Nothing Special   »   [go: up one dir, main page]

WO2005036767A1 - 無線通信装置 - Google Patents

無線通信装置 Download PDF

Info

Publication number
WO2005036767A1
WO2005036767A1 PCT/JP2004/012501 JP2004012501W WO2005036767A1 WO 2005036767 A1 WO2005036767 A1 WO 2005036767A1 JP 2004012501 W JP2004012501 W JP 2004012501W WO 2005036767 A1 WO2005036767 A1 WO 2005036767A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
data
reflected wave
signal
wireless communication
Prior art date
Application number
PCT/JP2004/012501
Other languages
English (en)
French (fr)
Inventor
Kunio Fukuda
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to KR1020057010721A priority Critical patent/KR101114505B1/ko
Priority to EP04772457.0A priority patent/EP1672804B1/en
Priority to US10/537,490 priority patent/US7221908B2/en
Publication of WO2005036767A1 publication Critical patent/WO2005036767A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)

Definitions

  • the present invention relates to a radio communication device using a radio communication method using microwaves in a specific frequency band, and more particularly to a radio communication device that realizes low power consumption communication operation between relatively short-distance devices.
  • the present invention relates to a wireless communication apparatus that performs relatively short-distance data communication by a back-skitta method utilizing absorption and reflection of a received radio wave based on an operation of terminating an antenna, and in particular, to a higher communication apparatus
  • the present invention relates to a wireless communication device that incorporates a bit rate modulation process and improves the transmission rate of back-skitta data communication.
  • RFID is a system that consists of a tag and a reader.
  • the reader reads information stored in the tag in a non-contact manner.
  • Other names include “ID system and data 'carrier' system”, but the RFID system is common worldwide. It may be called RFID for short.
  • As a communication method between the tag and the reader / writer there are an electromagnetic coupling method, an electromagnetic induction method, an electric wave communication method, and the like (for example, see Non-Patent Document 1).
  • An RFID tag is a device that includes unique identification information.
  • the RFID tag has an operation characteristic of oscillating a radio wave of a modulation frequency corresponding to the identification information in response to receiving a radio wave of a specific frequency.
  • the side can identify what it is based on the oscillation frequency of the RFID tag. Therefore, in a system using RFID, it is possible to use the unique ID written on the RFID tag to determine an article, an owner, and the like.
  • the RFID system is used in a number of systems, including a system to control entry and exit, a system to identify goods in logistics, a system to clear fees in cafeterias, etc., and a system to prevent unauthorized removal of CDs and software at stores. Have been.
  • the wireless identification device can be manufactured in a small size by packaging (see, for example, Patent Document 1).
  • various data relating to an article or the like is transmitted to the receiving means of the IC chip via the antenna, and its output is stored in the memory, and the data in the memory is read out as necessary.
  • FIG. 9 shows a configuration example of a conventional RFID system.
  • Reference numeral 101 corresponds to the tag side of the RFID, and includes a tag chip 102 and an antenna 103.
  • As the antenna 103 a half-wave dipole 'antenna or the like is used.
  • the tag 'chip 102 includes a modulating unit 110, a rectifying' demodulating unit 112, and a memory unit 113.
  • the radio wave f transmitted from the tag 'reader 100 is received by the antenna 103, and the rectified' demodulation unit 1
  • the received radio wave f is rectified and converted into a DC power supply, and at the same time, the DC power supply starts a demodulation function to recognize that the signal is a read signal for the tag 101.
  • the power generated by the reception of the radio wave f is also supplied to the memory unit 113 and the modulation unit 110.
  • the memory unit 113 reads ro information stored in the memory and sends it to the modulation unit 110 as transmission data.
  • Modulating section 110 is constituted by diode 'switch 111, and repeats the on / off operation of diode' switch 111 according to the bit image of transmission data. That is, when the data is 1, the switch is turned on and the antenna is terminated at the antenna impedance (for example, 50 ohms). At this time, the electric wave from the tag 'reader 100 is absorbed. When the data is 0, the switch is turned off and the diode 'switch 111 is opened, and at the same time, the terminal of the antenna is also opened.
  • the radio wave from the tag 'reader 100 is reflected and returns to the transmission source.
  • the communication method of expressing data by the pattern of the reflection or absorption of the arriving radio wave in this way is called a “back-skitta method”. In this way, the tag 101 can send the internal information to the reader without power.
  • the tag reader 100 includes a host device 106 such as a portable information terminal, a tag reader module 104, and an antenna 105 connected to the tag reader module 104.
  • a host device 106 such as a portable information terminal
  • a tag reader module 104 such as a portable information terminal
  • an antenna 105 connected to the tag reader module 104.
  • the host device 106 notifies the communication control unit 120 of a read instruction of the tag 101 via the host 'interface unit 121.
  • the baseband processing unit 119 Upon receiving the tag read command from the communication control unit 120, the baseband processing unit 119 performs a predetermined editing process on the transmission data, further performs filtering, and then converts the data into a baseband signal as an ASK modulation unit 117.
  • Send to The ASK modulator 117 uses the frequency f of the frequency synthesizer 116 to perform ASK (Amplitude Shift)
  • the frequency setting of frequency synthesizer 116 is performed by communication control section 120.
  • the frequency transmitted to the tag is hopped to reduce the standing wave and multipath of the signal from the RF tag.
  • This hopping instruction is also performed by the communication control unit 120.
  • the transmission signal subjected to the ASK modulation is radiated toward the tag 101 from the antenna 105 via the circulator 114.
  • a signal having the same frequency as the transmission signal from the tag reader 100 is returned from the tag 101 due to reflection by the back reader system (described above).
  • This signal is received by the antenna 105 of the tag 'reader 100 and input to the mixer 115. Since the same local frequency f as in the transmission is input to the mixer 115, a signal modulated on the tag 101 side appears at the output of the mixer 115.
  • Demodulation section 118 demodulates the data consisting of 1 and 0 from this signal and sends it to communication control section 119.
  • the communication control unit 119 decodes the data, extracts the data (ID) stored in the memory 113 in the tag 101, and transfers the data (ID) from the host interface unit 120 to the host device 106.
  • the tag 'reader 100 can read the information in the tag 101.
  • the tag 'reader' can be used as a tag 'writer, and can write specified data on the host device 106 side to the memory 113 in the tag 101.
  • such a back-skitta-type wireless communication system has a communication range limited to a relatively short distance, and is typically used for identification and authentication of articles and persons, as represented by an RFID tag. Often applied.
  • the wireless communication of the back-skitta method has a feature that a wireless transmission path with extremely low power consumption can be established if the communication distance is limited.
  • IC chips equipped with a memory function have appeared, and the memory capacity has been increasing. Therefore, there is a demand for adopting the back-scatter communication in general data transmission, which is not limited to communication of relatively short data such as identification and authentication information.
  • bit rate modulation method such as ASK (Amplitude Shift Keying) or BPSK (Binary Phase Shift Keying) is employed.
  • ASK Amplitude Shift Keying
  • BPSK Binary Phase Shift Keying
  • Patent Document 1 JP-A-6-123773
  • Non-Patent Document 1 Klaus' Finkupler, Translated by Software Engineering Laboratory, "Principle and Application of RFID Handbook Contactless IC Card” (Nikkan Kogyo Shimbun)
  • An object of the present invention is to allow relatively short distance data communication to be suitably performed by a back-skitta method utilizing absorption and reflection of a received radio wave based on an operation of terminating an antenna.
  • the present invention has been made in consideration of the above problems, and a first aspect of the present invention is a wireless communication device that performs data communication by a back-and-forth scatterer method using reflection of a received radio wave,
  • the transmission unit
  • An antenna for receiving radio waves arriving from the transfer destination An antenna for receiving radio waves arriving from the transfer destination
  • the k-th one-way signal path gives a phase difference of (k-1) ⁇ / 2 11 — 1 ⁇ signal paths (where l ⁇ k ⁇ n)
  • a reflected wave forming unit for forming reflected waves having n different phases by selecting one of the signal paths according to the transmission data
  • a wireless communication device Expressing the transmitted data with a phase difference pattern of the reflected wave with respect to the received radio wave, A wireless communication device characterized by the above.
  • the signal path is one-way, and first to (n ⁇ 1) th phase shifters giving a phase difference of / 2 n + 1 are connected in series to the antenna.
  • the first signal path for obtaining the first reflected wave that directly reflects the received radio wave without passing through the first to the (k-1) phase shifters, and compares the first reflected wave with the first reflected wave.
  • (K-1) ⁇ / 2 11 Consists of the k-th signal path to obtain the k-th reflected wave whose phase is shifted by 1 (where 1 ⁇ k ⁇ n).
  • the reflected wave forming means transmission data 2 11 - separated one by one bit, 2 n - assign a phase 1 of the bits 0 and select the signal path corresponding to one of the combinations to the reflected wave
  • 2 n- phase PSK modulation can be performed.
  • the reflected wave forming means divides the transmission data into 2 n_1 bits each, and switches the reflection point according to a combination of 0 and 1 of 2 n -1 bits, thereby forming a reflected wave.
  • Phase can be assigned and 2 "phase PSK modulation can be realized.
  • first to third phase shifters providing a phase difference of / 8 in one way are connected in series to the antenna, and directly reflect the received radio wave without passing through any of the phase shifters.
  • a second signal path; a third signal path for reciprocating between the first and second phase shifters to obtain a third reflected wave whose phase is shifted by ⁇ compared to the first reflected wave; and A fourth signal path for reciprocating the first to third phase shifters and obtaining a fourth reflected wave whose phase is shifted by 3 ⁇ / 2 compared with the first reflected wave is provided.
  • the first signal path is selected.
  • the second signal path is selected.
  • a reflected wave shifted by a degree can be obtained.
  • the third signal path is selected, and a reflected wave whose phase is shifted by 180 degrees as compared with the case of data 00 can be obtained.
  • the fourth signal path is selected, and a reflected wave whose phase is shifted by 270 degrees as compared with the case of data 00 can be obtained. In this way, it is possible to create reflected waves having four phases that differ from each other by 90 degrees according to the value of the 2-bit data, and create a QPSK-modulated reflected wave. it can.
  • the reflected wave forming means can perform PSK modulation using only the first signal path and the third signal path.
  • the method of generating a polyphase modulated wave according to the present invention is also effective as a general RFID having no power supply besides application to the data transmission of the present invention.
  • the apparatus further includes a data receiving unit including a filter for passing a predetermined band of a signal received by the antenna and a detection unit for shaping the signal, and the data transmitting unit and the data receiving unit depending on whether to perform data transmission.
  • the signal received from the antenna can be input to the detection unit through a switch such as a high-frequency switch and a band-pass filter with a small loss.
  • a second aspect of the present invention is a wireless communication device that performs data communication by a back-skitta method using reflection of a received radio wave, wherein the data transmitting unit includes:
  • An antenna for receiving radio waves arriving from the transfer destination An antenna for receiving radio waves arriving from the transfer destination
  • a first reflected signal path comprising a first high frequency switch
  • a second reflection signal path comprising a phase modulation means for providing a phase difference of ⁇ / 8 and a second high-frequency switch;
  • a serial-to-parallel converter for converting serial transmission data into a parallel signal; and a combining / distributing unit for distributing a reception signal of the antenna to each of the reflection signal paths and combining outputs from the reflection signal paths.
  • Each of the high-frequency switches is turned on and off by each of the two serial / parallel converted data, and represents transmission data with a phase difference pattern of a reflected wave with respect to a received radio wave.
  • the two high-frequency switches are turned on / off to combine the binary phase modulators by changing the phase by / 8 phase, and to transmit the data respectively.
  • 4-phase PSK modulation can be performed.
  • the first reflected signal path composed of the first high-frequency switch operates as a BPSK modulator
  • the second reflected signal path composed of the binary phase modulating means and the second high-frequency switch is similarly operated.
  • BPSK modulator since the ⁇ / 8 phase is delayed by the binary phase modulation means, the ⁇ / 4 phase changes in the round trip, and the axis differs in phase by 90 degrees from the former BPSK modulator.
  • BPSK modulation is applied. This is equivalent to performing QPSK modulation because the I-axis BPSK modulation is performed on the first reflected signal path and the Q-axis BPSK modulation is performed on the second reflected signal path.
  • the composition Z distribution means is used for performing two distribution and composition.
  • the two carriers demultiplexed by the combining / distributing means from the antenna are subjected to QPSK modulation in the first and second reflected signal paths, and the modulated reflected signal is combined / combined. It is re-emitted from the antenna via the distribution means.
  • serial / parallel conversion means converts serial transmission data into I and Q parallel signals.
  • relatively short-distance data communication can be suitably performed by the back-skitta method utilizing absorption and reflection of a received radio wave based on the terminal operation of the antenna.
  • An excellent wireless communication device can be provided.
  • an excellent wireless communication apparatus that can improve the transmission rate of data communication of the back-skimmer scheme by incorporating modulation processing of a higher bit rate such as QPSK modulation. can do.
  • the present invention it is possible to reduce power consumption when wirelessly transmitting image data and the like from portable devices such as digital cameras and mobile phones to devices such as PCs, televisions and printers. To provide an excellent wireless communication system and an excellent wireless communication device. [0038] Further, according to the present invention, it is possible to realize low power consumption in a communication mode in which the transmission ratio occupies most of communication between devices limited to relatively short distances. Wireless communication system and wireless communication device can be provided.
  • ultra-low-consumption image transmission of an order of magnitude higher than that of a wireless LAN can be realized by a mopile device. This makes it possible to greatly increase the battery life of mobile devices.
  • the cost reduction of the wireless transmission module of the mobile device as the data transmission side can be easily realized as compared with the wireless LAN.
  • the radio transmission module on the mopile side is not subject to radio stations under the Radio Law, certification work such as certification of conformity is not required.
  • An object of the present invention is to realize low power consumption in a communication mode in which the transmission ratio occupies most of communication between devices located at relatively short distances.
  • Wireless transmission is performed using the reflected wave based on the back-skitta method used.
  • RFID systems themselves are widely known in the art as an example of wireless communication means that can only be applied locally.
  • the RFID is a system that includes a tag and a reader, and reads information stored in the tag in a non-contact manner by the reader.
  • An RFID tag is a device that contains unique identification information, has the operating characteristic of oscillating a radio wave of a modulation frequency corresponding to the identification information in response to the reception of a radio wave of a specific frequency, and the reading device has an RFID tag. You can specify what it is based on the oscillation frequency of the tag.
  • Communication methods between the tag and the reader / writer include an electromagnetic coupling method, an electromagnetic induction method, and a radio communication method.
  • the present invention relates to a radio communication system using a microwave such as the 2.4 GHz band.
  • FIG. 1 schematically shows a hardware configuration of a wireless communication apparatus 300 according to one embodiment of the present invention.
  • the illustrated wireless communication device 300 is a digital camera or camera-equipped mobile phone. This is equivalent to a device such as a telephone that transmits image data, and is driven by a battery (not shown) as a main power supply.
  • the digital camera itself includes a camera unit 302, a signal processing unit 303, a memory 'card' interface unit 304, an operation / display unit 305, and a USB interface unit 306.
  • the signal processing unit 303 converts the image data input by the camera unit 302 into image data of a predetermined format such as JPEG Qoint Photographic Experts Group), and outputs the image data to an external device via the memory card interface unit 204. Store it in the memory card 307.
  • the operation display unit 305 performs image display, various settings, and the like.
  • USB Universal Serial
  • a (Bus) interface unit 306 is used when performing image transfer to a PC using a USB interface.
  • the wireless communication device 300 uses an RFID tag based on a radio communication method as the wireless transmission module 308.
  • the wireless transmission module 308 includes an antenna 309, a high-frequency switch 310 and a high-frequency switch 311, a band-pass filter 312, and an ASK detector 313.
  • the 2.4 GHz band is used as the frequency of the radio wave.
  • the high-frequency switch 311 When performing data transmission such as image transfer, the high-frequency switch 311 is turned off together with the ASK detection unit 313 by a control signal from the signal processing unit 303, and is in an open state.
  • the wireless transmission module unit 308 Upon receiving the image data read from the memory card 307 by the signal processing unit 303, the wireless transmission module unit 308 turns on / off the other high-frequency switch 310 connected to the antenna 309 in accordance with the data bit image. Do. For example, when the data is 1, the high-frequency switch 310 is turned on, and when the data is 0, it is turned off.
  • the transfer destination can read the transmission data signal such as image data by detecting the reflection phase of the transmission radio wave. You can.
  • the image data is basically a reflected wave modulated by PSK (Phase Shift Keying) of a radio wave from the transfer destination caused by a change in the antenna load impedance caused by the on / off operation of the high-frequency switch, It will be transmitted in the back's scatter scheme.
  • PSK Phase Shift Keying
  • the reflected wave signal from the wireless transmission module 308 is equivalent to a PSK modulated wave.
  • the high-frequency switch 310 is generally formed of a gallium arsenide IC, and its power consumption is several tens ⁇ W or less. Therefore, according to the above-described communication method, it is possible to realize ultra-low-consumption wireless image transmission.
  • the high-frequency switch 311 is turned on together with the ASK detector 313 by a control signal from the signal processor 311.
  • the band-pass filter 312 and the ASK detector 313 use the power used when receiving the ASK-modulated acknowledgment signal from the transfer destination. These two blocks are used for one-way transmission in which transmission acknowledgment is not performed. If it is, it becomes unnecessary. On the other hand, when the delivery confirmation is performed, the control is performed by signal processing section 303.
  • the bandpass filter 312 is used for the purpose of passing a frequency in the 2.4 GHz band and attenuating other frequency bands.
  • the power consumption of the ASK detector 313 required for confirming the delivery can be realized with 30 mW or less.
  • the average power when transmitting data such as image data in the wireless communication apparatus shown in FIG. 1 is 10 mW or less in the case of the delivery confirmation method, and several tens / iW in the case of one-way transmission. Data transmission is possible. This is an overwhelming difference in performance when compared to the average power consumption of a general wireless LAN system.
  • the present invention also relates to a wireless communication device that performs low-power data transmission by a back-skitta method utilizing reflection of an incoming radio wave.
  • the present invention relates to a wireless transmission module.
  • QPSK Quadrature phase
  • Phase Shift Keying Phase Shift Keying
  • the purpose of changing from PSK to QPSK is to speed up data.
  • 0 and 1 are assigned to phase shifts shifted by 180 degrees, respectively, whereas in the QPSK modulation method, 0, ⁇ ⁇ 2, ⁇ , and 3 ⁇ / 2 phases shifted by ⁇ / 2 are used.
  • the bit rate is improved because the transmission is performed by the allocation. If this is generalized, in the 2 n- phase PSK modulation method, data is assigned to 2 n phases shifted by ⁇ / 2 11 -1 , so simply increasing n increases the bit rate.
  • FIG. 2 shows the configuration of the wireless communication device according to this embodiment.
  • the wireless transmission module 308 performs the same operation as that of FIG. 1 with respect to the antenna 309, the high-frequency switch 311, the band-pass filter 312, and the ASK detector 312.
  • it comprises phase shifters 320, 321 and 322 connected in series to the antenna 309, and further comprises high-frequency switches 323, 324, 325 and 326 and a data decoder 327.
  • the phase shifters 320, 321, and 322 are lines such as a strip line that has ⁇ (wavelength) / 8 in the 2.4 GHz band, or an active phase shifter that can change the phase by voltage control. Be composed.
  • Each phase shifter 320, 321, 322 creates a phase difference of 45 degrees one way and 90 degrees round trip. Since each of the phase shifters 320, 321 and 322 are connected in series from the antenna 309, the reflected wave of the received radio wave that has arrived reciprocates due to the combination of on / off of the high frequency switches 323, 324, 325 and 326. By providing different signal paths, four types of phase differences can be given to reflected waves.
  • the reflection passes through the phase shifters 320, 321, and 322 when compared with the phase of the reflected wave at the force a occurring at the point d in the figure. Will shift 270 degrees.
  • the high-frequency switch 311 When performing data transmission such as image transfer, the high-frequency switch 311 is controlled to be off together with the ASK detection unit 313 by the signal processing unit 303, and is in an open state. Also, the wireless transmission module unit 308 realizes QPSK modulation by dividing data into two bits and assigning a phase according to a combination of two bits 0 and 1.
  • the bit image of the data is sent to the data decoding unit 327.
  • the data 'decoding section 327 separates the data into 2 bits, and when 00, only the high frequency switch 323 is turned on, when it is 01, only the high frequency switch 324 is turned on, and when it is 11, only the high frequency switch 325 is turned on. On, when it is 10, it operates to turn on only the high frequency switch 326.
  • PSK modulation can also be performed.
  • the high frequency switches 324 and 326 are not controlled. Then, at the time of data 0, the high frequency switch 323 is turned on. Also, for data 1, high-frequency switch 325 Turn it on and shift the phase of the reflected wave by 180 degrees compared to when data is 0. Therefore, the same circuit can support two modulation schemes, QPSK and PSK. This means that it can be changed dynamically even during communication.
  • the method for generating a polyphase modulated wave according to the present invention is effective as a general RFID having no power supply in addition to the application to the data transmission of the present invention.
  • the high-frequency switch 311 is turned on together with the ASK detector 313 by the signal processor 311. Further, the high-frequency switches 323, 324, and 326 are controlled to be off, and only the high-frequency switch 325 is controlled to be on. By doing so, the signal received from the antenna 308 can be input to the ASK detection unit 313 via the high frequency switch 311 and the bandpass finoleta 312 with a small loss.
  • the band-pass filter 312 and the ASK detector 313 are used when receiving an ASK-modulated acknowledgment signal from the transfer destination. These two blocks are used in one-way transmission without performing transmission acknowledgment. If it is, it becomes unnecessary. On the other hand, when transmission confirmation is performed, the control is performed by signal processing section 303.
  • FIG. 3 shows the configuration of a wireless communication device of the back-skitta type employing eight-phase PSK modulation.
  • the wireless transmission module 508 has the same functions as the antenna 509, the high-frequency switch 511, the band-pass filter 512, and the ASK detector 512 as shown in FIG.
  • eight phase shifters 521, 521, 522,... ⁇ 527 connected in series to the antenna 409, and high-frequency switches 531, 532, 533,... ⁇ 538, and a data decoder It consists of 540.
  • the ordering devices 521, 521, 522,... ⁇ 527 are a line such as a strip line that becomes / 16 in the 2.4 GHz band, or an active phase shifter that can change the phase by voltage control. Be configured.
  • Each phase shifter 521, 521, 522,... ⁇ 527 produces a phase difference of 27.5 degrees in one way and 45 degrees in round trip.
  • the difference between the signal paths on which the reflected waves of the received radio waves reciprocate is established by the on / off combinations of the high-frequency switches 531, 532, 533, ⁇ , 538, and 8 Different phase differences can be provided.
  • the reflection of the received radio wave occurs at the point a in the figure.
  • the reflection of the received radio wave is compared with the phase of the reflected wave at the point a in FIG. Degree shift.
  • the high-frequency switch 533 is turned on, reflection occurs at point c in the figure. Compared with the phase of the reflected wave at point a, it passes through phase shifters 521 and 522. Will shift.
  • the high-frequency switch 538 is turned on, reflection occurs at the point h in the figure, but when compared with the phase of the reflected wave at the point a, it passes through all eight phase shifters 421-428. The phase shifts by 315 degrees.
  • the high-frequency switch 511 When performing data transmission such as image transfer, the high-frequency switch 511 is controlled to be off together with the ASK detection unit 513 by the signal processing unit 503, and is in an open state.
  • the wireless transmission module unit 508 realizes 8-phase PSK modulation by dividing data into 3 bits and assigning phases according to combinations of 0 and 1 of 3 bits.
  • the bit image of the data is sent to the data decoding unit 527.
  • the data 'decoding section 527 separates the data into 3 bits.When 000, only the high frequency switch 521 is turned on, when 001, only the high frequency switch 422 is turned on, and when it is 011, only the high frequency switch 523 is turned on. Is turned on (the same applies hereinafter).
  • the phase of the reflected wave is shifted by 90 degrees because it passes through the phase shifters 521 and 522.
  • PSK modulation can be similarly applied. In this case, nothing is controlled except the high frequency switches 531 and 534.
  • the high frequency switch 531 When the data is 0, the high frequency switch 531 is turned on.
  • the high-frequency switch 534 When the data is 1, the high-frequency switch 534 is turned on, and the phase of the reflected wave is shifted by 180 degrees as compared with the case of the data 0. Therefore, the same circuit can support two modulation schemes, 8-phase PSK and PSK. This means that it can be changed dynamically even during communication.
  • the signal processing unit 511 controls the high-frequency switch 511 together with the ASK detection unit 413 to be turned on. In addition, only one of the high frequency switches 531 538 is controlled to be on, and the others are turned off. In this way, the reception signal from the antenna 408 can be input to the ASK detection unit 413 via the high-frequency switch 511 and the band-pass filter 512 with a small loss.
  • Band-pass filter 512 and ASK detector 513 are used when receiving an ASK-modulated acknowledgment signal from the transfer destination. These two blocks are used in one-way transmission in which transmission acknowledgment is not performed. If it is, it becomes unnecessary. On the other hand, when delivery confirmation is performed, the control is This is performed by the signal processing unit 503.
  • FIG. 4 shows another configuration example of the wireless transmission module 308 of the wireless communication apparatus according to the embodiment employing QPSK modulation.
  • the embodiment shown in FIG. 2 reflection points by ground are formed.
  • the embodiment shown in FIG. 4 is different in that a reflection point is formed at the open end.
  • the wireless transmission module 308 shown in FIG. 4 includes an antenna 309, high-frequency switches 330, 332, 334, phase shifters 331, 333, 335 connected in series, and a data decoder 326.
  • the block of the receiving system including the high-frequency switch 311, the bandpass filter 312, and the ASK detector 312 shown in FIG. 2 is omitted.
  • the phase shifters 331, 333, and 335 are composed of a line such as a strip-line having ⁇ / 8 in the 2.4 GHz band, or an active phase shifter whose phase can be varied by voltage control. Each phase shifter produces a phase difference of 45 degrees one way and 90 degrees round trip. Therefore, the ON / OFF combination of the high-frequency switches 330, 332, and 334 provides a difference in the signal path on which the reflected wave of the arriving received radio wave reciprocates, and can give four kinds of phase differences to the reflected wave.
  • the high frequency switch 330 when the high frequency switch 330 is turned off, the reflection of the received radio wave occurs at the point a in the figure.
  • the high-frequency switch 330 When the high-frequency switch 330 is turned on and the high-frequency switch 332 is turned off, the reflection of the received radio wave is compared with the phase of the reflected wave at point a in FIG. The phase is shifted by 90 degrees.
  • the high-frequency switches 330 and 332 are turned on and the high-frequency switch 334 is turned off, reflection occurs at the point c in the figure, but when compared with the phase of the reflected wave at the point a, it passes through the phase shifters 331 and 334. The phase is shifted by 180 degrees.
  • the wireless transmission module unit 308 divides data into two bits and assigns a phase according to a combination of 0 and 1 of 2 bits to perform QPSK modulation. Is realized.
  • the bit image of the data is sent to the data decoding unit 336.
  • the data 'decoding section 336 divides the data into two bits, and turns the high frequency switch 330 on when the data is 00. In the case of 01, the high-frequency switch 330 is turned on and the high-frequency switch 332 is turned on. The eleventh turns off the high-frequency switches 330 and 332 and turns off the high-frequency switch 334. In the case of 10, it operates to turn on all of the high frequency switches 330, 332, 334.
  • the high-frequency switch 330 When the data is 01, the high-frequency switch 330 is turned on and the high-frequency switch 332 is turned off, so that reflection occurs at point b. Compared with the phase of the reflected wave at the point a in the case of the data 00, the phase shifts by 90 degrees because the reflected wave passes through the phase shifter 331.
  • FIG. 5 schematically shows the hardware configuration of a wireless communication device that receives transmission data from the wireless communication device shown in FIG. 2 or 4 in the present embodiment.
  • the illustrated radio communication device corresponds to an image reproducing device such as a PC or a television for displaying and outputting received image data, a printer for printing and outputting, and the like.
  • image data is transmitted by a reflected wave, it is necessary to transmit a non-modulated carrier for producing a reflected wave from the wireless reception module 400.
  • the wireless reception module 400 includes a 2.4 Gtiz band antenna 401, a circulator 402, a reception unit 3, a transmission unit 406, a frequency synthesizer 409, a communication control unit 410, and a host interface unit 411. .
  • the receiving unit 403 is connected to the quadrature detection unit 404 and the AGC (Auto
  • the transmission unit 406 includes a mixer 408 and a No. 1. amplifier 407.
  • the host 'interface unit 411 is connected to a host device 412 such as a PC and transfers received image data.
  • Transmission of an unmodulated carrier from the wireless reception module 400 is realized by applying a certain DC voltage to the mixer 408 from the communication control unit 410.
  • the frequency of the unmodulated carrier to be transmitted is determined by the frequency of the frequency synthesizer controlled by the communication control unit 410. In this embodiment, the 2.4 GHz band is used.
  • the unmodulated carrier output from the mixer 408 is amplified to a predetermined level by the power amplifier 407 and transmitted from the antenna 401 via the circulator 402.
  • the reflected wave from image transmission device 300 is the same as the frequency transmitted from wireless reception module 400 (described above). This reflected wave is received by the antenna 401 and input to the receiver 403 via the circulator 402. Since the same local frequency as that of the transmission is input to the quadrature detector 404, the PSK or QPSK modulated wave multiplied by the image transmission device 300 appears at the output of the quadrature detector 404. However, the phase of the received signal is different from that of the local signal, so the I-axis signal and the Q-axis signal show a modulated signal according to the phase difference.
  • AGC amplifier section 405 the gain is controlled to an optimum value, and the output signal is passed to communication control section 410.
  • the communication control unit 410 performs PSK or QPSK demodulation including carrier reproduction and clock reproduction from the I-axis and Q-axis signals. Then, the correctly restored data is transferred to the host device 412 via the host 'interface unit 411.
  • communication control section 410 transmits an ACK (Acknowledgement) of an acknowledgment if the received packet is correct, and a NACK of an acknowledgment if the received packet is incorrect.
  • ACK Acknowledgement
  • NACK NACK of an acknowledgment if the received packet is incorrect.
  • CRC Cyclic Redundancy Check
  • FIG. 6 shows a control system for performing wireless transmission between wireless communication apparatus 300 as the image transmission apparatus shown in FIG. 2 or 4 and wireless communication apparatus 400 as the image display apparatus shown in FIG. One can is shown. However, in the illustrated example, it is assumed that delivery confirmation is performed between both devices. Hereinafter, this control sequence will be described.
  • the user manually sets the data transmission mode.
  • the user manually sets the data reception waiting mode.
  • the image display device to which the image is transferred transmits an unmodulated carrier for forming a reflected wave on the image transmission device side.
  • the image transmission device that has received the unmodulated carrier makes a data transmission request using the reflected wave.
  • the image display device Upon receiving the data transmission request, the image display device transmits a transmission permission by ASK modulation
  • the image display device transmits an unmodulated carrier for forming a reflected wave.
  • the image transmission device that has received the unmodulated carrier transmits packetized data using the reflected wave.
  • QPSK modulation is performed by dividing the data into two bits and assigning a phase according to the combination of two bits 0 and 1 (described above).
  • the image display device performs QPSK demodulation on the received packet data to restore the data.
  • Receiving If the received data is correct, an acknowledgment ACK (Acknowledgement) is sent by ASK modulation. If wrong, send a negative acknowledgment NACK (Negative Acknowledgement).
  • NACK Negative Acknowledgement
  • the correctness of the data can be determined by a CRC (Cyclic Redundancy Check) code added to the data 'packet.
  • the image display device transmits the ACK or NACK acknowledgment signal
  • the image transmission device it is possible to remotely control the image transmission device from the image display device.
  • the image display device can be operated with the infrared remote control, such as a television
  • the infrared remote control power should be indirectly controlled by sending commands from the infrared remote control to the image display device to the image transmission device. Becomes possible.
  • step 6 and step 8 are repeatedly executed until the end of the data.
  • the image transmission apparatus need not have an oscillator in performing the control sequence as shown in FIG.
  • the image transmission device side has a built-in wireless transmission module 308 in a photographing device such as a digital camera.
  • a wireless transmission module may be configured by an external adapter or the like, and may be provided in a form of being externally connected to the apparatus main body based on USB (Universal Serial Bus) or other interface standards.
  • Fig. 7 schematically shows a configuration example in the case where the wireless transmission module is configured as a "power adapter" type.
  • the image transmission device includes a camera unit 602, a signal processing unit 603, a memory 'card' interface unit 604, an operation / display unit 605, a USB interface unit 606, Re-card 607 is provided.
  • These components may be substantially the same as the components indicated by reference numerals 202-207 of the conventional digital camera with wireless LAN function shown in FIG.
  • the USB interface unit 606 functions as a slave, and the signal processing unit 603 reads target image data read from the memory 'card 607 via the memory' card 'interface unit 604 by a USB host via a USB cable. Used when transferring to a certain PC.
  • this USB interface is switched to the host and operates, and is connected to the wireless transmission module 601 of the external USB-connected slave device to constitute a device equivalent to FIG. Becomes possible.
  • the wireless transmission module 601 can be considered as an adapter having a USB connector and an antenna 609, for example, as shown by reference numeral 620.
  • the wireless transmission module 601 shown in FIG. 4 is the wireless transmission module 601 shown in FIG. 2 or FIG.
  • USB interface unit 614 is added.
  • the high-frequency switch 311 When performing image transfer, the high-frequency switch 311 is controlled to be off together with the ASK detection unit 313 by the signal processing unit 303, and is in an open state.
  • the wireless transmission module section 308 receives the image data read from the memory card 607 via the host-side USB interface section 606 and the slave-side USB interface section 614. Then, according to the value of the 2-bit data, it is possible to create reflected waves having four phases that differ by 90 degrees from each other, and create QPSK-modulated reflected waves (described above). For example, when the data is 01, the phase of the reflected wave is shifted by 90 degrees, when the data is 11, the phase of the reflected wave is shifted by 180 degrees, and when the data is 10, the phase of the reflected wave is shifted by 270 degrees.
  • the band-pass filter and the ASK detection unit are used for receiving and processing the ASK-modulated acknowledgment signal from the transfer destination (described above).
  • these two blocks are not required for one-way transmission, which does not confirm transmission delivery.
  • the control of the delivery confirmation is performed by the communication control unit 608.
  • the band-pass filter 612 is used for passing a frequency in the 2.4 GHz band and attenuating other frequency bands.
  • USB is used as an interface for connection to a device such as a digital camera, but other interfaces may be used.
  • Fig. 8 shows another configuration example of the wireless transmission module 308 of the wireless communication apparatus according to the embodiment that employs QPSK modulation.
  • the wireless transmission module 308 shown in FIG. 8 includes an antenna 901, a combined Z distributor 902, high-frequency switches 903 and 905, and a ⁇ / 8 phase shifter serially connected to one of the high-frequency switches 905. 904 and a serial / parallel converter 906.
  • the block of the receiving system including the high-frequency switch 311, the band-pass filter 312, and the ASK detector 312 shown in FIG. 2 is omitted.
  • the signal path branched via the combiner / distributor 902 and grounded via the high-frequency switch 903 and the signal path grounded via the phase shifter 904 and the high-frequency switch 905 are respectively connected to the back-to-back communication.
  • the high-frequency switch 903 operates as a BPSK modulator
  • the other phase shifter 904 and the high-frequency switch 905 also operate as a BPSK modulator.
  • the short circuit on one side of the high-frequency switches 903 and 905 is used as the ground of the actual circuit.
  • the short circuit may be configured with an open stub of ⁇ 4.
  • the two carriers demultiplexed from antenna 901 by combining / distributing device 902 are subjected to QPSK modulation in high-frequency switch 903 and phase shifter 904 + high-frequency switch 905, and are modulated.
  • the reflected signal is re-emitted from antenna 901 via combiner / splitter 902.
  • the serial-to-parallel converter 906 converts serial transmission data into I and Q parallel signals.
  • the high-frequency switches 903 and 905 are also turned off.
  • 01 only the high-frequency switch 903 is turned on.
  • Turns on only high frequency switch 905, and at 10 turns on high frequency switches 903 and 905.
  • Japanese Patent Application Laid-Open No. 10-209914 discloses a duplex wireless communication system including an interrogator and a plurality of tags that are also spatially separated from each other.
  • An interrogator has been proposed that transmits a continuous wave (CW) radio signal to at least one tag in the system, and describes that the subcarrier signal is QPSK modulated based on the information signal.
  • the secondary modulation is further performed by the ASK modulation method using the subcarrier signal primary-modulated by the QPSK modulation method (for example, see FIG. 3 of the publication). .
  • the actual transmission rate is limited by the capability of the ASK modulation method, in other words, the QPSK modulation method adopted here does not contribute to the improvement of the transmission rate.
  • the QPSK modulation method adopted here does not contribute to the improvement of the transmission rate.
  • DC offset and mixer's noise issues are also DC offset and mixer's noise issues.
  • the main carrier is QPSK-modulated based on the principle that a phase difference is given in the reverberatory furnace in which the received radio wave reciprocates, the configuration is clearly different.
  • the present invention relates to a multi-phase modulation system in which a plurality of reflected signal paths are provided in a back-scatter communication system, and a time-of-use operation is used for each reflected signal path.
  • the embodiment of the present invention has been described by taking as an example the case of performing data transmission using an RFID system that reads information stored in a tag in a non-contact manner with a reader.
  • the present invention is not limited to this.
  • the present invention is also effective in general RFID systems having no power supply other than data transmission.
  • the present invention has been disclosed in the form of examples, and the contents described in this specification should not be interpreted in a limited manner. In order to determine the gist of the present invention, the claims should be considered.
  • FIG. 1 is a diagram schematically showing a hardware configuration of a wireless communication apparatus 300 according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a wireless communication apparatus of a back-skitta method employing QPSK modulation.
  • FIG. 3 is a diagram showing a configuration of a back-skitta-type wireless communication device employing 8-phase PSK modulation.
  • FIG. 4 is a diagram showing another configuration example of the wireless communication device according to the embodiment employing QPSK modulation.
  • FIG. 5 is a diagram schematically showing a hardware configuration of a wireless communication device that receives transmission data from the wireless communication device shown in FIG. 2 or FIG. 4.
  • FIG. 6 is a control system for performing wireless transmission between the wireless communication device 300 as the image transmission device shown in FIG. 2 or FIG. 4 and the wireless communication device 400 as the image display device shown in FIG. It is the figure which showed one can.
  • FIG. 7 is a diagram schematically showing a configuration example when the wireless transmission module is configured as an adapter 'type.
  • FIG. 8 is a diagram showing another configuration example of the wireless transmission module 308 of the wireless communication device employing QPSK modulation.
  • FIG. 9 is a diagram showing a configuration example of a conventional RFID system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 QPSK変調処理を取り入れたバック・スキャッタ方式を提供する。  いずれの位相器も通過せずに受信電波を直接反射する第1の反射波を得る第1の信号路と、前記第1の位相器のみを往復し前記第1の反射波と比較してπ/2だけ位相がシフトした第2の反射波を得る第2の信号路と、前記第1及び第2の位相器を往復し前記第1の反射波と比較してπだけ位相がシフトした第3の反射波を得る第3の信号路と、前記第1乃至第3の位相器を往復し前記第1の反射波と比較して3π/2だけ位相がシフトした第4の反射波を得る第4の信号路を備える。

Description

明 細 書
無線通信装置
技術分野
[0001] 本発明は、特定周波数帯のマイクロ波を用いた電波通信方式による無線通信装置 に係り、特に、比較的近距離の機器間において低消費電力の通信動作を実現する 無線通信装置に関する。
[0002] さらに詳しくは、本発明は、アンテナの終端操作に基づく受信電波の吸収と反射を 利用したバック'スキヤッタ方式により比較的近距離のデータ通信を行なう無線通信 装置に係り、特に、より高いビットレートの変調処理を取り入れてバック'スキヤッタ方 式のデータ通信の伝送レートを向上させる無線通信装置に関する。
背景技術
[0003] 局所でのみ適用可能な無線通信手段の一例として、 RFIDを挙げることができる。
RFIDとは、タグとリーダとから構成されるシステムで、タグに格納された情報をリーダ で非接触に読み取るシステムである。他の呼び方として、「IDシステム、データ'キヤリ ァ 'システム」などがあるが、世界的に共通なのが、この RFIDシステムである。略して RFIDという場合もある。 日本語に訳すると「高周波(無線)を使用した認識システム」 となる。タグとリーダライタの間の通信方法には、電磁結合方式、電磁誘導方式、電 波通信方式などが挙げられる(例えば、非特許文献 1を参照のこと)。
[0004] RFIDタグは、固有の識別情報を含んだデバイスであり、特定周波数の電波を受信 したことに応答して識別情報に相当する変調周波数の電波を発振する動作特性を持 ち、読み取り装置側で RFIDタグの発振周波数を基にそれが何であるかを特定する こと力 Sできる。したがって、 RFIDを用いたシステムでは、 RFIDタグに書き込まれてい る固有の IDを利用して、物品の判別や所有者の判別などを行なうことができる。現在 、 RFIDシステムは、入退室を管理するシステムや、物流における物品識別システム 、食堂などでの料金清算のシステム、 CDやソフトウェアなどの販売店での無断持ち 出し防止システムなど、多数のシステムで利用されている。
[0005] 例えば、送受信及びメモリ機能を備えた ICチップと、該チップの駆動源と、アンテナ とをパッケージィ匕して無線識別装置を小型に製作することができる(例えば、特許文 献 1を参照のこと)。この無線識別装置によれば、物品などに関するさまざまのデータ をアンテナ経由で ICチップの受信手段に送信し、その出力をメモリに蓄積しておくと ともに、必要に応じてメモリ内のデータを読み出して、アンテナを介して無線で外部に 供給すること力 Sできる。したがって、物品などの存在や位置を迅速且つ容易に確認し たり追跡したりすることが可能である。
[0006] 図 9には、従来の RFIDシステムの構成例を示している。参照番号 101は、 RFIDの タグ側に相当し、タグ 'チップ 102とアンテナ 103で構成される。アンテナ 103には、 半波長のダイポール'アンテナなどが使用される。タグ'チップ 102は、変調部 110と 、整流'復調部 112、メモリ部 113で構成される。
[0007] タグ'リーダ 100より送信された電波 f は、アンテナ 103で受信され、整流'復調部 1
10に入力される。ここで、受信電波 f は整流され、直流電源に変換されると同時に、 この直流電源により復調機能が動作開始し、タグ 101に対する読み取り信号であるこ とが認識される。電波 f の受信により発生した電源は、メモリ部 113及び変調部 110 にも供給される。
[0008] メモリ部 113は、あら力じめ内部に格納されている ro情報を読み出し、変調部 110 に送信データとして送る。変調部 110は、ダイオード 'スィッチ 111で構成され、送信 データのビット'イメージに従ってダイオード 'スィッチ 111のオン/オフ動作を繰り返 す。すなわち、データが 1の場合は、スィッチがオン状態となり、アンテナはアンテナ' インピーダンス(例えば 50オーム)で終端される。このとき、タグ'リーダ 100からの電 波は吸収される。また、データが 0の場合は、スィッチがオフとなり、ダイオード'スイツ チ 111はオープン状態となり、同時にアンテナの終端もオープン状態となる。このとき 、タグ'リーダ 100からの電波は反射され、送信元に戻ることになる。このように到来し た電波の反射又は吸収のパターンによってデータを表現する通信方法は「バック'ス キヤッタ方式」と呼ばれる。このようにして、タグ 101は無電源で内部の情報をリーダ 側に送ることが可能となる。
[0009] 一方のタグ'リーダ 100は、携帯情報端末などのホスト機器 106と、タグ ·リーダ .モ ジユーノレ 104と、タグ 'リーダ'モジュール 104に接続されたアンテナ 105で構成され る。
[0010] ホスト機器 106は、タグ 101のリード指示をホスト'インターフェース部 121経由で通 信制御部 120に通知する。ベースバンド処理部 119は、通信制御部 120からのタグ のリード 'コマンドを受け取ると、送信データに対して所定の編集処理を施し、さらにフ ィルタリングを行なった後、ベースバンド信号として ASK変調部 117に送る。 ASK変 調部 117は、周波数シンセサイザ 116の周波数 f を用いて ASK (Amplitude Shift
Keying:振幅シフト ·キーイング)変調を行なう。
[0011] 周波数シンセサイザ 116の周波数設定は、通信制御部 120により行なわれる。一 般に、 RFタグからの信号の定在波やマルチパスの軽減のために、タグへの送信周波 数はホッピングして用いられる。このホッピングの指示も通信制御部 120により行なわ れる。 ASK変調が施された送信信号は、サーキユレータ 114を経由し、アンテナ 105 よりタグ 101に向けて放射される。
[0012] タグ 101からは、バック'スキヤッタ方式による反射により(前述)、タグ'リーダ 100か らの送信信号と同一周波数の信号が戻される。この信号は、タグ'リーダ 100のアン テナ 105で受信され、ミキサ 115に入力される。ミキサ 115には送信と同じローカル周 波数 f が入力されるので、ミキサ 115の出力にはタグ 101側で変調を施した信号が現 れることになる。復調部 118は、この信号から 1と 0からなるデータを復調し、通信制御 部 119に送る。通信制御部 119では、データをデコードし、タグ 101内のメモリ 113に 格納されてレ、たデータ(ID)を取り出し、ホスト ·インターフェース部 120からホスト機器 106に転送する。
[0013] 上述したような仕組みにより、タグ'リーダ 100はタグ 101内の情報を読み出すことが できる。タグ'リーダは、一般的にはタグ'ライタとしても使用することが可能で、ホスト 機器 106側の指定データをタグ 101内のメモリ 113に書き込むことができる。
[0014] 従来、このようなバック'スキヤッタ方式の無線通信システムは、通信範囲が比較的 近距離に限定されることから、 RFIDタグに代表されるように、物品や人などの識別や 認証に適用されることが多かった。
[0015] 他方、バック'スキヤッタ方式の無線通信は、通信距離を限定するならば、極めて消 費電力の低い無線伝送路を確立することができるという特徴も備えている。最近では 、実装技術の向上とも相俟ってメモリ機能を搭載した ICチップが出現し、さらにこのメ モリ容量が増大してきている。したがって、識別'認証情報のように比較的短いデータ の通信を行なうだけでなぐ一般的なデータ伝送にもバック'スキヤッタ方式の通信を 採り入れたいという要望がある。
[0016] ところ力 これまでのバック'スキヤッタ方式の通信システムにおいては、 ASK (Amp litude Shift Keying)や BPSK (Binary Phase Shift Keying)などの比較的 ビットレートの低い変調方式が採用されていることから、伝送速度の面で問題がある。
[0017] 特許文献 1 :特開平 6— 123773号公報
非特許文献 1:クラウス 'フィンケンッヱラー著(ソフト工学研究所訳)「RFIDハンドブッ ク 非接触 ICカードの原理と応用」(日刊工業新聞社)
発明の開示
発明が解決しょうとする課題
[0018] 本発明の目的は、アンテナの終端操作に基づく受信電波の吸収と反射を利用した バック'スキヤッタ方式により比較的近距離のデータ通信を好適に行なうことができる
、優れた無線通信装置を提供することにある。
[0019] 本発明のさらなる目的は、より高いビットレートの変調処理を取り入れてバック'スキ ャッタ方式のデータ通信の伝送レートを向上させることができる、優れた無線通信装 置を提供することにある。
課題を解決するための手段
[0020] 本発明は、上記課題を参酌してなされたものであり、その第 1の側面は、受信電波 の反射を利用したバック'スキヤッタ方式によりデータ通信を行なう無線通信装置であ つて、データ送信部は、
転送先から到来する電波を受信するアンテナと、
k番目の片道の信号路が(k一 1) λ /2111だけの位相差を与える η通りの信号路と( 但し、 l≤k≤n)、
送信データに応じていずれかの信号路を選択することにより n通りの位相の異なる 反射波を形成する反射波形成手段を備え、
受信電波に対する反射波の位相差パターンを以つて送信データを表す、 ことを特徴とする無線通信装置である。
[0021] ここで、信号路は、片道でえ /2n+1の位相差を与える第 1乃至第 (n— 1)の位相器が 前記アンテナに対し直列的に接続され、いずれの位相器も通過せずに受信電波を 直接反射する第 1の反射波を得る第 1の信号路と、前記第 1乃至第 (k - 1)の位相器 を往復し前記第 1の反射波と比較して (k一 1) π /2111だけ位相がシフトした第 kの反 射波を得る第 kの信号路からなる(但し、 1≤k≤n)。
[0022] そして、前記反射波形成手段は、送信データを 2111ビットずつに区切り、 2n1ビットの 0と 1の組み合わせに応じた信号路を選択して反射波に位相を割り当てて、 2n相 PS K変調を行なうことができる。
[0023] 前記アンテナと前記第 1の位相器の間、前記第 (k一 1)の位相器と前記第 kの位相 器の間(但し、 2≤k≤n— 1)、並びに前記第 (n— 1)の位相器の後方にそれぞれ第 1 乃至第 nの反射点が設けられている。この反射点は、例えば、グランド又はオープン 端により形成される。
[0024] この場合、前記反射波形成手段は、前記送信データを 2n_1ビットずつに区切り、 2n1 ビットの 0と 1の組み合わせに応じた反射点の切り替えを行なうことで、反射波に位相 を割り当てることができ、 2 "相 PSK変調を実現することができる。
[0025] 本発明によれば、例えば、 n= 2とし QPSK変調を適用したバック'スキヤッタ方式の 無線伝送を行なうことができる。
[0026] この場合、片道でえ /8の位相差を与える第 1乃至第 3の位相器が前記アンテナに 対し直列的に接続され、いずれの位相器も通過せずに受信電波を直接反射する第 1の反射波を得る第 1の信号路と、前記第 1の位相器のみを往復し前記第 1の反射波 と比較して π /2だけ位相がシフトした第 2の反射波を得る第 2の信号路と、前記第 1 及び第 2の位相器を往復し前記第 1の反射波と比較して πだけ位相がシフトした第 3 の反射波を得る第 3の信号路と、前記第 1乃至第 3の位相器を往復し前記第 1の反射 波と比較して 3 π /2だけ位相がシフトした第 4の反射波を得る第 4の信号路を備えて レ、るものとする。
[0027] 例えば、 2ビットに区切られたデータが 00のときは第 1の信号路を選択する。また、 データが 01のときには第 2の信号路を選択し、データ 00のときと比較して位相が 90 度だけシフトした反射波を得ることができる。また、データが 10のときには第 3の信号 路を選択し、データ 00のときと比較して位相が 180度だけシフトした反射波を得ること ができる。また、データが 11のときには第 4の信号路を選択し、データ 00のときと比較 して位相が 270度だけシフトした反射波を得ることができる。このようして、データ 2ビ ットの値に従レ、、相互に 90度ずつ位相の異なる 4つの位相を有する反射波を作るこ とが可能となり、 QPSK変調された反射波を作ることができる。
[0028] また、この場合、前記反射波形成手段は、前記第 1の信号路と前記第 3の信号路の みを用いて PSK変調を行なうことができる。
[0029] また、本発明に係る多相変調波の生成方法は、本発明のデータ伝送への適用以 外にも電源を持たない一般の RFIDとしても有効である。例えば、前記アンテナでの 受信信号の所定帯域を通過させるフィルタ並びに信号を成形する検波部を含んだ データ受信部をさらに備え、データ送信を行なうかどうかに応じて前記データ送信部 と前記データ受信部を排他的に切り替えるようにする。この場合、アンテナからの受 信信号は、高周波スィッチなどの切替器並びにバンドパス'フィルタ経由で、検波部 に損失を小さく押さえて入力させることができる。
[0030] また、本発明の第 2の側面は、受信電波の反射を利用したバック'スキヤッタ方式に よりデータ通信を行なう無線通信装置であって、データ送信部は、
転送先から到来する電波を受信するアンテナと、
第 1の高周波スィッチからなる第 1の反射信号路と、
λ /8の位相差を与える位相変調手段及び第 2の高周波スィッチからなる第 2の反 射信号路と、
シリアルの送信データをパラレル信号に変換するシリアル ζパラレル変換手段と、 前記アンテナの受信信号を前記の各反射信号路に分配し及び各反射信号路から の出力を合成する合成 Ζ分配手段を備え、
前記の各高周波スィッチは、シリアル/パラレル変換された 2つのデータの各々に よりオン'オフ制御され、受信電波に対する反射波の位相差パターンを以つて送信デ ータを表す、
ことを特徴とする無線通信装置である。 [0031] 本発明の第 2の側面に係る無線通信装置によれば、 2個の高周波スィッチのオン · オフにより 2値位相変調器をえ /8位相だけ異ならせて合成し、それぞれに送信デー タをシリアル/パラレル変換した 2つのデータでオン ·オフ制御を行なうことにより、 4 相 PSK変調を行なうことができる。
[0032] この場合、第 1の高周波スィッチからなる第 1の反射信号路は BPSK変調器として動 作し、 2値位相変調手段と第 2の高周波スィッチからなる第 2の反射信号路も同様に BPSK変調器として動作する。但し、後者の BPSK変調器は、 2値位相変調手段に より λ /8位相が遅れるために、往復で λ /4位相が変化し、前者の BPSK変調器と は 90度だけ位相が異なった軸で BPSK変調が掛かる。これは、すなわち、第 1の反 射信号路で I軸の BPSK変調を行なうとともに、第 2の反射信号路で Q軸の BPSK変 調を行なうことから、 QPSK変調を行なっていることに等しい。ここで、合成 Z分配手 段は、 2分配と合成を行なうことに用いられる。
[0033] このようにして、アンテナから合成/分配手段で分波された 2つのキャリアは、第 1 及び第 2の反射信号路において QPSK変調が行なわれ、その変調された反射信号 は、合成/分配手段を経由してアンテナから再放射される。
[0034] また、シリアル/パラレル変換手段は、シリアルの送信データを、 Iと Qのパラレル信 号に変換する。
発明の効果
[0035] 本発明によれば、アンテナの終端操作に基づく受信電波の吸収と反射を利用した バック'スキヤッタ方式により比較的近距離のデータ通信を好適に行なうことができる
、優れた無線通信装置を提供することができる。
[0036] また、本発明によれば、 QPSK変調などのより高いビットレートの変調処理を取り入 れてバック'スキヤッタ方式のデータ通信の伝送レートを向上させることができる、優れ た無線通信装置を提供することができる。
[0037] また、本発明によれば、画像データなどをデジタル 'カメラや携帯電話などのポート ブル機器から、 PCやテレビ、プリンタなどの機器へ無線伝送する際の低消費電力化 を実現することができる、優れた無線通信システム並びに無線通信装置を提供する こと力 Sできる。 [0038] また、本発明によれば、比較的近距離に限定される機器間で送信比率が通信のほ とんどを占めるような通信形態において低消費電力化を実現することができる、優れ た無線通信システム並びに無線通信装置を提供することができる。
[0039] 本発明によれば、無線 LANに比べて、桁違いの超低消費画像伝送がモパイル機 器で実現することができる。これによりモパイル機器のバッテリ寿命を大幅増やすこと が可能となる。
[0040] また、本発明によれば、データ送信側としてのモパイル機器の無線伝送モジュール は、無線 LANに比べて、低コスト化が容易に実現することができる。また、モパイル 側の無線伝送モジュールは、電波法において無線局の対象にならないため、適合証 明などの認定作業が不要となる。
[0041] 本発明のさらに他の目的、特徴や利点は、後述する本発明の実施形態や添付する 図面に基づくより詳細な説明によって明らかになるであろう。
発明を実施するための最良の形態
[0042] 以下、図面を参照しながら本発明の実施形態について詳解する。
[0043] 本発明は、比較的近距離に存在する機器間で送信比率が通信のほとんどを占める ような通信形態において、低消費電力化を実現することを目的とするものであり、 RFI Dで用いられるバック'スキヤッタ方式に基づく反射波を利用して無線伝送を行なう。
RFIDシステム自体は、局所でのみ適用可能な無線通信手段の一例として当業界に おいて広く知られている。
[0044] RFIDは、タグとリーダとから構成され、タグに格納された情報をリーダで非接触に 読み取るシステムである。 RFIDタグは、固有の識別情報を含んだデバイスであり、特 定周波数の電波を受信したことに応答して識別情報に相当する変調周波数の電波 を発振する動作特性を持ち、読み取り装置側で RFIDタグの発振周波数を基にそれ が何であるかを特定することができる。タグとリーダライタの間の通信方法には、電磁 結合方式、電磁誘導方式、電波通信方式などが挙げられる。本発明は、このうち、 2 . 4GHz帯などのマイクロ波を用いた電波通信方式に関連する。
[0045] 図 1には、本発明の一実施形態に係る無線通信装置 300のハードウェア構成を模 式的に示している。図示の無線通信装置 300は、デジタル 'カメラやカメラ付き携帯 電話などの画像データの伝送元となる機器に相当し、例えばバッテリ(図示しない)を 主電源として駆動する。
[0046] デジタル ·カメラ単体としては、カメラ部 302と、信号処理部 303と、メモリ'カード 'ィ ンターフェース部 304と、操作/表示部 305と、 USBインターフェース部 306で構成 される。
[0047] 信号処理部 303は、カメラ部 302で入力された画像データを JPEG Qoint Photog raphic Experts Group)などの所定のフォーマットの画像データに変換し、メモリ. カード'インターフェース部 204を介して外部のメモリ'カード 307に格納する。
[0048] 操作表示部 305は、画像表示、各種設定などを行なう。 USB (Universal Serial
Bus)インターフェース部 306は、 PCに USBインターフェースを用いて画像転送を 行なう際に使用される。
[0049] 本実施形態に係る無線通信装置 300は、無線伝送モジュール 308として、電波通 信方式に基づく RFIDタグが用いられてレ、る。
[0050] 無線伝送モジュール 308は、アンテナ 309と、高周波スィッチ 310並びに高周波ス イッチ 311と、バンドパス'フィルタ 312と、 ASK検波部 313とで構成される。本実施 形態では、無線電波の周波数として 2. 4GHz帯を用いる。
[0051] 画像転送を始めとするデータ伝送を行なう場合、高周波スィッチ 311は、信号処理 部 303からの制御信号により、 ASK検波部 313とともにオフに制御され、オープン状 態になる。無線伝送モジュール部 308は、信号処理部 303によってメモリ'カード 307 より読み出された画像データを受け取ると、データのビット'イメージに従ってアンテナ 309に接続された他方の高周波スィッチ 310のオン/オフ動作を行なう。例えば、デ ータが 1のときは高周波スィッチ 310をオンに、データが 0のときオフとする。
[0052] 図示の通り、高周波スィッチ 310がオンのときは、アンテナ 309はグランドにショート され、転送先から到来する電波(後述)は吸収される。一方、高周波スィッチ 310がォ フのときは、アンテナ 309はオープンとなり、転送先から到来する電波は反射される。 この動作は、転送先から到来する電波に対して、高周波スィッチ 310のオンとオフに より位相差 180度の反射波を作ることになる。したがって、転送先では、送信電波の 反射の位相を検出することによって、画像データなどの送信データ信号を読み取るこ とができる。
[0053] すなわち、画像データは、基本的に、高周波スィッチのオン/オフ操作に伴うアン テナ負荷インピーダンスの変動によって生じる転送先からの電波の PSK (Phase Sh ift Keying)変調された反射波として、バック'スキヤッタ方式で送信されることになる 。無線伝送モジュール 308からの反射波信号は、 PSK変調波と等価である。
[0054] 高周波スィッチ 310は一般的にガリウム砒素の ICで構成され、その消費電力は数 1 Ο μ W以下である。したがって、上述した通信方式によれば、超低消費の無線画像伝 送を実現することができる。
[0055] 一方、データ受信時には、信号処理部 311からの制御信号により、高周波スィッチ 311は ASK検波部 313とともにオンに制御される。
[0056] バンドパス'フィルタ 312並びに ASK検波部 313は、転送先から ASK変調された 送達確認信号の受信時に用いる力 この 2つのブロックは、伝送の送達確認を行な わない一方向の伝送であれば不要となる。一方、送達確認が行なわれる場合、その 制御は、信号処理部 303で行なわれる。
[0057] バンドパス.フィルタ 312は、 2. 4GHz帯の周波数を通過させ、他の周波数帯を減 衰される目的で使用される。送達確認を行なう場合に必要な ASK検波部 313の消 費電力は 30mW以下で実現することができる。
[0058] したがって、図 1に示した無線通信装置において画像データなどのデータ伝送を行 なうときの平均電力としては、送達確認方式の場合で 10mW以下、一方向伝送では 、数 10 /i Wでデータ伝送が可能である。これは、一般的な無線 LANシステムにおけ る平均消費電力と比較すると、圧倒的な性能差である。
[0059] また、本発明は、到来した電波の反射を利用するバック'スキヤッタ方式により低電 力でデータ伝送を行なう無線通信装置に関するものであるが、その他の実施形態と して、無線伝送モジュール部 308の反射波の変調方式として、 QPSK (Quadrature
Phase Shift Keying)方式を適用することができる。 PSKから QPSK方式に変 更した目的は、データの高速化である。上述の PSK変調方式では 180度だけずれ た移相にそれぞれ 0と 1を割り当てるのに対し、 QPSK変調方式では π /2だけずれ た 0相、 π Ζ2相、 π相、 3 π /2相にそれぞれ(0, 0)、(0, 1)、 (1 , 0)、(1, 1)を割 り当てて伝送することから、ビットレートが向上する。これを一般化すれば、 2n相 PSK 変調方式では π /2111ずつずれた 2n相にデータを割り当てることから、単純には nが 増加すればビットレートが向上することになる。
[0060] 図 2には、この実施形態に係る無線通信装置の構成を示している。無線伝送モジュ 一ノレ 308は、アンテナ 309、高周波スィッチ 311、バンドパス'フィルタ 312、 ASK検 波部 312に関しては図 1と同じ働きをする。この他に、アンテナ 309に対して直列的 に接続されてレヽる位相器 320、 321、 322と、さらに高周波スィッチ 323、 324、 325、 326及びデータ'デコーダ 327で構成される。
[0061] 上述したように、バック'スキヤッタ方式では、高周波スィッチのオン Zオフ切り替え により到来した電波の吸収/反射を切り替えて、データ伝送を実現する。ここで、高 周波スィッチ 323、 324、 325の切り替え速度には限界があるので、高速化するため には、一度の切り替えにおいて複数のビット情報を送る必要がある。
[0062] 位ネ目器 320、 321、 322は、 2. 4GHz帯で λ (波長) /8となるようなストリップ 'ライ ンなどの線路、又は電圧制御で位相を可変できるアクティブな位相器で構成される。 各位相器 320、 321、 322はそれぞれ片道で 45度、往復で 90度の位相差を作り出 す。各位相器 320、 321、 322は、アンテナ 309から直列的に接続されていることから 、高周波スィッチ 323、 324、 325、 326のオン/オフの組み合わせにより、到来した 受信電波の反射波が往復する信号路の相違を設け、反射波に対して 4通りの位相差 を与えることができる。
[0063] 例えば、高周波スィッチ 323のみがオンとなるとき、受信電波の反射は図中 a点で 起こる。また、高周波スィッチ 324のみがオンとなるとき、受信電波の反射は図中の b 点で起こる力 a点での反射波の位相と比較すると、位相器 320を経由しているので 、位相は 90度シフトすることになる。また、高周波スィッチ 325のみがオンとなるとき、 反射は図中の c点で起こるが、 a点での反射波の位相と比較すると位相器 320と 321 を経由しているので、位相は 180度シフトすることになる。また、高周波スィッチ 326 のみがオンとなるとき、反射は図中の d点で起こる力 a点での反射波の位相と比較す ると位相器 320と 321、 322を経由しているので、位相は 270度シフトすることになる 。したカつて、高周波スィッチ 323、 324、 325、 326のレヽずれ力、を択一白勺に才ンにす ることにより、相互に 90度ずつ位相の異なる 4つの位相を有する反射波を作ることが できる。
[0064] 画像転送などのデータ伝送を行なう場合、高周波スィッチ 311は、信号処理部 303 により、 ASK検波部 313とともにオフに制御され、オープン状態になる。また、無線伝 送モジュール部 308では、データを 2ビットずつに区切り、 2ビットの 0と 1の組み合わ せに応じた位相を割り当てることにより、 QPSK変調を実現するようになっている。
[0065] 具体的には、信号処理部 303によってメモリ'カード 307より読み出された画像デー タを受け取ると、データのビット'イメージをデータ'デコード部 327に送る。データ'デ コード部 327は、データを 2ビットずつに区切り、 00のときは高周波スィッチ 323のみ をオンに、 01のときは高周波スィッチ 324のみをオンに、 11のときは高周波スィッチ 3 25のみをオンに、 10のときは高周波スィッチ 326のみをオンにするように動作する。
[0066] ここで、データが 00のときは、高周波スィッチ 323のみがオンとなるため、反射は a 点で起こる。
[0067] また、データが 01のときは、高周波スィッチ 324のみがオンとなるため、反射は b点 で起こる。データ 00のときの a点での反射波の位相と比較すると、位相器 320を経由 しているので、反射波の位相は 90度シフトすることになる。
[0068] また、データが 11のときは、高周波スィッチ 325のみがオンとなるため、反射は c点 で起こる。データ 00のときの a点での反射波の位相と比較すると、位相器 320と 321 を経由しているので、反射波の位相は 180度シフトすることになる。
[0069] また、データが 10のときは、高周波スィッチ 326のみがオンとなるため、反射は d点 で起こる。データ 00のときの a点での反射波の位相と比較すると、位相器 320、 321と 322を経由しているので、反射波の位相は 270度シフトすることになる。
[0070] このようして、データ 2ビットの値に従レ、、相互に 90度ずつ位相の異なる 4つの位相 を有する反射波を作ることが可能となり、 QPSK変調された反射波を作ることができる
[0071] なお、図 2に示した無線伝送モジュール 308において、 PSK変調も掛けることが可 能となる。この場合、高周波スィッチ 324と、 326を制御しない。そして、データ 0のと きは高周波スィッチ 323をオンにする。また、データ 1のときは高周波スィッチ 325を オンにし、データ 0のときと比較して反射波の位相を 180度だけシフトする。したがつ て、同じ回路で、 QPSKと PSKの 2つの変調方式に対応可能となる。これは、通信中 にもダイナミックに可変できることを意味する。
[0072] 本発明に係る多相変調波の生成方法は、本発明のデータ伝送への適用以外にも 電源を持たない一般の RFIDとしても有効である、という点を十分理解されたい。
[0073] 受信時は、信号処理部 311より、高周波スィッチ 311は ASK検波部 313とともにォ ンに制御される。さらに、高周波スィッチ 323、 324、 326はオフに、高周波スィッチ 3 25のみオンに制御される。このようにすることで、アンテナ 308からの受信信号は高 周波スィッチ 311、バンドパス ·フイノレタ 312経由で ASK検波部 313に損失を小さく 押さえて入力させることができる。
[0074] バンドパス.フィルタ 312、 ASK検波部 313は、転送先から ASK変調された送達確 認信号の受信時に用いるが、この 2つのブロックは、伝送の送達確認を行なわない一 方向の伝送であれば不要となる。一方、送達確認が行なわれる場合、その制御は信 号処理部 303で行なわれる。
[0075] 図 2に示した QPSK変調を適用したバック'スキヤッタ方式の無線通信装置のさらな る発展形として、 7個のえ /16の位相器と 8個の高周波スィッチを同様に接続するこ とにより、 000からデータ 111までの 8通りのデータに対して 45度ずつの位相を割り 当てる 8相 PSKを作ることも可能となる。
[0076] 図 3には、 8相 PSK変調を採用したバック'スキヤッタ方式の無線通信装置の構成を 示している。同図において、無線伝送モジュール 508は、アンテナ 509、高周波スィ ツチ 511、バンドパス'フィルタ 512、 ASK検波部 512に関しては図 1と同じ働きをす る。この他に、アンテナ 409に対して直列的に接続されている 8個の位相器 521、 52 1、 522、…ヽ 527と、さらに高周波スィッチ 531、 532、 533、…ヽ 538、及びデータ · デコーダ 540で構成される。
[0077] 上述したように、バック'スキヤッタ方式では、高周波スィッチのオン Zオフ切り替え により到来した電波の吸収/反射を切り替えて、データ伝送を実現する。ここで、高 周波スィッチ 531、 532、 533、…の切り替え速度には限界があるので、高速化する ためには、一度の切り替えにおいて複数のビット情報を送る必要がある。 [0078] 位申目器 521、 521、 522、…ヽ 527は、 2. 4GHz帯でえ /16となるようなストリップ' ラインなどの線路、又は電圧制御で位相を可変できるアクティブな位相器で構成され る。各位相器 521、 521、 522、…ヽ 527はそれぞれ片道で 27. 5度、往復で 45度の 位相差を作り出す。した力 Sつて、高周波スィッチ 531、 532、 533、■·■、 538のオン/ オフの組み合わせにより、到来した受信電波の反射波が往復する信号路の相違を設 け、反射波に対して 8通りの位相差を与えることができる。
[0079] 例えば、高周波スィッチ 531のみがオンとなるとき、受信電波の反射は図中 a点で 起こる。また、高周波スィッチ 532のみがオンとなるとき、受信電波の反射は図中の b 点で起こる力 a点での反射波の位相と比較すると、位相器 521を経由しているので 、位相は 45度シフトすることになる。また、高周波スィッチ 533のみがオンとなるとき、 反射は図中の c点で起こるが、 a点での反射波の位相と比較すると位相器 521と 522 を経由しているので、位相は 90度シフトすることになる。同様にして、高周波スィッチ 538のみがオンとなるとき、反射は図中の h点で起こるが、 a点での反射波の位相と比 較すると 8個すベての位相器 421— 428を経由しているので、位相は 315度シフトす ることになる。した力 Sつて、高周波スィッチ 531、 532、 533、 · · ·、 538のレヽずれ力を択 一的にオンにすることにより、相互に 45度ずつ位相の異なる 8つの位相を有する反 射波を作ること力 Sできる。
[0080] 画像転送などのデータ伝送を行なう場合、高周波スィッチ 511は、信号処理部 503 により、 ASK検波部 513とともにオフに制御され、オープン状態になる。また、無線伝 送モジュール部 508では、データを 3ビットずつに区切り、 3ビットの 0と 1の組み合わ せに応じた位相を割り当てることにより、 8相 PSK変調を実現するようになっている。
[0081] 具体的には、信号処理部 503によってメモリ'カード 307より読み出された画像デー タを受け取ると、データのビット'イメージをデータ'デコード部 527に送る。データ'デ コード部 527は、データを 3ビットずつに区切り、 000のときは高周波スィッチ 521の みをオンに、 001のときは高周波スィッチ 422のみをオンに、 011のときは高周波スィ ツチ 523のみをオンにするように動作する(以下同様)。
[0082] ここで、データが 000のときは、高周波スィッチ 531のみがオンとなるため、反射は a 点で起こる。また、データが 001のときは、高周波スィッチ 524のみがオンとなるため 、反射は b点で起こる。データ 000のときの a点での反射波の位相と比較すると、位相 器 521を経由しているので、反射波の位相は 45度シフトすることになる。
[0083] また、データが 011のときは、高周波スィッチ 532のみがオンとなるため、反射は c 点で起こる。データ 000のときの a点での反射波の位相と比較すると、位相器 521と 5 22を経由しているので、反射波の位相は 90度シフトすることになる。
[0084] また、データが 010のときは、高周波スィッチ 533のみがオンとなるため、反射は d 点で起こる。データ 000のときの a点での反射波の位相と比較すると、位相器 521、 5 22と 523を経由しているので、反射波の位相は 135度シフトすることになる。 (以下同 様)
[0085] このようして、データ 3ビットの値に従レ、、相互に 45度ずつ位相の異なる 8つの位相 を有する反射波を作ることが可能となり、 8相 PSK変調された反射波を作ることができ る。
[0086] また、図 3に示した無線伝送モジュール 508においても同様に、 PSK変調も掛ける ことが可能となる。この場合、高周波スィッチ 531と 534以外を制御しない。そして、 データ 0のときは高周波スィッチ 531をオンにする。また、データ 1のときは高周波スィ ツチ 534をオンにし、データ 0のときと比較して反射波の位相を 180度だけシフトする 。したがって、同じ回路で、 8相 PSKと PSKの 2つの変調方式に対応可能となる。こ れは、通信中にもダイナミックに可変できることを意味する。
[0087] また、図 3に示した多相変調波の生成方法は、本発明のデータ伝送への適用以外 にも電源を持たない一般の RFIDとしても有効である、という点を十分理解されたレ、。
[0088] 受信時は、信号処理部 511より、高周波スィッチ 511は ASK検波部 413とともにォ ンに制御される。さらに、高周波スィッチ 531 538うち 1つのみがオンに制御され、 それ以外はオフされる。このようにすることで、アンテナ 408からの受信信号は高周波 スィッチ 511、バンドパス ·フィルタ 512経由で ASK検波部 413に損失を小さく押さえ て入力させることができる。
[0089] バンドパス.フィルタ 512、 ASK検波部 513は、転送先から ASK変調された送達確 認信号の受信時に用いるが、この 2つのブロックは、伝送の送達確認を行なわない一 方向の伝送であれば不要となる。一方、送達確認が行なわれる場合、その制御は信 号処理部 503で行なわれる。
[0090] また、図 4には、 QPSK変調を採用した実施形態に係る無線通信装置の無線伝送 モジュール 308についての他の構成例を示している。図 2に示した実施形態では、グ ランドによる反射点を作っている。これに対し、図 4に示した実施形態では、オープン 端で反射点を作るという点で相違する。
[0091] 図 4に示す無線伝送モジュール 308は、アンテナ 309、高周波スィッチ 330、 332、 334と、直列的に接続された位相器 331、 333、 335、及びデータ'デコーダ 326で 構成される。但し、図面の簡素化のため、図 2に示した高周波スィッチ 311、バンドパ ス'フィルタ 312、 ASK検波部 312からなる受信系のブロックは省略している。
[0092] 位相器 331、 333、 335は、 2. 4GHz帯で λ /8となるようなストリップ-ラインなどの 線路、又は電圧制御で位相を可変できるアクティブな位相器で構成される。各位相 器はそれぞれ片道 45度、往復 90度の位相差を作り出す。したがって、高周波スイツ チ 330、 332、 334のオン/オフの組み合わせにより、到来した受信電波の反射波が 往復する信号路に相違を設け、反射波に対して 4通りの位相差を与えることができる
[0093] 例えば、高周波スィッチ 330がオフとなるとき、受信電波の反射は図中 a点で起こる 。また、高周波スィッチ 330がオンで且つ高周波スィッチ 332がオフとなるとき、受信 電波の反射は図中の b点で起こる力 a点での反射波の位相と比較すると、位相器 3 31を経由しているので、位相は 90度シフトすることになる。また、高周波スィッチ 330 及び 332がオンで且つ高周波スィッチ 334がオフとなるとき、反射は図中の c点で起 こるが、 a点での反射波の位相と比較すると位相器 331と 334を経由しているので、 位相は 180度シフトすることになる。また、高周波スィッチ 330、 332、 334のすベて がオンとなるとき、反射は図中の d点で起こる力 a点での反射波の位相と比較すると 位相器 331と 333、 335を経由しているので、位相は 270度シフトすることになる。し たがって、高周波スィッチ 330、 332、 334のオン/オフの切り替えにより、相互に 90 度ずつ位相の異なる 4つの位相を有する反射波を作ることができる。
[0094] 画像転送を行なう場合、無線伝送モジュール部 308は、データを 2ビットずつに区 切り、 2ビットの 0と 1の組み合わせに応じた位相を割り当てることにより、 QPSK変調 を実現するようになっている。
[0095] 具体的には、信号処理部 303によってメモリ'カード 307より読み出された画像デー タを受け取ると、データのビット'イメージをデータ'デコード部 336に送る。データ'デ コード部 336は、データを 2ビットずつに区切り、 00のときは高周波スィッチ 330をォ ンにする。また、 01のときは、高周波スィッチ 330をオンにするとともに、高周波スイツ チ 332を才フにする。また、 11のとさは、高周波スィッチ 330及び 332を才ンにすると ともに、高周波スィッチ 334をオフにする。また、 10のときは、高周波スィッチ 330、 3 32, 334のすベてをオンにするように動作する。
[0096] ここで、データが 00のときは、高周波スィッチ 330がオフとなるため、反射は a点で 起こる。
[0097] また、データが 01のときは、高周波スィッチ 330がオンとなるとともに、高周波スイツ チ 332がオフとなるため、反射は b点で起こる。データ 00のときの a点での反射波の 位相と比較すると、位相器 331を経由しているので、位相は 90度シフトすることにな る。
[0098] また、データが 11のときは、高周波スィッチ 330及び 332がオンとなるとともに、高 周波スィッチ 334がオフとなるため、反射は c点で起こる。データ 00のときの a点での 反射波の位相と比較すると、位相器 331及び 334を経由しているので、位相は 180 度シフトすることになる。
[0099] また、データが 10のときは、高周波スィッチ 330、 332、 334のすべてがオンとなる ため、反射は d点で起こる。データ 00のときの a点での反射波の位相と比較すると、位 ネ目器 331、 333と 335を経由してレ、るので、位申目は 270度シフトすることになる。
[0100] このようして、データ 2ビットの値に従レ、、相互に 90度ずつ位相の異なる 4つの位相 を有する反射波を作ることが可能となり、 QPSK変調された反射波を作ることができる
[0101] 図 5には、本実施形態において、図 2又は図 4に示した無線通信装置からの伝送デ ータを受信する無線通信装置のハードウェア構成を模式的に示している。図示の無 線通信装置は、受信した画像データを表示出力する PCやテレビ、印刷出力するプリ ンタなどの画像再生装置に相当する。 [0102] 本実施形態では、画像データは反射波で伝送されるため、無線受信モジュール 40 0からは反射波を作り出すための無変調のキャリアを送信する必要がある。無線受信 モジユーノレ 400は、 2. 4Gtiz帯のアンテナ 401と、サーキユレータ 402と、受信咅 3と、送信部 406と、周波数シンセサイザ 409と、通信制御部 410と、ホスト'インター フェース部 411で構成される。さらに、受信部 403は、直交検波部 404と AGC (Auto
Gain Control)アンプ 405で構成される。また、送信部 406は、ミキサ 408とノ ヮ 一.アンプ 407で構成される。ホスト'インターフェース部 411は、 PCなどのホスト機器 412に接続され、受信した画像データを転送する。
[0103] 無線受信モジュール 400から無変調キャリアを送信するためには、通信制御部 41 0からミキサ 408に対してある直流電圧を与えることにより実現される。送信する無変 調キャリアの周波数は、通信制御部 410から制御される周波数シンセサイザの周波 数で決まる。本実施形態では 2. 4GHz帯を用いている。ミキサ 408から出力される無 変調キャリアは、パヮ一'アンプ 407にて所定のレベルまで増幅され、サーキユレータ 402経由でアンテナ 401より送出される。
[0104] 画像伝送装置 300からの反射波は、無線受信モジュール 400 (前述)から送信され る周波数と同じである。この反射波は、アンテナ 401で受信され、サーキユレータ 402 経由で受信部 403に入力される。直交検波部 404には、送信と同じローカル周波数 が入力されるため、直交検波部 404の出力には、画像伝送装置 300で掛けられた P SK又は QPSK変調波が現れることになる。 但し、受信した信号はローカル信号と位 相が異なるため、 I軸信号と Q軸信号には、その位相差に応じた変調信号が現われる
[0105] AGCアンプ部 405では、最適値にゲインを制御され、その出力信号は、通信制御 部 410に渡される。通信制御部 410では、 I軸及び Q軸の各信号よりキャリア再生とク ロック再生を含む PSK又は QPSK復調を行なう。そして、正しく復元されたデータは 、ホスト 'インターフェース部 411経由で、ホスト機器 412に転送される。
[0106] 画像伝送装置 300からのデータの送達確認を行なう場合、通信制御部 410は、受 信したパケット 'データが正しければ肯定応答の ACK (Acknowledgement)を、誤 つていれば否定応答の NACK (Negative Acknowledgement)のデジタノレ 'デー タを、それぞれミキサ 408に転送し、 ASK変調をかける。データの正誤は、画像デー タ 'パケットに付加された CRC (Cyclic Redundancy Check)符号で判断する。
[0107] 図 6には、図 2又は図 4に示した画像伝送装置としての無線通信装置 300と図 5に 示した画像表示装置としての無線通信装置 400間で無線伝送を行なうための制御シ 一ケンスを示している。但し、図示の例では、両装置間で送達確認を行なうことを想 定する。以下、この制御シーケンスについて説明する。
[0108] (ステップ 1)
画像伝送装置側では、例えばユーザが手動にてデータ送信モードに設定される。
[0109] (ステップ 2)
同様に、画像表示装置側では、例えばユーザが手動にてデータ受信待ちモードに 設定される。
[0110] (ステップ 3)
画像の転送先である画像表示装置は、画像伝送装置側で反射波を形成するため の無変調キャリアを送信する。
[0111] (ステップ 4)
無変調キャリアを受信した画像伝送装置は、反射波を用いて、データ送信要求を 行なう。
[0112] (ステップ 5)
データ送信要求を受信した画像表示装置は、 ASK変調により送信許可を送信する
[0113] (ステップ 6)
画像表示装置は、反射波形成用の無変調キャリアを送信する。
[0114] (ステップ 7)
無変調キャリアを受信した画像伝送装置は、反射波を用いて、パケット化されたデ ータの送信を行なう。このとき、データを 2ビットずつに区切り、 2ビットの 0と 1の組み合 わせに応じた位相を割り当てることにより、 QPSK変調を行なう(前述)。
[0115] (ステップ 8)
画像表示装置は、受信したパケット ·データを QPSK復調し、データを復元する。受 信データが正しければ、 ASK変調で肯定応答の ACK (Acknowledgement)を送 る。間違っていれば、否定応答の NACK (Negative Acknowledgement)を送信 する。ここで、データの正誤は、データ'パケットに付加された CRC (Cyclic Redund ancy Check)符号で判断することができる。
[0116] 画像表示装置が ACK又は NACKの送達確認信号を送信する際に、同一信号内 に画像伝送装置に対するコマンドを含めることも可能である。例えば、画像表示装置 力 画像伝送装置に対して、スライドショーの要求をする場合などが考えられる。
[0117] これにより、画像表示装置から画像伝送装置をリモートコントロールすることが可能 となる。さらに、テレビなどのように画像表示装置が赤外線リモコンで操作出来る場合 は、赤外線リモコン→画像表示装置→画像伝送装置とコマンドを送ることにより、赤 外線リモコン力 間接的に画像伝送装置を制御することが可能となる。
[0118] 以降、データの終了まで、ステップ 6 ステップ 8の処理は繰り返し実行される。
[0119] 上述した実施形態では、画像転送であることから、データの送達確認のため、双方 向通信とした。但し、ビデオ'カメラなどのストリーミング 'データの転送を行なう際には 、一方向の伝送でも構わない。この場合、画像表示装置から ASK変調された送達確 認信号は不要となることから、画像伝送装置側もその受信が不要となり、さらなる低消 費電力化を実現することができる。
[0120] また、図 6に示したような制御シーケンスを行なう上で、画像伝送装置側では発振 器を持つ必要がなレ、、という点を十分理解されたい。
[0121] なお、図 1に示した例では、画像伝送装置側は、デジタル 'カメラなどの撮影装置に 無線伝送モジュール 308が内蔵されている力 勿論、本発明の要旨はこれに限定さ れるものではなぐ無線伝送モジュールが外付けアダプタなどで構成され、 USB (Un iversal Serial Bus)やその他のインターフェース規格に基づいて装置本体の外部 接続する形態で提供するようにしてもよい。
[0122] 図 7には、無線伝送モジュール力 アダプタ 'タイプで構成されている場合の構成例 を模式的に示している。
[0123] 図示の通り、画像伝送装置は、カメラ部 602と、信号処理部 603と、メモリ 'カード'ィ ンターフェース部 604と、操作/表示部 605と、 USBインターフェース部 606と、メモ リ 'カード 607を備えている。これらのコンポーネントは、図 6に示した従来の無線 LA N機能付きデジタル ·カメラの参照番号 202— 207でそれぞれ示されているコンポ一 ネントと略同一でよい。
[0124] 一般、 USBインターフェース部 606は、スレーブとして働き、信号処理部 603がメモ リ 'カード 'インターフェース部 604を介してメモリ'カード 607から読み込んだ目的の 画像データを、 USBケーブルで USBホストである PCに転送する際に用いられる。図 4に示した実施形態では、この USBインターフェースは、ホストに切り替えられて働き 、外部の USB接続されているスレーブ側機器の無線伝送モジュール 601と接続し、 図 1と等価な装置を構成することが可能になる。
[0125] 無線伝送モジュール 601は、例えば参照番号 620で示すような、 USBコネクタとァ ンテナ 609の付いた外観形状のアダプタとして考えられる。
[0126] 図 4で示す無線伝送モジュール 601は、図 2又は図 4に示した無線伝送モジュール
308に、 USBインターフェース部 614が追加されていること以外は略同一である。
[0127] 画像転送を行なう場合、高周波スィッチ 311は、信号処理部 303により、 ASK検波 部 313とともにオフに制御され、オープン状態になる。また、無線伝送モジュール部 3 08では、メモリ'カード 607から読み出された画像データをホスト側 USBインターフエ ース部 606とスレーブ側 USBインターフェース部 614経由で受け取る。そして、デー タ 2ビットの値に従レ、、相互に 90度ずつ位相の異なる 4つの位相を有する反射波を 作ることが可能となり、 QPSK変調された反射波を作る(前述)。例えば、データが 01 のときには反射波の位相は 90度だけシフトし、データが 11のときには反射波の位相 は 180度だけシフトし、データが 10のときには反射波の位相は 270度だけシフトする
[0128] 一方、受信時は、バンドパス'フィルタ並びに ASK検波部は、転送先から ASK変調 された送達確認信号を受信処理するために用いる(前述)。但し、伝送の送達確認を 行なわない、一方向の伝送であれば、この 2つのブロックは不要である。送達確認の 制御は、通信制御部 608で行なわれる。バンドパス'フィルタ 612は、 2. 4GHz帯の 周波数を通過させ、他の周波数帯を減衰される目的で使用される。
[0129] 図 7に示したような構成であっても、図 1に示した装置構成と同様に、超低消費の画 像伝送を実現することができる。モパイル機器本体の小型化が加速する中で、本実 施形態のようなアダプタ 'タイプの無線伝送モジュールはとりわけ有効であると思料さ れる。本実施形態では、デジタル 'カメラなどの装置本体との接続用インターフェース として USBを用いたが、他のインターフェースを用いても勿論構わない。
[0130] 図 8には、 QPSK変調を採用した実施形態に係る無線通信装置の無線伝送モジュ ール 308についての他の構成例を示している。
[0131] 図 8に示す無線伝送モジュール 308は、アンテナ 901、合成 Z分配器 902と、高周 波スィッチ 903及び 905と、一方の高周波スィッチ 905に直列的に接続された λ /8 の位相器 904と、シリアル/パラレル変換器 906で構成される。但し、図面の簡素化 のため、図 2に示した高周波スィッチ 311、バンドパス'フィルタ 312、 ASK検波部 31 2からなる受信系のブロックは省略している。
[0132] 合成/分配器 902を介して分岐された、高周波スィッチ 903を介してグランドされる 信号路、並びに位相器 904及び高周波スィッチ 905を介してグランドされる信号路は 、それぞれバック'スキヤッタ通信における反射信号路を構成する。すなわち、高周波 スィッチ 903は BPSK変調器として動作し、他方の位相器 904と高周波スィッチ 905 も同様に BPSK変調器として動作する。
[0133] 但し、後者の BPSK変調器は、位相器 904により λ /8位相が遅れるために、往復 で λ /4位相が変化し、前者の BPSK変調器とは 90度位相が異なった軸で BPSK 変調が掛かる。これは、すなわち、高周波スィッチ 903で I軸の BPSK変調を行なレ、、 位相器 904と高周波スィッチ 905で Q軸の BPSK変調を行なうことから、 QPSK変調 を行なっていることに等しい。合成/分配器 902は、 2分配と合成を行なうことに用い られる。
[0134] 本実施形態では、高周波スィッチ 903、 905の片側のショートを実際の回路のダラ ンドにしているが、 λ Ζ4のオープンスタブでショートを構成しても良い。
[0135] このようして、アンテナ 901から合成 Ζ分配器 902で分波された 2つのキャリアは、 高周波スィッチ 903と、位相器 904 +高周波スィッチ 905において QPSK変調が行 なわれ、その変調された反射信号は、合成/分配器 902経由でアンテナ 901から再 放射される。 [0136] シリアル 'パラレル変換器 906は、シリアルの送信データを、 Iと Qのパラレル信号に 変換する。
[0137] 具体的には、シリアル 'パラレル変換された 2つのデータが 00のときは高周波スイツ チ 903及び 905のレヽずれもオフにし、 01のときには高周波スィッチ 903のみをオンに し、 11のときは高周波スィッチ 905のみをオンにし、 10のときは高周波スィッチ 903 及び 905をとちに才ンにする。
[0138] なお、特開平 10-209914号公報には、質問器と質問器力も空間的に離隔して位 置する複数のタグを有して構成されるデュプレックス無線通信システムにおレ、て、質 問器は連続波(CW)無線信号をシステム内の少なくとも 1つのタグに送信するものに ついて提案がなされており、情報信号に基づいてサブ搬送信号を QPSK変調する 点が記載されている。し力 ながら、同公報では、 QPSK変調方式により 1次変調さ れたサブ搬送信号を用いてさらに ASK変調方式により 2次変調を行なっている(例え ば同公報の第 3図を参照のこと)。この場合、実際の伝送レートは ASK変調方式の能 力に制限され、言い換えれば、ここで採用されている QPSK変調方式は伝送レート の向上には寄与していない。また、 DCオフセットやミキサ 'ノイズの問題がある。これ に対し、本発明では、受信電波が往復する反射炉において位相差を与えるという原 理に基づいて、主搬送波を QPSK変調しているので、構成は明らかに相違する。 産業上の利用可能性
[0139] 以上、特定の実施形態を参照しながら、本発明につレ、て詳解してきた。しかしなが ら、本発明の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得 ることは自明である。
[0140] 本発明は、バック'スキヤッタ通信方式において、複数の反射信号路を配設し、反 射信号路毎に使用時類操作を利用した多相変調方式に関するものである。本明細 書中では、タグに格納された情報をリーダで非接触に読み取る RFIDシステムを利用 してデータ伝送を行なう場合を例にとって本発明の実施形態について説明してきた 力 本発明の要旨は必ずしもこれに限定されるものではない。例えば、データ伝送以 外にも、電源を持たない一般の RFIDシステムにおいても本発明は有効に作用する ことは言うまでもない。 [0141] 要するに、例示という形態で本発明を開示してきたのであり、本明細書の記載内容 を限定的に解釈するべきではなレ、。本発明の要旨を判断するためには、請求の範囲 を参酌すべきである。
図面の簡単な説明
[0142] [図 1]図 1は、本発明の一実施形態に係る無線通信装置 300のハードウェア構成を模 式的に示した図である。
[図 2]図 2は、 QPSK変調を採用したバック'スキヤッタ方式の無線通信装置の構成を 示した図である。
[図 3]図 3は、 8相 PSK変調を採用したバック'スキヤッタ方式の無線通信装置の構成 を示した図である。
[図 4]図 4は、 QPSK変調を採用した実施形態に係る無線通信装置の他の構成例を 示した図である。
[図 5]図 5は、図 2又は図 4に示した無線通信装置からの伝送データを受信する無線 通信装置のハードウェア構成を模式的に示した図である。
[図 6]図 6は、図 2又は図 4に示した画像伝送装置としての無線通信装置 300と図 5に 示した画像表示装置としての無線通信装置 400間で無線伝送を行なうための制御シ 一ケンスを示した図である。
[図 7]図 7は、無線伝送モジュールが、アダプタ 'タイプで構成されている場合の構成 例を模式的に示した図である。
[図 8]図 8は、 QPSK変調を採用した無線通信装置の無線伝送モジュール 308につ いての他の構成例を示した図である。
[図 9]図 9は、従来の RFIDシステムの構成例を示した図である。
符号の説明
[0143] 300…無線通信装置
302, 602…カメラ部
303, 603…信号処理部
304, 604…メモリ 'カード'インターフェース部
305…操作/表示部 306, 606— USBインターフェース部
307, 607…メモリ'カード
308· ·'無線伝送モジュール
309, 609…アンテナ
310, 311, 323, 324, 325…高周波スィッチ
312- --バンドパス 'フイノレタ
313- ·- ASK検波部
320, 321, 322…位相器
330, 332, 334…高周波スィッチ
331, 333, 335…位相器
400- ··無線受信モジュール
401- ·-アンテナ
402· ··サーキユレータ
403· ··受信部
404· ··直交検波部
405· •'AGCアンプ
406· ··送信部
407· ··パワー'アンプ
408· ··ミキサ
409· ··周波数シンセサイザ
410· ··通信制御部
411- ·■ホスト'インターフェース部
412-' '■ホスト機器
901-· '-アンテナ
902-· ·-合成/分配器
903·' '·高周波スィッチ
904-· 位相器
905-· '·高周波スィッチ 906…シリアル 'パラレル変換器

Claims

請求の範囲
[1] 受信電波の反射を利用したバック'スキヤッタ方式によりデータ通信を行なう無線通 信装置であって、データ送信部は、
転送先から到来する電波を受信するアンテナと、
k番目の片道の信号路が(k一 1) λ /2η_1だけの位相差を与える η通りの信号路と( 但し、 l≤k≤n)、
送信データに応じていずれかの信号路を選択することにより n通りの位相の異なる 反射波を形成する反射波形成手段を備え、
受信電波に対する反射波の位相差パターンを以つて送信データを表す、 ことを特徴とする無線通信装置。
[2] 片道で λ /2η+1の位相差を与える第 1乃至第 (η— 1)の位相器が前記アンテナに対 し直列的に接続され、いずれの位相器も通過せずに受信電波を直接反射する第 1の 反射波を得る第 1の信号路と、前記第 1乃至第 (k 1)の位相器を往復し前記第 1の 反射波と比較して (k 1) π /2111だけ位相がシフトした第 kの反射波を得る第 kの信 号路を備え (但し、 l≤k≤n)、
前記反射波形成手段は、送信データを 2111ビットずつに区切り、 2n1ビットの 0と 1の 組み合わせに応じた信号路を選択して反射波に位相を割り当てて、 2n相 PSK変調 を行なう、
ことを特徴とする請求項 1に記載の無線通信装置。
[3] 前記アンテナと前記第 1の位相器の間、前記第 (k - 1)の位相器と前記第 kの位相 器の間(但し、 2≤k≤n— 1)、並びに前記第 (n— 1)の位相器の後方にそれぞれ第 1 乃至第 nの反射点が設けられ、
前記反射波形成手段は、前記送信データを 2Π_1ビットずつに区切り、 2η1ビットの 0と 1の組み合わせに応じた反射点の切り替えを行なうことで反射波に位相を割り当てて 、 2η相 PSK変調を行なう、
ことを特徴とする請求項 2に記載の無線通信装置。
[4] 前記の各反射点は、グランド又はオープン端により形成される、
ことを特徴とする請求項 3に記載の無線通信装置。
[5] 片道で λ /8の位相差を与える第 1乃至第 3の位相器が前記アンテナに対し直列 的に接続され、いずれの位相器も通過せずに受信電波を直接反射する第 1の反射 波を得る第 1の信号路と、前記第 1の位相器のみを往復し前記第 1の反射波と比較し て π /2だけ位相がシフトした第 2の反射波を得る第 2の信号路と、前記第 1及び第 2 の位相器を往復し前記第 1の反射波と比較して πだけ位相がシフトした第 3の反射波 を得る第 3の信号路と、前記第 1乃至第 3の位相器を往復し前記第 1の反射波と比較 して 3 π /2だけ位相がシフトした第 4の反射波を得る第 4の信号路を備え、
前記反射波形成手段は、送信データを 2ビットずつに区切り、 2ビットの 0と 1の組み 合わせに応じた信号路を選択して反射波に位相を割り当てて、 QPSK変調を行なう ことを特徴とする請求項 1に記載の無線通信装置。
[6] 前記反射波形成手段は、前記第 1の信号路と前記第 3の信号路のみを用いて PS Κ変調を行なう、
ことを特徴とする請求項 5に記載の無線通信装置。
[7] 受信電波の反射を利用したバック'スキヤッタ方式によりデータ通信を行なう無線通 信装置であって、データ送信部は、
転送先から到来する電波を受信するアンテナと、
第 1の高周波スィッチからなる第 1の反射信号路と、
λ /8の位相差を与える位相変調手段及び第 2の高周波スィッチからなる第 2の反 射信号路と、
シリアルの送信データをパラレル信号に変換するシリアル/パラレル変換手段と、 前記アンテナの受信信号を前記の各反射信号路に分配し及び各反射信号路から の出力を合成する合成 Ζ分配手段を備え、
前記の各高周波スィッチは、シリアル/パラレル変換された 2つのデータの各々に よりオン'オフ制御され、受信電波に対する反射波の位相差パターンを以つて送信デ ータを表す、
ことを特徴とする無線通信装置
[8] 前記アンテナでの受信信号の所定帯域を通過させるフィルタ並びに信号を成形す る検波部を含んだデータ受信部をさらに備え、
データ送信を行なうかどうかに応じて前記データ送信部と前記データ受信部を排他 的に切り替える、
ことを特徴とする請求項 1又は 7のいずれかに記載の無線通信装置。
PCT/JP2004/012501 2003-10-10 2004-08-30 無線通信装置 WO2005036767A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020057010721A KR101114505B1 (ko) 2003-10-10 2004-08-30 무선 통신 장치
EP04772457.0A EP1672804B1 (en) 2003-10-10 2004-08-30 Radio communication apparatus
US10/537,490 US7221908B2 (en) 2003-10-10 2004-08-30 Radio communication apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-352223 2003-10-10
JP2003352223 2003-10-10
JP2004-108648 2004-04-01
JP2004108648A JP4196871B2 (ja) 2003-10-10 2004-04-01 無線通信装置

Publications (1)

Publication Number Publication Date
WO2005036767A1 true WO2005036767A1 (ja) 2005-04-21

Family

ID=34436923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012501 WO2005036767A1 (ja) 2003-10-10 2004-08-30 無線通信装置

Country Status (6)

Country Link
US (1) US7221908B2 (ja)
EP (1) EP1672804B1 (ja)
JP (1) JP4196871B2 (ja)
KR (1) KR101114505B1 (ja)
TW (1) TWI257775B (ja)
WO (1) WO2005036767A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806237B1 (ko) * 1999-11-17 2008-02-22 소니 가부시끼 가이샤 통신 장치, 통신 시스템 및 통신 수단
EP1630726B1 (en) 2004-08-18 2009-09-23 Sony Corporation Memory card, memory-card control method, memory-card access control method and computer programs
JP2006067266A (ja) 2004-08-27 2006-03-09 Sony Corp 無線通信システム、無線通信装置及び無線通信方法
US7400862B2 (en) * 2004-10-25 2008-07-15 Skyworks Solutions, Inc. Transmit-receive switch architecture providing pre-transmit isolation
JP2007052559A (ja) * 2005-08-16 2007-03-01 Sony Corp 無線データ伝送システム、情報処理装置及び情報処理方法、並びにコンピュータ・プログラム
WO2007115577A1 (en) * 2006-04-07 2007-10-18 Inviseo Media Ltd. Method for establishing communication between a passenger in a vehicle and a publicity provider who places a poster/advertisement in a vehicle
US7974577B2 (en) * 2006-04-11 2011-07-05 Tazzle, Inc. Devices and systems for improved wireless communication
GB2437350A (en) 2006-04-19 2007-10-24 Hewlett Packard Development Co Data and Power Transmission via an Amplitude and Phase/Frequency Modulated Signal
WO2008064041A2 (en) * 2006-11-19 2008-05-29 Rmax, Llc Internet-based computer for mobile and thin client users
JP4773943B2 (ja) * 2006-12-27 2011-09-14 キヤノン株式会社 画像再生装置及びその制御方法
JP5125465B2 (ja) 2007-12-11 2013-01-23 ソニー株式会社 通信装置
JP2009232372A (ja) 2008-03-25 2009-10-08 Sony Corp 通信システム並びに通信装置
TWI407376B (zh) * 2009-02-13 2013-09-01 Ind Tech Res Inst 無線射頻識別標籤檢測方法與系統
JP5509776B2 (ja) * 2009-10-05 2014-06-04 富士通株式会社 アンテナ、タグ通信装置およびリーダライタシステム
US9391476B2 (en) * 2010-09-09 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Power feeding device, wireless power feeding system using the same and wireless power feeding method
WO2014046424A1 (en) * 2012-09-18 2014-03-27 Samsung Electronics Co., Ltd. Information transmission method and system, and device
KR101590291B1 (ko) * 2015-01-29 2016-02-01 세종대학교산학협력단 위상 변조를 사용하는 백스캐터 시스템 및 그것을 이용한 상향 링크 통신 방법
JP2020030607A (ja) 2018-08-22 2020-02-27 株式会社デンソー 車両用ソフトウェア更新装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145103A (ja) * 1996-11-08 1998-05-29 Murata Mfg Co Ltd 4相位相変換器およびこれを用いた直交変調器
JP2001024549A (ja) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd 移動体識別システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130602A (en) * 1996-05-13 2000-10-10 Micron Technology, Inc. Radio frequency data communications device
US6192222B1 (en) * 1998-09-03 2001-02-20 Micron Technology, Inc. Backscatter communication systems, interrogators, methods of communicating in a backscatter system, and backscatter communication methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145103A (ja) * 1996-11-08 1998-05-29 Murata Mfg Co Ltd 4相位相変換器およびこれを用いた直交変調器
JP2001024549A (ja) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd 移動体識別システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1672804A4 *

Also Published As

Publication number Publication date
EP1672804A4 (en) 2012-04-11
US20060046774A1 (en) 2006-03-02
JP2005136943A (ja) 2005-05-26
EP1672804A1 (en) 2006-06-21
US7221908B2 (en) 2007-05-22
TW200522549A (en) 2005-07-01
TWI257775B (en) 2006-07-01
KR101114505B1 (ko) 2012-02-24
EP1672804B1 (en) 2013-04-17
JP4196871B2 (ja) 2008-12-17
KR20070038863A (ko) 2007-04-11

Similar Documents

Publication Publication Date Title
JP4196871B2 (ja) 無線通信装置
US8164455B2 (en) Backscatter communication system with reflector for transmitting a modulated signal to a reader
JP4020096B2 (ja) 無線通信システム、無線通信装置及び無線通信方法
US8292175B2 (en) Tag device, reader device, and RFID system
JP4218463B2 (ja) 無線通信装置並びに無線通信システム
JPWO2005015764A1 (ja) 無線通信システム並びに無線通信装置
KR20080097115A (ko) 무선 주파수 식별 장치
JP2002353852A (ja) 無線通信装置および無線通信システム
JP4385858B2 (ja) 無線通信システム及び無線通信装置
JP2008048288A (ja) 無線通信システム及び無線通信装置
US7949258B2 (en) Radio communication system, radio communication apparatus and radio communication method as well as computer program
JP2008124915A (ja) 無線通信システム並びに無線通信装置
JP2005136666A (ja) 無線通信装置
JP4345567B2 (ja) 無線通信装置
JP2006013952A (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
CN100542061C (zh) 无线通信设备
KR20060001134A (ko) 고주파 id 리더간 통신 기능을 갖는 고주파 id 리더
JP2007096395A (ja) 無線通信装置
JP2004200982A (ja) 非接触icカード用リーダライタ
JP2008124916A (ja) 無線通信システム並びに無線通信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2006046774

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2004772457

Country of ref document: EP

Ref document number: 10537490

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057010721

Country of ref document: KR

Ref document number: 20048015425

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 10537490

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004772457

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057010721

Country of ref document: KR