Nothing Special   »   [go: up one dir, main page]

WO2004114443A1 - 負極材料、負極、その負極及び正極からなる非水系2次電池 - Google Patents

負極材料、負極、その負極及び正極からなる非水系2次電池 Download PDF

Info

Publication number
WO2004114443A1
WO2004114443A1 PCT/JP2003/014033 JP0314033W WO2004114443A1 WO 2004114443 A1 WO2004114443 A1 WO 2004114443A1 JP 0314033 W JP0314033 W JP 0314033W WO 2004114443 A1 WO2004114443 A1 WO 2004114443A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
range
pitch
secondary battery
Prior art date
Application number
PCT/JP2003/014033
Other languages
English (en)
French (fr)
Inventor
Teruhiko Kusano
Kazuhiro Ogawa
Satoshi Yamasaki
Tsuyoshi Haga
Hisashi Satake
Kazuya Kuriyama
Shiro Mori
Yukiko Okano
Shenglong Wang
Hajime Kinoshita
Shizukuni Yata
Original Assignee
Electric Power Development Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003179897A external-priority patent/JP2005019092A/ja
Priority claimed from JP2003179898A external-priority patent/JP2005019093A/ja
Priority claimed from JP2003179900A external-priority patent/JP2005019095A/ja
Priority claimed from JP2003179896A external-priority patent/JP2005019091A/ja
Application filed by Electric Power Development Co., Ltd. filed Critical Electric Power Development Co., Ltd.
Priority to AU2003280702A priority Critical patent/AU2003280702A1/en
Publication of WO2004114443A1 publication Critical patent/WO2004114443A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Negative electrode material negative electrode, non-aqueous secondary battery composed of the negative electrode and positive electrode
  • the present invention relates to a negative electrode material for a non-aqueous secondary battery and a method for producing the same, and in particular, comprises a negative electrode material capable of significantly improving the performance of a lithium secondary battery, a negative electrode, and the negative electrode and the positive electrode Non-aqueous field This relates to secondary batteries. Background art
  • Lithium ion batteries using L i C O_ ⁇ 2, L i Mn 2 ⁇ 4 lithium-containing transition metal oxide typified as the positive electrode uses a carbon-based materials typified by graphite as a negative electrode.
  • the capacity of lithium-ion batteries is being further increased, but the increase in capacity through the improvement of cathode oxides and anode carbon-based materials has almost reached its limit, exceeding 45 O WhZl. It is difficult to achieve energy density. Also, in order to meet the anticipated needs for upsizing, a reduction in material costs is also strongly desired.
  • a negative electrode material for a non-aqueous secondary battery from a polycyclic aromatic hydrocarbon obtained by subjecting a raw material mainly composed of petroleum and coal pitch to a thermal reaction has been proposed (JP-A-2000-2000). -251885 publication).
  • Such a negative electrode material for a non-aqueous secondary battery has an atomic ratio of hydrogen / carbon in the range of 0.35 to 0.05 and a specific surface area by BET method of 5 On ⁇ Zg or less.
  • a negative electrode material and a method for producing the same that do not increase the specific surface area relatively even if the material is sufficiently pulverized.
  • pores formed by pulverization are required. It is desirable to minimize structural changes.
  • this material is applied to non-aqueous secondary batteries, practical lithium batteries of up to about 8 hours can be used.
  • the capacity (mAh) and the cycle characteristics at the doping rate become important, and further improvement of the capacity is desired from this viewpoint.
  • the pitch-based carbon material is heated at a temperature of about 100 to 400 ° C.
  • the capacity of the negative electrode using a polycyclic aromatic hydrocarbon and its secondary battery is remarkably improved as compared with a conventional commercial lithium ion battery, and a high capacity about twice that of a commercial battery can be obtained.
  • a negative electrode and excellent charge receiving characteristics of the battery are desired.
  • the thickness of both the positive electrode and the negative electrode is designed to be around 100 zm.
  • the thickness of the electrode layer is about 80 to 120 m.
  • the basis weight of graphite is about 1 Omg to 2 Omg per cm 2 .
  • the thickness of a negative electrode using polycyclic aromatic hydrocarbon obtained by subjecting a raw material mainly composed of pitch to a thermal reaction is 10 O ⁇ m, which is a conventional lithium ion battery. It is the same design as.
  • the amount of lithium that can be released from the positive electrode is defined as Cp (mAh)
  • the amount of lithium pre-doped into the negative electrode is defined as Cn (mAh)
  • the mass of the multi-functional coal in the negative electrode is expressed as W ( g PT / JP2003 / 014033
  • Ta ⁇ Keisumyi in the Richiumui on battery using the negative electrode material Ru preparative ⁇ material containing iodine, L i PF 6, Li electrostatic angle such as a lithium salt, such as BF 4? Quality material propylene carbonate and Echiru A non-aqueous solvent dissolved in a mixed solvent of methyl carbonate or a mixed solvent of propylene and one mixture of propylene glycol is one! Used for a3 ⁇ 4. Normally, such lead materials are not so much restricted in relation to such movements, unlike graphite. However, in the case of using a mixed solvent containing propylene carbonate, the chargeability of the negative electrode containing a polycyclic aromatic hydrocarbon is poor (or lithium is slow), and it takes a long time to charge. There is.
  • the lithium-nickel composite oxide which is known as a high-capacity MIE electrode material for two nonaqueous pond cells, has a layered rock salt structure, similar to the lithium-cobalt composite oxide, and is a high-capacity material exceeding 200 mAh / g.
  • This complex oxide is characterized by the fact that N i 4+ generated during charging is unstable in the structure, and the structure in a highly charged state where lithium is extracted from the structure in a large amount is unstable. is there. Due to this, there is a problem that the onset temperature of oxygen desorption from the crystal lattice is low. For example, it has been reported that “the onset temperature of oxygen desorption of a charged lithium nickel composite oxide is lower than that of conventional lithium cobalt oxide” (Solid State Ionics, No. 3). / 4, 265 (1994)).
  • lithium-nickel composite oxide is used alone as the positive electrode active material.
  • a high capacity battery can be obtained, there is a problem in thermal stability in a high charge state, and the safety as a battery cannot be sufficiently secured. For this reason, it has not been put to practical use in lithium-ion batteries.
  • acetylene black, Ketjen black, natural graphite, artificial graphite, and the like have been used alone or in combination.
  • Acetylene black and Ketjen black have a large specific surface area and are suitable for imparting electron conductivity to the positive electrode.
  • Natural graphite and artificial graphite are not bulky, but have a specific surface area of less than 100 parts by mass with respect to 100 parts by mass of the positive electrode active material in order to provide sufficient electron conductivity. Is required, which causes a decrease in battery capacity. For this reason, a positive electrode material that can be suitably combined with a negative electrode material having a high capacity is also desired.
  • a first object of the present invention is to make use of the characteristics of polycyclic aromatic hydrocarbons and suppress the change in the pore structure even when a material made of polycyclic aromatic hydrocarbons is pulverized to a sufficiently fine diameter.
  • An object of the present invention is to provide a negative electrode material having a small specific surface area and a method for producing the same.
  • a second object of the present invention is to provide a material made of polycyclic aromatic hydrocarbons having a uniform particle size, specifying a particle size distribution and defining the specific surface area within a predetermined range, or setting a raw material pitch to a naphthene pitch.
  • a coal-based isotropic pitch By specifying a coal-based isotropic pitch, it is possible to obtain a high capacity (mAh) in a practical lithium doping time, and to provide a negative electrode material having excellent cycle characteristics.
  • a third object of the present invention is to improve the charge receiving characteristics at the negative electrode from the viewpoint of battery design
  • a fourth object of the present invention is to provide a non-aqueous secondary battery having stability, high capacity, and excellent cycle life. Disclosure of the invention
  • the present inventors have found that it is particularly advantageous to use a polycyclic aromatic hydrocarbon obtained by subjecting a raw material to a thermal reaction without subjecting it to infusibilization as a negative electrode material, by subjecting the raw material to a thermal reaction.
  • the first problem was solved by finding that the use of a Nylon pole mill, etc., when finely pulverizing to an average particle size of 10 m or less, would minimize the increase in the amount of pores. It is.
  • the present inventors crushed a polycyclic aromatic hydrocarbon obtained using pitch as a main raw material so as to have a predetermined particle size distribution, and obtained a desired atomic ratio of hydrogen and Z carbon, and a desired specific surface area. It was found that the use of such a material as the negative electrode material of a non-aqueous secondary battery improves the capacity (mAh) in practical doping time and excels in its cycle characteristics. It is a solution.
  • the negative electrode material of the present invention is a material composed of a polycyclic aromatic hydrocarbon obtained by subjecting a raw material having pitch as a main component to a thermal reaction, and the atomic ratio of hydrogen Z carbon of the material is 0. It is in the range of 50 to 0.05, the specific surface area by the BET method is in the range of 0.1 to 50 m 2 Zg, and the average particle size of the material is 10 zm or less.
  • the negative electrode material preferably has the following physical properties or structure.
  • the material has an average particle size in the range of 6 xm to 1.
  • the element ratio of hydrogen and carbon in the above material is in the range of 0.40 to 0.15.
  • the specific surface area of the above materials by the BET method is in the range of 0.1 to 30 m 2 Zg.
  • the above material has a diameter of 2 m or less at a volume integration of 10% in the particle size distribution, and a diameter of 10 m or less at the 90% volume integration. Further, the pore volume of the material in the range of. 20 to 5 OA measured at the BJH method is not more than 1 X 10- 3 cc / g.
  • the present inventors have found that when a polycyclic aromatic hydrocarbon having a specific structure obtained using naphthalene pitch as a main raw material is ground to a predetermined particle size or less, a conventional coal-based or petroleum-based pitch is used. That the desired hydrogen / carbon atomic ratio can be easily obtained, the desired specific surface area can be easily obtained, the true density is not less than a predetermined value, and It was found that the use of a suitable hydrocarbon material as a negative electrode material for a non-aqueous secondary battery improved the capacity in a practical doping time and also excelled in its cycle characteristics, and solved the second problem. .
  • the negative electrode material of the present invention is a material composed of a polycyclic aromatic hydrocarbon obtained by subjecting a raw material mainly composed of naphthylene pitch to a thermal reaction, and the hydrogen carbon atom of the material.
  • the ratio is in the range of 0.50 to 0.05
  • the specific surface area by the BET method is in the range of 0.1 to 50 m 2 Zg
  • the average particle size of the material is 10 zm or less.
  • such a negative electrode material as a raw material containing a naphthalene pitch as a main component particularly has the following physical properties or structure.
  • the material has an average particle size in the range of 6 to 1 / m.
  • the specific surface area of the above materials by the BET method is in the range of 0.1 to 30 m 2 / g. In particular, it is preferable that the specific surface area of the above material by the BET method is in the range of 0.1 to 10 m 2 Zg.
  • the spacing d002 of the (002) plane of the above material by X-ray wide angle diffraction is less than 0.347 nm.
  • the above material has an atomic ratio of hydrogen / carbon (H / C) in the range of 0.40 to 0.20, preferably in the range of 0.33 to 0.23, and the true density of the material is 1.
  • it is 40 gZcm 3 or more.
  • the present inventors have crushed polycyclic aromatic hydrocarbons obtained using coal-based isotropic pitch as a main raw material to a predetermined particle size or less, and obtained a desired hydrogen / carbon atomic ratio and a desired ratio table. It was found that the use of a non-aqueous secondary battery having an area and a true density exceeding a predetermined value as a negative electrode material improves the capacity in a practical doping time and has excellent cycle characteristics. It is a solution to the above problem. That is, the negative electrode material of the present invention is a material composed of a polycyclic aromatic hydrocarbon obtained by subjecting a raw material mainly composed of coal-based isotropic pitch to a thermal reaction. Has an atomic ratio in the range of 0.50 to 0.05, a specific surface area determined by the BET method in the range of 0.1 to 50 m 2 / g, and an average particle diameter of the material is 10 ⁇ m or less.
  • the above-described negative electrode material which is a raw material mainly composed of coal-based isotropic pitch, has the following physical properties or structure.
  • the material has an average particle size in the range of 6 m to 1 im.
  • the specific surface area of the above material by the BET method is in the range of 0.1 to 30 m 2 / g.
  • the true density of the material is 1.45 gZcm 3 or more, and the atomic ratio of hydrogen to carbon (HZC) in the material is in the range of 0.25 to 0.18.
  • the above material has a diameter of 2 m or less at a volume integration of 10% in the particle size distribution, and a diameter of 10 m or less at the 90% volume integration.
  • the present inventors have solved the first and second problems by the following method for producing a negative electrode material.
  • a raw material containing pitch as a main component is subjected to a thermal reaction to generate a polycyclic aromatic hydrocarbon, which is powdered, and has an average particle diameter of 10 m.
  • the atomic ratio of hydrogen / carbon is in the range of 0.5 to 0.05, the specific surface area by the BET method is in the range of 0.1 to 50 m 2 / g, and the average particle size of the material is 10 m.
  • the inventors of the present invention have conducted various studies while paying attention to the above-described techniques, and as a result, the negative electrode manufactured with the negative electrode material having the above pitch having a specific basis weight or less has a charge characteristic of a non-aqueous secondary battery, It was found that the reliability of cycle characteristics was improved, and the third problem was solved.
  • the negative electrode for a non-aqueous secondary battery of the present invention is obtained by thermally reacting a raw material containing pitch as a main component.
  • a polycyclic aromatic hydrocarbon material obtained by subjecting the material to a hydrogen / carbon atomic ratio in the range of 0.50 to 0.05, and a specific surface area of 0 to 50% by the BET method.
  • a negative electrode material having an average particle diameter of 10 m or less and a conductive material in a range of 1 to 50 m 2 Zg, and a conductive material are molded with a binder.
  • the basis weight of the negative electrode material is preferably 6 mg / cm 2 or less.
  • the density of the molding material is in the range of 0.85 to 1.3 g / cm 3 . It is preferable electric conductivity of the molding material is 10- 3 SZcm more.
  • the present inventors prepared a negative electrode material comprising a polycyclic aromatic hydrocarbon having a specific structure using the pitch as a raw material for the negative electrode, prepared a solvent for an electrolytic solution, etc. By controlling the voltage to a specific range, it was found that high capacity and charge acceptability could be improved, and the first to fourth problems were solved.
  • the present inventors have conducted intensive studies in order to solve the above problems, and as a result, have found that a negative electrode using a material composed of a polycyclic aromatic hydrocarbon having a specific structure and obtained using pitch as a main raw material.
  • a non-aqueous secondary battery is combined with a lithium nickel composite oxide having a specific composition as a positive electrode active material and a natural graphite having a specific physical property as a conductive material, a non-aqueous secondary battery has stability.
  • the present inventors have found that a high-capacity non-aqueous secondary battery having excellent cycle characteristics can be obtained, and have reached the present invention.
  • the non-aqueous secondary battery of the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte solution.
  • a material consisting of aromatic hydrocarbons, with the range atomic ratio of hydrogen / carbon-containing of 0.50 to 0.05 of the material, BET method by specific surface area is 0.1 to 50 m 2 Zg
  • the negative electrode material has an average particle diameter of 10 m or less and a negative electrode formed by molding a conductive material with a binder.
  • the positive electrode is a lithium composite metal oxide whose positive electrode active material contains Ni, and has a composition formula
  • the negative electrode open potential at the time of charging of the negative electrode is preferably 10 OmV or less and 20 mV or more with respect to the lithium potential.
  • a predetermined amount of lithium is pre-doped.
  • the negative electrode is doped with lithium of Cn + Cp (mAh). It is preferable to set the amount of Cn so that the above open potential is 10 OmV or less and 2 OmV or more with respect to the lithium potential. Assuming that the initial efficiency at the negative electrode when the amount of lithium of Cn + Cp (mAh) is doped is X and the amount of lithium absorbed into the positive electrode during the initial discharge is Cp 2 (mAh), the above Cp2 and (Cn + Cp) should satisfy the relationship of Cp 2Z (Cn + Cp) ⁇ x.
  • the non-aqueous locomotive includes a lithium salt containing at least ethylene carbonate and a chain carbonate as a solvent, and the ethylenic force containing 10% or more and 70% or less by volume percentage of the solvent. Is preferred.
  • the nonaqueous secondary battery comprising the negative electrode material, the negative electrode, and the negative and positive electrodes according to the present invention is not limited to the following embodiments and examples.
  • the negative electrode material for a non-aqueous secondary battery according to the present invention is obtained by heat-treating a raw material containing pitch as a main component.
  • polycyclic aromatic hydrocarbon polycyclic aromatic conjugated structural material obtained by subjecting it to a thermal reaction without being subjected to the infusibilizing treatment described below.
  • the pitch which is the main component of the raw material, is not particularly limited as long as a negative electrode material having predetermined physical properties can be obtained.
  • the pitch can be broadly divided into petroleum pitch and coal pitch.
  • the petroleum pitch include a distillation residue of a raw material, a fluidized hornworm decomposing residue (eg, decant oil), potato oil from a thermal cracker, and ethylene tar obtained during naphtha cracking.
  • coal-based pitch include straight pitch, which is a residue obtained by distilling coal, which is the oil obtained during carbonization of coal, and from which light components are discharged, or a mixture of this and anthracene oil, urea, etc. It is.
  • pitches are currently inexpensive and produced in large quantities, and are mainly used for applications such as coke binders for steelmaking, impregnating materials for electrodes, raw materials for coke, raw materials for carbon fiber, and binders for molded carbon materials.
  • the pitch used in the present invention is preferably a coal-based isotropic pitch, and such a pitch is optically isotropic when observed with a polarizing microscope.
  • the crystallized pitch (mesophase pitch) is produced by combining heating of a certain isotropic pitch, solvent extraction, hydrogenation, etc., which is disadvantageous in cost.
  • petroleum-based pitches often contain more sulfur as impurities than coal-based pitches, and synthetic pitches are disadvantageous in cost as well as crystallized pitches (mesophase pitches).
  • the raw material mainly composed of pitch used for the negative electrode material according to the present invention includes pitch
  • a conductive material such as a synthetic resin such as a phenol resin and graphite may be included in an amount not exceeding 50% by mass, more preferably not exceeding 30% by mass. Therefore, the “raw material containing pitch as a main component” in the present invention includes not only a raw material consisting of pitch alone but also such a pitch containing a mixture. However, in order to effectively obtain the negative electrode material according to the present invention, it is preferable to use a raw material consisting of the pitch alone.
  • the softening point of the raw material containing the pitch as a main component is preferably in the range of about 70 to 400 ° C, more preferably in the range of 100 to 350 ° C, and particularly preferably. Has a temperature in the range of 150 ° C. to 300 ° C.
  • the softening point of the pitch is lower than the above range, the yield of the desired thermal reaction product is reduced.
  • the softening point of the pitch is higher than the above range, the thermal reaction product is reduced. This also makes it difficult to obtain a desired negative electrode material.
  • the negative electrode material for a non-aqueous secondary battery according to the present invention is obtained by thermally reacting the pitch, and the obtained hydrocarbon material has an element ratio of hydrogen / carbon of 0.50 to 0.05.
  • the specific surface area by the BET method is in the range of 0.1 to 50 m 2 // g.
  • the anode material according to the present invention has a hydrogen / carbon elementary ratio (hereinafter referred to as “H / C”) in the range of 0.50 to 0.05. Further, it is more preferably in the range of 0.40 to 0.15 as the negative electrode material.
  • H / C is determined according to the raw material and the intended battery characteristics.However, if the H / C of the above materials exceeds 0.50, the polycyclic aromatic conjugated structure is not sufficiently generated in the negative electrode material. Therefore, when used as a negative electrode material, its capacity and efficiency are reduced. On the other hand, if the H / C of the above material is less than 0.05, carbonization proceeds excessively, and a sufficient capacity as a negative electrode material intended by the present invention cannot be obtained.
  • the raw material pitch contains the above-mentioned naphthalene pitch as a main component
  • the atomic ratio of hydrogen and Z-carbon (HZC) is 0.40 to 0.20, more preferably 0.33 to 0.23. It is better to be within the range of 0.23.
  • the above atomic ratio (H / C) exceeds 0.33, the main polycyclic aromatic conjugate structure is not sufficiently formed in the negative electrode material, and therefore, it was used as a negative electrode material for a non-aqueous secondary battery. In such a case, a sufficient improvement in the maintenance rate of the cycle capacity cannot be seen.
  • the above-mentioned atomic ratio (H / C) is less than 0.23, the maintenance rate of the cycle capacity is increased, but the carbonization proceeds, and a high capacity cannot be obtained. Therefore, when the atomic ratio (HZC) of the material is in the range of 0.33 to 0.23, a high-capacity electrode material can be obtained, and a negative electrode material having an excellent cycle retention ratio can be obtained.
  • the hydrogen-Z carbon atomic ratio is preferably in the range of 0.25 to 0.18.
  • the negative electrode material may contain other elements besides carbon and hydrogen as long as the effects of the present invention are not affected.
  • the negative electrode material may contain elements (oxygen, sulfur, nitrogen, etc.) other than carbon and hydrogen derived from the raw material.
  • the total mass of the other elements be suppressed to not more than 0.2%, more preferably not more than 10%, and still more preferably not more than 5%.
  • sulfur can be easily reduced to 1% or less because naphthylene pitch is a synthetic pitch.
  • the negative electrode material for a non-aqueous secondary battery according to the present invention has a specific surface area by BET method in the range of 0.1 to 50 m 2 Zg.
  • the specific surface area is in the range of 0.1 to 30 m 2 / g.
  • the specific surface area is preferably in the range of 0.1 to 20 m 2 / g, and particularly preferably in the range of 0.1 to 10 m 2 / g.
  • the negative electrode material for a non-aqueous secondary battery according to the present invention is obtained by powdering the above-mentioned polycyclic aromatic hydrocarbon to have an average particle diameter of 10 m or less, and particularly, in the range of 6 m to 1 zm. Is desirable.
  • the negative electrode material for a non-aqueous secondary battery is formed by coating a conductive foil or the like as a mixed slurry of a polycyclic aromatic hydrocarbon and a resin pulverized to the above particle size.
  • a negative electrode having an appropriate thickness can be formed.
  • the negative electrode material for a non-aqueous secondary battery according to the present invention has a particle diameter of 10% by volume in the particle size distribution is 2 m or less, and is pulverized so that the 90% diameter is 10 m or less. It is preferable to adjust the particle size distribution to the above range by classification. More preferably, the diameter of 10% is 2 zm or less, 1 / zm or more, and the diameter of 90% is 10 m or less, 6 zm or more. In particular, it is preferable when the raw material mainly contains coal-based isotropic pitch. When the diameter of the negative electrode material at a volume integration of 90% exceeds 10, the capacity decreases, and when the diameter of the 10% exceeds 2 m, the cycle deterioration tends to increase.
  • the negative electrode material is used to size the amorphous thermal reaction product to a predetermined particle size.
  • the average particle size is 10 m or less, and the particle size is 1 m or less in the particle size distribution. It is preferable that the volume fraction of the compound be 1% or more. In particular, preferably, the average particle size is 10 m or less, and the volume fraction of the particle size of 1 m or less is 1 to 20%, more preferably 3 to 15%, particularly preferably 5 to 10%. It is desirable to be within the range.
  • the thermal reaction product Since the above-mentioned thermal reaction product has an irregular shape, it is crushed by a crusher such as a pole mill or a jet mill, and then, if necessary, classified to obtain a predetermined particle size.
  • a crusher such as a pole mill or a jet mill
  • graphite materials used for lithium-ion batteries with an average particle size of 10 m or less and a particle size of 1 or less and a volume fraction of 1% or more are unlikely to have lower initial charge / discharge efficiency and increase in electrode density. Use has been withheld.
  • setting the above range improves the electrode density and the charge receiving characteristics. If the average particle size exceeds 10 m, the charge receiving characteristics will decrease. Also, if the volume fraction is less than 1% when the volume fraction is less than 1%, the electrode density is unlikely to increase, and the charge receiving characteristics are reduced. If the volume fraction exceeds 20%, it is difficult to fabricate an electrode described later. It becomes.
  • the JH method is a calculation method generally used for the analysis of mesopores, and has been proposed by Barrett, Joyner, Ha1 enda, etc., and the calculation program is usually built in the pore distribution device. I have. ),
  • the pore amount in the range of 2 OA to 5 OA is preferably 1 ⁇ 10 ⁇ 3 cc / g or less. In particular, it is preferred that the pore volume is less than 8 X 1 CT 4 c cZg. If pore volume is within the above range is less than 1 X 10- 3 c cZg, the specific surface area of the time the material is also rather the difficulty increases, the efficiency of de one blanking and Datsudoichipu in the initial increases, The capacity itself is sufficiently maintained.
  • the negative electrode material preferably has a (002) plane spacing d 002 of less than 0.347 nm according to the X-ray wide-angle diffraction method. Compare within the above preferred HZC range (0.33-0.23) In this case, the interplanar spacing d 002 is smaller than that of polycyclic aromatic hydrocarbons obtained from general raw materials such as petroleum pitch, coal pitch, etc., and polycyclic aromatic hydrocarbons produced using naphthylene pitch There are characteristics in hydrocarbons.
  • the thermal reaction of the raw material containing the pitch as a main component is performed in an inert atmosphere (including vacuum) such as nitrogen or argon.
  • the reaction temperature is also determined in consideration of various conditions other than the above-mentioned raw material type, properties, and temperature (heating rate, reaction time, reaction atmosphere, pressure, removal rate of gas components generated during the reaction outside the reaction system, etc.).
  • the atomic ratio of hydrogen, hydrogen and carbon (H / C), and the specific surface area by BET method can be appropriately selected so as to be within the above range after pulverization.
  • the thermal reaction temperature is usually in the range of 550 to 750 ° C.
  • naphthalene pitch is used as a raw material, it is preferably in the range of 580 to 700 ° C, more preferably in the range of 600 to 680 ° C.
  • coal-based isotropic pitch is used as a raw material, the temperature is preferably in the range of 600 to 750 ° C, more preferably in the range of 620 to 720 ° C.
  • the yield of the desired hydrocarbon by the thermal reaction mainly depends on the softness point of the pitch and the solubility of quinoline, but is at least 60% or more, preferably 80% or more in the production method of the present invention. If the raw material, softening point and the like are appropriately selected within the above temperature range, a desired polycyclic aromatic hydrocarbon can be sufficiently obtained with a yield of 60% or more. If the raw material containing the pitch as a main component is thermally reacted in a temperature range of 550 to 750 ° C in an inert atmosphere, the thermal reaction product has an atomic ratio and a specific surface area of hydrogenocarbon in the above range from the thermal reaction product. A polycyclic aromatic hydrocarbon material can be obtained in a high yield.
  • the negative electrode material when a naphthylene pitch is the main component, the negative electrode material preferably has a true density of 1.40 g / cm 3 or more.
  • the main component of coal-based isotropic pitch 1. 45 gZcm 3 or more, and more 1. preferably from 50 gZcm 3 or more. In order to obtain a sufficient capacity per volume, it is preferable to use 1.45 g / cm 3 or more.
  • the hydrogen / carbon atomic ratio (H / C) of the material is within a predetermined range, and the specific surface area by the BET method is predetermined. It is manufactured so that the particle size and the particle size distribution take predetermined values.
  • the thermal reaction of the raw material containing the pitch as a main component is performed in an inert atmosphere (including vacuum) such as nitrogen or argon.
  • the reaction temperature also takes into account various conditions other than the above-mentioned raw material type, properties and temperature (heating rate, reaction time, reaction atmosphere, pressure, removal rate of gas components generated during the reaction outside the reaction system, etc.).
  • the atomic ratio of hydrogen and carbon (H / C), and the specific surface area by the BET method can be appropriately selected so as to be within the above ranges after pulverization.
  • the thermal reaction temperature is usually in the range of 600 to 750 ° C, more preferably in the range of 620 to 720 ° C, except that the above-mentioned naphthene pitch is the main component. is there.
  • the thermal reaction product can be used to obtain the above-mentioned atomic ratio of hydrogen and Z carbon and A polycyclic aromatic hydrocarbon material having a specific surface area can be obtained in a high yield.
  • the thermal reaction temperature of the pitch raw material is controlled and the infusibilization treatment is not performed. For thermal reaction.
  • the specific surface area of the anode material generally decreases as the thermal reaction temperature increases, increasing the initial efficiency of lithium doping and undoping, but on the other hand, the capacity decreases sharply.
  • Conventional polycyclic aromatic conjugated structural substances generally have a higher specific surface area than carbon-based materials and graphite-based materials, and most of them exceed 50 m 2 Zg.
  • a technique of performing surface treatment again has been developed. However, in this case, a complicated operation is required, and an extra process is added in manufacturing, and the negative electrode material is added. This is practically disadvantageous because the manufacturing cost of the device is significantly increased.
  • the negative electrode material for a non-aqueous secondary battery according to the present invention is characterized in that the specific surface area is 50 m 2 Zg or less while maintaining the range of the HZC ratio as described above.
  • the pitch can be used as a raw material, and the specific surface area can be reduced to 5 Om 2 Zg or less by one thermal reaction of the raw material pitch, and the reaction operation can be performed more easily.
  • the pitch when producing a hydrocarbon material from pitch raw material, the pitch must be 10 in air.
  • the pitch is adjusted without infusibilizing treatment or surface oxidation treatment so that the reaction product simultaneously satisfies the above specific HZC ratio and specific specific surface area. Is subjected to a thermal reaction.
  • the main condition for determining its characteristics is the above-mentioned range of the thermal reaction temperature, but other secondary conditions are not particularly limited. There is no heating rate.
  • the heating rate is in the range of 10 to 100 ° C./hour, more preferably 50 to 500
  • the heating rate does not need to be constant; for example, the temperature rises at a rate of 100 ° C up to a temperature of 300 ° C and 50 ° C from a temperature of 300 ° C to 65 ° C.
  • the temperature can be raised at a rate of ° C / hour.
  • the reaction time peak temperature holding time
  • the pressure may be normal pressure, but the pressure may be reduced or increased.
  • the heat reaction The resulting thermal reaction products are mostly obtained in an amorphous state.
  • the amorphous thermal reaction product is pulverized to a predetermined particle size, and the particle size is adjusted as necessary before use as a negative electrode material. That is, as described above, in order to adjust the particle size to a predetermined value of the average particle size and the volume integration in the particle size distribution, the thermal reaction product is powder-framed by a pulverizer such as a pole mill or a jet mill according to a conventional method, If necessary, it is classified and manufactured using a wind classifier.
  • the negative electrode for a non-aqueous secondary battery according to the present invention is obtained by dispersing the above-described negative electrode material, conductive material, and the like in a resin binder and molding.
  • the molding material for the electrode can be molded by a known method, taking into account the desired shape and characteristics of the non-aqueous secondary battery.
  • the conductive material and the binder are not particularly limited, but concretely, the conductive material is exemplified by acetylene black, carbon black, Ketjen black, graphite, etc., and the binder is polyvinylidene fluoride. (PV d F), fluorine-based resins such as polytetrafluoroethylene; rubber-based materials such as fluororubber and SBR; polyolefins such as polyethylene and polypropylene; and acrylic resins.
  • PV d F fluorine-based resins
  • rubber-based materials such as fluororubber and SBR
  • polyolefins such as poly
  • the amount of the conductive material may be appropriately determined according to the type, particle size, shape, weight per unit area of the target electrode, strength, and the like of the negative electrode material of the present invention, and is not particularly limited. Usually, it is preferably about 1 to 20 parts by mass with respect to 100 parts by mass of the negative electrode material of the present invention.
  • the amount of the binder depends on the type, particle size, shape, purpose, and the like of the negative electrode material of the present invention. It may be determined appropriately according to the basis weight, strength, etc. of the electrode to be formed, and is not particularly limited, but is usually: 100 parts by mass of the negative electrode material of the present invention:! It is preferable that the amount be about 30 parts by mass.
  • the negative electrode can be formed on one side or both sides of the current collector.
  • the current collector to be used is not particularly limited, and examples thereof include copper foil, stainless steel foil, and titanium foil.
  • a material on which an electrode can be formed on a metal foil or in a gap between the metals, for example, an expanded metal or a mesh may be used.
  • the basis weight of the negative electrode material in the negative electrode according to the present invention is 6 mg Zcm 2 or less, preferably 5 mg Zcm 2 or less, and 2 mg Zcm 2 or more. If the weight per unit area in the present invention the formation of the negative electrode on one surface of for example copper foil, the mass of the negative electrode material-containing Murrell present invention per Fukyokumen 1 cm 2, the case of forming the negative electrode on both sides of a copper foil, This is the mass of the negative electrode material contained on each side.
  • the charge receiving characteristics can be improved. If the basis weight is too small, the volume ratio of the current collector, the separator and the like in the battery increases, and the battery capacity tends to decrease.
  • the charge receiving characteristic will be described.
  • the negative electrode is doped with lithium during charging, and the negative electrode potential decreases. If the lithium potential is reached and the lithium doping beyond that is continued at the same rate, the negative electrode will be below the lithium potential and in some cases lithium metal will deposit on the negative electrode.
  • the charge acceptability is the easiness of doping until the negative electrode reaches the lithium potential.If the charge acceptability is poor, even if the active material has the ability to dope a large amount of lithium, its capacity is reduced. It cannot be fully utilized in battery design.
  • the basis weight of the negative electrode material exceeds 6 mg Z cm 2 , the charge doping ability is poor, so that the lithium doping ability of the negative electrode material cannot be utilized and the battery capacity decreases. In addition, the capacity deterioration accompanying the cycle increases due to the deposition of lithium metal on the negative electrode.
  • the molding density (or molding layer density) of the negative electrode according to the present invention is not particularly limited, but is preferably in a range of about 0.85 to 1.3 gZcm 3 , and the H / C , $ Standing distribution, amount of conductive material and amount of binder.
  • the molded electric conductivity (or the electric conductivity of the formed layer) of the negative electrode of the present invention is not particularly limited, but is preferably 10 3 S / cm or more, more preferably 5 ⁇ 10 5 It is in the range of 3 to 1 ⁇ 10 DS / cm. For example, when the electric conductivity is low, the charge acceptability is deteriorated.
  • the negative electrode material of the negative electrode according to the present invention it is possible to assemble the battery in a state in which lithium is previously doped, and further, by attaching a lithium metal on the negative electrode, the battery can be assembled. It is also possible to dope the above negative electrode material with lithium after assembly.
  • the non-aqueous secondary battery according to the present invention includes a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte as basic elements.
  • the above-described negative electrode material is used for the negative electrode for a non-aqueous secondary battery according to the present invention, and the positive electrode is not particularly limited as long as it is a positive electrode material capable of absorbing and releasing lithium.
  • the positive electrode for example, known lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, and further, one or more different metal elements are added to these oxides A system or the like can be used.
  • manganese, vanadium, metal oxides such as iron, disulphide compounds, polyacene-based material it is also possible to use a like activated carbon, in particular, L i CO0 terms of volume 2, L i N i x Co y 0 2, L i N i x Mn y ⁇ 2 lithium composite oxide and the like are preferable.
  • the positive electrode in the nonaqueous secondary battery according to the present invention preferably contains a lithium composite oxide containing Ni as a positive electrode active material, and is further represented by the following composition formula: It is preferable to include a lithium nickel composite oxide as the positive electrode active material.
  • a indicating the atomic ratio of L i is in the range of l ⁇ a ⁇ l.1. If a deviates from this range, the cycle characteristics will be reduced, or the capacity of the active material will be significantly reduced.
  • B which indicates the atomic ratio of Ni, is in the range of 0.5 ⁇ b ⁇ 0.9.
  • b is 0.9 or more, the capacity of the active material increases, but the thermal stability decreases and the safety of the battery decreases.
  • it is less than 0.5, the capacity of the active material decreases.
  • D which represents the atomic ratio of A1
  • D is in the range of 0 ⁇ d ⁇ 0.15.
  • d exceeds 0.15
  • the capacity of the active material decreases.
  • A1 is not contained, the capacity of the active material is increased, the thermal stability is reduced, and the safety of the battery is also reduced.
  • the average particle size of the positive electrode active material is not particularly limited, and may be the same as that of a known active material.
  • the average particle size of the positive electrode active material is in the range of 1 to 60 m, preferably
  • the “average particle size” means a central particle size in a volume particle size distribution obtained by a dry laser diffraction measurement method.
  • the specific surface area of the positive electrode active material is not particularly limited, it is usually not more than lm 2 Zg, and more preferably in the range of 0.2 to 0.7 m 2 Zg.
  • “specific surface area” indicates a value measured by a BET method using nitrogen gas.
  • the conductive material in the positive electrode of the nonaqueous secondary battery according to the present invention has a specific surface area of 10%.
  • the electrode density can be easily controlled even during roll pressing after electrode application, and a high-density positive electrode can be obtained.
  • it can be used in combination with a conductive material having a high specific surface area, such as acetylene black or Ketjen black, depending on the type of the active material.
  • the amount of the conductive material used in the positive electrode is 100 parts by mass or less, preferably 2 to 7 parts by mass, when the positive electrode active material is 100 parts by mass.
  • the amount of lithium that can be released from the positive electrode active material in the initial charge of the battery is Cp (mAh), and the amount of the positive electrode active material contained in the positive electrode is Wp (g). , 180, and Cp / Wp are preferable.
  • Cp mAh
  • Wp g
  • 180, and Cp / Wp are preferable.
  • lithium composite oxide containing N i especially good Mashiiku, sex lithium composite oxides from the perspective including L i N i x C o y 0 2, L i N i x Mn y 0 2 or N i with the addition of 3 ⁇ 43 ⁇ 43 ⁇ 4 containing these reduction compounds are particularly preferred.
  • the negative electrode of the present invention has a capacity of 2 to 3 times @ 3 ⁇ 4 of graphite used for lithium ion batteries. There is a problem in terms of cost, due to the increased thickness of the car.
  • the two nonaqueous pond of the present invention has the above-mentioned 3IE electrode, a negative electrode, and a nonaqueous motive, and the negative electrode open potential at the time of charging is 10 OmV or less and 2 OmV or more with respect to the lithium potential.
  • the negative electrode opening consideration during charging is the negative electrode opening when the battery is fully charged as determined by the charge. For example, after charging to 4.2 V with a current of 0.2 CA, apply a constant 3 ⁇ 4E of 4.2 V for 0 hours. After charging for 8 hours with a constant current and constant voltage, with no current flowing to the battery The opening potential is defined as 25 ° C, and the opening time is defined as the potential after one hour, because the opening potential varies depending on the temperature and the temperature.
  • the opening of the negative electrode during charging can be controlled by adjusting the active material balance of the positive electrode and the negative electrode, and the pre-doping amount. However, the potential between the lithium gold IS illumination electrode and the negative electrode may be measured.
  • the negative electrode opening during charging ⁇ t position exceeds 10 OmV with respect to lithium potential, Since lithium has not been doped, it is difficult to attain the high capacity which is the object of the present invention.
  • the voltage is less than 20 mV, the capacity is deteriorated due to the cycle because the temperature is close to the lithium doping capacity limit of the negative electrode.
  • the negative electrode is preferably predoped with lithium to the negative electrode material.
  • the pre-doping amount Cn (mAh) is the amount of lithium Cp (mAh) that can be released from the positive electrode active material in the initial charge, and the negative electrode opening when Cn + Cp (mAh) lithium is doped. It is desirable to say that the frank position is 10 OmV or less and 2 OmV or more with respect to the lithium potential.
  • the amount of lithium C p (mAh) that can be released from the positive electrode active material during the initial charge is the amount released from the positive electrode during the first charge, specifically, the charge amount of the first battery, This is the amount of charge up to the electric charge where ⁇ ⁇ ⁇ is determined.
  • the initial efficiency of the negative electrode when Cn + Cp (mAh) lithium is doped is X
  • the amount of lithium that can be released from the positive electrode active material in the initial charge is Cp (mAh)
  • the positive electrode in the initial discharge is
  • the amount of lithium stored in the battery is C p 2 (mAh)
  • the initial efficiency X of the negative electrode an electrochemical cell using the negative electrode as the working electrode, lithium metal as the counter electrode and the reference electrode is assembled, and C n + C p ( mAh) I: [ ⁇ After doping with lithium (mAh / g), ⁇ (for example, 0.25 mA / cm 2 ) escapes to 2 V with respect to the lithium metal potential. It can be measured by one tap. Further, the amount of lithium C p 2 (mAh) stored in the positive electrode in the initial stage is the amount of lithium that can be used by the positive electrode in the initial charge state of ⁇ ⁇ .
  • the positive electrode was used as a non-aqueous electrode, and an electrode using lithium metal as a counter electrode and a reference electrode was assembled.
  • ⁇ ⁇ ⁇ ⁇ ! T e.g. 0.25 mA / cm 2
  • mAh / g specific capacity
  • C p (C n + C p)> x the battery capacity obtained tends to decrease.
  • the method of pre-doping the negative electrode in the two non-aqueous batteries according to the present invention is not particularly limited.
  • an electrochemical system using lithium metal as a counter electrode is assembled, and the key is removed.
  • a method of pre-doping a predetermined amount of lithium, and a method of bonding lithium metal to a negative electrode impregnated with a whip are available.
  • a lithium source such as lithium metal and a negative electrode are bonded to each other by a method such as laminating them, and moving the battery inside the battery. It is the ability to predope lithium by injecting waves.
  • a simple predoving method there is a method in which a lithium metal foil is adhered to a negative electrode, a battery is ALX, and a lithium solution is poured into the battery to predope lithium.
  • a typical example of an e-book of 0.2 or less is an aluminum-resin laminate film of ⁇ , which is also possible in the present invention.
  • non-aqueous whip narrowed in the present invention a known non-aqueous electrolyte containing a lithium salt is used.
  • the type of the electrolytic solution is appropriately determined according to the type of the positive electrode material, the properties of the negative electrode material, the use conditions such as the charging voltage, and the like.
  • the electrolyte for example,
  • a mixed solvent containing ethylene carbonate (hereinafter referred to as EC) is preferable.
  • the ⁇ fraction of EC in the mixed solvent containing EC is preferably 10 to 70%, more preferably 15 to 60%, and still more preferably 20 to 50%.
  • EC rate less than 10%: ⁇ decreases charging acceptability, exceeds 70% :! ⁇ Has a high freezing point of EC of 39 ° C and is segregated at low temperature, and the emission of ffi- 10 ° C or less in the battery is remarkably reduced.
  • Examples of the solvent used in combination with the EC include a linear carbonate, for example, ethyl methyl carbonate (EMC), getyl carbonate (DEC), and dimethyl carbonate. Wear. What is a chain carbonate?
  • R 1— 0— CO— 0— R 2 where Rl and R 2 have the same or different alkyl groups, and may be alkyl groups in which the hydrogen has been replaced with a halogen of fluorine group.
  • R1 and R2 are alkyl groups, those having 1 to 4 carbon atoms are preferably used.
  • the concentration of the electrolyte is not particularly limited, but may be 0.5 to 2mo 1
  • non-aqueous electrolyte means a concept including a non-aqueous electrolyte and an organic electrolyte, and also includes a concept including a gel and a solid electrolyte. It is.
  • shape and size of the non-aqueous pond according to the present invention are not limited to those that are not knee-shaped, and can be any shape such as a cylindrical type, a square type, a film battery, and a box type, depending on the intended use. What is necessary is just to measure the thing of the size.
  • Coal-based isotropic pitch 1000 g in stainless steel dish TJP2003 / 014033
  • the dish was placed in an electric furnace (effective size in the furnace: 300 ⁇ 300 ⁇ 300 mm) and subjected to a thermal reaction.
  • the thermal reaction was performed in a nitrogen atmosphere, and the nitrogen flow rate was 10 liter / min.
  • the temperature is raised from room temperature to a temperature of 635 ° C (furnace temperature) at a rate of 100 ° C / hour.
  • the temperature was maintained at the same temperature for 4 hours, then cooled to a temperature of 60 ° C by natural cooling, and the reaction product was taken out of the electric furnace.
  • the resulting product did not retain the shape of the raw material, and was an amorphous insoluble infusible solid.
  • the heat reaction temperature and yield were 804 g, and the yield was 80.4% by mass.
  • the obtained product was pulverized by a jet mill to obtain a negative electrode material having an average particle diameter of 5.5 m and particles of 1 m or less having a volume fraction of 7%.
  • elemental analysis (measurement device: PE2400 Series II, CHNS / 0 manufactured by PerkinElmer Inc.) and specific surface area by BET method (measurement device: Easa Ionics Co., Ltd.) N ⁇ VA 1200 ”).
  • H / C was 0.26
  • the specific surface area was 24 m 2 Zg.
  • the elemental analysis and the measurement of the specific surface area in the following examples are performed by the above-mentioned instruments.
  • the charge acceptance characteristics of the negative electrode are evaluated in the second cycle, and the doping of lithium in the second cycle is 16 OmA / g until it reaches lmV with respect to the lithium potential. Then, undoping was performed at a rate of 16 OmAZg to 2 V with respect to the lithium potential, and the capacity was evaluated based on the obtained undoping amount. The results are shown in Table 1.
  • Example 2 and Comparative Example 1 were the same as Example 1 except that the average particle size of the material obtained in 1) of Example 1 and the volume fraction of particles of 1 m or less were changed as shown in Table 1. Prototyping and evaluation were performed in the same manner.
  • the average particle size of the nonaqueous secondary battery negative electrode material exceeds 10; m even when the volume fraction of particles of 1 / m or less is 1% or more as in Comparative Example 1.
  • the charge receiving characteristics are inferior to those of the example.
  • the negative electrode or the non-aqueous secondary battery using the negative electrode material for a non-aqueous secondary battery in which the volume fraction of particles of 1 m or less is less than 1% as in Example 2 the charge receiving characteristics are as in Example 1. It turns out that it is slightly inferior.
  • Negative electrode material for a nonaqueous secondary battery according to the present invention a hydrogen / elemental ratio of carbon is in the range of 0.50 ⁇ optimum 0.05, the range of the specific surface area is 0.1 to 50 m 2 Zg by the BET method.
  • the above-mentioned materials have an average particle size of 10 / m or less, the materials have high capacity and excellent charge-receiving characteristics.
  • Example 2 the product obtained from the coal-based isotropic pitch was To make a powder with a particle size of about 100 zm. Elemental analysis of this powder and specific surface area by BET method were performed. As a result, H / C was 0.22, and the specific surface area was 26 m 2 / g. Also was 1 X 10_ 4 c cZg following order was determined pore volume of 20 to 5 OA ranges by the BJH method in the calculation software provided the equipment.
  • Example 2 In the same manner as in Example 2, except that the alumina-made pole mill was ground, a 4 m powder was obtained by grinding for 6 hours.
  • the specific surface area by the BET method was 26.4 m 2 Zg
  • the pore amount of 20 to 5 OA by the BJH method was 1.44 ⁇ 10 3 cc / g.
  • the particle size was larger than that of Example 2, the specific surface area was large. It that has become pores due to the difference in milling methods Ri our increased compared to Example 2, pores of 20 to 5 OA by the BJH method 10- 3 c cZg more.
  • the negative electrode material for a non-aqueous secondary battery according to the present invention has an average particle diameter of 10 or less and is in the range of 20 A to 50 A in the BJH method.
  • pore volume is less than 10- 3 c cZg, be ground polycyclic aromatic hydrocarbon material to a sufficient small diameter, the pore structure change is suppressed, it is a child of the specific surface area small.
  • the resulting material was coarsely ground to a particle size of 5 mm or less by a shearing mill, and then ground to an average particle size of about 4 xm using a jet mill to obtain a negative electrode material. Elemental analysis of the obtained negative electrode material, specific surface area by BET method, true density (using 1-butanol as solvent), and particle size distribution (measurement machine: Shimadzu Corporation “S ALD 2000 J”) were measured. . The results are shown in Table 2 below.
  • the electrode obtained above was used as the working electrode, metallic lithium was used as the counter electrode and the reference electrode, and 1 mo 1 ZL was added to a solvent obtained by mixing ethylene force ponate and getyl carbonate in a 1: 1 (volume ratio) electrolyte.
  • An electrochemical cell was prepared in an argon dry box using a solution of Li PF 6 dissolved at a concentration. Doping lithium is carried out in 1 MAZ cm 2 constant current until the 1 mV with respect Lithium potential, further a constant voltage application lmV respect Lithium potential, and 8 hours doping combined. After a pause of 10 minutes, dedoping was performed at a constant current of ImA / cm 2 to 2 V with respect to the lithium potential. After a pause of 10 minutes, doping and undoping were performed in the same manner as above, and a total of 10 cycles were performed. The results are shown in Table 2 below.
  • Example 5 A thermal reaction was performed in the same manner as in Example 4 except that the thermal reaction temperature of the coal-based isotropic pitch raw material was set at 680 ° C to obtain an insoluble infusible solid. The yield was 79.5% by mass. Table 2 shows the results of measuring the HZC, specific surface area, true density, and average particle size of this material in the same manner as in Example 3.
  • Example 4 A thermal reaction was carried out in the same manner as in Example 4 except that the thermal reaction temperature of the coal-based isotropic pitch raw material was set at 660 ° C to obtain an insoluble infusible solid. The yield was 79.4% by mass. Table 2 below shows the results of measuring the HZC, specific surface area, true density, and average particle size of this material in the same manner as in Example 4.
  • Example 7 An electrode was produced in the same manner as in Example 4, and the doping amount and the undoping amount of lithium were measured for 10 cycles. Table 2 shows the results of the initial capacity and the 10-cycle capacity. '' (Example 7)
  • Example 4 A thermal reaction was performed in the same manner as in Example 4 except that the thermal reaction temperature of the coal-based isotropic pitch raw material was set at 64 ° C. to obtain an insoluble infusible solid. The yield was 84.3% by mass. The H / 'C, specific surface area, true density and average particle size of this material were measured in the same manner as in Example 4 and the results are shown in Table 2 below.
  • a thermal reaction was performed in the same manner as in Example 3 except that the thermal reaction temperature of the coal-based isotropic pitch raw material was set at 62 ° C., to obtain an insoluble infusible solid.
  • the yield was 81.3% by mass.
  • Example 4 A thermal reaction was performed in the same manner as in Example 4 except that the thermal reaction temperature of the coal-based isotropic pitch raw material was set at 580 ° C, to obtain an insoluble infusible solid. The yield was 82.5% by mass. Table 2 shows the results of measuring the H / C, specific surface area, true density, and average particle size of this material in the same manner as in Example 4.
  • Example 4 A thermal reaction was carried out in the same manner as in Example 4 except that the thermal reaction temperature of the coal-based isotropic pitch raw material was set at 740 ° C, to obtain an insoluble infusible solid. The yield was 79.2% by mass. Table 2 shows the results of measuring the HZC, specific surface area, true density, and average particle size of this material in the same manner as in Example 4.
  • Example 4 Example 5
  • Example 6 Reference example 2
  • the negative electrode material according to the present invention is made of a polycyclic aromatic hydrocarbon obtained by subjecting a raw material mainly containing coal-based isotropic pitch to a thermal reaction.
  • the atomic ratio of the hydrogen Z carbon is in the range of 0.25 to 0.18
  • the specific surface area by the BET method is in the range of 0.1 to 50 m 2 Zg
  • the true density is 1.45 g Z cm 3
  • the average particle size is 10 zm or less, a high capacity per mass and per volume can be obtained with a practical doping time, and a non-aqueous secondary battery with excellent cycle characteristics can be provided. Can be.
  • the method for producing a negative electrode material for a non-aqueous secondary battery according to the present invention is characterized in that the raw material containing the above-mentioned coal-based isotropic pitch as a main component is subjected to a thermal reaction without being subjected to infusibilization treatment, and is subjected to polycyclic aromatic carbonization. Since hydrogen is obtained, the production of the negative electrode material is simple and the yield can be improved.
  • Coal-based isotropic pitch (softening point 280 ° C) 100 Og is put into a stainless steel dish, and this dish is placed in an electric furnace (effective size in furnace: 30 OmmX 30 OmmX 30 Omm) and heat It was subjected to the reaction.
  • the thermal reaction is performed in a nitrogen atmosphere, and the nitrogen flow rate is 1
  • the temperature rises at a temperature rise rate of 10 OZ hours up to a temperature of 400 ° C, and rises to a temperature of 680 ° C (in-furnace temperature) at a temperature rise rate of 50 ° CZ for temperatures of 400 ° C or more.
  • the temperature was maintained at the same temperature for 12 hours, and then cooled to a temperature of 60 ° C by natural cooling, and the reaction product was taken out of the electric furnace.
  • the obtained product did not retain the shape of the raw material, and was an amorphous insoluble infusible solid. 79.5 quality yield %.
  • the obtained material was coarsely ground to a particle size of 5 mm or less by a shearing mill, and then ground to an average particle size of about 4 m using a jet mill to obtain a negative electrode material. Elemental analysis was performed on the obtained negative electrode material. The hydrogen / carbon atomic ratio (HZC) was 0.21. In addition, the specific surface area and the particle size distribution were measured by the BET method. The results are shown in Table 3 below. The true density (using 1-butanol as a solvent) was measured (measuring machine: Shimadzu "SALD 2000 J"). As a result, it was 1.61 g / cm 3 .
  • the electrode obtained above was used as the working electrode, metallic lithium was used for the counter electrode and the reference electrode, and 1 mo 1 ZL was added to a solvent obtained by mixing ethylene force ponate and getylcapone ponate at a ratio of 1: 1 (volume ratio) as the electrolyte.
  • An electrochemical cell was prepared in an argon dry box using a solution of Li PF 6 dissolved at a concentration. Doping lithium is carried out in 1 MAZ cm 2 constant current until 1 m V relative Lithium potential, further a constant voltage application 1 mV with respect Lithium potential, and 8 hours doping combined. After a pause of 10 minutes, undoping was performed to a lithium potential of 2 V with a constant current of ImA / cm 2 . After a pause of 10 minutes, doping and undoping were performed in the same manner as above, and a total of 10 cycles were performed. Table 3 shows the results of the initial capacity and the 10-cycle capacity.
  • a negative electrode material having an average particle size of 4 zm and a particle size distribution different from that of Example 8 was obtained using an air classifier in Example 8. The specific surface area and particle size distribution of this material were compared with those of Example 8. P2003 / 014033
  • Example 8 A negative electrode material having an average particle size of 4 zm and a particle size distribution different from that of Example 8 was obtained using an air classifier in Example 8. The specific surface area and particle size distribution of this material were measured in the same manner as in Example 8. The results are shown in Table 3 below.
  • the diameter of 10% of the volume integration of such a material is within the desired range, the diameter of 90% is 10.6 m, which is beyond the range of 10 xm or less in the embodiment. There was a drop.
  • a negative electrode material having an average particle size of 4 m and a particle size distribution different from that of Example 8 were obtained using an air classifier in Example 8.
  • the specific surface area and particle size distribution of this material were measured in the same manner as in Example 8. The results are shown in Table 3 below.
  • the negative electrode materials of Examples 8 and 9 have, in addition to the requirements of Examples 4 to 7, a diameter of 2 m where the volume integral in the particle size distribution is 10%. Since the diameter of 90% is 10 zm or less, a high capacity can be obtained in a practical doping time, and a nonaqueous secondary battery excellent in cycle characteristics can be provided. Further, in the method for producing a negative electrode material for a non-aqueous secondary battery according to the present invention, a polycyclic aromatic hydrocarbon is obtained by subjecting the raw material containing the pitch as a main component to a thermal reaction without infusibilizing the raw material. Therefore, the production of the negative electrode material is simple and the yield can be improved.
  • the naphthylene pitch (softening point: 287 ° C) 60 was placed in a magnetic dish, and this dish was placed in a small cylindrical furnace (core tube inner diameter: 10 Omm) and subjected to thermal reaction.
  • the thermal reaction was performed in a nitrogen atmosphere, and the nitrogen flow rate was 0.5 liter / minute.
  • the thermal reaction is performed at a temperature of 100 ° C, and the temperature in the core tube is changed from room temperature to a predetermined thermal reaction temperature (630 ° C, 640 ° C, 650 ° C, 686 ° C). C, and 70 ° C).
  • Each hydrocarbon material at each thermal reaction temperature obtained above using a pole mill The material was pulverized to an average particle size of about 5 / m to obtain a negative electrode material.
  • the obtained negative electrode material was subjected to X-ray wide-angle diffraction (measurement machine: Mac science XMP-3 X-ray source Cu— ⁇ (1 • 54 ⁇ )), elemental analysis, and measurement of specific surface area by BET method. The results are shown in Table 1 below.
  • the negative electrode obtained above was used as the working electrode, metallic lithium was used as the counter electrode and the reference electrode, and the solvent was a mixture of ethylene force monoponate and getyl carbonate in a 3: 7 (volume ratio) mixture.
  • the concentration of liter have use a solution of L i PF 6, an electrochemical cell was prepared in an argon dry box. Doping of lithium was performed at a rate of 16 OmAZg until the potential became lmV with respect to the lithium potential, and a constant voltage of lmV was applied with respect to the lithium potential. The doping was completed in a total of eight hours. Next, the operation of undoping up to 2 V with respect to the lithium potential at a rate of 16 OmAZg was repeated twice, and the capacity was evaluated by the second undoping amount. The results are shown in Table 4.
  • the raw material is coal-based isotropic pitch (softening point 280 ° C), thermal reaction temperature is 615 ° C, A thermal reaction was carried out in the same manner as in Example 10 except that the temperature was changed to 65O 0 C, to obtain an amorphous insoluble infusible solid.
  • Table 5 summarizes the thermal reaction temperature and yield. Further, the powder frame was formed in the same manner as in Example 10, and the physical properties were measured. Thereafter, an electrode was formed and the capacity was evaluated. Table 5 shows the results.
  • Example 10 The same thermal reaction as in Example 10 was carried out except that the raw material was petroleum-based isotropic pitch (softening point: 225 ° C) and the thermal reaction temperature was 615 ° C, 650 ° C. A fixed insoluble infusible solid was obtained. Table 6 summarizes the thermal reaction temperature and yield. Further, the powder was ground in the same manner as in Example 10, and the physical properties were measured. Thereafter, an electrode was prepared, and the capacity was evaluated. Table 6 shows the results.
  • Example 10 As a result, as shown in Example 10, a negative electrode material can be obtained at a higher yield when using naphthylene pitch as a raw material than when using petroleum pitch or coal pitch as a raw material.
  • the value of H / C with respect to the thermal reaction temperature is relatively high, and that d002 is low.
  • the capacity has been greatly improved compared to the case where petroleum pitch and coal pitch are used as raw materials.
  • naphthalene pitch softening point: 287 ° C: manufactured by Mitsubishi Gas Chemical Company
  • an electric furnace effective size in furnace: 300 mm ⁇ 300 mm).
  • mm x 30 O mm 100 g of naphthalene pitch (softening point: 287 ° C: manufactured by Mitsubishi Gas Chemical Company) is placed in a stainless steel dish, and the dish is placed in an electric furnace (effective size in furnace: 300 mm ⁇ 300 mm). mm x 30 O mm) and subjected to a thermal reaction.
  • Thermal reaction is performed under nitrogen atmosphere The nitrogen flow rate was 10 l / min.
  • the temperature is raised at a rate of 100 ° CZ for temperatures up to 400 ° C, and at a temperature of 400 ° C or higher, the temperature is raised at a rate of 60 ° C / hour until the temperature reaches 670 ° C (furnace temperature). After the temperature was raised, the temperature was maintained at the same temperature for 4 hours, then cooled to 60 ° C by natural
  • the obtained product did not retain the shape of the raw material, and was an amorphous insoluble infusible solid.
  • the yield was 82%.
  • the obtained material was ground to an average particle size of about 5 m using a pole mill to obtain a negative electrode material.
  • the obtained negative electrode material was subjected to elemental analysis and measurement of specific surface area, density, and particle size distribution by a BET method. The results are shown in Table 7 below.
  • the electrode obtained above was used as the working electrode, metallic lithium was used as the counter electrode and the reference electrode, and a solvent of ethylene carbonate and getyl carbonate mixed at a ratio of 1: 1 (volume ratio) was used as the electrolyte to a concentration of 1 mo 1ZL.
  • a solution of L i PF 6 an electrochemical cell was prepared in an argon dry box. Lithium doping is performed at a constant current of 20 OmA / g per negative electrode active material until the potential of lithium becomes lmV, and a constant voltage of lmV is applied to the lithium potential for a total of 8 hours. did.
  • Example 11 was repeated except that the thermal reaction temperature of the naphthalene pitch material was changed to 660C. A thermal reaction was performed in the same manner as in Example 11 to obtain an insoluble infusible solid. The yield was 83% by mass. Table 7 shows the results of measuring the HZC, specific surface area, true density, and average particle size of this material in the same manner as in Example 11.
  • Example 11 A thermal reaction was performed in the same manner as in Example 11 except that the thermal reaction temperature of the naphthalene pitch raw material was changed to 63 ° C. in Example 11 to obtain an insoluble infusible solid. The yield was 83% by mass. Table 7 below shows the results of measuring the HZC, specific surface area, true density, and average particle size of this material in the same manner as in Example 11.
  • Example 11 Except that the thermal reaction temperature 6 8 5 D C naphthoquinone evening Renpitchi raw material in the same manner as in Example 1 1 was thermally reacted to give the insoluble and infusible solid. The yield was 83% by mass.
  • the H / C, specific surface area, true density and average particle size of this material were measured in the same manner as in Example 11 and the results are shown in Table 7 below. HZC was 0.22.
  • an electrode was produced in the same manner as in Example 11, and the doping amount and undoping amount of lithium were measured for 10 cycles. Table 7 shows the results of the initial capacity and the 10-cycle capacity.
  • Example 11 A thermal reaction was performed in the same manner as in Example 11 except that the thermal reaction temperature of the naphthalene pitch raw material was set to 595 ° C, to obtain an insoluble infusible solid. The yield was 83% by mass.
  • Table 7 shows the results of measuring the HZ specific surface area, true density, and average particle size of this material in the same manner as in Example 11. H / C was 0.36. Next, an electrode was produced in the same manner as in Example 11, and the doping amount and the undoping amount of lithium were measured for 10 cycles. Table 7 shows the results for the initial capacity and 10-cycle capacity.
  • Coal-based isotropic pitch (softening point 280 ° C) 10 Og is put in a stainless steel dish, and this dish is placed in an electric furnace (effective furnace size: 30 OmmX 30 OmmX 30 Omm) and heat reaction occurs Was served.
  • the thermal reaction was performed in a nitrogen atmosphere, and the flow rate of nitrogen was 10 liter / min. In the thermal reaction, the temperature is raised at a rate of 100 ° C / hour up to a temperature of 400 ° C, and at a temperature of 400 ° C or higher, the temperature is raised at a rate of 50 ° CZ for a temperature of 660 ° C (furnace temperature).
  • the obtained product did not retain the shape of the raw material, and was an amorphous insoluble infusible solid.
  • the yield was 78% by mass.
  • the negative electrode material for a non-aqueous secondary battery according to the present invention is based on polycyclic aromatic hydrocarbons obtained by subjecting a raw material mainly containing naphthalene pitch to a thermal reaction.
  • the atomic ratio of hydrogen / carbon is in the range of 0.33 to 0.23
  • the specific surface area by the BET method is in the range of 0.1 to 30 m 2 Zg
  • the true density is 1.4 O g / cm 3
  • the average particle size is 10 m or less, so that a high capacity per mass and per volume can be obtained in a practical doping time, and a non-aqueous secondary battery with excellent cycle characteristics is provided. be able to.
  • the method for producing a negative electrode material for a non-aqueous secondary battery according to the present invention is a method for producing a polycyclic aromatic hydrocarbon by subjecting the above-mentioned raw material containing naphthylene pitch to a thermal reaction without infusibilizing the raw material. Therefore, the production of the negative electrode material is simple and the yield can be improved.
  • the negative electrode material powder obtained in the same manner as 1) of Example 1 (having an average particle size of 5.5 urn,
  • acetylene black as a conductive material
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the slurry was applied to one side of a copper foil having a thickness of 14 m, dried, and pressed to obtain a negative electrode.
  • Table 8 shows the thickness and the basis weight of the negative electrode mixture layer.
  • the negative electrode obtained above was used as a working electrode, metallic lithium was used as a counter electrode and a reference electrode, and ethylene carbonate and ethyl methyl carbonate were used as electrolytes.
  • An electrode was produced in the same manner as in Example 14.
  • Table 8 shows the molding material layer thickness and the basis weight of the negative electrode mixture. In addition, we continued to evaluate charging acceptability. Table 8 shows the results.
  • the negative electrode obtained above was used as a working electrode, metallic lithium was used as a counter electrode and a reference electrode, and ethylene glycol and ethyl methyl carbonate were used as electrolytes.
  • the lithium predetermined amount in the negative electrode [Cn (mAh)] was pre-doped.
  • the IE electrode is opposed to each other via a separator (porous polyethylene: 54 ⁇ 34 mm 2 ), a 1: 1 # ratio of ethylene force and jettyreca as a liquid is used. in after dragon the solution dissolve the i PF 6 in «the Imo 1 / liter mixed solvent, the thickness of 1 lmm aluminum 'transliteration effect laminate film
  • the battery prepared above was charged to 4.2 V with a current of 10 mA, and then a constant current constant voltage charge of applying a constant voltage of 4.2 V was performed for 8 hours (the charge amount at this time was Cp ( mAh)).
  • the battery was allowed to stand for 1 hour with no current flowing, and the position of the negative electrode was measured. The voltage was then increased to 2.0 V at a constant current of 10 mA.
  • Table 10 summarizes the lithium pre-doping amount Cn, the initial charge amount (lithium released from the positive electrode during initial charging *) Cp, and the opening amount of the negative electrode.
  • Li MoPF 6 was dissolved in the solvent of 1 mo 1 noritr in a mixture of ethylene carbonate and getyl carbonate at a ratio of 1: 1.
  • the values of X and C p 2 measured using the solution are also shown.
  • a battery was prepared in the same manner as in Male Example 20, and the negative electrode opening position and the flow rate were measured.
  • the value of p2 is also shown.
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the lithium nickel composite oxide as L iNi 0. 80 Co 0. 15 A1 0. 05 0 2, and a high specific surface area of natural graphite (BET method specific surface area 25 Og / m 2) as a conductive agent Dry mixed.
  • the resulting mixture was uniformly dispersed in NMP in which PVdF as a binder was dissolved, to prepare Slurry 1-1.
  • the slurry 1 was applied to both surfaces of an aluminum foil serving as a current collector, dried, and pressed to obtain a positive electrode.
  • the density of the obtained positive electrode was 3. OgZcm 3 .
  • application area of the positive electrode (Wl XW2) is a 53 X 32 mm 2.
  • the electrode is provided with a current collector where no active material is applied.
  • Coal-based isotropic pitch (softening point 280 ° C) was pulverized with a coffee mill to obtain a pitch material with a particle size of 1 mm or less. 1000 g of the pitch powder was placed in a stainless steel dish, and the dish was placed in an electric furnace (effective size in furnace: 30 OmmX 30 OmmX 30 Omm) and subjected to a thermal reaction. The thermal reaction was performed in a nitrogen atmosphere, and the flow rate of nitrogen was 10 liter / minute. In the thermal reaction, the temperature is raised from room temperature to a temperature of 680 ° C (furnace temperature) at a rate of 100Z hours.
  • the obtained product did not retain the shape of the raw material, and was an amorphous insoluble infusible solid.
  • the yield was 801 g, and the yield was 80.1% by mass.
  • the obtained product material was pulverized with a Jet 1, mill and classified to an average particle size of 6 m to obtain a negative electrode material.
  • Elemental analysis (measurement device: PE2400 Series II, CHNSZO, manufactured by PerkinElmer, Inc.) and specific surface area by BET method (measurement device: NOVAl 200J, manufactured by QANTACHROME, Inc.)
  • the atomic ratio (H / C) of hydrogen / Z carbon was 0.22, and the specific surface area was 18 m 2 / g.
  • slurry 2 was prepared by uniformly dispersing in a NMP in which PVDF as a binder was dissolved.
  • the slurry 12 was applied to both surfaces of a copper foil serving as a current collector, dried, and pressed to obtain a negative electrode.
  • Coated area of the negative electrode is a 55X 34 mm 2.
  • the electrode is provided with a current collector to which the active material is not applied.
  • slurry 2 was applied only on one side by the same method as above, and a single-sided electrode was produced.
  • the one-sided electrode is an electrode described later It is located outside in the stack.
  • the positive and negative electrode lugs of the obtained electrode laminate were welded to tabs (positive electrode: aluminum, negative electrode: nickel), and ethylene carbonate and getyl carbonate were used as electrolytes in a 1: 1 ratio.
  • a positive electrode was prepared and pressed in the same manner as in Example 25-1) except that the conductive agent for the positive electrode was acetylene black.
  • the density of the obtained positive electrode was 2.7 gZ cm 3 . Except for this, it was manufactured in the same manner as in Example 1.
  • the resulting battery capacity was 92 OmAh.
  • a battery was prototyped in the same manner as in Example 26 except that the negative electrode active material was graphitized mesocarbon microphone opening beads in Example 26 and no pre-doping was performed. Battery evaluation is
  • the positive electrode active material and L i Co_ ⁇ 2 in Example 26 was fabricated battery in the same manner as in Example 26.
  • constant-current constant-voltage charging applying a constant voltage of 4.2 V was performed for a total of 8 hours, followed by 2.0 at a constant current of 136 mA. Discharged to V.
  • the capacity of the obtained battery was 780 mAh.
  • Non-aqueous secondary batteries are stable, have high capacity, and have excellent cycle life. Industrial applicability
  • the present invention relates to a negative electrode material, a negative electrode thereof, and a non-aqueous secondary battery using the same.
  • the present invention relates to a non-aqueous secondary battery having high capacity and excellent charge acceptability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、負極材料、負極、その負極及び正極からなる非水系2次電池に関するものであり、特に、高容量且つ充電受け入れ性に優れた非水系2次電池用負極材、その負電極、正極、及び非水系2次電池に関するものであって、ピッチを主成分とする該原料を熱反応に供することにより得られる多環芳香族系炭化水素からなる負極材料の水素/炭素の原子比、比表面積、材料の粒径を特定し、かつ上記正極の正極材料を特定してなるものである。

Description

負極材料、 負極、 その負極及び正極からなる非水系 2次電池 技術分野
この発明は、 非水系 2次電池用の負極材料及びその製造方法に関するものであ り、 特に、 リチウム 2次電池の性能明を著しく向上させることができる負極材料、 負極、 その負極及び正極からなる非水系田 2次電池に関するものである。 背景技術
近年、 携帯電話に代表される小型携帯機器用の電源、 深夜電力の貯蔵システム 、 太陽光発電による電力貯蔵などを行うための家庭用分散型蓄電システム、 電気 自動車のための蓄電システムなどに関連して、 各種の高エネルギー密度電池の開 発が精力的に行われている。 特にリチウムイオン電池は、 3 5 0 WhZ lを超え る高い体積エネルギー密度を有すること、 安全性、 サイクル特性などの信頼性が 優れていることなどの理由により、 その市場は飛躍的に拡大している。
リチウムイオン電池は、 正極として L i C o〇2、 L i Mn 24などに代表さ れるリチウム含有遷移金属酸化物を用い、 負極として黒鉛に代表される炭素系材 料を用いている。 現在、 リチウムイオン電池はより一層の高容量ィヒが進められて いるが、 正極酸化物および負極炭素系材料の改良による高容量化は、 ほぼ限界に 達しており、 4 5 O WhZ lを超えるエネルギー密度を達成することは困難であ る。 また、 今後予測される大型化のニーズに応える為には、 材料コストの低減も 、 強く望まれている。
特に、 電池の高エネルギー密度化および大型化のためには、 安全性の確保が最 重要課題であり、 この観点からも、 電極材料のさらなる特性改善が望まれている。 従来のリチウムイオン電池の負極材料としては、 種々の黒鉛系材料、 炭素系材 料および多環芳香族系共役構造物質 (一般に、 低温処理炭素材料あるいはポリア セン系材料と呼ばれている。 ) が開発されている。 特に、 550〜1000°C程 度の比較的低温で、 種々の原料を熱処理して得られる多環芳香族系共役構造物質 は、 グラフアイトの理論容量である C6L i (372mAh/g) を超える材料 として、 特に注目を浴びている。
その中でも、 石油、 石炭ピッチを主成分とする原料を熱反応に供することによ り得られる多環芳香族系炭化水素からの非水系 2次電池用負極材料が提案されて いる (特開 2000 - 251885号公報) 。 このような非水系 2次電池用負極 材料は、 水素/炭素の原子比が 0. 35乃至0. 05の範囲にあり、 BET法に よる比表面積が 5 On^Zg以下である。
また、 このような HZC比が 0. 22の負極材料では、 20時間のリチウムド —ピングにより 90 OmAh/gの容量が得られている。 この点で、 上述の課題 を解決する材料として期待がされている。
しかしながら、 このような従来の非水系 2次電池用負極材料は、 その実用化に おいては改善すべき課題が未だ残されている。 多環芳香族系炭化水素は特開 20 00- 251885号公報に記載されるように、 生成物は熱反応後不定形で得ら れる場合が多く、 負極材料に使用するには所定の粒度まで粉碎することが必要と される。 例えば、 リチウムイオン電池に用いられる黒鉛系材料は、 現状で 10 m以上、 特に 20乃至 30 mの範囲のものが好んで用いられる。 そして、 この ような場合、 通常、 微粉碎機としてジェットミル、 或いはポールミルが用いられ る。 しかしながら、 上記材料にこのような通常の微粉碎機の処理をした場合、 材 料の粉碎と共に材料の細孔量が増加し比表面積が大きくなる傾向にあり、 このよ うな比表面積の増加は負極材料としてリチウムのドープ及び脱ドープの初期効率 を悪化させる。 このため、 材料を十分に粉碎しても比較的比表面積が増加しない 負極材料及びその製造方法が開発が望まれており、 特に、 多環芳香族系炭化水素 材料にあっては粉碎による細孔構造の変化を最小限に留めることが望まれている。 多環芳香族系炭化水素材料の実用化においては、 改善すべき課題が多く残され ており、 特に、 非水系 2次電池にこの材料を適用する場合、 長くとも 8時間程度 の実用的なリチウムのドーピング速度における容量 (mA h) 、 サイクル特性が 重要となり、 この観点から容量のより一層の向上が望まれている。 更に、 従来、 ピッチを原料とする炭素材料は、 空気中でピッチを 1 0 0〜4 0 0 °C程度の温度 で加熱するか、 或いは硝酸、 硫酸などの酸化性溶液で処理して、 ピッチ全体或い はその表面を不融化処理 (架橋処理) した後、 不活性雰囲気中で熱処理すること により製造される場合が多い。 この方法で得られる多環芳香族系炭化水素の比表 面積が高くなり、 初期効率等に問題があつた。
また、 多環芳香族系炭化水素を用いた負極及びその二次電池は従来の市販リチ ゥムイオン電池に比べて著しく容量が向上し、 市販電池の 2倍程度の高容量が得 られる。 しかし、 この電池の実用化においても、 その充電受入特性に改善すべき 課題があり、 電池設計の観点から負極、 及びその電池における優れた充電受入特 性が望まれている。
一般的なリチウムイオン電池は正極、 負極ともその厚さは 1 0 0 z m前後で設 計され、 黒鉛負極の場合、 その電極層の厚さは 8 0乃至 1 2 0 m程度であり、 活物質である黒鉛の目付量は 1 c m2あたり 1 O m g乃至 2 O m g程度である。 前述の公報の記載においても、 ピッチを主成分とする原料を熱反応に供すること により得られる多環芳香族系炭化水素を用いた負極の厚さは 1 0 O ^ mと従来の リチウムイオン電池と同様の設計である。 しかしながら、 該多環芳香族系炭化水 素を負極活物質として用いる場合、 従来と同様の設計では充分な充電受入特性が 得られず、 8時間率 (電池の充電あるいは放電を 8時間で終了するように設定さ れる充電あるいは放電の速度) 程度の充電においてもサイクル進行に伴なう容量 の劣化が大きい問題が残されている。
また、 正極から放出可能なリチウム量を C p (mAh) とし、 負極へのリチウムのプ リドーピング量を C n (mAh) とし、 負極中の多職碰系炭ィは素の質量を W (g P T/JP2003/014033
) とする B寺、 50<(:11/^¥かっ800< (Cn + Cp) という関係が開示されて いる。 すなわち、 負極中の多環芳香族系炭化水素に対して 5 OmAhZg以上をプリド 一ビングし、 負極の充電量を負極中の多環芳香 炭 <toK素に対して 80 OmAh/g 以上にすることが好ましいとされている。 しかしな力 Sら、 上記関係式に従い電池を組 んだ^、 多環芳#¾¾炭化水素の HZC、 比表 ,正極材料、 負極の合剤比 率、 m®¥み等の種々のファクターが ¾化した:^、 容量が不 であったり、 の繰り返しによる容敏、化が大きくなる等の問題カ戰されている。 多環芳 系炭化水 素を負極に用いた電池では適切な負極の充電量のコントロールが望まれている。
更に、 多驟 系炭ィは素を含む瞎 材料と る負極材料を用いたリチウムィ オン電池では、 L i PF6、 Li BF4などのリチウム塩などの電角?質材料をプロピレン カーボネートとェチルメチルカーボネートの混合溶媒やプロピレン力一ポネー卜とジェ チルカ一ポネ一トの混合溶媒に溶解させた非水系戀赚が一! a¾に用いられている。 通 常、 このような 鉛材料にあっては、 このような動鞭に関して黒鉛系と異なりあま り制約を受けない。 しかしながら、 プロピレンカーボネートを含む混合溶媒を用いた電 餘 は、 多環芳 系炭化水素を含む負極での充電きけ入れ性が劣る (又はリチウム が遅い) という i¾ があり、 充電に長時間を要することがある。
また、 非水系 2 池の高容 MIE極材料として知られるリチウムニッケル複合酸化 物は、 リチウムコバルト複合酸化物と同様に層状岩塩構造を有し、 200mAh /gを超える高容量材料である。 し力し、 この複合酸化物は、 充電時に生成する N i 4+がィヒ学的に不安定であること、 リチウムが構造中から多量に引き抜かれ た高充電状態での構造が不安定である。 これに起因して、 結晶格子からの酸素脱 離開始温度が低いという問題点を有している。 例えば、 「充電状態のリチウム二 ッケル複合酸化物の酸素脱離開始温度は、 従来のリチウムコバルト酸化物に比べ てさらに低い」 ことが報告されている (So l i d S t a t e I on i c s , No. 3/4, 265 (1994) ) 。
この様な理由により、 リチウムニッケル複合酸化物を単独で正極活物質に用い た電池は高容量が得られるが、 高充電状態での熱安定性に問題があり、 電池とし ての安全性が十分に確保できない。 このため、 リチウムイオン電池で実用化され ていない。
正極の導電材としては、 従来からアセチレンブラック、 ケッチェンブラック、 天然黒鉛、 人造黒鉛などが単独、 或いは混合して使用されている。 アセチレンブ ラック、 ケッチェンブラックは、 比表面積が大きく正極に電子伝導性を付与する のに好適である。 しかし、 非常に嵩張るため正極の密度を上げにくいという欠点 がある。 一方、 天然黒鉛、 人造黒鉛は、 嵩はさほど大きくはないが、 比表面積が 小さいため十分な電子伝導性を付与するためには正極活物質 1 0 0質量部に対し 1 0質量部を超える量の添加が必要となり電池容量の低下を招いている。 このた め、 高い容量を有する負極材料と好適に組み合わせることのできる正極材料も望 まれている。
本発明の第 1の課題は、 多環芳香族炭化水素の特性を生かし、 多環芳香族系炭 化水素からなる材料を十分な微細径に粉碎しても、 その細孔構造変化が抑えられ 、 比表面積の小さい負極材料、 及びその製造方法を提供することにある。
本発明の第 2の課題は、 多環芳香族炭化水素からなる材料の粒径を揃え、 また 粒度分布を特定し、 その比表面積を所定範囲に規定すること、 又は原料ピッチを ナフ夕レンピッチゃ石炭系等方性ピッチに特定することにより、 リチウムの実用 的なドーピング時間においてその高容量 (mA h) を得ることができ、 またその サイクル特性に優れた負極材料を提供することであり、 更に、 このような材料の 製造が簡単でその収率の高い非水系 2次電池の負極材料の製造方法、 及びそれを 用いた負極並びに非水系 2次電池を提供することにある。
本発明の第 3の課題は、 電池設計の観点から負極での充電受入特性が向上し、
8時間率程度の充電に対してもサイクルを重ねることに伴う容量の劣ィヒの少ない 負極、 また負極の充電量のコントロールが適切になされている非水系 2次電池を提 供することにある。 TJP2003/014033
本発明の第 4の課題は、 安定性があり、 高容量且つサイクル寿命に優れた非水 系 2次電池を提供することにある。 発明の開示
本発明者等は、 原料を熱反応に供することより、 特に有利には原料を不融化処 理することなく熱反応に供することにより得られる多環芳香族系炭化水素を負極 材料としての使用ができるように平均粒径 10 m以下に微粉碎する際に、 ナイ ロン製ポールミル等を使用すると極力細孔量の増加を抑制させたものが得られる ことを見出し、 第 1の課題を解決したものである。
更に本発明者等は、 ピッチを主原料として得られる多環芳香族系炭化水素を所 定の粒径分布になるように粉碎して、 所望の水素 Z炭素の原子比、 及び所望の比 表面積になるものを、 非水系 2次電池の負極材料に用いると、 実用的なド一ピン グ時間における容量 (mAh) が向上すること、 及びそのサイクル特性に優れる ことを見出し、 第 2の課題を解決したものである。
即ち、 本発明の負極材料は、 ピッチを主成分とする原料を熱反応に供すること により得られる多環芳香族系炭化水素からなる材料であって、 その材料の水素 Z 炭素の原子比が 0. 50乃至 0. 05の範囲にあると共に、 BET法による比表 面積が 0. 1乃至 50m2Zgの範囲にあると共に、 材料の平均粒径が 10 zm 以下である。
上記負極材料は、 特に以下の物性或いは構造を有することが好ましい。
上記材料の平均粒径が 6 xm乃至 1 の範囲にある。 上記材料の水素 炭素 の元素比が 0. 40乃至 0. 15の範囲にある。 上記材料の BET法による比表 面積が 0. 1乃至 30m2Zgの範囲にある。 上記材料は、 その粒度分布におけ る体積積算が 10%にある径が 2 m以下であり、 該 90%にある径が 10 m 以下である。 また、 B J H法にて測定した 20〜 5 OAの範囲にある上記材料の 細孔量が 1 X 10— 3c c/g以下である。 また本発明者等は、 ナフタレンピッチを主原料として得られる特定の構造を有 する多環芳香族系炭化水素を所定の粒径以下に粉碎した場合、 従来の石炭系或い は石油系ピッチからの多環芳香族系炭化水素に比べて、 所望の水素/炭素の原子 比が簡単に得られること、 所望の比表面積が簡単に得られること、 真密度が所定 以上になること、 およびこのような炭化水素材料を非水系 2次電池の負極材料に 用いると、 実用的なドーピング時間における容量が向上すること、 及びそのサイ クル特性に優れることを見出し、 第 2の課題を解決したものである。
即ち、 本発明の負極材料は、 ナフ夕レンピッチを主成分とする原料を熱反応に 供することにより得られる多環芳香族系炭化水素からなる材料であって、 その材 料の水素ノ炭素の原子比が 0. 50乃至 0. 05の範囲にあると共に、 BET法 による比表面積が 0. 1乃至 50m2Zgの範囲にあると共に、 材料の平均粒径 が 10 zm以下である。
このようなナフタレンピッチを主成分とする原料の上記負極材料は、 特に以下 の物性或いは構造を有することが好ましい。
上記材料の平均粒径が 6 乃至 1 / mの範囲にある。 上記材料の BET法に よる比表面積が 0. 1乃至 30m2/gの範囲にある。 特に、 上記材料の BET 法による比表面積が 0. 1乃至 10m2Zgの範囲にあること力好ましい。 上記 材料の X線広角回折法による (002) 面の面間隔 d 002が 0. 347 nm未 満である。 上記材料の水素/炭素の原子比 (H/C) が 0. 40〜0. 20範囲 であり、 特に 0. 33乃至 0. 23の範囲が好ましく、 上記材料の真密度が 1.
40 gZcm3以上であることが更に好ましい。
更に本発明者等は、 石炭系等方性ピッチを主原料として得られる多環芳香族系 炭化水素を所定の粒径以下に粉碎して、 所望の水素/炭素の原子比、 所望の比表 面積、 及び真密度が所定以上になるものを、 非水系 2次電池の負極材料に用いる と、 実用的なドーピング時間で容量が向上すること、 及びそのサイクル特性に優 れることを見出し、 第 2の課題を解決したものである。 即ち、 本発明の負極材料は、 石炭系等方性ピッチを主成分とする原料を熱反応 に供することにより得られる多環芳香族系炭化水素からなる材料であって、 その 材料の水素 Z炭素の原子比が 0. 50乃至 0. 05の範囲にあると共に、 BET 法による比表面積が 0. 1乃至 50m2/gの範囲にあると共に、 材料の平均粒 径が 10 xm以下である。
このような石炭系等方性ピッチを主成分とする原料の上記負極材料は、 特に以 下の物性或いは構造を有することが好ましい。
上記材料の平均粒径が 6 m乃至 1 imの範囲にある。 上記材料の BET法によ る比表面積が 0. 1乃至 30m2/gの範囲にある。 上記材料の真密度が 1. 4 5 gZcm3以上であり、 また、 上記材料の水素 Z炭素の原子比 (HZC) が 0 . 25乃至0. 18の範囲にある。 上記材料は、 その粒度分布における体積積算 が 10 %にある径が 2 m以下であり、 該 90%にある径が 10 m以下である。 また、 本発明者等は、 以下の負極材料の製造方法によって、 上記第 1及び第 2 の課題を解決したものである。
即ち、 非水系 2次電池用負極材料の製造方法において、 ピッチを主成分とする 原料を熱反応に供して多環芳香族炭化水素を生成して粉枠し、 また平均粒径を 1 0 m以下とし、 水素/炭素の原子比は 0. 5乃至 0. 05の範囲で、 且つ BE T法による比表面積は 0. 1乃至 50m2/gの範囲になると共に、 材料の平均 粒径が 10 m以下になるように製造する。
このような製造方法では、 特に、 上記原料を不融化処理することなく熱反応に 供することが好ましい。
本発明者等は、 上記の様な技術に留意しつつ、 研究を重ねた結果、 上記ピッチ からなる負極材料を特定の目付量以下にして作製した負極が、 非水系 2次電池の 充電特性、 サイクル特性等の信頼性を向上させることを見出し、 第 3の課題を解 決したものである。
即ち、 本発明の非水系 2次電池用負極は、 ピッチを主成分とする原料を熱反応 に供することにより得られる多環芳香族系炭化水素からなる材料であつて、 その 材料の水素/炭素の原子比が 0. 50乃至 0. 05の範囲にあると共に、 BET 法による比表面積が 0. 1乃至 50m2Zgの範囲にあると共に、 材料の平均粒 径が 10 m以下である負極材料、 及び導電材をバインダーで成形してなる。 上記負極にあっては、 負極材料の目付量が 6mg/cm2以下であることが好 ましい。 上記成形材の密度が 0. 85〜1. 3 g/cm3の範囲にあることが好 ましい。 上記成形材の電気導電度が 10— 3SZcm以上であることが好ましい。 更に、 本発明者等は、 上記ピッチを原料とした特定構造の多環芳香族系炭化水 素からなる負極材料を負極に用い、 電解液の溶媒等を調製し、 また充電時の充電 時開放電圧を特定の範囲にコントロールすることにより高容量且つ充電受け入れ 性等を向上させることができることを見出し、 第 1〜 4の課題を解決したもので ある。
特に、 本発明者等は、 上記課題を解決するために鋭意検討を進めた結果、 ピッ チを主原料として得られる特定の構造を有する多環芳香族系炭化水素からなる材 料を用いた負極と、 特定の組成を有するリチウムニッケル複合酸化物を正極活物 質とし、 且つ特定の物性を有する天然黒鉛を導電材とする正極とを非水系 2次電 池に組み合わせると、 安定性があり、 高容量でサイクル特性に優れた非水系 2次 電池が得られることを見出し、 本発明に至ったものである。
即ち、 本発明の非水系 2次電池は、 正極、 負極および非水系電解質液を具備す る非水系 2次電池において、 ピッチを主成分とする原料を熱反応に供することに より得られる多環芳香族系炭化水素からなる材料であって、 その材料の水素/炭 素の原子比が 0. 50乃至 0. 05の範囲にあると共に、 BET法による比表面 積が 0. 1乃至 50m2Zgの範囲にあると共に、 材料の平均粒径が 10 m以 下である負極材料、 及び導電材をバインダーで成形した負極を用いたものである。 上記正極はその正極活物質が Niを含むリチウム複合金属酸化物であり、 組成式
L i aN i bCocA 1 d02 (l≤a≤ 1. 1、 0. 5≤b<0. 9、 0. 3≤c く 0. 5、 0<d≤0. 15、 b + c + d=l) で表されるリチウムニッケル複 合酸化物からなることが好ましい。
上記負極における充電時負極開放電位がリチウム電位に対し 10 OmV以下、 20m V以上であることが好ましい。
また、 このような負極において、 予め定めたリチウム量がプリドーピングされ
、 該リチウム量を Cn (mAh) とし、 また初期充電における正極活物質から放 出可能なリチウム量を初期充電量 Cp (mAh) とすると、 負極へ Cn + Cp ( mAh) のリチウムをドーピングした際の上記開放電位がリチウム電位に対し 1 0 OmV以下、 2 OmV以上となるように上記 Cn量を設けることが好ましい。 上記 Cn + Cp (mAh) のリチウム量をドーピングした時の負極での初期効 率を Xとし、 初期放電において正極に吸臓されるリチウム量を Cp 2 (mAh) とすると、 上記 Cp2と (Cn + Cp) とは、 Cp 2Z (Cn + Cp) ≤xの関 係を満たすと良い。
上記正極における初期充電における正極活物質から放出可能なリチウム量を初期充電 量 Cp (mAh) とすると共に、 上記正極活物質量を Wp (g) とすると、 180<C p/Wpであること力 S良い。
更に、 上記非水系動鞭は、 溶媒としてエチレンカーボネートと鎖状カーボネート を少なくとも含み、 該ェチレン力一ポネ一トが該溶媒の体積百分率で 10 %以上、 70 %以下含 Τるリチウム塩の あることが好ましい。
.
発明を実施するための最良の形態
以下、 本発明に係る負極材料、 負極、 その負極及び正極からなる非水系 2次電 池の好ましい実施の形態を詳述する。 尚、 本発明に係る負極材料、 負極、 その負 極及び正極からなる非水系 2次電池は以下の実施形態及び実施例に限るものでは ない。
本発明に係る非水系 2次電池用負極材料は、 ピッチを主成分とした原料を熱反 P T/JP2003/014033
応に供することにより、 特に、 後述する不融ィ匕処理することなく熱反応に供する ことにより得られる多環芳香族系炭化水素 (多環芳香族系共役構造物質) からな る。
上記原料の主成分となるピッチは、 所定の物性を備えた負極材料を得ることが できる限り、 特に限定されるものではない。 ピッチには、 大別して石油系ピッチ と石炭系ピッチとに分けられる。 例えば、 石油ピッチとしては、 原料の蒸留残渣 、 流動性接角虫分解残渣 (デカントオイルなど) 、 サーマルクラッカーからのポト ム油、 ナフサクラッキングの際に得られるエチレンタールなどが例示される。 また、 石炭系ピッチとしては、 石炭の乾留時に得られる油分であるコールター ルを蒸留して、 軽質分を流出させた残渣であるストレートピッチあるいはこれに アントラセン油、 夕一ルなどを添加したものなどである。
更に、 後述で詳細に説明するように、 ナフタレンの重縮合により合成されるナ フタレンピッチ等の合成ピッチも知られている。
これらのピッチは、 現在安価でかつ大量に生産されており、 主に製鉄用コーク スバインダー、 電極用含浸材、 コークス用原料、 炭素繊維用原料、 成形炭素材料 用バインダ一などの用途に用いられているが、 本発明に用いるピツチは石炭系等 方性ピッチが好ましく、 このようなピッチは偏光顕微鏡で観察した時、 光学的に 等方性を示す。
一方、 異方性ピッチとしては晶質化ピッチ (メソフェーズピッチ) がある力 等方性ピッチの加熱、 溶剤抽出、 水素添加等を組み合わせて製造される為、 コス ト的に不利であり、 従って、 本発明にあっては後述するように石炭系等方性ピッ チを用いる方が好ましい。
また、 石油系ピッチについては、 不純物としての硫黄分が石炭系に比べ多く含 まれるものが多く、 合成ピッチについては、 晶質化ピッチ (メソフェーズピッチ ) 同様コスト的に不利である。
本発明に係る負極材料に使用するピッチを主成分とする原料としては、 ピッチ に対して 5 0質量%を超えない範囲で、 より好ましくは 3 0質量%を超えない範 囲で、 例えば、 フエノール樹脂等の合成樹脂、 黒鉛などの導電材を含めても良い。 従って、 本発明における 「ピッチを主成分とする原料」 とは、 ピッチ単独からな る原料のみならず、 このような混合物含有ピッチをも含むものである。 しかし、 本発明に係る負極材料を効果的に得るためにはピッチ単独からなる原料を用いる ことが好ましい。
上記ピッチを主成分とする原料の軟化点は、 温度 7 0乃至 4 0 0 °C程度の範囲 のものが好ましく、 より好ましくは温度 1 0 0乃至 3 5 0 °Cの範囲のもの、 特に 好ましくは温度 1 5 0乃至 3 0 0 °Cの範囲のものである。 ピッチの軟化点が上記 範囲を下回るような場合には、 所望の熱反応生成物の収率を低下させる一方、 ピ ッチの軟化点が上記範囲を上回るような場合には、 熱反応生成物の比表面積を増 大させて、 これもまた所望の負極材料が容易に得られなくなる。 本発明に係る非水系 2次電池用負極材料は、 上記ピッチを熱反応させて得られ るものであって、 得られる炭化水素材料は水素/炭素の元素比が 0 . 5 0乃至 0 . 0 5の範囲にあり、 B E T法による比表面積が 0 . 1乃至 5 0 m2// gの範囲 にある。
本発明に係る負極材料は、 水素/炭素の原素比 (以下 「H/ C」 とする)が 0 . 5 0乃至 0 . 0 5の範囲である。 また、 負極材料としてより好ましくは 0 . 4 0 乃至 0 . 1 5の範囲である。 H/ Cは原料、 目的とする電池特性に応じて決定さ れるが、 上記材料の H/Cが 0 . 5 0を超えると、 負極材料に多環芳香族系共役 構造が十分に生じていないため、 負極材料とした場合にその容量および効率が低 くなる。 一方、 上記材料の H/Cが 0 . 0 5未満になると、 炭素化が過度に進行 して、 本発明が目的とする負極材料としての十分な容量が得られない。
また、 これらは原料ピッチが上述のナフタレンピッチを主成分とする場合、 水 素 Z炭素の原子比 (HZC) が 0 . 4 0〜0 . 2 0、 更に好ましくは 0 . 3 3乃 至 0 . 2 3の範囲にあることが良い。
上記原子比 (Hノ C) が 0 . 3 3を超えると、 負極材料中に主要な多環芳香族 系共役構造が十分に生じていないため、 非水系 2次電池用の負極材料に使用した 場合には、 サイクル容量の維持率の十分な改善が見られなくなる。 一方、 上記原 子比 (H/C) が 0 . 2 3未満になると、 サイクル容量の維持率は高くなるが、 炭素化が進行して高容量を得ることができない。 従って、 材料の原子比 (HZC ) が 0 . 3 3乃至0 . 2 3の範囲にあると、 高容量の電極材料が得られ、 サイク ル維持率に優れた負極材料が得られる。
更に、 原料ピッチが石炭系等方性ピッチを主成分とする場合、 水素 Z炭素の原 子比 (HZC) が 0 . 2 5乃至0 . 1 8の範囲にあることが良い。
上記原子比 (H/C) が 0 . 2 5を超えると、 負極材料中に主要な多環芳香族 系共役構造が十分に生じていないため、 非水系 2次電池用の負極材料に使用した 場合には、 サイクル容量の維持率の十分な改善が見られなくなる。 一方、 上記原 子比 (HZ C) が 0 . 1 8未満になると、 サイクル容量の維持率は高くなるが、 炭素化が過度に進行して高容量を得ることができない。 従って、 材料の原子比 ( HZC) が 0 . 2 5乃至0 . 1 8の範囲にあると、 高容量の電極材料が得られ、 サイクル維持率に優れた負極材料が得られる。
尚、 上記負極材料にあっては、 本発明に係る効果に影響を与えない範囲で炭素 及び水素以外に他の元素を含んでいても良い。 例えば、 負極材料は、 その原料由 来の炭素および水素以外の元素 (酸素、 硫黄、 窒素など)を含んでも良い。 そして 、 このような元素により負極材料の特性を阻害しないためには、 その他の元素の 合計質量が.2 0 %以下、 より好ましくは 1 0 %以下、 更に好ましくは 5 %以下に 抑えることが望ましい。 このためには、 不要元素の含有量の少ない原料を選択す るか、 或いは不要元素を放出し易い条件の熱反応条件を選択することが望ましい。 また、 硫黄についてはナフ夕レンピッチは合成ピッチであるため、 1 %以下に抑 えることが容易にできる。 P T/JP2003/014033
本発明に係る非水系 2次電池用負極材料は、 BET法による比表面積が 0. 1 乃至 50m2Zgの範囲にある。 好ましくは比表面積が 0. 1乃至 30m2/g の範囲である。 特に、 原料がナフタレンピッチにあっては、 比表面積が 0. 1乃 至 20m2/gの範囲、 特に、 比表面積が 0. 1乃至 10m2/gの範囲の範囲 にあることが良い。
負極材料の比表面積が大き過ぎると、 リチウムのドープおよび脱ドープの初期 効率が悪くなるので、 実用上好ましくない。 負極材料の比表面積が上記範囲未満 となるとリチウムのド一プがスムースにできなくなる。 本発明に係る非水系 2次電池用負極材料は、 上記多環芳香族系炭化水素を平均 粒径が 10 m以下に粉枠したものであり、 特に、 6 m乃至 1 zmの範囲のも のが望ましい。
通常、 非水系 2次電池用負極材料は、 上記粒径に粉砕した多環芳香族系炭化水 素と樹脂とを混合スラリーとして導電箔等に塗布形成される。 この場合、 非水系 2次電池用負極材料の平均粒径が上記範囲以内にあれば、 適宜な厚みの負極を形 成することができる。
また、 本発明に係る非水系 2次電池用負極材料は、 粒度分布における体積積算 10%の径が 2 m以下であり、 90%径が10 m以下になるよう粉砕したも の、 必要に応じて分級により粒度分布を上記範囲に調整したものが好ましい。 よ り好ましくは、 10%の径が 2 zm以下、 1 /zm以上であり、 90%の径が 10 m以下、 6 zm以上である。 特に、 原料を石炭系等方性ピッチを主成分とする場 合に好ましい。 負極材料の体積積算 90%の径が 10 を超える場合、 容量が 低下し、 10 %の径が 2 mを超える場合、 サイクル劣化が大きくなる傾向にあ る。
更に、 負極材料は、 不定形な上記熱反応生成物を所定の粒径に整粒するが、 そ の平均粒径が 10 m以下であること、 及び粒径分布における 1 m以下の粒径 の体積分率が 1%以上で存在していることが良い。 特に、 好ましくは、 平均粒径 が 10 m以下であって、 1 m以下の粒径の体積分率が 1乃至 20 %、 より好 ましくは 3乃至 15%、 特に好ましくは 5乃至 10%の範囲であることが望まし い。
上記熱反応生成物は不定形を呈するので、 ポールミル、 ジェットミル等の粉砕 器で粉碎した後、 更に必要に応じて、 分級することにより所定の粒径に整粒され る。 一般にリチウムイオン電池に用いられる黒鉛材料においては、 平均粒径 10 m以下且つ粒径が 1 以下の体積分率が 1 %以上の材料では、 初期充放電効 率の低下及び電極密度が上がり難いことから使用が差し控えられてきた。 しかし ながら、 上記負極材料では、 そのメカニズムは不明であるが上記範囲とすること により電極密度が向上し、 充電受入特性も向上する。 平均粒径が 10 mを超え ると充電受入特性が低下する。 また、 $立径が 1 mの体積分率が 1%未満の場合 は、 電極密度が上がりにくく、 かつ充電受入特性が低下し、 体積分率が 20%を 超えると後述の電極の作製が困難となる。
本発明に係る負極材料では、 上記粉碎した平均粒径の範囲内で、 BJH法 (B
J H法は一般的にメソ孔の解析に用いられる計算方法で、 Ba r r e t t, J o y n e r, H a 1 e n d a等により提唱されたものであり、 通常、 細孔分布装置 にその計算プログラムが内蔵されている。 ) における 2 OA乃至 5 OAの範囲に あるその細孔量が 1 X 10— 3c c/g以下であることが好ましい。 特に、 その 細孔量が 8 X 1 CT4c cZg以下であることが好ましい。 上記範囲内にある細 孔量が 1 X 10— 3c cZg以下であれば、 そのとき材料の比表面積も上昇し難 く、 初期におけるド一ブおよび脱ド一プの効率が高くなると共に、 容量自体も十 分に維持される。
また、 上記原料がナフタレンピッチを主成分とする場合、 負極材料は、 その X 線広角回折法による (002) 面の面間隔 d 002が 0. 347 nm未満である ことが好ましい。 上記の好ましい HZCの範囲 (0. 33〜0. 23) 内で比較 した場合には、 石油ピッチ、 石炭ピッチ等の一般的な原料から得られる多環芳香 族系炭化水素に比べて面間隔 d 002は小さく、 ナフ夕レンピッチを原料として 製造される多環芳香族系炭化水素においての特徴がある。
上記ピッチを主成分とする原料の熱反応は、 窒素、 アルゴンなどの不活性雰囲 気中 (真空を含む)で行う。 反応温度は、 上述の原料の種類'性状および温度以外 の諸条件 (昇温速度、 反応時間、 反応雰囲気、 圧力、 反応時に生成するガス成分 の反応系外の除去速度など) をも考慮して、 水素 Z炭素の原子比 (H/C) 、 及 び B E T法による比表面積を粉碎後に上記範囲となる様に適宜選択することがで さる。
上記熱反応温度は通常、 550乃至 750°Cの範囲であり、 ナフタレンピッチ を原料とする場合、 好ましくは 580乃至 700°Cの範囲、 更に好ましくは 60 0乃至 680°Cの範囲である。 また、 石炭系等方性ピッチを原料とする場合は、 好ましくは 600乃至 750°Cの範囲、 更に好ましくは 620乃至 720°Cの範 囲である。
熱反応による所望の炭化水素の収率は、 主にピッチの軟ィヒ点、 キノリン溶解度 により左右されるが、 本発明の製造方法においては少なくとも 60%以上、 好ま しくは 80%以上である。 上記温度範囲で原料及び軟化点等を適宜選択すれば、 所望の多環芳香族系炭化水素を 60%以上の収率で十分に得ることができる。 上 記ピッチを主成分とした原料を不活性雰囲気下の温度 550乃至 750°Cの範囲 で熱反応させれば、 その熱反応生成物から上記範囲の水素ノ炭素の原子比及び比 表面積を有する多環芳香族系炭化水素材料が高収率で得られる。
更に、 ナフ夕レンピッチを主成分とする場合、 負極材料は、 その真密度が 1. 40 g/cm3以上が好ましい。 また、 石炭系等方性ピッチを主成分とする場合 は、 1. 45 gZcm3以上、 更には 1. 50 gZcm3以上のものが好ましい。 体積当たりの十分な容量を得るためには 1. 45 g/cm3以上のものが好まし い。 次に、 本発明に係る非水系 2次電池用負極材料の簡単な製造方法を説明する。 本発明に係る負極材料の製造方法は、 上述したピッチを主成分とする原料を、 不融化処理することなく熱反応に供することにより多環芳香族系炭化水素を得る ものである。
また、 上記炭化水素を主材料とする本発明に係る負極材料の製造方法にあって は、 その材料の水素/炭素の原子比 (H/C) が所定範囲で、 B E T法による比 表面積が所定の範囲、 更に粒径及び粒度分布が所定の値を取るように製造するも のである。
上記ピッチを主成分とする原料の熱反応は、 窒素、 アルゴンなどの不活性雰囲 気中(真空を含む)で行う。 反応温度は、 上述の原料の種類 ·性状および温度以外 の諸条件 (昇温速度、 反応時間、 反応雰囲気、 圧力、 反応時に生成するガス成分 の反応系外の除去速度など) をも考慮して、 水素 Z炭素の原子比 (H/C) 、 及 び B E T法による比表面積を粉碎後に上記範囲となる様に適宜選択することがで きる。
上記熱反応温度は、 上述したナフ夕レンピッチを主成分とする場合は別として 、 通常、 6 0 0乃至 7 5 0 °Cの範囲、 より好ましくは 6 2 0乃至 7 2 0 °Cの範囲 である。
上記ピッチを主成分とした原料を不活性雰囲気下の温度 6 0 0乃至 7 5 0 °Cの 範囲で熱反応させれば、 その熱反応生成物から上記範囲の水素 Z炭素の原子比及 び比表面積を有する多環芳香族系炭化水素材料が高収率で得られる。
また、 本発明に係る負極材料の製造方法にあっては、 特定の HZC比と特定の 比表面積値を同時に充足するために、 ピッチ原料の熱反応温度を制御して、 不融 化処理をしないで熱反応に供するものである。
負極材料の比表面積は、 一般に熱反応温度を上昇させると低下して、 リチウム のド一プ及び脱ドープの初期効率が高くなるが、 その反面、 容量が急激に減少す る。 従来からの多環芳香族系共役構造物質は、 一般に比表面積が炭素系材料およ び黒鉛系材料に比べて高く、 5 0 m2Z gを上回るものが殆どである。 この高い 比表面積を低下させて容量を高めるために、 再度表面処理を行う技術も開発され ているが、 この場合には煩雑な操作を必要とし、 製造上、 工程が余分に付加され 、 負極材料の製造コストを著しく上げるので実用的に不利である。
本発明に係る非水系 2次電池用負極材料は、 上述のように HZ C比の範囲を維 持しながら、 比表面積を 5 0 m2Zg以下とすることを特徴とする。 本発明にお いてはピッチを原料とし、 原料ピッチの 1回の熱反応により比表面積を 5 O m2 Z g以下とすることができ、 その反応操作を更に簡便に行うことができる。
従来、 ピッチ原料から炭化水素材料を製造する際には、 空気中でピッチを 1 0
0〜4 0 0 °C程度の温度で加熱するか、 或いは硝酸、 硫酸などの酸化性液体によ り処理して、 ピッチ全体あるいはその表面を不融化処理 (架橋処理) した後、 不 活性雰囲気中で熱処理することにより、 製造される。 これに対して、 本発明の製 造方法において、 その反応生成物が上記の特定の HZ C比と特定の比表面積とを 同時に充足するように、 不融化処理あるいは表面酸化処理しない状態で、 ピッチ を熱反応に供する。
更に本発明に係る負極材料の製造方法にあっては、 その特性を決定する主な条 件は上記熱反応温度の範囲であるが、 その他の副次的条件としては、 特に限定さ れるものではないが昇温速度等が挙げられる。
昇温速度は 1 0乃至 1 0 0 0 °C/時間の範囲、 より好ましくは 5 0乃至 5 0 0
°C /時間の範囲である。 昇温速度は一定である必要はなく、 例えば、 温度 3 0 0 °Cまでは 1 0 0 °CZ時間の速度で昇温し、 温度 3 0 0 °C乃至 6 5 0 °Cまでは 5 0 °C /時間の速度で昇温することができる。 また、 反応時間(ピーク温度保持時間) は 1乃至 5 0時間程度である。 圧力は常圧でよいが、 減圧あるいは加圧状態で行 うことも可能である。
本発明に係る非水系 2次饿池用負極材料の製造方法では、 上記熱反応によつて 得られる熱反応生成物は殆どが不定形な状態で得られる。 これを材料とするため には不定形な熱反応生成物を所定の粒径に粉碎し、 必要に応じて粒度調整をして 負極材料として使用する。 即ち、 上述したように平均粒径、 粒度分布における体 積積算の所定値になるように粒度調整するため、 常法に従って熱反応生成物をポ ールミル、 ジェットミルなどの粉砕器で粉枠し、 更に必要ならば風力分級機等を 使用して分級して製造する。
次に、 本発明に係る非水系 2次電池用負極の実施の形態について簡単に説明す る。
また、 本発明の負極の上記負極材料中にあらかじめリチウムをド一プした状態 で、 電池を組み立てることも可能であり、 さらに負極上にリチウム金属を張り合 わせるなどの方法により、 電池組立後に負極にリチウムをド一プすることも可能 である。
本発明に係る非水系 2次電池用負極は、 上記負極材料、 導電材等を樹脂バイン ダ一に分散させて成形することにより得られる。 電極の成形材は所望の非水系 2 次電池の形状、 特性などを考慮しつつ、 公知の方法により成形することができる。 本発明において導電材、 バインダーは、 特に限定されるものではないないが、 具 体的には、 導電材としてはアセチレンブラック、 カーボンブラック、 ケッチェン ブラック、 黒鉛等が例示され、 バインダーとしてはポリフッ化ビニリデン (P V d F ) 、 ポリ四フッ化工チレンなどのフッ素系樹脂;フッ素ゴム、 S B Rなどの ゴム系材料;ポリエチレン、 ポリプロピレンなどのポリオレフイン;アクリル樹 脂などが例示される。
上記導電材の配合量は本発明の負極材料の種類、 粒径、 形状、 目的とする電極 への目付量、 及び強度などに応じて適宜決定すれば良く、 特に限定されるもので はないが、 通常本発明の負極材料の 1 0 0質量部に対して 1〜2 0質量部程度と することが好ましい。
また、 バインダーの配合量は、 本発明の負極材料の種類、 粒径、 形状、 目的と する電極の目付量、 強度などに応じて適宜決定すれば良く、 特に限定されるもの ではないが、 通常本発明の負極材料の 1 0 0質量部に対して:!〜 3 0質量部程度 とすることカ好ましい。
本発明において、 負極を集電体上の片面或いは両面に形成することもできる。 この場合、 使用する集電体は特に限定されるものではないが、 銅箔、 ステンレス 鋼箔、 チタン箔などが挙げられる。 更に、 金属箔上或いは金属の隙間に電極が形 成可能であるもの、 例えば、 エキスパンドメタル、 メッシュなどを用いることも できる。
本発明に係る負極における上記負極材料の目付量は 6 m g Z c m2以下であり 、 好ましくは 5 m g Z c m2以下、 2 m g Z c m2以上である。 本発明において 目付量とは例えば銅箔の片面に負極を形成した場合、 負極面 1 c m2あたりに含 まれる本発明の負極材料の質量であり、 銅箔の両面に負極を形成した場合、 各片 面に含まれる負極材料の質量である。
本発明において負極材料の目付量を 6 m g Z c m2以下とする事により、 充電 受入特性を向上させる事ができる。 目付量が少なすぎる場合、 電池内に占める集 電体、 セパレ一夕等の体積割合が上昇し、 電池容量が低下する傾向にある。
ここで、 充電受入特性面について説明する。 本発明の負極を用いた非水系 2次 電池は、 例えば、 後述するリチウム系の電解液を用いると、 充電時、 負極へはリ チウムがドーピングされ負極電位が低下する。 リチウム電位に到達し、 それを超 えるリチウムドーピングを同じ速度で継続した場合、 負極はリチウム電位以下と なり、 場合によってリチウム金属が負極上に析出する。 充電受入性とは、 負極が リチウム電位に到達するまでのドーピングのし易さであり、 充電受入性が悪いと 、 たとえ大量のリチウムのドーピング能を有する活物質であったとしても、 その 容量を充分に電池設計に活かせない事となる。
従って、 負極材料の目付量が 6 m g Z c m2を超える場合、 充電受入性が悪い 故に負極材料のリチウムのドーピング能を活かす事ができず電池容量が低下する。 また、 リチウム金属が負極上に析出する等でサイクルに伴なう容量劣化が大きく なる。
本発明に係る負極の上記成形密度 (或いは成形層の密度) は、 特に限定される ものではないが、 0. 85乃至1. 3 gZcm3程度の範囲が好ましく、 上記負 極材料の H/C、 $立度分布、 導電材量、 バインダー量により適宜決定される。 ま た、 本発明の負極の上記成形電気伝導度 (或いは成形層の電気伝導度) は、 特に 限定されるものではないが、 10—3S/cm以上が好ましく、 より好ましくは 5 X 10— 3乃至 1 X 10 DS/cmの範囲であり、 例えば、 電気伝導度が低い場 合、 充電受入性が悪くなる。
尚、 本発明に係る負極における上記負極材料中には、 予めリチウムをド一プし た状態で、 電池を組み立てることも可能であり、 さらに負極上にリチウム金属を 張り合わせるなどの方法により、 電池組立後に上記負極材料にリチウムをドープ することも可能である。
本発明に係る非水系 2次電池は、 基本的要素として負極、 正極、 セパレー夕、 及び非水系電解質を備えてなる。
本発明に係る非水系 2次電池用負極は上述した負極材料が使用され、 正極とし てはリチウムの吸蔵 Z放出が可能な正極材料であれば特に制限されず、 高電圧と 高容量のリチウム二次電池を得るために、 例えば、 公知のリチウム複合コバルト 酸化物、 リチウム複合ニッケル酸化物、 リチウム複合マンガン酸化物、 或いはこ れらの混合物、 更にこれらの酸化物に異種金属元素を一種以上添加した系などを 用いることができる。 また、 マンガン、 バナジウム、 鉄などの金属酸化物、 ジス ルフィド系化合物、 ポリアセン系物質、 活性炭などを用いることも可能であり、 特に、 容量の観点から L i Co02、 L i N i xCoy02、 L i N i xMny2 などを含むリチウム複合酸化物が好ましい。
また、 本発明に係る非水系 2次電池における正極には N iを含むリチウム複合 酸化物を正極活性物質として含むことが好ましく、 更には以下の組成式で表され るリチウムニッケル複合酸化物を正極活物質として含むことが好ましい。
a) 組成式 L i aN i bC ocA 1 cl02
「式中 (l≤a≤l. 1、 0. 5≤b<0. 9、 0. 3≤c<0. 5、 0<d≤
0. 15、 b + c + d=l) 」 で表される。
L iの原子比を示す aは、 l≤a≤l. 1の範囲である。 aがこの範囲を逸脱 する場合には、 サイクル特性の低下、 又は活物質の容量が大きく低下してくる。
N iの原子比を示す bは、 0. 5≤b<0. 9の範囲である。 bが 0. 9以上 である場合には、 活物質の容量は大きくなるが、 熱安定性が低下し電池の安全性 も低下する。 一方、 0. 5未満の場合には活物質の容量が低下してくる。
Coの原子比を示す。は、 0. 3≤c<0. 5の範囲である。 Cが 0· 5以上 の場合には、 熱安定性が向上し電池の安全性も向上するが、 活物質の容量は小さ くなる。 一方、 0. 3未満の場合には、 活物質の容量は大きくなるが、 熱安定性 が低下し電池の安全性も低下してくる。
A 1の原子比を示す dは、 0<d≤0. 15の範囲である。 dが 0. 15を超 える場合には、 活物質の容量が低下する。 また、 A 1を含まない場合には、 活物 質の容量は大きくなる力、 熱安定性が低下し電池の安全性も低下する。
上記正極活物質の平均粒径は、 特に制限されず、 公知の活物質と同等の粒径と することができる。 正極活物質の平均粒径は、 1〜60 mの範囲、 好ましくは
5〜40 zmの範囲、 より好ましくは 10〜30 mの範囲である。 なお、 本明 細書において、 「平均粒径」 とは、 乾式レーザー回折測定法により得られた体積 粒度分布における中心粒径を意味する。
上記正極活物質の比表面積は、 特に制限されないが、 通常 lm2Zg以下であ り、 より好ましくは 0. 2〜0. 7m2Zgの範囲である。 なお、 本明細書にお いて、 「比表面積」 とは、 窒素ガスを使用する BET法による測定値を示す。 また、 本発明に係る非水系 2次電池の正極における導電材は、' 比表面積が 10
0m2/g以上の天然黒鉛を含むことが良い。 これにより、 このような黒鉛は少 量使用でも十分な電子伝導性を付与することができ、 電池容量も向上する。 また 、 電極塗布後のロールプレスの際にも電極密度の制御が容易で、 高密度の正極を 得ることができる。 さらに、 活物質の種類などに応じて適宜アセチレンブラック 、 ケッチェンブラック等の高比表面積を有する導電材と併用することができる。 正極における導電材の使用量は、 正極活物質を 1 0 0質量部としたときに、 1 0 質量部以下、 好ましくは 2乃至 7質量部の範囲である。
本発明に麵するリチウム複合酸化物は、 電池の初期充電における正極活物質から放 出可能なリチウム量を C p (mAh) 、 正極に含まれる正極活物質量を Wp (g) とす ると、 1 8 0く C p/Wpを満たし得るものが好ましい。 ±¾ϋしたように L i N i 02 、 L i N i XC oy2、 L i N i xMny02等の N iを含むリチウム複合酸化物が特に好 ましいく、 性の観 から L i N i xC o y02、 L i N i xMny02あるいはこれら化 合物に ¾¾¾素を添加した N iを含むリチウム複合酸化物が特に好ましい。
上記 C pZWp力 1 8 0以下の:^、 リチウムイオン電池に"^勺に用いられる黒鉛 に対し、 本発明の負極が 2倍〜 3倍 @¾の容量を る為、 必要な正 ¾*、 厚みが増カロ し、 製 it±、 コスト面で問題が生じる:^がある。
本発明の非水系 2 池は上言 3IE極、 負極、 及び非水系動鞭を具備しており、 充電 時の負極開放電位がリチウム電位に対し 1 0 OmV以下、 2 OmV以上である。
充電時の負極開方慮位とは電 が決定する電池満充電となった時の負極開お 位である。 例えば、 0. 2 C Aの電流で 4. 2 Vまで充電した後、 4. 2 Vの定 ¾Eを 印力 0 "る 8時間の定電流定電圧の充電後、 電池に電流を流さない状態で放置した時の負 極のリチウム電位に ¾fする電位である。 開方^ ¾位は開柳寺間、 温度により異なるので本 発明において が 2 5°C、 開放時間は 1時間後の電位と定義する。充電時の負極開 位のコントロールは正極、 負極の活物質バランス、 プリドーピング量により可能で ある。 その充電時の負極開方爐位の確認は例えば電池内にリチウム金驗照極を挿入し 、 リチウム金 IS 照極と負極間の電位を測^れば良い。
充電時の負極開方^ t位がリチウム電位に対し 1 0 OmVを超える 、 負極に 5¾な リチウムがド一ビングされておらず本発明の目的である高容量を達 βδΤることが困難で ある。 2 0mV未満の場合、 負極のリチウムドーピング能力限界近くで すること からサイクルに伴なう容量の劣化が大きくなる。
本発明の非水系 2次電池においてまた、 負極には負極材料へリチウムをプリドーピン グすること力^ましい。
プリドーピング量 C n (mAh) は初期充電における正極活物質から放出可能なリチ ゥム量 C p (mAh) とする時、 C n + C p (mAh) のリチウムをドーピングした時 の負極開お鸞位がリチウム電位に対し 1 0 OmV以下、 2 OmV以上となる様に言^ f ることが望ましい。 初期充電における正極活物質から放出可能なリチウム量 C p (mA h) は、 第 1回目の充電時正極から放出される量であり、 具体的には第 1回目の電池の 充電量であり、 ±¾^の電« ^が決^る電¾ |充電までの充電量である。
本発明においては C n + C p (mAh) のリチウムをドーピングした時の負極の初期 効率を Xとし、 初期充電における正極活物質から放出可能なリチウム量を C p (mAh ) 、 初期放電において正極に棚蔵されるリチウム量を C p 2 (mAh) とする時、 C p 2/ (C n + C p) ≤xである様に正極を設^ Τること力好ましい。 負極の初期効率の Xについては、 負極を作用極とし、 対極と参照極としてリチウム金属を用いた電気化学 セルを組み立て、 鍵の非水系慰鞭中において、 あらかじめ計算される C n + C p ( mAh) に相当する I: [^量 (mAh/g) 分のリチウムをドーピングした後、 こ遅 レ « (例えば 0. 2 5 mA/ c m2) でリチウム金属電位に対し、 2 Vまで脱ド一プ することにより測定できる。 また、 初期 において正極に劂蔵されるリチウム量 C p 2 (mAh) は、 ±ί ϋの初期充電忧態の正極が麵可能なリチウム量である。
初期方媽において正極に卿蔵されるリチウム量 C p 2 (mAh) については、 正極を ί乍用極とし、 対極と参照極としてリチウム金属を用いた電気化 ルを組み立て、 ί« の非水系電角鞭中において、 あらかじめ計算される C p (mAh) に相当する比容量 ( mAh/g) 分のリチウムを放出させた後、 こ遅い ¾!t (例えば、 0. 2 5mA/ cm2) でリチウム金属電位に対し、 3 Vまで脱ドープすることにより測定できる。 C p 2/ (C n + C p) >xである齢、 得られる電池の容量が低下する傾向にある。 本発明に係る非水系 2 池において負極にプリドーピングする方法としては特に限 定されるものではないが、 例えば、 電' 前に、 対極としてリチウム金属を用いる電 気化学システムを組み立て、 鍵の非水系翻鞭中において、 所定量のリチウムをプリ ドーピングする方法、 嶽鞭を含浸した負極にリチウム金属を張り合わせる方法カ举げ られる。
また、 電池 ast後に、 リチウムのプリドーピングを行うには、 リチウム金属などのリ ' チウム源と負極とを貼り合わせなどの方法により、 «m的に翻虫させておき、 電池内に 動鞭を注波することにより、 リチウムをプリドーピングすること力河能である。 中で も簡便なプリド一ビング法の 1例として、 負極にリチウム金属箔を張り合わせて電池を ALX, 電池内に劇鞭を注»ることにより、 リチウムをプリドーピングする方法が 挙げられる。 この齢、 リチウムのプリドーピング完了後に、 リチウム金属部分に隙間 が形成されて、 内部撤が大きくなる傾向がある。 この齢には、 電?餅 本の厚みが
0. 2醒以下として、
Figure imgf000026_0001
リチ ゥムのプリドーピング完了後に生じた隙間を大赃と電池内圧との^ ΐで圧して、 解消 させることが^ eある。
また、 プリドーピング完了後に再戯寸止することも可能である。 0. 2匪以下の電 本としては、 πのアルミ一樹脂系ラミネートフィルムが代表的であり、 これは 本発明においても 可倉 gである。
本発明において細する非水系 鞭としては、 公知のリチウム塩を含む非水系 電解液が用いられる。 電解液の種類は、 正極材料の種類、 負極材料の性状、 充電 電圧などの使用条件などに応じて、 適宜決定される。 電解液としては、 例えば、
L i P F6、 L i B F4、 L i C 1〇4などのリチウム塩をプロピレンカーボネー ト、 エチレン力一ポネート、 ジェチルカ一ポネート、 ジメチルカ一ポネ一卜、 メ チルェチルカーボネート、 ジメトキシェタン、 ァ -プチロラクトン、 酢酸メチル
、 蟻酸メチルなどの 1種または 2種以上からなる有機溶媒に溶解したものが、 好 ましい。
特に、 非水系劇镞は、 エチレンカーボネート (以下、 ECという。 ) を含む混合 溶媒が良い。 ECを含む混合溶媒における ECの ^分率は、 10乃至 70%が好ま しく、 より好ましくは 15乃至 60%であり、 更に好ましくは 20乃至 50%である。 EC率が 10%未満の:^は充電受け入れ性が低下し、 70%を越える:!^は、 ECの 凝固点が 39 °Cと高いため低温で分離疑固し、 電池における ffi— 10°C以下の放 ¾ ^量が著しく ί氐下する。
上記 ECと混合して用いる溶媒としては、 鎖状カーボネートを挙げることが き、 例 えばェチルメチルカーボネート (EMC) 、 及びジェチルカーポネー卜 (DEC) 、 ジ メチルカ一ポネート等を挙げること力 ?きる。 鎖状カーボネートとは、
R 1— 0— CO— 0— R 2で表されるものであり、 Rl、 R 2は同一あるいは異なるァ ルキル基が i あり、 アルキル基の水素をフッ籍のハロゲンで置換したものでも良 レ^ Rl、 R 2がアルキル基である 、 その炭素数は 1乃至 4の範囲のものが好まし く用いられる。
また、 電解液の濃度は、 特に限定されるものではないが、 0. 5乃至 2mo 1
Zリットル程度の範囲が実用的である。 電解液は、 当然のことながら、 水分が 1 00 p pm以下のものを用いることが好ましい。 なお、 本明細書で 「非水系電解 液」 という用語は、 非水系電解液および有機電解液を含む概念を意味するもので あり、 また、 ゲル状および固体の電解質を含む概念をも意味するものである。 本発明の非水系 =^ft池の形状、 大きさなどは、 特に P跪されるものではなぐ それ ぞれの用途に応じて、 円筒型、 角型、 フィルム電池、 箱型などの任意の形状および寸法 のものを 尺すればよい。
以下に、 本発明に係る非水系 2次電池材料、 及びその製造方法の実施例および 比較例を示し、 本発明の特徴とするところをさらに明確にする。
(実施例 1 )
1) 石炭系等方性ピッチ (軟化点 280°C) 1000 gをステンレス鋼製の皿 TJP2003/014033
に入れ、 この皿を電気炉 (炉内有効寸法 300 X 300 X 3 00 mm) 内に配 置して、 熱反応に供した。 熱反応は、 窒素雰囲気下で行い、 窒素流量は 1 0リツ トル/分とした。 熱反応に際しては室温から温度 100°C/時間の速度で温度 6 35°C (炉内温) まで昇温する。 昇温後、 同温度で 4時間保持した後、 自然冷却 により、 温度 60°Cまで冷却し、 反応生成物を電気炉から取り出した。 得られた 生成物は、 原料の形状を留めておらず、 不定形な不溶不融性固体であった。 熱反 応温度、 収量は 804 gであり、 収率は 80. 4質量%であった。
得られた生成物をジェットミルにより粉砕し、 平均粒径が 5. 5 mであり、 また 1 m以下の粒子が体積分率 7 %の負極材料を得た。 この負極材料を用いて 、 元素分析 (測定機:パーキンエルマ一社製 元素分析装置 「P E 2400シリ ーズ I I、 CHNS/0」 ) 、 および BET法による比表面積 (測定機:ェアサ アイォニクス社製 「N〇VA 1200」 ) の測定を行った。 その結果、 H/C = 0. 26であり、 比表面積が 24m2Zgであった。 尚、 以下の実施例における 元素分析及び比表面積の測定は、 上記機器による。
2) 上記の負極材料 90重量部、 アセチレンブラック 5重量部、 ポリフッ化ビ 二リデン (PVdF) 7重量部、 及び N—メチルー 2—ピロリドン (NMP) を 混合し、 負極合材スラリーを得た。 このスラリーを厚さ 14 の銅箔の片面に 塗布し、 乾燥した後、 プレスを行うことにより、 厚さ 6 (合材層厚さ 49 m) 、 密度 1. 0 gZcm3の負極を得た。
3 ) 上記負極を作用極として、 金属リチウムを対極及び参照極に用い、 電解液 ( エチレンカーボネートとジェチルカーポネートを 50 : 50の体積比で混合した 溶媒に lmo 1/リットルの濃度に L i PF6を溶解した溶液) を用いて、 電気 化学セルをアルゴンドライボックス中で作成した。 そして、 負極の充電受入特性 を評価した。
負極への充電受入特性は 2サイクル目に評価することとし、 2サイクル目のリ チウムのドーピングは、 リチウム電位に対して lmVになるまで 16 OmA/ g の速度で行い、 次いで、 16 OmAZgの速度でリチウム電位に対して 2 Vまで 脱ドーピングを行い、 得られた脱ドープ量で容量を評価した。 その結果を表 1に 示す。
(実施例例 2、 及び比較例 1)
実施例 2及び比較例 1は、 実施例 1の 1) で得られた材料の平均粒径、 及び 1 m以下の粒子の体積分率を表 1に示す様に変えた以外は、 実施例と同様にして 試作、 評価を実施した。
表 1
Figure imgf000029_0001
表 1の結果より、 比較例 1のように 1 /m以下の粒子の体積分率が 1 %以上で あってもその非水系 2次電池用負極材料の平均粒径が 10; mを上回る場合にも 、 充電受入特性が実施例に比べて劣っていることが判る。 また、 実施例 2のよう に 1 m以下の粒子の体積分率が 1 %未満の非水系 2次電池用負極材料を用いた 負極或いは非水系 2次電池では、 充電受入特性が実施例 1に比べて少し劣ってい ることが判る。
本発明に係る非水系 2次電池用負極材料は、 水素/炭素の元素比が 0. 50乃 至 0. 05の範囲にあり、 BET法による比表面積が 0. 1乃至 50m2Zgの 範囲にあり、 また上記材料の平均粒径が 10 /m以下であるので、 高容量かつ充 電受入特性に優れた材料となる。
(実施例 3)
•負極材料の製造方法
実施例 1と同様にして、 石炭系等方性ピッチから得られた生成物をコ一ヒ一ミ ルで粗粉枠し粒径 100 zm程度の粉体とした。 この粉体の元素分析、 および B ET法による比表面積を行った。 その結果、 H/C=0. 22であり、 比表面積 が 26m2/gであった。 また上記機器付属の計算ソフトで B J H法による 20 乃至 5 OAの範囲の細孔量を求めたところ 1 X 10_4c cZg以下のオーダー であった。
次いで、 上記粉体をナイロン製ポールミルで 18時間粉碎することにより平均 粒径 3 mの負極材料を得た。 同上の測定により BET法による比表面積は 14 . 4m2/gであり、 B J H法による 20乃至 5 OAの細孔量は 1. 48X 10 一4 c c/gであつ/こ。
(参考例 1)
実施例 2においてアルミナ製ポールミル粉碎する以外は同様にして、 6時間の 粉碎により 4 mの粉体を得た。 同上の測定により BET法による比表面積は 2 6. 4m2Zgであり、 B J H法による 20乃至 5 OAの細孔量は 1. 44X 1 0—3c c/gであった。 実施例 2に比べて粒径が大きいにも拘らず、 比表面積 が大きくなつた。 これは粉砕方法の相違により細孔が実施例 2に比べ増加してお り、 B J H法による 20乃至 5 OAの細孔量が 10— 3 c cZg以上となってい る。
以上、 参考例 1で説明したように、 本発明に係る非水系 2次電池用負極材料は、 . 上記材料の平均粒径が 10 以下で、 B J H法における 20 A乃至 50 Aの範 囲にある細孔量が 10— 3 c cZg以下とし、 多環芳香族系炭化水素材料を十分 な微細径に粉砕しても、 その細孔構造変化が抑えられ、 比表面積を小さくするこ とができる。
(実施例 4)
石炭系等方性ピッチ (軟化点 280°C) 1000gをステンレス鋼製の皿に入 れ、 この皿を電気炉 (炉内有効寸法: 30 OmmX 30 OmmX 300mm) 内に配置して、 熱反応に供した。 熱反応は、 窒素雰囲気下で行い、 窒素流量は 1 m
PCT/JP2003/014033
0リットル Z分とした。 熱反応は、 温度 400°Cまでは昇温速度 100°CZ時間 で、 温度 400°C以上では昇温速度 50°C/時間で温度 700°C (炉内温) とな るまで昇温する。 昇温後、 同温度で 12時間保持した後、 自然冷却により、 温度 60°Cまで冷却し、 反応生成物を電気炉から取り出した。 得られた生成物は、 原 料の形状を留めておらず、 不定形な不溶不融性固体であった。 収率は 79. 4質 量%であった。
得られた材料を剪断ミルで粒径 5mm以下に粗粉枠した後、 ジエツトミルを用 いて平均粒度 4 xm程度まで粉碎して負極材料を得た。 得られた負極材料につい ての元素分析、 BET法による比表面積、 真密度 (溶媒に 1ーブタノールを使用 ) 、 及び粒度分布 (測定機:島津製作所 「S ALD 2000 J」 ) の測定を行つ た。 結果を下記表 2に示す。
次いで、 上記負極材料粉末の 90質量部、 導電剤としてのアセチレンブラック 粉末の 5質量部、 およびバインダーとしての PVdFの 5質量部を溶媒としての NMPと混合し、 負極合剤スラリーを得た。 このスラリーを厚さ 18 ;zmの銅箔 の片面に塗布し、 乾燥した後、 プレスして厚さ 50 m、 密度 l g/cm3の電 極を得た。
上記で得られた電極を作用極とし、 対極と参照極に金属リチウムを用い、 電解 液としてエチレン力一ポネートとジェチルカ一ボネートとを 1 : 1 (体積比) で 混合した溶媒に 1 mo 1ZLの濃度に L i P F 6を溶解した溶液を用いて、 電気 化学セルをアルゴンドライボックス中で作成した。 リチウムのドーピングは、 リ チウム電位に対して 1 mVになるまで 1 mAZ c m2の定電流で行い、 さらにリ チウム電位に対して lmVの定電圧印加し、 合わせて 8時間ドーピングをした。 10分の休止後、 ImA/cm2の定電流でリチウム電位に対して 2 Vまで脱ド 一ピングを行った。 10分休止後、 上記と同様にドーピング '脱ドーピングを行 い、 全 10サイクル行った。 結果を下記表 2に示す。
(実施例 5) 実施例 4で石炭系等方性ピッチ原料の熱反応温度を 6 8 0 °Cとする以外は実施 例 4と同様にして熱反応を行い、 不溶不融性固体を得た。 収率は 7 9 . 5質量% であった。 この材料の HZC、 比表面積、 真密度、 平均粒径を実施例 3と同様の 方法で測定した結果を表 2に示す。
次いで、 実施例 4と同様にして電極を作製し、 リチウムのドーピング量および 脱ドーピング量を 1 0サイクル測定した。 初期容量、 1 0サイクル容量の結果を 下記表 2に示した。
(実施例 6 )
実施例 4で石炭系等方性ピッチ原料の熱反応温度を 6 6 0 °Cとする以外は実施 例 4と同様にして熱反応を行い、 不溶不融性固体を得た。 収率は 7 9 . 4質量% であった。 この材料の HZC、 比表面積、 真密度、 平均粒径を実施例 4と同様の 方法で測定した結果を下記表 2に示す。
次いで、 実施例 4と同様にして電極を作製し、 リチウムのドーピング量および 脱ドーピング量を 1 0サイクル測定した。 初期容量、 1 0サイクル容量の結果を 下記表 2に示した。 ' (実施例 7 )
実施例 4で石炭系等方性ピッチ原料の熱反応温度を 6 4 0 °Cとする以外は実施 例 4と同様にして熱反応を行い、 不溶不融性固体を得た。 収率は 8 4. 3質量% であった。 この材料の H/'C、 比表面積、 真密度、 平均粒径を実施例 4と同様の 方法で測定した結果を下記表 2に示す。
次いで、 実施例 4と同様にして電極を作製し、 リチウムのドーピング量および 脱ドーピング量を 1 0サイクル測定した。 初期容量、 1 0サイクル容量の結果を 下記表 2に示した。
(参考例 2 )
石炭系等方性ピッチ原料の熱反応温度を 6 2 0 °Cとする以外は実施例 3と同様 にして熱反応を行い、 不溶不融性固体を得た。 収率は 8 1 . 3質量%であった。 3
この材料の HZC、 比表面積、 真密度、 平均粒径を実施例 4と同様の方法で測定 した結果を下記表 2に示した。
次いで、 実施例 4と同様にして電極を作製し、 リチウムのドーピング量および 脱ドーピング量を 1 0サイクル測定した。 初期容量、 1 0サイクル容量の結果を 下記表 2に示した。
(参考例 3 )
石炭系等方性ピッチ原料の熱反応温度を 5 8 0 °Cとする以外は実施例 4と同様 にして熱反応を行い、 不溶不融性固体を得た。 収率は 8 2 . 5質量%であった。 この材料の H/C、 比表面積、 真密度、 平均粒径を実施例 4と同様の方法で測定 した結果を表 2に示す。
次いで、 実施例 4と同様にして電極を作製し、 リチウムのドーピング量および 脱ドーピング量を 1 0サイクル測定した。 初期容量、 1 0サイクル容量の結果を 表 2に示す。
(参考例 4 )
石炭系等方性ピッチ原料の熱反応温度を 7 4 0 °Cとする以外は実施例 4と同様 にして熱反応を行い、 不溶不融性固体を得た。 収率は 7 9 . 2質量%であった。 この材料の HZ C、 比表面積、 真密度、 平均粒径を実施例 4と同様の方法で測定 した結果を表 2に示す。
次いで、 実施例 4と同様にして電極を作製し、 リチウムのドーピング量および 脱ドーピング量を 1 0サイクル測定した。 初期容量、 1 0サイクル容量の結果を 表 2に示す。 実施例 4 実施倒 5 実施例 6 実施例 7 参考例 2 参考例 熱反応温度 (to 700 680 660 640 620 580
0. 18 0. 21 0. 23 0. 25 0. 28 0. 3 比表面積 OnVs) 17 19 20 20 22 28 真密度 (s/cms) 1. 63 1. 61 1. 55 1. 50 1. 9 1. 平均粒径 (ym 3. 8 3. 9 4. 0 3. 9 4. 0 3. 初斯容量 (mAli/s) 618 644 688 736 727 680
10サイクル容量
583 597 616 642 618 548 (mAhXg)
サイクル容量 X真密度
950 961 955 963 921 773 (mAh/cm1)
質量及び体積あたりの容量、 サイクル特性を総合的に判断する為、 10サイク ル目の容量に真密度を乗じた体積あたりの容量で比較すると、 H/Cが 0. 25 乃至 0. 18では、 950mAh/cm3〜97 OmAhZcm3であり、 H/ Cが 0. 25を上回ると、 初期容量は大きくなるが、 上記体積容量は低下する。 また、 0. 18を下回る場合、 初期容量そのものが低下する。
従って、 実施例 4〜7、 及び参考例 2〜4との関係から H/Cの範囲は 0. 2 5〜 0. 18がより好ましいことが判る。
以上、 説明したように本発明に係る負極材料は、 石炭系等方性ピッチを主成分と する原料を熱反応に供することにより得られる多環芳香族系炭化水素からなる。 そして、 その水素 Z炭素の原子比が 0. 25乃至0. 18の範囲にあり、 BET 法による比表面積が 0. 1乃至 50m2Zgの範囲にあり、 真密度が 1. 45 g Z cm3以上であり、 平均粒径が 10 zm以下であるので、 実用的なドーピング 時間で、 質量当たり及び体積当たりの高容量を得ることができ、 サイクル特性に 優れた非水系 2次電池を提供することができる。 また、 本発明に係る非水系 2次 電池用負極材料の製造方法は、 上記石炭系等方性ピッチを主成分とする原料を不 融化処理することなく熱反応に供して多環芳香族系炭化水素を得てなるので、 負 極材料の製造が簡単でその収率を向上させることができる。
(実施例 8 )
石炭系等方性ピッチ (軟化点 280°C) 100 Ogをステンレス鋼製の皿に入 れ、 この皿を電気炉 (炉内有効寸法: 30 OmmX 30 OmmX 30 Omm) 内に配置して、 熱反応に供した。 熱反応は、 窒素雰囲気下で行い、 窒素流量は 1
0リットル/分とした。 熱反応は、 温度 400°Cまでは昇温速度 10 O Z時間 で、 温度 400°C以上では昇温速度 50°CZ時間で温度 680°C (炉内温) とな るまで昇温する。 昇温後、 同温度で 12時間保持した後、 自然冷却により、 温度 60°Cまで冷却し、 反応生成物を電気炉から取り出した。 得られた生成物は、 原 料の形状を留めておらず、 不定形な不溶不融性固体であった。 収率は 79. 5質 量%であった。
得られた材料を剪断ミルで粒径 5mm以下に粗粉碎した後、 ジエツトミルを用 いて平均粒度 4 m程度まで粉碎して負極材料を得た。 得られた負極材料につい ての元素分析の測定を行った。 水素/炭素の原子比 (HZC) は 0. 21であつ た。 また、 BET法による比表面積、 及び粒度分布の測定を行った。 結果を下記 表 3に示す。 尚、 真密度 (溶媒に 1ーブタノールを使用) の測定を行った (測定 機:島津製作所 「SALD 2000 J」 ) 。 その結果、 1. 61 g/cm3であ つた。
次いで、 上記負極材料粉末の 90質量部、 導電剤としてのアセチレンブラック 粉末の 5質量部、 およびバインダーとしての PVdFの 5質量部を溶媒としての N—メチルピロリドン (NMP) と混合し、 負極合剤スラリーを得た。 このスラ リーを厚さ 18 zmの銅箔の片面に塗布し、 乾燥した後、 プレスして厚さ 50 μ m、 密度 1 gZ cm3の電極を得た。
上記で得られた電極を作用極とし、 対極と参照極に金属リチウムを用い、 電解 液としてエチレン力一ポネートとジェチルカ一ポネートとを 1 : 1 (体積比) で 混合した溶媒に 1 mo 1ZLの濃度に L i P F 6を溶解した溶液を用いて、 電気 化学セルをアルゴンドライボックス中で作成した。 リチウムのドーピングは、 リ チウム電位に対して 1 m Vになるまで 1 mAZ c m2の定電流で行い、 さらにリ チウム電位に対して 1 mVの定電圧印加し、 合わせて 8時間ドーピングをした。 10分の休止後、 ImA/cm2の定電流でリチウム電位に対して 2 Vまで脱ド —ピングを行った。 10分休止後、 上記と同様にドーピング '脱ドーピングを行 レ、 全 10サイクル行った。 初期容量、 10サイクル容量の結果を下記表 3に示 した。
(実施例 9 )
実施例 8で平均粒度 4 zmの負極材料を風力分級機を用いて、 実施例 8と異な る粒度分布をもつ負極材料を得た。 この材料の比表面積、 粒度分布を実施例 8と P2003/014033
同様の方法で測定した。 結果を下記表 3に示した。
次いで、 実施例 8と同様にして電極を作製し、 リチウムのドーピング量および 脱ドーピング量を 10サイクル測定した。 初期容量、 10サイクル容量の結果を 下記表 3に示した。
(参考例 5)
実施例 8で平均粒度 4 zmの負極材料を風力分級機を用いて、 実施例 8と異な る粒度分布をもつ負極材料を得た。 この材料の比表面積、 粒度分布を実施例 8と 同様の方法で測定した。 結果を下記表 3に示した。
次いで、 実施例 8と同様にして電極を作製し、 リチウムのドーピング量および 脱ドーピング量を 10サイクル測定した。 初期容量、 10サイクル容量の結果を 下記表 3に示した。
尚、 かかる材料の体積積算の 10 %の径は所望の範囲内であるが、 90 %の径 は、 10. 6 mとなり、 実施例の 10 xm以下の範囲を超えているため、 初期 容量に低下があった。
(参考例 6)
実施例 8で平均粒度 4 mの負極材料を風力分級機を用いて、 実施例 8と異な る粒度分布をもつ負極材料を得た。 この材料の比表面積、 粒度分布を実施例 8と 同様の方法で測定した。 結果を下記表 3に示した。
次いで、 実施例 8と同様にして電極を作製し、 リチウムのドーピング量および 脱ドーピング量を 10サイクル測定した。 初期容量、 10サイクル容量の結果を 下記表 3に示した。
尚、 材料の 90%径は所望の範囲内であるが、 10%径は、 2. 2 xmとなり 、 実施例 8の 2 m以下の範囲を超えているため、 10サイクル目の維持率に低 下があった。 表 3
Figure imgf000038_0001
以上、 参考例 5、 6を基準に参照し、 実施例 8及び 9の負極材料は、 実施例 4 〜 7の要件に加えて、 粒径分布における体積積算が 1 0 %にある径が 2 m 以下 であり、 9 0 %の径が 1 0 z m以下であるので、 実用的なドーピング時間での高 容量を得ることができ、 サイクル特性に優れた非水系 2次電池を提供することが できる。 また、 本発明に係る非水系 2次電池用負極材料の製造方法は、 上記ピッ チを主成分とする原料を不融化処理することなく熱反応に供して多環芳香族系炭 化水素を得てなるので、 負極材料の製造が簡単でその収率を向上させることがで さる。
(実施例 1 0 )
,負極材料の製造方法
ナフ夕レンピッチ (軟化点 2 8 7 °C) 6 0 を磁性皿に入れ、 この皿を小型円 筒炉 (炉心管内径 1 0 O mm) 内に配置して、 熱反応に供した。 熱反応は、 窒素 雰囲気下で行い、 窒素流量は 0 . 5リットル Z分とした。 熱反応は、 温度 1 0 0 °〇ノ時間の速度で、 炉心管内温が室温から所定の熱反応温度 (6 3 0 °C、 6 4 2 °C、 6 5 0 °C、 6 8 5 °C、 及び 7 2 0 °C) となるまで昇温する。 昇温後、 同温度 で 4時間保持した後、 自然冷却により、 温度 6 0 °Cまで冷却し、 皿を炉から取り 出した。 得られた多環芳香族系炭化水素材料は、 原料の形状を留めておらず、 不 定形な不溶不融性固体であった。 熱反応温度、 収量をまとめて下記の表 4に示す。 -負極の製造方法
ポールミルを用いて上記得られた各熱反応温度におけるそれぞれの炭化水素材 料を平均粒度 5 / m程度まで粉砕し、 負極材料を得た。 得られた負極材料につい て、 X線広角回折 (測定使用機: Mac science XMP-3 X線源 Cu— Κα (1 • 54Α) ) 、 元素分析、 および BET法による比表面積の測定を行った。 結果 を下記表 1に示す。
次いで、 上記の負極材料粉末を 88質量部、 アセチレンブラックを 5質量部、 および PVdFを 7質量部、 及び N—メチルー 2—ピロリドン (NMP) を混合 し、 負極合材スラリーを得た。 このスラリーを厚さ 14 imの銅箔の片面に塗布 し、 乾燥した後、 プレス加工して厚さ 80 mの電極を得た。
•得られた負極電極にける脱ド一プの容量の評価
上記で得られた負電極を作用極とし、 金属リチウムを対極と参照極とに用い、 電解液としてエチレン力一ポネートとジェチルカーポネートとを 3 : 7 (体積比 ) で混合した溶媒に lmo リットルの濃度に L i PF6を溶解した溶液を用 いて、 電気化学セルをアルゴンドライボックス中で作成した。 リチウムのドーピ ングは、 リチウム電位に対して lmVになるまで 16 OmAZgの速度で行い、 さらにリチウム電位に対して lmVの定電圧を印加して、 合計 8時間で、 ド一ピ ングを終了した。 次いで、 16 OmAZgの速度でリチウム電位に対して 2 Vま で脱ドーピングを行う操作を 2回繰り返し、 2回目の脱ドープ量で容量を評価し た。 その結果を表 4に示す。
表 4
Figure imgf000039_0001
(参考例 7)
原料を石炭系等方性ピッチ (軟化点 280°C) とし、 熱反応温度を 615°C、 6 5 0 °Cとする以外は実施例 1 0と同様熱反応を行い不定形の不溶不融性固体を 得た。 熱反応温度、 収量をまとめて表 5に示す。 また、 実施例 1 0同様に粉枠し 、 物性測定を実施した後、 電極を作成し、 容量を評価した。 これら結果を表 5に 示す。
表 5
Figure imgf000040_0001
(参考例 8 )
原料を石油系等方性ピッチ (軟化点 2 2 5 °C) とし、 熱反応温度を 6 1 5 °C、 6 5 0 °Cとする以外は実施例 1 0と同様の熱反応を行い不定形の不溶不融性固体 を得た。 熱反応温度、 収量をまとめて表 6に示す。 また、 実施例 1 0同様に粉碎 し、 物性測定を実施した後、 電極を作成し、 容量を評価した。 これら結果を表 6 に示す。
表 6
Figure imgf000040_0002
以上の結果、 実施例 1 0に示すように、 ナフ夕レンピッチを原料とした場合、 石油ピッチ、 石炭ピッチを原料にする場合に比べ、 高収率で負極材料が得られる。 また、 熱反応温度に対する H/Cの値が比較的高く、 d 0 0 2についても低いこ とが分かる。 更に、 石油ピッチ、 石炭ピッチを原料とする場合に比べ、 容量も大 幅な向上が見られた。
(実施例 1 1 )
ナフタレンピッチ (軟化点 2 8 7 °C:三菱瓦斯化学社製) の 1 0 0 gをステン レス鋼製の皿に入れ、 この皿を電気炉 (炉内有効寸法: 3 0 O mmX 3 0 0 m mX 3 0 O mm) 内に配置して、 熱反応に供した。 熱反応は窒素雰囲気下で行 い窒素流量は 10リットル/分とした。 熱反応は、 温度 400°Cまでは昇温速度 100°CZ時間で、 温度 400°C以上では昇温速度 60°C/時間で温度 670°C (炉内温) となるまで昇温する。 昇温後、 同温度で 4時間保持した後、 自然冷却 により、 60°Cまで冷却し、 反応生成物を電気炉から取り出した。
得られた生成物は、 原料の形状を留めておらず、 不定形な不溶不融性固体であ つた。 収率は 82%であった。
得られた材料をポールミルを用いて平均粒度 5 m程度まで粉碎して負極材料 を得た。 得られた負極材料についての元素分析、 BET法による比表面積、 真密 度、 及び粒度分布の測定を行った。 結果を下記表 7に示す。
次いで、 上記負極材料粉末の 90質量部、 導電剤としてのアセチレンブラック 粉末の 5質量部、 およびバインダ一としての P V d Fの 5質量部を溶媒としての N—メチルー 2—ピロリドン (NMP) と混合し、 負極合剤スラリーを得た。 こ のスラリーを厚さ 18 mの銅箔の片面に塗布し、 乾燥した後、 プレス加工して 厚さ 50 m、 密度 1 gZ cm3の電極を得た。
上記で得られた電極を作用極とし、 対極と参照極に金属リチウムを用い、 電解 液としてエチレンカーボネートとジェチルカーボネートとを 1 : 1 (体積比) で 混合した溶媒に 1 mo 1ZLの濃度に L i P F 6を溶解した溶液を用いて、 電気 化学セルをアルゴンドライボックス中で作成した。 リチウムのドーピングは、 リ チウム電位に対して lmVになるまで負極活物質あたり、 20 OmA/gの定電 流で行い、 さらにリチウム電位に対して lmVの定電圧印加し、 合わせて 8時間 ドーピングをした。 10分の休止後、 負極活物質あたり 20 OmAZgの定電流 でリチウム電位に対して 2Vまで脱ドーピングを行った。 10分休止後、 上記と 同様にドーピング ·脱ドーピングを行い、 全 10サイクル行った。 結果を下記表 7に示す。
(実施例 12)
実施例 11でナフタレンピッチ原料の熱反応温度を 660 Cとする以外は実施 例 1 1と同様にして熱反応を行い、 不溶不融性固体を得た。 収率は 8 3質量%で あった。 この材料の HZC、 比表面積、 真密度、 平均粒径を実施例 1 1と同様の 方法で測定した結果を表 7に示す。
次いで、 実施例 1 1と同様にして電極を作製し、 リチウムのドーピング量およ び脱ドーピング量を 1 0サイクル測定した。 初期容量、 1 0サイクル容量の結果 を下記表 7に示した。
(実施例 1 2 )
実施例 1 1でナフタレンピッチ原料の熱反応温度を 6 3 0 °Cとする以外は実施 例 1 1と同様にして熱反応を行い、 不溶不融性固体を得た。 収率は 8 3質量%で あった。 この材料の HZC、 比表面積、 真密度、 平均粒径を実施例 1 1と同様の 方法で測定した結果を下記表 7に示す。
次いで、 実施例 1 1と同様にして電極を作製し、 リチウムのドーピング量およ び脱ドーピング量を 1 0サイクル測定した。 初期容量、 1 0サイクル容量の結果 を下記表 7に示した。
(参考例 9 )
ナフ夕レンピッチ原料の熱反応温度を 6 8 5 DCとする以外は実施例 1 1と同様 にして熱反応を行い、 不溶不融性固体を得た。 収率は 8 3質量%であった。 この 材料の H/C、 比表面積、 真密度、 平均粒径を実施例 1 1と同様の方法で測定し た結果を下記表 7に示した。 HZCは 0 . 2 2であった。 次いで、 実施例 1 1と 同様にして電極を作製し、 リチウムのドーピング量および脱ドーピング量を 1 0 サイクル測定した。 初期容量、 1 0サイクル容量の結果を下記表 7に示した。
(参考例 1 0 )
ナフタレンピッチ原料の熱反応温度を 5 9 5 °Cとする以外は実施例 1 1と同様 にして熱反応を行い、 不溶不融性固体を得た。 収率は 8 3質量%であった。 この 材料の HZ 比表面積、 真密度、 平均粒径を実施例 1 1と同様の方法で測定し た結果を表 7に示す。 H/Cは 0 . 3 6であった。 次いで、 実施例 11と同様にして電極を作製し、 リチウムのドーピング量およ び脱ドーピング量を 10サイクル測定した。 初期容量、 10サイクル容量の結果 を表 7に示す。
(参考例 11 )
石炭系等方性ピッチ (軟化点 280°C) 10 Ogをステンレス鋼製の皿に入れ 、 この皿を電気炉 (炉内有効寸法: 30 OmmX 30 OmmX 30 Omm) 内 に配置して、 熱反応に供した。 熱反応は、 窒素雰囲気下で行い、 窒素流量は 10 リットル/分とした。 熱反応は、 温度 400°Cまでは昇温速度 100°C/時間で 、 温度 400°C以上では昇温速度 50°CZ時間で温度 660°C (炉内温) となる まで昇温する。 昇温後、 同温度で 4時間保持した後、 自然冷却により、 温度 60 °Cまで冷却し、 反応生成物を電気炉から取り出した。 得られた生成物は、 原料の 形状を留めておらず、 不定形な不溶不融性固体であった。 収率は 78質量%であ つた。
££0 10/£00Ζάΐ/13ά £W I請 OAV
Figure imgf000045_0001
以上、 参考例と実施例とから、 本発明に係る非水系 2次電池用負極材料は、 ナ フタレンピッチを主成分とする原料を熱反応に供することにより得られる多環芳 香族系炭化水素からなり、 水素/炭素の原子比が 0. 33乃至0. 23の範囲に あり、 BET法による比表面積が 0. 1乃至 30m2Zgの範囲にあり、 真密度 が 1. 4 O g/cm3以上であり、 平均粒径が 10 m以下であるので、 実用的 なドーピング時間で、 質量当たり及び体積当たりの高容量を得ることができ、 サ ィクル特性に優れた非水系 2次電池を提供することができる。 また、 本発明に係 る非水系 2次電池用負極材料の製造方法は、 上記ナフ夕レンピッチを主成分とす る原料を不融化処理することなく熱反応に供して多環芳香族系炭化水素を得てな るので、 負極材料の製造が簡単でその収率を向上させることができる。
(実施例 14)
実施例 1の 1) と同様にして得られた負極材料粉末 (平均粒径が 5. 5 urn,
1 n m以下の粒子が体積分率 7%、 H/C=0. 26、 及び比表面積が 24m2
/g) と、 導電材であるアセチレンブラック、 バインダーであるポリフッ化ビニ リデン (PVdF) 及び溶剤である N—メチルピロリドン (NMP) を混合し、 負極合材スラリーを得た。
このとき負極材料粉末、 導電材であるアセチレンブラック、 バインダーの配合 比率 (質量比) は、 負極材料:アセチレンブラック:バインダー =88 : 7 : 7 とした。 該スラリーを厚さ 14 mの銅箔の片面に塗布し、 乾燥した後、 プレス を行うことにより、 負電極を得た。 負極合剤層厚さ、 目付量を表 8に示す。 次いで、 上記で得られた負電極を作用極とし、 金属リチウムを対極および参照 極に用い、 電解液としてエチレンカーボネートとェチルメチルカーボネ一トを 3
: 7体積比で混合した溶媒に lmo 1ZLの濃度に L i PF6を溶解した溶液を 用いて、 電気化学セルをアルゴンドライボックス中で作製し、 負極の充電受入性 を評価した。 負極の充電受入性は 2サイクル目に評価する事とし、 2サイクル目 のリチウムのドーピングは、 リチウム電位に対して lmVになるまで 16 ΟπιΑ/ gの電流で行い、 続いて、 16 OmAZgの速度でリチウム電位に対して 2 Vまで 脱ドーピングを行ない、 得られた放電容量で評価した。 結果を合わせて下記表 8 に示す。
(実施例 15〜16、 及び参考例 12)
実施例 14と同様の方法にて電極を作製した。 負極合剤の成形材層厚さ、 目付 量を表 8に示す。 また、 引き続いて充電受け入れ性を評価した。 結果を合わせて 表 8に示す。
表 8
Figure imgf000047_0001
上記結果から明らかな様に目付量が 6mg/cm2以下とした場合、 良好な充 電受入特性が得られる事がわかる。
実施例 17〜 19、 参考例 13
1) 正極材料 L i N i 0.8C o0.202を 89. 5質量部、 アセチレンブラッ ク 4. 5質量部、 PVdF6. 0質量部および NMPを混合し、 正極合材スラリ —を得た。 次いで、 該スラリーを集電体となる厚さ 20 imのアルミニウム箔の 両面に塗布し、 乾燥した後、 プレスを行って、 正極を得た。
2) 本発明の負極 (実施例 14〜16) 、 及び参照の負極 (参考例 12) は、 上記方法で得られた正極とセパレー夕一を介して対向させ、 電池を作製した。 こ こで正極は、 正極と負極の活物質重量比が同じとなる様に、 目付量を調整して塗 布し使用した。 電角军液は、 エチレンカーボネートとェチルメチルカーボネートを 3 : 7体積比で混合した溶媒に 1 mo 1Zリツトルの濃度に L i PF6を溶解し た溶液を用いた。 3) 次いで、 上記で作製した電池を 0. 2CmAの電流で 4. 2 Vまで充電し 、 その後 4. 2 Vの定電圧を印加する定電流定電圧充電を 8時間行った。 続いて 、 0. 2CmAの定電流で 2. 0Vまで放電するサイクルを 100回繰り返した。 その結果を表 9に示す。
表 9
Figure imgf000048_0001
目付量が 6mgZcm2以下である負極を用いた電池は初期容量の 78 %以上 の容量を保持したが、 目付量が 6 mgZ cm2を超える比較負極を用いた電池の 容量は 50%まで低下していた。
(実施例 20、 21及び参考例 14 )
実施例 1の 1) と同様にして得られた負極材料粉末 (平均粒径が 5. 5 rn, 1 H m以下の粒子が体積分率 7%、 H/C=0. 26、 及び比表面積が 24m2 /g) の 90質量部と、 導電材であるアセチレンブラック 5質量部、 バインダー である PVdFの 5質量部、 及び溶剤である NMPを混合し、 負極合材スラリー を得た。 該スラリーを厚さ 14 xmの銅箔の片面に塗布し、 乾燥した後、 プレス を行うことにより、 厚さ 49 /xmの負極 (52 X 32mm2) を得た。
L iNi0.8Co0.15A10.05O2の 89. 5質 *^、 アセチレンブラックの 4. 5 m- PVdFの 6質 および NMPを混合し、 正極合材スラリーを得た。 次いで 、 該スラリーを集電体となる厚さ 2 C mのアルミニウム箔に塗布し、 草燥した後、 プ レスを行って、 厚さ 67 ΐΐΚΌΊΕηΜ (50 X 30mm2) を得た。
次いで、 上記で得られた負電極を作用極とし、 金属リチウムを対極および参照 極に用い、 電解液としてエチレン力一ポネートとェチルメチルカーボネートを 1 : 1体積比で混合した溶媒に 1 mo 1ZLの濃度に L i PF6を溶解した溶液を 用いて、 負極に所定量のリチウム [Cn (mAh) ]をプリドーピングした。 続いて、 上記プリドーピングした負 ぴ: IE極をセパレーター (多孔性ポリエチレン: 54X3 4mm2) を介して対向させた後、 ^Ιϊ液としてエチレン力一ポネートとジェチリレカ一 ポネートを 1: 1#¾比で混合した溶媒に Imo 1/リットルの «に i PF6を溶 解した溶液を龍した後、 厚さ 1 lmmのアルミニウム '翻旨ラミネートフィルム
(アルミニウム層: 0. 02mm) を夕 本として、 ET (0. 1^J±)真空封止す ることにより、 電池を得た (該電池には負極の開お覚位を測定する為の参照極 (リチウ ム金属) が T又りつけられている) 。
次いで、 上記で作製した電池を 10mAの電流で 4. 2 Vまで充電し、 その後 4. 2 Vの定電圧を印加する定電流定電圧充電を 8時間行った (この時の充電量 を Cp (mAh) とする) 。 充電終了後、 1時間電流を流さない怃態で放置し負極の 開 位を測定した後、 10 mAの定電流で 2. 0 Vまで方:^した。 下記表 10にリチ ゥムプリドーピング量 Cn、 初期充電量(初期充電において正極から放出されたリチウ ム *) Cp、 負極の開方媳^¾び¾¾§量をまとめる。 また、 別途、 金属リチウムを対 極およ 参 ¾に用い、 夜としてエチレンカーボネートとジェチルカーボネートを 1: 1ィ機比で混合した溶媒に 1 mo 1ノリツトルの髓に L i PF6を溶解した溶液 を用いて測定した X及び C p 2の値についても合わせて示す。
表 10
Figure imgf000049_0001
但し、 表 10の参考例 14に示す電池に関しては、 放電初期に平坦部が見られ リチウム金属の析出が確認された。 (実施例 22 23及び参考例 15 )
正動の厚みを 54 とする ^は雄例 20と同様に電池を作成し、 負極開方媳 位、 方^ §量の測定した。下貧3¾2にリチウムプリドーピング量 Cn、 初期充電量(初 期充電において正極から放出されたリチウム M) Cp、 負極の開方爐位、 方 §量、 及び。 p 2の値についても合わせて示す。
表 11
Figure imgf000050_0001
負極解放電位が 10 OmVを超える参考例 15の場合、 容量が十分に得られず 、 実施例 20乃至 23より、 充電時の負極解放電位を 10 OmV以下、 2 OmV 以上とすることにより高容量の電池が得られる。
(実施例 24)
(1) . 実施例 1の 1) と同様にして得られた負極材料粉末 (平均粒径が 5. 5 m 1 m以下の粒子が体積分率 7 % H/C=0. 26、 及び比表面積が 24mVg) の 90質量部と、 導電材であるアセチレンブラック 5質量部、 ノ' インダーであるポリフッ化ビニリデン (PVdF) 5質量部、 及び溶剤である N ーメチルー 2_ピロリドン (NMP) を混合し、 負極合材スラリーを得た。 該ス ラリーを厚さ 14 mの銅箔の片面に塗布し、 乾燥した後、 プレスを行うことに より、 厚さ 94 mの負電極 (合材層厚さ 80 zm) を得た。
(2) . 上記負電極を作用極とし、 金属リチウムを対極および参照極に用い、 電解液 (エチレン力一ポネートとェチルメチルカーボネートを 50: 50体積比 で混合した溶媒に lmo 1Zリツトルの濃度に L i PF6を溶解した溶液) を用 いて、 電気化^ "feルをアルゴンドライボックス中で作製し、 負極での充電 ¾Λ性を諮面 した。 負極での充電 ¾λ性は 2サイクル目に I 面することし、 2サイクル目のリチウム のドーピングは、 リチウム電位に対して 1 mVになるまで 160 mAZ gの電流で行い 、 続いて、 16 OmAZgの速度でリチウム電位に対して 2Vまで脱ドーピングを行な レ 得られた容量で講面した。 その結果を表 12に示す。
(鐘列 25、 例 16乃至 18)
難例 24の (2) における 鞭の溶媒を表 12に示すものに ¾Hした は、 実 施例 24と同様にて電池を作製し、 難例 24と同様な 面を行った。 結果を表 1に示 す。
表 12
Figure imgf000051_0001
表中、 ECはエチレンカーボネート、 PCはプロピレンカーボネート、 DEC はジェチルカ一ポネ一トである。 尚、 これらの実施例、 参考例に示す 5種類の電 解液を温度 0°Cの雰囲気に放置したところ、 参考例 16の電解液において凝固が 見られた。
(実施例 26)
1) . まず、 リチウムニッケル複合酸化物として L iNi 0.80Co0.15A10.05 02、 導電剤である高比表面積天然黒鉛 (BET法比表面積 =25 Og/m2) とを 乾式混合した。 バインダーである PVdFを溶解させた NMP中に、 得られた混合 物を均一に分散させて、 スラリ一1を調製した。 次いで、 スラリー 1を、 集電体と なるアルミニウム箔の両面に塗布し、 乾燥した後、 プレスを行い、 正極を得た。 得 られた正極の密度は、 3. OgZcm3であった。 正極中の固形分質量比は、 リチウ ムニッケル複合酸化物:高比表面積天然黒鉛: PVdF=92: 5: 3となるよう 調製した。 本実施例において、 正極の塗布面積 (Wl XW2) は、 53 X 32mm 2である。 また、 電極には活物質が塗布されていない集電部が設けられている。
2) . 石炭系等方性ピッチ (軟化点 280°C) をコーヒーミルで粉碎し、 粒度 1 mm以下のピッチ原料を得た。 該ピッチ粉末の 1000 gをステンレス鋼製の皿に 入れ、 この皿を電気炉 (炉内有効寸法: 30 OmmX 30 OmmX 30 Omm ) 内に配置して、 熱反応に供した。 熱反応は、 窒素雰囲気下で行い、 窒素流量は 10リツトル/分とした。 熱反応は、 室温から 100Z時間の速度で温度 680 °C (炉内温) となるまで昇温する。 昇温後、 同温度で 12時間保持した後、 自然 冷却により、 温度 60°Cまで冷却し、 反応生成物を電気炉から取り出した。 得ら れた生成物は、 原料の形状を留めておらず、 不定形な不溶不融性固体であった。 収量は 801 gであり、 収率は 80. 1質量%であった。
得られた生成物材料をジエツ 1、ミルで粉砕し、 平均粒度 6 mに分級して負極 材料を得た。 得られた負極材料についての元素分析 (測定機:パーキンエルマ一 社製、 元素分析装置 「PE2400シリーズ I I、 CHNSZO」 ) 及び BET 法による比表面積 (測定機: QANTACHROME社製、 「NOVAl 200 J ) の測定を行った。 水素 Z炭素の原子比 (H/C) は 0. 22であり、 比表面 積は 18m2/gであった。
上記の負極材料と導電剤であるアセチレンブラックを乾式混合した後、 ノィンダ —である PVDFを溶解させた NMP中に均一に分散させ、 スラリー 2を調製した。 次いで、 スラリ一2を集電体となる銅箔の両面に塗布し、 乾燥した後、 プレスを行 ない、 負極を得た。 負極中の固形分比率 (質量比) は、 負極材料:アセチレンブラ ック: PVdF=92 : 3 : 5となるよう調製した。
負極の塗布面積 (Wl XW2) は、 55X 34mm2である。 また、 電極には活 物質が塗布されていない集電部が設けられている。 さらに、 上記と同様の手法によ り片面だけにスラリー 2を塗布し、 片面電極を作製した。 片面電極は、 後述の電極 積層体において外側に配置される。
3) . 上記 1) および 2) 項で得られた正極 9枚、 負極 10枚 (内片面電極 2枚) をセパレー夕 (多孔性ポリエチレン: 56 X 35mm2) を介して、 交互に積層し、 電極積層体を作製した。 この際、 負極表面にはリチウム金属箔が張りつけられてお り (負極活物質 lg当たり 200mAh分) 、 下記 4) 項における電解液注液後に 、 負極に対しプリドーピングされる。
4) . 得られた電極積層体の正極耳部分および負極耳部分をタブ (正極:アルミ二 ゥム、 負極:ニッケル) と溶接し、 電解液としてエチレンカーポネ一卜とジェチル カーボネートを 1 : 1体積比で混合した溶媒に 1 mo 1/Lの濃度に L i PF6を溶 解した溶液を含浸した後、 厚さ 0. 1 lmmのアルミニウム一榭脂ラミネ一トフィ ルム (アルミニウム層: 0. 02mm) を外装体として、 減圧下 (0. 1気圧) 真 空封止することにより、 電池を得た。
5) . この電池を 200mAの電流で 4. 2Vまで充電した後、 4. 2 Vの定電圧 を印加する定電流定電圧充電を合計 8時間行い、続いて 200 mAの定電流で 2. 0Vまで放電した。 得られた電池の容量は 102 OmAhであった。
(参考例 19)
実施例 25の 1 ) において正極の導電剤をアセチレンブラックとした以外は同様 の方法にて正極を作製し、 プレスを行なった。 得られた正極の密度は、 2. 7gZ cm3であった。 それ以外は実施例 1と同様に作製した。 得られた電池容量は、 92 OmAhであった。
(参考例 20)
実施例 26において負極活物質を黒鉛化メソカーボンマイク口ビーズとし、 プリ ドーピングしなかった以外は実施例 26と同様にして電池を試作した。 電池評価は
、 128mAの電流で 4. 2 Vまで充電した後、 4. 2 Vの定電圧を印加する定電 流定電圧充電を合計 8時間行い、 続いて 128 mAの定電流で 2. 5 Vまで放電し た。 得られた電池の容量は 70 OmAhであった。 (参考例 21)
実施例 26において正極活物質を L i Co〇2とし、 実施例 26と同様にして電池 を試作した。 電池評価は、 136mAの電流で 4. 2 Vまで充電した後、 4. 2 V の定電圧を印加する定電流定電圧充電を合計 8時間行い、 続いて 136 mAの定電 流で 2. 0 Vまで放電した。 得られた電池の容量は 780 mA hであつた。
以上、 実施例 26と参考例 19〜21との結果から、 本発明に係る非水系 2次電 池によれば、 上記正極は、 (a) 組成式 L i aN i bC ocA 1 d2 (l≤a≤l . 1、 0. 5≤b<0. 9、 0. 3≤c<0. 5、 0<d≤0. 15、 b + c + d=l) で表されるリチウムニッケル複合酸ィ匕物を含み、 且つ (b) 少なくとも BET法による比表面積が 100m2Zg以上の天然黒鉛を含み、 上記負極は、 ピッチを主成分とする原料を熱反応させることにより得られ、 水素 Z炭素の原子 比 (H/C) が 0. 05〜0. 35であり、 BET法による比表面積が 5 Om2 Z g以下である多環芳香族系炭化水素を含むので、 非水系 2次電池は安定性があ り、 高容量且つサイクル寿命が優れている。 産業上の利用可能性
以上のように本発明は、 負極材料、 その負極、 及びそれを用いた非水系 2次電 池に関するものであり、 特に、 高容量且つ充電受け入れ性に優れた非水系 2次電 池を負極材料及び正極材料を適宜選択することにより提供し、 実用的なに家庭用 分散型蓄電システム、 電気自動車のための蓄電システムなどに関連する非水系 2 次電池の電源を提供する。

Claims

請 求 の 範 囲
1. ピツチを主成分とする原料を熱反応に供することにより得られる多環芳香族 系炭化水素からなる材料であって、 その材料の水素 Z炭素の原子比が 0. 50乃 至 0. 05の範囲にあると共に、 BET法による比表面積が 0. 1乃至 50m2 Zgの範囲にあると共に、 材料の平均粒径が 10 m以下である非水系 2次電池 用負極材料。
2. 上記材料の平均粒径が 6 乃至 1 の範囲にある請求の範囲の第 1項に 記載の負極材料。
3. 上記材料は、 その粒度分布における体積積算が 10%にある径が 2m 以下 であり、 該 90%にある径が 10 Aim以下である請求の範囲の第 1項又は第 2項 に記載の負極材料。
4. 上記材料の水素 Z炭素の元素比が 0. 40乃至 0. 15の範囲にあることを 特徴とする請求の範囲の第 1項又は第 2項に記載の負極材料。
5. 上記材料の BET法による比表面積が 0. 1乃至 30m2Zgの範囲にある 請求の範囲の第 4項に記載の負極材料。
6. B J H法にて測定した 20〜 50 Aの範囲にある上記材料の細孔量が 1 X 10— 3 c cZg以下である請求の範囲の第 4項に記載の負極材料。
7. 上記ピッチがナフタレンピッチを主成分とする請求の範囲の第 1項に記載の 負極材料。
8. 上記材料の X線広角回折法による (002) 面の面間隔 d 002が 0. 34 7 nm未満である請求の範囲の第 7項に記載の負極材料。
9. 上記材料の水素/炭素の元素比が 0. 40乃至 0. 20の範囲にあることを 特徴とする請求の範囲の第 7又は 8項に記載の負極材料。
10. 上記材料の平均粒径が 6 zm乃至 1 mの範囲にある請求の範囲の第 7項 又は第 8項に記載の負極材料。
11. 上記材料の BET法による比表面積が 0. 1乃至 30m2/gの範囲にあ る請求の範囲の第 7項又は第 8項に記載の負極材料。
12. 上記材料の BET法による比表面積が 0. 1乃至 10m2Zgの範囲にあ る請求の範囲の範囲の第 10項に記載の負極材料。
13. 上記材料の水素/炭素の原子比 (HZC) が 0. 33乃至0. 23の範囲 にあり、 上記材料の真密度が 1. 40 g/cm3以上である請求の範囲の第 7項 又は第 8項に記載の負極材料。
14. 上記ピッチが石炭系等方性ピッチを主成分とする請求の範囲の第 1項に記 載の負極材料。
15. 上記材料の平均粒径が 6 m乃至 1 mの範囲にある請求の範囲の第 14 項に記載の負極材料。
16. 上記材料は、 その粒度分布における体積積算が 10%にある径が 2m 以 下であり、 該 90%にある径が 10 m以下である請求の範囲の第 14項又は第 15項に記載の負極材料。
17. 上記材料の真密度が 1. 45 gZ cm3以上であり、 また、 上記材料の水 素/炭素の原子比 (H/C) が 0. 25乃至0. 18の範囲にある請求の範囲の 第 14又は第 15項に記載の負極材料。
18. 上記材料の BET法による比表面積が 0. 1乃至 30m2/gの範囲にあ る請求の範囲の第 17項に記載の負極材料。
19. 非水系 2次電池用負極材料の製造方法において、 ピッチを主成分とする原 料を熱反応に供して多環芳香族炭化水素を生成して粉碎し、 また平均粒径を 10 m以下とし、 水素 炭素の原子比が 0. 5乃至 0. 05の範囲で、 且つ BET 法による比表面積が 0. 1乃至 50m2Zgの範囲になると共に、 材料の平均粒 径が 10 /zm以下になるように製造する非水系 2次電池用負極材料の製造方法。
20. 上記原料を不融化処理することなく熱反応に供する請求の範囲の第 19項 に記載の負極材料の製造方法。
21. ピッチを主成分とする原料を熱反応に供することにより得られる多環芳香 族系炭化水素からなる材料であつて、 その材料の水素/炭素の原子比が 0. 50 乃至 0. 05の範囲にあると共に、 BET法による比表面積が 0. 1乃至 50m 2Zgの範囲にあると共に、 材料の平均粒径が 10 / m以下である負極材料、 及 び導電材をバインダ一で成形した非水系 2次電池用負極。
22. 上記負極材料の目付量が 6m gZ cm2以下である請求の範囲の第 21項 に記載の負極。
23. 上記成形材の密度が 0. 85〜1. 3 g/cm3の範囲にある請求の範囲 の第 21項に記載の負極。
24. 上記成形材の密度が 0. 85〜1. 3 gZcm3の範囲にある請求の範囲 の第 21又は第 22項に記載の負極。
25. 上記成形材の電気導電度が 10— 3 SZ cm以上である請求の範囲の第 2 1項〜第 23項に記載の負極。
26. 上記負極材料のピッチが石炭系等方性ピッチを主成分とする請求の範囲の 第 21項〜第 23項に記載の負極。
27. 正極、 負極、 セパレー夕、 及びリチウム塩を含む非水系電解質を備えた非 水系 2次電池において、 ピッチを主成分とする原料を熱反応に供することにより 得られる多環芳香族系炭化水素からなる材料であって、 その材料の水素 /炭素の 原子比が 0. 50〜0. 05であり、 BET法による比表面積が 50m2/g以 下である多環芳香族系炭化水素を含むと共に、 材料の平均粒径が 10 m以下で ある負極材料を含む負極を用いた非水系 2次電池。
28. 上記材料の水素/炭素の原子比が 0. 35〜0. 05である請求の範囲の 第 27項に記載の非水系 2次電池。
29. 上記負極が上記負極材料と、 導電材とをバインダーに分散して成形してな る請求の範囲の第 27項に記載の非水系 2次電池。
30. 上記正極がリチウムを電気化学的に吸蔵及び放出し得る材料である請求の 範囲の第 27項に記載の非水系 2次電池。
31. 上記正極における正極活物質が N iを含むリチウム複合酸化物である請求 の範囲の第 30項に記載の非水系 2次電池。
32. 上記正極はその正極活物質が N iを含むリチウム複合金属酸化物であり、 組 成式 L i aN i bC ocA 1 d2 (l≤a≤ 1. 1、 0. 5≤b<0. 9、 0. 3 ≤c<0. 5、 0<d≤0. 15、 b + c+d=l) で表されるリチウムニッケ ル複合酸化物からなる請求の範囲の第 27項乃至第 30項の何れかに記載の非水 系 2次電池。
33. 上記正極は、 少なくとも BET法による比表面積が 100m2Zg以上の 天然黒鉛を含む請求の範囲の第 32項に記載の非水系 2次電池。
34. 上記天然黒鉛が上記複合酸化物の 100質量部に対して 2乃至 10質量部 の範囲で含まれていることを特徴とする請求の範囲の第 33に記載の非水系 2次 電池。
35. 上記負極における充電時負極開放電位がリチウム電位に対し 10 OmV以下、 2 0 mV以上である請求の範囲の第 30項に記載の非水系 2 池。
36. 上記負極において、 予め定めたリチウム量がプリドーピングされ、 該リチ ゥム量を Cn (mAh) とし、 また初期充電における正極活物質から放出可能な リチウム量を初期充電量 Cp (mAh) とすると、 負極へ Cn + Cp (mA ) のリチウムをドーピングした際の上記開放電位がリチウム電位に対し 10 OmV 以下、 2 OmV以上となるように上記 Cn量を設けてなることを特徴とする請求 の範囲の第 35項に記載の非水系 2次電池。
37. 上記 Cn + Cp (mA ) のリチウム量をドーピングした時の負極での初 期効率を Xとし、 初期放電において正極に吸臓されるリチウム量を Cp 2 (mA h) とすると、 上記 Cp 2と (Cn + Cp) とは、 Cp 2 (Cn + Cp) ≤x の関係を満たすことを特徴とする請求の範囲の第 35項又は第 36項に記載の非 水系 2次電池。
38. 上言 3IE極における初期充電における正極活物質から放出可能なリチウム量を初期 充電量 Cp (mAh) とすると共に、 上記正極活物質量を Wp (g) とすると、 180 <CpZWpであることを樹敫とする請求の範囲の第 35又は第 36に記載の非水系 2 ¾kH池。
39. 上記非水系電解質は、 溶媒としてエチレンカーボネートと鎖状カーボネートを 少なくとも含み、 該エチレン力一ポネ一トが該溶媒の体積百分率で 10 %以上、 70% 以下含有するリチウム塩の電觭夜である請求の範囲の第 27〜第 31項の何れかに記載 の非水系 2^¾
PCT/JP2003/014033 2003-06-24 2003-10-31 負極材料、負極、その負極及び正極からなる非水系2次電池 WO2004114443A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003280702A AU2003280702A1 (en) 2003-06-24 2003-10-31 Negative electrode material, negative electrode, nonaqueous secondary cell composed of the negative electrode and positive electrode

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003179897A JP2005019092A (ja) 2003-06-24 2003-06-24 非水系2次電池用負極材料、その製造方法、及びその2次電池
JP2003-179898 2003-06-24
JP2003179898A JP2005019093A (ja) 2003-06-24 2003-06-24 非水系2次電池用負極材料、その製造方法、及びその2次電池
JP2003-179900 2003-06-24
JP2003179900A JP2005019095A (ja) 2003-06-24 2003-06-24 非水系2次電池
JP2003179896A JP2005019091A (ja) 2003-06-24 2003-06-24 非水系2次電池用負極材料、その製造方法、及びその2次電池
JP2003-179897 2003-06-24
JP2003-179896 2003-06-24

Publications (1)

Publication Number Publication Date
WO2004114443A1 true WO2004114443A1 (ja) 2004-12-29

Family

ID=33545466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014033 WO2004114443A1 (ja) 2003-06-24 2003-10-31 負極材料、負極、その負極及び正極からなる非水系2次電池

Country Status (3)

Country Link
AU (1) AU2003280702A1 (ja)
TW (1) TW200501484A (ja)
WO (1) WO2004114443A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
US10797319B2 (en) 2014-08-08 2020-10-06 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290848A (ja) * 1992-04-10 1993-11-05 Mitsubishi Kasei Corp 二次電池及びその製造方法
JPH05307959A (ja) * 1992-04-30 1993-11-19 Mitsubishi Petrochem Co Ltd 電極材料およびその製造方法
JPH06168725A (ja) * 1992-06-01 1994-06-14 Toshiba Corp リチウム二次電池
JPH0922689A (ja) * 1995-07-04 1997-01-21 Haibaru:Kk 非水電解液二次電池
JPH09147839A (ja) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池用負極の製造法
JPH09283117A (ja) * 1996-04-12 1997-10-31 Toyota Motor Corp リチウムイオン二次電池
JPH10236809A (ja) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd 黒鉛粒子及びその製造法、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びその製造法並びにリチウム二次電池
JPH10284056A (ja) * 1997-04-01 1998-10-23 Seiko Instr Inc 非水電解質二次電池
JP2002063892A (ja) * 2000-08-14 2002-02-28 Kansai Research Institute 非水系二次電池
JP2003017055A (ja) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2003017132A (ja) * 2001-07-02 2003-01-17 Kansai Research Institute コイン型非水系二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290848A (ja) * 1992-04-10 1993-11-05 Mitsubishi Kasei Corp 二次電池及びその製造方法
JPH05307959A (ja) * 1992-04-30 1993-11-19 Mitsubishi Petrochem Co Ltd 電極材料およびその製造方法
JPH06168725A (ja) * 1992-06-01 1994-06-14 Toshiba Corp リチウム二次電池
JPH0922689A (ja) * 1995-07-04 1997-01-21 Haibaru:Kk 非水電解液二次電池
JPH09147839A (ja) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池用負極の製造法
JPH09283117A (ja) * 1996-04-12 1997-10-31 Toyota Motor Corp リチウムイオン二次電池
JPH10236809A (ja) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd 黒鉛粒子及びその製造法、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びその製造法並びにリチウム二次電池
JPH10284056A (ja) * 1997-04-01 1998-10-23 Seiko Instr Inc 非水電解質二次電池
JP2002063892A (ja) * 2000-08-14 2002-02-28 Kansai Research Institute 非水系二次電池
JP2003017055A (ja) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2003017132A (ja) * 2001-07-02 2003-01-17 Kansai Research Institute コイン型非水系二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
US10797319B2 (en) 2014-08-08 2020-10-06 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode

Also Published As

Publication number Publication date
AU2003280702A1 (en) 2005-01-04
TW200501484A (en) 2005-01-01

Similar Documents

Publication Publication Date Title
JP7637659B2 (ja) 二次電池
Rahman et al. A review on porous negative electrodes for high performance lithium-ion batteries
KR101921768B1 (ko) 리튬이온 이차전지용 음극재, 리튬이온 이차전지용 음극 및 리튬이온 이차전지
TWI504562B (zh) 非水電解質二次電池負極用碳質材料及其製造方法
CN109478641B (zh) 负极活性材料及包含其的负极
Samuel et al. Decoration of MnO nanocrystals on flexible freestanding carbon nanofibers for lithium ion battery anodes
JP6256346B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
EP3364483A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
Huang et al. Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries
US20160190570A1 (en) Anode active material for lithium secondary battery, composition for anode including same, and lithium secondary battery
CN103492316A (zh) 复合石墨颗粒及其用途
KR20140085822A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
CA2889306A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI705605B (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池用負極、鋰離子二次電池、負極活性物質的製造方法、以及鋰離子二次電池的製造方法
JP6543428B1 (ja) 二次電池用負極活物質および二次電池
KR102176590B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
JP6297746B2 (ja) 電池電極用炭素質成形体、及びその製造方法
JP2015210959A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2016140368A1 (ja) 非水電解質二次電池用混合負極材料の製造方法及びその製造方法によって得られる非水電解質二次電池用混合負極材料
JP2015130324A (ja) 非水電解液二次電池
WO2011105444A1 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
Akhtar et al. A lithium-ion rechargeable full cell using the flower-like Na3V2 (PO4) 3@ C cathode and Li4Ti5O12 anode
JP2013187016A (ja) 複合材料、複合材料の製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
Yang et al. Hierarchical porous N-doped carbon nanofibers with encapsulated Li3VO4 nanoparticles for lithium-ion storage
WO2013099409A1 (ja) リン酸鉄の製造方法、リン酸鉄リチウム、電極活物質、及び二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase