Nothing Special   »   [go: up one dir, main page]

WO2004012003A1 - 波長可変短パルス発生装置及び方法 - Google Patents

波長可変短パルス発生装置及び方法 Download PDF

Info

Publication number
WO2004012003A1
WO2004012003A1 PCT/JP2003/009241 JP0309241W WO2004012003A1 WO 2004012003 A1 WO2004012003 A1 WO 2004012003A1 JP 0309241 W JP0309241 W JP 0309241W WO 2004012003 A1 WO2004012003 A1 WO 2004012003A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
tunable
pulse
optical fiber
Prior art date
Application number
PCT/JP2003/009241
Other languages
English (en)
French (fr)
Inventor
Toshio Goto
Norihiko Nishizawa
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP03771277A priority Critical patent/EP1536276A4/en
Priority to US10/523,080 priority patent/US7346247B2/en
Publication of WO2004012003A1 publication Critical patent/WO2004012003A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/354Third or higher harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/26Pulse shaping; Apparatus or methods therefor

Definitions

  • the present invention relates to an apparatus and a method for generating a tunable short pulse, and in particular, in the fields of optical electronics, optical measurement, spectroscopy, and biological measurement, generates tunable short pulse light using a nonlinear effect in an optical fiber, Furthermore, the present invention relates to a technology for generating a third harmonic of the wavelength-variable short pulse light to generate a wavelength-variable short pulse light in a short wavelength band.
  • the present inventors have already developed a technology of generating a wavelength-variable short pulse light by combining an optical fiber and an ultrashort pulse light source (Japanese Patent Application Laid-Open No. 2000-105394). Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and has as its object to provide a tunable short pulse generator and a method capable of generating tunable short pulse light in a visible light wavelength region.
  • an ultrashort pulse light source an ultrashort pulse light source, an optical characteristic adjuster for adjusting the output characteristics of the ultrashort pulse light source, and an output from the optical characteristic adjuster are input to a soliton.
  • An optical fiber that generates a wavelength-tunable ultrashort pulse light by the nonlinear optical effect by Raman scattering and Raman scattering, and further generates a third harmonic of the wavelength-tunable ultrashort pulse light by the third-order nonlinear optical effect. It is characterized by having.
  • the wavelength of the pulse light is displaced by changing the length of the optical fiber, and the third harmonic It is characterized in that the wavelength of the wave is controlled.
  • the output of the ultrashort pulse light source is incident on the optical fiber through the optical characteristic adjuster, and the tunable ultrashort pulse is generated by the soliton effect in the optical fiber and the nonlinear optical effect by Raman scattering.
  • the wavelength of the pulse light is displaced by changing the intensity of light incident on the optical finos by the light intensity adjuster. Controlling the wavelength of the third harmonic.
  • FIG. 1 is a conceptual diagram of a tunable short pulse generator according to the present invention.
  • FIG. 1 is a block diagram of a tunable ultrashort pulse generator showing a first embodiment of the present invention.
  • FIG. 3 is a block diagram of a tunable ultrashort pulse generator according to a second embodiment of the present invention.
  • FIG. 4 is a diagram showing a soliton spectrum according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing an observation result of an autocorrelation waveform of a wavelength tunable soliton pulse according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing an observation result of a spectrum of the third harmonic generated in the embodiment of the present invention.
  • FIG. 7 is a diagram showing the fiber length dependence of the wavelength shift of the third harmonic pulse generated in the embodiment of the present invention.
  • FIG. 8 is a diagram showing the dependence of the wavelength of the third high-wavelength pulse generated in the embodiment of the present invention on the intensity of light entering the fiber.
  • FIG. 9 is a view showing an observation photograph (substitute drawing) of the third harmonic scattered from the fiber surface according to the embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of a tunable short pulse generator according to the present invention.
  • 1 is an ultrashort pulse light source
  • 2 is a light intensity adjuster connected to the ultrashort pulse light source
  • 3 is an optical fiber connected to the light intensity adjuster 2.
  • the wavelength is tunable due to the nonlinear optical effect (here, the soliton effect and the Raman scattering effect) in the optical fiber 3. Pulse light is generated. Further, the third harmonic of the wavelength-tunable ultrashort pulse light is generated by the third-order nonlinear optical effect in the optical fiber 3.
  • the wavelength of the tunable ultrashort pulsed light can be displaced by changing the light intensity incident on the optical fiber 3 by the light intensity adjuster 2, thereby controlling the wavelength of the third harmonic. it can.
  • the wavelength of the pulse light can be displaced, and the wavelength of the third harmonic can be controlled.
  • the generation of the third harmonic will be described in detail.
  • a tunable ultrashort soliton pulse is generated by the soliton effect and Raman scattering.
  • a third harmonic having a wavelength of 1/3 is generated by the third-order nonlinear effect, and this is used for visualization. Obtaining short wavelength in the optical region Can be.
  • FIG. 2 is a block diagram of a wavelength-tunable ultrashort pulse generator showing a first embodiment of the present invention.
  • 11 is a femtosecond fiber laser as an ultra-short pulse light source
  • 12 is a light intensity adjuster connected to the femtosecond fiber laser 11
  • 13 is connected to the light intensity adjuster 12
  • 14 is a constant polarization fiber connected to the chopper 13
  • 15 is a spectroscope connected to the constant polarization fiber 14
  • 16 is a photomultiplier connected to the spectrometer 15
  • the multiplier, 17 is a mouthpiece connected to the chopper 13 and the photomultiplier
  • 18 is a personal computer (PC) connected to the spectrometer 15 and the lock-in amplifier 17.
  • PC personal computer
  • a femtosecond fiber laser (ultra short pulse light source) 11 was used as the excitation light source, and the light intensity adjuster 12 was configured using a wave plate and a polarization beam splitter.
  • a polarization maintaining fiber having a small core diameter of 6 m was used for the constant polarization fiber 14.
  • the output of the light intensity adjuster 12 passes through the chopper 13 and enters the constant polarization fiber 14.
  • the output of the constant polarization fiber 14 passes through a spectroscope 15 and the output is detected using a photomultiplier tube 16.
  • the output from the photomultiplier tube 16 is amplified using a lock-in amplifier 17.
  • the signal from chopper 13 is input to lock-in amplifier 7.
  • the lock-in amplifier 17 and the spectrometer 15 are connected to the personal computer 18 respectively to construct an automatic measurement system.
  • FIG. 3 is a block diagram of a wavelength tunable ultrashort pulse generator showing a first embodiment of the present invention.
  • 11 is a femtosecond fiber laser as an ultrashort pulse light source
  • 22 is a light intensity regulator connected to the femtosecond fiber laser 21
  • 23 is its light intensity regulator 22
  • the reference numeral 24 denotes an optical fiber (short and small diameter) connected to the wavelength plate 23, 5 denotes a wavelength filter, 26 denotes a spectroscope, and 27 denotes an optoelectronic amplifier.
  • a wave plate 23 is placed at the input end of the optical fiber 24 to adjust the polarization direction (so that it is parallel to the birefringent axis).
  • a polarization maintaining fiber as the optical fiber, it is possible to maintain the linear polarization of the propagating light.
  • the optical fiber 24 has a short length (1 Om or less) or a small diameter or less, anomalous dispersion can be realized, and the peak intensity can be increased by compressing the pulse.
  • a third-order nonlinear effect can be obtained by combining the above 1 and 2.
  • a wavelength filter 25 can be arranged at the output end to select only the third harmonic.
  • FIG. 4 is a diagram showing a soliton spectrum according to the embodiment of the present invention, in which the horizontal axis represents the wavelength (nm) and the vertical axis represents the spectrum intensity (relative unit).
  • the optical spectrum of the pumping light and the wavelength-tunable soliton pulse observed at the output of the optical fiber of 5 m is shown.
  • a Sech2 type variable-wavelength soliton pulse is generated on the longer wavelength side of the pump light.
  • the intensity of the light incident on the fiber is 4 OmW.
  • FIG. 5 is a diagram showing the results of observing the autocorrelation waveform of the wavelength tunable soliton pulse according to the embodiment of the present invention.
  • the horizontal axis represents time (ps), and the vertical axis represents intensity (relative unit).
  • ps time
  • intensity relative unit
  • FIG. 6 is a diagram showing an observation result of the spectrum of the third harmonic generated in the embodiment of the present invention, in which the horizontal axis represents the wavelength (nm) and the vertical axis represents the spectrum intensity (relative unit). Is shown.
  • FIG. 7 is a diagram showing the fiber length dependence of the wavelength shift of the third harmonic pulse generated in the embodiment of the present invention.
  • the horizontal axis represents the fiber length (m), and the vertical axis represents the THG (third harmonic).
  • FIG. 8 is a diagram showing the dependency of the wavelength of the third high-wavelength pulse generated in the embodiment of the present invention on the fiber incident light intensity, where the horizontal axis is the fiber incident light intensity (mW), and the vertical axis is the THG (No. Shows the wavelength (nm) of the three harmonic pulses.
  • the wavelength of the tunable soliton shifts linearly to longer wavelengths as the intensity of light incident on the optical fiber increases. Accordingly, the wavelength of the generated third harmonic also shifts linearly to the longer wavelength side.
  • FIG. 9 is a view showing an observation photograph (substitute drawing) of the third harmonic scattered from the file / surface according to the embodiment of the present invention.
  • the wavelength of the soliton pulse shifts monotonously to the longer wavelength side as the pulse light propagates in the optical fiber. Accordingly, the generated third harmonic shifts from green, yellow, and orange to red. By observing the wavelength or color of the third harmonic, it is possible to observe the state of the wavelength shift of the less light due to the propagation of the pulse light in the optical fiber.
  • the light source and the light intensity adjuster are illustrated as separate blocks, but the light source and the light intensity adjuster are not integrated so that they can be integrated into one block. Needless to say, this may be done.
  • the present invention is not limited to the above embodiments, and various modifications are possible based on the gist of the present invention, and these are not excluded from the scope of the present invention. As described above, according to the present invention, the following effects can be obtained.
  • the tunable short pulse generating apparatus and method of the present invention are particularly suitable for the fields of photoelectronics, optical measurement, spectroscopy, and biological measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

可視光波長領域における波長可変短パルス光を生成することができる波長可変短パルス発生装置及び方法を提供する。光ファイバ(3)に超短パルス光を入射すると、ソリトン効果とラマン散乱による非線形光学効果によって、波長可変超短ソリトンパルスが生成される。このソリトンパルスの時間幅を短くし、かつピーク強度を高くしてやることにより、3次の非線形光学効果によって波長が1/3の第3高調波を発生させることができ、これを利用して可視光領域短波長を得る。

Description

明 細 書 波長可変短 ルス発生装置及び方法 技術分野
本発明は、 波長可変短パルス発生装置及び方法に係り、 特に光エレクトロニク ス、 光計測、 分光、 生体計測の分野において、 光ファイバにおける非線形効果を 用いて、 波長可変短パルス光を生成し、 さらにその波長可変短パルス光の第 3高 調波を生成し、 短波長帯における波長可変短パルス光を生成する技術に関するも のである。
本発明者らは、 既に、 光ファイバと超短パルス光源の組み合わせにより、 波長 可変短パルス光を生成する技術を開発した (特開 2 0 0 0— 1 0 5 3 9 4 ) 。 発明の開示
しかしながら、 上記の従来の技術では、 短波長の可視光波長領域パルス光を発 生させることはできなかった。
本発明は、 上記状況に鑑みて、 可視光波長領域における波長可変短パル 光を 生成することができる波長可変短パルス発生装置及び方法を提供することを目的 とする。
本発明は、 上記目的を達成するために、
〔 1〕波長可変短パルス発生装置において、 超短パルス光源と、 この超短パル ス光源の出力の特性を調整する光特性調整器と、 この光特性調整器からの出力を 入射し、 ソリ トン効果とラマン散乱による非線形光学効果によつて波長可変超短 パルス光を生成し、 さらに 3次の非線形光学効果によって、 前記波長可変超短パ ルス光の第 3高調波を生成する光ファィバとを具備することを特徴とする。
〔 2〕上記 〔 1〕記載の波長可変短パルス発生装置において、前記光特性調整 器が光強度調整器であることを特徴とする。 〔 3〕 上記 〔 1〕 又は 〔 2〕記載の波長可変短パルス発生装置において、 前記 光強度調整器により前記光ファイバへの入射光強度を変化させることにより、パ ルス光の波長を変位させ、 前記第 3高調波の波長を制御することを特徴とする。
〔 4〕 上記 〔 1〕、 〔 2〕 又は 〔 3〕記載の波長可変短パルス発生装置におい て、前記光ファイバの長さを変更することにより、パルス光の波長を変位させ、 前記第 3高調波の波長を制御することを特徴とする。
〔 5〕 波長可変短パルス発生方法において、超短パルス光源の出力を光特性調 整器を通して光ファイバに入射し、 前記光ファイバにおけるソリ トン効果とラマ ン散乱による非線形光学効果によって、 波長可変超短パルス光を生成させ、 さら に前記光ファイバにおける 3次の非線形光学効果によって、前記波長可変超短パ ルス光の第 3高調波を生成させることを特徴とする。
〔 6〕 上記 〔 5〕 記載の波長可変短パルス発生方法において、 前記光特性調整 器は光強度調整器であることを特徴とする。
〔 7〕 上記 〔 5〕 又は 〔 6〕記載の波長可変短パルス発生方法において、 前記 光強度調整器により前記光ファイノ への入射光強度を変ィ匕させることにより、 パ ルス光の波長を変位させ、 前記第 3高調波の波長を制御することを特徴とする。
〔 8〕 上記 〔 5〕 、 〔 6〕 又は 〔 7〕 記載の波長可変短パルス発生方法におい て、 前記光ファイバの長さを変更することにより、 パルス光の波長を変位させ、 前記第 3高調波の波長を制御することを特徴とする。 図面の簡単な説明
第 1図は、本発明にかかる波長可変短パルス発生装置の概念図である。
第 1図は、 本発明の第 1実施例を示す波長可変超短パルス発生装置のプロック 図である。
第 3図は、 本発明の第 2実施例を示す波長可変超短パルス発生装置のプロック 図である。
第 4図は、 本発明の実施例のソリトンスぺクトルを示す図である。
第 5図は、 本発明の実施例の波長可変ソリ トンパルスの自己相関波形の観測結 果を示す図である。 第 6図は、 本発明の実施例で生成された第 3高調波のスぺクトルの観測結果を 示す図である。
第 7図は、 本発明の実施例で生成された第 3高調波パルスの波長シフ卜のファ ィバ長依存性を示す図である。
第 8図は、 本発明の実施例で生成される第 3高波長パルスの波長のファイバ入 射光強度依存性を示す図である。
第 9図は、 本発明の実施例のファィバ表面から散乱された第 3高調波の観測写 真(代用図面) を示す図である。 発明を実施するための最良の形態
以下、本発明の実施の形態について詳細に説明する。
第 1図は本発明にかかる波長可変短パルス発生装置の概念図である。
この図において、 1は超短パルス光源、 2はこの超短パルス光源 1に接続され る光強度調整器、 3はその光強度調整器 2に接続される光ファイバである。
超短ゾ、リレス光源 1の出力を光強度調整器 2を通し、 光ファイバ 3に入射すると、 光ファイバ 3における非線形光学効果(ここではソリ トン効果とラマン散乱の効 果) によって波長可変超短パルス光が生成される。 さらに、光ファイバ 3におけ る 3次の非線形光学効果によって、 波長可変超短パルス光の第 3高調波が生成さ れる。
波長可変超短パルス光の波長は、 光強度調整器 2により光ファイバ 3への入射 光強度を変化させることによって変位させることができ、 それによつて前記第 3 高調波の波長も制御することができる。
また、 同様に光ファイバ 3の長さを変更することによつても、 パルス光の波長 を変位させ、 前記第 3高調波の波長も制御することができる。
第 3高調波の生成について詳細に述べると、 上記したように、 光ファイバ 3に 超短パルス光を入射すると、 ソリトン効果とラマン散乱とによって、波長可変超 短ソリトンパルスが生成される。 この波長可変超短ソリ トンパルスの時間幅を短 くし、 かつピーク強度を高くしてやることにより、 3次の非線形効果によって波 長が 1 / 3の第 3高調波を発生させ、 これを利用して可視光領域短波長を得るこ とができる。
第 2図は本発明の第 1実施例を示す波長可変超短パルス発生装置のプロック図 である。
この図において、 1 1は超短パルス光源としてのフヱムト秒ファイバレーザ一、 1 2はそのフェムト秒ファイバレーザー 1 1に接続される光強度調整器、 1 3は その光強度調整器 1 2に接続されるチョッパー、 1 4はそのチョッパー 1 3に接 続される定偏波ファイバ、 1 5は定偏波ファイバ 1 4に接続される分光器、 1 6 は分光器 1 5に接続される光電子増倍管、 1 7はチヨッパー 1 3および光電子増 倍管 1 6に接続される口ックインァンプ、 1 8は分光器 1 5およびロックインァ ンプ 1 7に接続されるパーソナルコンピュータ (P C ) である。
励起光源にはフェムト秒ファイバレーザー (超短パルス光源) 1 1を用い、 光 強度調整器 1 2は、 波長板と偏光光分岐器を用いて構成した。 また、定偏波ファ ィバ 1 4にはコア径が 6 mと細い、 偏波保持ファイバを用いた。
光強度調整器 1 2の出力をチョッパー 1 3に通し、 定偏波ファイバ 1 4に入射 する。 定偏波ファイバ 1 4の出力は分光器 1 5に通し、 その出力を光電子增倍管 1 6を用いて検出する。 また、 この光電子増倍管 1 6からの出力をロックインァ ンプ 1 7を用いて増幅する。 ロックインアンフ Ί 7にはチョッパー 1 3からの信 号が入力される。 ロックインアンプ 1 7、 分光器 1 5はパーソナルコンピュータ 1 8それぞれに接続し、 自動計測システムを構築している。
第 3図は本発明の第 1実施例を示す波長可変超短パルス発生装置のプロック図 であ
この図においては、 1 1は超短パルス光源としてのフヱムト秒ファイバレーザ ―、 2 2はそのフヱムト秒ファイバレーザ一 2 1に接続される光強度調整器、 2 3はその光強度調整器 2 2に接続される波長板、 2 4はその波長板 2 3に接続さ れる光ファイバ (短尺, 細径) 、 5は波長フィルタ、 2 6は分光器、 2 7は光 電子増幅器である。
このように、 この実施例では、
①光ファイバ 2 4の入射端には波長板 2 3を配置し、 偏光方向の調整 (複屈折 軸に平行になるよう) を行うことができる。 ②また、 光ファイバとして偏波保持ファイバを用いることにより、伝搬光の直 線偏光を保持することができる。
さらに、 光ファイバ 2 4が短尺(1 O m以下) 、 細径 以下) のものに て異常分散を実現させ、 パルスを圧縮することによりピーク強度を上げることが できる。
上記①と②の組み合わせで 3次非線形効果を得ることができる。
更に、 出力端に波長フィル夕 2 5を配置し、第 3高調波のみを選択するように することができる。
第 4図は本発明の実施例のソリトンスペクトルを示す図であり、 横軸に波長 ( n m) 、 縦軸にスぺクトル強度 (相対単位) を示している。
ここでは、 5 mの光ファイバの出力において観測した、 励起光と波長可変ソリ トンパルスの光スぺクトルを表している。 励起光の長波長側に S e c h 2型の波 長可変ソリ トンパルスが生成される。 ファイバへの入射光の強度は 4 O mWであ る。
第 5図は本発明の実施例の波長可変ソリ トンパルスの自己相関波形の観測結果 を示す図であり、 横軸に時間 (p s ) 、 縦軸に強度 (相対単位) を示している。 この第 5図に見られるように、 S e c h 2型に対応する台座成分のない綺麗な 波形が観測されている。 対応する時間幅は 7 4 f sである。
第 6図は本発明の実施例で生成された第 3高調波のスぺクトルの観測結果を示 す図であり、横軸に波長 (n m) 、縦軸にスぺクトル強度 (相対単位) を示して いる。
第 6図において、 第 4図に示したソリ トンパルスの 1 / 3の波長にパルススぺ クトルが生成されているのが分かる。
第 7図は本発明の実施例で生成された第 3高調波パルスの波長シフトのフアイ バ長依存性を示す図であり、 横軸にファイバ長 (m) 、縦軸に T H G (第 3高調 波パルスの)波長 ( nm) を示している。
第 7図から明らかなように、 ファイバ長力 加するに従って、 ソリ トン自己周 波数シフトによつて波長可変ソリトンの波長が長波長側にシフトしていく。 それ に伴って、 生成される第 3高調波パルスの波長も長波長側へとシフトしていく。 第 3高調波パルスの波長は、波長可変ソリ トンパルスの波長の 1 / 3であった。 第 8図は本発明の実施例で生成される第 3高波長パルスの波長のファィバ入射 光強度依存性を示す図であり、横軸はファイバ入射光強度 (mW) 、縦軸は T H G (第 3高調波パルスの) 波長 ( n m) を示している。
第 8図から明らかなように、光ファイバへの入射光強度を増加させるにつれて、 波長可変ソリ トンの波長は線形に長波長側へとシフトしていく。 それに伴って、 生成される第 3高調波の波長も線型に長波長側へとシフトしていく。
第 9図は本発明の実施例のファィ / 表面から散乱された第 3高調波の観測写真 (代用図面) を示す図である。
この図に示されるように、光ファイバにおけるパルス光の伝搬に伴って、 ソリ トンパルスの波長は単調に長波長側へとシフ卜していく。 それに伴って、 生成さ れる第 3高調波も緑色、 黄色、 橙色から赤色へとシフトしていく。 第 3高調波の 波長、 あるいは色を観測することで、 光ファイバにおけるパルス光の伝搬に伴う )、レス光の波長シフトの様子を観測することができる。
上記のように構成したので、 可視できる程度に発色した第 3高調波を得ること ができ、 光ファイバの伝達経路に応じて波長が変化していく様子を直接色を目で 見て確認することもできるし、 光フアイバ途中に周波数計を入れることによって も確認できる。
将来的には、 光の三原色を一本のファイバで自由に出力する可能性を有してお り、 その効果は著大である。
なお、上記実施例では、 光源と光強度調整器は別個のブロックで図示している が、 光源と光強度調整器を一体化した機能を持たせるようになし、 一個のブロッ クで包括するようにしてもよいことは言うまでもない。
また、本発明は上記実施例に限定されるものではなく、 本発明の趣旨に基づい て種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。 以上、詳細に説明したように、本発明によれば、 以下のような効果を奏するこ とができる。
(A)可視波長帯において、 入射光強度に対し連続して波長のシフトする波長 可変短パルス光を生成させることができる。 (B)光ファイバにパルス光を通すだけで、 第 3高調波パルスを生成させるこ とができる。
(C)光ファイバの伝搬に伴う波長可変ソリ トンパルスの波長シフトの様子を 容易に観測することができる。 産業上の利用可能性
本発明の波長可変短パルス発生装置及び方法は、特に光エレクトロ二クス、 光 計測、 分光、 生体計測の分野に好適である。

Claims

請 求 の 範 囲
1 .
( a )超短パルス光源と、
( b )該超短パルス光源の出力の特性を調整する光特性調整器と、
( c )該光特性調整器からの出力を入射し、 ソリ トン効果とラマン散乱による非 線形光学効果によつて波長可変超短パルス光を生成し、 さらに 3次の非線形光学 効果によって、 前記波長可変超短パルス光の第 3高調波を生成する光ファイバと を具備することを特徴とする波長可変短パルス発生装置。
2 . 請求項 1記載の波長可変短パルス発生装置において、前記光特性調整器が 光強度調整器であることを特徴とする波長可変短パルス発生装置。
3 . 請求項 1又は 1記載の波長可変短パルス発生装置において、 前記光強度調 整器により前記光ファイバへの入射光強度を変化させることにより、 パルス光の 波長を変位させ、 前記第 3高調波の波長を制御することを特徴とする波長可変短 パルス発生装置。
4 . 請求項 K 2又は 3記載の波長可変短パルス発生装置において、 前記光フ アイバの長さを変更することにより、 パルス光の波長を変位させ、 前記第 3高調 波の波長を制御することを特徴とする波長可変短パルス発生装置。
5 .
( a ) 超短ノ、。ルス光源の出力を光特性調整器を通して光ファイバに入射し、
( b )前記光ファイバにおけるソリトン効果とラマン散乱による非線形光学効果 によって、 波長可変超短パルス光を生成させ、
( c ) さらに前記光ファイバにおける 3次の非線形光学効果によって、 前記波長 可変超短パルス光の第 3高調波を生成させることを特徴とする波長可変短パルス 発生方法。
6 . 請求項 5記載の波長可変短パルス発生方法において、 前記光特性調整器は 光強度調整器であることを特徴とする波長可変短パルス発生方法。
7 . 請求項 5又は 6記載の波長可変短パルス発生方法において、 前記光強度調 整器により前記光ファイバへの入射光強度を変ィヒさせることにより、 パルス光の 波長を変位させ、前記第 3高調波の波長を制御することを特徴とする波長可変短 パルス発生方法。
8 . 請求項 5、 6又は 7記載の波長可変短パルス発生方法において、 前記光フ アイバの長さを変更することにより、 パルス光の波長を変位させ、 前記第 3高調 波の波長を制御することを特徴とする波長可変短パルス発生方法。
PCT/JP2003/009241 2002-07-29 2003-07-22 波長可変短パルス発生装置及び方法 WO2004012003A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03771277A EP1536276A4 (en) 2002-07-29 2003-07-22 DEVICE FOR GENERATING SHORT PULSES, OF VARYING WAVE LENGTH, AND METHOD RELATING THERETO
US10/523,080 US7346247B2 (en) 2002-07-29 2003-07-22 Wavelength-variable short pulse generating device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002219278A JP3532909B2 (ja) 2002-07-29 2002-07-29 波長可変短パルス発生装置及び方法
JP2002-219278 2002-07-29

Publications (1)

Publication Number Publication Date
WO2004012003A1 true WO2004012003A1 (ja) 2004-02-05

Family

ID=31184729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009241 WO2004012003A1 (ja) 2002-07-29 2003-07-22 波長可変短パルス発生装置及び方法

Country Status (4)

Country Link
US (1) US7346247B2 (ja)
EP (1) EP1536276A4 (ja)
JP (1) JP3532909B2 (ja)
WO (1) WO2004012003A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083660A1 (ja) 2006-01-20 2007-07-26 Sumitomo Electric Industries, Ltd. 光源装置
JP5122504B2 (ja) 2009-03-02 2013-01-16 株式会社ニデック 眼科撮影装置
CN102929094A (zh) * 2011-08-09 2013-02-13 中国科学院物理研究所 一种超快分幅成像装置
TWI474060B (zh) * 2013-06-18 2015-02-21 Nat Univ Tsing Hua 超連續光譜產生系統

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118904A1 (en) * 1998-09-29 2001-07-25 Japan Science and Technology Corporation Variable wavelength short pulse light generating device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880877A (en) * 1997-01-28 1999-03-09 Imra America, Inc. Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier
JP2002273581A (ja) * 2001-03-16 2002-09-25 Japan Atom Energy Res Inst 短パルス波長可変ラマンレーザーによる物質の加工方法
WO2002084821A2 (en) * 2001-04-11 2002-10-24 University Of Southampton Sources of, and methods for generating, optical pulses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118904A1 (en) * 1998-09-29 2001-07-25 Japan Science and Technology Corporation Variable wavelength short pulse light generating device and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ITO Y. ET AL.: "Third harmonic generation of wavelength tunable solution pulse in optical fibers", EXTENDED ABSTRACTS (THE 63RD AUTUMN MEETING, THE JAPAN SOCIETY OF APPLIED PHYSICS, no. 3, 2002, pages 948, XP002972158 *
See also references of EP1536276A4 *

Also Published As

Publication number Publication date
JP2004061801A (ja) 2004-02-26
US7346247B2 (en) 2008-03-18
EP1536276A4 (en) 2007-03-07
US20060051037A1 (en) 2006-03-09
EP1536276A1 (en) 2005-06-01
JP3532909B2 (ja) 2004-05-31

Similar Documents

Publication Publication Date Title
EP2082463B1 (en) A system and method for producing optical pulses of a desired wavelength using cherenkov radiation in higher-order mode fibers
JP2000105394A (ja) 波長可変短パルス光発生装置及び方法
JP2017513211A (ja) 顕微鏡に適用される多波長超短パルスの生成及び放出
JPWO2002071142A1 (ja) 広帯域光スペクトル生成装置およびパルス光生成装置
CA2972572A1 (fr) Systeme et procede de generation d'impulsions lumineuses ultrabreves a forte densite spectrale de puissance et accordables en longueur d'onde
Koeplinger et al. Photoacoustic microscopy with a pulsed multi-color source based on stimulated Raman scattering
US12085835B2 (en) Light source
JP2006518866A (ja) 可視スペクトル領域の調整可能なピコ秒光パルスの生成
JP2009020346A (ja) Sc光源装置
Ames et al. Excess noise generation during spectral broadening in a microstructured fiber
JP5807859B2 (ja) スペクトル計測装置およびスペクトル計測方法
WO2004012003A1 (ja) 波長可変短パルス発生装置及び方法
JP2008084904A (ja) 光出力装置および光出力方法
EP2565708B1 (en) Spectral width narrowing method, optical element and light source device
US6925236B2 (en) Broadband optical spectrum generating apparatus and pulsed light generating apparatus
US12038668B2 (en) Light source
Oh et al. Investigation of fiber Bragg grating as a spectral notch shaper for single-pulse coherent anti-Stokes Raman spectroscopy
WO2021121529A1 (en) Light source
JP4066120B2 (ja) 広帯域波長可変超短パルス光発生装置
JP3897988B2 (ja) 短波長多波長短パルス光生成装置
Licea-Rodríguez et al. Soliton filtering from a supercontinuum: a tunable femtosecond pulse source
JP2022506468A (ja) 波長スウィープ光源
Austin et al. Temporal Characterization of Two Octave Hollow Fiber Supercontinuum
JP2006350100A (ja) 光変調器の消光比改善方法及び装置
JP2018004722A (ja) 広帯域レーザー出力装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003771277

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003771277

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006051037

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10523080

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10523080

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003771277

Country of ref document: EP