3に実線で示す「特性 2」で示されるような内容になる。要は、トラッキング駆動 オフセット量とジッター値の関係が「特性 1」で示されるような関係を持った装置であつ ても、エラー訂正が行われることによって「特性 2」で示されるような関係になる。
[0011] この「特性 2」の場合、 ±400 μ m以内のトラッキング駆動オフセット量であれば、 A TIPエラーの値は変化せず" 0"の値を取る。つまり、トラッキング駆動オフセット量と A TIPエラーとの関係からリード性能に対するマージンを持ったトラッキング駆動オフセ ット量を割り出そうとすると、先程述べたように ±400 m以内のトラッキング駆動オフ セット量は ATIPエラーの値が変化しないため、この範囲の中間のトラッキング駆動ォ フセット量に決定する様な方法が考えられる。図 3においてその値は" 0 m"となる。
[0012] このようにして決められたトラッキング駆動オフセット量" 0 m"になるようにトラツキ ング駆動が制御されて 、る状態での記録再生中に、例えば回路または素子が持つ 温度特性等の影響で、 ATIP情報のリード性能が悪ィ匕した場合を考えてみる。図 3の 「特性 1」に対して、一点鎖線で示す「特性 3」は、先述の様な理由で、リード性能が悪 化した場合を想定している。
[0013] この「特性 3」の場合、トラッキング駆動オフセット量" 0 μ m"での ATIPエラーの状態 を確認すると、それはアドレス読み取りエラーとなるジッター値の限界レベル JLを超え ていることが確認できる。つまり、制御領域が対称的になるようにトラッキング駆動オフ セット量を与えて記録再生を行った場合は、環境等の変化の影響を受けて性能的な 余裕が減少し、エラーが発生する問題がある。
[0014] 更に、記録再生信号の品質は、未記録の光ディスクをトラックトレースしている時に 、エラー数が最小となるトラッキング駆動オフセット量と、記録された光ディスクをトラッ クトレースしている時にエラー数が最小となるトラッキング駆動オフセット量は、必ずし も一致しない。つまりこの事は、次の内容を示している。
[0015] 図 4に波線で示す「特性 4」は、ピットが記録されている光ディスクを、トラックトレース した場合に、図 2のフォトディテクタ 7に結ばれるレーザーのビームスポット位置を、図 2の A領域、 D領域の方向、又は図 2の B領域、 C領域の方向に徐々にシフトさせてト ラックトレースし、ゥォブルジッター値がどのように変化するかを示して!/、る。
[0016] また、図 4に実線で示す「特性 5」は、ピットが記録されていない光ディスクをトレース している状態にて、ビームスポットを徐々に図 2の A領域、 D領域の方向、又は図 2の B領域、 C領域の方向にシフトさせた時にゥォブルジッター値がどのように変化したか を示している。
[0017] この図 4の「特性 4」「特性 5」のように、ゥォブルジッター値が最小となるトラッキング 駆動オフセット量は一致していない結果となった。図 4の例では、ピットが記録または ピットが記録されて ヽな 、光ディスクにてゥォブルジッター値が最小になるトラッキング 駆動オフセット量である + 200 mに設定して、ピットが記録されていない光ディスク をトレースした場合、ゥォブルジッター値は 200 μ mに設定してトレースした時よりも 悪ィ匕することを示している。
[0018] つまり、光ディスクに対するトレース動作を安定させるためには、ピットが記録されて Vヽな 、光ディスクのトラッキング駆動オフセット量を、 200 μ mに設定してトレースす る必要があることになる。
[0019] 以上は、トラッキング駆動オフセット量とゥォブルジッター値との関係について述べ てきたが、トラッキング駆動オフセット量と、前記ゥォブル信号バランス、前記レンズェ ラー信号、前記 ATIP読み取りエラー数との関係についても同様なことが云える。 [0020] 本発明は、光ディスクの記録及び再生状態を安定した状態にできる光ディスク記録 再生装置を提供することを目的とする。
課題を解決するための手段
[0021] 本発明の光ディスク記録再生装置は、光ディスクからの反射光を受光検出するフォ トディテクタと、前記フォトディテクタの出力に基づ!/、てトラッキングエラー信号を発生 する手段と、トラッキングエラー信号に基づ 、てトラッキング駆動信号を発生する手段 を有する光ディスク記録再生装置において、前記トラッキング駆動信号に対してトラッ キング駆動オフセット量を与えてフォトディテクタ上に照射されるビームスポット位置を ずらす手段と、前記フォトディテクタ上に照射されるビームスポット位置をずらして、ピ ットが記録またはピットが記録されて 、な 、光ディスクを使用し、分割されたゥォブル 信号バランスを検出する手段と、前記ゥォブル信号バランスと前記トラッキング駆動ォ フセット量をもとに前記ゥォブル信号バランスが均等となるトラッキング駆動オフセット 量を記憶する手段とを有し、光ディスクに記録,再生する時には前記トラッキング駆動 オフセット量を前記トラッキング駆動信号に加えるよう構成したことを特徴とする。
[0022] また本発明の光ディスク記録再生装置は、前記トラッキング駆動信号に対してトラッ キング駆動オフセット量を与えてフォトディテクタ上に照射されるビームスポット位置を ずらす手段と、前記フォトディテクタ上に照射されるビームスポット位置をずらして、ピ ットが記録またはピットが記録されて 、な 、光ディスクを使用し、レンズエラー信号を 検出する手段と、前記レンズエラー信号と前記トラッキング駆動オフセット量をもとに 前記レンズエラー信号が基準電圧となるトラッキング駆動オフセット量を記憶する手 段とを有し、光ディスクに記録、再生する時には前記トラッキング駆動オフセット量を 前記トラッキング駆動信号に加えるよう構成したことを特徴とする。
[0023] また本発明の光ディスク記録再生装置は、前記トラッキング駆動信号に対してトラッ キング駆動オフセット量を与えてフォトディテクタ上に照射されるビームスポット位置を ずらす手段と、前記フォトディテクタ上に照射されるビームスポット位置をずらして、ピ ットが記録またはピットが記録されて 、な ヽ光ディスクをトラックトレースした場合のゥォ ブル信号ジッター値を検出する手段と、前記ゥォブル信号ジッター値と前記トラツキン グ駆動オフセット量をもとにゥォブル信号ジッター値が最小となるトラッキング駆動ォ フセット量を記憶する手段とを有し、光ディスクに記録,再生する時には前記トラツキ ング駆動オフセット量を前記トラッキング駆動信号に加えるよう構成したことを特徴と する。
[0024] また本発明の光ディスク記録再生装置は、前記トラッキング駆動信号に対してトラッ キング駆動オフセット量を与えてフォトディテクタ上に照射されるビームスポット位置を ずらす手段と、前記フォトディテクタ上に照射されるビームスポット位置をずらして、ピ ットが記録またはピットが記録されて 、な 、光ディスクをトラックトレースした場合の絶 対時間アドレス情報読み取りエラー数を検出する手段と、前記絶対時間アドレス情報 読み取りエラー数と前記トラッキング駆動オフセット量をもとに、前記絶対時間アドレ ス情報読み取りエラー数が最小となるトラッキング駆動オフセット量を記憶する手段と を有し、光ディスクに記録,再生する時には前記トラッキング駆動オフセット量を前記 トラッキング駆動信号に加えるよう構成したことを特徴とする。
[0025] また本発明の光ディスク記録再生装置は、異なる方法で導き出した 2つのトラツキン グ駆動オフセット量の差に、一定の比率を掛けて最終トラッキング駆動オフセット量を 計算して記憶し、光ディスクに記録,再生する時には前記最終トラッキング駆動オフ セット量を前記トラッキング駆動信号に加えるよう構成したことを特徴とする。
[0026] 本発明の光ディスク記録再生装置の制御方法は、トラッキングァクチユエ一タで対 物レンズを動力して光ディスクの上に集光し、前記光ディスク力もの反射光をフォトデ ィテクタで検出し、前記対物レンズによって光ディスクの上に集光されたレーザー光 力 Sトラックのセンターに来るように、前記トラッキングァクチユエータを制御するトラツキ ング駆動信号にオフセットを加えて記録,再生するに際し、
記録,再生に先立って、前記フォトディテクタ上に照射されるビームスポット位置を ずらして、ピットが記録またはピットが記録されていない光ディスクを使用し、求めた下 記の少なくとも 1つのトラッキング駆動オフセット量に基づくオフセット量を記憶し、
1.分割されたゥォブル信号バランスが均等となるトラッキング駆動オフセット量
2.レンズエラー信号が基準電圧となるトラッキング駆動オフセット量
3.ゥォブル信号ジッター値が最小となるトラッキング駆動オフセット量
4.絶対時間アドレス情報読み取りエラー数が最小となるトラッキング駆動オフセット 光ディスクに記録,再生する時には前記最終トラッキング駆動オフセット量を前記ト ラッキング駆動信号に加えて前記対物レンズの位置をコントロールするように構成し たことを特徴とする。
発明の効果
[0027] 本発明によれば、記録再生状態が安定するトラッキング駆動オフセット量を求め、 記録および再生中は、その求めたトラッキング駆動オフセット量をトラッキング駆動信 号に加えることにより、個々の光ディスク記録再生装置における記録および再生状態 をより安定した状態にできる。
図面の簡単な説明
[0028] [図 1]本発明の光ディスク記録再生装置の構成図
[図 2]—般的な光ディスク記録再生装置の構成図
[図 3]従来技術の問題点を説明するためのトラッキング駆動オフセット量とアドレスェ ラー,ジッター値の説明図
[図 4]従来技術の問題点を説明するためのトラッキング駆動オフセット量とジッター値 の説明図
発明を実施するための最良の形態
[0029] 以下、本発明の各実施の形態を説明する。
実施の形態 1
[0030] 図 1は本発明の光ディスク記録再生装置を示す。
[0031] 最初に、トラッキングサーボについて説明する。
[0032] 光ピックアップ 2のレーザーダイオード 3から出射されたレーザー光は、対物レンズ 5 によって光ディスク 1の上のトラックに集光される。光ディスク 1から反射したレーザー 光は、対物レンズ 5を再び通ってフォトディテクタ 7にて受光される。
[0033] フォトディテクタ 7では受光したレーザー光を電気信号に変換し、 FEP (Front End Processor:光ディスク装置では一般に、光ピックアップで光力も変換された電気信号 をもとに、データ読み出し、レーザー制御、サーボ制御、アドレス再生に必要なアナ口 グ信号を抽出する機能をもつ LSIのことを呼ぶ) 8に出力する。光ディスク 1から反射 されてきたレーザー光から、光ディスク 1の物理的な形状、反射の明暗等を判別し、 電気信号に変換する FEP8は、入力した信号からトラッキングエラー信号 10を生成 する。
[0034] 生成されたトラッキングエラー信号 10のレベルは、前記対物レンズ 5によって光ディ スク 1の上に集光されたレーザー光とトラックとの相対距離に応じて変化する。
[0035] FEP8にて生成されたトラッキングエラー信号 10は、サーボコントローラ 18に出力さ れ、サーボコントローラ 18は、トラッキングエラー信号 10の情報を元に、トラッキング 駆動信号 19にてトラッキングァクチユエータ駆動装置 20をコントロールし、トラツキン グァクチユエータ 4を動かして光ディスク 1の上に集光されたレーザー光とトラックとの 相対距離が一定になるように制御する。サーボコントローラ 18は、トラッキング駆動信 号にオフセットをカ卩える機能を有して 、る。
[0036] よって、 CPU16から、サーボコントローラ 18に対してトラッキング駆動信号 19にトラ ッキング駆動オフセット 21をカ卩えるように指示を出すと、フォトディテクタ 7の上に集光 されたレーザー光のスポット位置を任意の位置にずらした状態で一定に保つように制 御できる。
[0037] 次に、データの記録について説明する。
[0038] 記録データエンコード回路 13は、 CPU16からの指示を受け、光ディスクに記録す るためのデータをエンコードする。記録データエンコード回路 13にてエンコードされ たデータは、 FEP8に送られる。エンコードされたデータに基づく信号を、光ピックァ ップ 2のレーザー駆動回路 6に送る。レーザー駆動回路 6は、 FEP8から送られた信 号に基づいて、レーザーダイオード 3を駆動する。レーザー駆動回路 6にて、駆動さ れたレーザーダイオード 3から出射されたレーザーは、対物レンズ 5を通り光ディスク 1の上に集光される。集光されたレーザーによって光ディスク 1の上にピットが記録さ れる。
[0039] 次に、 FEP8の内部で行われている、ゥォブル信号をニ値ィ匕するまでの一構成例を 図 2に基づいて説明する。
[0040] A領域、 B領域、 C領域、 D領域に、 4分割されたフォトディテクタ 7を例として以下の 説明を行うこととする。 A領域, B領域, C領域, D領域は図 2の「波形 1」に示す A, B , C, Dの様にそれぞれが発振している。それぞれの信号をアンプ 30A, 30B, 30C , 30Dにて一定量増幅し、加算器 31 Aにて A信号と D信号を加算して (A+D)信号 を得る。加算器 31Bにて B信号と C信号を加算して (B + C)信号を得る。図 2の「波形 2」に (A+ D)信号と (B + C)信号を示す。
[0041] (A+D)信号は、ハイパスフィルタ(HPF) 32Aと自動利得制御回路(AGC1) 33A ならびに HPF34Aを通過してノイズ除去し、波形振幅を揃える。(B + C)信号も同様 に、 HPF32Bと自動利得制御回路(AGC2) 33Bならびに HPF34Bを通過してノィ ズ除去し、波形振幅を揃える。
[0042] その後、減算器 35において (A+D) - (B+C)の演算を行う。その結果まの波形を 図 2の「波形 2」に示す。この減算器 35の出力信号は、バンドパスフィルタ(BPF) 36 と自動利得制御回路 (AGC3) 37および HPF38を通過してノイズを除去し、振幅を 一定にした後、コンパレータ 39によって基準電圧 VREFでコンパレートを行い 2値化 されたゥォブル信号が出力される。
[0043] 以上の内容を踏まえ、本発明の光ディスク記録再生装置の動作を図 1に基づいて 詳しく説明する。
[0044] FEP8の内部で生成されるゥォブル信号 (A+D、 B + C) 22を用いて、光ディスク 1 への記録,再生中に安定するように、トラッキング駆動オフセット 21をカ卩える仕組みを 説明する。
[0045] ピットが記録またはピットが記録されていない光ディスク 1を使用し、 CPU16からサ ーボコントローラ 18に対し、トラッキング駆動信号 19に徐々にトラッキング駆動オフセ ット 21を加えるように指示を出す。
[0046] サーボコントローラ 18は、 CPU16から与えられた指示に従ってトラッキング駆動信 号 19にトラッキング駆動オフセット 21をカ卩える。トラッキング駆動信号 19にトラツキン グ駆動オフセット 21が加えられることにより、トラッキングァクチユエータ駆動装置 20 を介してトラッキングァクチユエータ 4を動かすことで、対物レンズ 5によってフォトディ テクタ 7の上に集光されるレーザー光のスポット位置がずれていく。
[0047] トラッキング駆動信号 19に対して、必要範囲のトラッキング駆動オフセット 21をカロえ 終わった後、前記測定動作を終了する。前述処理中、光ディスク 1から反射したレー ザ一光は、対物レンズ 5を通って、フォトディテクタ 7に受光される。フォトディテクタ 7 は、受光したレーザー光を電気信号に変換し FEP8に出力する。 FEP8では、フォト ディテクタ 7から入力した電気信号からゥォブル信号 (A+D、 B+C) 22を生成する。 生成されたゥォブル信号 (A+D、 + 22はじ?1116に入カされ、振幅を計測する 。このようにして、トラッキング駆動信号 19にカ卩えられるトラッキング駆動オフセット 21 の量に応じたゥォブル信号 (A+D、 B + C) 22の信号振幅が検出され、分割されたゥ ォブル信号 (A+D、 B + C) 22のバランスが均等になるトラッキング駆動オフセット量 力 SCPU16にて求められる。求められたトラッキング駆動オフセット量は、メモリ 17に記 憶される。
[0048] さらに前記 CPU16は、メモリ 17にトラッキング駆動オフセット量を記憶した後に光デ イスク 1へアクセスする時には、メモリ 17に記録されている前記ゥォブル信号バランス が均等となるトラッキング駆動オフセット量分だけ、ビームスポット位置をセンターから ずらして記録,再生するよう構成されており、光ディスク 1にデータを記録,再生する 際に、より安定した状態で、記録,再生を行うことができる。
実施の形態 2
[0049] (実施の形態 1)では CPU16を、ピットが記録またはピットが記録されて 、な 、光デ イスク 1を使用し、分割されたゥォブル信号 (A+D、 B + C) 22のバランスが均等にな るトラッキング駆動オフセット量を求めてメモリ 17に記憶し、光ディスク 1へアクセスす る時には、メモリ 17に記録されているトラッキング駆動オフセット量分だけ、ビームスポ ット位置をセンターからずらして記録,再生するよう構成した力 CPU16を次のように 構成しても同様の効果を期待できる。
[0050] まず、図 2によって、 FEP8の内部で行われている、レンズエラー信号 25を生成す るまでを説明する。
[0051] 前記フォトディテクタ 7より出力された A信号、 B信号、 C信号、 D信号から加算点 41 に発生する (A+D)信号と、加算点 42に発生する (B + C)信号とを減算器 43で処理 して(A+D) - (B + C)の演算を行い、さらに VGA (variable gain amplifier:可変利 得増幅器) 44と GCA (gain control amplifier:利得制御増幅器) 45を介してレンズェ ラー信号 25が取り出されて 、る。
[0052] そのため、ビームスポットがフォトディテクタ 7のセンターに位置している場合には、 基準電圧に調整され、トラッキング駆動方向 (A, D側、又は C, D側)へずれた場合 には、そのずれ量に合わせて電圧が変化する。つまり、レンズエラー信号 25を基準 電圧へ調整すれば、フォトディテクタ 7の上に結ばれるビームスポット位置はセンター に来ることとなり、記録、再生状態を安定させることができる。
[0053] これを踏まえて、レンズエラー信号 25が基準電圧になるように、トラッキング駆動ォ フセット 21をカ卩える仕組みを図 1に基づいて説明する。
[0054] ピットが記録またはピットが記録されていない光ディスク 1を使用し、 CPU16からサ ーボコントローラ 18に対し、トラッキング駆動信号 19に徐々にトラッキング駆動オフセ ット 21をカ卩えるように指示を出す。サーボコントローラ 18は、 CPU16から与えられた 指示に従って、トラッキング駆動信号 19にトラッキング駆動オフセット 21を加える。トラ ッキング駆動信号 19にトラッキング駆動オフセット 21が加えられることにより、対物レ ンズ 5によってフォトディテクタ 7上に集光されるレーザー光のスポット位置がずれてい
<o
[0055] トラッキング駆動信号 19に対して、必要範囲のトラッキング駆動オフセット 21をカロえ 終わった後、前記測定動作を終了する。前述処理中に、光ディスク 1から反射したレ 一ザ一光は、対物レンズ 5を再び通ってフォトディテクタ 7に受光される。フォトディテ クタ 7は、受光したレーザーを電気信号に変換し FEP8に出力する。
[0056] FEP8では、フォトディテクタ 7から入力した電気信号からレンズエラー信号 25を生 成する。生成されたレンズエラー信号 25は、 CPU16に入力される。このようにして、ト ラッキング駆動オフセット量に応じたレンズエラー信号 25の電圧が検出され、レンズ エラー信号 25が基準電位に設定された状態でのトラッキング駆動オフセット量力 CP U16にて求められる。求められたトラッキング駆動オフセット量は、メモリ 17に記憶さ れる。
[0057] さらに前記 CPU16は、メモリ 17にトラッキング駆動オフセット量を記憶した後に光デ イスク 1へアクセスする時には、メモリ 17に記録されている前記レンズエラー信号 25が 基準電位に設定された状態でのトラッキング駆動オフセット量分だけ、ビームスポット 位置をセンター力 ずらして記録,再生するよう構成されており、光ディスク 1にデー タを記録,再生する際に、より安定した状態で、記録,再生を行うことができる。
実施の形態 3
[0058] (実施の形態 1)では CPU16を、ピットが記録またはピットが記録されて 、な 、光デ イスク 1を使用し、分割されたゥォブル信号 (A+D、 B + C) 22のバランスが均等にな るトラッキング駆動オフセット量を求めてメモリ 17に記憶し、光ディスク 1へアクセスす る時には、メモリ 17に記録されているトラッキング駆動オフセット量分だけ、ビームスポ ット位置をセンターからずらして記録,再生するよう構成した力 CPU16を次のように 構成しても同様の効果を期待できる。
[0059] まず、図 1によって、バイフェーズデータジッター検出回路 15について説明する。
[0060] FEP8によって制御されたレーザー駆動回路 6の出力電流力 レーザーダイオード 3に流れる。流れた電流量に応じた出力量のレーザー光が、レーザーダイオード 3か ら出射される。
[0061] 出射されたレーザー光は、対物レンズ 5によって光ディスク 1の上に集光される。光 ディスク 1から反射されたレーザー光は、対物レンズ 5を再び通ってフォトディテクタ 7 で受光される。
[0062] フォトディテクタ 7は、受光したレーザー光を電気信号に変換し、 FEP8に出力する 。 FEP8では、フォトディテクタ 7から入力した信号力もゥォブル信号を生成する。 FEP 8で生成されたゥォブル信号は、バイフェーズデータ生成回路 11に入力される。
[0063] バイフェーズデータ生成回路 11では、入力されたゥォブル信号からバイフェーズデ ータを取り出す。詳しくは、光ディスク 1上のグループの両端は、周波数変調された形 で波打っており、前述のゥォブル信号には、この周波数変調された成分が含まれて いる。バイフヱーズデータ生成回路 11は、この周波数変調された成分を抽出して、周 波数復調しバイフヱーズデータを取り出す回路である。
[0064] バイフェーズデータ生成回路 11にて取り出されたバイフェーズデータは、ノ イフェ ーズデータジッター検出回路 15に入力され、入力されたバイフェーズデータのジッタ 一量に応じた信号を CPU16へ出力する。
[0065] バイフェーズデータジッター検出回路 15を用いて、光ディスク 1への記録,再生状 態が最も安定した状態になるよう、記録,再生の処理を行う構成を説明する。
[0066] ピットが記録またはピットが記録されて 、な 、光ディスク 1をトラックトレースして!/、る 状態で CPU16からサーボコントローラ 18に対し、トラッキング駆動信号 19に徐々にト ラッキング駆動オフセット 21をカ卩えるように指示を出す。サーボコントローラ 18は、 CP U16から与えられた指示に従って、トラッキング駆動信号 19にトラッキング駆動オフ セット 21をカ卩える。サーボコントローラ 18によって、トラッキング駆動信号 19にトラツキ ング駆動オフセット 21が加えられることにより、対物レンズ 5によってフォトディテクタ 7 の上に集光されるレーザー光のスポット位置がずれていく。トラッキング駆動信号 19 に対して、必要範囲のトラッキング駆動オフセット 21をカ卩ぇ終わった後、トラックトレー ス動作を終了する。
[0067] 前述処理中、光ディスク 1から反射したレーザー光は、対物レンズ 5を通って、フォト ディテクタ 7で受光される。フォトディテクタ 7は、受光したレーザーを電気信号に変換 して FEP8に出力する。 FEP8では、フォトディテクタ 7から入力した電気信号からゥォ ブル信号を生成する。生成されたゥォブル信号に含まれるアドレス情報は、ノイフェ ーズデータ生成回路 11にて、バイフェーズデータに変換される。その後、ノ《イフェ一 ズデータジッター検出回路 15に入力され、ゥォブルジッター値が検出される。検出さ れたゥォブルジッター値は、 CPU16に入力される。
[0068] このようにして、トラッキング駆動信号 19にカ卩えられるトラッキング駆動オフセット 21 の量に応じたゥォブルジッター値が検出され、 CPU16では、ゥォブルジッター値が最 小になるトラッキング駆動オフセット量が求められる。求められたトラッキング駆動オフ セット量は、メモリ 17に記憶される。
[0069] さらに前記 CPU16は、メモリ 17にトラッキング駆動オフセット量を記憶した後に光デ イスク 1へアクセスする時には、メモリ 17に記録されている前記レンズエラー信号 25が 基準電位に設定された状態でのトラッキング駆動オフセット量分だけ、ビームスポット 位置をセンター力 ずらして記録,再生するよう構成されており、光ディスク 1にデー タを記録,再生する際に、より安定した状態で、記録,再生を行うことができる。
実施の形態 4
[0070] (実施の形態 1)では CPU16を、ピットが記録またはピットが記録されて 、な 、光デ イスク 1を使用し、分割されたゥォブル信号 (A+D、 B + C) 22のバランスが均等にな るトラッキング駆動オフセット量を求めてメモリ 17に記憶し、光ディスク 1へアクセスす る時には、メモリ 17に記録されているトラッキング駆動オフセット量分だけ、ビームスポ ット位置をセンターからずらして記録,再生するよう構成した力 CPU16を次のように 構成しても同様の効果を期待できる。
[0071] まず、図 1によって、 ATIP読み取りエラー検出回路 14について説明する。
[0072] FEP8によって制御されたレーザー駆動回路 6の出力電流力 レーザーダイオード 3に流れる。流れた電流量に応じた出力量のレーザー光が、レーザーダイオード 3か ら出射される。
[0073] 出射されたレーザー光は、対物レンズ 5によって光ディスク 1上に集光される。光デ イスク 1から反射されたレーザーは、対物レンズ 5を再び通りフォトディテクタ 7で受光 される。
[0074] フォトディテクタ 7は、受光したレーザー光を電気信号に変換し、 FEP8に出力する 。 FEP8では、フォトディテクタ 7から入力した信号力もゥォブル信号を生成する。 FEP 8で生成されたゥォブル信号は、バイフェーズデータ生成回路 11に入力される。
[0075] バイフェーズデータ生成回路 11では、入力されたゥォブル信号からバイフェーズデ ータを取り出す。詳しくは、光ディスク 1上のグループの両端は、周波数変調された形 で波打っており、前述のゥォブル信号には、この周波数変調された成分が含まれて いる。バイフヱーズデータ生成回路 11は、この周波数変調された成分を抽出して、周 波数復調しバイフヱーズデータを取り出す回路である。
[0076] バイフェーズデータ生成回路 11にて取り出されたバイフェーズデータは、 ATIPデ コーダ 9に入力され、アドレス情報へ変換される、この時、 ATIP読み取りエラー検出 回路 14によりエラー数をカウントし、 CPU16へ出力する。
[0077] ATIP読み取りエラー検出回路 14を用いて、光ディスク 1への記録,再生状態が最 も安定するよう、記録,再生の処理を行う構成を説明する。
[0078] ピットが記録またはピットが記録されて 、な 、光ディスク 1をトラックトレースして!/、る 状態で CPU16からサーボコントローラ 18に対し、トラッキング駆動信号 19に徐々にト ラッキング駆動オフセット 21をカ卩えるように指示を出す。サーボコントローラ 18は、 CP U16から与えられた指示に従って、トラッキング駆動信号 19にトラッキング駆動オフ セット 21をカ卩える。サーボコントローラ 18によって、トラッキング駆動信号 19にトラツキ ング駆動オフセット 21が加えられることにより、対物レンズ 5によってフォトディテクタ 7 上に集光されるレーザー光のスポット位置がずれていく。トラッキング駆動信号 19に 対して、必要範囲のトラッキング駆動オフセット 21をカ卩ぇ終わった後、トラックトレース 動作を終了する。
[0079] 前述処理中、光ディスク 1から反射したレーザー光は、対物レンズ 5を通って、フォト ディテクタ 7で受光される。フォトディテクタ 7は、受光したレーザーを電気信号に変換 し FEP8に出力する。 FEP8では、フォトディテクタ 7から入力された電気信号からゥォ ブル信号を生成する。生成されたゥォブル信号に含まれるアドレス情報は、ノイフェ ーズデータ生成回路 11にて、バイフェーズデータに変換される。その後、 ATIP読み 取り検出回路 15に入力され、 ATIPのエラー数が検出される。検出された ATIPエラ 一数は、 CPU16に入力される。
[0080] このようにして、トラッキング駆動信号 19にカ卩えられるトラッキング駆動オフセット 21 の量に応じた ATIPエラー数が検出され、 CPU16では、 ATIPエラー数が最小にな るトラッキング駆動オフセット量が CPU16にて求められる。求められたトラッキング駆 動オフセット量は、メモリ 17に記憶される。
[0081] さらに前記 CPU16は、メモリ 17にトラッキング駆動オフセット量を記憶した後に光デ イスク 1へアクセスする時には、メモリ 17に記録されている前記レンズエラー信号 25が 基準電位に設定された状態でのトラッキング駆動オフセット量分だけ、ビームスポット 位置をセンター力 ずらして記録,再生するよう構成されており、光ディスク 1にデー タを記録,再生する際に、より安定した状態で、記録,再生を行うことができる。
[0082] なお、ここでは CD記録可能ディスクに使われている絶対時間アドレス情報 ATIPを 例に記述を行って 、るが、絶対時間アドレス情報の呼ばれ方は光デイスの種類毎に 異なり、例えば DVD— R、 RWでは LPP(Land Pre- Pit)、 DVD+R、 RWでは ADIP (Address In Pre— Groove)、 DVD— RAMでは、 CAPA (Complementary Allocated Pit Address)等が同等の情報として上げられる。つまり、本内容は光ディスクの種類 に係わらず、全ての絶対時間アドレス情報に対して実施可能である。 実施の形態 5
[0083] (実施の形態 1)〜(実施の形態 4)では、ピットが記録またはピットが記録されて!、な V、光ディスクを使用し、求めた下記の何れかのトラッキング駆動オフセット量、
1.分割されたゥォブル信号バランスが均等となるトラッキング駆動オフセット量
2.レンズエラー信号 25が基準電圧となるトラッキング駆動オフセット量
3.ゥォブル信号ジッター値が最小となるトラッキング駆動オフセット量
4.絶対時間アドレス情報読み取りエラー数が最小となるトラッキング駆動オフセット を、光ディスクに記録,再生する際に、トラッキング駆動信号 19に加えるよう CPU16 を構成した力 CPU16を次のように構成することによって、総合的な品位が良い、よ り安定した状態で記録再生できる。
[0084] この(実施の形態 5)の光ディスク記録再生装置の CPU16は、前記(実施の形態 1) の内容に沿って、分割されたゥォブル信号バランスが均等となるトラッキング駆動オフ セット量を求めるとともに、同じく前記(実施の形態 2)の内容に沿ってレンズエラー信 号 25が基準電圧となるトラッキング駆動オフセット量を求め、例えば、メモリ 17に個別 に記憶し、これら 2つのトラッキング駆動オフセット量の差に、一定の比率 a5を掛けて 総合的に安定する最終トラッキング駆動オフセット量を割り出す。
[0085] 具体的には、(実施の形態 1)にて求めたトラッキング駆動オフセット量 =yl、また( 実施の形態 2)にて求めたトラッキング駆動オフセット量 =y2とすると、求める最終トラ ッキング駆動オフセット量 z5を次の式で計算する。
[0086] z5 = a5 X (yl +y2)
ただし、 a5の値は、 z5の値が ylと y2の間の値を取るように設定する。
[0087] この式にて求めた最終トラッキング駆動オフセット量 zlを、 CPU16カ モリ 17に記 憶させる。
[0088] さらに CPU16は、最終トラッキング駆動オフセット量 z5が決定された後の光ディスク 1へアクセスする時には、前記の最終トラッキング駆動オフセット量 z5分だけ、ビーム スポット位置をセンターからずらして記録,再生するよう構成されており、光ディスク 1 にデータを記録,再生する時には、総合的な品位が良い、より安定した状態で記録, 再生できる。
実施の形態 6
[0089] (実施の形態 1)〜(実施の形態 4)では、ピットが記録またはピットが記録されて!、な V、光ディスクを使用し、求めた下記の何れかのトラッキング駆動オフセット量、
1.分割されたゥォブル信号バランスが均等となるトラッキング駆動オフセット量
2.レンズエラー信号 25が基準電圧となるトラッキング駆動オフセット量
3.ゥォブル信号ジッター値が最小となるトラッキング駆動オフセット量
4.絶対時間アドレス情報情報読み取りエラー数が最小となるトラッキング駆動オフ セット量
を、光ディスクに記録,再生する際に、トラッキング駆動信号 19に加えるよう CPU16 を構成した力 CPU16を次のように構成することによって、総合的な品位が良い、よ り安定した状態で記録再生できる。
[0090] この(実施の形態 6)の光ディスク記録再生装置の CPU16は、前記(実施の形態 1) の内容に沿って、分割されたゥォブル信号バランスが均等となるトラッキング駆動オフ セット量を求めるとともに、同じく前記(実施の形態 3)の内容に沿ってゥォブル信号ジ ッター値が最小となるトラッキング駆動オフセット量を求め、例えば、メモリ 17に個別 に記憶し、これら 2つのトラッキング駆動オフセット量の差に、一定の比率 a6を掛けて 総合的に安定する最終トラッキング駆動オフセット量を割り出す。
[0091] 具体的には、(実施の形態 1)にて求めたトラッキング駆動オフセット量 =yl、また( 実施の形態 3)にて求めたトラッキング駆動オフセット量 =y3とすると、求める最終トラ ッキング駆動オフセット量 z6を次の式で計算する。
[0092] z6 = a6 X (yl +y3)
ただし、 a6の値は、 z6の値が ylと y3の間の値を取るように設定する。
[0093] この式にて求めた最終トラッキング駆動オフセット量を、 CPU16がメモリ 17に記憶 させる。
[0094] さらに CPU16は、最終トラッキング駆動オフセット量 z6が決定された後の光ディスク 1へアクセスする時には、前記の最終トラッキング駆動オフセット量 z6分だけ、ビーム スポット位置をセンターからずらして記録,再生するよう構成されており、光ディスク 1 にデータを記録,再生する時には、総合的な品位が良い、より安定した状態で記録, 生できる。
実施の形態 7
[0095] (実施の形態 1)〜(実施の形態 4)では、ピットが記録またはピットが記録されて!、な V、光ディスクを使用し、求めた下記の何れかのトラッキング駆動オフセット量、
1.分割されたゥォブル信号バランスが均等となるトラッキング駆動オフセット量
2.レンズエラー信号 25が基準電圧となるトラッキング駆動オフセット量
3.ゥォブル信号ジッター値が最小となるトラッキング駆動オフセット量
4.絶対時間アドレス情報読み取りエラー数が最小となるトラッキング駆動オフセット を、光ディスクに記録,再生する際に、トラッキング駆動信号 19に加えるよう CPU16 を構成した力 CPU16を次のように構成することによって、総合的な品位が良い、よ り安定した状態で記録再生できる。
[0096] この(実施の形態 7)の光ディスク記録再生装置の CPU16は、前記(実施の形態 1) の内容に沿って、分割されたゥォブル信号バランスが均等となるトラッキング駆動オフ セット量を求めるとともに、同じく前記(実施の形態 4)の内容に沿って絶対時間アドレ ス情報読み取りエラー数が最小となるトラッキング駆動オフセット量を求め、例えば、 メモリ 17に個別に記憶し、これら 2つのトラッキング駆動オフセット量の差に、一定の 比率を掛けて総合的に安定する最終トラッキング駆動オフセット量を割り出す。
[0097] 具体的には、(実施の形態 1)にて求めたトラッキング駆動オフセット量 =yl、また( 実施の形態 4)にて求めたトラッキング駆動オフセット量 =y4とすると、求める最終トラ ッキング駆動オフセット量 z7を次の式で計算する。
[0098] z7 = a7 X (yl +y4)
ただし、 a7の値は、 z7の値が ylと y4の間の値を取るように設定する。
[0099] この式にて求めた最終トラッキング駆動オフセット量を、 CPU16がメモリ 17に記憶 させる。
[0100] さらに CPU16は、最終トラッキング駆動オフセット量 z7が決定された後の光ディスク 1へアクセスする時には、前記の最終トラッキング駆動オフセット量 z7分だけ、ビーム スポット位置をセンターからずらして記録,再生するよう構成されており、光ディスク 1 にデータを記録,再生する時には、総合的な品位が良い、より安定した状態で記録, 再生できる。
実施の形態 8
[0101] (実施の形態 1)〜(実施の形態 4)では、ピットが記録またはピットが記録されて!、な い光ディスクをトラックトレースした場合に求めた下記の何れかのトラッキング駆動オフ セット量、
1.分割されたゥォブル信号バランスが均等となるトラッキング駆動オフセット量
2.レンズエラー信号 25が基準電圧となるトラッキング駆動オフセット量
3.ゥォブル信号ジッター値が最小となるトラッキング駆動オフセット量
4.絶対時間アドレス情報読み取りエラー数が最小となるトラッキング駆動オフセット を、光ディスクに記録,再生する際に、トラッキング駆動信号 19に加えるよう CPU16 を構成した力 CPU16を次のように構成することによって、総合的な品位が良い、よ り安定した状態で記録再生できる。
[0102] この(実施の形態 8)の光ディスク記録再生装置の CPU16は、前記(実施の形態 2) の内容に沿って、レンズエラー信号 25が基準電圧となるトラッキング駆動オフセット 量を求めるとともに、同じく前記(実施の形態 3)の内容に沿ってゥォブル信号ジッタ 一値が最小となるトラッキング駆動オフセット量 y3を求め、例えば、メモリ 17に個別に 記憶し、これら 2つのトラッキング駆動オフセット量の差に、一定の比率を掛けて総合 的に安定する最終トラッキング駆動オフセット量を割り出す。
[0103] 具体的には、(実施の形態 2)にて求めたトラッキング駆動オフセット量 =y2、また( 実施の形態 3)にて求めたトラッキング駆動オフセット量 =y3とすると、求める最終トラ ッキング駆動オフセット量 z8を次の式で計算する。
[0104] z8 = a8 X (y2+y3)
ただし、 a8の値は、 z8の値力 ^2と y3の間の値を取るように設定する。
[0105] この式にて求めた最終トラッキング駆動オフセット量を、 CPU16がメモリ 17に記憶 させる。 [0106] さらに CPU16は、最終トラッキング駆動オフセット量 z8が決定された後の光ディスク 1へアクセスする時には、前記の最終トラッキング駆動オフセット量 z8分だけ、ビーム スポット位置をセンターからずらして記録,再生するよう構成されており、光ディスク 1 にデータを記録,再生する時には、総合的な品位が良い、より安定した状態で記録, 再生できる。
実施の形態 9
[0107] (実施の形態 1)〜(実施の形態 4)では、ピットが記録またはピットが記録されて!、な い光ディスクをトラックトレースした場合に求めた下記の何れかのトラッキング駆動オフ セット量、
1.分割されたゥォブル信号バランスが均等となるトラッキング駆動オフセット量
2.レンズエラー信号 25が基準電圧となるトラッキング駆動オフセット量
3.ゥォブル信号ジッター値が最小となるトラッキング駆動オフセット量
4.絶対時間アドレス情報読み取りエラー数が最小となるトラッキング駆動オフセット を、光ディスクに記録,再生する際に、トラッキング駆動信号 19に加えるよう CPU16 を構成した力 CPU16を次のように構成することによって、総合的な品位が良い、よ り安定した状態で記録再生できる。
[0108] この(実施の形態 9)の光ディスク記録再生装置の CPU16は、前記(実施の形態 2) の内容に沿って、レンズエラー信号 25が基準電圧となるトラッキング駆動オフセット 量を求めるとともに、(実施の形態 4)の内容に沿って絶対時間アドレス情報読み取り エラー数が最小となるトラッキング駆動オフセット量を求め、例えば、メモリ 17に個別 に記憶し、これら 2つのトラッキング駆動オフセット量の差に、一定の比率を掛けて総 合的に安定する最終トラッキング駆動オフセット量を割り出す。
[0109] 具体的には、(実施の形態 2)にて求めたトラッキング駆動オフセット量 =y2、また( 実施の形態 4)にて求めたトラッキング駆動オフセット量 =y4とすると、求める最終トラ ッキング駆動オフセット量 z9を次の式で計算する。
[0110] z9 = a9 X (y2+y4)
ただし、 a9の値は、 z9の値力 ^2と y4の間の値を取るように設定する。 [0111] この式にて求めた最終トラッキング駆動オフセット量 z9を、 CPU16カ モリ 17に記 憶させる。
[0112] さらに CPU16は、最終トラッキング駆動オフセット量 z9が決定された後の光ディスク 1へアクセスする時には、前記の最終トラッキング駆動オフセット量 z9分だけ、ビーム スポット位置をセンターからずらして記録,再生するよう構成されており、光ディスク 1 にデータを記録,再生する時には、総合的な品位が良い、より安定した状態で記録, 再生できる。
実施の形態 10
[0113] (実施の形態 1)〜(実施の形態 4)では、ピットが記録またはピットが記録されていな い光ディスクをトラックトレースした場合に求めた下記の何れかのトラッキング駆動オフ セット量、
1.分割されたゥォブル信号バランスが均等となるトラッキング駆動オフセット量
2.レンズエラー信号 25が基準電圧となるトラッキング駆動オフセット量
3.ゥォブル信号ジッター値が最小となるトラッキング駆動オフセット量
4.絶対時間アドレス情報読み取りエラー数が最小となるトラッキング駆動オフセット を、光ディスクに記録,再生する際に、トラッキング駆動信号 19に加えるよう CPU16 を構成した力 CPU16を次のように構成することによって、総合的な品位が良い、よ り安定した状態で記録再生できる。
[0114] この(実施の形態 10)の光ディスク記録再生装置の CPU16は、前記(実施の形態 3 )の内容に沿って、ゥォブル信号ジッター値が最小となるトラッキング駆動オフセット量 を求めるとともに、(実施の形態 4)の内容に沿って絶対時間アドレス情報読み取りェ ラー数が最小となるトラッキング駆動オフセット量を求め、例えば、メモリ 17に個別に 記憶し、これら 2つのトラッキング駆動オフセット量の差に、一定の比率を掛けて総合 的に安定する最終トラッキング駆動オフセット量を割り出す。
[0115] 具体的には、(実施の形態 3)にて求めたトラッキング駆動オフセット量 =y3、また( 実施の形態 4)にて求めたトラッキング駆動オフセット量 =y4とすると、求める最終トラ ッキング駆動オフセット量 z9を次の式で計算する。 [0116] zlO = alO X (y3+y4)
ただし、 alOの値は、 zlOの値力y3と y4の間の値を取るように設定する。
[0117] この式にて求めた最終トラッキング駆動オフセット量 zlOを、 CPU16がメモリ 17に 記憶させる。
[0118] さらに CPU16は、最終トラッキング駆動オフセット量 zlOが決定された後の光デイス ク 1へアクセスする時には、前記の最終トラッキング駆動オフセット量 zlO分だけ、ビー ムスポット位置をセンター力 ずらして記録,再生するよう構成されており、光ディスク 1にデータを記録,再生する時には、総合的な品位が良い、より安定した状態で記録 ,再生できる。
産業上の利用可能性
[0119] 本発明は、 CD、 DVD記録再生型ドライブや、これらを搭載した各種機器の信頼性 を向上させるために使用できる。

Claims

請求の範囲
[1] 光ディスクからの反射光を受光検出するフォトディテクタと、前記フォトディテクタの 出力に基づ 、てトラッキングエラー信号を発生する手段と、トラッキングエラー信号に 基づいてトラッキング駆動信号を発生する手段を有する光ディスク記録再生装置に ぉ 、て、 前記トラッキング駆動信号に対してトラッキング駆動オフセット量を与えてフ オトディテクタ上に照射されるビームスポット位置をずらす手段と、
前記フォトディテクタ上に照射されるビームスポット位置をずらして、ピットが記録ま たはピットが記録されて!、な!/、光ディスクを使用し、分割されたゥォブル信号バランス を検出する手段と、
前記ゥォブル信号バランスと前記トラッキング駆動オフセット量をもとに前記ゥォブル 信号バランスが均等となるトラッキング駆動オフセット量を記憶する手段と を有し、光ディスクに記録,再生する時には前記トラッキング駆動オフセット量を前記 トラッキング駆動信号に加えるよう構成した
光ディスク記録再生装置。
[2] 光ディスクからの反射光を受光検出するフォトディテクタと、前記フォトディテクタの 出力に基づ 、てトラッキングエラー信号を発生する手段と、トラッキングエラー信号に 基づいてトラッキング駆動信号を発生する手段を有する光ディスク記録再生装置に ぉ 、て、 前記トラッキング駆動信号に対してトラッキング駆動オフセット量を与えてフ オトディテクタ上に照射されるビームスポット位置をずらす手段と、
前記フォトディテクタ上に照射されるビームスポット位置をずらして、ピットが記録ま たはピットが記録されて 、な 、光ディスクを使用し、レンズエラー信号を検出する手段 と、
前記レンズエラー信号と前記トラッキング駆動オフセット量をもとに前記レンズエラ 一信号が基準電圧となるトラッキング駆動オフセット量を記憶する手段と
を有し、光ディスクに記録,再生する時には前記トラッキング駆動オフセット量を前記 トラッキング駆動信号に加えるよう構成した
光ディスク記録再生装置。
[3] 光ディスクからの反射光を受光検出するフォトディテクタと、前記フォトディテクタの 出力に基づ 、てトラッキングエラー信号を発生する手段と、トラッキングエラー信号に 基づいてトラッキング駆動信号を発生する手段を有する光ディスク記録再生装置に ぉ 、て、 前記トラッキング駆動信号に対してトラッキング駆動オフセット量を与えてフ オトディテクタ上に照射されるビームスポット位置をずらす手段と、
前記フォトディテクタ上に照射されるビームスポット位置をずらして、ピットが記録ま たはピットが記録されて ヽな 、光ディスクをトラックトレースした場合のゥォブル信号ジ ッター値を検出する手段と、
前記ゥォブル信号ジッター値と前記トラッキング駆動オフセット量をもとにゥォブル信 号ジッター値が最小となるトラッキング駆動オフセット量を記憶する手段と を有し、光ディスクに記録,再生する時には前記トラッキング駆動オフセット量を前記 トラッキング駆動信号に加えるよう構成した
光ディスク記録再生装置。
[4] 光ディスクからの反射光を受光検出するフォトディテクタと、前記フォトディテクタの 出力に基づ 、てトラッキングエラー信号を発生する手段と、トラッキングエラー信号に 基づいてトラッキング駆動信号を発生する手段を有する光ディスク記録再生装置に ぉ 、て、 前記トラッキング駆動信号に対してトラッキング駆動オフセット量を与えてフ オトディテクタ上に照射されるビームスポット位置をずらす手段と、
前記フォトディテクタ上に照射されるビームスポット位置をずらして、ピットが記録ま たはピットが記録されて 、な 、光ディスクをトラックトレースした場合の絶対時間アドレ ス情報読み取りエラー数を検出する手段と、
前記絶対時間アドレス情報読み取りエラー数と前記トラッキング駆動オフセット量を もとに、前記絶対時間アドレス情報読み取りエラー数が最小となるトラッキング駆動ォ フセット量を記憶する手段と
を有し、光ディスクに記録,再生する時には前記トラッキング駆動オフセット量を前記 トラッキング駆動信号に加えるよう構成した
光ディスク記録再生装置。
[5] 請求項 1によって導き出したトラッキング駆動オフセット量と、
請求項 2によって導き出したトラッキング駆動オフセット量との差に、一定の比率を 掛けて最終トラッキング駆動オフセット量を計算して記憶し、光ディスクに記録,再生 する時には前記最終トラッキング駆動オフセット量を前記トラッキング駆動信号に加え るよう構成した
光ディスク記録再生装置。
[6] 請求項 1によって導き出したトラッキング駆動オフセット量と、請求項 3によって導き 出したトラッキング駆動オフセット量との差に、一定の比率を掛けて最終トラッキング 駆動オフセット量を計算して記憶し、光ディスクに記録,再生する時には前記最終トラ ッキング駆動オフセット量を前記トラッキング駆動信号に加えるよう構成した 光ディスク記録再生装置。
[7] 請求項 1によって導き出したトラッキング駆動オフセット量と、
請求項 4によって導き出したトラッキング駆動オフセット量との差に、一定の比率を 掛けて最終トラッキング駆動オフセット量を計算して記憶し、光ディスクに記録,再生 する時には前記最終トラッキング駆動オフセット量を前記トラッキング駆動信号に加え るよう構成した
光ディスク記録再生装置。
[8] 請求項 2によって導き出したトラッキング駆動オフセット量と、
請求項 3によって導き出したトラッキング駆動オフセット量との差に、一定の比率を 掛けて最終トラッキング駆動オフセット量を計算して記憶し、光ディスクに記録,再生 する時には前記最終トラッキング駆動オフセット量を前記トラッキング駆動信号に加え るよう構成した
光ディスク記録再生装置。
[9] 請求項 2によって導き出したトラッキング駆動オフセット量と、
請求項 4によって導き出したトラッキング駆動オフセット量との差に、一定の比率を 掛けて最終トラッキング駆動オフセット量を計算して記憶し、光ディスクに記録,再生 する時には前記最終トラッキング駆動オフセット量を前記トラッキング駆動信号に加え るよう構成した
光ディスク記録再生装置。
[10] 請求項 3によって導き出したトラッキング駆動オフセット量と、 請求項 4によって導き出したトラッキング駆動オフセット量との差に、一定の比率を 掛けて最終トラッキング駆動オフセット量を計算して記憶し、光ディスクに記録,再生 する時には前記最終トラッキング駆動オフセット量を前記トラッキング駆動信号に加え るよう構成した
光ディスク記録再生装置。
トラッキングァクチユエータで対物レンズを動力して光ディスクの上に集光し、前記 光ディスクからの反射光をフォトディテクタで検出し、前記対物レンズによって光ディ スクの上に集光されたレーザー光がトラックのセンターに来るように、前記トラッキング ァクチユエータを制御するトラッキング駆動信号にオフセットを加えて記録,再生する に際し、
記録,再生に先立って、前記フォトディテクタ上に照射されるビームスポット位置を ずらして、ピットが記録またはピットが記録されていない光ディスクを使用し、求めた下 記の少なくとも 1つのトラッキング駆動オフセット量に基づくオフセット量を記憶し、
1.分割されたゥォブル信号バランスが均等となるトラッキング駆動オフセット量
2.レンズエラー信号が基準電圧となるトラッキング駆動オフセット量
3.ゥォブル信号ジッター値が最小となるトラッキング駆動オフセット量
4.絶対時間アドレス情報読み取りエラー数が最小となるトラッキング駆動オフセット 光ディスクに記録,再生する時には前記最終トラッキング駆動オフセット量を前記ト ラッキング駆動信号に加えて前記対物レンズの位置をコントロールする
光ディスク記録再生装置の制御方法。
PCT/JP2005/006948 2004-04-12 2005-04-08 光ディスク記録再生装置 WO2005101388A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/547,252 US20070206454A1 (en) 2004-04-12 2005-04-08 Optical Disc Recording/Reproduction Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-116290 2004-04-12
JP2004116290A JP2005302140A (ja) 2004-04-12 2004-04-12 光ディスク記録再生装置

Publications (1)

Publication Number Publication Date
WO2005101388A1 true WO2005101388A1 (ja) 2005-10-27

Family

ID=35150222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006948 WO2005101388A1 (ja) 2004-04-12 2005-04-08 光ディスク記録再生装置

Country Status (4)

Country Link
US (1) US20070206454A1 (ja)
JP (1) JP2005302140A (ja)
CN (1) CN1930616A (ja)
WO (1) WO2005101388A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295518B (zh) * 2007-04-28 2012-09-19 先锋高科技(上海)有限公司 光盘装置
US20090103403A1 (en) * 2007-10-19 2009-04-23 Kurosawa Hideo Optical disc apparatus and lens shift correction method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125733A (ja) * 1987-11-11 1989-05-18 Mitsubishi Electric Corp 光デイスクのトラツキング制御装置
JPH06139583A (ja) * 1992-10-22 1994-05-20 Hitachi Ltd 光ディスク装置
JPH0714173A (ja) * 1993-06-28 1995-01-17 Victor Co Of Japan Ltd 光ディスク記録媒体及びそのトラッキング方法
JPH0773480A (ja) * 1993-09-01 1995-03-17 Mitsubishi Electric Corp 光学式情報記録再生装置
JPH1021561A (ja) * 1996-07-02 1998-01-23 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2002288855A (ja) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2003173549A (ja) * 2001-11-30 2003-06-20 Toshiba Corp 光ディスク装置及びフォーカスオフセット調整方法
JP2004227747A (ja) * 2002-11-29 2004-08-12 Toshiba Corp ディスク装置及びトラッキングバランス調整方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125733A (ja) * 1987-11-11 1989-05-18 Mitsubishi Electric Corp 光デイスクのトラツキング制御装置
JPH06139583A (ja) * 1992-10-22 1994-05-20 Hitachi Ltd 光ディスク装置
JPH0714173A (ja) * 1993-06-28 1995-01-17 Victor Co Of Japan Ltd 光ディスク記録媒体及びそのトラッキング方法
JPH0773480A (ja) * 1993-09-01 1995-03-17 Mitsubishi Electric Corp 光学式情報記録再生装置
JPH1021561A (ja) * 1996-07-02 1998-01-23 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2002288855A (ja) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2003173549A (ja) * 2001-11-30 2003-06-20 Toshiba Corp 光ディスク装置及びフォーカスオフセット調整方法
JP2004227747A (ja) * 2002-11-29 2004-08-12 Toshiba Corp ディスク装置及びトラッキングバランス調整方法

Also Published As

Publication number Publication date
JP2005302140A (ja) 2005-10-27
US20070206454A1 (en) 2007-09-06
CN1930616A (zh) 2007-03-14

Similar Documents

Publication Publication Date Title
JP3566690B2 (ja) ウォブル信号検出回路及び光ディスク装置
JP3929207B2 (ja) 光学式記録媒体のプリピット検出装置
JP3914018B2 (ja) ウォブル信号検出装置及び光学的情報記録再生装置
US20020122362A1 (en) Method of determining optimum tracking offset value during optimum power control (OPC) for optical disk drive
US7602690B2 (en) Aberration adjustment device, method thereof, optical pickup, and optical information recording apparatus
JP4095514B2 (ja) 光ディスク再生装置及び光ディスク再生方法
US7173890B2 (en) Wobbling signal demodulation method, wobbling signal demodulation circuit, and optical disk drive
JP2008282511A (ja) 光ディスク装置及び光ディスク再生方法
WO2005101388A1 (ja) 光ディスク記録再生装置
JP2000222747A (ja) 光ディスク装置およびサーボパラメータ調整装置
JP2000276743A (ja) 光磁気ディスクの記録再生方法及び記録再生装置
JP2003317274A (ja) 光ディスク装置
WO2005101389A1 (ja) 光ディスク記録再生装置
JP4403393B2 (ja) 復調装置、ディスクドライブ装置、復調方法
JP2005216461A (ja) フォーカスバランス値調整方法
JP3802234B2 (ja) 光ディスク装置
JP2001307359A (ja) 光ディスク傾き検出方法、光学ピックアップ装置および光ディスク装置
JP2766178B2 (ja) 光ディスク装置のミラー信号検出方法及びその回路
JP2008071423A (ja) ディスクドライブ装置、フォーカスバイアス及び球面収差補正値の調整方法
WO2010073450A1 (ja) 信号処理回路および光ディスク再生装置
JP3910787B2 (ja) ウォブル信号検出装置、光ディスク装置及び情報処理装置
JP2005353195A (ja) ウォブル信号検出回路及び光ディスク装置
JP4396707B2 (ja) 光ディスク装置
JP4101199B2 (ja) ウォブル信号検出回路、ウォブル信号検出装置及び光ディスク装置
JP3615751B1 (ja) プッシュプル信号生成装置及び光ディスク装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580007806.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11547252

Country of ref document: US

Ref document number: 2007206454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11547252

Country of ref document: US