WO2005003562A1 - Vane pump - Google Patents
Vane pump Download PDFInfo
- Publication number
- WO2005003562A1 WO2005003562A1 PCT/JP2003/008619 JP0308619W WO2005003562A1 WO 2005003562 A1 WO2005003562 A1 WO 2005003562A1 JP 0308619 W JP0308619 W JP 0308619W WO 2005003562 A1 WO2005003562 A1 WO 2005003562A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slot
- vane
- slot forming
- rotor
- length
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C2/34—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
- F04C2/344—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C2/3446—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2230/00—Manufacture
- F04C2230/60—Assembly methods
Definitions
- the present invention relates to a vane pump used for a hydraulic power source of a power steering of a vehicle.
- a cam ring is housed inside a pump housing, and a vane rotor that forms a pressure chamber between an outer peripheral surface and an inner peripheral surface of the cam ring is rotatably provided in the cam ring. ing.
- a plurality of slots are formed in the outer peripheral portion of the vane rotor at substantially equal circumferential positions along the radial direction, and a thin plate vane is formed inside each slot.
- the cam ring is held so as to be able to protrude and retract in the direction of the inner peripheral surface.
- the rotor is connected to a drive shaft penetrated in the pump housing. Rotational force is transmitted to the drive shaft by a timing belt from a crankshaft of the engine via a driven pulley attached to the outer end side.
- each vane rotates while protruding from the slot by the pressure of the back pressure chamber while the tip end of each vane slides on the inner peripheral surface of the cam ring.
- the hydraulic pressure flowing into the pump chamber between the vanes from the suction port formed in the pump housing is discharged to the discharge port while being compressed by the vanes, thereby performing the pumping operation.
- a notch is formed intermittently on the outer peripheral surface of the outer peripheral portion of the mouth except the slot forming portion where the respective slots are formed.
- each notch portion is formed intermittently on the outer peripheral surface of the rotor
- the circumferential length of each notch portion is substantially the same as the circumferential length of the convex slot forming portion. If many of the rotors are sintered, they are placed on the parts feeder on the manufacturing line and conveyed while slightly interfering with each other on the same plane. The other slot forming portions adjacent to each other are tightly fitted and connected to each other.
- the present invention has been devised in view of the above-mentioned conventional technical problems, and the first invention has a notch formed at a portion other than a slot forming portion where a slot is formed on an outer peripheral surface of a rotor.
- the circumferential length of the notch between the adjacent slot forming portions is set to be larger than the circumferential length of each slot forming portion.
- the circumferential length of the cutout portion is set to be larger than the circumferential length of the slot forming portion, many rotors formed by sintering are placed on the parts feeder and conveyed. Even if the rotors are close to each other and lightly interfere with each other and the slot forming part of the other rotor that is in contact with the notch in one mouth is so-called loose fitting instead of tight fitting. As a result, the rotors are not connected to each other, and are transported in a state of being separated from each other. As a result, each rotor is smoothly transported to the automatic assembling device by the parts feeder, thereby preventing a reduction in assembling workability.
- a second invention is characterized in that the circumferential length of the slot forming portion is set to at least three times or more the opening length of the slot.
- the length of the slot forming portion is made as small as possible by the cutout portion formed on the outer peripheral surface of each rotor, the length is reduced to the opening length of the slot. Since it is three times or more, the rigidity of the slot forming portion is sufficiently ensured. Therefore, the pumping action of each vane caused by the rotation of the rotor makes it possible to sufficiently oppose a large load acting on the vane in the direction opposite to the rotating direction, thereby forming a slot. The occurrence of deformation of the part can be prevented.
- a first chamfered portion is formed in a rotor rotation direction of each slot forming portion formed in a convex shape by each of the cutout portions and in each outer edge opposite to the rotation direction.
- a second chamfered portion is formed between the base of the slot forming portion and the connecting portion of the notch, and a radius of curvature of the second chamfered portion is set to be larger than that of the first chamfered portion.
- the first chamfering of one rotor is performed when the adjacent rotors engage with the notch portion and the slot forming portion during the transport by the parts feeder of each rotor. Even if the part comes into contact with the other bevel, the second chamfered part has a larger radius of curvature than the first chamfered part, so it is always easily separated without tight fitting. It is in a state where it can be done. Therefore, the automatic assembling work is further facilitated. .
- a fourth invention is characterized in that a length of a portion of the slot forming portion on the side opposite to the rotor rotation direction around the slot is set to be longer than a length of a portion on the mouth rotation direction side.
- the rigidity of the portion on the side opposite to the rotor rotation direction is increased, it can sufficiently cope with a large load in the direction opposite to the rotation direction by each vane. It becomes possible to support, and the durability of the rotor is improved.
- FIG. 1 is a longitudinal sectional view showing a vane pump according to a first embodiment of the present invention.
- FIG. 2 is a sectional view taken along line AA of FIG. 1 of FIG.
- FIG. 3 is a front view of the van ring and the cam ring used in the present embodiment.
- FIG. 4 is a sectional view taken along line BB of FIG.
- FIG. 5 is an enlarged view of a portion C in FIG.
- FIG. 6 is an enlarged view of a main part showing a second embodiment of the present invention.
- the vane pump is applied to a pump as a supply source for supplying hydraulic equipment fo hydraulic pressure, such as a power steering device of a vehicle, and is fixed to a cylinder block of an internal combustion engine by a port as shown in Fig. 1.
- the pump housing 1 comprises a block-shaped pump body 6 having a suction passage 4 and a discharge passage 5, and a pump cover 7 coupled to the pump body 6.
- a space for housing the pump body 2 is provided between the pump body 6 and the pump cover 7. .
- the pump body 2 includes a cam ring 8 housed and disposed inside the pump cover 7, and a ventilator 9 rotatably provided inside the cam ring 8.
- the cam ring 8 is formed at approximately 180 ° on the outer peripheral surface as shown in FIG.
- the pump housing 1 is positioned in the circumferential direction by the location bins 13 and 13 fitted into the pair of small semicircular pin receiving grooves 8 b and 8 c, and the inner peripheral surface 8 a Are formed in a substantially elliptical shape.
- the vane rotor 9 is integrally formed in a substantially disk shape by a sintered alloy, and separates a substantially annular pump chamber 14 between an outer peripheral surface and an inner peripheral surface 8 a of the cam ring 8. I have. In the center of the vane rotor 9, a selection hole 9a through which the one end 12a of the drive shaft 3 penetrates through the side plates 10 and 11 is formed. In the portion, ten slots 15 are radially formed at equally spaced positions in the circumferential direction.
- Each of the slots 15 holds a thin plate-shaped vane 16 therein so as to be slidable in the radial direction, and has a bottom in a direction in which each vane 16 protrudes, a tip 1 A back pressure chamber 15a is formed so that 6a protrudes from the open end 15a of the slot 15 toward the inner peripheral surface 8a of the cam ring 8.
- the vane rotor 9 has an arc-shaped hollowed portion which is a cutout at a portion other than the slot forming portion 17 where the respective slots 15 are formed on the outer peripheral surface. 18 are formed.
- each of the slot forming portions 17 is formed in a convex shape due to the presence of each of the lightening portions 18, and between the adjacent slot forming portions 17, 17.
- the circumferential length L of each lightening portion 18 is set to be larger than the circumferential length L1 of each slot forming portion 17.
- the entire length L 1 of the slot forming portion 17 in the circumferential direction is set to be at least three times or more the opening length L 2 of the slot 15.
- the slot 15 is formed substantially at the center of the slot forming portion 17 in the circumferential direction, and a portion 1 on the opposite side of the rotation direction of the vane rotor 9 about the slot 15 is formed.
- the lengths L 3 and L 4 in the circumferential direction of the portion 17 b on the rotation direction side are substantially the same as 7 a and the portion 17 b on the rotation direction side.
- a chamfered portion (17c) is formed, and an arc-shaped second chamfered portion (17d) is formed between a base portion of the slot forming portion (17) and a connecting portion of the slotted portion (18).
- the radius of curvature R of the second chamfer 17d is set to be larger than the radius of curvature of the first chamfer 17c.
- the vane rotor 9 prevents burrs, which are easily generated when the vane rotor 9 is sintered and formed, in the circumferential direction inside the slot forming portion 17 and the lightening portion 18 on the outer peripheral portion.
- An annular third chamfered portion 17e is formed to perform the beveling.
- a drive transmission pulley 19 is attached to the other end of the drive shaft 3 protruding from the pump body 6, and the power of the engine is transmitted through a belt (not shown) wound around the pulley 19. It has become.
- the one side plate 10 is pressed against the end face of the pump body 6, and a pair of left and right suction ports 20 formed on the side of the pump body 2 is formed at the pressed portion, as shown in FIG. 2. It is connected to a suction passage 4 of the pump body.
- a pressure chamber 22 into which hydraulic oil discharged from a discharge port 21 formed in the pump body 2 flows is provided between the outer peripheral surface of the pump body 2 and the inner peripheral surface of the pump cover 7. I have.
- the pressure chambers 22 are connected in line to a discharge passage 5 provided in the pump body 6 and a drain passage 24 formed on the opposite side of the discharge passage 5 in the radial direction.
- the discharge passage 5 is provided with a variable throttle mechanism 25, while a drain valve 26 is provided at the upstream end of the drain passage 24, the drain valve 26 being responsive to a differential pressure across the variable throttle mechanism 25. I have.
- the variable throttle mechanism 25 has a spool housing hole 27 formed in the end face of the pump body 6 on the pressure chamber 22 side, and is accommodated in the spool accommodation hole 27 so as to be able to advance and retreat.
- a spool 28 for increasing and decreasing the opening area of the discharge passage 5 and a spring 29 for urging the spool 28 toward the pressure chamber 22 are provided.
- the variable throttle mechanism 25 moves forward and backward by the balance between the hydraulic pressure of the pressure chamber 22 acting on one end of the spool 28 and the spring force of the spring 29, and the spool 28 moves to the side plate 10.
- the opening area of the discharge passage 5 is set to be the maximum at the initial position where it comes into contact.
- One discharge port 21 formed in the pump body 2 is open at a position of the side plate 10 facing the end face of the spool 28.
- the drain valve 26 includes a spool housing hole 30 formed in the end face of the pump body 6 on the pressure chamber 22 side, and a spool 31 housed in the spool housing hole 30 so as to be able to move forward and backward.
- a drain port 33 which constitutes an open end.
- the pressure on the downstream side of the variable throttle mechanism 25 is introduced to the bottom 30 a side of the spool accommodation hole 30 via the pressure introduction passage 23.
- One end of the spool 31 faces the pressure chamber 22 side, so that the pressure before and after the variable throttle mechanism 25 acts on the front and rear of the spool 31.
- the discharge flow rate from the drain port 33 to the drain passage 24 is controlled to increase or decrease according to the differential pressure of the pressure.
- the drain valve 26 is actuated by the spring 32 while the variable throttle mechanism 25 opens the discharge passage 5 to the maximum. (Thus, since the drain port 33 is closed, the supply flow rate of the discharge passage 5 increases as the rotational speed increases.)
- the spool 31 of the drain valve 26 changes the drain port 3 3 in response to the differential pressure. Since the operating oil is opened and the hydraulic oil is discharged from the drain passage 24, an increase in the supply flow rate of the discharge passage 5 is suppressed.
- variable throttle mechanism 25 When the rotation speed of the drive shaft 3 increases from this state, the variable throttle mechanism 25 The spool 28 retreats against the spring force of the spring 29 by the hydraulic pressure of the hydraulic oil on the pressure chamber 22 side, and the opening area of the discharge passage 5 is gradually reduced. As a result, the supply flow rate of the discharge passage 5 gradually decreases, and a so-called flow-down characteristic can be obtained.
- each lightening portion 18 is set to be larger than the circumferential length L1 of each slot forming portion 17, a large number of sinter-formed vane rolls 9 are provided. Even if the slot forming part 17 of another adjacent vane rotor 9 fits into the thinned part 18 of one vane rotor 9 while the Instead, the vane rotors 9 are in a so-called loose fit state, so that the vane rotors 9 are not connected to each other and can be transported in a state of being separated from each other.
- the length L 1 of the slot forming portion 1 ⁇ ⁇ ⁇ ⁇ is made as small as possible by the lightening portion 18, the length L 1 is changed to the opening length L 2 of the slot 15. Since it is set to three times or more, the rigidity of the slot forming portion 17 can be sufficiently ensured.
- the vane 16 must sufficiently oppose a large load acting on the vane 16 in the direction opposite to the rotational direction due to the pumping action (bump action) of each vane 16 accompanying the rotation of the vane rotor 9. As a result, the support strength of the vane 16 is increased, and the occurrence of deformation of the slot forming portion 17 can be prevented.
- the radius of curvature of the second chamfered portion 17 d of the slot forming portion 17 is set to be larger than that of the first chamfered portion 17 c, as described above, during the transport of each vane rotor 9 by the par feeder, When the lightening portion 18 of the adjacent vanes 9 and the slot forming portion 17 are fitted to each other, they do not fit tightly to each other. It is always in a state where it can be easily separated. Therefore, the subsequent automatic assembling work is further facilitated.
- FIG. 6 shows a second embodiment, in which the length L3 of the portion 17a of the slot forming portion 17 on the opposite side to the direction of rotation of the vane rotor 9 about the formation position of the slot 15 is defined as a length. This is set to be longer than the length L4 of the part 17b on the rotation direction side of the ninth and night 9th.
- the rigidity of the portion 1 ⁇ a on the opposite side to the rotation direction of the vane rotor 9 becomes larger, it is necessary to sufficiently support the large load in the opposite direction to the rotation direction by the vanes 16. And the durability of the rotor is improved.
- the present invention is not limited to the configurations of the above embodiments, and for example, the depth of the lightening portion 18 and the length in the circumferential direction can be arbitrarily changed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Abstract
A vane pump comprises a vane rotor (9) rotatably received in a cam ring (8), and vanes (16) held for projection and retraction in a plurality of slots (15) radially formed in the outer periphery of the vane rotor substantially at circumferentially equispaced intervals. The circumferential length (L) of a material-removed section (18) between two adjacent slot forming sections (17, 17) is set greater than the circumferential length (L1) of each slot forming section so that even if the material-removed sections and the slot forming sections of adjacent vane rotors fit together on a parts feeder, such fitting is not a tight fit but a loose fit. This prevents rotors being fed on the parts feeder from connecting to each other, thus preventing the efficiency of automatic assembly operation from lowering.
Description
明細書 ベーンポンプ Description Vane pump
技術分野 Technical field
本発明は、 車両のパワーステアリングの油圧供給源等に用いられるベーンポン プに関する。 背景技術 The present invention relates to a vane pump used for a hydraulic power source of a power steering of a vehicle. Background art
この種の車両に用いられ従来のベーンポンプとしては、 従来から種々提供され ているが、 その 1つとして日本国特許庁発行の特開平 9一 3 2 4 7 6 7号公報に 記載されたものが知られている。 Various types of conventional vane pumps used for this kind of vehicle have been conventionally provided, and one of them is described in Japanese Patent Application Laid-Open No. Hei 9-134274 published by the Japan Patent Office. Are known.
このべ一ンポンプは、 ポンプハウジングの内部にカムリングが収容されている と共に、 該カムリング内に、 外周面とカムリングの内周面との間に圧力室を形成 するベーンロ一夕が回転自在に設けられている。 In this vane pump, a cam ring is housed inside a pump housing, and a vane rotor that forms a pressure chamber between an outer peripheral surface and an inner peripheral surface of the cam ring is rotatably provided in the cam ring. ing.
また、 このべーンロータの外周部には、 円周方向のほぼ等間隔位置に放射方向 に沿って複数のスロットが形成されており、 この各スロットの内部には、 薄板状 のべーンが前記カムリングの内周面方向へ出没自在に保持されている。 また、 前 記ロータは、 ポンプハウジング内に揷通された駆動軸に連結されている。 この駆 動軸には、 外端部側に取り付けられたドリブンプ一リを介して機関のクランクシ ャフトからタイミングベルトによって回転力が伝達されるようになっている。 そして、 前記駆動軸の回転駆動に伴いべ一ンロータが回転すると、 各べーンは 背圧室の圧力によりスロットから突出しつつ各べーン先端部がカムリングの内周 面に摺接しながら回転する。 これによつて、 ポンプハウジング内に形成されてい る吸入ポートから各べ一ン間のポンプ室内に流入した油圧が各べーンによって圧 縮されながら吐出ポートに吐出されてポンプ作用が行われるようになつている。
ところで、 前記従来のようなベーンポンプにあっては、 近時、 前記口一夕の外 周部の前記各スロットが形成されるスロット形成部以外の外周面に間欠的に切欠 部を形成して、 例えば焼結合金によって形成されるローラの材料削減によるコス トの低減化の要請を満足すると共に、 圧力室の容積の拡大化を図ることによって ポンプの脈動低減効果を発揮させるようにしたものがある。 In addition, a plurality of slots are formed in the outer peripheral portion of the vane rotor at substantially equal circumferential positions along the radial direction, and a thin plate vane is formed inside each slot. The cam ring is held so as to be able to protrude and retract in the direction of the inner peripheral surface. Further, the rotor is connected to a drive shaft penetrated in the pump housing. Rotational force is transmitted to the drive shaft by a timing belt from a crankshaft of the engine via a driven pulley attached to the outer end side. When the vane rotor rotates with the rotation of the drive shaft, each vane rotates while protruding from the slot by the pressure of the back pressure chamber while the tip end of each vane slides on the inner peripheral surface of the cam ring. . With this, the hydraulic pressure flowing into the pump chamber between the vanes from the suction port formed in the pump housing is discharged to the discharge port while being compressed by the vanes, thereby performing the pumping operation. It has become. Incidentally, in the conventional vane pump, recently, a notch is formed intermittently on the outer peripheral surface of the outer peripheral portion of the mouth except the slot forming portion where the respective slots are formed. For example, there is one that satisfies the demand for cost reduction by reducing the material of rollers formed of a sintered alloy, and also has the effect of reducing the pulsation of the pump by increasing the volume of the pressure chamber. .
しかしながら、 ロータの外周面に間欠的に切欠部を形成したものにあっては、 該各切欠部の円周方向の長さと、 凸状のスロット形成部の円周方向の長さがほぼ 同一になっている場合は、 焼結加工された多くのロータが製造ラィン上でパーツ フィーダ一に載せられて互いに同一平面上で軽く干渉しながら搬送されている最 中に、 一つのロー夕の切欠部内に隣接した他方のスロット形成部が緊密に嵌合し て互いに連結された状態になってしまう。 However, in the case where the notch portion is formed intermittently on the outer peripheral surface of the rotor, the circumferential length of each notch portion is substantially the same as the circumferential length of the convex slot forming portion. If many of the rotors are sintered, they are placed on the parts feeder on the manufacturing line and conveyed while slightly interfering with each other on the same plane. The other slot forming portions adjacent to each other are tightly fitted and connected to each other.
このため、 パーツフィーダ上で互いに連結されたロータが自動組み付け装置へ 搬送されてしまい、 自動組み付け作業性の悪化を招いていた。 発明の開示 For this reason, the rotors connected to each other on the parts feeder are conveyed to the automatic assembling apparatus, and the workability of the automatic assembling is deteriorated. Disclosure of the invention
本発明は、 前記従来の技術的課題に鑑みて案出されたもので、 第 1の発明は、 とりわけ、ロータの外周面のスロットが形成されるスロット形成部以外の部位に、 切欠部を形成すると共に、 前記隣接する両スロット形成部間の前記切欠部の円周 方向の長さを、 前記各スロット形成部の円周方向の長さよりも大きく設定したこ とを特徴としている。 The present invention has been devised in view of the above-mentioned conventional technical problems, and the first invention has a notch formed at a portion other than a slot forming portion where a slot is formed on an outer peripheral surface of a rotor. In addition, the circumferential length of the notch between the adjacent slot forming portions is set to be larger than the circumferential length of each slot forming portion.
この発明によれば、 切欠部の円周方向の長さ.をスロット形成部の円周方向の長 さよりも大きく設定したため、 焼結成形された多くのロータをパーツフィーダ一 に載せて搬送している際に、 各ロータが互いに接近して軽く干渉しながら 1つの 口一夕の切欠部に、 瞵接する他のロータのスロット形成部が嵌合したとしても、 緊密な嵌合ではなくいわゆる遊嵌状態になることから、 互いのロータが連結する ことがなくなり、 互いにばらばらの状態で搬送される。
この結果、 各ロータはパーツフィーダによってスムーズに自動組み付け装置へ 搬送されることになり、 組付作業性の低下を防止できる。 According to the present invention, since the circumferential length of the cutout portion is set to be larger than the circumferential length of the slot forming portion, many rotors formed by sintering are placed on the parts feeder and conveyed. Even if the rotors are close to each other and lightly interfere with each other and the slot forming part of the other rotor that is in contact with the notch in one mouth is so-called loose fitting instead of tight fitting. As a result, the rotors are not connected to each other, and are transported in a state of being separated from each other. As a result, each rotor is smoothly transported to the automatic assembling device by the parts feeder, thereby preventing a reduction in assembling workability.
第 2の発明は、 前記スロット形成部の円周方向の長さを前記スロットの開口長 さの少なくとも 3倍以上に設定したことを特徴としている。 A second invention is characterized in that the circumferential length of the slot forming portion is set to at least three times or more the opening length of the slot.
この発明によれば、 各ロータの外周面に形成された切欠部によってスロット形 成部の円周方向の長さを可及的に小さくするとしても、 その長さをスロットの開 口長さの 3倍以上としたことから、該スロット形成部の剛性が十分に確保される。 したがって、 ロータの回転に伴う各べ一ンの搔き出し作用 (ポンプ作用) により 該ベーンに作用する回転方向と反対方向への大きな負荷に対して十分に対抗する ことが可能になり、 スロット形成部の変形などの発生を防止できる。 According to the present invention, even if the circumferential length of the slot forming portion is made as small as possible by the cutout portion formed on the outer peripheral surface of each rotor, the length is reduced to the opening length of the slot. Since it is three times or more, the rigidity of the slot forming portion is sufficiently ensured. Therefore, the pumping action of each vane caused by the rotation of the rotor makes it possible to sufficiently oppose a large load acting on the vane in the direction opposite to the rotating direction, thereby forming a slot. The occurrence of deformation of the part can be prevented.
第 3の発明は、 前記各切欠部よつて凸状に形成された各スロット形成部のロー タ回転方向及び該回転方向と反対側の各外端縁に第 1面取り部を形成すると共に、 前記スロット形成部の基部と前記切欠部との連結部との間に第 2面取り部を形成 し、 該第 2面取り部の曲率半径を第 1面取り部よりも大きく設定したことを特徴 としている。 According to a third aspect of the present invention, a first chamfered portion is formed in a rotor rotation direction of each slot forming portion formed in a convex shape by each of the cutout portions and in each outer edge opposite to the rotation direction. A second chamfered portion is formed between the base of the slot forming portion and the connecting portion of the notch, and a radius of curvature of the second chamfered portion is set to be larger than that of the first chamfered portion.
この発明によれば、 前述したように、 各ロー夕のパーツフィーダによる搬送中 において、 互いに隣接するロータ同士が切欠部とスロット形成部とが嵌合した際 に、, 1つのロータの第 1面取り部が他方の口一夕の声 2面取り部と接触しても、 この第 2面取り部の曲率半径が第 1面取り部よりも大きいことから、 互いに緊密 に嵌合することなく、 常に簡単に離間し得る状態になっている。 したがって、 自 動組み付け作業がさらに容易になる。 . According to the present invention, as described above, the first chamfering of one rotor is performed when the adjacent rotors engage with the notch portion and the slot forming portion during the transport by the parts feeder of each rotor. Even if the part comes into contact with the other bevel, the second chamfered part has a larger radius of curvature than the first chamfered part, so it is always easily separated without tight fitting. It is in a state where it can be done. Therefore, the automatic assembling work is further facilitated. .
第 4の発明は、 前記スロット形成部の前記スロットを中心としたロータ回転方 向と反対側の部位の長さを、 口一夕回転方向側の部位の長さよりも大きく設定し たことを特徴としている。 A fourth invention is characterized in that a length of a portion of the slot forming portion on the side opposite to the rotor rotation direction around the slot is set to be longer than a length of a portion on the mouth rotation direction side. And
この発明によれば、 ロータ回転方向と反対側の部位の剛性がより大きくなるこ とから、 前記各べーンによる回転方向と反対方向の大きな負荷に対して十分に対
抗支持することが可能になり、 ロータの耐久性が向上する。 図面の簡単な説明 According to the present invention, since the rigidity of the portion on the side opposite to the rotor rotation direction is increased, it can sufficiently cope with a large load in the direction opposite to the rotation direction by each vane. It becomes possible to support, and the durability of the rotor is improved. Brief Description of Drawings
図 1は本発明の第 1の実施形態に係るベーンポンプを示す縦断面図である。 図 2は図 1の図 1の A— A線断面図である。 FIG. 1 is a longitudinal sectional view showing a vane pump according to a first embodiment of the present invention. FIG. 2 is a sectional view taken along line AA of FIG. 1 of FIG.
図 3は本実施形態に供されるベーンロ一夕とカムリングの正面図である。 図 4は図 3の B— B線断面図である。 FIG. 3 is a front view of the van ring and the cam ring used in the present embodiment. FIG. 4 is a sectional view taken along line BB of FIG.
図 5は図 3の C部拡大図である。 FIG. 5 is an enlarged view of a portion C in FIG.
図 6は本発明の第 2の実施形態を示す要部拡大図である。 発明を実施するための最良の形態 FIG. 6 is an enlarged view of a main part showing a second embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明にかかるベーンポンプの実施形態を図面に基づいて詳述する。 このべ一ンポンプは、 車両のパワーステアリング装置等の油圧機器 fo油圧を供 給する供給源としてポンプに適用されたもので、 図 1に示すように、 内燃機関の シリンダブロックなどにポルトによって固定されたポンプハウジング 1と、 該ポ ンプ八ウジング 1内に配置されたポンプ本体 2と、 一端部側がポンプ八ゥジング 1の内部に挿通した駆動軸 3とから主として構成されている。 Hereinafter, embodiments of a vane pump according to the present invention will be described in detail with reference to the drawings. The vane pump is applied to a pump as a supply source for supplying hydraulic equipment fo hydraulic pressure, such as a power steering device of a vehicle, and is fixed to a cylinder block of an internal combustion engine by a port as shown in Fig. 1. A pump housing 1, a pump body 2 disposed in the pump housing 1, and a drive shaft 3 having one end inserted into the pump housing 1.
前記 ンプハウジング 1は、 図 1及び図 2に示すよう こ、 吸入通路 4と吐出通 路 5を有するブロック状のポンプボディ 6と、 そのポンプボディ 6に結合された ポンプカバー 7とから成り、 このポンプボディ 6とポンプカバー 7の間にポンプ 本体 2を収容する空間部が設けられている。 . As shown in FIGS. 1 and 2, the pump housing 1 comprises a block-shaped pump body 6 having a suction passage 4 and a discharge passage 5, and a pump cover 7 coupled to the pump body 6. A space for housing the pump body 2 is provided between the pump body 6 and the pump cover 7. .
前記ポンプ本体 2は、 図 1〜図 3に示すように、 前記ポンプカバー 7の内部に 収容配置されたカムリング 8と、 該カムリング 8の内側に回転自在に設けられた ベ一ンロ一夕 9と、 前記カムリング 8の両側に配置された一対のサイドブレート 1 0 , 1 1とを備えている。 As shown in FIGS. 1 to 3, the pump body 2 includes a cam ring 8 housed and disposed inside the pump cover 7, and a ventilator 9 rotatably provided inside the cam ring 8. A pair of side plates 10, 11 arranged on both sides of the cam ring 8.
前記カムリング 8は、 図 3に示すように外周面のほぼ 1 8 0 ° 位置に形成され
た一対の小半円形状のピン受け溝 8 b、 8 cに嵌合したロケ一トビン 1 3、 1 3 によってポンプハウジング 1に円周方向の位蘆決めがなされていると共に、 内周 面 8 aがほぼ楕円形状に形成されている。 The cam ring 8 is formed at approximately 180 ° on the outer peripheral surface as shown in FIG. The pump housing 1 is positioned in the circumferential direction by the location bins 13 and 13 fitted into the pair of small semicircular pin receiving grooves 8 b and 8 c, and the inner peripheral surface 8 a Are formed in a substantially elliptical shape.
前記べ一ンロータ 9は、 焼結合金によってほぼ円盤状に一体に成形されて、 外 周面とカムリング 8の内周面 8 aとの間にほぼ円環状のポンプ室 1 4を隔成して いる。 また、 ベーンロータ 9の中央には、 前記サイドプレート 1 0, 1 1を貫通 する前記駆動軸 3の一端部 1 2 aがセレーション結合するセレ一シヨン孔 9 aが 霣通形成されていると共に、 外周部には、 1 0個のスロット 1 5が円周方向の等 間隔位置に放射状に形成されている。 また、 この各スロット 1 5は、 内部に薄肉 板状のベーン 1 6をそれぞれ放射方向へ摺動自在に保持していると共に、 底部に は各べーン 1 6を突出する方向、 先端部 1 6 aがスロット 1 5の開口端 1 5 aか らカムリング 8の内周面 8 a方向へ突出させる背圧室 1 5 aが形成されている。 また、 このべーンロータ 9は、 図 3〜図 6に示すように外周面の前記各スロッ ト 1 5が形成される該スロット形成部 1 7以外の部位に切欠部である円弧状の肉 抜き部 1 8が形成されている。 The vane rotor 9 is integrally formed in a substantially disk shape by a sintered alloy, and separates a substantially annular pump chamber 14 between an outer peripheral surface and an inner peripheral surface 8 a of the cam ring 8. I have. In the center of the vane rotor 9, a selection hole 9a through which the one end 12a of the drive shaft 3 penetrates through the side plates 10 and 11 is formed. In the portion, ten slots 15 are radially formed at equally spaced positions in the circumferential direction. Each of the slots 15 holds a thin plate-shaped vane 16 therein so as to be slidable in the radial direction, and has a bottom in a direction in which each vane 16 protrudes, a tip 1 A back pressure chamber 15a is formed so that 6a protrudes from the open end 15a of the slot 15 toward the inner peripheral surface 8a of the cam ring 8. Further, as shown in FIGS. 3 to 6, the vane rotor 9 has an arc-shaped hollowed portion which is a cutout at a portion other than the slot forming portion 17 where the respective slots 15 are formed on the outer peripheral surface. 18 are formed.
前記各スロット形成部 1 7は、 図 5にも示すように、 各肉抜き部 1 8の存在に よってそれぞれ凸状に形成されていると共に、 前記隣接する両スロット形成部 1 7 , 1 7間の,各肉抜き部 1 8の円周方向の長さ Lが前記各スロット形成部 1 7の 円周方向の長さ L 1よりも大きく設定されている。 As shown in FIG. 5, each of the slot forming portions 17 is formed in a convex shape due to the presence of each of the lightening portions 18, and between the adjacent slot forming portions 17, 17. The circumferential length L of each lightening portion 18 is set to be larger than the circumferential length L1 of each slot forming portion 17.
また、 スロット形成部 1 7は、 その円周方向の全体の長さ L 1が前記スロット 1 5の開口長.さ L 2の少なくとも 3倍以上に設定されている。. また、 前記スロッ ト形成部 1 7の円周方向のほぼ中心位置に前記スロット 1 5が形成されて、 該ス ロット 1 5を中心としたべ一ンロータ 9の回転方向と反対側の部位 1 7 aと回転 方向側の部位 1 7 bのそれぞれの円周方向の長さ L 3 , L 4がほぼ同一になって いる。 Further, the entire length L 1 of the slot forming portion 17 in the circumferential direction is set to be at least three times or more the opening length L 2 of the slot 15. Further, the slot 15 is formed substantially at the center of the slot forming portion 17 in the circumferential direction, and a portion 1 on the opposite side of the rotation direction of the vane rotor 9 about the slot 15 is formed. The lengths L 3 and L 4 in the circumferential direction of the portion 17 b on the rotation direction side are substantially the same as 7 a and the portion 17 b on the rotation direction side.
また、 ベーンロ一夕 9は、 図 5に示すように、 前記各スロット形成部 1 7のべ
ーンロータ回転方向 (矢印方向) 及び回転方向と反対側の各外端縁に円弧状の第In addition, as shown in FIG. The outer edge of the rotor opposite to the rotation direction (the direction of the arrow)
1面取り部 1 7 cが形成されていると共に、 前記スロット形成部 1 7の基部と前 記肉抜き部 1 8との連結部との間に円弧状の第 2面取り部 1 7 dが形成されてお り、 この第 2面取り部 1 7 dの曲率半径 Rが第 1面取り部 1 7 cの曲率半径より も大きく設定されている。 (1) A chamfered portion (17c) is formed, and an arc-shaped second chamfered portion (17d) is formed between a base portion of the slot forming portion (17) and a connecting portion of the slotted portion (18). The radius of curvature R of the second chamfer 17d is set to be larger than the radius of curvature of the first chamfer 17c.
さらに、 ベーンロータ 9は、 外周部の前記スロット形成部 1 7や肉抜き部 1 8 よりも内側の円周方向に、 該ベーンロ一夕 9を焼結成形する際に発生し易いバリ の発生を防止するための円環状の第 3面取り部 1 7 eが形成されている。 Further, the vane rotor 9 prevents burrs, which are easily generated when the vane rotor 9 is sintered and formed, in the circumferential direction inside the slot forming portion 17 and the lightening portion 18 on the outer peripheral portion. An annular third chamfered portion 17e is formed to perform the beveling.
前記駆動軸 3は、 ポンプボディ 6から突出した他端部に駆動伝達用のプーリ 1 9が取付けられ、 このプ一リ 1 9に巻回された図外のベルトを通してエンジンの 動力が伝達されるようになっている。 A drive transmission pulley 19 is attached to the other end of the drive shaft 3 protruding from the pump body 6, and the power of the engine is transmitted through a belt (not shown) wound around the pulley 19. It has become.
前記一方側のサイドプレート 1 0は、 ポンプボディ 6の端面に圧接され、 その 圧接部において、 図 2に示すように、 ポンプ本体 2側に形成された左右一対の吸 入ポ一卜 2 0がポンプボディらに有する吸入通路 4に接続されている。 The one side plate 10 is pressed against the end face of the pump body 6, and a pair of left and right suction ports 20 formed on the side of the pump body 2 is formed at the pressed portion, as shown in FIG. 2. It is connected to a suction passage 4 of the pump body.
また、 ポンプ本体 2の外周面とポンプカバ一 7の内周面との間には、 ポンプ本 体 2に形成された吐出ポート 2 1から吐出された作動油が流れ込む圧力室 2 2が 設けられている。 この圧力室 2 2は、 ポンプボディ 6に設けられた吐出通路 5と 該吐出通路 5と径^向の反対側に形成されたドレ一ン通路 2 4に 列に接続され ている。 A pressure chamber 22 into which hydraulic oil discharged from a discharge port 21 formed in the pump body 2 flows is provided between the outer peripheral surface of the pump body 2 and the inner peripheral surface of the pump cover 7. I have. The pressure chambers 22 are connected in line to a discharge passage 5 provided in the pump body 6 and a drain passage 24 formed on the opposite side of the discharge passage 5 in the radial direction.
前記吐出通路 5には、 可変絞り機構 2 5が設けられている一方、 ドレーン通路 2 4の上流端には、 可変絞り機構 2 5の前後差圧に応動するドレーン弁 2 6が設 けられている。 The discharge passage 5 is provided with a variable throttle mechanism 25, while a drain valve 26 is provided at the upstream end of the drain passage 24, the drain valve 26 being responsive to a differential pressure across the variable throttle mechanism 25. I have.
前記可変絞り機構 2 5は、 ポンプボディ 6の圧力室 2 2側の端面に形成された スプール収容穴 2 7と、 このスプール収容穴 2 7に進退自在に収容され、 その進 退位置に応じて吐出通路 5の開口面積を増減変化させるスプール 2 8と、 そのス プール 2 8を圧力室 2 2側に付勢するスプリング 2 9とを備えている。
そして、 この可変絞り機構 2 5は、 スプール 2 8の一端に作用する圧力室 2 2 の油圧とスプリング 2 9のばね力とのバランスによって進退作動すると共に、 ス プール 2 8がサイドプレート 1 0に当接する初期位置において吐出通路 5の開口 面積が最大になるように設定されている。 尚、 ポンプ本体 2に形成された一つの 吐出ポート 2 1は、 サイドプレート 1 0のうちの、 スプール 2 8の端面に対向す る位置に開口している。 The variable throttle mechanism 25 has a spool housing hole 27 formed in the end face of the pump body 6 on the pressure chamber 22 side, and is accommodated in the spool accommodation hole 27 so as to be able to advance and retreat. A spool 28 for increasing and decreasing the opening area of the discharge passage 5 and a spring 29 for urging the spool 28 toward the pressure chamber 22 are provided. The variable throttle mechanism 25 moves forward and backward by the balance between the hydraulic pressure of the pressure chamber 22 acting on one end of the spool 28 and the spring force of the spring 29, and the spool 28 moves to the side plate 10. The opening area of the discharge passage 5 is set to be the maximum at the initial position where it comes into contact. One discharge port 21 formed in the pump body 2 is open at a position of the side plate 10 facing the end face of the spool 28.
一方、 ドレーン弁 2 6は、 ポンプボディ 6の圧力室 2 2側の端面に形成された スプール収容穴 3 0と、 このスプール収容穴 3 0に進退自在に収容されたスプ一 ル 3 1と、 そのスプール 3 1を圧力室 2 2側に付勢するスプリング 3 2と、 スプ ール 3 1が後退したときにその後退量に応じて圧力室 2 2に開口し、 かつ前記ド レン通路 2 4の開口端を構成するドレンポート 3 3とを備えている。 On the other hand, the drain valve 26 includes a spool housing hole 30 formed in the end face of the pump body 6 on the pressure chamber 22 side, and a spool 31 housed in the spool housing hole 30 so as to be able to move forward and backward. A spring 32 for urging the spool 31 toward the pressure chamber 22; and a drain passage 24 for opening the pressure chamber 22 according to the amount of retreat when the spool 31 retreats. And a drain port 33 which constitutes an open end.
前記スプール収容穴 3 0の底部 3 0 a側には、 可変絞り機構 2 5の下流側の圧 力が圧力導入通路 2 3を介して導入されるようになっている。 前記スプール 3 1 の一端は圧力室 2 2側に面し、 これによつてスプール 3 1の前後には前記可変絞 り機構 2 5の前後の圧力が作用するため、 ドレーン弁 2 6はその前後の差圧に応 じてドレーンポート 3 3からドレン通路 2 4への排出流量を増減制御するように なっている。 The pressure on the downstream side of the variable throttle mechanism 25 is introduced to the bottom 30 a side of the spool accommodation hole 30 via the pressure introduction passage 23. One end of the spool 31 faces the pressure chamber 22 side, so that the pressure before and after the variable throttle mechanism 25 acts on the front and rear of the spool 31. The discharge flow rate from the drain port 33 to the drain passage 24 is controlled to increase or decrease according to the differential pressure of the pressure.
したがって、 この実 形態によれば、 駆動軸 3 (ベーンロータ 9 ) の回転速度 が低い間は、 可変絞り機構 2 5が吐出通路 5を最大に開いた状態でドレーン弁 2 6がスプリング 3 2の力 (こよってドレ一ンポート 3 3を閉じているため、 回転速 度の増大に応じて吐出通路 5の供給流量も増大する。 . Therefore, according to this embodiment, while the rotation speed of the drive shaft 3 (the vane rotor 9) is low, the drain valve 26 is actuated by the spring 32 while the variable throttle mechanism 25 opens the discharge passage 5 to the maximum. (Thus, since the drain port 33 is closed, the supply flow rate of the discharge passage 5 increases as the rotational speed increases.)
そして、 駆動軸 3の回転速度がある程度高まり、 可変絞り機構 2 5の前後差圧 が設定値を超えると、 その前後差圧に応動してドレーン弁 2 6のスプール 3 1が ドレーンポート 3 3を開き、 ドレ一ン通路 2 4から作動油を排出することから、 吐出通路 5の供給流量の増大が抑制されるようになる。 When the rotational speed of the drive shaft 3 increases to some extent and the differential pressure across the variable throttle mechanism 25 exceeds a set value, the spool 31 of the drain valve 26 changes the drain port 3 3 in response to the differential pressure. Since the operating oil is opened and the hydraulic oil is discharged from the drain passage 24, an increase in the supply flow rate of the discharge passage 5 is suppressed.
さらに、 この状態から駆動軸 3の回転速度が増大すると、 可変絞り機構 2 5の
スプール 2 8が圧力室 2 2側の作動油の油圧によってスプリング 2 9のばね力に 抗して後退し、吐出通路 5の開口面積が次第縮小されるようになる。 これにより、 吐出通路 5の供給流量は次第に減少し、 所謂フロ一ダウン特性が得られるように なる。 Further, when the rotation speed of the drive shaft 3 increases from this state, the variable throttle mechanism 25 The spool 28 retreats against the spring force of the spring 29 by the hydraulic pressure of the hydraulic oil on the pressure chamber 22 side, and the opening area of the discharge passage 5 is gradually reduced. As a result, the supply flow rate of the discharge passage 5 gradually decreases, and a so-called flow-down characteristic can be obtained.
また、 この実施形態によれば、 ベーンロ一夕 9の外周面に間欠的に複数の肉抜 き部 1 8が形成されていることから、 金属材料の削減や脈動の低減化が図れる。 しかも、 各肉抜き部 1 8の円周方向の長さ Lを各スロット形成部 1 7の円周方 向の長さ L 1よりも大きく設定したため、 焼結成形された多くのベーンロ一夕 9 をパーツフィーダ一で搬送している最中に、 1つのべ一ンロータ 9の肉抜き部 1 8に、 隣接する他のベーンロータ 9のスロット形成部 1 7が嵌合したとしても、 緊密な嵌合ではなくいわゆる遊嵌状態になることから、 互いのベーンロータ 9が 連結することがなく、 互いにばらばらの状態で搬送することができる。 Further, according to this embodiment, since a plurality of hollow portions 18 are intermittently formed on the outer peripheral surface of the vane ring 9, the reduction of the metal material and the pulsation can be achieved. In addition, since the circumferential length L of each lightening portion 18 is set to be larger than the circumferential length L1 of each slot forming portion 17, a large number of sinter-formed vane rolls 9 are provided. Even if the slot forming part 17 of another adjacent vane rotor 9 fits into the thinned part 18 of one vane rotor 9 while the Instead, the vane rotors 9 are in a so-called loose fit state, so that the vane rotors 9 are not connected to each other and can be transported in a state of being separated from each other.
この結果、 各ロー夕パーツフィーダによってスムーズに自動組み付け装置へ搬 送されることになり、 組付作業性の低下を防止できる。 As a result, the parts are smoothly transported to the automatic assembling device by the respective parts feeders, thereby preventing a reduction in assembling workability.
また、 前記肉抜き部 1 8によってスロット形成部 1 Ίの円周方向の長さ L 1を 可及的に小さくするとしても、 その長さ L 1を、 前記スロット 1 5の開口長さ L 2の 3倍以上に設定したため、 該スロット形成部 1 7の剛性を十分に確保するこ とができる。 Further, even if the circumferential length L 1 of the slot forming portion 1 に よ っ て is made as small as possible by the lightening portion 18, the length L 1 is changed to the opening length L 2 of the slot 15. Since it is set to three times or more, the rigidity of the slot forming portion 17 can be sufficiently ensured.
したがって、 ベーンロータ 9の回転に伴う各べーン 1 6の搔き出し作用 (ボン プ作用) により該ベーン 1 6に作用する回転方向と反対方向への大きな負荷に対 して十分に対抗することが可能になり、ベ一ン 1 6の支持強度が高くなると共に、 スロット形成部 1 7の変形などの発生を防止できる。 Therefore, the vane 16 must sufficiently oppose a large load acting on the vane 16 in the direction opposite to the rotational direction due to the pumping action (bump action) of each vane 16 accompanying the rotation of the vane rotor 9. As a result, the support strength of the vane 16 is increased, and the occurrence of deformation of the slot forming portion 17 can be prevented.
また、 前記スロット形成部 1 7の第 2面取り部 1 7 dの曲率半径を第 1面取り 部 1 7 cよりも大きく設定したため、 前述したように、 各べーンロータ 9のパー ッフィーダによる搬送中において、 互いに隣接するべーンロ一夕 9同士の肉抜き 部 1 8とスロット形成部 1 7が嵌合した際に、 互いに緊密に嵌合することなく、
常に簡単に離間し得る状態になっている。 したがって、 その後の自動組み付け作 業がさらに容易になる。 In addition, since the radius of curvature of the second chamfered portion 17 d of the slot forming portion 17 is set to be larger than that of the first chamfered portion 17 c, as described above, during the transport of each vane rotor 9 by the par feeder, When the lightening portion 18 of the adjacent vanes 9 and the slot forming portion 17 are fitted to each other, they do not fit tightly to each other. It is always in a state where it can be easily separated. Therefore, the subsequent automatic assembling work is further facilitated.
図 6は第 2の実施形態を示し、 前記スロット形成部 1 7の前記スロット 1 5の 形成位置を中心としたベーンロータ 9の回転方向と反対側の部位 1 7 aの長さ L 3を、 ベ一ンロ一夕 9の回転方向側の部位 1 7 bの長さ L 4よりも大きく設定し たものである。 FIG. 6 shows a second embodiment, in which the length L3 of the portion 17a of the slot forming portion 17 on the opposite side to the direction of rotation of the vane rotor 9 about the formation position of the slot 15 is defined as a length. This is set to be longer than the length L4 of the part 17b on the rotation direction side of the ninth and night 9th.
したがって、 ベーンロータ 9の回転方向と反対側の部位 1 Ί aの剛性がより大 きくなることから、 前記各べーン 1 6による回転方向と反対方向の大きな負荷に 対して十分に対抗支持することが可能になり、 ロータの耐久性が向上する。 本発明は前記各実施形態の構成に限定されるものではなく、 例えば肉抜き部 1 8の深さや円周方向の長さを任意に変更することも可能である。
Therefore, since the rigidity of the portion 1 Ίa on the opposite side to the rotation direction of the vane rotor 9 becomes larger, it is necessary to sufficiently support the large load in the opposite direction to the rotation direction by the vanes 16. And the durability of the rotor is improved. The present invention is not limited to the configurations of the above embodiments, and for example, the depth of the lightening portion 18 and the length in the circumferential direction can be arbitrarily changed.
Claims
1 . ポンプハウジング内に収容配置されたカムリングと、 1. a cam ring housed and arranged in the pump housing;
該カムリング内に回転自在に収容され、 駆動軸によって回転駆動されるロータ と、 A rotor rotatably housed in the cam ring, and rotatably driven by a drive shaft;
該ロータの外周部に放射方向に沿って形成された複数のスロットと、 A plurality of slots formed in the outer peripheral portion of the rotor along the radial direction;
該各スロット内に前記カムリングの内周面方向へ出没自在に保持されたべーン とを備えたベーンポンプにおいて、 A vane held in each of the slots so as to be able to protrude and retract toward the inner peripheral surface of the cam ring.
前記ロータの外周面の前記スロットが形成されるスロット形成部以外の部位に、 切欠部を形成すると共に、 前記隣接する両スロット形成部間の前記切欠部の円周 方向の長さを、 前記各スロット形成部の円周方向の長さよりも大きく設定したこ とを特徴とするベーンポンプ。 A notch is formed in a portion of the outer peripheral surface of the rotor other than the slot forming portion in which the slot is formed, and the circumferential length of the notch between the adjacent slot forming portions is defined as A vane pump characterized in that the length is set to be larger than the circumferential length of the slot forming portion.
2 . 前記スロット形成部の円周方向の長さを、 前記スロットの開口長さの少な くとも 3倍以上に設定したことを特徴とする請求項 1に記載のベ一ンポンプ。 2. The vane pump according to claim 1, wherein the circumferential length of the slot forming portion is set to at least three times or more the opening length of the slot.
3 . 前記各切欠部よつて凸状に形成された各スロット形成部のロー夕回転方向 及び該回転方向と反対側の各外端縁に第 1面取り部を形成すると共に、 前記スロ ット形成部の基部と前記切欠部との連結部との間に第 2面取り部を形成し、 該第 2面取り部の曲率半径を第 1面取り邵よりも大きく設定したことを特徴とする請 求項 1または 2に記載のベーンポンプ。 3. A first chamfered portion is formed on each outer edge of each slot forming portion formed in a convex shape by each of the cutout portions in the rotating direction and on the opposite side to the rotating direction, and the slot is formed. Claim 1 characterized in that a second chamfered portion is formed between the base of the portion and the connecting portion of the notch, and the radius of curvature of the second chamfered portion is set larger than the first chamfered portion. Or the vane pump described in 2.
4 . 前記スロット形成部の前記スロッ卜を中心としたロー夕回転方向と反対側 の部位の長さを、 ロータ回転方向側の部位の長さよりも大きく設定したことを特 徵とする請求項 1〜3のいずれかに記載のベーンポンプ。
4. The length of a portion of the slot forming portion on the side opposite to the rotor rotation direction around the slot is set to be longer than the length of a portion on the rotor rotation direction side. The vane pump according to any one of to 3.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB03826322XA CN100379990C (en) | 2003-07-07 | 2003-07-07 | Vane pump |
JP2005503393A JPWO2005003562A1 (en) | 2003-07-07 | 2003-07-07 | Vane pump |
PCT/JP2003/008619 WO2005003562A1 (en) | 2003-07-07 | 2003-07-07 | Vane pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/008619 WO2005003562A1 (en) | 2003-07-07 | 2003-07-07 | Vane pump |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005003562A1 true WO2005003562A1 (en) | 2005-01-13 |
Family
ID=33562097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/008619 WO2005003562A1 (en) | 2003-07-07 | 2003-07-07 | Vane pump |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2005003562A1 (en) |
CN (1) | CN100379990C (en) |
WO (1) | WO2005003562A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7566212B2 (en) | 2006-12-08 | 2009-07-28 | Matsushita Electric Works, Ltd. | Vane pump with blade base members |
WO2010060416A3 (en) * | 2008-11-29 | 2010-12-02 | Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt | Sliding vane pump |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56115889A (en) * | 1980-02-14 | 1981-09-11 | Fusetora Kinzoku Kogyo Kk | Rotary pump |
JPS61181888U (en) * | 1985-05-03 | 1986-11-13 | ||
JPH035986U (en) * | 1989-05-31 | 1991-01-21 | ||
JP2002229879A (en) * | 2001-01-31 | 2002-08-16 | Matsushita Electric Ind Co Ltd | Device operating environment setting system, device control system, device control method and operation management system |
WO2002081921A1 (en) * | 2001-04-05 | 2002-10-17 | Argo-Tech Corporation | Variable displacement pump having a rotating cam ring |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4860829B2 (en) * | 2000-07-17 | 2012-01-25 | ユニシア ジェーケーシー ステアリングシステム株式会社 | Variable displacement pump |
JP3861594B2 (en) * | 2000-12-15 | 2006-12-20 | ユニシア ジェーケーシー ステアリングシステム株式会社 | Oil pump |
JP2002339879A (en) * | 2001-05-15 | 2002-11-27 | Futsuko Kinzoku Kogyo Kk | Rotor for vane pump |
-
2003
- 2003-07-07 WO PCT/JP2003/008619 patent/WO2005003562A1/en active Application Filing
- 2003-07-07 JP JP2005503393A patent/JPWO2005003562A1/en not_active Abandoned
- 2003-07-07 CN CNB03826322XA patent/CN100379990C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56115889A (en) * | 1980-02-14 | 1981-09-11 | Fusetora Kinzoku Kogyo Kk | Rotary pump |
JPS61181888U (en) * | 1985-05-03 | 1986-11-13 | ||
JPH035986U (en) * | 1989-05-31 | 1991-01-21 | ||
JP2002229879A (en) * | 2001-01-31 | 2002-08-16 | Matsushita Electric Ind Co Ltd | Device operating environment setting system, device control system, device control method and operation management system |
WO2002081921A1 (en) * | 2001-04-05 | 2002-10-17 | Argo-Tech Corporation | Variable displacement pump having a rotating cam ring |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7566212B2 (en) | 2006-12-08 | 2009-07-28 | Matsushita Electric Works, Ltd. | Vane pump with blade base members |
WO2010060416A3 (en) * | 2008-11-29 | 2010-12-02 | Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt | Sliding vane pump |
CN102224344A (en) * | 2008-11-29 | 2011-10-19 | 欧根·施密特博士仪器和泵制造有限责任公司 | Sliding vane pump |
JP2012510023A (en) * | 2008-11-29 | 2012-04-26 | ゲレーテ−ウント・プンペンバウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ドクトル・オイゲン・シュミット | Sliding vane pump |
US8747085B2 (en) | 2008-11-29 | 2014-06-10 | Geraete- Und Pumpenbau Gmbh Dr. Eugen Schmidt | Sliding vane pump with improved rotor profile |
KR101587945B1 (en) | 2008-11-29 | 2016-02-02 | 니덱 게페엠 게엠베하 | Sliding vane pump |
Also Published As
Publication number | Publication date |
---|---|
JPWO2005003562A1 (en) | 2006-08-17 |
CN1764784A (en) | 2006-04-26 |
CN100379990C (en) | 2008-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8535030B2 (en) | Gerotor hydraulic pump with fluid actuated vanes | |
EP2464872B1 (en) | Balanced pressure, variable displacement, dual lobe, single ring, vane pump | |
CN211549977U (en) | Two-stage pump assembly, system having the same, and pump assembly | |
JP2003172272A (en) | Oil pump | |
JP6182821B2 (en) | Variable displacement vane pump | |
US20150354564A1 (en) | Oil pump | |
US11377953B2 (en) | Rotary fluid pressure device with drive-in-drive valve arrangement | |
JP2020097906A (en) | Vane pump | |
WO2005003562A1 (en) | Vane pump | |
JP4890601B2 (en) | Vane pump | |
CN108223362A (en) | Vane pump with one or more limited less blades | |
EP3828415B1 (en) | Internal gear pump | |
CN110366639B (en) | Pump device | |
US6599111B2 (en) | Vane pump having an intake groove through a side wall member | |
JP6540421B2 (en) | Variable oil pump | |
JP4484817B2 (en) | Vane pump | |
KR100721465B1 (en) | Vane pump | |
KR100732589B1 (en) | Vane pump | |
JPWO2005005837A1 (en) | Vane pump | |
JPH07119648A (en) | Variable displacement type vane pump | |
US6048185A (en) | Hydraulic pumps | |
KR100742866B1 (en) | Vane pump | |
JP3796073B2 (en) | Variable displacement vane pump | |
JP3759659B2 (en) | Vane pump | |
JPH07259754A (en) | Variable displacement type pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005503393 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057018399 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003826322X Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057018399 Country of ref document: KR |