Nothing Special   »   [go: up one dir, main page]

WO2005096684A1 - 回路基板、回路基板の製造方法及び回路基板を備えた表示装置 - Google Patents

回路基板、回路基板の製造方法及び回路基板を備えた表示装置 Download PDF

Info

Publication number
WO2005096684A1
WO2005096684A1 PCT/JP2005/006150 JP2005006150W WO2005096684A1 WO 2005096684 A1 WO2005096684 A1 WO 2005096684A1 JP 2005006150 W JP2005006150 W JP 2005006150W WO 2005096684 A1 WO2005096684 A1 WO 2005096684A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
circuit board
resin
manufacturing
exposing
Prior art date
Application number
PCT/JP2005/006150
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Keiichi Nii
Teruhiko Suzuki
Takeyoshi Kato
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to US10/594,596 priority Critical patent/US20070209200A1/en
Priority to JP2006511760A priority patent/JPWO2005096684A1/ja
Publication of WO2005096684A1 publication Critical patent/WO2005096684A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1258Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by using a substrate provided with a shape pattern, e.g. grooves, banks, resist pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/481Insulating layers on insulating parts, with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/0568Resist used for applying paste, ink or powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/087Using a reactive gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0023Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/184Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • the present invention relates to a circuit board, a method of manufacturing the circuit board, and a display device including the circuit board.
  • the present invention relates to a circuit board useful for electric and electronic applications, a method for manufacturing the circuit board, and a display device provided with the circuit board.
  • An electronic device substrate is formed by forming a large number of thin film transistors and a plurality of thin film transistors or a power supply and an input / output of the thin film transistors on an insulating substrate such as a glass resin or a substrate having at least a surface formed of an insulator. It is configured by arranging single or multiple electric wiring layers for connection to terminals.
  • One of the embodiments of a typical electronic device substrate is a display device such as an active matrix liquid crystal display device or an organic EL display device.
  • the entire substrate including scanning lines, signal lines, and the like is also called an active matrix substrate, and is formed by forming a number of circuit patterns on the surface of the substrate by a process such as film formation in a reduced-pressure atmosphere and photolithography. From the viewpoint of cost reduction of the display device, reduction of the film formation process and the photolithography process in a reduced-pressure atmosphere is being studied.
  • a wiring material formed on the entire surface is processed by photolithography to form a wiring portion. Therefore, most of the wiring material is etched away. Also, in order to ensure uniformity of film thickness, use a target of wiring material that is large compared to the substrate area. For this reason, the use efficiency of wiring materials is extremely low, which is a factor that increases the manufacturing cost of electronic device substrates.
  • the partition member has lyophilicity or wettability with respect to the liquid conductive material
  • the partition member is pulled by the partition member, spreads outside the partition member, and finally spreads.
  • the desired wiring width cannot be obtained.
  • the bottom surface of the region surrounded by the partition member needs to have high affinity and wettability with the conductive material so that the liquid conductive material uniformly spreads on the bottom surface.
  • the wettability to the conductive material is weak! The conductive material does not spread and spread over the area surrounded by the partition member, which may cause disconnection in the case of wiring.
  • JP-A-9-203803, JP-A-9-230129 and JP-A-2000-353594 disclose that an upper portion of a partition member is made lyophobic.
  • This surface treatment technique is a technique such as irradiating a plasma of a gas containing a fluorine compound under reduced pressure or atmospheric pressure in order to make the upper part of the partition member lyophobic.
  • a method of treating with a hydrophilic group-containing surfactant or a method of imparting affinity by ultraviolet irradiation is described. .
  • a treatment using the above-described hydrophilic group-containing surfactant or a plasma treatment of a fluorine compound is performed after the irradiation with ultraviolet rays.
  • the fluorine compound is formed also in the portion that should be lyophilic.
  • the plasma treatment is an anisotropic treatment, only the upper surface of the partition member is fluorinated. As a result, the liquid repellency of the side wall portion is lower than the liquid repellency value of the bottom surface of the pattern, and the storability of the liquid conductive material for forming fine wiring is poor.
  • Japanese Patent Application Laid-Open No. 6-69190 proposes a technique in which a photosensitive resin is exposed to a fluorine gas atmosphere to obtain a fluorine resin film.
  • a fluorine gas atmosphere By exposing to a fluorine gas atmosphere, the C—H bond is replaced by the C—F bond, and a fluorine atom is added to the carbon unsaturated bond, so that a fluorine resin can be obtained.
  • the method disclosed in JP-A-6-69190 is directly used, hydrofluoric acid may be generated, and the generated hydrofluoric acid may deteriorate an organic material or a silicon-based substrate material.
  • Patent Document 1 JP 9 203803 A
  • Patent Document 2 JP-A-9-230129
  • Patent Document 3 JP-A-2000-353594
  • Patent Document 4 JP-A-6-69190
  • an object of the present invention is to provide a circuit which can provide a sufficient contrast to the wettability of a liquid conductive material between a partition member and an insulating substrate without deteriorating the partition member, and can realize fine wiring formation by an inkjet method. It is to provide a method for manufacturing a substrate.
  • Another object of the present invention is to provide a display device using the circuit board.
  • thermosetting photosensitive resin film was formed on a circuit board for electronic equipment, and the exposure, development, and heat treatment were performed. It has been found that the steps of curing, drying, and exposing to a fluorine gas atmosphere are effective in improving the liquid repellency of the formed partition member. In addition, it was found that the plasma treatment and the immersion treatment with a hydrofluoric acid-based chemical solution performed before and after that were effective for lyophilicity of the substrate surface. Furthermore, they have found that by combining these methods, high-contrast lyophobic properties can be obtained for liquid materials, and finer wiring can be formed. As a result, the present invention has been completed.
  • the present invention has the following aspects.
  • Forming a resin film on an insulating substrate comprising exposing and developing the resin film; drying the resin film; exposing the resin film to a fluorine gas atmosphere; Is a method for manufacturing a circuit board, comprising a step of heating and curing.
  • Preferred embodiments of the method for producing a circuit board of the present invention are as follows.
  • the water content in the resin film is reduced to 1% by weight or less.
  • the water concentration in the fluorine gas atmosphere is 100 ppm by weight or less.
  • the step of heating and curing the resin film is performed in an inert gas atmosphere.
  • the method Before the step of exposing to the fluorine gas atmosphere, the method includes irradiating the resin film with ultraviolet light at atmospheric pressure.
  • the method further includes a step of subjecting the resin film to an oxygen plasma treatment under normal pressure or reduced pressure.
  • the method further includes a step of contacting the hydrofluoric acid-based chemical with the insulating substrate.
  • the hydrofluoric acid-based chemical is a hydrofluoric acid aqueous solution having a hydrofluoric acid concentration of 0.1% by weight to 50% by weight.
  • the hydrofluoric acid-based chemical solution contains at least one chemical selected from the group consisting of inorganic acids, fluoride salts and surfactants.
  • the method further includes a step of filling a concave portion formed by developing the resin film with a conductive material to form an electric wiring.
  • the filling of the conductive material is performed according to a plating method or a printing method.
  • the printing method is S inkjet printing or screen printing.
  • the resin film and the electric wiring are substantially on the same plane.
  • the insulating substrate is a glass substrate or a silicon wafer.
  • the conductive material contains an organic substance!
  • the resin film is formed of a photosensitive resin composition containing an alkali-soluble alicyclic resin and a radiation-sensitive component.
  • the resin film is a group consisting of acrylic resin, silicone resin, fluorine resin, polyimide resin, polyolefin resin, alicyclic resin resin, and epoxy resin. Contains one or more resins selected from
  • the present invention is a circuit board obtained by the above-mentioned manufacturing method.
  • the present invention is a display device provided with the circuit board.
  • the display device is a liquid crystal display device, an organic EL display device, or a plasma address display device.
  • FIG. 1 is a process diagram showing one embodiment of a method for manufacturing a circuit board of the present invention.
  • FIG. 2 is a process diagram (continued) showing one embodiment of the method for producing a circuit board of the present invention.
  • FIG. 3 is a conceptual diagram of a firing apparatus used in an example of the present invention.
  • FIG. 4 is a conceptual diagram of a fluorine gas atmosphere treatment furnace used in an example of the present invention.
  • FIG. 5 is a diagram showing a result of FT-IR analysis of a sample after annealing obtained in an example of the present invention.
  • FIG. 6 is a cross-sectional view showing a structure of an active matrix liquid crystal display according to an embodiment of the present invention.
  • FIG. 7 is a top view showing an arrangement of an active matrix liquid crystal display according to an embodiment of the present invention.
  • FIG. 8 is a view showing steps (a) to (d) of Example 10 of the present invention.
  • FIG. 9 is a view showing steps (e) to (h) of Example 10 of the present invention.
  • FIG. 10 is a view showing a step (i) of Example 10 of the present invention.
  • FIG. 1 and 2 show the steps of one embodiment of the method for producing a circuit board of the present invention.
  • thermosetting photosensitive resin film is formed on the insulating substrate.
  • the insulating substrate 1 is a substrate usually used in a circuit board for electronic equipment, but a glass substrate or a silicon wafer is preferably used.
  • the resin film 2 is generally formed of a thermosetting photosensitive resin composition containing an alkali-soluble polymer component and a radiation-sensitive component.
  • the polymer component constituting the thermosetting photosensitive resin composition includes acrylic resin, silicone resin, fluorine resin, polyimide resin, polyolefin resin, and alicyclic resin. It contains at least one type of resin that can be selected from the group consisting of a fat and an epoxy resin.
  • acrylic resins, alicyclic resins and alicyclic olefin resins are particularly preferred, and acrylic resins and alicyclic olefin resins are particularly preferred.
  • thermosetting properties may be imparted by using a crosslinking agent described in JP-A-2004-212450 in combination.
  • a radiation-sensitive resin composition described in JP-A-2004-47338 (US20030193624A1), a radiation-sensitive composition described in JP-A-2003-288991 (US20030215737A1), Radiation-sensitive resin composition described in JP-A-302642, radiation-sensitive resin composition described in JP-A-10-26829, radiation-sensitive resin composition described in JP-A-9-230596, Radiation-sensitive resin composition described in JP-A-9-146276, radiation-sensitive resin composition described in JP-A-8-262709, radiation-sensitive resin composition described in JP-A-10-10734, Radiation-sensitive resin composition described in Kaihei 8-240911, radiation-sensitive resin composition described in JP-A-8-183819, and radiation-sensitive resin composition described in JP-A-2004-212450 Things.
  • a thermosetting photosensitive resin composition containing an alkali-soluble alicyclic resin and a radiation-sensitive component is preferably used.
  • the resin film may contain an inorganic substance.
  • the method for forming the resin film 2 is not particularly limited, but a thermosetting photosensitive resin composition may be formed by spin coating, slit coating or screen printing. In order to form a thin film of 5 m or less, spin coating / slit coating is preferable. In particular, spin coating is most preferable for forming a thin film with good film thickness uniformity in the substrate.
  • Exposure step and development (or etching) step A mask 3 having a predetermined pattern is placed on a resin film 2 formed by applying a thermosetting photosensitive resin composition or the like, and radiation such as ultraviolet rays (g rays, h rays, i rays, etc.) is applied. Irradiate 4.
  • the wavelength, intensity and the like of the radiation 4 are appropriately selected according to the definition of the pattern. For example, an ultraviolet ray having a wavelength of 365 nm and a light intensity of 1 OmWZcm 2 is irradiated in air with an energy of 1 OOrujZcm 2 .
  • Step (2) of FIG. 1 shows a developing step of a positive type resin film.
  • the pattern is developed using a developer.
  • the developer conventionally known developers can be used, and examples thereof include amines, organic alkalis such as organic ammonium salts, and inorganic alkalis such as sodium hydroxide and potassium hydroxide.
  • a rinsing treatment can be performed. Patterns may be formed by etching instead of developing with a developer!
  • the resin film 2 is cured by heating to fix the pattern.
  • the heat curing method is not particularly limited. For example, curing may be performed by heating on a hot plate at 240 ° C. for 30 minutes, but heating in an inert gas atmosphere is preferred.
  • the temperature at the time of heat curing is preferably 150 ° C or higher, more preferably 200 ° C or higher.
  • UV irradiation is usually performed under atmospheric pressure.
  • the oxygen plasma treatment is performed under normal pressure or reduced pressure. Performing such oxygen plasma treatment or ultraviolet irradiation treatment is preferable in order to increase the difference in liquid repellency between the surface of the resin film 2 and the insulating substrate surface.
  • the pattern of the resin film 2 can be formed by exposure-development or etching, but at this time, a resin residue remains on the surface of the insulating substrate. This processing is effective to remove it.
  • Resin residue on the part where the insulating substrate is exposed If the residue is exposed to a fluorine gas atmosphere while the residue remains, a fluorine compound is formed on the surface of the residue, and a difference in liquid repellency between the surface of the resin film 2 and the opening is obtained.
  • the water content in the resin film 2 is preferably reduced to 1% by weight or less, more preferably 0.1% by weight or less, and further preferably 0.05% by weight or less. If the water content is high, the fluorine gas 7 reacts with water to generate hydrogen fluoride, which hinders the surface treatment of the resin and may cause problems such as deterioration of the resin film 2 and peeling of the substrate.
  • the drying method is not particularly limited, but it is preferable to heat to 50 ° C or higher, more preferably 100 ° C or higher in an inert gas atmosphere.
  • the concentration of the fluorine gas in the fluorine gas atmosphere is not particularly limited, but is preferably 0.1 to 50% by volume, more preferably 0.3 to 30% by volume, and still more preferably 0.5 to 20% by volume. If the fluorine gas concentration is too low, the generation of the fluorine compound 6 on the surface of the resin film 2 will be delayed. On the other hand, if the concentration is too high, an abrupt reaction with the resin film 2 may occur, which is not preferable.
  • the fluorine gas 7 is preferably diluted with an inert gas such as a rare gas or nitrogen before use.
  • the method of exposing the insulating substrate 1 on which the resin film 2 is formed to a fluorine gas atmosphere is not particularly limited.
  • a method in which fluorine gas 7 is allowed to flow in a container under normal pressure, or a method in which sealing is performed under pressure and the like are mentioned.
  • the water content in the fluorine gas atmosphere is preferably 100 wt ppm or less, more preferably 50 wt ppm or less, further preferably 10 wt ppm or less. If the water concentration exceeds the above range, hydrogen fluoride is generated, which may cause various problems.
  • the order of performing the above steps (2), (3) and (5) after performing the above step (1) is not particularly limited. , (3) and (5) are preferably performed in this order.
  • the insulating substrate 1 on which the resin film 2 is formed is exposed to a fluorine gas atmosphere and then heated in an inert gas atmosphere, which is called annealing, because it has a great effect on improving the liquid repellency of the surface.
  • the annealing promotes the production of the fluorine compound 6 at the unreacted site and also has the effect of volatilizing excess fluorine.
  • the type of inert gas used for anneal is not particularly limited, and examples thereof include rare gases such as helium, neon, argon, krypton, xenon, and radon, and nitrogen.
  • the annealing temperature varies depending on the softening point of the resin used in the thermosetting photosensitive resin composition, but is preferably 50 ° C to 350 ° C, more preferably 100 to 350 ° C, more preferably 200 to 350 ° C. 350 ° C. is particularly preferred. If the anneal temperature is too high, the generated fluorine compound 6 is excessively volatilized, causing problems such as the resin film 2 being reduced in thickness. Conversely, if the anneal temperature is too low, the effect of annealing cannot be exhibited.
  • a step of bringing the insulating substrate 1 into contact with the hydrofluoric acid-based chemical solution 8 may further include a step of causing a difference in liquid repellency between the surface of the resin film 2 and the opening of the insulating substrate.
  • the hydrofluoric acid-based chemical refers to a chemical containing hydrofluoric acid.
  • the hydrofluoric acid chemical solution 8 to be used is preferably a solution obtained by diluting hydrogen fluoride with ultrapure water.
  • the concentration of the diluted hydrogen fluoride is preferably 0.1% to 50% by weight, more preferably 0.5% to: LO% by weight. If the concentration of hydrogen fluoride is too high, problems such as deterioration of the resin film 2 and separation from the insulating substrate 1 occur, and if too low, the effect of removing the fluorine compound layer 6 in the opening cannot be obtained.
  • the method of contacting the insulating substrate 1 with hydrogen fluoride diluted with ultrapure water is not particularly limited, and examples thereof include treatment by a dipping method in a fluorine resin container and treatment with a fluid using a chemical nozzle.
  • the resin film 2 may have a problem as described above depending on the processing conditions.
  • the insulating substrate 1 is a silicon-based substrate, problems such as a large surface roughness of the substrate and generation of insoluble foreign matter are caused. Occurs. Therefore, it is desirable that the hydrofluoric acid-based chemical solution 8 contains at least one chemical selected from the group consisting of an inorganic acid, a fluoride salt, and a surfactant.
  • These chemicals preferably include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and hydrogen bromide; fluoride salts such as ammonium fluoride, tetramethyl ammonium fluoride and tetraethyl ammonium fluoride; cationic interface Surfactants (primary amine salt, secondary amine salt, tertiary amine salt, quaternary ammonium salt, alkylpyridinium salt, etc.); aeon-based surfactants (carboxylic acid, sulfonate, And nonionic surfactants (polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenolates, sucrose fatty acid esters, aliphatic alcohols, and sulfonic acid alkali metal salts and sulfuric acid monoester alkali metal salts). Monoglyceride).
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and hydrogen bromide
  • a conductive material is filled in a region (that is, a concave portion) partitioned by the resin film 2 (hereinafter, sometimes referred to as a partition member) to form an electric wiring 9.
  • the step of filling a conductive material (the conductive material being filled may be referred to as a wiring precursor) between the partition members is preferably performed by a plating method or a printing method.
  • a plating method or a printing method an inkjet printing method or a screen printing method is preferable.
  • the wiring precursor is selectively placed between the partition members. Can be filled.
  • the type of the wiring precursor is not particularly limited, and the metal species contained is at least one metal selected from the group consisting of gold, platinum, silver, copper, nickel, palladium, manganese, chromium, and aluminum. It is preferred to include. In particular, gold, silver, copper, nickel, and the like can be used as fine particles of 1 ⁇ m or less, and are therefore preferable for forming fine wiring.
  • the type of solvent for the wiring precursor is not particularly limited, such as an aqueous solvent, an organic solvent solvent, or a mixture thereof. However, it is preferable that a difference in lyophobic property is exhibited between the partition member and the insulating substrate surface.
  • the conductive material preferably contains an organic substance as described in JP-A-2002-324966.
  • a circuit board for electronic equipment can be obtained by the above-described circuit board manufacturing method. Wear.
  • the structure of the circuit board for electronic equipment is not particularly limited, it is preferable that the partition part and the wiring are substantially on the same plane. The purpose of this is to provide a circuit board capable of reducing occurrence of disconnection, short circuit, and the like by making the partition portion and the wiring surface substantially the same plane.
  • the term "substantially the same plane” means that the maximum step of the portion constituting the plane is 1. or less, preferably 0.5 m or less.
  • the circuit board obtained by the method of the present invention is suitably used for a display device, and is particularly suitably used for a liquid crystal display device, an organic EL display device, or a plasma address display device.
  • TDS analysis Thermal Desorption Analysis
  • Test 2 Fourier transform infrared spectroscopy (hereinafter abbreviated as "FT-IR analysis") Apparatus: Perkin-Elma, Inc. Spectrum One
  • Test 3 Cavity tailing down spectroscopy (hereinafter abbreviated as "CRDS analysis")
  • the value was defined as the value 30 seconds after the droplet contacted the substrate.
  • the total light transmittance was defined as the average value of the light transmittance at each wavelength between 400 nm and 800 nm.
  • thermosetting photosensitive resin composition (positive type)
  • a part of the polymer solution A was transferred to an autoclave equipped with a stirrer, and hydrogen was dissolved at 150 ° C under a pressure of 4 MPa and reacted for 5 hours to obtain a hydrogenated polymer (hydrogenation rate 100%).
  • a polymer solution B (solid content: about 20%) was obtained.
  • a heat-resistant container in which a part of activated carbon powder was added to 100 parts of polymer solution B was placed in an autoclave, and hydrogen was dissolved at 150 ° C under a pressure of 4 MPa for 3 hours while stirring. Next, the solution was taken out and filtered through a fluororesin filter having a pore size of 0.2 ⁇ m to separate activated carbon, thereby obtaining a polymer solution. Filtration was performed without delay. The polymer solution was poured into ethyl alcohol for coagulation, and the generated crumb was dried to obtain a polymer (1). Mw of the obtained polymer (1) in terms of polyisoprene was 5,500, and Mn was 3,200. The iodine value was 1.
  • thermosetting photosensitive resin composition (negative type)
  • methyltrimethoxysilane was hydrolyzed.
  • 1,000 parts of propylene glycol monomethyl ether was added to the vessel, and ion-exchanged water and methanol produced as a result of hydrolysis were removed using an evaporator to adjust the solid content to 25% by weight. A solution was obtained.
  • thermosetting photosensitive resin composition 400 parts of the above solution and 2.0 parts of a radiation-sensitive acid generator, phenol, 4- (2'-hydroxy-1, -tetradecaoxy) phenyl-d-p-toluenesulfonate, were used. After being uniformly mixed and dissolved, the mixture was filtered through a membrane filter having a pore size of 0.2 m to obtain a thermosetting photosensitive resin composition.
  • thermosetting photosensitive resin composition obtained in Production Example 1 was applied by a spin coating method to form a resin film having a thickness of about 1 ⁇ m. After exposure the silicon wafer to form a ⁇ film by mask ⁇ liner (CANON manufactured PLA501) with 200 mJ / cm 2, after forming a pattern developing the substrate at 500mJ / cm 2 (g, h , i line mixing) The entire surface was exposed. Next, the resin film was cured by heating at 280 ° C. for 60 minutes in a high-purity nitrogen atmosphere using the firing apparatus shown in FIG.
  • HMDS hexanemethylenedisilazane
  • nitrogen 22 and 24, oxygen 23 and hydrogen 25 are supplied to the firing furnace 20 via the gas flow controllers 11 to 15.
  • a shower plate 19 and a substrate 21 are arranged inside the firing furnace 20.
  • a temperature controller 18 is installed in the firing furnace 20.
  • 16 and 17 are exhaust lines.
  • the silicon wafer was placed in a fluorine gas atmosphere treatment furnace shown in FIG. And dried at 150 ° C for 60 minutes.
  • a resin film 35 is disposed in the fluorination treatment device 33 (a silicon wafer is not shown).
  • the fluorination treatment device 33 is provided with a temperature controller 34. Under such a configuration, the gas is supplied to the fluorination treatment device 33 via the fluorine gas 36, the argon gas 37, and the power gas flow controllers 31 and 32, and is exhausted 38.
  • a part of the dried resin film was analyzed for water content in the resin film by TDS analysis.
  • thermosetting resin [Contact angle, appearance, total light transmittance of thermosetting resin]
  • thermosetting photosensitive resin composition obtained in Production Example 1 was applied by a spin coating method to form a resin film having a thickness of about 1 ⁇ m.
  • the non-alkali glass substrate on which the resin film was formed was exposed to half the surface of the substrate at 200 mJ / cm 2 using a mask aligner and developed. At this time, because of the positive type photosensitivity, the exposed portion was dissolved, and the resin film on the upper half surface of the glass substrate was removed.
  • the entire surface of the substrate was exposed to light at 500 mJ / cm 2 with a mask aligner (ultraviolet treatment step), and heated at 280 ° C. for 60 minutes in a high-purity nitrogen atmosphere using the baking apparatus shown in FIG.
  • the film was hardened.
  • the alkali-free glass substrate was placed in a fluorine gas atmosphere treatment furnace shown in FIG. 4, and dried at 150 ° C. for 60 minutes while flowing high-purity argon gas.
  • Some of the resin film after drying When the water content in the thermosetting resin film was analyzed by TDS analysis, it was 0.02% by weight. After drying, a 10% by volume fluorine gas heated to 180 ° C.
  • Example 2 The experiment was performed in the same manner as in Example 2 except that the annealing temperature was set to 200 ° C. The results are shown in Table 1.
  • Example 2 The experiment was carried out in the same manner as in Example 2 except that drying, fluorination treatment and annealing were not performed. The results are shown in Table 1.
  • Example 2 An experiment was performed in the same manner as in Example 2 except that after the resin film was cured, an oxygen plasma treatment was performed at a pressure of 20 mmHg for 10 seconds using an RF plasma apparatus. The results are shown in Table 1.
  • Example 5 After the annealing treatment, the experiment was carried out in the same manner as in Example 5, except that the substrate was immersed in a 2.5% by weight aqueous solution of hydrofluoric acid for 10 seconds, and then rinsed with ultrapure water for 5 minutes. The results are shown in Table 1.
  • Example 6 The experiment was carried out in the same manner as in Example 6, except that the fluorination treatment was not performed in a fluorine gas atmosphere but in a RF plasma apparatus at a pressure of 50 mmHg for 1 minute with carbon tetrafluoride plasma. It was. Table 1 shows the results.
  • thermosetting photosensitive resin composition obtained in Production Example 2 was used. The results are shown in Table 1.
  • Thermosetting resin type Curing Oxygen Dry fluorinated anneal hydrofluoric acid Appearance Contact angle Light Total opening Plasma gas
  • Example 2 Alicyclic olefin resin Yes Yes 10ppm 300 ° C 10min No / ", 62 13 99.9% ⁇
  • Example 3 Alicyclic olefin resin Yes 7 ⁇ Yes 10pDm 200 ° C lOmin,,", 58 13 99.8% ⁇
  • Execution Example 4
  • Example 5 Alicyclic olefin resin Yes Yes Yes 10pDm 300 ° C 10min No 62 8 99.9% ⁇
  • Example 6 Alicyclic olefin resin Yes Yes Yes Yes lOppm 300.
  • thermosetting photosensitive resin composition obtained in Production Example 1 was applied by spin coating to form a resin film having a thickness of about 1 ⁇ m.
  • the alkali-free glass substrate on which the resin film was formed was exposed to a linear pattern having a width of 10 to 50 ⁇ m and a length of 50 mm at 200 mJ / cm 2 using a mask aligner and developed.
  • the photosensitive resin composition was a positive type photosensitive
  • the exposed portion was dissolved and a groove pattern having a width of 10 to 50 m was formed.
  • the entire surface of the substrate was exposed to light at 500 mJ / cm 2 with a mask liner, and heated at 280 ° C. for 60 minutes in a high-purity nitrogen atmosphere using the baking apparatus shown in FIG. 3 to cure the resin film.
  • oxygen plasma treatment was performed at a pressure of 20 mmHg for 10 seconds using an RF plasma apparatus.
  • the alkali-free glass substrate was placed in a fluorine gas atmosphere treatment furnace shown in FIG. 4, and high-purity argon gas was passed through the furnace, followed by drying at 150 ° C. for 60 minutes.
  • a 10% by volume fluorine gas diluted with high-purity argon gas heated to 180 ° C. was introduced into the processing furnace at a flow rate of 200 cc per minute, and fluorination treatment was performed for 1 minute.
  • annealing was performed at 300 ° C. for 10 minutes in high-purity argon gas.
  • Example 9 The experiment was performed in the same manner as in Example 9 except that the oxygen plasma treatment, the drying, the fluorination treatment, and the anneal and hydrofluoric acid aqueous solution treatment were not performed. Table 2 shows the results.
  • the fluorination treatment was performed in the same manner as in Example 9 except that the treatment was performed with carbon tetrafluoride plasma at a pressure of 50 mmHg for 1 minute using an RF plasma apparatus instead of a fluorine gas atmosphere. Table 2 shows the results.
  • An active matrix display device (active matrix liquid crystal display) according to Embodiment 10 of the present invention will be described with reference to the drawings.
  • FIG. 6 is a sectional view showing the structure of the active matrix liquid crystal display of the tenth embodiment.
  • a thin film transistor in which the source electrode 51 or the drain electrode 54 is connected to the signal line 48.
  • a flattening layer 55 is formed so as to surround the signal line 48, the source electrode 51, and the drain electrode 54, and the signal line 48, the source electrode 51, the drain electrode 54, and the flattening layer form substantially the same plane.
  • a pixel electrode 56 is arranged on this plane via an interlayer insulating film 47 to constitute an active matrix substrate, and a liquid crystal 44 is sandwiched between the substrate and the counter substrate 41.
  • the scanning lines 49 and the gate electrode wirings 52 of the tenth embodiment were buried wirings by an inkjet method.
  • 42 is a black matrix
  • 43 is a color filter
  • 45 is a direction layer
  • 53 is a semiconductor layer
  • 51 is a gate insulating film.
  • thermosetting photosensitive resin film (alicyclic resin-based transparent resin film) 62 is coated on the surface of a glass substrate 61 by a spin coating method or the like. Formed by This resin film 62 has a function as a photoresist film. Next, the resin film 62 is selectively exposed, developed and removed using a mask aligner, and heat-cured to form a wiring groove 60 in the resin film 62 (see FIG. 8A).
  • a process of giving liquid repellency to the surface of the resin film 62 is performed in order to increase printing accuracy.
  • the substrate is dried, the surface of the glass substrate 61 is exposed to a fluorine gas atmosphere to perform a fluorine treatment, annealed, and then immersed in a hydrofluoric acid aqueous solution.
  • the wiring groove 60 is filled with a wiring precursor (conductive material) by a printing method such as an inkjet printing method or a plating method.
  • a wiring forming method an ink jet method is preferable from the viewpoint of efficient use of ink, but a screen printing method or the like may be used.
  • the wiring was formed using the same silver paste ink as that disclosed in JP-A-2002-324966 as a wiring precursor. After filling the wiring precursor, baking was performed at a temperature of 250 ° C. for 30 minutes to obtain a scanning line 63 (corresponding to 49 in FIG. 6) and a gate electrode wiring 63 (corresponding to 52 in FIG. 6) (FIG. 8B) reference).
  • SiN film A silicon nitride film (SiN film) was formed using N gas and Ar gas (not shown). Normal high
  • SiN films can be formed using frequency-excited plasma, SiN films can be formed at lower temperatures by using microwave-excited plasma.
  • the film formation temperature was 300 ° C. and the film thickness was 0.1.
  • an amorphous silicon layer 65 and an n + -type amorphous silicon layer 64 were formed by a plasma CVD method using microwave-excited plasma.
  • the amorphous silicon layer 65 uses SiH gas
  • the n + type amorphous silicon layer 64 uses SiH gas and PH gas
  • a film was formed at a temperature of 300 ° C. using Ar gas (see FIG. 8 (c)).
  • a photoresist photosensitive resin composition
  • a photoresist photosensitive resin composition
  • exposure was performed at an energy dose of 36 mjZcm 2 using a g-line stepper.
  • a mask was formed so as to leave the element region, and a portion corresponding to a channel region inside the element region was adjusted using a slit mask to adjust the exposure amount.
  • Paddle development was performed for 70 seconds using a 38 wt ° / ( ⁇ TMAH solution, and as a result, a photoresist 66 having the shape shown in FIG. 8D was obtained.
  • the n + type amorphous silicon layer 64 and the amorphous silicon layer 65 were etched using a plasma etching apparatus.
  • the photoresist 66 is also slightly etched, and the film thickness is reduced. Therefore, the resist in the channel region portion (the concave portion of the photoresist 66) having a small photoresist film thickness and the n + amorphous silicon layer 64 are also etched.
  • the n + type amorphous silicon layer 64 and the amorphous silicon layer 65 other than the element region portion (the portion covered with the photoresist 66) are removed by etching, the n + type amorphous silicon layer 64 in the channel region is removed by etching.
  • a nitride film 67 is formed directly on the amorphous silicon surface on the side surfaces of the channel region and the element region (see FIG. 9F).
  • nitride film 67 Although it is possible to directly form the nitride film 67 by using general high-frequency plasma, plasma with a low electron temperature can be generated by using microwave excitation plasma. Therefore, the nitride film 67 can be formed directly without damaging the channel portion by plasma, which is preferable. Further, a nitride film can be formed by a CVD method. However, since a nitride film is also formed in the source electrode and drain electrode regions and a removal step is required later, it is more preferable to form the nitride film 67 directly.
  • the photoresist film 66 remaining on the source electrode and drain electrode regions is subjected to an oxygen plasma assing and then removed using a resist stripper or the like (see FIG. 9 (g)).
  • the thermosetting property is required.
  • a photosensitive resin film transparent resin film of alicyclic resin.
  • the resin film 69 is formed by performing exposure, development, and heat curing using a photomask for signal lines, source electrode wirings, and drain electrode wirings, and forming wirings for signal line, source electrode wiring, and drain electrode wiring regions.
  • the gap between the resin film 69 and the separately formed resin film is similar to that of the resin film 69.
  • the wiring groove is 68).
  • a treatment for imparting water repellency to the surface of the resin film 69 may be performed in order to increase the printing accuracy.
  • the substrate is dried, and the surface of the glass substrate is subjected to a fluorine treatment by exposing the glass substrate to a fluorine gas atmosphere.
  • the groove is filled with a wiring precursor by a printing method such as an ink jet printing method or a plating method.
  • the wiring method is preferably an ink jet method from the viewpoint of efficient use of ink, but a screen printing method or the like may be used!
  • the wiring was formed using the same silver paste ink as that disclosed in JP-A-2002-324966 as the wiring precursor. After filling the wiring precursor, baking was performed at a temperature of 250 ° C. for 30 minutes to obtain a wiring 71 (see FIG. 10 (i)). [0116] Thus, the formation of the TFT was completed.
  • thermosetting photosensitive transparent resin is cured by using a heating device whose inner surface is electro-polished with SUS316 and controlling the residual oxygen concentration to 10 ppm by volume. It was baked at 250 ° C for 60 minutes. Subsequently, ITO was sputter-deposited on the entire surface of the substrate, followed by patterning to form pixel electrodes 56. A transparent conductive film material such as SnO may be used instead of ITO. Liquid on this surface
  • An active matrix liquid crystal display device was obtained by forming a polyimide film as the alignment film 45 of the crystal 44 and sandwiching the liquid crystal 44 between the polyimide film and the counter substrate 41.
  • fine wiring is formed with high precision and the transparency of the interlayer insulating film 47 is high, so that high-quality display with low power consumption and high luminance can be realized. I got it.
  • circuit board manufacturing method of the present invention sufficient contrast is provided to the wettability of the liquid conductive material between the partition member and the insulating substrate without deteriorating the partition member, and the ink jet method or the like is used.
  • a circuit board capable of forming fine wiring can be easily obtained.
  • Such a circuit board can be suitably used as a display device such as a liquid crystal display device, an organic EL display device, or a plasma address display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Materials For Photolithography (AREA)

Abstract

 絶縁基板上に熱硬化性の感光性樹脂膜をスピンコート法などによって形成し、感光性樹脂膜を紫外線などの放射線を露光し、現像剤又はエッチングによって現像し、感光性樹脂膜を加熱硬化し、必要に応じて酸素プラズマ処理若しくは紫外線照射処理し、該感光性樹脂膜を乾燥して樹脂膜中の水分量を調整し、次いでフッ素ガス雰囲気に曝し、アニール処理をし、次いでフッ酸系薬液で樹脂膜を浸漬することを含む回路基板の製造方法。

Description

回路基板、回路基板の製造方法及び回路基板を備えた表示装置 技術分野
[0001] 本発明は、電気'電子用途で有用な回路基板、回路基板の製造方法及び回路基 板を備えた表示装置に関する。
背景技術
[0002] 電子機器用基板は、ガラスゃ榭脂などの絶縁基板または少なくとも表面が絶縁体 で形成された基板に、多数の薄膜トランジスタおよびこれらのトランジスタの相互間若 しくは該トランジスタと電源や入出力端子との間の接続をするための電気配線層を単 層または多層に配置して構成されるものである。
[0003] 代表的な電子機器用基板の実施態様のひとつにアクティブマトリクス液晶表示装置 や有機 EL表示装置などの表示装置がある。走査線、信号線などを含む基板全体は アクティブマトリクス基板とも呼ばれ、基板の表面に、減圧雰囲気における成膜ゃフォ トリソグラフィなどのプロセスにより幾層もの回路パターンを形成し構成されている。表 示装置のコスト低減の観点から、減圧雰囲気における成膜工程やフォトリソグラフイエ 程の削減が検討されている。
[0004] 特に、配線をスパッタにより成膜する工程では、全面に成膜した配線材料をフォトリ ソグラフィ法により加工し、配線部を形成する。このため、配線材料の大部分がエッチ ング除去されてしまう。また、膜厚の均一性を確保するために、基板面積にくらべて 大きい配線材料のターゲットを使用する。このため、配線材料の利用効率が著しく低 ぐ電子機器用基板の製造コストを上昇させる要因になっている。
[0005] このような問題を解決するために、印刷法により必要な部位のみに配線を形成し配 線材料の利用効率を高める手法が開発されている。例えば、特開 2002-026014号 公報に記載のようにインクジェット法を用 V、て、所定の場所のみに配線を形成する方 法が開示されている。このような印刷法を用いることで、減圧工程を削減することがで き、表示装置の製造コストを低減することができる。通常、インクジェット法を用いて配 線を形成する場合、配線を形成する部分を仕切る凸状の仕切部材(「バンク」または「 凸部」とも呼ばれる)を設け、仕切部材で囲まれた領域に配線となる液状の導電性材 料を充填する方法が採られて ヽる。
[0006] このとき、仕切部材が、液状の導電性材料に対して親液性、或 、は濡れ性を有する 場合には、仕切部材に引っ張られ、仕切部材の外側に濡れ広がり、最終的に所望の 配線幅を得ることができない。一方、仕切部材で囲まれた領域の底面は、液状の導 電性材料が、底面に均一に濡れ拡がるように、導電性材料に対して高い親和性、濡 れ性を有する必要がある。導電性材料に対する濡れ性が弱!ヽと仕切部材で囲まれた 領域に導電性材料が濡れ拡がらず、配線の場合では断線の原因となる。
[0007] このような問題に対して、例えば、特開平 9— 203803号公報、特開平 9 230129 号公報及び特開 2000— 353594号公報は、仕切部材の上部を撥液性にし、それ以 外の部分を親液性にする表面処理技術を提案している。この表面処理技術は、仕切 部材の上部を撥液性にするために、減圧下や大気圧下でフッ素化合物を含んだガ スのプラズマを照射するなどの技術である。また、仕切部材で囲まれた領域の底面を 親液性にするために、親水性基含有界面活性剤で処理する方法や紫外線照射によ り親和性を付与する方法などが記載されて 、る。
[0008] しかし、 10 μ m幅以下の微細幅の配線をインクジェット法にて形成する場合には、 上記仕切部材の上部と、仕切部材で囲まれた領域の底面との親液 '撥液の差が十 分でないため液体材料の溢れや余分な濡れ広がりが生じる問題がある。例えば、プ ラズマ照射によって撥液部を形成する場合、仕切部材が有機材料であるとフッ素化 合物形成と同時に、フッ素化合物のエッチング反応が進行するため一定の撥液性し か得られない。また、プラズマ装置自体が非常に複雑であり、電子機器用回路基板 の実製造の場合は、製造ラインが非常に複雑になるという問題がある。
[0009] また、親液部の形成に関しては、一般的に、前記した親水性基含有界面活性剤を 使用した処理や紫外線照射を行ったあとにフッ素化合物のプラズマ処理を行う。しか し、本来親液化されるべき部位もフッ素化合物が形成されるため、効果が低くなると いう問題がある。また、プラズマ処理は異方性の処理であるため、フッ素化されるのは 仕切部材の上面のみである。この結果、パターンの底面の撥液性の値に対し側壁部 は撥液性が低く、微細配線形成のための液状導電性材料の収納性が悪 、と 、う問 題点がある。
[0010] 一方、仕切部材に用いられる有機材料をフッ素ガス雰囲気に曝すことで、フッ素ィ匕 合物を形成する技術は以前より知られている。例えば、特開平 6— 69190号公報で は感光性榭脂をフッ素ガス雰囲気に曝して、フッ素榭脂膜を得る技術が提案されて いる。フッ素ガス雰囲気に曝すことにより C-H結合を C-F結合に置換し、炭素不飽和 結合にフッ素原子を付加するのでフッ素榭脂を得ることができる。しかし、上記特開 平 6— 69190号公報の方法をそのまま実施すると、フッ酸を生成することがあり、生 成したフッ酸によって有機材料やシリコン系の基板材料が劣化することがある。
[0011] 特許文献 1 :特開平 9 203803号公報
特許文献 2:特開平 9 - 230129号公報
特許文献 3:特開 2000— 353594号公報
特許文献 4:特開平 6— 69190号公報
発明の開示
発明が解決しょうとする課題
[0012] そこで、本発明の目的は、仕切部材を劣化させることなぐ仕切部材と絶縁基板間 の液状導電性材料の濡れ性に十分なコントラストを与え、インクジェット法により微細 な配線形成を実現できる回路基板の製造方法を提供することである。
[0013] 本発明の他の目的は、上記回路基板を用いた表示装置を提供することにある。
[0014] 本発明者らは、上記目的を達成するために鋭意検討を加えたところ、まず、電子機 器用回路基板上に熱硬化性の感光性榭脂膜を形成し、露光,現像、熱硬化、乾燥、 及びフッ素ガス雰囲気に曝す工程を行うことが、形成した仕切り部材の撥液性向上 に効果があることを見出した。また、その前後に行うプラズマ処理やフッ酸系薬液によ る浸漬処理が基板面の親液ィ匕に効果があること見出した。さらに、それらの方法を組 み合わせることで液体材料に対し高コントラストの撥液性が得られ、配線の微細化形 成が可能となることを見出した。この結果、本発明の完成に至った。
課題を解決するための手段
[0015] 本発明は、以下のような態様を有する。
[0016] (第 1の態様) 絶縁基板上に榭脂膜を形成する工程の後、該榭脂膜を露光し現像する工程、該 榭脂膜を加熱硬化する工程、及び該榭脂膜を乾燥した後にフッ素ガス雰囲気に曝 す工程を含む回路基板の製造方法である。
[0017] (第 2の態様)
絶縁基板上に榭脂膜を形成する工程、該榭脂膜を露光し現像する工程、該榭脂 膜を加熱硬化する工程、該榭脂膜を乾燥する工程、次いで、該榭脂膜をフッ素ガス 雰囲気に曝す工程を含む回路基板の製造方法である。
[0018] (第 3の態様)
絶縁基板上に榭脂膜を形成する工程、該榭脂膜を露光し現像する工程、該榭脂 膜を乾燥する工程、該榭脂膜をフッ素ガス雰囲気に曝す工程、次いで、該榭脂膜を 加熱硬化する工程を含む回路基板の製造方法である。
[0019] (第 4の態様)
絶縁基板上に榭脂膜を形成する工程、該榭脂膜を加熱硬化する工程、該榭脂膜 を乾燥する工程、該榭脂膜をフッ素ガス雰囲気に曝す工程、次いで、該榭脂膜を露 光し現像する工程を含む回路基板の製造方法である。
[0020] 本発明の回路基板の製造方法の好適な態様は、以下の通りである。
[0021] (第 5の態様)
前記榭脂膜の乾燥の工程で、前記榭脂膜中の水分量を 1重量%以下にする。
[0022] (第 6の態様)
前記フッ素ガス雰囲気中の水分濃度が 100重量 ppm以下である。
[0023] (第 7の態様)
前記榭脂膜の加熱硬化の工程を不活性ガス雰囲気中で行う。
[0024] (第 8の態様)
前記フッ素ガス雰囲気に曝す工程の前に、前記榭脂膜を大気圧下で紫外線照射 することを含む。
[0025] (第 9の態様)
前記フッ素ガス雰囲気に曝す工程の前に、常圧または減圧下で前記榭脂膜に酸 素プラズマ処理する工程をさらに含む。 [0026] (第 10の態様)
前記フッ素ガス雰囲気に曝す工程の後、フッ酸系薬液と前記絶縁基板を接触させ る工程をさらに含む。
[0027] (第 11の態様)
前記フッ酸系薬液が、フッ化水素酸濃度 0. 1重量%〜50重量%のフッ酸水溶液 である。
[0028] (第 12の態様)
前記フッ酸系薬液が、無機酸、フッ化物塩及び界面活性剤からなる群から選ばれ る一種以上の薬品を含む。
[0029] (第 13の態様)
前記榭脂膜の現像によって形成された凹部に導電性材料を充填し、電気配線を形 成する工程をさらに含む。
[0030] (第 14の態様)
前記導電性材料の充填をメツキ法ある 、は印刷法の 、ずれかによつて行う。
[0031] (第 15の態様)
前記印刷法力 Sインクジェット印刷あるいはスクリーン印刷である。
[0032] (第 16の態様)
前記榭脂膜と電気配線が実質上同一平面となっている。
[0033] (第 17の態様)
前記絶縁基板がガラス基板またはシリコンウェハである。
[0034] (第 18の態様)
前記導電性材料が有機物を含有して!/ヽる。
[0035] (第 19の態様)
前記榭脂膜がアルカリ可溶性脂環式ォレフイン系榭脂と感放射線成分とを含有す る感光性榭脂組成物で形成されたものである。
[0036] (第 20の態様)
前記榭脂膜がアクリル系榭脂、シリコーン系榭脂、フッ素系榭脂、ポリイミド系榭脂、 ポリオレフイン系榭脂、脂環式ォレフイン系榭脂、およびエポキシ系榭脂からなる群か ら選ばれた一種以上の榭脂を含む。
[0037] (第 21の態様)
さらに、本発明は、前記製造方法で得られた回路基板である。
[0038] (第 22の態様)
さらに、本発明は、前記回路基板を備えた表示装置である。
[0039] (第 23の態様)
前記表示装置は、液晶表示装置、有機 EL表示装置又はプラズマアドレス表示装置 である。
図面の簡単な説明
[0040] [図 1]図 1は、本発明の回路基板の製造方法の一実施態様を示す工程図である。
[図 2]図 2は、本発明の回路基板の製造方法の一実施態様を示す工程図 (続き)であ る。
[図 3]図 3は、本発明実施例で用いる焼成装置の概念図である。
[図 4]図 4は、本発明実施例で用いるフッ素ガス雰囲気処理炉の概念図である。
[図 5]図 5は、本発明実施例で得られたァニール後のサンプルの FT-IR分析結果を 示す図である。
[図 6]図 6は、本発明実施例のアクティブマトリクス液晶ディスプレイの構造を示す断 面図である。
[図 7]図 7は、本発明実施例のアクティブマトリクス液晶ディスプレイの配置を示す上 面図である。
[図 8]図 8は、本発明実施例 10の工程 (a)〜 (d)を示す図である。
[図 9]図 9は、本発明実施例 10の工程 (e)〜 (h)を示す図である。
[図 10]図 10は、本発明実施例 10の工程 (i)を示す図である。
発明を実施するための最良の形態
[0041] 本発明の回路基板の製造方法を図を参照しながら、説明する。図 1及び図 2は本 発明の回路基板の製造方法の一実施態様の工程を示すものである。
[0042] (1)絶縁基板上に榭脂膜を形成する工程
本工程においては、絶縁基板上に、熱硬化性の感光性榭脂膜を形成する。 [0043] 絶縁基板 1は、電子機器用回路基板において通常使用される基板であるが、ガラス 基板又はシリコンウェハが好適に用いられる。
[0044] 榭脂膜 2は、通常、アルカリ可溶性高分子成分と感放射線成分とを含有する熱硬 化性の感光性榭脂組成物で形成される。熱硬化性の感光性榭脂組成物を構成する 高分子成分としては、アクリル系榭脂、シリコーン系榭脂、フッ素系榭脂、ポリイミド系 榭脂、ポリオレフイン系榭脂、脂環式ォレフイン系榭脂、及びエポキシ系榭脂からなる 群力も選ばれる少なくと 1種の榭脂を含有する。
[0045] これらの中でも、アクリル系榭脂、シリコーン系榭脂及び脂環式ォレフイン系榭脂が 好ましぐアクリル系榭脂及び脂環式ォレフイン系榭脂が特に好ましい。なお、脂環 式ォレフイン系榭脂を用いる場合には、特開 2004-212450号公報に記載の架橋剤を 併用して熱硬化性を持たせればよ 、。
[0046] より具体的には、特開 2004— 47338 (US20030193624A1)号公報記載の感 放射線性榭脂組成物、特開 2003— 288991 (US20030215737A1)号公報記載 の感放射線性組成物、特開 2003 - 302642号公報記載の感放射線性榭脂組成物 、特開平 10— 26829号公報記載の感放射線性榭脂組成物、特開平 9— 230596 号公報記載の感放射線性榭脂組成物、特開平 9— 146276号公報記載の感放射線 性榭脂組成物、特開平 8— 262709号公報記載の感放射線性榭脂組成物、特開平 10— 10734号公報記載の感放射線性榭脂組成物、特開平 8— 240911号公報記 載の感放射線性榭脂組成物、特開平 8— 183819号公報記載の感放射線性榭脂組 成物及び特開 2004— 212450号公報記載の感放射線性榭脂組成物などが挙げら れる。これらのうち、アルカリ可溶性脂環式ォレフイン系榭脂と感放射線成分とを含有 する熱硬化性の感光性榭脂組成物が好適に用いられる。
[0047] 榭脂膜には無機物が含まれて 、てもよ 、。榭脂膜 2の形成方法は特に限定されな いが、熱硬化性の感光性榭脂組成物をスピンコート,スリットコートまたはスクリーン印 刷により形成してもよい。 5 m以下の薄膜を形成するためには、スピンコートゃスリツ トコートが好ましい。特に、基板内の膜厚均一性良く薄膜を形成するためには、スピン コートがもっとも好ましい。
[0048] (2)露光工程および現像 (又はエッチング)工程 熱硬化性の感光性榭脂組成物を塗布等して形成された榭脂膜 2に、所定のパター ンを有するマスク 3を置き、紫外線 (g線、 h線及び i線等)などの放射線 4を照射する。 放射線 4の波長、強度などは、パターンの精細さに応じて適宜選択される。例えば、 波長 365nm、光強度 1 OmWZcm2の紫外線を空気中で 1 OOrujZcm2のエネルギ 一量となる照射を行う。
[0049] 露光 ·現像後の解像度を高めるために、例えば 120°Cのホットプレートで 1分間程 度プリベータすることができる。榭脂膜 2は、感放射線成分の種類に応じて、放射線 を照射された部分が現像剤で除去されやすくなるもの (ポジ型)と、現像剤で除去さ れに《なるもの(ネガ型)とがある。図 1の工程(2)ではポジ型の榭脂膜の現像工程 を示している。露光後、現像剤を用いてパターンを現像する。現像剤としては、従来 公知のものを用いることができ、例えば、アミン類、有機アンモニゥム塩などの有機ァ ルカリ、水酸化ナトリウム、水酸ィ匕カリウムなどの無機アルカリが挙げられる。現像剤で 現像した後、リンス処理することもできる。現像液による現像の代わりにエッチング処 理によってパターンを形成してもよ!/、。
[0050] (3)加熱硬化工程
榭脂膜 2を加熱硬化させて、パターンを固定する。加熱硬化方法は特に制限されな い。例えば、 240°Cのホットプレート上で 30分間加熱して硬化させてもよいが、不活 性ガス雰囲気中で加熱することが好ましい。加熱硬化時の温度は、 150°C以上が好 ましぐ 200°C以上が特に好ましい。
[0051] る。
[0052] (4)酸素プラズマ処理若しくは紫外線照射処理の工程
後記のフッ素ガスによる処理を行う前に、酸素プラズマ処理若しくは紫外線照射処 理 5を行うことが好ましい。
[0053] 紫外線照射は通常大気圧下で行う。酸素プラズマ処理は常圧または減圧下で行う 。これら酸素プラズマ処理若しくは紫外線照射処理を行うことは、榭脂膜 2の表面と絶 縁基板面との撥液性の差を大きくするために好ましい。また、露光'現像やエツチン グにより榭脂膜 2のパターンを形成できるが、その際絶縁基板表面に榭脂残渣が残 る。それを除去するために本処理が有効である。絶縁基板が露出する部分に榭脂残 渣が残ったままでフッ素ガス雰囲気に曝すと、残渣物の表面にフッ素化合物が形成 され、榭脂膜 2の表面と開口部分の撥液性の差が得られに《なる。
[0054] (5)榭脂膜の乾燥工程とフッ素ガス曝露工程 (フッ素化処理工程)
フッ素ガス雰囲気に曝す前に榭脂膜 2を乾燥することが必要である。榭脂膜 2を乾 燥することによって榭脂膜 2中の水分含有量を好ましくは 1重量%以下、より好ましく は 0. 1重量%以下、更に好ましくは 0. 05重量%以下にする。水分含有量が多いと フッ素ガス 7と水分が反応してフッ化水素が生じ、榭脂の表面処理を妨げるとともに、 榭脂膜 2の変質や基板力もの剥離など不具合を生ずることがある。乾燥の方式は特 に限定されないが、不活性ガス雰囲気下、 50°C以上、より好ましくは 100°C以上に加 熱することが好ましい。
[0055] 榭脂膜 2中の水分を乾燥によって調整した後、榭脂膜 2をフッ素ガス 7の雰囲気に 曝す。フッ素ガス雰囲気中のフッ素ガス濃度は特に限定されないが、好ましくは 0. 1 〜50容量%、より好ましくは 0. 3〜30容量%、更に好ましくは 0. 5〜20容量%であ る。フッ素ガス濃度が低すぎると榭脂膜 2の表面のフッ素化合物 6の生成が遅くなる。 一方、濃度が高すぎると榭脂膜 2と急激な反応が生じるため好ましくな 、ことがある。 フッ素ガス 7は希ガス類や窒素などの不活性ガスで希釈し使用することが好ましい。 また、榭脂膜 2を形成した絶縁基板 1をフッ素ガス雰囲気に曝す方法は、特に限定さ れない。例えば,フッ素ガス 7を容器中で常圧で流通させる方法、または加圧下で密 封するなどの方法が挙げられる。
[0056] 榭脂膜 2を形成した絶縁基板 1を処理するフッ素ガス雰囲気中の水分量も少ないほ うが表面処理には有効である。フッ素ガス雰囲気中の水分量は好ましくは 100重量 p pm以下、より好ましくは 50重量 ppm以下、更に好ましくは 10重量 ppm以下である。 水分濃度が上記範囲を超えると、フッ化水素が生成し、種々の不具合を生ずることが ある。
[0057] なお、本発明方法においては、上記(1)の工程を行った後に、上記(2) , (3)及び( 5)の工程を行う順序は、特に限定されないが、上記(2) , (3)及び(5)の工程の順に 行うことが好ましい。
[0058] (6)加熱アニーリング工程 榭脂膜 2を成膜した絶縁基板 1をフッ素ガス雰囲気に曝した後、不活性ガス雰囲気 中でァニールと呼ばれる後加熱することが、表面の撥液性向上に大きな効果がある ため好ましい。ァニールによって、未反応部位のフッ素化合物 6の生成を促進すると ともに過剰なフッ素分を揮発させる効果を発現する。ァニールに用いる不活性ガスの 種類は特に限定されないが、ヘリウム、ネオン、アルゴン、クリプトン、キセノン及びラ ドンなどの希ガス類や窒素が挙げられる。ァニール温度は、熱硬化性の感光性榭脂 組成物に用いる榭脂の軟ィ匕点によって異なるが 50°C〜350°Cが好ましぐ 100-35 0°Cがより好ましぐ 200〜350°Cが特に好ましい。ァニール温度が高すぎると生成し たフッ素化合物 6が過剰に揮発し、榭脂膜 2が減膜するなどの不具合が生じ、逆に低 すぎるとァニーノレの効果が発現しな ヽためである。
[0059] (7)フッ酸処理工程
更に、フッ素ガス雰囲気に曝す工程の後、絶縁基板 1を、フッ酸系薬液 8と接触させ る工程をさらに含むことが、榭脂膜 2表面と絶縁基板開口部間での撥液性の差を形 成するために好ましい。ここで、フッ酸系薬液とは、フッ化水素酸を含有する薬液をい う。上記したような残渣除去工程 (前述の (4)酸素プラズマ処理若しくは紫外線照射 処理工程)を行って絶縁基板が露出する部分 (絶縁基板 1の開口部)の榭脂残渣を 除去しても、フッ素ガス雰囲気下に曝すことで絶縁基板 1の開口部もフッ素化合物層 6が形成されるため、このような層を除去する工程を行うことが好ましい。使用するフッ 酸系薬液 8は、フッ化水素を超純水で希釈したものが好ましい。希釈したフッ化水素 の濃度は、好ましくは 0. 1重量%〜50重量%、より好ましくは 0. 5〜: LO重量%であ る。フッ化水素濃度が高過ぎると、榭脂膜 2の劣化や絶縁基板 1からの剥離などの不 具合が生じ、逆に低過ぎると開口部のフッ素化合物層 6の除去効果が得られない。 超純水で希釈したフッ化水素と絶縁基板 1の接触方法は特に限定されないが、フッ 素榭脂容器中での浸漬法による処理や薬液ノズルを用いた流体での処理が挙げら れる。
[0060] フッ酸系薬液として、超純水で希釈したフッ化水素を用いると、処理条件によっては 上記したように榭脂膜 2に不具合を生ずる場合がある。また、絶縁基板 1がシリコン系 の基板の場合、基板表面粗さが大きくなつたり、不溶性異物が発生するなどの問題 が生ずる。そのため、フッ酸系薬液 8は、無機酸、フッ化物塩、及び界面活性剤から なる群力も選ばれた薬品を一種以上含むことが望ましい。これらの薬品種として、好 ましくは塩酸、硫酸、硝酸、及び臭化水素などの無機酸;フッ化アンモ-ゥム、テトラメ チルアンモ -ゥムフロライド及びテトラエチルアンモ -ゥムフロライドなどのフッ化物塩 ;カチオン系界面活性剤(1級ァミン塩、 2級ァミン塩、 3級ァミン塩、 4級アンモ-ゥム 塩、及びアルキルピリジ-ゥム塩など);ァ-オン系界面活性剤(カルボン酸、スルホ ン酸、及びスルホン酸のアルカリ金属塩、硫酸モノエステルのアルカリ金属塩など); ノ-オン系界面活性剤(ポリオキシエチレンアルキルエーテル、ポリオキシエチレンァ ルキルフエノラート、ショ糖脂肪酸エステル、脂肪族アルコール、及びモノグリセリドな ど);のいずれを用いてもよい。
[0061] (8)配線形成工程
上記工程後、導電性材料を榭脂膜 2 (以下、仕切部材ということがある。)で仕切ら れた領域 (すなわち、凹部)に充填し電気的な配線 9を形成する。導電性材料 (充填 中の導電性材料を配線前駆体ということもある。)を仕切部材間に充填する工程は、 めっき法、印刷法のいずれかによつて行われることが好ましぐ前記印刷法において はインクジェット印刷法あるいはスクリーン印刷法であることが好ましい。特に、インク ジェット法では、仕切部材の上面と絶縁基板 1の開口部露出面とで液体状の配線前 駆体に対する親撥液性が異なることから、選択的に配線前駆体を仕切部材間に充 填することができる。
[0062] 配線前駆体の種類は特に限定されないが、含有する金属種は、金、白金、銀、銅、 ニッケル、パラジウム、マンガン、クロム、アルミなどからなる群力も選ばれた金属を一 種以上含むことが好ましい。特に、金、銀、銅、ニッケルなどは、 1 μ m以下の微粒子 を用いることが可能であるため、微細配線形成に好ましい。配線前駆体用の溶剤種 は水系、有機溶剤系またはこれらの混合物など特に限定されないが、仕切部材と絶 縁基板表面の間に親撥液性の違いが発現することが好ましい。なお、導電性材料は 、特開 2002— 324966号公報に記載されているように、有機物を含有していることが 好ましい。
[0063] 本発明にお 、て電子機器用回路基板は、上記回路基板製造法により得ることがで きる。電子機器用回路基板の構造は特に限定されないが、前記仕切部分と配線が 実質上同一平面であることが好ましい。仕切部分と配線表面とを実質上同一平面と することで、断線、短絡等の発生を低減できる回路基板を提供するためである。なお
、「実質的に同一平面」とは、該平面を構成する部分の最大の段差が、 1. 以下 であることをいい、 0. 5 m以下であることが好ましい。本発明方法により得られる回 路基板は、表示装置に好適に用いられ、液晶表示装置、有機 EL表示装置又はブラ ズマアドレス表示装置に特に好適に用いられる。
[0064] (実施例)
以下に、本発明の実施例を説明する。なお、本発明は以下の実施例に限定される ものではない。また、以下の実施例および比較例中の分析値は、いずれも四捨五入 して求めた値であり、「部」は「重量部」を表す。
[0065] また、以下の実施例および比較例における分析条件は下記の通りである。
[0066] (試験 1)昇温脱離分析 (以下「TDS分析」と略す。 )
装置:電子科学社製 EMD-WA1000S/W
(試験 2)フーリエ変換赤外分光光度分析 (以下、「FT-IR分析」と略す。 ) 装置:パーキンエルマ一社 Spectrum One
(試験 3)キヤビテイーリングダウン分光法 (以下、「CRDS分析」と略す。 )
装置: Tiger Optics社製 MTO- 1000H2O
(試験 4)接触角測定
装置:協和界面科学製 CA-D
テトラデカンを用い、液滴が基板に接触後 30秒経過したときの値と定義した。
[0067] (試験 5)全光線透過率 (紫外分光光度分析)
装置:島津製作所製 UV-2550
全光線透過率は 400nmから 800nm間の各波長での光線透過率の平均値と定義し た。
[0068] (試験 6)配線前駆体の収納可能幅
ガラス基板上仕切部材によって形成した長さ 50mmの溝上に、配線前駆体を滴下 した際の溝力ものはみ出し箇所数を評価し、はみ出し箇所の発生しない溝幅と定義 した。
[0069] (製造例 1)
[熱硬化性の感光性榭脂組成物 (ポジ型)の調整]
8 ヒドロキシカルボ-ルテトラシクロ [4. 4. 0. I2' 5. I7' 10]ドデ力一 3 ェン 62. 5部 、 N—フエ-ルー(5 ノルボルネン— 2, 3 ジカルボキシイミド) 37. 5部、 1—へキセ ン 1. 3部、 1, 3 ジメチルイミダゾリジン一 2—イリデン (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロリド 0. 05部、及びテトラヒドロフラン 400部を、窒素置換 したガラス製耐圧反応器に仕込み、攪拌しつつ 70°Cにて 2時間反応させて重合体溶 液 A (固形分濃度約 20%)を得た。
[0070] この重合体溶液 Aの一部を攪拌機付オートクレープに移し、 150°Cで水素を圧力 4 MPaで溶存させて 5時間反応させ、水素化された重合体 (水素化率 100%)を含む 重合体溶液 B (固形分濃度:約 20%)を得た。
[0071] 100部の重合体溶液 Bに一部の活性炭粉末を添加した耐熱容器をオートクレープ に入れ、攪拌しつつ 150°Cで水素を 4MPaの圧力で 3時間溶存させた。次いで、溶 液を取り出して孔径 0. 2 μ mのフッ素榭脂製フィルターでろ過して活性炭を分離して 重合体溶液を得た。ろ過は滞りなく行えた。重合体溶液をエチルアルコール中に注 いで凝固させ、生成したクラムを乾燥して重合体(1)を得た。得られた重合体(1)の ポリイソプレン換算の Mwは 5, 500であり、 Mnは 3, 200であった。またヨウ素価は 1 であった。
[0072] この重合体(1) 100部に、感光剤として 1, 1, 3 トリス(2, 5 ジメチルー 4ーヒドロ キシフエ-ル) 3 フエ-ルプロパン(1モル)と 1, 2 ナフトキノンジアジドー 5—ス ルホン酸クロリド(1. 9モル)との縮合物 20部および架橋剤として、 [2,2 ビス (ヒドロ キシルメチル) 1 ブタノールの 1,2 エポキシ- 4- ( 2 ォキシラ -ル)シクロへキサン 付加物(商品名「EHPE3150」、ダイセルィ匕学社製)を 40部、接着助剤として γ—グ リシドキシプロピルトリメトキシシランを 4部、酸ィ匕防止剤としてペンタエリスリトールテト ラキス [3— (3, 5—ジ—tーブチルー 4ーヒドロキシフエ-ル)プロピオネート]を 5部、 界面活性剤としてシリコーン系界面活性剤 (商品名「KP341」、信越ィ匕学工業社製) 0. 2部、重合体(1)の良溶剤としてジエチレングリコールメチルェチルエーテルを 55 0部、混合し溶解させた後、孔径 0. 20 mのポリテトラフルォロエチレン製フィルター (ミリポア社製)でろ過して熱硬化性の感光性榭脂組成物を得た。
[0073] (製造例 2)
[熱硬化性の感光性榭脂組成物 (ネガ型)の調整]
撹拌機付の容器内に、メチルトリメトキシシラン 300. 0部と、電気伝導率が 8 X 10_5S •cm 1のイオン交換水 47. 5部、シユウ酸 0. 1部とを入れた後、 60°C、 6時間の条件 で加熱撹拌することにより、メチルトリメトキシシランの加水分解を行った。次いで、容 器内にプロピレングリコールモノメチルエーテル 1, 000部を加えた後、エバポレータ 一を用いてイオン交換水ならびに加水分解により副生したメタノールを除去して、固 形分を 25重量%に調整した溶液を得た。
[0074] 上記溶液 400部、および感放射線性酸発生剤であるフエ-ル, 4— (2 '—ヒドロキ シー1,ーテトラデカオキシ)フエ-ルョードニゥム—p—トルエンスルホナート 2. 0部を 均一に混合し溶解させた後、孔径 0. 2 mのメンブランフィルターで濾過し、熱硬化 性の感光性榭脂組成物を得た。
[0075] (実施例 1)
[フッ素化の確認]
シリコンウェハを洗浄後、高純度窒素中で脱水加熱を行った。その後、へキサメチ レンジシラザン (HMDS)の蒸気処理によって密着層を形成した。密着層形成後、製 造例 1で得られた熱硬化性の感光性榭脂組成物をスピンコート法によって塗布し、約 1 μ m厚みの榭脂膜を形成した。榭脂膜を形成したシリコンウェハをマスクァライナー (CANON製 PLA501)により 200mJ/cm2で露光後、現像してパターンを形成した後 、 500mJ/cm2 (g, h、 i線混合)で基板全面を露光した。次いで、図 3の焼成装置を用 い高純度窒素雰囲気下、 280°Cで 60分間加熱し、榭脂膜を硬化した。
[0076] 図 3において、窒素 22, 24、酸素 23及び水素 25は、ガス流量制御器 11〜15を介 して、焼成炉 20に供給される。焼成炉 20内には、シャワープレート 19と基板 21とが 配置されている。また、焼成炉 20には温度調整器 18が設置されている。ここで、 16 及び 17は、排気ラインである。
[0077] 硬化後、図 4のフッ素ガス雰囲気処理炉にシリコンウェハを入れ、高純度アルゴンガ スを流通させ 150°Cで 60分乾燥した。
[0078] 図 4において、フッ素化処理器 33内には、榭脂膜 35が配置されている(シリコンゥ ェハは図示省略)。また、フッ素化処理器 33には、温度調整器 34が設置されている。 このような構成の下、フッ素ガス 36とアルゴンガス 37と力 ガス流量制御器 31、 32を 介して、フッ素化処理器 33に供給されて、排気 38される。
[0079] 乾燥後の榭脂膜の一部は TDS分析により榭脂膜中の水分量を分析したところ、 0.
02重量%であった。この乾燥後、 180°Cに加熱し高純度アルゴンガスで希釈した 10 容量%のフッ素ガスを 1分あたり 200ccの流量で処理炉に導入し、 5分間フッ素化処 理を行った。なお、希釈したフッ素ガス中の水分量は CRDS分析より 10重量 ppmで めつに。
[0080] フッ素化処理後、高純度アルゴンガス中 300°Cで 10分ァニールした。ァニール後 のサンプルの FT-IR分析結果を図 5に示す。
[0081] IR ^ベクトルにおいて 2930cm 1付近に見られる C-H結合に基づく吸収が上記の フッ素化処理によって消失し、代わって 1250cm 1付近に C-F結合に基づく吸収が 見られた。
[0082] (実施例 2)
[熱硬化性榭脂の接触角、外観、全光線透過率]
洗浄した無アルカリガラス基板を洗浄後、高純度窒素中で脱水加熱を行った。その 後、へキサメチレンジシラザン (HMDS)の蒸気処理によって密着層を形成した。密 着層形成後、製造例 1で得られた熱硬化性の感光性榭脂組成物をスピンコート法に よって塗布し、約 1 μ m厚みの榭脂膜を形成した。榭脂膜を形成した無アルカリガラ ス基板をマスクァライナーにより 200mJ/cm2で基板の半面を露光後、現像した。この とき、ポジ型の感光性であるため、露光部が溶解し、ガラス基板上半面の榭脂膜が除 去された。
[0083] 現像後、マスクァライナーで 500mJ/cm2で基板全面を露光し (紫外線処理工程)、 図 3の焼成装置を用い高純度窒素雰囲気下、 280°Cで 60分間加熱し、榭脂膜を硬 化した。硬化後、図 4のフッ素ガス雰囲気処理炉に前記無アルカリガラス基板を入れ 、高純度アルゴンガスを流通させ 150°Cで 60分乾燥した。乾燥後の榭脂膜の一部は TDS分析により熱硬化性榭脂膜中の水分量を分析したところ、 0. 02重量%であつ た。この乾燥後、 180°Cに加熱し高純度アルゴンガスで希釈した 10容量%のフッ素 ガスを 1分あたり 200ccの流量で処理炉に導入し、 1分間フッ素化処理を行った。こ のフッ素化処理後、高純度アルゴンガス中 300°Cで 10分ァニールした。ァニール後 の無アルカリガラス基板について、サンプルの外観 (剥離の有無)、テトラデカン (配 線前駆体に用いられる溶剤)の榭脂面とガラス面の接触角、及び光線透過率を試験 した。結果を表 1に示す。
[0084] (実施例 3)
ァニール温度を 200°Cにした以外は、実施例 2と同様に実験を行った。結果を表 1 に示す。
[0085] (実施例 4)
ァニールを行わな力つた以外は、実施例 2と同様に実験を行った。結果を表 1に示 す。
[0086] (比較例 1)
乾燥、フッ素化処理及びァニールを行なわなかった以外は、実施例 2と同様に実験 を行った。結果を表 1に示す。
[0087] (比較例 2)
乾燥を行わな力 た以外は、実施例 2と同様に実験を行った。結果を表 1に示す。
[0088] (実施例 5)
榭脂膜を硬化後、 RFプラズマ装置にて圧力 20mmHgで 10秒間、酸素プラズマ処 理を行った以外は実施例 2と同様に実験を行った。結果を表 1に示す。
[0089] (実施例 6)
ァニール処理後、 2. 5重量%のフッ化水素酸水溶液に 10秒間浸漬処理し、その 後超純水で 5分間リンスを行った以外は、実施例 5と同様に実験を行った。結果を表 1に示す。
[0090] (比較例 3)
フッ素化処理を、フッ素ガス雰囲気ではなく RFプラズマ装置にて圧力 50mmHgで 1 分間、四フッ化炭素プラズマでの処理を行った以外は実施例 6と同様に実験を行つ た。結果を表 1に示す。
[0091] (実施例 7)
2. 5重量%のフッ酸水溶液処理の代わりに、 LAL1000 (ステラケミファ製、界面活 性剤が入ったフッ酸系薬液)で 60秒間処理した以外は、実施例 6と同様に実験を行 つた。結果を表 1に示す。
[0092] (実施例 8)
熱硬化性の感光性榭脂組成物として製造例 2で得られたものを用いた以外は、実 施例 5と同様に実験を行った。結果を表 1に示す。
[0093] [表 1]
熱硬化性樹脂種類 硬化 酸素 乾燥フッ素化時 ァニール フッ酸 外観 接触角 光線 総口 プラズマ のガス中
の水分量 'm 'ス 時間 処理 剥離樹脂ガラス 透過率 評価
(重量 ppm)
実施例 2 脂環式ォレフイン樹脂 有 有 10ppm 300°C 10min 無 /"、 62 13 99.9% 〇 実施例 3 脂環式ォレフイン樹脂 有 7ΠΪ 有 10pDm 200°C lOmin 、 ,"、 58 13 99.8% 〇 実施例 4 脂環式ォレフイン樹脂 有 有 10ppm 無 無 55 13 99.8% Δ 実施例 5 脂環式ォレフイン樹脂 有 有 有 10pDm 300°C 10min 無 62 8 99.9% ◎ 実施例 6 脂環式ォレフイン樹脂 有 有 有 lOppm 300。C 10min 2.5%HF 62 <3 99.9% ◎ 実施例 7 脂環式ォレフイン樹脂 有 有 有 10ppm 300°C 10min LAL800 無 60 <3 99.7% ◎ 実施例 8 シリコーン樹脂 有 有 有 10ppm 300°C 10ppm 無
、 無 60 8 99.1 % 〇 比較例 1 脂環式ォレフイン樹脂 有 無 一 無 12 10 99.7% X 比較例 2 脂環式ォレフイン樹脂 有 無 10ppm 300°C 10min m
、 46 13 99.7% X 比較例 3 脂環式ォレフイン樹脂 有 有 有 10ppm 300。C 10min 2.5%HF ίίϊ 55 <3 99.6% △
[0094] (実施例 9)
[液体導電性材料の収納可能幅]
洗浄した無アルカリガラス基板を洗浄後、高純度窒素中で脱水加熱を行った。その 後、へキサメチレンジシラザン (HMDS)の蒸気処理によって密着層を形成した。密 着層形成後、製造例 1で得られた熱硬化性の感光性榭脂組成物をスピンコート法に よって塗布し、約 1 μ mの厚みの榭脂膜を形成した。榭脂膜を形成した無アルカリガ ラス基板をマスクァライナーにより 200mJ/cm2で 10〜50 μ m幅、長さ 50mmの直線 ノ ターンを露光後、現像した。このとき、該感光性榭脂組成物がポジ型の感光性であ るため、露光部が溶解し 10〜50 mの幅の溝パターンが形成された。現像後、マス クァライナーで 500mJ/ cm2で基板全面を露光し、図 3の焼成装置を用い高純度窒 素雰囲気下、 280°Cで 60分間加熱し、榭脂膜を硬化した。
[0095] その後、 RFプラズマ装置にて圧力 20mmHgで 10秒間、酸素プラズマ処理を行った 。図 4のフッ素ガス雰囲気処理炉に前記無アルカリガラス基板を入れ、高純度アルゴ ンガスを流通させ 150°Cで 60分乾燥した。乾燥後、 180°Cに加熱し高純度アルゴン ガスで希釈した 10容量%のフッ素ガスを 1分あたり 200ccの流量で処理炉に導入し 、 1分間フッ素化処理を行った。このフッ素化処理後、高純度アルゴンガス中 300°C で 10分ァニールした。ァニール後、 2. 5重量%のフッ化水素酸水溶液に 10秒間浸 漬処理し、その後超純水で 5分間リンスを行った。このサンプル基板の直線溝部にマ イク口シリンジを用い、藤倉化成製の銀インクを滴下し、インク滴の収納可能幅を評価 した。結果を表 2に示す。
[0096] (比較例 4)
酸素プラズマ処理、乾燥、フッ素化処理、ァニール及びフッ化水素酸水溶液処理 を行わなかった以外は、実施例 9と同様に実験を行った。結果を表 2に示す。
[0097] (比較例 5)
フッ素化処理を、フッ素ガス雰囲気ではなく RFプラズマ装置にて圧力 50mmHgで 1 分間、四フッ化炭素プラズマでの処理とした以外は実施例 9と同様に行った。結果を 表 2に示す。
[0098] [表 2] 酵素 乾燥 フッ素化時 ァニール はみ出し箇所数 収納可能幅 プラズマ の水分量 皿 時間 50/ym 40jum 30jum 20jLim 10jii m 実施例 9 有 10ppm 300°C 10min 0 0 0 0 0 10jum 比較例 4 一 一 一 一 ― 全面はみ出し 一 比較例 5 有 有 10ppm 300°C 10min 0 0 0 3 30 20 im
[0099] (実施例 10)
本発明の実施例 10におけるアクティブマトリクス表示装置 (アクティブマトリクス液晶 ディスプレイ)について、図を用いて説明する。
[0100] 図 6は、本実施例 10のアクティブマトリクス液晶ディスプレイの構造を示す断面図で ある。
[0101] アクティブマトリクス液晶ディスプレイは、ガラス基板 46上に形成された走査線 49と 、信号線 48と、走査線 49と信号線 48の交差部付近に、走査線 49にゲート電極 52が 接続され、信号線 48にソース電極 51あるいはドレイン電極 54が接続された薄膜トラ ンジスタを有している。信号線 48、ソース電極 51、およびドレイン電極 54を囲むよう に平坦化層 55が形成され、信号線 48、ソース電極 51、ドレイン電極 54と平坦ィ匕層と は実質的に同一平面を形成している。この平面上に層間絶縁膜 47を介して画素電 極 56が配置され、アクティブマトリクス基板を構成し、対向基板 41との間で液晶 44を 挟持する。本実施例 10の走査線 49およびゲート電極配線 52をインクジェット法によ る埋め込み配線とした。ここで、 42はブラックマトリクス、 43はカラーフィルタ、 45は配 向層、 53は半導体層、 51はゲート絶縁膜である。
[0102] 次に、図 8〜10を参照して、ゲート電極配線部の形成方法について述べる。
[0103] まず、ガラス基板 61の表面に 1 μ mの厚さの熱硬化性の感光性榭脂膜 (脂環式ォ レフイン榭脂系の透明榭脂膜) 62をスピンコート法等の手法により形成する。この榭 脂膜 62はフォトレジスト膜としての機能を有している。次に、榭脂膜 62をマスクァライ ナーを用いて選択的に露光、現像および除去、加熱硬化をすることにより、榭脂膜 6 2に配線溝 60を形成する(図 8 (a)参照)。
[0104] 特に、配線幅 60が微細である場合は、印刷精度を高めるために、榭脂膜 62の表 面に撥液性を持たせる処理を行う。具体的には酸素プラズマ処理後に乾燥し、フッ 素ガス雰囲気中にガラス基板 61を曝して表面をフッ素処理し、ァニールを行った後 にフッ酸水溶液に浸漬する。
[0105] 次に、インクジェット印刷法などの印刷法ゃメツキ法により、前記配線溝 60に配線前 駆体 (導電性材料)を充填する。配線形成方法はインクの効率的な使用の観点からィ ンクジェット法が好ましいが、スクリーン印刷法などを用いてもよい。本実施例では、 配線前駆体として、特開 2002-324966号公報に開示されるものと同様の銀ペース トインクを用いて配線を形成した。配線前駆体を充填後 250度の温度で 30分間焼成 を行 、、走査線 63 (図 6の 49に対応)およびゲート電極配線 63 (図 6の 52に対応)と した (図 8 (b)参照)。
[0106] 次に、マイクロ波励起プラズマを用いたプラズマ CVD法により SiHガスと Hガスと
4 2
Nガスと Arガスを用いてシリコン窒化膜 (SiN膜)を成膜した(図示省略)。通常の高
2
周波励起プラズマを用いても SiN膜の成膜が可能であるが、マイクロ波励起プラズ マを用いることで、より低温での SiN膜の成膜が可能である。成膜温度は 300°Cとし 、膜厚は 0. とした。
[0107] 次に、マイクロ波励起プラズマを用いたプラズマ CVD法により、アモルファスシリコ ン層 65および n +型ァモルファスシリコン層 64を成膜した。ァモルファスシリコン層 6 5は SiHガスを用い、 n+型アモルファスシリコン層 64は SiHガスおよび PHガス、
4 4 3
Arガスを用い、 300°Cの温度で成膜した(図 8 (c)参照)。
[0108] 次に、全面にフォトレジスト (感光性榭脂組成物)をスピンコート法により塗布し、 10 0°Cで 1分間、ホットプレート上で乾燥し溶剤を除去した。次に、 g線ステツパを用いて 、 36mjZcm2のエネルギードーズ量で露光を行った。露光に際しては、素子領域を 残存するようにマスクを形成し、素子領域内部のチャネル領域に相当する部分はスリ ットマスクを用いて、露光量を調整した。 2. 38重量 °/(^TMAH溶液を用いてパドル 現像 70秒間を行った結果、図 8 (d)に示す形状のフォトレジスト 66を得た。
[0109] 次に、プラズマエッチング装置を用いて、 n+型アモルファスシリコン層 64、ァモル ファスシリコン層 65のエッチングを行った。この際、フォトレジスト 66も若干エッチング され、膜厚が減少するため、フォトレジスト膜厚の薄いチャネル領域部 (フォトレジスト 66の窪み部分)のレジスト及び n+アモルファスシリコン層 64もエッチングされる。素 子領域部(フォトレジスト 66で覆われている部分)以外の n+型アモルファスシリコン 層 64およびアモルファスシリコン層 65がエッチング除去され、チャネル領域の n+型 アモルファスシリコン層 64がエッチング除去された時点で、エッチング処理を終了す る(図 9 (e)参照)。ソース電極部およびドレイン電極部の n+型アモルファスシリコン 層 64上のフォトレジスト 66は残存したままである。 [0110] 次に、この状態で、 Arガス、 Nガス、 Hガスを用いて、マイクロ波励起プラズマ処理
2 2
を行い、チャネル領域部及び素子領域部側面のアモルファスシリコン表面に、直接 窒化膜 67を形成する(図 9 (f)参照)。
[0111] 一般的な高周波プラズマを用いても直接窒化膜 67の形成は可能であるが、マイク 口波励起プラズマを用いることにより、電子温度が低いプラズマを生成できる。このた め、チャネル部にプラズマによるダメージを与えることなく直接窒化膜 67を形成でき 好ましい。また、 CVD法により窒化膜を形成することも可能である。しかし、ソース電 極およびドレイン電極領域にも窒化膜が形成され、後に除去工程が必要になるため 、直接窒化膜 67を形成することがより好ましい。
[0112] 次に、ソース電極、およびドレイン電極領域上に残存するフォトレジスト膜 66を、酸 素プラズマアツシングを施した後、レジスト剥離液などにより除去する(図 9 (g)参照)。
[0113] 続、て、信号線、ソース電極配線およびドレイン電極配線をインクジェット印刷法な どの印刷法ゃメツキ法で形成する際に必要となる榭脂膜 69を形成するために、熱硬 化性の感光性榭脂膜 (脂環式ォレフイン榭脂系の透明榭脂膜)を塗布する。そして、 信号線、ソース電極配線およびドレイン電極配線用フォトマスクを用いて露光、現像 、加熱硬化を行うことで榭脂膜 69を形成し、信号線、ソース電極配線およびドレイン 電極配線領域となる配線用溝 68を得る(図 9 (h)参照、なお、図 9 (h)には、図示省 略されているが、榭脂膜 69と同様に別途形成された榭脂膜との間が、配線用溝 68 になっている)。
[0114] 配線幅が微細である場合は、印刷精度を高めるために、榭脂膜 69表面に撥水性 を持たせる処理を行ってもよい。具体的には酸素プラズマ処理後、乾燥し、フッ素ガ ス雰囲気中にガラス基板を曝して表面をフッ素処理し、ァニール後にフッ酸水溶液に 浸漬する。次に、インクジェット印刷法などの印刷法ゃメツキ法により、前記溝部に配 線前駆体を充填する。配線形成方法はインクの効率的な使用の観点からインクジェ ット法が好ま 、が、スクリーン印刷法などを用いてもよ!、。
[0115] 本実施例では配線前駆体として特開 2002-324966号公報に開示されるものと同 様の銀ペーストインクを用いて配線を形成した。配線前駆体を充填後 250度の温度 で 30分間焼成を行い、配線 71とした (図 10 (i)参照)。 [0116] このようにして、 TFTの形成を完了した。
[0117] 次に、脂環式ォレフイン榭脂系の熱硬化性感光性透明榭脂を成膜し、露光、現像 を行うことで、画素電極 56から TFT電極へのコンタクトホールが形成された層間絶縁 膜 (図 6の 47に相当)を得た。熱硬化性の感光性透明樹脂の硬化は、層間絶縁膜 47 の光線透過率を高めるため、装置内表面を SUS316の電解研磨処理した加熱装置 を用い、更に残存酸素濃度を 10容量 ppmに制御し、 250°Cで 60分焼成した。これ に引き続き、基板全面に ITOをスパッタ成膜し、パターユングすることで画素電極 56 とした。 ITOの代わりに SnOなどの透明導電膜材料を用いてもよい。この表面に液
2
晶 44の配向膜 45としてポリイミド膜を形成し、対向基板 41との間に液晶 44を挟持す ることで、アクティブマトリクス液晶表示装置を得た。
[0118] 本実施例のアクティブマトリクス液晶表示装置によれば、微細な配線が精度良く形 成されて層間絶縁膜 47の透明性が高いため、低消費電力かつ輝度が高ぐ高品質 な表示を得ることができた。
産業上の利用可能性
[0119] 本発明の回路基板の製造方法によれば、仕切部材を劣化させることなぐ仕切部 材と絶縁基板間の液状導電性材料の濡れ性に十分なコントラストを与え、インクジェ ット法などにより微細な配線形成を実現できる回路基板を容易に得ることができる。こ のような回路基板は、液晶表示装置、有機 EL表示装置又はプラズマアドレス表示装 置などの表示装置として好適に利用することができる。

Claims

請求の範囲
[1] 回路基板の製造方法であって、
絶縁基板上に榭脂膜を形成する工程の後、
該榭脂膜を露光し現像する工程、
該榭脂膜を加熱硬化する工程、及び
該榭脂膜を乾燥した後にフッ素ガス雰囲気に曝す工程を含む回路基板の製造方 法。
[2] 回路基板の製造方法であって、
絶縁基板上に榭脂膜を形成する工程、
該榭脂膜を露光し現像する工程、
該榭脂膜を加熱硬化する工程、
該榭脂膜を乾燥する工程、
次 ヽで、該榭脂膜をフッ素ガス雰囲気に曝す工程を含む回路基板の製造方法。
[3] 回路基板の製造方法であって、
絶縁基板上に榭脂膜を形成する工程、
該榭脂膜を露光し現像する工程、
該榭脂膜を乾燥する工程、
該榭脂膜をフッ素ガス雰囲気に曝す工程、
次 、で、該榭脂膜を加熱硬化する工程を含む回路基板の製造方法。
[4] 回路基板の製造方法であって、
絶縁基板上に榭脂膜を形成する工程、
該榭脂膜を加熱硬化する工程、
該榭脂膜を乾燥する工程、
該榭脂膜をフッ素ガス雰囲気に曝す工程、
次 、で、該榭脂膜を露光し現像する工程を含む回路基板の製造方法。
[5] 前記榭脂膜の乾燥の工程で、前記榭脂膜中の水分量を 1重量%以下にする請求 項 1に記載の回路基板の製造方法。
[6] 前記フッ素ガス雰囲気中の水分濃度が 100重量 ppm以下である請求項 1に記載の 回路基板の製造方法。
[7] 前記榭脂膜の加熱硬化の工程を不活性ガス雰囲気中で行う請求項 1に記載の回 路基板の製造方法。
[8] 前記フッ素ガス雰囲気に曝す工程の前に、前記榭脂膜を大気圧下で紫外線照射 することを含む請求項 1に記載の回路基板の製造方法。
[9] 前記フッ素ガス雰囲気に曝す工程の前に、常圧または減圧下で前記榭脂膜に酸 素プラズマ処理する工程をさらに含む請求項 1に記載の回路基板の製造方法。
[10] 前記フッ素ガス雰囲気に曝す工程の後、フッ酸系薬液と前記絶縁基板を接触させ る工程をさらに含む請求項 1に記載の回路基板の製造方法。
[11] 前記フッ酸系薬液が、フッ化水素酸濃度 0. 1重量%〜50重量%のフッ酸水溶液 である請求項 10に記載の回路基板の製造方法。
[12] 前記フッ酸系薬液が、無機酸、フッ化物塩及び界面活性剤からなる群から選ばれ る一種以上の薬品を含む請求項 10に記載の回路基板の製造方法。
[13] 前記榭脂膜の現像によって形成された凹部に導電性材料を充填し、電気配線を形 成する工程をさらに含む請求項 1に記載の回路基板の製造方法。
[14] 前記導電性材料の充填をメツキ法ある 、は印刷法の 、ずれかによつて行う請求項 1
3に記載の回路基板の製造方法。
[15] 前記印刷法力インクジェット印刷あるいはスクリーン印刷である請求項 14に記載の 回路基板の製造方法。
[16] 前記榭脂膜と電気配線が実質上同一平面となっている請求項 1に記載の回路基板 の製造方法。
[17] 前記絶縁基板がガラス基板またはシリコンウェハである請求項 1に記載の回路基板 の製造方法。
[18] 前記導電性材料が有機物を含有している請求項 13に記載の回路基板の製造方 法。
[19] 前記榭脂膜がアルカリ可溶性脂環式ォレフイン系榭脂と感放射線成分とを含有す る感光性榭脂組成物で形成されたものである請求項 1に記載の回路基板の製造方 法。
[20] 前記榭脂膜がアクリル系榭脂、シリコーン系榭脂、フッ素系榭脂、ポリイミド系榭脂、 ポリオレフイン系榭脂、脂環式ォレフイン系榭脂、およびエポキシ系榭脂からなる群か ら選ばれた一種以上の榭脂を含む請求項 1に記載の回路基板の製造方法。
[21] 請求項 1に記載の方法で得られた回路基板。
[22] 請求項 21に記載の回路基板を備えた表示装置。
[23] 前記表示装置が、液晶表示装置、有機 EL表示装置又はプラズマアドレス表示装置 である請求項 22に記載の表示装置。
PCT/JP2005/006150 2004-03-31 2005-03-30 回路基板、回路基板の製造方法及び回路基板を備えた表示装置 WO2005096684A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/594,596 US20070209200A1 (en) 2004-03-31 2005-03-30 Circuit Board, Method Of Manufacturing Circuit Board, And Display Device Having Circuit Board
JP2006511760A JPWO2005096684A1 (ja) 2004-03-31 2005-03-30 回路基板、回路基板の製造方法及び回路基板を備えた表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-108559 2004-03-31
JP2004108559 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005096684A1 true WO2005096684A1 (ja) 2005-10-13

Family

ID=35064169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006150 WO2005096684A1 (ja) 2004-03-31 2005-03-30 回路基板、回路基板の製造方法及び回路基板を備えた表示装置

Country Status (6)

Country Link
US (1) US20070209200A1 (ja)
JP (1) JPWO2005096684A1 (ja)
KR (1) KR20070007172A (ja)
CN (1) CN1947478A (ja)
TW (1) TW200603219A (ja)
WO (1) WO2005096684A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016444A (ja) * 2006-06-09 2008-01-24 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
KR100880747B1 (ko) 2006-06-29 2009-02-02 도쿄엘렉트론가부시키가이샤 기판 처리 방법 및 기판 처리 장치
JP2009283907A (ja) * 2008-05-19 2009-12-03 Samsung Electro Mech Co Ltd 印刷回路パターンの形成方法、ガイドの形成方法、及びガイド形成用インク
US8313355B2 (en) 2006-06-09 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103653A (ja) * 2006-09-22 2008-05-01 Tohoku Univ 半導体装置及び半導体装置の製造方法
JP5329038B2 (ja) * 2006-12-21 2013-10-30 宇部日東化成株式会社 半導体装置及び半導体装置の製造方法
US20100237362A1 (en) * 2007-10-23 2010-09-23 Sharp Kabushiki Kaisha Display device and production method thereof
KR101049939B1 (ko) * 2008-02-15 2011-07-15 피에스케이 주식회사 기판 제조 방법
CN102196904A (zh) * 2008-08-25 2011-09-21 株式会社关东学院大学表面工学研究所 叠层体及其制造方法
CN101965103B (zh) * 2010-04-20 2012-04-18 力帆实业(集团)股份有限公司 一种印刷电路板封装方法
KR101148112B1 (ko) * 2010-07-15 2012-05-23 엘지이노텍 주식회사 액정표시장치용 인쇄판 및 그 제조방법
KR20120090594A (ko) * 2011-02-08 2012-08-17 삼성전자주식회사 고분자 전극의 제조방법 및 고분자 전극을 채용한 고분자 구동기
TWI458568B (zh) * 2011-07-19 2014-11-01 Innolux Corp 利用紫外光改質表面特性之方法
US10934408B2 (en) * 2014-04-09 2021-03-02 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences Surface modification method for polyether-ether-ketone material
CN106561070B (zh) * 2015-10-06 2019-06-11 鹏鼎控股(深圳)股份有限公司 柔性电路板制作方法
JP7311988B2 (ja) * 2019-03-20 2023-07-20 株式会社Screenホールディングス 基板処理方法、半導体製造方法、および、基板処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308920A (ja) * 1987-06-10 1988-12-16 Mitsubishi Electric Corp 有機物質表面の改質方法
JPH06347637A (ja) * 1993-06-14 1994-12-22 Dainippon Ink & Chem Inc 印刷方法
JP2002055222A (ja) * 2000-08-11 2002-02-20 Canon Inc 光学素子とその製造方法、液晶素子
JP2003257655A (ja) * 2001-12-26 2003-09-12 Seiko Epson Corp 撥水化処理の方法、薄膜形成方法及びこの方法を用いた有機el装置の製造方法、有機el装置、電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797178A (en) * 1987-05-13 1989-01-10 International Business Machines Corporation Plasma etch enhancement with large mass inert gas
JP3074634B2 (ja) * 1994-03-28 2000-08-07 三菱瓦斯化学株式会社 フォトレジスト用剥離液及び配線パターンの形成方法
US5650453A (en) * 1995-04-28 1997-07-22 General Electric Company UV curable epoxysilicone blend compositions
US5853953A (en) * 1996-09-06 1998-12-29 Shipley Company, L.L.C. Polymers and photoresist compositions comprising same
TW533446B (en) * 2000-12-22 2003-05-21 Koninkl Philips Electronics Nv Electroluminescent device and a method of manufacturing thereof
EP1331518A3 (en) * 2002-01-24 2004-04-07 JSR Corporation Radiation sensitive composition for forming an insulating film, insulating film and display device
US6984476B2 (en) * 2002-04-15 2006-01-10 Sharp Kabushiki Kaisha Radiation-sensitive resin composition, forming process for forming patterned insulation film, active matrix board and flat-panel display device equipped with the same, and process for producing flat-panel display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308920A (ja) * 1987-06-10 1988-12-16 Mitsubishi Electric Corp 有機物質表面の改質方法
JPH06347637A (ja) * 1993-06-14 1994-12-22 Dainippon Ink & Chem Inc 印刷方法
JP2002055222A (ja) * 2000-08-11 2002-02-20 Canon Inc 光学素子とその製造方法、液晶素子
JP2003257655A (ja) * 2001-12-26 2003-09-12 Seiko Epson Corp 撥水化処理の方法、薄膜形成方法及びこの方法を用いた有機el装置の製造方法、有機el装置、電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016444A (ja) * 2006-06-09 2008-01-24 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US8313355B2 (en) 2006-06-09 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR100880747B1 (ko) 2006-06-29 2009-02-02 도쿄엘렉트론가부시키가이샤 기판 처리 방법 및 기판 처리 장치
JP2009283907A (ja) * 2008-05-19 2009-12-03 Samsung Electro Mech Co Ltd 印刷回路パターンの形成方法、ガイドの形成方法、及びガイド形成用インク

Also Published As

Publication number Publication date
CN1947478A (zh) 2007-04-11
JPWO2005096684A1 (ja) 2008-02-21
TW200603219A (en) 2006-01-16
KR20070007172A (ko) 2007-01-12
US20070209200A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
WO2005096684A1 (ja) 回路基板、回路基板の製造方法及び回路基板を備えた表示装置
US7297452B2 (en) Photosensitive resin composition, thin film panel made with photosensitive composition, and method for manufacturing thin film panel
JP4737386B2 (ja) 電子機器用回路基板の製造方法、電子機器用回路基板、および表示装置
US7586554B2 (en) Liquid crystal display device and dielectric film usable in the liquid crystal display device
CN101063816B (zh) 抗蚀剂成分、形成抗蚀剂图案的方法、基板及其制造方法
US7338737B2 (en) Photosensitive resin composition, thin film panel made with photosensitive resin composition, and method for manufacturing thin film panel
TWI405033B (zh) 圖案之形成方法
TW201111916A (en) Positive radiation-sensitive composition, hardening film, interlayer insulation film, method for forming interlayer insulation film, display element and siloxane polymer for forming interlayer insulation film
JP2011107266A (ja) 液晶表示装置及び液晶表示装置の製造方法
KR101525254B1 (ko) 감방사선성 수지 조성물, 및 층간 절연막 및 마이크로렌즈의 제조 방법
TWI626511B (zh) 具備保護膜之薄膜電晶體基板的製造方法
KR20120022903A (ko) 광학 소자의 제조 방법
TW200941144A (en) Radiation-sensitive composition, interlayer insulation film and micro-lens, and forming method thereof
KR20160149040A (ko) 감광성 폴리이미드 조성물
KR101338301B1 (ko) 표시 장치 등의 전자 장치의 제조 장치, 제조 방법, 및표시 장치 등의 전자 장치
US8101519B2 (en) Mold, manufacturing method of mold, method for forming patterns using mold, and display substrate and display device manufactured by using method for forming patterns
KR20150084918A (ko) 감광성 수지 조성물, 경화막의 제조 방법, 경화막, 유기 el 표시 장치 및 액정 표시 장치
CN108139671A (zh) 光敏树脂组合物及由其制备的固化膜
JP5335843B2 (ja) 電子装置用基板の製造法
JP4645018B2 (ja) コンタクトホールの形成方法
JP7484710B2 (ja) ポジ型感光性樹脂組成物、その硬化膜およびそれを具備する光学デバイス
JP4763245B2 (ja) 表示装置等電子装置の製造装置、製造方法および表示装置等の電子装置
KR20110026656A (ko) 임프린트용 몰드의 제조 방법 및 그 임프린트용 몰드를 이용한 액정 표시 패널의 제조 방법
KR100943449B1 (ko) 저온 큐어링을 이용한 게이트 절연막 형성방법 및 이를 이용한 유기박막트랜지스터 제조방법
JPH11282162A (ja) 硬化膜の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511760

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200580013172.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067022701

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067022701

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10594596

Country of ref document: US

Ref document number: 2007209200

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10594596

Country of ref document: US

122 Ep: pct application non-entry in european phase