Nothing Special   »   [go: up one dir, main page]

WO2004021418A1 - Temperature control method and device, and exposure method and apparatus - Google Patents

Temperature control method and device, and exposure method and apparatus Download PDF

Info

Publication number
WO2004021418A1
WO2004021418A1 PCT/JP2003/010757 JP0310757W WO2004021418A1 WO 2004021418 A1 WO2004021418 A1 WO 2004021418A1 JP 0310757 W JP0310757 W JP 0310757W WO 2004021418 A1 WO2004021418 A1 WO 2004021418A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gas
temperature control
information
space
Prior art date
Application number
PCT/JP2003/010757
Other languages
French (fr)
Japanese (ja)
Inventor
Dai Arai
Tomoyuki Yoshida
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2004532707A priority Critical patent/JP4273421B2/en
Priority to AU2003257538A priority patent/AU2003257538A1/en
Publication of WO2004021418A1 publication Critical patent/WO2004021418A1/en
Priority to US11/066,008 priority patent/US20050175497A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/167Clean rooms, i.e. enclosed spaces in which a uniform flow of filtered air is distributed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/108Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the present invention relates to a temperature control technique for controlling a temperature in a predetermined space, and relates to various devices such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, a plasma display device, and a thin film magnetic head. It is suitable for use in controlling the temperature in an airtight chamber (chamber or the like) in which an exposure apparatus used in a lithography process for manufacturing or a part of the mechanism is housed. Further, the present invention relates to an exposure technique and a device manufacturing technique using the temperature control technique.
  • an exposure apparatus is used to transfer a pattern formed on a reticle as a mask onto a wafer (or a glass plate or the like) coated with a photosensitive material as a substrate.
  • the temperature of the environment (atmosphere) in which the exposure apparatus is installed is set so as to transfer the pattern to each layer on the wafer with high accuracy and to maintain high overlay accuracy between different layers. It is necessary to perform exposure in a state where is set within the allowable range with respect to the target temperature. For this reason, the exposure apparatus has conventionally been installed in an environment chamber in which a dust and impurities are removed and a gas whose temperature is precisely controlled is circulated.
  • the temperature of a gas that is a mixture of gas collected by circulating through the environmental chamber and gas taken in from the outside is controlled by a temperature control unit, and the temperature is controlled by the temperature control unit.
  • Controlled gas was supplied into the environmental chamber through a dust filter.
  • the temperature of the gas supplied into the environmental chamber was set to the target temperature by feeding back the measured value of the temperature sensor installed in the environmental chamber to the temperature control unit.
  • the exposure chamber remains in the environment chamber. Only the measured value from the installed temperature sensor was fed back to the temperature control unit to control the air temperature.
  • the inventors of the present invention have confirmed that one of the factors that lowers the temperature control accuracy is that the chemical filter slightly generates or absorbs heat depending on the level of humidity of the gas passing therethrough.
  • the degree of integration and fineness of semiconductor elements it is necessary to increase the control accuracy of the temperature inside the environmental chamber. In such a case, the required control accuracy may not be achieved.
  • the necessary temperature control accuracy is similarly reduced. There is a risk that it will not be available.
  • the wavelength of the exposure light has been shifted from a KrF excimer laser (wavelength: 248 nm) to an ArF excimer laser (wavelength: 193 nm), which is almost in the vacuum ultraviolet region. Attempts are being made to use shorter wavelength F 2 lasers (wavelength 157 nm).
  • F 2 lasers wavelength 157 nm
  • Supply gases such as nitrogen gas and rare gases (helium, neon, argon, krypton, xenon, radon) that are highly removed and have low absorption for short wavelength light (hereinafter referred to as “purge gas”). It is desirable to do.
  • purge gas When the purge gas is supplied to the optical path of the exposure light as described above, the optical path of the exposure light is, for example, surrounded by a sub-chamber of the illumination optical system, a reticle chamber surrounding the reticle stage system, a space in the projection optical system, and a wafer stage system.
  • the present invention has as its first object to provide a temperature control technique and an exposure technique that can enhance the temperature control accuracy when performing temperature control of a predetermined space using a temperature-controlled gas. Aim.
  • the present invention provides a temperature control technology and an exposure technology that can obtain high temperature control accuracy even when a device that causes thermal fluctuation depending on the gas state is used when using a temperature-controlled gas. Is the second purpose.
  • the temperature control method provides a temperature control method for controlling the temperature in a predetermined space (32) using a gas which is temperature-controlled and which has passed through a chemical filter (53).
  • the temperature of the gas is controlled based on the temperature information of the gas and the information of at least one or more physical quantities that cause a change in the temperature of the gas, and the gas is supplied to the space. It contains information on heat absorption or heat generation in the chemical filter due to the humidity of the gas supplied to the chemical filter.
  • the present invention it is possible to predict the amount of heat radiation and the amount of heat absorbed in the path (chemical fill) on the way where the gas is supplied to the space by using the above information on the physical quantity.
  • the optimal heating of the gas to maintain the temperature in the space within the allowable range for the target temperature, for example, is performed.
  • the amount or endotherm can be set sequentially. As a result, the temperature control accuracy in the space is improved.
  • At least one of the pressure and the flow rate of the gas can be used as the information of the physical quantity.
  • the information on heat absorption or heat generation in the chemical filter include the humidity of the gas supplied to the chemical filter. For example, if the chemical filter absorbs heat when the humidity of the gas passing through it is high, by raising the temperature of the gas in advance when the humidity is high, the temperature control accuracy in the space is improved.
  • the exposure method according to the present invention is an exposure method using the temperature control method according to the present invention, wherein the first object (13) is illuminated with an exposure beam, and the second object is irradiated with the exposure beam through the first object.
  • the temperature of the space (31 to 33, 18) including at least a part of the optical path of the exposure beam of the exposure apparatus for exposing the object (19) or the space communicating with the space is determined by the temperature control method. Control. According to the present invention, it is possible to improve the temperature control accuracy of the first object or the second object.
  • a temperature control device is a temperature control device that controls the temperature in a predetermined space (32) using a gas that is temperature-controlled and that has passed through a chemical filter (53).
  • a gas supply unit 35, 45, 75A) that supplies gas for temperature control to the space, a temperature sensor (39B) that detects temperature information in the space, and a temperature of the gas
  • a physical quantity sensor (49) for detecting information of at least one physical quantity that causes a change
  • a temperature controller (52) for controlling the temperature of the gas based on the temperature sensor and the detection result of the physical quantity sensor
  • the information on the physical quantity includes information on heat absorption or heat generation in the chemical filter caused by the humidity of the gas supplied to the chemical filter.
  • the accuracy of temperature control in the space is improved by using the detection result of the physical quantity sensor together with the detection result of the temperature sensor. For example, By feeding back the detection result of the temperature sensor to the temperature control unit and feeding forward the detection result of the physical quantity sensor to the temperature control unit, the temperature in the space can be maintained at the target value with high accuracy.
  • At least one of the pressure and the flow rate of the gas can be used as the information of the physical quantity.
  • the physical quantity sensor (49) detects humidity information of the gas supplied to the chemical fill.
  • the temperature control accuracy is improved by using the humidity information.
  • an exposure apparatus illuminates a first object (13) with an exposure beam, and exposes a second object (19) via the first object with the exposure beam.
  • the temperature control device of the present invention and the temperature of the space (31 to 33, 18) including at least a part of the optical path of the exposure beam, or the temperature of the space communicating with the space is provided to the temperature control device. Control.
  • the exposure apparatus of the present invention it is possible to improve the temperature control accuracy of the first object or the second object, or a driving mechanism of the first object or the second object. Therefore, the positioning accuracy and the overlay accuracy of the first object or the second object can be improved.
  • the device manufacturing method according to the present invention includes a step of transferring and exposing a device pattern formed on a mask as a first object onto a substrate as a second object using the exposure apparatus of the present invention. .
  • the use of the exposure apparatus of the present invention improves overlay accuracy and the like, so that various devices can be mass-produced with high accuracy.
  • FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus according to an example of an embodiment of the present invention.
  • FIG. 2 is a diagram showing the purge gas supply mechanism in FIG.
  • FIG. 3 is a diagram showing an example of a temperature control operation in the purge gas supply mechanism of FIG.
  • FIG. 4 is a diagram illustrating an example of a device manufacturing process using the projection exposure apparatus according to the embodiment of the present invention.
  • the present invention provides a method for controlling the temperature in a clean room in which a lithography system is housed, a method for controlling the temperature in an environment chamber in which an exposure apparatus is housed as a whole,
  • the present invention can be widely applied to a case where a gas is divided into closed rooms and a gas having a high transmittance and a temperature is controlled is supplied to each of the closed rooms.
  • a case will be described in which the present invention is applied to a step-and-scan type projection exposure apparatus having an airtight chamber to which a temperature-controlled gas is supplied.
  • FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus of this example.
  • the projection exposure apparatus of this example uses an Ar F excimer laser having an oscillation wavelength of 193 nm as an exposure light source 1.
  • Light that can be regarded as almost vacuum ultraviolet light is absorbed by impurities such as oxygen, water vapor, hydrocarbon-based gas (carbon dioxide, etc.), organic substances, and halides that are present in the normal atmosphere.
  • impurities such as oxygen, water vapor, hydrocarbon-based gas (carbon dioxide, etc.), organic substances, and halides that are present in the normal atmosphere.
  • impurities such as oxygen, water vapor, hydrocarbon-based gas (carbon dioxide, etc.), organic substances, and halides that are present in the normal atmosphere.
  • the gas in the optical path of the exposure beam is nitrogen (N 2 ) gas, which is a gas through which the exposure beam passes, or helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon ( It is desirable to replace the gas with a gas that is chemically stable such as Xe) or a rare gas made of radon (Rn) and has a low impurity concentration (hereinafter referred to as “purge gas”).
  • nitrogen gas is used as an example of the purge gas.
  • the exposure beam for example, the F 2 laser beam (wavelength 1 57 nm), Kr 2 laser beam (wavelength 147 nm), or A r 2 laser beam may be used (wavelength 1 26 nm) or the like. Further, the present invention can be applied to a case where KrF excimer laser light (wavelength: 248 nm) is used as an exposure beam.
  • a light source that generates harmonics of a solid-state laser such as a YAG laser, or a single-wavelength laser in the infrared or visible range oscillated by a DFB semiconductor laser or fiber laser, for example, erbium
  • a device that amplifies (Er) (or both erbium and ytterbium (Yb)) with a doped fiber amplifier and converts the wavelength to ultraviolet light using a nonlinear optical crystal can also be used.
  • Nitrogen gas can be used as a gas through which the exposure beam passes (purge gas) up to a wavelength of about 150 nm even in the vacuum ultraviolet region, but it has a wavelength of 150 nm.
  • the light substantially acts as an impurity with respect to light having a light intensity of less than about. Therefore, it is desirable to use a rare gas as a purge gas for an exposure beam having a wavelength of about 150 nm or less.
  • rare gases helium gas is desirable from the viewpoints of stability of refractive index and high thermal conductivity.However, helium is expensive. May be used.
  • the purge gas not only a single kind of gas may be supplied, but also a mixed gas such as a gas obtained by mixing nitrogen and helium at a predetermined ratio may be supplied.
  • the exposure beam is a KrF excimer laser (wavelength: 248 nm)
  • air having a low concentration of impurities such as water vapor, organic substances, and halides is used as the purge gas. May be supplied.
  • exposure light (illumination light for exposure) IL composed of laser light having a wavelength of 193 nm as an exposure beam emitted from the exposure light source 1 is emitted by the shaping optical system 2 in the first sub-chamber 31.
  • the cross-sectional shape is shaped and the light enters the fly-eye lens 3 as an optical integrator (uniformizer or homogenizer) for uniformizing the illuminance distribution.
  • the pupil plane IP optical Fourier transform plane with respect to the reticle pattern surface
  • a variable aperture stop 4 for switching to illumination or the like is arranged in a rotating manner by a driving motor 43.
  • Exposure light I L emitted from fly-eye lens 3 passes through variable aperture stop 4, first relay lens 5, mirror 6 for bending optical path 6, second relay lens 7, and field stop.
  • the illumination field of view is defined as a narrow rectangular area.
  • the exposure light IL that has passed through the field stop 8 passes through the first condenser lens 9, the second condenser lens 10, the mirror 11 for bending the optical path, and the third condenser lens 12, and passes through the reticle 13 as a mask.
  • the pattern area of the pattern surface (lower surface) is illuminated.
  • a shaping optical system 2 to a condenser lens 12 are housed in a sub-chamber 31 as a highly airtight box-shaped airtight chamber.
  • the exposure light IL transmitted through the reticle 13 passes through a projection optical system 18 onto a wafer 19 as a substrate to project a pattern of the reticle 13 onto a projection magnification 0 (3 is 1/4, 1/1). 5) to form a reduced image.
  • the wafer 19 is, for example, a semiconductor such as silicon or a disk-shaped substrate such as SOI (silicon on insulator), on which a photoresist is applied.
  • SOI silicon on insulator
  • the Z axis is taken parallel to the optical axis PAX of the projection optical system 18, the X axis is taken parallel to the plane of Figure 1 in a plane perpendicular to the Z axis, and the Y axis is taken perpendicular to the plane of Figure 1 explain.
  • the illumination area on the reticle 13 has a slit shape elongated in the Y direction, and the scanning direction of the reticle 13 and the wafer 19 at the time of exposure is the X direction.
  • reticle 13 is held on reticle stage 14, and reticle stage 14 continuously moves reticle 13 in the X direction on reticle base 15, and slightly moves in the X, Y, and rotation directions.
  • the position and rotation angle of the reticle stage 14 are measured by a moving mirror 16 fixed to the end of the reticle stage 14 and a laser interferometer in the reticle stage drive system 17. Based on the measured values, the reticle The stage drive system 17 controls the operation of the reticle stage 14.
  • a reticle stage system is composed of a reticle stage 14, a reticle base 15 and the like, and this reticle stage system is housed in a reticle room 32, which is a highly airtight box-shaped airtight room.
  • the wafer 19 is held on a wafer stage 20 via a wafer holder (not shown), and the wafer stage 20 continuously moves the wafer 19 in the X direction on the wafer base 21 and, if necessary, The wafer 19 is step-moved in the X and Y directions.
  • the position and rotation angle of the wafer stage 20 are measured by a moving mirror 22 fixed to the end of the wafer stage 20 and a laser interferometer in the wafer stage drive system 23, and based on the measured values, the wafer stage The drive system 23 controls the operation of the wafer stage 20.
  • the wafer stage 20 is configured to use an auto focus method. By controlling the focus position and tilt angle of 19, the surface of wafer 19 is continuously exposed during exposure. Adjust to the image plane of the shadow optical system 18.
  • a wafer stage system is composed of the wafer stage 20 and the wafer base 21 and the like, and this wafer stage system is housed in a wafer chamber 33 which is a box-shaped airtight chamber with high airtightness.
  • the wafer stage 20 After the next shot area is moved to the scanning start position by the step movement, the reticle stage 14 and the wafer stage 20 are synchronously scanned in the X direction using the projection magnification ratio of the projection optical system 18 as the speed ratio, that is, The operation of scanning the reticle 13 and the shot area on the wafer 19 while maintaining the imaging relationship with the shot area is repeated by the step-and-scan method.
  • the pattern images on the reticle 13 are sequentially transferred to the respective shot areas on the wafer 19.
  • the projection exposure apparatus of this embodiment is provided with a purge gas supply mechanism for replacing gas in the space including the optical path of the exposure light IL with a gas (purge gas) through which the exposure light IL passes.
  • a purge gas supply mechanism for replacing gas in the space including the optical path of the exposure light IL with a gas (purge gas) through which the exposure light IL passes.
  • a gas purge gas
  • the space between the optical members 8 is also a lens chamber as an airtight chamber.
  • a high-purity purge gas is supplied into the sub-chamber 31, the reticle chamber 32, and the wafer chamber 33, and the high-purity purge gas is also supplied to each lens chamber in the projection optical system 18.
  • Covers 40, 41, and 42 which are flexible and have excellent gas barrier properties, are provided at the boundary with the upper part of the. Since these boundaries are substantially sealed by the covers 40 to 42, and the optical path of the exposure light is almost completely sealed, the cover includes external impurities on the optical path of the exposure light. There is almost no gas contamination, and the amount of exposure light attenuation is extremely low.
  • the purge gas supply mechanism of this example includes a gas supply source 35 such as a gas cylinder that accumulates a high-purity purge gas, a purge gas collected from each hermetic chamber by a suction pump, and a high-purity gas supplied from the gas supply source 35.
  • Recovery mixing device for mixing with purge gas 36 The system is composed of an air supply device 38 that controls the temperature of the purge gas and supplies it to each hermetic chamber, and a control unit 34 (see Fig. 2) composed of a computer that supervises and controls the operation of these devices.
  • the gas supply source 35 may be, for example, a device that liquefies and stores high-purity nitrogen and supplies it after vaporization as necessary.
  • the recovery mixing device 36 converts the gas in the sub-chamber 31, the reticle chamber 32 and the wafer chamber 33 through an exhaust pipe with valves VII, V9, and V10 and an exhaust pipe 75A, respectively, to a substantially steady pressure near the atmospheric pressure.
  • the gas in the plurality of lens chambers of the projection optical system 18 is collected by the gas flow control via the plurality of branched exhaust pipes 71A, the exhaust pipe 75B, and the valve V3. .
  • gas flow control a purge gas having a flow rate substantially equal to the flow rate of the gas exhausted from each airtight chamber is supplied to each airtight chamber.
  • the air supply device 38 is composed of a dust filter for removing fine particles such as a HEPA filter (high efficiency particulate air-filter) or ULPA filter (ultra low penetration air-filter), and a chemical filter such as ammonia or organic gas.
  • a dust filter for removing fine particles such as a HEPA filter (high efficiency particulate air-filter) or ULPA filter (ultra low penetration air-filter)
  • a chemical filter such as ammonia or organic gas.
  • 68A and 68B containing chemical filters for removing chemical impurities, and a purge gas (detailed later) whose temperature is controlled passes through the filters 68A and 68B. As a result, the impurities including the fine particles are removed.
  • the purge gas passing through the filter section 68A is supplied to the sub-chamber 31, the reticle chamber 32, via the air supply pipe 69A with the valve V1, and the branched air supply pipes with the valves V7, V5 and V6 respectively.
  • the purge gas supplied into the wafer chamber 33 and passed through the filter section 68B is supplied to the projection optical system 18 through an air supply pipe 69B having a valve V8 and an air supply pipe 70A having a plurality of branch pipes. It is supplied to a plurality of lens chambers.
  • the valves V1 to V11 are valves that can be opened and closed electromagnetically, and their opening and closing operations are controlled by the control unit 34 (see FIG. 2) independently of each other.
  • the control unit 34 can control not only the opening and closing of the valve but also the size of the valve diameter (amount of throttle of the valve). By controlling the size of the valve diameter, only the supply of the purge gas is shut off. In addition, the supply amount (flow rate per hour) of the purge gas can be controlled. Then, the gas collection operation by the collection and mixing device 36, the purge gas supply operation from the air supply device 38, the opening and closing operations of the valves V1, V5 to V8, and the size of the valve diameter, A gas having a desired flow rate is supplied to the gas chamber at a desired flow rate in any of the hermetic chambers of the sub-chamber 31, the reticle chamber 32, the wafer chamber 33, and the plurality of lens chambers in the projection optical system 18. It is configured so that air can be supplied by a flow control method.
  • the gas in the plurality of lens chambers of the projection optical system 18 may be evacuated in a stepwise manner by a suction method involving decompression to a certain degree of vacuum.
  • temperature sensors 39A to 39D for detecting the temperature of the purge gas in the respective chambers are provided. Is installed, and temperature information in each airtight room is continuously measured at a predetermined sampling rate by the temperature sensors 39A to 39D. These measurement data are supplied to the control unit 34 in FIG.
  • the temperature of the purge gas in each hermetic chamber measured by the temperature sensors 39A to 39D is within a predetermined allowable range (for example, ⁇ 0.01) with respect to a predetermined target temperature (for example, 23 ° C.). Purge gas is supplied into each hermetic chamber so that it falls within 00.
  • FIG. 2 only the reticle chamber 32 of the plurality of airtight chambers is illustrated and the reticle chamber is illustrated. Pipes not communicating with 32, and valves and branched pipes are not shown for convenience of explanation.
  • a control unit 34 controls the operation of each unit under the control of a main control system 24 that controls the overall operation of the exposure apparatus.
  • the gas collected by suction and the high-purity purge gas supplied from the gas supply source 35 through the pipe 72 are mixed in the mixing section 45 (provided with a suction pump). ), And the mixed gas is supplied to a refrigerator 47 via a pipe 46A, where the temperature is once lowered.
  • the mixing section 45 includes a suction pump that sucks gas from an exhaust pipe 75A, and a blower fan that blows the mixed gas through a pipe 46A.
  • the present invention can also be applied to a system that does not reuse gas (fluid) circulated in an airtight chamber (predetermined space). Assuming that the target temperature in the reticle chamber 32 as an airtight chamber to be temperature-controlled is 23 ° C, the temperature of the mixed gas in the refrigerator 47 can be lowered to, for example, 2 Ot: several degrees lower than that. .
  • the gas that has passed through the refrigerator 47 receives information on physical quantities (in this example, flow rate, temperature, humidity, and pressure) that may cause a temperature change of the purge gas in the reticle chamber 32 via the pipe 46B. It is supplied to the measuring unit for measuring.
  • the measuring section includes a flow meter 48 for measuring the flow rate of the gas in the pipe 46 B, a pipe 73 installed between the flow meter 48 and the air supply device 38, and a pipe 73. It comprises a humidity sensor 49, a temperature sensor 50, and a sensor unit including a pressure sensor 51 installed inside. Information on the flow rate measured by the flow meter 48, and the humidity, temperature, and pressure (barometric pressure) of the gas flowing through the pipe 73 measured by the humidity sensor 49, temperature sensor 50, and pressure sensor 51 Information is supplied to the control unit 34 at a predetermined sampling rate.
  • the gas whose physical quantity information has been measured is supplied to an air supply device 38 via a pipe 73.
  • the gas supplied via the pipe 73 is heated to a predetermined temperature by a heater 52 including a heater, and the heated gas is supplied to a pipe 46C via an ammonia organic system.
  • the gas is supplied to the intake pipe 69A as a high-purity and temperature-controlled purge gas through a chemical filter 53 for removing chemical impurities such as gas and a dust-proof filter 54.
  • the chemical filter 53 and the dust filter 54 correspond to the filter section 68 A in FIG.
  • the purge gas supplied to the air supply pipe 69 A is supplied into the reticle chamber 32. Temperature information measured by a temperature sensor 39 B in the reticle chamber 32 is also supplied to the control unit 34.
  • the heater 52 corresponds to the “temperature controller” of the present invention.
  • the temperature of the gas is once lowered by the refrigerator 47, and then the gas is heated to the target temperature by the heater 52, a relatively simple control of only controlling the heating amount is performed. Response speed and high temperature control accuracy can be obtained.
  • the refrigerator 47 may be omitted, and a temperature controller capable of performing both heating and heat absorption may be provided instead of the heater 52. In this configuration, the temperature control becomes complicated, but the mechanism can be simplified.
  • the substances that are removed in Chemical Filler 53 are used in projection exposure equipment.
  • a substance that adheres to an optical element and causes fogging a substance that floats in an optical path of an exposure beam and changes transmittance (illuminance) or illuminance distribution of an illumination optical system or a projection optical system, and a wafer surface ( (Photoresist) and the like, which deforms the pattern image after development processing.
  • an activated carbon filter for example, Gigasoap (trade name) manufactured by NITTA CORPORATION
  • an ion exchange membrane type filter for example, Ebara Corporation
  • EP IX filter trade name
  • zeolite filter or a filter combining these.
  • These chemical filters also remove silicon-based organic substances such as siloxane (a substance whose axis is a Si-O chain) or silazane (a substance whose axis is a Si-N chain).
  • the heating amount S of the gas in the heater 52 per unit time is controlled so as to fall within the range. In this case, since the reticle chamber 32 is disposed downstream of the gas with respect to the heater 52, information on the temperature T measured by the temperature sensor 39B in the reticle chamber 32 is fed back to the heater 52. ing.
  • the recovery mixing device 36 (physical quantity measurement unit) is located upstream of the gas with respect to the heater 52, the flow meter 48, humidity sensor 49, temperature sensor 50, and pressure sensor 51 of the measurement unit are provided.
  • the information of the gas flow rate F, the humidity H, the temperature U, and the pressure P, which are measured at, are fed forward to the heater 52.
  • Integration at the integration time ⁇ t (actually the sum of digital data, the same applies below) t ATd t and its differential (actually the digital data difference, the same applies hereinafter) dATZd t to heater KT1, kT2, k are the coefficients for calculating the amount of change in the heating amount S per unit time in 52, respectively. T3.
  • the reference values of the physical quantities are set as FC, HC, UC, and PC, respectively.
  • FC F-FC
  • H—HC
  • AU U—UC
  • ⁇ —PC
  • Coefficients for obtaining the amount of change in the amount of heating S in the heater 52 from these differences are denoted by kF1, kH1, kU1, and kPl, respectively.
  • coefficients are also set in the control unit 34 from the main control system 24 in advance. These coefficients are experimentally determined in advance in accordance with the level of an allowable range for a target temperature in the reticle chamber 32 and stored in the main control system 24, and are controlled by the main control system 24 before the exposure process starts.
  • the controller 34 obtains a change ⁇ S 2 of the heating amount S in the heater 52 due to the gas flow rate F, humidity H, temperature U, and pressure P from the following equation.
  • a chemical filler 53 is disposed between the heater 52 (temperature control unit) and the reticle chamber 32 (airtight chamber), and the chemical filler 53 passes through the inside.
  • the chemical filter 53 tends to generate heat when the humidity of the gas passing therethrough decreases, and the temperature of the discharged gas tends to increase. This is because the chemical filter 53 acts to keep the humidity inside the filter at a certain level.
  • the humidity ⁇ measured by the humidity sensor 49 is
  • the change amount AS 2 of the heating amount is set to +
  • the difference ⁇ becomes ⁇ the change amount AS 2 is set to ⁇ .
  • the humidity when heat absorption or heat generation occurs in the chemical filter 53 may be experimentally measured in advance, and this humidity may be used as the reference value HC.
  • this reference value HC is determined individually according to the type of chemical filter 53 used (the composition of the chemical filter, material, etc.), and is used depending on the type of filler used. Further, in the case where the heat absorption and heat generation capability of the chemical filter to be used fluctuates with time, it is preferable that the above-mentioned reference value H C is also fluctuated according to the fluctuation of the capability.
  • the change AS 2 may be obtained in the form of a linear function or a higher-order function with respect to the difference ⁇ .
  • the variation ⁇ S2 may be obtained in consideration of the integration ⁇ AHdt of the difference ⁇ at a predetermined integration time ⁇ t and the differentiation d ⁇ t of the difference.
  • the amount of change in the heating amount S should be calculated taking into account not only the difference value but also the integral value and the derivative value. You may.
  • the value of the coefficient kF1 for obtaining the change amount of the heating amount S with respect to the flow rate F may be set to a predetermined (eg, experimentally determined) positive value.
  • the heating amount S may be small, and thus the coefficient kUl may be set to a predetermined negative value.
  • the flow rate F, humidity H, temperature U, and pressure P of the gas are measured, and from these state quantities, the energy state quantity of the gas, ie, entropy-(enthalpy) (Unit is energy (J or cal)).
  • the amount of change in the amount of heating S in the heater 52 is corrected so that the amount of heat generated by the steam in the path from the humidity sensor 49 to the reticle chamber 32 is measured in advance.
  • AS 2 may be set.
  • the temperature control unit 34 in FIG. 2 calculates the change ⁇ S 1 of the heating amount S in equations (1) and (2),
  • the change AS of the heating amount S in the heater 52 is calculated by adding ⁇ S2 as in the following equation.
  • the temperature controller 34 sends a control signal to the heater 52 so as to change the heating amount S by the change AS.
  • the calculations of equations (1) to (3) and the supply of the control signal for the change in the heating amount S to the heater 52 are continuously performed at a predetermined sampling rate (for example, about several tens Hz to several kHz) during the exposure process. Done in
  • the temperature of the purge gas in the reticle chamber 32 is kept within an allowable range with respect to the target temperature, and exposure can be performed with high accuracy.
  • FIGS. 3 (A), 3 (B), and 3 (C) show the temperature T (measured value of the temperature sensor 39B) in the reticle chamber 32 and the heating amount S in the heater 52 in FIG. , And an example of a change in the humidity S measured by the humidity sensor 49.
  • the horizontal axis of (C) is the elapsed time! ;
  • the solid line 55 A in FIG. 3A when the temperature T in the reticle chamber 32 shifts from the target value TC at the time point t1, by feeding back the temperature T, the solid line in FIG.
  • the heating amount S of the heater 52 shifts from the reference value SC from the time point t2 immediately after that, and the temperature T returns to the target value TC.
  • the heating amount S is controlled, even if the chemical filter 53 is used, the amount of temperature fluctuation in the reticle chamber 32 can be suppressed, and high temperature control accuracy can be obtained. Can be. Furthermore, since the heating amount S in the heater 52 is controlled by using the gas flow rate F, the temperature U, and the pressure P measured in front of the heater 52, higher temperature control accuracy is obtained. Can be
  • the measured humidity H is fed forward to the heater 52, so that the influence of the chemical filter 53 can be canceled before the temperature fluctuation occurs in the reticle chamber 32. Therefore, higher temperature control accuracy can be obtained.
  • the humidity H of the gas is measured in the collection and mixing device 36 before the heater 52, but the humidity H may be measured in the chemical filter 53. .
  • the measured value of the humidity H is fed back to the heater 52, but the heating amount of the heater 52 can be controlled based on the measured value before the reticle chamber 32 even in this case.
  • the temperature control accuracy in the reticle chamber 32 is improved as compared with the case where the value of the humidity H is not taken into consideration.
  • the gas flow rate F and the pressure P measured in the collection and mixing device 36 can be considered to be almost constant, or the reticle chamber caused by the gas flow rate F and the pressure P If the amount of heat fluctuation within 32 is within an allowable range, the values of the gas flow rate F and the pressure P may not necessarily be used to control the heater 52.
  • FIG. 1 the supply of purge gas to the three hermetic chambers including the sub-chamber 31, the reticle chamber 32, and the wafer chamber 33 and the supply of the purge gas to the projection optical system 18 is shown in FIG. 2 while controlling the valves.
  • a purge gas supply mechanism as shown in FIG. 2 may be provided independently for each of the projection optical system and each hermetic chamber. If a purge gas supply mechanism is provided for each supply destination, the temperature of the supplied purge gas can be controlled independently for each supply destination, and its temperature control accuracy (for example, if the control accuracy is ⁇ 0.1 ° or ⁇ The force at 0.01 ° can also be set independently for each supply destination.
  • the concentration of the oxygen gas in the impurities inside each of the sub-chamber 31, the reticle chamber 32, the projection optical system 18, and the wafer chamber 33 is set.
  • An oxygen concentration sensor (not shown) for detection is installed, and information on the concentration of oxygen as an impurity in each hermetic chamber is continuously obtained at a predetermined sampling rate. It is being measured.
  • These measurement data are also supplied to the control unit 34 in FIG.
  • the oxygen concentration sensors is controlled by a command from the control unit 34 in FIG.
  • the proportion of the high-purity purge gas from the gas supply source 35 in the gas mixture supplied to the hermetic chamber where the oxygen gas was detected is increased until the oxygen gas concentration falls below the allowable concentration.
  • the oxygen concentration sensor for example, a polarographic oxygen concentration meter, a zirconia oxygen concentration meter, a yellow phosphorus emission type oxygen sensor, or the like can be used.
  • the sensor for detecting the impurities used for other oxygen concentration sensor, ozone (0 3), water vapor, and a sensor for detecting carbon dioxide (C_ ⁇ 2) hydrocarbon molecules such as May be.
  • gas supplied to the clean room is taken in from, for example, outside air through a dustproof filter or the like and dried. It becomes air (dry air-).
  • gas supplied to the environmental chamber is supplied to a dustproof filter or the like in a clean room. It becomes the air taken in through the air (dry air).
  • the present invention is applied to a step-and-scan type projection exposure apparatus, but the present invention is also applicable to a batch exposure type projection exposure apparatus such as a stepper. Can be.
  • the magnification of the projection optical system provided in these projection exposure apparatuses is not limited to reduction, but may be equal magnification or enlargement.
  • the present invention can be applied to, for example, an immersion type exposure apparatus disclosed in International Publication No. WO 99/49504.
  • the present invention relates to an exposure operation and an alignment operation (mark detection operation), as disclosed in, for example, International Publication No. 98/241115 pamphlet and No. 988Z40971 pamphlet.
  • the present invention can also be applied to an exposure apparatus having two wafer stages capable of performing the steps substantially in parallel. Further, it is apparent that the present invention can be applied to a proximity type exposure apparatus or the like that does not use a projection optical system.
  • each optical member is After adjustment is performed by arranging the support member in the lens barrel in a positional relationship, the support member and the lens barrel are set on a column (not shown) to assemble. Along with this assembly adjustment, the stage system, laser interferometer, and a purge gas supply mechanism for purging the inside of the apparatus are assembled and adjusted, and each component is electrically, mechanically, or optically adjusted.
  • the projection exposure apparatus of the above embodiment is assembled. In this case, it is desirable to perform the work in a clean room where temperature control has been performed.
  • FIG. 4 shows an example of a semiconductor device manufacturing process.
  • a wafer W is first manufactured from a silicon semiconductor or the like. Thereafter, a photoresist is applied on the wafer W (step S10), and in the next step S12, the reticle (tentatively, R) is placed on the reticle stage of the projection exposure apparatus of the above embodiment (FIG. 1). 1), and the pattern (represented by the symbol A) of the reticle R 1 is transferred (exposed) to all the shot areas SE on the wafer W by the scanning exposure method. At this time, double exposure is performed as necessary.
  • the wafer W is, for example, a wafer having a diameter of 300 mm (12-inch wafer).
  • the size of the shot area SE is, for example, 25 mm in the non-scanning direction and 33 mm in the scanning direction. This is a rectangular area.
  • a predetermined pattern is formed in each shot area SE of the wafer W by performing development, etching, ion implantation, and the like.
  • step S16 a photoresist is applied onto the wafer W, and then in step S18, a reticle (assuming that a reticle (provisionally R) is placed on the reticle stage of the projection exposure apparatus of the above embodiment (FIG. 1). 2) and transfer (exposure) the pattern of the reticle R 2 (represented by the symbol B) to each shot area SE on the wafer W by the scanning exposure method. Then, in step S 20, a predetermined pattern is formed in each shot area of the wafer W by performing development, etching ion implantation, and the like on the wafer W.
  • step S16 to step S20 The above-described exposure step to pattern formation step (step S16 to step S20) are repeated as many times as necessary to manufacture a desired semiconductor device. Then, a dicing process (step S22) for separating each chip CP on wafer W one by one, The semiconductor device SP as a product is manufactured through the bonding step, the packaging step, and the like (step S24).
  • the temperature control accuracy of the reticle and the wafer of the projection exposure apparatus can be increased, the overlay accuracy and the like can be increased, and a more highly integrated and high-performance semiconductor device (integrated circuit) the still c can be prepared in high yield, without being restricted to an exposure apparatus for manufacturing semiconductor devices use of the exposure apparatus of the present invention, for example, a liquid crystal display is formed on a square glass plate
  • the present invention can be widely applied to an exposure apparatus for manufacturing various devices such as an element or an exposure apparatus for a display apparatus such as a plasma display, an imaging element (such as a CCD), a micro machine, a thin film magnetic head, and a DNA chip. Further, the present invention can be applied to an exposure step (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which a mask pattern of various devices is formed using a photolithographic process. .
  • the space is supplied with the fluid.
  • the temperature control accuracy of the first object (mask) and the second object (substrate) at the time of exposure can be improved. Can be manufactured.
  • the temperature is measured using the measurement information of the humidity.
  • the temperature information in the space to be controlled is fed back, and the information on the physical quantity is fed forward to control the amount of heat absorbed and generated by the temperature control unit, so that the temperature in the space can be increased to the target value at a high speed. Can be set with high control accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Central Air Conditioning (AREA)
  • Control Of Temperature (AREA)

Abstract

A technique of controlling temperature with high precision even if a device thermally variable by the state of a temperature-controlled fluid is used, and an exposure technique are disclosed. The gas collected from a reticle chamber (32) the temperature of which is controlled and a high-purity purging gas from a gas supply source (35) are mixed in a mixing unit (45). The mixed gas is cooled by a refrigerating machine (47), and the humidity is measured by a humidity sensor (49). After the measurement, the gas is supplied to the reticle chamber (32) through a heater (52), a chemical filter (53) absorbing/generating heat depending on humidity, and a dust-removal filter (54). The amount of heat added to the gas by the heater (52) is controlled according to information on temperature given by a temperature sensor (39B) in the reticle chamber (32) and information on humidity given by the humidity sensor (49).

Description

W  W
1 明 細 書 温度制御方法及び装置、 並びに露光方法及び装置 技術分野  1 Description Temperature control method and apparatus, and exposure method and apparatus
本発明は、 所定空間内の温度を制御するための温度制御技術に関し、 例えば半 導体素子、 撮像素子 (C C D等) 、 液晶表示素子、 プラズマディスプレイ素子、 又は薄膜磁気へッド等の各種デバィスを製造するためのリソグラフィ工程で使用 される露光装置又はその一部の機構が収納される気密室 (チャンバ等) 内の温度 を制御する場合に使用して好適なものである。 更に本発明は、 その温度制御技術 を用いる露光技術及びデバィス製造技術に関する。 背景技術  The present invention relates to a temperature control technique for controlling a temperature in a predetermined space, and relates to various devices such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, a plasma display device, and a thin film magnetic head. It is suitable for use in controlling the temperature in an airtight chamber (chamber or the like) in which an exposure apparatus used in a lithography process for manufacturing or a part of the mechanism is housed. Further, the present invention relates to an exposure technique and a device manufacturing technique using the temperature control technique. Background art
例えば半導体素子を製造する際に、 マスクとしてのレチクルに形成されたパ夕 —ンを基板としての感光材料が塗布されたウェハ (又はガラスプレート等) 上に 転写するために露光装置が使用されている。 露光装置においては、 パターンをゥ ェハ上の各レイヤに高精度に転写するとともに、 異なるレイャ間の重ね合わせ精 度を高く維持するために、 露光装置の設置されている環境 (雰囲気) の温度を目 標温度に対して許容範囲内で合わせた状態で露光を行う必要がある。 そのため、 従来より露光装置は、 塵や不純物が除去されるとともに高精度に温度制御された 気体が循環している環境チャンバ内に設置されていた。  For example, when manufacturing a semiconductor device, an exposure apparatus is used to transfer a pattern formed on a reticle as a mask onto a wafer (or a glass plate or the like) coated with a photosensitive material as a substrate. I have. In an exposure apparatus, the temperature of the environment (atmosphere) in which the exposure apparatus is installed is set so as to transfer the pattern to each layer on the wafer with high accuracy and to maintain high overlay accuracy between different layers. It is necessary to perform exposure in a state where is set within the allowable range with respect to the target temperature. For this reason, the exposure apparatus has conventionally been installed in an environment chamber in which a dust and impurities are removed and a gas whose temperature is precisely controlled is circulated.
従来は、 環境チャンバ内の温度を制御するために、 その環境チャンバを循環し て回収された気体と外部から取り込まれた気体とを混合した気体の温度を温度制 御部で制御し、 その温度制御された気体を防塵フィルタを介してその環境チャン バ内に供給していた。 この際に、 その環境チャンバ内に設置された温度センサの 計測値をその温度制御部にフィードバックすることによって、 環境チャンバ内に 供給される気体の温度が目標温度になるようにしていた。  Conventionally, in order to control the temperature inside the environmental chamber, the temperature of a gas that is a mixture of gas collected by circulating through the environmental chamber and gas taken in from the outside is controlled by a temperature control unit, and the temperature is controlled by the temperature control unit. Controlled gas was supplied into the environmental chamber through a dust filter. At this time, the temperature of the gas supplied into the environmental chamber was set to the target temperature by feeding back the measured value of the temperature sensor installed in the environmental chamber to the temperature control unit.
上記の如く従来の露光装置では、 外部から取り入れる気体及び環境チャンバを 循環して回収された気体の状態 (圧力、 湿度等) に関わらず、 環境チャンバ内に 設置された温度センサからの計測値のみを温度制御部にフィードバックして、 気 体の温度を制御していた。 As described above, in the conventional exposure apparatus, regardless of the state of the gas (pressure, humidity, etc.) circulated through the environment chamber and the gas recovered by circulating through the environment chamber, the exposure chamber remains in the environment chamber. Only the measured value from the installed temperature sensor was fed back to the temperature control unit to control the air temperature.
最近は環境チャンバ内の防塵性をより高めることも求められており、 それに応 じて防塵フィルタとして微粒子を物理的に除去するためのフィル夕 (H E P Aフ ィル夕など) だけでなく、 有機系ガスなどを化学的に除去するためのケミカルフ ィル夕も使用されるようになって来ている。 しかしながら、 従来のように単に環 境チャンバ内の温度の計測値のみを温度制御部にフィードバックする構成で、 気 体の流通経路にケミカルフィルタを設置すると、 環境チャンバ内の気体の温度が 変動し易くなり、 温度制御精度が低下するという不都合があつた。  Recently, it has been required to further improve the dust resistance in the environmental chamber. Accordingly, not only filters (HEPA filters, etc.) for physically removing fine particles as dust-proof filters, but also organic-based filters have been developed. Chemical filters for chemically removing gases and the like are also being used. However, if a chemical filter is installed in the gas flow path by simply feeding back only the measured value of the temperature in the environmental chamber to the temperature control unit as in the past, the temperature of the gas in the environmental chamber tends to fluctuate. This has the disadvantage of lowering the temperature control accuracy.
その温度制御精度の低下要因の一つは、 ケミカルフィルタは、 それを通過する 気体の湿度の高低によって僅かに発熱又は吸熱を起こすことであることが、 本発 明者によって確かめられた。 今後、 半導体素子の集積度や微細度が更に向上する のに応じて、 環境チャンバ内の温度の制御精度も高める必要があるが、 従来の温 度制御方式のもとでケミカルフィル夕を用いた場合には、 必要な制御精度を達成 できなくなる恐れがある。 · 更に、 ケミカルフィル夕以外にも、 各種センサなどで気体の湿度や圧力などの 状態によってそれに接触する気体の温度に影響を与える装置が使用される場合に は、 同様に必要な温度制御精度が得られなくなる恐れがある。  The inventors of the present invention have confirmed that one of the factors that lowers the temperature control accuracy is that the chemical filter slightly generates or absorbs heat depending on the level of humidity of the gas passing therethrough. In the future, as the degree of integration and fineness of semiconductor elements further increases, it is necessary to increase the control accuracy of the temperature inside the environmental chamber. In such a case, the required control accuracy may not be achieved. · In addition to chemical fill, when devices that affect the temperature of the gas that comes into contact with the condition of the gas, such as humidity and pressure, are used in various sensors, the necessary temperature control accuracy is similarly reduced. There is a risk that it will not be available.
これに関して、 最近は、 解像度をより高めるために、 露光光の波長は K r Fェ キシマレーザ (波長 2 4 8 n m) からほぼ真空紫外域の A r Fエキシマレーザ (波長 1 9 3 n m) に移行しつつあり、 更に短波長の F 2 レーザ (波長 1 5 7 n m) の使用も試みられている。 このように露光光を短波長化すると、 空気中の酸 素及び空気に含まれる有機ガスなどの不純物による吸収が大きくなるため、 露光 光に対する透過率を高めるために、 露光光の光路に不純物が高度に除去されると ともに短波長の光に対して吸収の少ない窒素ガスや希ガス (ヘリウム、 ネオン、 アルゴン、 クリプトン、 キセノン、 ラドン) などの気体 (以下、 「パージガス」 と言う。 ) を供給することが望ましい。 このように露光光の光路にパージガスを 供給する場合には、 露光光の光路を例えば照明光学系のサブチャンバ、 レチクル ステージ系を囲むレチクル室、 投影光学系内の空間、 及びウェハステージ系を囲 むウェハ室などの複数の気密室に分割し、 複数の気密室にそれぞれ独立に温度制 御されて高度に不純物が除去されたパージガスを供給するシステムを使用するこ とも検討されている。 このようなパージガスの供給システムにおいても、 ケミカ ルフィルタのように気体の状態によって熱変動を起こすような装置が使用される 場合には、 単に気密室内の温度をフィードバックする方式に比べて、 より高精度 に温度制御を行うことができる方式が必要になる。 発明の開示 In this regard, recently, in order to further increase the resolution, the wavelength of the exposure light has been shifted from a KrF excimer laser (wavelength: 248 nm) to an ArF excimer laser (wavelength: 193 nm), which is almost in the vacuum ultraviolet region. Attempts are being made to use shorter wavelength F 2 lasers (wavelength 157 nm). When the wavelength of the exposure light is shortened in this way, the absorption by impurities such as oxygen in the air and organic gas contained in the air increases, so that the impurity in the light path of the exposure light is increased in order to increase the transmittance for the exposure light. Supply gases such as nitrogen gas and rare gases (helium, neon, argon, krypton, xenon, radon) that are highly removed and have low absorption for short wavelength light (hereinafter referred to as “purge gas”). It is desirable to do. When the purge gas is supplied to the optical path of the exposure light as described above, the optical path of the exposure light is, for example, surrounded by a sub-chamber of the illumination optical system, a reticle chamber surrounding the reticle stage system, a space in the projection optical system, and a wafer stage system. It is also being studied to use a system that divides the gas into a plurality of hermetic chambers such as a wafer chamber and supplies a purge gas from which the impurities are highly removed by independently controlling the temperature in the plurality of hermetic chambers. Even in such a purge gas supply system, when a device such as a chemical filter that causes thermal fluctuations depending on the gas state is used, higher accuracy than a system that simply feeds back the temperature in an airtight chamber is used. Therefore, a method that can perform temperature control is required. Disclosure of the invention
本発明は斯かる点に鑑み、 温度制御された気体を用いて所定の空間の温度制御 を行う場合に、 温度制御精度を高めることができる温度制御技術及び露光技術を 提供することを第 1の目的とする。  In view of the above, the present invention has as its first object to provide a temperature control technique and an exposure technique that can enhance the temperature control accuracy when performing temperature control of a predetermined space using a temperature-controlled gas. Aim.
更に本発明は、 温度制御された気体を用いる場合に、 気体の状態によって熱変 動を起こすような装置が使用されていても高い温度制御精度の得られる温度制御 技術及び露光技術を提供することを第 2の目的とする。  Further, the present invention provides a temperature control technology and an exposure technology that can obtain high temperature control accuracy even when a device that causes thermal fluctuation depending on the gas state is used when using a temperature-controlled gas. Is the second purpose.
本発明による温度制御方法は、 所定の空間 (3 2 ) 内の温度を、 温度制御され、 且つケミカルフィルタ (5 3 ) を介した気体を用いて制御する温度制御方法にお いて、 その空間内の温度情報及びその気体の温度変化を生じさせる少なくとも一 つ以上の物理量の情報に基づいてその気体の温度を制御して、 その空間に供給す るものであって、 その物理量の情報は、 そのケミカルフィルタに供給される気体 の湿度に起因して生じるこのケミカルフィル夕内における吸熱又は発熱に関する 情報を含むものである。  The temperature control method according to the present invention provides a temperature control method for controlling the temperature in a predetermined space (32) using a gas which is temperature-controlled and which has passed through a chemical filter (53). The temperature of the gas is controlled based on the temperature information of the gas and the information of at least one or more physical quantities that cause a change in the temperature of the gas, and the gas is supplied to the space. It contains information on heat absorption or heat generation in the chemical filter due to the humidity of the gas supplied to the chemical filter.
本発明によれば、 上述の物理量の情報を用いることによって、 その気体がその 空間に供給される途中の経路 (ケミカルフィル夕) における放熱量や吸熱量の予 測が可能となる。 その予測される放熱量や吸熱量の情報とその空間内の温度情報 とを合わせて用いることで、 その空間内の温度を例えば目標温度に対する許容範 囲内に維持するためのその気体の最適な加熱量又は吸熱量を逐次設定することが できる。 この結果、 その空間内の温度制御精度が向上する。  According to the present invention, it is possible to predict the amount of heat radiation and the amount of heat absorbed in the path (chemical fill) on the way where the gas is supplied to the space by using the above information on the physical quantity. By using the information of the predicted heat release and heat absorption together with the temperature information in the space, the optimal heating of the gas to maintain the temperature in the space within the allowable range for the target temperature, for example, is performed. The amount or endotherm can be set sequentially. As a result, the temperature control accuracy in the space is improved.
本発明において、 その物理量の情報として更に、 その気体の圧力及び流量のう ちの少なくとも一つを用いることもできる。 また、 そのケミカルフィルタ内における吸熱又は発熱に関する情報として、 そ のケミカルフィル夕に供給される気体の湿度を含むことが望ましい。 例えばその ケミカルフィルタが内部を通過する気体の湿度が高いと吸熱する場合、 その湿度 が高いときに予めその気体の温度を高くしておくことで、 その空間内の温度制御 精度が向上する。 In the present invention, at least one of the pressure and the flow rate of the gas can be used as the information of the physical quantity. Further, it is desirable that the information on heat absorption or heat generation in the chemical filter include the humidity of the gas supplied to the chemical filter. For example, if the chemical filter absorbs heat when the humidity of the gas passing through it is high, by raising the temperature of the gas in advance when the humidity is high, the temperature control accuracy in the space is improved.
また、 その空間に供給するその気体の温度を制御するために、 温度制御部に対 してその物理量の情報をフィードフォヮ一ドすることが望ましい。 その物理量の 情報に応じて予めその気体の温度を調整しておくことで、 その空間内の温度変動 量が小さくなる。  In addition, in order to control the temperature of the gas supplied to the space, it is desirable to feed-forward the information of the physical quantity to the temperature control unit. By adjusting the temperature of the gas in advance according to the information of the physical quantity, the amount of temperature fluctuation in the space is reduced.
また、 その空間に供給するその気体の温度を制御するために、 温度制御部に対 してその空間内の温度情報をフィードバックすることが望ましい。 これによつて、 その空間内の温度が目標値に設定される。  In addition, in order to control the temperature of the gas supplied to the space, it is desirable to feed back temperature information in the space to the temperature control unit. Thereby, the temperature in the space is set to the target value.
また、 本発明による露光方法は、 本発明の温度制御方法を用いる露光方法であ つて、 露光ビームで第 1物体 (1 3 ) を照明し、 その露光ビームでその第 1物体 を介して第 2物体 (1 9 ) を露光する露光装置のその露光ビームの光路の少なく とも一部を含む空間 (3 1〜3 3, 1 8 ) 、 又はその空間に連通する空間の温度 をその温度制御方法によって制御するものである。 本発明によれば、 その第 1物 体又はその第 2物体の温度制御精度を向上できる。  The exposure method according to the present invention is an exposure method using the temperature control method according to the present invention, wherein the first object (13) is illuminated with an exposure beam, and the second object is irradiated with the exposure beam through the first object. The temperature of the space (31 to 33, 18) including at least a part of the optical path of the exposure beam of the exposure apparatus for exposing the object (19) or the space communicating with the space is determined by the temperature control method. Control. According to the present invention, it is possible to improve the temperature control accuracy of the first object or the second object.
次に、 本発明による温度制御装置は、 所定の空間 (3 2 ) 内の温度を、 温度制 御され、 且つケミカルフィル夕 (5 3 ) を介した気体を用いて制御する温度制御 装置において、 温度制御用の気体をその空間に供給する気体供給部 (3 5, 4 5 , 7 5 A) と、 その空間内の温度情報を検出する温度センサ (3 9 B ) と、 その気 体の温度変化を生じさせる少なくとも一つ以上の物理量の情報を検出する物理量 センサ (4 9 ) と、 その温度センサ及びその物理量センサの検出結果に基づいて その気体の温度を制御する温度制御部 (5 2 ) とを有し、 その物理量の情報は、 そのケミカルフィル夕に供給される気体の湿度に起因して生じるこのケミカルフ ィルタ内における吸熱又は発熱に関する情報を含むものである。  Next, a temperature control device according to the present invention is a temperature control device that controls the temperature in a predetermined space (32) using a gas that is temperature-controlled and that has passed through a chemical filter (53). A gas supply unit (35, 45, 75A) that supplies gas for temperature control to the space, a temperature sensor (39B) that detects temperature information in the space, and a temperature of the gas A physical quantity sensor (49) for detecting information of at least one physical quantity that causes a change, and a temperature controller (52) for controlling the temperature of the gas based on the temperature sensor and the detection result of the physical quantity sensor And the information on the physical quantity includes information on heat absorption or heat generation in the chemical filter caused by the humidity of the gas supplied to the chemical filter.
本発明によれば、 その温度センサの検出結果とともにその物理量センサの検出 結果を用いることによって、 その空間内の温度制御精度が向上する。 例えばその 温度センサの検出結果をその温度制御部にフィードバックして、 その物理量セン ザの検出結果をその温度制御部にフィードフォワードすることによって、 その空 間内の温度を目標値に高精度に維持できる。 According to the present invention, the accuracy of temperature control in the space is improved by using the detection result of the physical quantity sensor together with the detection result of the temperature sensor. For example By feeding back the detection result of the temperature sensor to the temperature control unit and feeding forward the detection result of the physical quantity sensor to the temperature control unit, the temperature in the space can be maintained at the target value with high accuracy.
本発明において、 上述の物理量の情報として更に、 その気体の圧力及び流量の うちの少なくとも一つを用いることもできる。  In the present invention, at least one of the pressure and the flow rate of the gas can be used as the information of the physical quantity.
また、 その物理量センサ (4 9 ) は、 そのケミカルフィル夕に供給されるその 気体の湿度情報を検出することが望ましい。 その湿度情報を用いることで温度制 御精度が向上する。  Further, it is desirable that the physical quantity sensor (49) detects humidity information of the gas supplied to the chemical fill. The temperature control accuracy is improved by using the humidity information.
次に、 本発明による露光装置は、 露光ビームで第 1物体 (1 3 ) を照明し、 そ の露光ビームでその第 1物体を介して第 2物体 (1 9 ) を露光する露光装置にお いて、 本発明の温度制御装置を有し、 その露光ビームの光路の少なくとも一部を 含む空間 (3 1〜3 3 , 1 8 ) 、 又はその空間に連通する空間の温度をその温度 制御装置によつて制御するものである。  Next, an exposure apparatus according to the present invention illuminates a first object (13) with an exposure beam, and exposes a second object (19) via the first object with the exposure beam. The temperature control device of the present invention, and the temperature of the space (31 to 33, 18) including at least a part of the optical path of the exposure beam, or the temperature of the space communicating with the space is provided to the temperature control device. Control.
本発明の露光装置によれば、 その第 1物体若しくは第 2物体、 又はこれらの駆 動機構の温度制御精度を向上できる。 従って、 その第 1物体又は第 2物体の位置 決め精度や重ね合わせ精度を向上できる。  According to the exposure apparatus of the present invention, it is possible to improve the temperature control accuracy of the first object or the second object, or a driving mechanism of the first object or the second object. Therefore, the positioning accuracy and the overlay accuracy of the first object or the second object can be improved.
また、 本発明によるデバイス製造方法は、 本発明の露光装置を用いて、 その第 1物体としてのマスク上に形成されたデバイスパターンをその第 2物体としての 基板上に転写露光する工程を含むものである。 本発明の露光装置の使用によって、 重ね合わせ精度等が向上するため、 各種デバイスを高精度に量産できる。 図面の簡単な説明  The device manufacturing method according to the present invention includes a step of transferring and exposing a device pattern formed on a mask as a first object onto a substrate as a second object using the exposure apparatus of the present invention. . The use of the exposure apparatus of the present invention improves overlay accuracy and the like, so that various devices can be mass-produced with high accuracy. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の一例の投影露光装置を示す概略構成図である。 図 2は、 図 1中のパージガス供給機構を示す図である。 図 3は、 図 2のパージガ ス供給機構における温度制御動作の一例を示す図である。 図 4は、 本発明の実施 の形態の投影露光装置を用いるデバイス製造工程の一例を示す図である。 発明を実施するための最良の形態  FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus according to an example of an embodiment of the present invention. FIG. 2 is a diagram showing the purge gas supply mechanism in FIG. FIG. 3 is a diagram showing an example of a temperature control operation in the purge gas supply mechanism of FIG. FIG. 4 is a diagram illustrating an example of a device manufacturing process using the projection exposure apparatus according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい実施の形態の一例につき図面を参照して説明する。 本発明は、 リソグラフィシステムが収納されるクリーンルーム内の温度制御を 行う場合、 露光装置が全体として収納される環境チャンバ内の温度制御を行う場 合、 及び露光装置の露光ビームの光路を複数の気密室に分割して各気密室に高透 過率で温度制御された気体を供給する場合などに広く適用することができる。 以 下の実施の形態では、 温度制御された気体が供給される気密室を備えたステップ •アンド ·スキャン方式の投影露光装置に本発明を適用した場合につき説明する。 図 1は本例の投影露光装置を示す概略構成図であり、 この図 1において、 本例 の投影露光装置は、 露光光源 1として発振波長 193 nmの Ar Fエキシマレー ザを使用している。 このようにほぼ真空紫外光とみなすことができる光は、 通常 の大気中に存在する酸素、 水蒸気、 炭化水素系ガス (二酸化炭素等) 、 有機物、 及びハロゲン化物等の不純物によって吸収されるため、 露光ビームの減衰を防止 するためには、 これらの不純物の気体の濃度を低く抑えることが望ましい。 そし て、 露光ビームの光路の気体は、 露光ビームが透過する気体である窒素 (N2 ) ガス、 又はヘリウム (He) 、 ネオン (Ne) 、 アルゴン (Ar) 、 クリプトン (K r) 、 キセノン (Xe) 、 若しくはラドン (Rn) よりなる希ガス等のよう に化学的に安定であるとともに、 不純物濃度が低く管理された気体 (以下、 「パ ージガス」 と呼ぶ。 ) で置換することが望ましい。 本例では、 そのパージガスと して一例として窒素ガスを使用する。 Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. The present invention provides a method for controlling the temperature in a clean room in which a lithography system is housed, a method for controlling the temperature in an environment chamber in which an exposure apparatus is housed as a whole, The present invention can be widely applied to a case where a gas is divided into closed rooms and a gas having a high transmittance and a temperature is controlled is supplied to each of the closed rooms. In the following embodiments, a case will be described in which the present invention is applied to a step-and-scan type projection exposure apparatus having an airtight chamber to which a temperature-controlled gas is supplied. FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus of this example. In FIG. 1, the projection exposure apparatus of this example uses an Ar F excimer laser having an oscillation wavelength of 193 nm as an exposure light source 1. Light that can be regarded as almost vacuum ultraviolet light is absorbed by impurities such as oxygen, water vapor, hydrocarbon-based gas (carbon dioxide, etc.), organic substances, and halides that are present in the normal atmosphere. In order to prevent the exposure beam from attenuating, it is desirable to keep the concentration of these impurity gases low. The gas in the optical path of the exposure beam is nitrogen (N 2 ) gas, which is a gas through which the exposure beam passes, or helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon ( It is desirable to replace the gas with a gas that is chemically stable such as Xe) or a rare gas made of radon (Rn) and has a low impurity concentration (hereinafter referred to as “purge gas”). In this example, nitrogen gas is used as an example of the purge gas.
なお、 露光ビームとしては、 例えば F2 レーザ光 (波長 1 57 nm) 、 Kr2 レーザ光 (波長 147 nm) 、 又は A r 2 レーザ光 (波長 1 26 nm) 等を用い てもよい。 更には露光ビームとして K r Fエキシマレーザ光 (波長 248 nm) を用いる場合にも本発明を適用することができる。 また、 露光光源としては、 Y AGレーザ等の固体レーザの高調波を発生する光源や、 例えば DFB半導体レー ザやファイバーレーザから発振される赤外域、 又は可視域の単一波長レーザを、 例えばエルビウム (E r) (又はエルビウムとイッテルビウム (Yb) との両 方) がド一プされたファイバーアンプで増幅し、 非線形光学結晶を用いて紫外光 に波長変換する装置なども使用することができる。 As the exposure beam, for example, the F 2 laser beam (wavelength 1 57 nm), Kr 2 laser beam (wavelength 147 nm), or A r 2 laser beam may be used (wavelength 1 26 nm) or the like. Further, the present invention can be applied to a case where KrF excimer laser light (wavelength: 248 nm) is used as an exposure beam. As the exposure light source, a light source that generates harmonics of a solid-state laser such as a YAG laser, or a single-wavelength laser in the infrared or visible range oscillated by a DFB semiconductor laser or fiber laser, for example, erbium A device that amplifies (Er) (or both erbium and ytterbium (Yb)) with a doped fiber amplifier and converts the wavelength to ultraviolet light using a nonlinear optical crystal can also be used.
なお、 窒素ガスは、 真空紫外域中でも波長 1 50 nm程度までは露光ビームが 透過する気体 (パージガス) として使用することができるが、 波長が 150 nm 程度以下の光に対してはほぼ不純物として作用するようになる。 そこで、 波長が 1 5 0 n m程度以下の露光ビームに対するパージガスとしては希ガスを使用する ことが望ましい。 また、 希ガスの中では屈折率の安定性、 及び高い熱伝導率等の 観点より、 ヘリウムガスが望ましいが、 ヘリウムは高価であるため、 運転コスト 等を重視する場合には他の希ガスを使用してもよい。 また、 パージガスとしては、 単一の種類の気体を供給するだけでなく、 例えば窒素とヘリウムとを所定比で混 合した気体のような混合気体を供給するようにしてもよい。 Nitrogen gas can be used as a gas through which the exposure beam passes (purge gas) up to a wavelength of about 150 nm even in the vacuum ultraviolet region, but it has a wavelength of 150 nm. The light substantially acts as an impurity with respect to light having a light intensity of less than about. Therefore, it is desirable to use a rare gas as a purge gas for an exposure beam having a wavelength of about 150 nm or less. Among rare gases, helium gas is desirable from the viewpoints of stability of refractive index and high thermal conductivity.However, helium is expensive. May be used. Further, as the purge gas, not only a single kind of gas may be supplied, but also a mixed gas such as a gas obtained by mixing nitrogen and helium at a predetermined ratio may be supplied.
一方、 露光ビームが K r Fエキシマレーザ (波長 2 4 8 n m) であるような場 合には、 そのパージガスとして水蒸気、 有機物、 及びハロゲン化物等の不純物の 濃度を低くした空気 (いわゆるドライエア一) を供給してもよい。  On the other hand, when the exposure beam is a KrF excimer laser (wavelength: 248 nm), air having a low concentration of impurities such as water vapor, organic substances, and halides (so-called dry air) is used as the purge gas. May be supplied.
以下、 本例の投影露光装置の構成につき詳細に説明する。 先ず、 露光光源 1か ら射出された露光ビームとしての波長 1 9 3 n mのレーザ光よりなる露光光 (露 光用の照明光) I Lは、 第 1サブチャンバ 3 1内の整形光学系 2によって断面形 状が整形されて照度分布均一化用のオプティカル ·インテグレー夕 (ュニフォマ ィザ又はホモジナイザー) としてのフライアイレンズ 3に入射する。 フライアイ レンズ 3の射出側の面である瞳面 I P (レチクルのパターン面に対する光学的な フ一リエ変換面) には、 露光光の開口数及び開口形状を通常照明、 輪帯照明、 変 形照明等に切り換えるための可変開口絞り 4が、 駆動モー夕 4 3によって回転自 在に配置されている。  Hereinafter, the configuration of the projection exposure apparatus of this example will be described in detail. First, exposure light (illumination light for exposure) IL composed of laser light having a wavelength of 193 nm as an exposure beam emitted from the exposure light source 1 is emitted by the shaping optical system 2 in the first sub-chamber 31. The cross-sectional shape is shaped and the light enters the fly-eye lens 3 as an optical integrator (uniformizer or homogenizer) for uniformizing the illuminance distribution. The pupil plane IP (optical Fourier transform plane with respect to the reticle pattern surface), which is the exit side surface of the fly-eye lens 3, has the numerical aperture and the aperture shape of the exposure light for normal illumination, annular illumination, and deformation. A variable aperture stop 4 for switching to illumination or the like is arranged in a rotating manner by a driving motor 43.
フライアイレンズ 3から射出された露光光 I Lは、 可変開口絞り 4、 第 1リレ —レンズ 5、 光路折り曲げ用のミラー 6、 第 2リレーレンズ 7を経て視野絞り Exposure light I L emitted from fly-eye lens 3 passes through variable aperture stop 4, first relay lens 5, mirror 6 for bending optical path 6, second relay lens 7, and field stop.
(レチクルブラインド) 8に至り、 照明視野が細長い矩形領域に規定される。 視 野絞り 8を通過した露光光 I Lは、 第 1コンデンサレンズ 9、 第 2コンデンサレ ンズ 1 0、 光路折り曲げ用のミラー 1 1、 及び第 3コンデンサレンズ 1 2を経て、 マスクとしてのレチクル 1 3のパターン面 (下面) のパターン領域を照明する。 露光光源 1、 整形光学系 2、 フライアイレンズ 3、 可変開口絞り 4、 リレーレン ズ 5 , 7、 ミラ一 6 , 1 1、 視野絞り 8、 及びコンデンサレンズ 9 , 1 0, 1 2 等から照明光学系が構成されており、 整形光学系 2〜コンデンサレンズ 1 2が、 気密性の高い箱状の気密室としてのサブチャンバ 3 1内に収納されている。 図 1において、 レチクル 1 3を透過した露光光 I Lは、 投影光学系 1 8を介し て基板としてのウェハ 1 9上に、 レチクル 1 3のパターンを投影倍率 0 ( 3は 1 / 4 , 1 / 5等) で縮小した像を形成する。 ウェハ 1 9は例えばシリコン等の半 導体又は S O I (s i l icon on insu l ator)等の円板状の基板であり、 その上にフォ トレジス卜が塗布されている。 本例のレチクル 1 3及びウェハ 1 9がそれぞれ本 発明の第 1物体及び第 2物体 (被露光基板) に対応している。 以下、 投影光学系 1 8の光軸 P A Xに平行に Z軸を取り、 Z軸に垂直な平面内で図 1の紙面に平行 に X軸を、 図 1の紙面に垂直に Y軸を取って説明する。 この場合、 レチクル 1 3 上の照明領域は、 Y方向に細長いスリット状であり、 レチクル 1 3及びウェハ 1 9の露光時の走査方向は X方向である。 (Reticle blind) Up to 8, the illumination field of view is defined as a narrow rectangular area. The exposure light IL that has passed through the field stop 8 passes through the first condenser lens 9, the second condenser lens 10, the mirror 11 for bending the optical path, and the third condenser lens 12, and passes through the reticle 13 as a mask. The pattern area of the pattern surface (lower surface) is illuminated. Illumination optics from exposure light source 1, shaping optics 2, fly-eye lens 3, variable aperture stop 4, relay lenses 5, 7, mirror 6, 11, field stop 8, and condenser lenses 9, 10, 10, 12, etc. A shaping optical system 2 to a condenser lens 12 are housed in a sub-chamber 31 as a highly airtight box-shaped airtight chamber. In FIG. 1, the exposure light IL transmitted through the reticle 13 passes through a projection optical system 18 onto a wafer 19 as a substrate to project a pattern of the reticle 13 onto a projection magnification 0 (3 is 1/4, 1/1). 5) to form a reduced image. The wafer 19 is, for example, a semiconductor such as silicon or a disk-shaped substrate such as SOI (silicon on insulator), on which a photoresist is applied. The reticle 13 and the wafer 19 of the present example correspond to the first object and the second object (substrate to be exposed) of the present invention, respectively. In the following, the Z axis is taken parallel to the optical axis PAX of the projection optical system 18, the X axis is taken parallel to the plane of Figure 1 in a plane perpendicular to the Z axis, and the Y axis is taken perpendicular to the plane of Figure 1 explain. In this case, the illumination area on the reticle 13 has a slit shape elongated in the Y direction, and the scanning direction of the reticle 13 and the wafer 19 at the time of exposure is the X direction.
本例においてレチクル 1 3は、 レチクルステージ 1 4上に保持され、 レチクル ステージ 1 4はレチクルベース 1 5上でレチクル 1 3を X方向に連続移動し、 X 方向、 Y方向及び回転方向に微動してレチクル 1 3の同期誤差を補正する。 レチ クルステージ 1 4の端部に固定された移動鏡 1 6及びレチクルステージ駆動系 1 7内のレーザ干渉計によってレチクルステージ 1 4の位置及び回転角が計測され、 この計測値に基づいて、 レチクルステージ駆動系 1 7はレチクルステージ 1 4の 動作を制御する。 レチクルステージ 1 4、 レチクルベース 1 5等からレチクルス テージ系が構成され、 このレチクルステージ系は気密性の高い箱状の気密室であ るレチクル室 3 2内に収納されている。  In this example, reticle 13 is held on reticle stage 14, and reticle stage 14 continuously moves reticle 13 in the X direction on reticle base 15, and slightly moves in the X, Y, and rotation directions. To correct the synchronization error of reticle 13. The position and rotation angle of the reticle stage 14 are measured by a moving mirror 16 fixed to the end of the reticle stage 14 and a laser interferometer in the reticle stage drive system 17. Based on the measured values, the reticle The stage drive system 17 controls the operation of the reticle stage 14. A reticle stage system is composed of a reticle stage 14, a reticle base 15 and the like, and this reticle stage system is housed in a reticle room 32, which is a highly airtight box-shaped airtight room.
一方、 ウェハ 1 9は不図示のウェハホルダを介してウェハステージ 2 0上に保 持され、 ウェハステージ 2 0はウェハベース 2 1上でウェハ 1 9を X方向に連続 移動すると共に、 必要に応じてウェハ 1 9を X方向、 Y方向にステップ移動する。 ウェハステージ 2 0の端部に固定された移動鏡 2 2及びウェハステージ駆動系 2 3内のレーザ干渉計によってウェハステージ 2 0の位置及び回転角が計測され、 この計測値に基づいて、 ウェハステージ駆動系 2 3はウェハステージ 2 0の動作 を制御する。 また、 不図示のオートフォーカスセンサによって計測されるウェハ 1 9上の複数の計測点でのフォーカス位置 (光軸 A X方向の位置) の情報に基づ いて、 ウェハステージ 2 0はオートフォーカス方式でウェハ 1 9のフォーカス位 置及び傾斜角を制御することによって、 露光中は継続してウェハ 1 9の表面を投 影光学系 1 8の像面に合わせ込む。 ウェハステージ 2 0、 ウェハベース 2 1等か らウェハステージ系が構成され、 このウェハステージ系は気密性の高い箱状の気 密室であるウェハ室 3 3内に収納されている。 On the other hand, the wafer 19 is held on a wafer stage 20 via a wafer holder (not shown), and the wafer stage 20 continuously moves the wafer 19 in the X direction on the wafer base 21 and, if necessary, The wafer 19 is step-moved in the X and Y directions. The position and rotation angle of the wafer stage 20 are measured by a moving mirror 22 fixed to the end of the wafer stage 20 and a laser interferometer in the wafer stage drive system 23, and based on the measured values, the wafer stage The drive system 23 controls the operation of the wafer stage 20. Further, based on information on the focus positions (positions in the optical axis AX direction) at a plurality of measurement points on the wafer 19 measured by an auto focus sensor (not shown), the wafer stage 20 is configured to use an auto focus method. By controlling the focus position and tilt angle of 19, the surface of wafer 19 is continuously exposed during exposure. Adjust to the image plane of the shadow optical system 18. A wafer stage system is composed of the wafer stage 20 and the wafer base 21 and the like, and this wafer stage system is housed in a wafer chamber 33 which is a box-shaped airtight chamber with high airtightness.
露光時には、 露光装置各部の動作を統轄制御する主制御系 2 4 (図 2参照) の 制御のもとで、 ウェハ 1 9上の一つのショット領域への露光が終わると、 ウェハ ステージ 2 0のステップ移動によって次のショット領域が走査開始位置に移動し た後、 レチクルステージ 1 4及びウェハステージ 2 0を投影光学系 1 8の投影倍 率 /3を速度比として X方向に同期走査する、 即ちレチクル 1 3とウェハ 1 9上の 当該ショッ卜領域との結像関係を保った状態でそれらを走査するという動作がス テツプ'アンド 'スキャン方式で繰り返される。 これによつて、 ウェハ 1 9上の 各ショッ卜領域に順次レチクル 1 3上のパターン像が逐次転写される。  At the time of exposure, under the control of the main control system 24 (see FIG. 2) which controls the operation of each part of the exposure apparatus, when exposure to one shot area on the wafer 19 is completed, the wafer stage 20 After the next shot area is moved to the scanning start position by the step movement, the reticle stage 14 and the wafer stage 20 are synchronously scanned in the X direction using the projection magnification ratio of the projection optical system 18 as the speed ratio, that is, The operation of scanning the reticle 13 and the shot area on the wafer 19 while maintaining the imaging relationship with the shot area is repeated by the step-and-scan method. Thus, the pattern images on the reticle 13 are sequentially transferred to the respective shot areas on the wafer 19.
さて、 上述したように本例の投影露光装置には、 露光光 I Lの光路を含む空間 内の気体を露光光 I Lが透過する気体 (パージガス) で置換するためのパージガ ス供給機構が設けられている。 即ち、 照明光学系の一部、 レチクルステージ系、 及びウェハステージ系は、 それぞれ気密室としてのサブチャンバ 3 1、 レチクル 室 3 2、 及びウェハ室 3 3内に収納されており、 投影光学系 1 8の各光学部材間 の空間も気密室としてのレンズ室とされている。 そして、 サブチャンバ 3 1、 レ チクル室 3 2、 及びウェハ室 3 3の内部には、 高純度のパージガスが供給されて おり、 投影光学系 1 8内の各レンズ室にも高純度のパージガスが供給されている。 更に、 サブチャンバ 3 1とレチクル室 3 2の上部との境界部、 レチクル室 3 2 の下部と投影光学系 1 8の上部との境界部、 及び投影光学系 1 8の下部とウェハ 室 3 3の上部との境界部には、 それぞれ可撓性を有しガスバリヤ性に優れたカバ — 4 0, 4 1及び 4 2が設けられている。 これらのカバー 4 0〜4 2によってそ れらの境界部が実質的に密閉され、 露光光の光路はほぼ完全に密封されているた め、 露光光の光路上への外部からの不純物を含む気体の混入は殆ど無く、 露光光 の減衰量は極めて低く抑えられる。  As described above, the projection exposure apparatus of this embodiment is provided with a purge gas supply mechanism for replacing gas in the space including the optical path of the exposure light IL with a gas (purge gas) through which the exposure light IL passes. I have. That is, a part of the illumination optical system, the reticle stage system, and the wafer stage system are housed in a sub-chamber 31, a reticle chamber 32, and a wafer chamber 33, respectively, as airtight chambers. The space between the optical members 8 is also a lens chamber as an airtight chamber. A high-purity purge gas is supplied into the sub-chamber 31, the reticle chamber 32, and the wafer chamber 33, and the high-purity purge gas is also supplied to each lens chamber in the projection optical system 18. Supplied. Further, the boundary between the sub-chamber 31 and the upper part of the reticle chamber 32, the lower part of the reticle chamber 32 and the upper part of the projection optical system 18, and the lower part of the projection optical system 18 and the wafer chamber 33 Covers 40, 41, and 42, which are flexible and have excellent gas barrier properties, are provided at the boundary with the upper part of the. Since these boundaries are substantially sealed by the covers 40 to 42, and the optical path of the exposure light is almost completely sealed, the cover includes external impurities on the optical path of the exposure light. There is almost no gas contamination, and the amount of exposure light attenuation is extremely low.
そして、 本例のパージガス供給機構は、 高純度のパージガスを蓄積するガスボ ンべなどの気体供給源 3 5、 吸引ポンプによって各気密室から回収したパージガ スと気体供給源 3 5からの高純度のパージガスとを混合する回収混合装置 3 6、 パージガスを温度調整して各気密室に供給する給気装置 38、 及びこれらの装置 の動作を統轄制御するコンピュータよりなる制御部 34 (図 2参照) 等から構成 されている。 本例ではパージガスとして窒素ガスが使用されているため、 気体供 給源 35としては例えば高純度の窒素を液化して保存し、 必要に応じて気化して 供給する装置を使用することができる。 The purge gas supply mechanism of this example includes a gas supply source 35 such as a gas cylinder that accumulates a high-purity purge gas, a purge gas collected from each hermetic chamber by a suction pump, and a high-purity gas supplied from the gas supply source 35. Recovery mixing device for mixing with purge gas 36, The system is composed of an air supply device 38 that controls the temperature of the purge gas and supplies it to each hermetic chamber, and a control unit 34 (see Fig. 2) composed of a computer that supervises and controls the operation of these devices. In this example, since nitrogen gas is used as the purge gas, the gas supply source 35 may be, for example, a device that liquefies and stores high-purity nitrogen and supplies it after vaporization as necessary.
回収混合装置 36は、 バルブ V I I, V9, V 10付きの排気管及び排気管 7 5 Aを介してそれぞれサブチャンバ 31、 レチクル室 32及びウェハ室 33内の 気体を大気圧付近の気圧のほぼ定常的な流れによるガスフロー制御によって回収 し、 更に分岐された複数の排気管 71A、 排気管 75 B及びバルブ V 3を介して 投影光学系 18の複数のレンズ室内の気体をガスフロー制御によって回収する。 ガスフロー制御の場合には、 各気密室から排気する気体の流量とほぼ同じ流量の パージガスを各気密室に給気する。  The recovery mixing device 36 converts the gas in the sub-chamber 31, the reticle chamber 32 and the wafer chamber 33 through an exhaust pipe with valves VII, V9, and V10 and an exhaust pipe 75A, respectively, to a substantially steady pressure near the atmospheric pressure. The gas in the plurality of lens chambers of the projection optical system 18 is collected by the gas flow control via the plurality of branched exhaust pipes 71A, the exhaust pipe 75B, and the valve V3. . In the case of gas flow control, a purge gas having a flow rate substantially equal to the flow rate of the gas exhausted from each airtight chamber is supplied to each airtight chamber.
一方、 給気装置 38は、 HEP Aフィルタ(high efficiency particulate air -filter)又は ULPAフィル夕 (ultra low penetration air-filter) 等の微粒 子除去用の防塵フィルタと、 アンモニアや有機系ガス等の化学的な不純物を除去 するためのケミカルフィル夕とを含むフィル夕部 68 A, 68 Bを備えており、 温度制御されたパージガス (詳細後述) がそのフィル夕部 68 A, 68 Bを通過 することによって上記の微粒子を含む不純物が除去される。 そして、 フィルタ部 68 Aを通過したパージガスは、 バルブ V 1付きの給気管 69 A、 及びそれぞれ バルブ V7, V 5, V 6付きの分岐した給気管を介してサブチャンバ 31、 レチ クル室 32、 及びウェハ室 33内に供給され、 フィルタ部 68 Bを通過したパー ジガスは、 バルブ V 8付きの給気管 69 B及び複数の分岐管を備えた給気管 70 Aを介して投影光学系 18内の複数のレンズ室に供給される。 この場合、 バルブ V 1〜V1 1は、 それぞれ電磁的に開閉自在なバルブであり、 それらの開閉動作 は互いに独立に制御部 34 (図 2参照) によって制御される。 なお、 制御部 34 はバルブの開閉のみならず、 バルブ径の大きさ (バルブの絞り量) も制御するこ とができ、 このバルブ径の大きさを制御することにより、 パージガスの供給 遮 断のみならず、 そのパージガスの供給量 (時間当たりの流量) をも制御すること ができる。 そして、 回収混合装置 3 6による気体の回収動作と、 給気装置 3 8からのパー ジガスの供給動作と、 バルブ V 1, V 5〜V 8の開閉動作及びそのバルブ径の大 きさとによって、 サブチャンバ 3 1、 レチクル室 3 2、 ウェハ室 3 3の内部及び 投影光学系 1 8内の複数のレンズ室の何れの気密室に対しても温度制御されたパ —ジガスを所望の流量のガスフロー制御方式で給気できるように構成されている。 なお、 投影光学系 1 8の複数のレンズ室内の気体は、 或る程度の真空度への減圧 を伴う吸引方式で段階的に排気するようにしてもよい。 On the other hand, the air supply device 38 is composed of a dust filter for removing fine particles such as a HEPA filter (high efficiency particulate air-filter) or ULPA filter (ultra low penetration air-filter), and a chemical filter such as ammonia or organic gas. 68A and 68B containing chemical filters for removing chemical impurities, and a purge gas (detailed later) whose temperature is controlled passes through the filters 68A and 68B. As a result, the impurities including the fine particles are removed. Then, the purge gas passing through the filter section 68A is supplied to the sub-chamber 31, the reticle chamber 32, via the air supply pipe 69A with the valve V1, and the branched air supply pipes with the valves V7, V5 and V6 respectively. The purge gas supplied into the wafer chamber 33 and passed through the filter section 68B is supplied to the projection optical system 18 through an air supply pipe 69B having a valve V8 and an air supply pipe 70A having a plurality of branch pipes. It is supplied to a plurality of lens chambers. In this case, the valves V1 to V11 are valves that can be opened and closed electromagnetically, and their opening and closing operations are controlled by the control unit 34 (see FIG. 2) independently of each other. The control unit 34 can control not only the opening and closing of the valve but also the size of the valve diameter (amount of throttle of the valve). By controlling the size of the valve diameter, only the supply of the purge gas is shut off. In addition, the supply amount (flow rate per hour) of the purge gas can be controlled. Then, the gas collection operation by the collection and mixing device 36, the purge gas supply operation from the air supply device 38, the opening and closing operations of the valves V1, V5 to V8, and the size of the valve diameter, A gas having a desired flow rate is supplied to the gas chamber at a desired flow rate in any of the hermetic chambers of the sub-chamber 31, the reticle chamber 32, the wafer chamber 33, and the plurality of lens chambers in the projection optical system 18. It is configured so that air can be supplied by a flow control method. The gas in the plurality of lens chambers of the projection optical system 18 may be evacuated in a stepwise manner by a suction method involving decompression to a certain degree of vacuum.
また、 サブチャンバ 3 1、 レチクル室 3 2、 投影光学系 1 8、 及びウェハ室 3 3の内部には、 それぞれその内部のパージガスの温度を検出するための温度セン サ 3 9 A〜3 9 Dが設置され、 温度センサ 3 9 A〜 3 9 Dによって各気密室内の 温度情報が所定のサンプリングレートで連続的に計測されている。 これらの計測 データは図 2の制御部 3 4に供給されている。 本例では、 温度センサ 3 9 A〜3 9 Dで計測される各気密室内のパージガスの温度が所定の目標温度 (例えば 2 3 °C) に対して所定の許容範囲 (例えば ± 0 . 0 1〜0 . O O l deg ) 内に収まる ように、 各気密室内にパージガスが供給される。  Further, inside the sub-chamber 31, the reticle chamber 32, the projection optical system 18, and the wafer chamber 33, temperature sensors 39A to 39D for detecting the temperature of the purge gas in the respective chambers are provided. Is installed, and temperature information in each airtight room is continuously measured at a predetermined sampling rate by the temperature sensors 39A to 39D. These measurement data are supplied to the control unit 34 in FIG. In this example, the temperature of the purge gas in each hermetic chamber measured by the temperature sensors 39A to 39D is within a predetermined allowable range (for example, ± 0.01) with respect to a predetermined target temperature (for example, 23 ° C.). Purge gas is supplied into each hermetic chamber so that it falls within 00.
以下、 図 2を参照して本例のパージガス供給機構の温度制御に関する詳細な構 成につき説明するが、 図 2においては複数の気密室の内のレチクル室 3 2のみを 図示するとともに、 レチクル室 3 2に連通していない配管、 及びバルブや分岐し た配管は、 説明の便宜上図示を省略している。  Hereinafter, a detailed configuration relating to the temperature control of the purge gas supply mechanism of the present embodiment will be described with reference to FIG. 2, but in FIG. 2, only the reticle chamber 32 of the plurality of airtight chambers is illustrated and the reticle chamber is illustrated. Pipes not communicating with 32, and valves and branched pipes are not shown for convenience of explanation.
図 2において、 制御部 3 4は、 露光装置全体の動作を統轄制御する主制御系 2 4の制御のもとで各部の動作を制御する。 そして、 回収混合装置 3 6では、 上記 の吸引して回収された気体及び気体供給源 3 5より配管 7 2を介して供給される 高純度のパージガスが混合部 4 5 (吸引ポンプを備えている) で混合され、 混合 された気体は配管 4 6 Aを介して冷凍機 4 7に供給され、 ここで一度温度が下げ られる。 混合部 4 5は、 排気管 7 5 Aから気体を吸引する吸引ポンプと、 混合さ れた気体を配管 4 6 Aを介して送風する送風ファンとを備えている。 気体供給源 In FIG. 2, a control unit 34 controls the operation of each unit under the control of a main control system 24 that controls the overall operation of the exposure apparatus. In the collection / mixing device 36, the gas collected by suction and the high-purity purge gas supplied from the gas supply source 35 through the pipe 72 are mixed in the mixing section 45 (provided with a suction pump). ), And the mixed gas is supplied to a refrigerator 47 via a pipe 46A, where the temperature is once lowered. The mixing section 45 includes a suction pump that sucks gas from an exhaust pipe 75A, and a blower fan that blows the mixed gas through a pipe 46A. Gas supply source
3 5、 気体回収用の排気管 7 5 A、 及び混合部 4 5が本発明の 「気体供給部」 に 対応している。 但し、 本発明は、 気密室 (所定の空間) 内を循環した気体 (流 体) を再利用しないシステムにも適用することができる。 温度制御対象の気密室としてのレチクル室 3 2内の目標温度を 2 3 °Cとすると 冷凍機 4 7では、 混合された気体の温度がそれより数度低い例えば 2 O t:まで下 げられる。 冷凍機 4 7を通過した気体は、 配管 4 6 Bを介してレチクル室 3 2内 のパージガスの温度変化を生じさせる可能性のある物理量 (本例では流量、 温度 湿度、 及び圧力) の情報を計測する計測部に供給される。 35, the exhaust pipe 75A for gas recovery, and the mixing section 45 correspond to the "gas supply section" of the present invention. However, the present invention can also be applied to a system that does not reuse gas (fluid) circulated in an airtight chamber (predetermined space). Assuming that the target temperature in the reticle chamber 32 as an airtight chamber to be temperature-controlled is 23 ° C, the temperature of the mixed gas in the refrigerator 47 can be lowered to, for example, 2 Ot: several degrees lower than that. . The gas that has passed through the refrigerator 47 receives information on physical quantities (in this example, flow rate, temperature, humidity, and pressure) that may cause a temperature change of the purge gas in the reticle chamber 32 via the pipe 46B. It is supplied to the measuring unit for measuring.
その計測部は、 配管 4 6 B内の気体の流量を計測する流量計 4 8と、 この流量 計 4 8と給気装置 3 8との間に設置された配管 7 3と、 配管 7 3の内側に設置さ れた湿度センサ 4 9、 温度センサ 5 0、 及び圧力センサ 5 1からなるセンサ部と から構成されている。 流量計 4 8で計測される流量の情報、 並びに湿度センサ 4 9、 温度センサ 5 0、 及び圧力センサ 5 1で計測される配管 7 3内を流れる気体 の湿度、 温度、 及び圧力 (気圧) の情報がそれぞれ所定のサンプリングレートで 制御部 3 4に供給される。  The measuring section includes a flow meter 48 for measuring the flow rate of the gas in the pipe 46 B, a pipe 73 installed between the flow meter 48 and the air supply device 38, and a pipe 73. It comprises a humidity sensor 49, a temperature sensor 50, and a sensor unit including a pressure sensor 51 installed inside. Information on the flow rate measured by the flow meter 48, and the humidity, temperature, and pressure (barometric pressure) of the gas flowing through the pipe 73 measured by the humidity sensor 49, temperature sensor 50, and pressure sensor 51 Information is supplied to the control unit 34 at a predetermined sampling rate.
その物理量の情報が計測された気体は配管 7 3を介して給気装置 3 8に供給さ れる。 給気装置 3 8において、 配管 7 3を介して供給された気体はヒーターを含 む加熱機 5 2で所定温度まで加熱され、 この加熱された気体は、 配管 4 6 C、 ァ ンモニァゃ有機系ガス等の化学的な不純物を除去するためのケミカルフィルタ 5 3、 及び防塵フィル夕 5 4を介して高純度で温度制御されたパージガスとして給 気管 6 9 Aに供給される。 ケミカルフィルタ 5 3及び防塵フィルタ 5 4が図 1の フィル夕部 6 8 Aに対応している。 給気管 6 9 Aに供給されたパージガスはレチ クル室 3 2内に供給される。 このレチクル室 3 2内の温度センサ 3 9 Bで計測さ れる温度情報も制御部 3 4に供給されている。  The gas whose physical quantity information has been measured is supplied to an air supply device 38 via a pipe 73. In the air supply device 38, the gas supplied via the pipe 73 is heated to a predetermined temperature by a heater 52 including a heater, and the heated gas is supplied to a pipe 46C via an ammonia organic system. The gas is supplied to the intake pipe 69A as a high-purity and temperature-controlled purge gas through a chemical filter 53 for removing chemical impurities such as gas and a dust-proof filter 54. The chemical filter 53 and the dust filter 54 correspond to the filter section 68 A in FIG. The purge gas supplied to the air supply pipe 69 A is supplied into the reticle chamber 32. Temperature information measured by a temperature sensor 39 B in the reticle chamber 32 is also supplied to the control unit 34.
加熱機 5 2が本発明の 「温度制御部」 に対応している。 本例では、 冷凍機 4 7 によって一度気体の温度を下げてから、 その気体を加熱機 5 2によって目標温度 まで加熱しているため、 加熱量を制御するだけの比較的単純な制御で、 高い応答 速度及び高い温度制御精度を得ることができる。 なお、 冷凍機 4 7を省いて、 加 熱機 5 2の代わりに加熱及び吸熱の両方を行うことができる温度制御部を設けて もよい。 この構成では、 温度制御は複雑になるが、 機構を簡素化することができ る。  The heater 52 corresponds to the “temperature controller” of the present invention. In this example, since the temperature of the gas is once lowered by the refrigerator 47, and then the gas is heated to the target temperature by the heater 52, a relatively simple control of only controlling the heating amount is performed. Response speed and high temperature control accuracy can be obtained. Note that the refrigerator 47 may be omitted, and a temperature controller capable of performing both heating and heat absorption may be provided instead of the heater 52. In this configuration, the temperature control becomes complicated, but the mechanism can be simplified.
ケミカルフィル夕 5 3で除去される物質には、 投影露光装置に使用されている 光学素子に付着してその曇りの原因となる物質、 露光ビームの光路内に浮遊して 照明光学系や投影光学系の透過率 (照度) 若しくは照度分布等を変動させる物質、 及びウェハの表面 (フォトレジスト) に付着して現像処理後のパターン像を変形 させる物質等も含まれている。 ケミカルフィルタ 53としては、 活性炭フィルタ (例えば、 ニッ夕株式会社 (NITTA CORPORATION ) 製のギガソープ (商品名) が 使用できる) 、 イオン交換膜方式のフィル夕 (例えば、 株式会社荏原製作所 (Eb ara Corporation ) の EP I Xフィルタ (商品名) が使用できる) 、 若しくはゼ オライトフィル夕、 又はこれらを組み合わせたフィル夕が使用できる。 これらの ケミカルフィルタにより、 シロキサン (siloxane: S i—O鎖が軸となる物質) 又はシラザン (silazane: S i—N鎖が軸となる物質) 等のシリコン系有機物も 除去される。 The substances that are removed in Chemical Filler 53 are used in projection exposure equipment. A substance that adheres to an optical element and causes fogging, a substance that floats in an optical path of an exposure beam and changes transmittance (illuminance) or illuminance distribution of an illumination optical system or a projection optical system, and a wafer surface ( (Photoresist) and the like, which deforms the pattern image after development processing. As the chemical filter 53, an activated carbon filter (for example, Gigasoap (trade name) manufactured by NITTA CORPORATION) can be used, and an ion exchange membrane type filter (for example, Ebara Corporation) EP IX filter (trade name) can be used), or zeolite filter, or a filter combining these. These chemical filters also remove silicon-based organic substances such as siloxane (a substance whose axis is a Si-O chain) or silazane (a substance whose axis is a Si-N chain).
本例では、 レチクル室 32内の温度センサ 39 Bで計測されるパージガスの温 度 Tの情報、 並びに回収混合装置 36内の流量計 48、 湿度センサ 49、 温度セ ンサ 50、 及び圧力センサ 51で計測される気体の流量 F、 湿度 H、 温度 U、 及 び圧力 Pの情報に基づいて、 制御部 34がレチクル室 32内の温度が上記の目標 温度 (=TCとする) に対して許容範囲内に収まるように加熱機 52における気 体の単位時間当たりの加熱量 Sを制御する。 この場合、 加熱機 52に対してレチ クル室 32は気体の下流側に配置されているため、 レチクル室 32内の温度セン サ 39 Bで計測される温度 Tの情報は加熱機 52にフィードバックされている。 一方、 加熱機 52に対して回収混合装置 36 (物理量の計測部) は気体の上流側 に配置されているため、 その計測部の流量計 48、 湿度センサ 49、 温度センサ 50、 及び圧力センサ 51で計測される気体の流量 F、 湿度 H、 温度 U、 及び圧 力 Pの情報は加熱機 52にフィードフォワードされている。  In this example, information on the temperature T of the purge gas measured by the temperature sensor 39 B in the reticle chamber 32 and the flow meter 48, the humidity sensor 49, the temperature sensor 50, and the pressure sensor 51 in the collection and mixing device 36. Based on the information of the measured gas flow rate F, humidity H, temperature U, and pressure P, the control unit 34 allows the temperature in the reticle chamber 32 to be within the allowable range with respect to the above target temperature (= TC). The heating amount S of the gas in the heater 52 per unit time is controlled so as to fall within the range. In this case, since the reticle chamber 32 is disposed downstream of the gas with respect to the heater 52, information on the temperature T measured by the temperature sensor 39B in the reticle chamber 32 is fed back to the heater 52. ing. On the other hand, since the recovery mixing device 36 (physical quantity measurement unit) is located upstream of the gas with respect to the heater 52, the flow meter 48, humidity sensor 49, temperature sensor 50, and pressure sensor 51 of the measurement unit are provided. The information of the gas flow rate F, the humidity H, the temperature U, and the pressure P, which are measured at, are fed forward to the heater 52.
即ち、 温度センサ 39 Bの温度 Tをフィードバックするために、 一例としてレ チクル室 32内の目標温度 TCと温度 Tとの差分を ΔΤ (=T-TC) として、 この差分そのもの、 その差分の所定の積分時間 Δ tにおける積分 (実際にはデジ タルデータの和となる、 以下同様) ί ATd t、 及びその差分の微分 (実際には デジタルデータの差分となる、 以下同様) dATZd tから加熱機 52における 単位時間当たりの加熱量 Sの変化量を求める係数をそれぞれ kT 1, kT2, k T 3とする。 これらの係数は予めレチクル室 32内の目標温度に対する許容範囲 のレベルなどに応じて実験的に定められて主制御系 24に記憶されており、 露光 工程開始前に主制御系 24から制御部 34に設定される。 制御部 34では、 温度 センサ 39 Βの温度 Τに起因する加熱機 52における加熱量 Sの変化分 AS 1を 次式から求める。 That is, in order to feed back the temperature T of the temperature sensor 39B, as an example, the difference between the target temperature TC in the reticle chamber 32 and the temperature T is defined as ΔΤ (= T-TC), and this difference itself is a predetermined value of the difference. Integration at the integration time Δt (actually the sum of digital data, the same applies below) t ATd t and its differential (actually the digital data difference, the same applies hereinafter) dATZd t to heater KT1, kT2, k are the coefficients for calculating the amount of change in the heating amount S per unit time in 52, respectively. T3. These coefficients are experimentally determined in advance in accordance with the level of an allowable range for a target temperature in the reticle chamber 32 and stored in the main control system 24. Before the exposure process starts, the main control system 24 controls the control unit 34. Is set to The controller 34 obtains a change AS1 of the heating amount S in the heater 52 due to the temperature Β of the temperature sensor 39 Β from the following equation.
△ S l = kT l - AT+kT2 · ΔΤά t + kT 3 · d ΔΤ/d t  △ S l = kT l-AT + kT2Δt + kT3dΔΤ / dt
… (1)  … (1)
次に、 流量計 48、 湿度センサ 49、 温度センサ 50、 及び圧力センサ 5 1で 計測される気体の流量 F、 湿度 H、 温度 U、 及び圧力 Pをフィードフォワードす るために、 一例として予めこれらの物理量の基準値 (例えば或る露光工程での実 測値の平均値) をそれぞれ FC, HC, UC, PCとしておく。 そして、 簡単の ために、 これらの基準値と計測値との差分を (=F-FC) , ΔΗ ( = H— HC) , AU ( = U— UC) , ΔΡ (=Ρ— PC) として、 これらの差分から加 熱機 52における加熱量 Sの変化量を求める係数をそれぞれ kF 1, kH 1 , k U 1 , kP lとする。 これらの係数も予め主制御系 24から制御部 34に設定さ れている。 これらの係数も、 予めレチクル室 32内の目標温度に対する許容範囲 のレベルなどに応じて実験的に定められて主制御系 24に記憶されており、 露光 工程開始前に主制御系 24から制御部 34に設定される。 制御部 34では、 気体 の流量 F、 湿度 H、 温度 U、 及び圧力 Pに起因する加熱機 52における加熱量 S の変化分 Δ S 2を次式から求める。  Next, in order to feed forward the flow rate F, humidity H, temperature U, and pressure P of the gas measured by the flow meter 48, the humidity sensor 49, the temperature sensor 50, and the pressure sensor 51, for example, The reference values of the physical quantities (for example, the average value of the measured values in a certain exposure step) are set as FC, HC, UC, and PC, respectively. For simplicity, the differences between these reference values and the measured values are (= F-FC), Δ (= H—HC), AU (= U—UC), and ΔΡ (= Ρ—PC). Coefficients for obtaining the amount of change in the amount of heating S in the heater 52 from these differences are denoted by kF1, kH1, kU1, and kPl, respectively. These coefficients are also set in the control unit 34 from the main control system 24 in advance. These coefficients are experimentally determined in advance in accordance with the level of an allowable range for a target temperature in the reticle chamber 32 and stored in the main control system 24, and are controlled by the main control system 24 before the exposure process starts. Set to 34. The controller 34 obtains a change ΔS 2 of the heating amount S in the heater 52 due to the gas flow rate F, humidity H, temperature U, and pressure P from the following equation.
Δ S 2 = k F 1 - Δ F + kH 1 - ΔΗ+ kU 1 - AU+ k P 1 · ΔΡ  Δ S 2 = k F 1-Δ F + kH 1-ΔΗ + kU 1-AU + k P 1
… (2)  … (2)
本例では、 図 2に示すように加熱機 52 (温度制御部) とレチクル室 32 (気 密室) との間にケミカルフィル夕 53が配置されており、 ケミカルフィル夕 53 は、 内部を通過する気体の湿度が上昇すると吸熱が起こり、 排出される気体の温 度が低下する傾向がある。 また、 ケミカルフィルタ 53は、 内部を通過する気体 の湿度が低下すると発熱が起こり、 排出される気体の温度が上昇する傾向がある。 これは、 ケミカルフィルタ 53がその内部の湿度を或る一定の湿度に保つように 作用するためである。 そこで、 本例では、 湿度センサ 49で計測される湿度 Ηの 基準値 HCからの差分 ΔΗ ( = H-HC) が +になったら加熱量の変化分 AS 2 を +として、 差分 ΔΗが—になったら変化分 AS 2を—とするように、 係数 kH 1の値を所定の正の値に設定しておく。 この場合、 例えば予め実験的にケミカル フィルタ 53において吸熱又は発熱が起こるときの湿度を計測しておき、 この湿 度をその基準値 HCとしてもよい。 In this example, as shown in FIG. 2, a chemical filler 53 is disposed between the heater 52 (temperature control unit) and the reticle chamber 32 (airtight chamber), and the chemical filler 53 passes through the inside. When the humidity of the gas rises, heat is absorbed and the temperature of the discharged gas tends to decrease. In addition, the chemical filter 53 tends to generate heat when the humidity of the gas passing therethrough decreases, and the temperature of the discharged gas tends to increase. This is because the chemical filter 53 acts to keep the humidity inside the filter at a certain level. Therefore, in this example, the humidity Η measured by the humidity sensor 49 is When the difference Δ 1 (= H-HC) from the reference value HC becomes +, the change amount AS 2 of the heating amount is set to +, and when the difference ΔΗ becomes −, the change amount AS 2 is set to −. Is set to a predetermined positive value. In this case, for example, the humidity when heat absorption or heat generation occurs in the chemical filter 53 may be experimentally measured in advance, and this humidity may be used as the reference value HC.
なお、 この基準値 HCは、 使用するケミカルフィル夕 53の種類 (ケミカルフ ィル夕の構成、 素材など) に応じてそれぞれ個別に求めておき、 使用するフィル 夕によって使い分けるようにしておく。 また、 使用するケミカルフィルタの吸熱、 発熱の能力が経時的に変動するような場合には、 上述の基準値 H Cもその能力変 動に応じて変動させるようにすることが好ましい。  Note that this reference value HC is determined individually according to the type of chemical filter 53 used (the composition of the chemical filter, material, etc.), and is used depending on the type of filler used. Further, in the case where the heat absorption and heat generation capability of the chemical filter to be used fluctuates with time, it is preferable that the above-mentioned reference value H C is also fluctuated according to the fluctuation of the capability.
なお、 より厳密に加熱量 Sの変化分△ S 2を求めるためには、 その差分 ΔΗに 関して 1次関数、 又はより高次の関数の形で変化分 AS 2を求めるようにしても よい。 更に、 差分 ΔΗの所定の積分時間 Δ tにおける積分 ί AHd t、 及びその 差分の微分 d ΔΤΖοΙ tをも考慮して、 変化分△ S 2を求めるようにしてもよい。 他の流量 F、 温度 U、 及び圧力 Pについても、 より制御精度を高めるためには、 差分値だけでなく、 積分値及び微分値をも考慮して加熱量 Sの変化分を求めるよ うにしてもよい。  In order to obtain the change の S 2 of the heating amount S more precisely, the change AS 2 may be obtained in the form of a linear function or a higher-order function with respect to the difference ΔΗ. . Further, the variation △ S2 may be obtained in consideration of the integration ίAHdt of the difference ΔΗ at a predetermined integration time Δt and the differentiation dΔΤΖοΙt of the difference. In order to further improve the control accuracy of other flow rates F, temperature U, and pressure P, the amount of change in the heating amount S should be calculated taking into account not only the difference value but also the integral value and the derivative value. You may.
また、 流量 Fが増加する場合には、 同じ加熱量では温度が低下してしまうため、 予め加熱量 Sを多くしておけばよい。 そこで、 流量 Fに対する加熱量 Sの変化量 を求める係数 k F 1の値は所定の (例えば実験的に定める) 正の値としておけば よい。 一方、 温度 Uが高いときには、 加熱量 Sは少なくてよいため、 係数 kU l は所定の負の値にしておけばよい。  Further, when the flow rate F increases, the temperature decreases with the same heating amount, so the heating amount S may be increased in advance. Therefore, the value of the coefficient kF1 for obtaining the change amount of the heating amount S with respect to the flow rate F may be set to a predetermined (eg, experimentally determined) positive value. On the other hand, when the temperature U is high, the heating amount S may be small, and thus the coefficient kUl may be set to a predetermined negative value.
このように、 本例では、 気体の流量 F、 湿度 H、 温度 U、 及び圧力 Pを計測し ているため、 これらの状態量からその気体のエネルギー状態量であるェン夕ルピ -(enthalpy) (単位はエネルギー (J又は c a l ) ) を求めることができる。 こ の際に予め湿度センサ 49からレチクル室 32までの経路における水蒸気の発熱 量を計測しておくことによって、 その水蒸気の発熱量分を補正するように、 加熱 機 52における加熱量 Sの変化分 A S 2を設定してもよい。  As described above, in this example, the flow rate F, humidity H, temperature U, and pressure P of the gas are measured, and from these state quantities, the energy state quantity of the gas, ie, entropy-(enthalpy) (Unit is energy (J or cal)). At this time, the amount of change in the amount of heating S in the heater 52 is corrected so that the amount of heat generated by the steam in the path from the humidity sensor 49 to the reticle chamber 32 is measured in advance. AS 2 may be set.
図 2の温度制御部 34は、 ( 1 ) 式及び ( 2 ) 式の加熱量 Sの変化分 Δ S 1 , Δ S 2を次式のように加算することによって、 加熱機 52における加熱量 Sの変 化分 ASを算出する。 The temperature control unit 34 in FIG. 2 calculates the change ΔS 1 of the heating amount S in equations (1) and (2), The change AS of the heating amount S in the heater 52 is calculated by adding ΔS2 as in the following equation.
Δ S = A S 1 +△ S 2 … (3)  Δ S = A S 1 + △ S 2… (3)
そして、 温度制御部 34は、 加熱機 52に対してその変化分 ASだけ加熱量 S を変化させるように制御信号を送る。 (1) 式〜 (3) 式の計算、 及び加熱機 5 2に対する加熱量 Sの変化の制御信号の供給は、 露光工程中に所定のサンプリン グレート (例えば数 10Hz〜数 kHz程度) で連続的に行われる。  Then, the temperature controller 34 sends a control signal to the heater 52 so as to change the heating amount S by the change AS. The calculations of equations (1) to (3) and the supply of the control signal for the change in the heating amount S to the heater 52 are continuously performed at a predetermined sampling rate (for example, about several tens Hz to several kHz) during the exposure process. Done in
これによつて、 レチクル室 32内のパージガスの温度は、 上記の目標温度に対 して許容範囲内に収められて、 高精度に露光を行うことができる。  Accordingly, the temperature of the purge gas in the reticle chamber 32 is kept within an allowable range with respect to the target temperature, and exposure can be performed with high accuracy.
具体的に、 図 3 (A) 、 図 3 (B) 、 図 3 (C) はそれぞれ図 2のレチクル室 32内の温度 T (温度センサ 39 Bの計測値) 、 加熱機 52における加熱量 S、 及び湿度センサ 49で計測される湿度 Sの変化の一例を示し、 図 3 (A) 〜図 3 Specifically, FIGS. 3 (A), 3 (B), and 3 (C) show the temperature T (measured value of the temperature sensor 39B) in the reticle chamber 32 and the heating amount S in the heater 52 in FIG. , And an example of a change in the humidity S measured by the humidity sensor 49.
(C) の横軸は経過時間!;である。 例えば図 3 (A) の実線 55 Aで示すように、 時点 t 1でレチクル室 32内の温度 Tが目標値 TCからシフトすると、 その温度 Tをフィードバックすることによって、 図 3 (B) の実線 56 Aで示すように、 その直後の時点 t 2から加熱機 52の加熱量 Sが基準値 S Cからシフトして、 温 度 Tは目標値 TCに戻る。 The horizontal axis of (C) is the elapsed time! ; For example, as shown by the solid line 55 A in FIG. 3A, when the temperature T in the reticle chamber 32 shifts from the target value TC at the time point t1, by feeding back the temperature T, the solid line in FIG. As shown by 56 A, the heating amount S of the heater 52 shifts from the reference value SC from the time point t2 immediately after that, and the temperature T returns to the target value TC.
また、 図 3 (C) の実線 57で示すように、 時点 t 3から湿度センサ 49で計 測される湿度 Hが基準値 HCから変動すると、 その変動がケミカルフィル夕 53 での吸発熱を相殺するようにフィードフォワードされて、 図 3 (B) に示すよう に加熱機 52の加熱量 Sが変化する。 これによつて、 レチクル室 32内の温度 T は目標値 TCに維持される。 これに対して、 湿度 Hのフィードフォワードが無い 場合には、 図 3 (A) の点線 55 Bで示すように、 ケミカルフィルタ 53での吸 発熱によってレチクル室 32内の温度 Tが変動してしまう。 この変動は、 温度 T のフィードバックによって次第に小さくなるが、 温度制御精度は悪化する。  Also, as shown by the solid line 57 in FIG. 3 (C), when the humidity H measured by the humidity sensor 49 fluctuates from the reference value HC from the time t3, the fluctuation cancels out heat absorption and heat generation in the chemical fill 53. Then, the heating amount S of the heater 52 changes as shown in FIG. 3 (B). Thereby, the temperature T in the reticle chamber 32 is maintained at the target value TC. On the other hand, when there is no feedforward of the humidity H, as shown by the dotted line 55B in FIG. 3A, the temperature T in the reticle chamber 32 fluctuates due to heat absorption and heat generation in the chemical filter 53. . This fluctuation is gradually reduced by the feedback of the temperature T, but the accuracy of the temperature control deteriorates.
このように本例では、 加熱機 52の前で計測した気体の湿度 Hに基づいて、 カロ 熱機 52の次に設置されたケミカルフィルタ 53での吸発熱を相殺するように、 加熱機 52での加熱量 Sを制御しているため、 ケミカルフィルタ 53を用いてい てもレチクル室 32内での温度の変動量を抑制して、 高い温度制御精度を得るこ とができる。 更に、 加熱機 5 2の前で計測した気体の流量 F、 温度 U、 及び圧力 Pをも用いて加熱器 5 2での加熱量 Sを制御しているため、 更に高い温度制御精 度が得られる。 Thus, in this example, based on the humidity H of the gas measured in front of the heater 52, the heat absorption and heat generation in the chemical filter 53 installed next to the caro heater 52 are cancelled. Since the heating amount S is controlled, even if the chemical filter 53 is used, the amount of temperature fluctuation in the reticle chamber 32 can be suppressed, and high temperature control accuracy can be obtained. Can be. Furthermore, since the heating amount S in the heater 52 is controlled by using the gas flow rate F, the temperature U, and the pressure P measured in front of the heater 52, higher temperature control accuracy is obtained. Can be
更に、 本例では計測された湿度 Hを加熱機 5 2にフィードフォワードしている ため、 レチクル室 3 2内で温度変動が生じる前に、 ケミカルフィルタ 5 3の影響 を相殺することができる。 従って、 更に高い温度制御精度が得られる。  Further, in this example, the measured humidity H is fed forward to the heater 52, so that the influence of the chemical filter 53 can be canceled before the temperature fluctuation occurs in the reticle chamber 32. Therefore, higher temperature control accuracy can be obtained.
なお、 図 2の例では、 加熱機 5 2の前段の回収混合装置 3 6内で気体の湿度 H を計測しているが、 その湿度 Hは、 ケミカルフィル夕 5 3内で計測してもよい。 この場合には、 湿度 Hの計測値は加熱機 5 2にフィードバックされることになる が、 これでもレチクル室 3 2の手前の計測値に基づいて加熱機 5 2の加熱量を制 御できるため、 レチクル室 3 2内の温度制御精度は、 その湿度 Hの値を考慮しな い場合に比べて向上する。  In the example of FIG. 2, the humidity H of the gas is measured in the collection and mixing device 36 before the heater 52, but the humidity H may be measured in the chemical filter 53. . In this case, the measured value of the humidity H is fed back to the heater 52, but the heating amount of the heater 52 can be controlled based on the measured value before the reticle chamber 32 even in this case. In addition, the temperature control accuracy in the reticle chamber 32 is improved as compared with the case where the value of the humidity H is not taken into consideration.
また、 図 2の例において、 回収混合装置 3 6内で計測される気体の流量 F及び 圧力 Pがほぼ一定の値であるとみなせる場合、 又は気体の流量 F及び圧力 Pに起 因するレチクル室 3 2内での熱変動量が許容範囲内であるような場合には、 気体 の流量 F及び圧力 Pの値は加熱機 5 2を制御するために必ずしも使用しなくとも よい。  In the example of FIG. 2, if the gas flow rate F and the pressure P measured in the collection and mixing device 36 can be considered to be almost constant, or the reticle chamber caused by the gas flow rate F and the pressure P If the amount of heat fluctuation within 32 is within an allowable range, the values of the gas flow rate F and the pressure P may not necessarily be used to control the heater 52.
なお、 図 1においては、 サブチャンバ 3 1、 レチクル室 3 2、 及びウェハ室 3 3よりなる 3個の気密室及び投影光学系 1 8に対するパージガスの供給をバルブ を制御しながら、 図 2に示すようなパージガス供給機構を共用して行っているが、 投影光学系及び各気密室毎に独立に図 2のようなパージガス供給機構を設けても よい。 供給先毎にパージガス供給機構を設けておけば、 供給されるパージガスの 温度を供給先毎に独立に制御したり、 また、 その温度制御精度 (例えば制御精度 を ± 0 . 1 ° とするか ± 0 . 0 1 ° とする力 も供給先毎に独立に設定すること も可能となる。  In FIG. 1, the supply of purge gas to the three hermetic chambers including the sub-chamber 31, the reticle chamber 32, and the wafer chamber 33 and the supply of the purge gas to the projection optical system 18 is shown in FIG. 2 while controlling the valves. Although such a purge gas supply mechanism is commonly used, a purge gas supply mechanism as shown in FIG. 2 may be provided independently for each of the projection optical system and each hermetic chamber. If a purge gas supply mechanism is provided for each supply destination, the temperature of the supplied purge gas can be controlled independently for each supply destination, and its temperature control accuracy (for example, if the control accuracy is ± 0.1 ° or ± The force at 0.01 ° can also be set independently for each supply destination.
また、 本例のパージガス供給機構においては、 サブチャンバ 3 1、 レチクル室 3 2、 投影光学系 1 8、 及びウェハ室 3 3の内部には、 それぞれその内部の不純 物中の酸素ガスの濃度を検出するための酸素濃度センサ (不図示) が設置され、 各気密室内の不純物としての酸素の濃度情報が所定のサンプリングレー卜で連続 的に計測されている。 これらの計測データも図 2の制御部 3 4に供給されている。 本例では、 上記の温度制御と並行して、 酸素濃度センサの何れかにおいて所定の 許容濃度以上の酸素ガスが検出された場合には、 図 2の制御部 3 4の指令により 酸素ガス濃度が許容濃度以下となるまでその酸素ガスが検出された気密室内へ供 給される混合気体中の、 気体供給源 3 5からの高純度のパージガスの割合を増加 させている。 酸素濃度センサとしては、 例えばポーラログラフ式酸素濃度計、 ジ ルコニァ式酸素濃度計、 又は黄リン発光式の酸素センサ等が使用できる。 なお、 不純物を検出するためのセンサとしては、 酸素濃度センサの他に、 オゾン (03)、 水蒸気、 及び二酸化炭素 (C〇2)等の炭化水素系分子等を検出するためのセンサ を使用してもよい。 In the purge gas supply mechanism of the present example, the concentration of the oxygen gas in the impurities inside each of the sub-chamber 31, the reticle chamber 32, the projection optical system 18, and the wafer chamber 33 is set. An oxygen concentration sensor (not shown) for detection is installed, and information on the concentration of oxygen as an impurity in each hermetic chamber is continuously obtained at a predetermined sampling rate. It is being measured. These measurement data are also supplied to the control unit 34 in FIG. In this example, in parallel with the above-described temperature control, if any one of the oxygen concentration sensors detects oxygen gas having a concentration equal to or higher than a predetermined allowable concentration, the oxygen gas concentration is controlled by a command from the control unit 34 in FIG. The proportion of the high-purity purge gas from the gas supply source 35 in the gas mixture supplied to the hermetic chamber where the oxygen gas was detected is increased until the oxygen gas concentration falls below the allowable concentration. As the oxygen concentration sensor, for example, a polarographic oxygen concentration meter, a zirconia oxygen concentration meter, a yellow phosphorus emission type oxygen sensor, or the like can be used. As the sensor for detecting the impurities, used for other oxygen concentration sensor, ozone (0 3), water vapor, and a sensor for detecting carbon dioxide (C_〇 2) hydrocarbon molecules such as May be.
なお、 本発明を例えばリソグラフィシステムが設置されるクリーンルーム (気 密室) の温度制御に適用する場合には、 そのクリーンルームに供給される気体は、 例えば外気から防塵フィルタ等を介して取り込んで乾燥させた空気 (ドライエア ―) となる。 同様に、 本発明を例えば露光装置が全体として収納される環境チヤ ンバ (気密室) の温度制御に適用する場合には、 その環境チャンバ内に供給され る気体は、 クリーンルーム内で防塵フィルタ等を介して取り込んだ空気 (ドライ エア一) となる。  When the present invention is applied to, for example, temperature control of a clean room (airtight room) in which a lithography system is installed, gas supplied to the clean room is taken in from, for example, outside air through a dustproof filter or the like and dried. It becomes air (dry air-). Similarly, when the present invention is applied to, for example, temperature control of an environmental chamber (airtight chamber) in which an exposure apparatus is housed as a whole, the gas supplied to the environmental chamber is supplied to a dustproof filter or the like in a clean room. It becomes the air taken in through the air (dry air).
更に、 上記の各実施の形態は、 本発明をステップ ·アンド ·スキャン方式の投 影露光装置に適用したものであるが、 本発明はステッパー等の一括露光型の投影 露光装置にも適用することができる。 それらの投影露光装置が備える投影光学系 の倍率は、 縮小に限られることなく、 等倍や拡大でもよい。 また、 本発明は、 例 えば国際公開第 9 9 / 4 9 5 0 4号パンフレットに開示される液浸型露光装置に も適用することができる。 更に、 本発明は、 例えば国際公開第 9 8 / 2 4 1 1 5 号パンフレット、 第 9 8 Z 4 0 7 9 1号パンフレツ卜に開示されるように、 露光 動作とァライメント動作 (マーク検出動作) とをほぼ並行に可能な 2つのウェハ ステージを備える露光装置にも適用することができる。 更に本発明は、 投影光学 系を使用しないプロキシミティ方式の露光装置等にも適用できることは明らかで ある。  Further, in each of the above embodiments, the present invention is applied to a step-and-scan type projection exposure apparatus, but the present invention is also applicable to a batch exposure type projection exposure apparatus such as a stepper. Can be. The magnification of the projection optical system provided in these projection exposure apparatuses is not limited to reduction, but may be equal magnification or enlargement. Further, the present invention can be applied to, for example, an immersion type exposure apparatus disclosed in International Publication No. WO 99/49504. Further, the present invention relates to an exposure operation and an alignment operation (mark detection operation), as disclosed in, for example, International Publication No. 98/241115 pamphlet and No. 988Z40971 pamphlet. The present invention can also be applied to an exposure apparatus having two wafer stages capable of performing the steps substantially in parallel. Further, it is apparent that the present invention can be applied to a proximity type exposure apparatus or the like that does not use a projection optical system.
また、 上記の実施の形態の照明光学系及び投影光学系は、 各光学部材を所定の 位置関係で支持部材ゃ鏡筒内に配置して調整を行った後、 支持部材及び鏡筒を不 図示のコラムに設置することによって組み上げられる。 そして、 この組立調整と 共に、 ステージ系、 レーザ干渉計、 及び装置内部のパージを行うためのパージガ ス供給機構等の組立及び調整を行い、 各構成要素を、 電気的、 機械的又は光学的 に連結することによって上記の実施の形態の投影露光装置が組み上げられる。 こ の場合の作業は温度管理が行われたクリーンルーム内で行うことが望ましい。 次に、 上記の実施の形態の投影露光装置を使用した半導体デバイスの製造工程 の一例につき図 4を参照して説明する。 In the illumination optical system and the projection optical system according to the above-described embodiment, each optical member is After adjustment is performed by arranging the support member in the lens barrel in a positional relationship, the support member and the lens barrel are set on a column (not shown) to assemble. Along with this assembly adjustment, the stage system, laser interferometer, and a purge gas supply mechanism for purging the inside of the apparatus are assembled and adjusted, and each component is electrically, mechanically, or optically adjusted. By linking, the projection exposure apparatus of the above embodiment is assembled. In this case, it is desirable to perform the work in a clean room where temperature control has been performed. Next, an example of a semiconductor device manufacturing process using the projection exposure apparatus of the above embodiment will be described with reference to FIG.
図 4は、 半導体デバイスの製造工程の一例を示し、 この図 4において、 まずシ リコン半導体等からウェハ Wが製造される。 その後、 ウェハ W上にフォトレジス トを塗布し (ステップ S 1 0 ) 、 次のステップ S 1 2において、 上記の実施の形 態 (図 1 ) の投影露光装置のレチクルステージ上にレチクル (仮に R 1とする) をロードし、 走査露光方式でレチクル R 1のパターン (符号 Aで表す) をウェハ W上の全部のショット領域 S Eに転写 (露光) する。 この際に必要に応じて二重 露光が行われる。 なお、 ウェハ Wは例えば直径 3 0 0 mmのウェハ (1 2インチ ウェハ) であり、 ショット領域 S Eの大きさは一例として非走査方向の幅が 2 5 mmで走査方向の幅が 3 3 mmの矩形領域である。 次に、 ステップ S 1 4におい て、 現像及びエッチングやイオン注入等を行うことにより、 ウェハ Wの各ショッ ト領域 S Eに所定のパターンが形成される。  FIG. 4 shows an example of a semiconductor device manufacturing process. In FIG. 4, a wafer W is first manufactured from a silicon semiconductor or the like. Thereafter, a photoresist is applied on the wafer W (step S10), and in the next step S12, the reticle (tentatively, R) is placed on the reticle stage of the projection exposure apparatus of the above embodiment (FIG. 1). 1), and the pattern (represented by the symbol A) of the reticle R 1 is transferred (exposed) to all the shot areas SE on the wafer W by the scanning exposure method. At this time, double exposure is performed as necessary. The wafer W is, for example, a wafer having a diameter of 300 mm (12-inch wafer). The size of the shot area SE is, for example, 25 mm in the non-scanning direction and 33 mm in the scanning direction. This is a rectangular area. Next, in step S14, a predetermined pattern is formed in each shot area SE of the wafer W by performing development, etching, ion implantation, and the like.
次に、 ステップ S 1 6において、 ウェハ W上にフォトレジストを塗布し、 その 後ステップ S 1 8において、 上記の実施の形態 (図 1 ) の投影露光装置のレチク ルステージ上にレチクル (仮に R 2とする) をロードし、 走査露光方式でレチク ル R 2のパターン (符号 Bで表す) をウェハ W上の各ショット領域 S Eに転写 (露光) する。 そして、 ステップ S 2 0において、 ウェハ Wの現像及びエツチン グゃイオン注入等を行うことにより、 ウェハ Wの各ショット領域に所定のパター ンが形成される。  Next, in step S16, a photoresist is applied onto the wafer W, and then in step S18, a reticle (assuming that a reticle (provisionally R) is placed on the reticle stage of the projection exposure apparatus of the above embodiment (FIG. 1). 2) and transfer (exposure) the pattern of the reticle R 2 (represented by the symbol B) to each shot area SE on the wafer W by the scanning exposure method. Then, in step S 20, a predetermined pattern is formed in each shot area of the wafer W by performing development, etching ion implantation, and the like on the wafer W.
以上の露光工程〜パターン形成工程 (ステップ S 1 6〜ステップ S 2 0 ) は所 望の半導体デバイスを製造するのに必要な回数だけ繰り返される。 そして、 ゥェ ハ W上の各チップ C Pを 1つ 1つ切り離すダイシング工程 (ステップ S 2 2 ) や、 ボンディング工程、 及びパッケージング工程等 (ステップ S 2 4 ) を経ることに よって、 製品としての半導体デバイス S Pが製造される。 The above-described exposure step to pattern formation step (step S16 to step S20) are repeated as many times as necessary to manufacture a desired semiconductor device. Then, a dicing process (step S22) for separating each chip CP on wafer W one by one, The semiconductor device SP as a product is manufactured through the bonding step, the packaging step, and the like (step S24).
本例のデバイス製造方法によれば、 投影露光装置のレチクルやウェハの温度制 御精度を高くできるため、 重ね合わせ精度等を高めることができ、 より高集積で 高性能な半導体デバイス (集積回路) を、 高い歩留まりで製造することができる c なお、 本発明の露光装置の用途としては半導体デバイス製造用の露光装置に限 定されることなく、 例えば、 角型のガラスプレートに形成される液晶表示素子、 若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、 撮像素子 ( C C D等) 、 マイクロマシーン、 薄膜磁気ヘッド、 及び D N Aチップ等の各種 デバイスを製造するための露光装置にも広く適用できる。 更に、 本発明は、 各種 デバイスのマスクパターンが形成されたマスク (フォトマスク、 レチクル等) を フォトリソグフイエ程を用いて製造する際の、 露光工程 (露光装置) にも適用す ることができる。 According to the device manufacturing method of this example, since the temperature control accuracy of the reticle and the wafer of the projection exposure apparatus can be increased, the overlay accuracy and the like can be increased, and a more highly integrated and high-performance semiconductor device (integrated circuit) the still c can be prepared in high yield, without being restricted to an exposure apparatus for manufacturing semiconductor devices use of the exposure apparatus of the present invention, for example, a liquid crystal display is formed on a square glass plate The present invention can be widely applied to an exposure apparatus for manufacturing various devices such as an element or an exposure apparatus for a display apparatus such as a plasma display, an imaging element (such as a CCD), a micro machine, a thin film magnetic head, and a DNA chip. Further, the present invention can be applied to an exposure step (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which a mask pattern of various devices is formed using a photolithographic process. .
なお、 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱しない範 囲で種々の構成を取り得る。 また、 明細書、 特許請求の範囲、 図面、 及び要約を 含む 2 0 0 2年 8月 2 9日付け提出の日本国特許出願第 2 0 0 2 - 2 5 0 1 7 9 号の全ての開示内容は、 そつくりそのまま引用して本願に組み込まれている。 産業上の利用の可能性  Note that the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention. In addition, all disclosures of Japanese Patent Application No. 2002-2509, filed on August 29, 2002, including the specification, claims, drawings, and abstract. The contents are incorporated in the present application by reference as they are. Industrial potential
本発明によれば、 温度制御用の流体の温度変化を生じさせる少なくとも一つ以 上の物理量の情報に基づいてその流体の温度を制御しているため、 その流体が供 給される空間である例えば露光装置を収納するチャンバ等の内部の温度制御精度 を高めることができる。 従って、 本発明を露光方法及び装置に適用した場合には、 露光時の第 1物体 (マスク) や第 2物体 (基板) の温度制御精度を向上できるた め、 高機能のデバイスを高精度に製造することができる。  According to the present invention, since the temperature of the fluid for temperature control is controlled based on information of at least one or more physical quantities that cause a temperature change of the fluid for temperature control, the space is supplied with the fluid. For example, it is possible to improve the temperature control accuracy inside a chamber or the like accommodating the exposure apparatus. Therefore, when the present invention is applied to the exposure method and apparatus, the temperature control accuracy of the first object (mask) and the second object (substrate) at the time of exposure can be improved. Can be manufactured.
また、 本発明によれば、 例えばケミカルフィル夕のようにその流体としての気 体の湿度によって熱変動を起こすような装置が使用されている場合には、 その湿 度の計測情報を用いて温度制御を行うことによって、 高い温度制御精度を得るこ とができる。 また、 更に制御対象の空間内の温度情報をフィードバックして、 その物理量の 情報をフィードフォヮ一ドして温度制御部での吸発熱量を制御することによって、 その空間内の温度を目標値に高速に高い制御精度で設定することができる。 Further, according to the present invention, when a device that causes heat fluctuation due to the humidity of the gas as a fluid, such as a chemical fill, is used, the temperature is measured using the measurement information of the humidity. By performing the control, high temperature control accuracy can be obtained. In addition, the temperature information in the space to be controlled is fed back, and the information on the physical quantity is fed forward to control the amount of heat absorbed and generated by the temperature control unit, so that the temperature in the space can be increased to the target value at a high speed. Can be set with high control accuracy.

Claims

請 求 の 範 囲 The scope of the claims
1 . 所定の空間内の温度を、 温度制御され、 且つケミカルフィル夕を介した気体 を用いて制御する温度制御方法において、 1. A temperature control method for controlling the temperature in a predetermined space by using a gas that is temperature-controlled and that has passed through a chemical filter.
前記空間内の温度情報及び前記気体の温度変化を生じさせる少なくとも一つ以 上の物理量の情報に基づいて前記気体の温度を制御して、 前記空間に供給するも のであって、  Controlling the temperature of the gas based on temperature information in the space and information of at least one physical quantity causing a change in the temperature of the gas, and supplying the gas to the space;
前記物理量の情報は、 前記ケミカルフィルタに供給される気体の湿度に起因し て生じる該ケミカルフィルタ内における吸熱又は発熱に関する情報を含むことを 特徴とする温度制御方法。  The temperature control method, wherein the information on the physical quantity includes information on heat absorption or heat generation in the chemical filter caused by humidity of gas supplied to the chemical filter.
2 . 前記物理量の情報は更に、 前記気体の圧力及び流量のうちの少なくとも一つ を含むことを特徴とする請求の範囲 1に記載の温度制御方法。  2. The temperature control method according to claim 1, wherein the information on the physical quantity further includes at least one of a pressure and a flow rate of the gas.
3 . 前記ケミカルフィル夕内における吸熱又は発熱に関する情報は、 前記気体の 湿度を含むことを特徴とする請求の範囲 1に記載の温度制御方法。  3. The temperature control method according to claim 1, wherein the information on heat absorption or heat generation in the chemical fill includes humidity of the gas.
4 . 前記空間に供給する前記気体の温度を制御するために、 前記物理量の情報を フィードフォワードすることを特徴とする請求の範囲 1、 2、 又は 3に記載の温 度制御方法。 4. The temperature control method according to claim 1, wherein information on the physical quantity is fed forward to control the temperature of the gas supplied to the space.
5 . 前記空間に供給する前記気体の温度を制御するために、 前記空間内の温度情 報をフィードバックすることを特徴とする請求の範囲 1〜4の何れか一項に記載 の温度制御方法。  5. The temperature control method according to any one of claims 1 to 4, wherein the temperature information in the space is fed back to control the temperature of the gas supplied to the space.
6 . 請求の範囲 1〜 5の何れか一項に記載の温度制御方法を用いる露光方法であ つて、  6. An exposure method using the temperature control method according to any one of claims 1 to 5,
露光ビームで第 1物体を照明し、 前記露光ビームで前記第 1物体を介して第 2 物体を露光する露光装置の前記露光ビームの光路の少なくとも一部を含む空間、 又は前記空間に連通する空間の温度を前記温度制御方法によって制御することを 特徴とする露光方法。  A space including at least a part of an optical path of the exposure beam of an exposure apparatus that illuminates a first object with an exposure beam and exposes a second object via the first object with the exposure beam, or a space communicating with the space An exposure method, wherein the temperature of the substrate is controlled by the temperature control method.
7 . 所定の空間内の温度を、 温度制御され、 且つケミカルフィルタを介した気体 を用いて制御する温度制御装置において、  7. A temperature control device that controls the temperature in a predetermined space using a gas that is temperature-controlled and that has passed through a chemical filter.
温度制御用の気体を前記空間に供給する気体供給部と、 前記空間内の温度情報を検出する温度センサと、 A gas supply unit that supplies a gas for temperature control to the space, A temperature sensor for detecting temperature information in the space,
前記気体の温度変化を生じさせる少なくとも一つ以上の物理量の情報を検出す る物理量センサと、  A physical quantity sensor that detects information of at least one or more physical quantities that cause a change in the temperature of the gas;
前記温度センサ及び前記物理量センサの検出結果に基づいて前記気体の温度を 制御する温度制御部とを有し、  A temperature controller that controls the temperature of the gas based on the detection results of the temperature sensor and the physical quantity sensor,
前記物理量の情報は、 前記ケミカルフィル夕に供給される気体の湿度に起因し て生じる該ケミカルフィル夕内における吸熱又は発熱に関する情報を含むことを 特徴とする温度制御装置。  The temperature control device, wherein the information on the physical quantity includes information on heat absorption or heat generation in the chemical fill that occurs due to the humidity of the gas supplied to the chemical fill.
8 . 前記物理量の情報は更に、 前記気体の圧力及び流量のうちの少なくとも一つ を含むことを特徴とする請求の範囲 7に記載の温度制御装置。  8. The temperature control device according to claim 7, wherein the information on the physical quantity further includes at least one of a pressure and a flow rate of the gas.
9 . 前記物理量センサは、 前記気体の湿度を検出することを特徴とする請求の範 囲 7に記載の温度制御装置。  9. The temperature control device according to claim 7, wherein the physical quantity sensor detects the humidity of the gas.
1 0 . 前記物理量センサからの前記物理量の情報を前記温度制御部にフィードフ ォワードして、 前記温度センサからの前記空間内の温度情報を前記温度制御部に フィードバックすることを特徴とする請求の範囲 7、 8、 又は 9に記載の温度制 御装置。  10. The information of the physical quantity from the physical quantity sensor is fed forward to the temperature control section, and the temperature information in the space from the temperature sensor is fed back to the temperature control section. The temperature control device according to 7, 8, or 9.
1 1 . 露光ビームで第 1物体を照明し、 前記露光ビームで前記第 1物体を介して 第 2物体を露光する露光装置において、  1 1. An exposure apparatus that illuminates a first object with an exposure beam, and exposes a second object through the first object with the exposure beam,
請求の範囲 7〜 1 0の何れか一項に記載の温度制御装置を有し、  Having a temperature control device according to any one of claims 7 to 10,
前記露光ビームの光路の少なくとも一部を含む空間、 又は前記空間に連通する 空間の温度を前記温度制御装置によって制御することを特徴とする露光装置。 An exposure apparatus, wherein a temperature of a space including at least a part of an optical path of the exposure beam or a space communicating with the space is controlled by the temperature control device.
1 2 . 請求の範囲 1 1に記載の露光装置を用いて、 前記第 1物体としてのマスク 上に形成されたデバイスパターンを前記第 2物体としての基板上に転写露光する 工程を含むことを特徴とするデバィス製造方法。 12. A step of transferring and exposing a device pattern formed on a mask as the first object onto a substrate as the second object, using the exposure apparatus according to claim 11. Device manufacturing method.
PCT/JP2003/010757 2002-08-29 2003-08-26 Temperature control method and device, and exposure method and apparatus WO2004021418A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004532707A JP4273421B2 (en) 2002-08-29 2003-08-26 Temperature control method and apparatus, and exposure method and apparatus
AU2003257538A AU2003257538A1 (en) 2002-08-29 2003-08-26 Temperature control method and device, and exposure method and apparatus
US11/066,008 US20050175497A1 (en) 2002-08-29 2005-02-25 Temperature control method and apparatus and exposure method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-250179 2002-08-29
JP2002250179 2002-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/066,008 Continuation US20050175497A1 (en) 2002-08-29 2005-02-25 Temperature control method and apparatus and exposure method and apparatus

Publications (1)

Publication Number Publication Date
WO2004021418A1 true WO2004021418A1 (en) 2004-03-11

Family

ID=31972613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010757 WO2004021418A1 (en) 2002-08-29 2003-08-26 Temperature control method and device, and exposure method and apparatus

Country Status (4)

Country Link
JP (1) JP4273421B2 (en)
AU (1) AU2003257538A1 (en)
TW (1) TW200407967A (en)
WO (1) WO2004021418A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205781A (en) * 2005-03-23 2018-12-27 株式会社ニコン Exposure device, exposure method, and device manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099970B2 (en) * 2012-12-27 2017-03-22 キヤノン株式会社 Exposure apparatus and device manufacturing method
CN103969965B (en) * 2014-05-12 2015-11-18 华中科技大学 The device of accurate control submersible photoetching apparatus soaking liquid temperature and Temp. control method thereof
CN112526827A (en) 2019-09-19 2021-03-19 株式会社斯库林集团 Exposure device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054585A (en) * 1996-08-13 1998-02-24 Takasago Thermal Eng Co Ltd Air conditioner
JPH10149970A (en) * 1996-11-18 1998-06-02 Canon Inc Treating device and production method of device
JP2002081691A (en) * 2000-09-04 2002-03-22 Takasago Thermal Eng Co Ltd Apparatus and method for air cleaning and air conditioning
US20020036760A1 (en) * 2000-09-08 2002-03-28 Nikon Corporation Exposure apparatus and device manufacturing method
JP2002153719A (en) * 2000-09-08 2002-05-28 Nippon Pure Tec Kk Filter apparatus and environment control unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054585A (en) * 1996-08-13 1998-02-24 Takasago Thermal Eng Co Ltd Air conditioner
JPH10149970A (en) * 1996-11-18 1998-06-02 Canon Inc Treating device and production method of device
JP2002081691A (en) * 2000-09-04 2002-03-22 Takasago Thermal Eng Co Ltd Apparatus and method for air cleaning and air conditioning
US20020036760A1 (en) * 2000-09-08 2002-03-28 Nikon Corporation Exposure apparatus and device manufacturing method
JP2002153719A (en) * 2000-09-08 2002-05-28 Nippon Pure Tec Kk Filter apparatus and environment control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205781A (en) * 2005-03-23 2018-12-27 株式会社ニコン Exposure device, exposure method, and device manufacturing method

Also Published As

Publication number Publication date
AU2003257538A1 (en) 2004-03-19
TWI310210B (en) 2009-05-21
JPWO2004021418A1 (en) 2005-12-22
TW200407967A (en) 2004-05-16
JP4273421B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
US7416574B2 (en) Filter apparatus, exposure apparatus, and device-producing method
US8558987B2 (en) Exposure apparatus and device fabrication method
KR100805142B1 (en) Exposure method and system
JP4572896B2 (en) Exposure apparatus and device manufacturing method
US20050175497A1 (en) Temperature control method and apparatus and exposure method and apparatus
US20080160895A1 (en) Atmosphere control apparatus, device-manufacturing apparatus, device-manufacturing method, and exposure apparatus
US7455880B2 (en) Optical element fabrication method, optical element, exposure apparatus, device fabrication method
US6191843B1 (en) Exposure device, method of making and using same, and objects exposed by the exposure device
US6259509B1 (en) Exposure apparatus and device manufacturing method
JP4273421B2 (en) Temperature control method and apparatus, and exposure method and apparatus
JP4466042B2 (en) Temperature control apparatus, temperature control method, exposure apparatus, and device manufacturing method
WO2007083686A1 (en) Exposure apparatus
JP2004266209A (en) Exposing device and method for manufacturing the device
JP2006287158A (en) Gas supplying apparatus, exposure apparatus and method of manufacturing device
US7119952B2 (en) Optical instrument, exposure apparatus, and device manufacturing method
JP2003257826A (en) Optical device and aligner
WO2000068980A1 (en) Method and apparatus for exposure
JPWO2002075795A1 (en) Exposure method and apparatus, and device manufacturing method
JP2001102290A (en) Exposure method and aligner thereof
WO2003036695A1 (en) Method for feeding purge gas to exposure apparatus, exposure apparatus, and method for manufacturing device
JP2002124451A (en) Temperature control method, temperature-regulated chamber, and projection aligner
WO2002049084A1 (en) Exposure method and system, and device producing method
JP2004179339A (en) Exposure method, aligner, and device manufacturing method
WO2002065183A1 (en) Lens-barrel, exposure device, and method of manufacturing device
JP2005268324A (en) Temperature controller, exposure device, and method for manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004532707

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11066008

Country of ref document: US

122 Ep: pct application non-entry in european phase