Nothing Special   »   [go: up one dir, main page]

WO2004085606A1 - 細胞培養基質および細胞接着蛋白質またはペプチドの固相化標品 - Google Patents

細胞培養基質および細胞接着蛋白質またはペプチドの固相化標品 Download PDF

Info

Publication number
WO2004085606A1
WO2004085606A1 PCT/JP2004/004077 JP2004004077W WO2004085606A1 WO 2004085606 A1 WO2004085606 A1 WO 2004085606A1 JP 2004004077 W JP2004004077 W JP 2004004077W WO 2004085606 A1 WO2004085606 A1 WO 2004085606A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
cells
cell
cell adhesion
artificial
Prior art date
Application number
PCT/JP2004/004077
Other languages
English (en)
French (fr)
Inventor
Katsumi Mochitate
Original Assignee
National Institute For Environmental Studies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Environmental Studies filed Critical National Institute For Environmental Studies
Priority to EP04723031A priority Critical patent/EP1616939A1/en
Priority to JP2005504080A priority patent/JP4555773B2/ja
Priority to US10/551,052 priority patent/US8304238B2/en
Publication of WO2004085606A1 publication Critical patent/WO2004085606A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Definitions

  • the present invention relates to a cell culture substrate having a cell culture substrate surface coated with a hydrophobic binding adsorptive polymer, a solid-phased sample of a cell adhesion protein or peptide bound to the cell culture substrate, and
  • the present invention relates to an artificial tissue prepared by disseminating cells on a chemical preparation and culturing the cells.
  • Epithelial tissues such as the epidermis, corneal epithelium, alveolar epithelium, mucosal epithelium of the digestive system, renal glomerular epithelium, and hepatic parenchymal cells, which are the cell layers that cover the inner and outer surfaces of the animal body, are foreign substances from the outside world. (Microorganisms, allergens, chemicals, etc.).
  • the outer interface of epithelial cells constituting such epithelial tissue is called the apical surface and the inner lower surface is called the basal surface.
  • extracellular matrix such as proteins and proteoglycans are placed.
  • ECM extracellular matrix
  • the basement membrane is thought to be an essential structure for immature epithelial cells to proliferate and differentiate into mature cells to express their original morphology and function. That is, without the basement membrane, epithelial tissue cannot maintain itself or achieve its original performance.
  • the multi-layer or monolayer epithelial cell layer acts as a barrier to prevent invasion of foreign substances from the outside world, but the basement membrane itself also acts as a physical barrier. In this way, the epithelial cells and the basement membrane that make up the epithelial tissue cooperate to form a strong barrier, protecting the body's vital activities.
  • the basement membrane In addition to epithelial cells, the basement membrane, a unique membrane-like structure of extracellular matrix formed at the interface between connective tissue and real cells such as endothelial cells, muscle cells, adipocytes, and Schwann cells, While they are commonly found in tissues and organs, there are also highly specialized ones such as renal glomerular capillary loops and nerve synaptic membranes. Substances ⁇ It has been clarified that it has functions such as inducing cell penetration and cell differentiation. In renal glomeruli, the negative charge of the basement membrane is considered to be responsible for the filtration function of the kidney, and it is classically known that the negative charge is due to heparan sulfate proteodalican (HSPG), now called perlecan . HSPG is widely distributed not only in the glomerular basement membrane but also in various other basement membranes, as is the case with type IV collagen, laminin, entactin (didogen), and the like.
  • HSPG heparan sulfate prote
  • laminin a major glycoprotein of the basement membrane
  • laminin is a complex consisting of three subunits, a, ⁇ , and a, and 15 isoforms are known, and these are tissue-specific. Alternatively, it is specifically expressed at each stage of development.
  • Laminin is a complex macromolecule with a molecular weight of about 900,000 with various biological activities.
  • integrin molecules such as a6 ⁇ 1, ⁇ -distalican ( ⁇ -DG), and syndecans 1-4 heparan sulfate proteoglycan (HSPG) have been reported.
  • laminin, type IV collagen, heparan sulfate proteodalican (HSPG) and entactin (didogen) are known (Curr. Opin. Cell Biol., 6, 674-681, 1994), and mesenchymal cells are thought to play an important role in the synthesis of basement membrane components including laminin and type IV collagen isoforms (Matrix Biol., 14, 209-211, 1994; J. Biol. Chem., 268, 26033-26036, 1993), but the role of epithelial cells is also important.
  • HSPG is thought to be derived from epithelial cells, whereas laminin, type IV collagen and entactin (didogen) are synthesized in vivo by both epithelial and mesenchymal cells (Development, 120,
  • lung fibroblasts when lung fibroblasts are cultured in a state of being embedded in type I collagen gel, the collagen gel shrinks due to the lung fibroblasts and becomes more rigid.
  • extracellular matrix secreted from lung fibroblasts is deposited around collagen fibers around the cells. So Since the formation of is similar to the stroma in in vivo, it can be called pseudo stroma. Lung fibroblasts also secrete basement membrane components such as laminin, type IV collagen, perlecan, and enectin (didogen) into the medium.
  • the collagen solution concentration is optimally in the range of 0.3 to 0.5 mgZm 1 (e.g., Beeton Dickinson, Fibrillar col lagen co t culture insert) because the protein comes off and comes up (Eur. J Cell Biol., 78: 867-875, 1999; J. Cell Sci., 113: 859-868, 2000).
  • 0.5 mgZm 1 e.g., Beeton Dickinson, Fibrillar col lagen co t culture insert
  • Matrigel registered trademark of Becton Dickinson
  • an alveolar type 2 epithelial cell line SV40-T2
  • Matrigel is the Engelbreth- Holm-Swarm tumor matrix (J. Exp. Med., 145, 204-220, 1977), which contains laminin, as well as a variety of sites that may affect ECM synthesis.
  • one 1, E down evening cutin (two Dojen), IV collagen contains the path one glucan (Exp. Cell Res., 202, 1-8, 1992).
  • Matrigel was labeled with biotin to track Matrigel-derived components incorporated into the basement membrane.
  • the labeled basement membrane components mainly laminin-1 and enectin (didogen) diffused into the medium and were taken up into the basement membrane formed by alveolar epithelial cells.
  • the basement membrane component is immunofluorescently stained (fluorescence) and observed with a microscope, the basement membrane formation is promoted depending on the amount of Matrigel, and the basement membrane matrix component that has been secreted and deposited in dots is expanded into a sheet. Eventually, a process of developing into the basement membrane was observed.
  • an end group-activated polymer in which a biomolecule is bonded to a surface of a hydrophobic tissue culture by a disulfide bond is adsorbed, and the cell is cultured.
  • EGAP end group-activated polymer
  • an extracellular substrate having cell adhesion activity is used as a linker.
  • Representative extracellular matrices include fibronectin (FN), collagen (Co1), laminin (LN) and vitronectin (VN).
  • FN fibronectin
  • Co1 collagen
  • LN laminin
  • VN vitronectin
  • Derived proteins are known. These cell adhesion proteins are directly non-covalently adsorbed using a hydrophobic bond with a plastic culture dish, and epithelial cells, vascular endothelial cells, fibroblasts, etc. are seeded on these, and cell culture is performed. It is used as a substrate for However, these cell adhesion proteins are expensive and susceptible to denaturation and degradation, which are common properties of proteins, and have problems in price, stability, storage stability, and the like.
  • a peptide in a region related to cell adhesion can be directly adsorbed to a plastic culture dish using the same method as described above, and used as a substrate for cell culture.
  • methods that use peptides that can be chemically synthesized more easily as cell adhesion peptides are not suitable for cell adhesion substrates because of their easy mass production and relatively stable structure.
  • due to its low molecular weight its adsorption efficiency is significantly lower than that of proteins, and it adsorbs only a few percent.
  • peptides are difficult to bind to cell-side receptors when they are absorbed by plastic and lose their freedom of movement.
  • the present inventors have replaced the hydrophilic cell-treated plastic culture dish used for cell culture with a cell adhesion ligand (a binding partner of the receptor).
  • the present inventors have found a method of coating the hydrophobic surface of a culture dish with an extracellular matrix molecule), and have completed the present invention. This method utilizes a non-covalent bond (hydrophobic bond) between a ligand that is a cell adhesion recipient and a culture dish that is a partner for immobilizing the ligand.
  • the present invention provides a method for efficiently adsorbing to a cell culture substrate such as a culture dish, and having excellent reproducibility of cell adhesion.
  • An object of the present invention is to provide an artificial tissue prepared by disseminating cells on an immobilized sample prepared by the above method and culturing the cells. Disclosure of the invention
  • the present invention is characterized in that it is coated with a hydrophobic binding adsorptive polymer having a hydrophobic linear skeleton and a functional group capable of reacting with a protein or a peptide in the molecule.
  • the cell culture substrate according to claim 1 wherein the substrate for cell culture (claim 1) or the substrate of the cell culture substrate comprises a biological polymer, plastic, natural or synthetic rubber, inorganic substance or metal. 2) or claim that the biological polymer is collagen, gelatin, cellulose. Agarose, alginic acid, chitin, chitosan. Or biodegradable polymers such as polylactic acid, polybutylene succinate, and polyprolactone.
  • the cell culture substrate (Claim 7) according to claim 2, wherein the synthetic rubber is butadiene styrene rubber, butadiene acrylonitrile rubber, butyl rubber, polysulfide-based synthetic rubber, fluororubber or silicon rubber, or the inorganic substance is glass, Claims that are hydroxyapatite, IC substrate or carbon nanotube
  • the cell culture substrate described in Box 2 (Claim 8) and the metal is inert (gold), platinum, titanium, indium, or an oxide thereof such as titanium oxide, indium oxide, and ITO (
  • the cell culture substrate according to claim 1 which is a wire plate or an artificial organ (claim 10), or the cell according to claim 10, wherein the artificial organ is an artificial blood vessel, a heart-lung machine, or an artificial kidney.
  • the cell culture substrate according to claim 1 or 10 wherein the culture substrate (Claim 11) or the cell culture substrate is a silicon rubber-based culture dish (Pell).
  • the hydrophobically-adsorbing polymer are represented by the following formula [I ]
  • X represents CH or NHCHCO
  • Y represents CH or NHCR 2 CO
  • R 1 is H, an alkyl group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms.
  • R 2 represents H or an alkyl group having 1 to 10 carbon atoms
  • Z represents represents a functional group (reactive group) may be mutually bound to X
  • location spacer is (one CH 2 -) p or (- NH CHR 3 CO-) indicates q
  • R 3 is H or charcoal.
  • the hydrophobic bond-adsorbing polymer represented by is a copolymer of a vinyl compound and maleic anhydride, and the biel compound is methyl.
  • the cell culture substrate according to claim 14 which is vinyl ether, ethyl vinyl ether, butyiether, hexyl vinyl ether or styrene (claim 15).
  • the present invention provides a solid-phase preparation of a cell adhesion protein or peptide, wherein the cell adhesion protein or peptide is bound to the cell culture substrate according to any one of claims 1 to 15.
  • the bond is formed by the reaction between a functional group capable of reacting with a protein or a peptide in one molecule of the hydrophobic-binding adsorbed polymer and a reactive group of the cell adhesion protein or the peptide.
  • the described solid-phased sample (claim 19) and the cell adhesion peptide The immobilized sample (claim 20) according to claims 16 to 18, which is a peptide of a region related to cell adhesion in the amino acid sequence of the cell adhesion protein according to claim 19, or fibronectin.
  • FN The peptide in the region involved in cell adhesion of the protein is a peptide having a specific Arg-Gly-Asp (RGD) amino acid sequence that binds to a cell-side integrin receptor. 0 or the peptide having an RGD amino acid sequence is expressed as Tyr—A1a-Va1-Tr-Gly-Arg-Gly- 21.
  • Claim 20 wherein the peptide in the domain involved in cell adhesion of the laminin (LN) protein or the standard preparation (claim 22) is the G-domain (G-domain) peptide of the spike chain.
  • the described solid-phased sample (Claims 23) and the G-region peptide are A rg -L ys -A rg -L eu -G ln -V a 1 — G ln -L eu -Ser- I 1 e—A rg—T hr (AG 7 3), L eu -G ln -G ln -A rg -A rg -Ser -V a 1 -L eu -A'r g -T hr -L ys -I 1 e (AG 7 3 T), T hr-L eu-G 1 n-L eu-G ln-G lu-G ly -A rg-L eu -H is — P he— M et (AG 7 6.8), Th r -L eu -G ln -L eu -
  • a A sn— H is—G ly— H is (A 5 G 7 7 f), Lys-A sn-Ser—Phe—Met—A1a—Leu—Tyr—Leu—Ser-Lys-G1y. (hA3G75) or 0 1 _8 3] 1— 3 6 1 "—1: 11 r— I le— S er— I 1 e— A rg— A la— Pro— V al — Ty r (h A 3 G 8 3)
  • the solid-phased sample according to claim 23 (claim 24), or the cell adhesion peptide is a peptide consisting of 3 to 20 amino acid residues.
  • a functional group capable of reacting with a protein or peptide of a hydrophobic adsorbable polymer coated on a cell culture substrate and a cell adhesion protein or peptide A method for producing a solid-phased sample characterized by reacting with a protein (claim 26), and a method of reacting a functional group capable of reacting with a protein or a peptide of a hydrophobic binding adsorbent polymer with a cell adhesion protein or a cell adhesion protein.
  • a method for producing an immobilized sample which comprises reacting a peptide with a peptide and coating the reaction product on a cell culture substrate (claim 27); a protein or peptide of a hydrophobic-binding adsorbed polymer;
  • the present invention relates to a reaction product (claim 28) obtained by reacting a cell adhesion protein or a peptide with a functional group capable of reacting with a cell.
  • the present invention provides a method for preparing a cell adhesion protein or a peptide according to any one of claims 16 to 27 by inoculating a target cell on an immobilized sample, and culturing the cell.
  • the artificial tissue according to claim 30, which is a cell, a corneal epithelial cell, an alveolar epithelial cell, a mucosal epithelial cell of the digestive system, a renal spheroid epithelial cell, or a hepatic parenchymal cell.
  • the artificial tissue according to claim 30, wherein the endothelial cells are kidney glomerular hair cells, vascular endothelial cells, pulmonary artery vascular endothelial cells, placental vein vascular endothelial cells or aortic vascular endothelial cells.
  • the artificial tissue according to claim 30, wherein the mesenchymal cells are muscle cells, fat cells, glial cells, Schwann cells, or nerve cells (Neuron).
  • artificial tissue is artificial epidermal tissue, artificial corneal epithelial tissue, artificial alveolar epithelial tissue, human airway epithelial tissue, artificial renal glomerular tissue, artificial liver parenchymal tissue or artificial vascular endothelial tissue, or artificial blood vessel,
  • An artificial tissue (claim 34) according to any one of claims 29 to 33, which is an artificial lung, an artificial liver, an artificial kidney, an artificial skin or an artificial cornea.
  • Fig. 1 shows alveolar type 2 epithelial cells (T2 cells) placed on a silicon gel on which extracellular matrix protein and cell adhesion peptide were immobilized using MMAC, a hydrophobic-adsorbing polymer.
  • 3 is a photograph showing a phase-contrast micrograph of alveolar epithelial tissue formed as a result of culturing.
  • FIG. 2 shows a phase-contrast micrograph of alveolar epithelial tissue formed as a result of T2 cell extension culture on a silicon gel on which extracellular matrix proteins and cell attachment peptides were immobilized using MMAC. It is a photograph showing.
  • FIG. 3 is a diagram showing that the adhesion of T2 cells to an extracellular matrix protein applied to a culture dish and immobilized thereon is inhibited by the free cell adhesion peptide.
  • FIG. 4 shows the adhesion of T2 cells to the cell adhesion peptide substrate immobilized using MMAC, and the adhesion of the T2 cells by the free cell adhesion peptide.
  • FIG. 3 is a diagram showing that competition is hindered.
  • FIG. 5 shows that T2 cells adhere to a cell-adhesive peptide substrate immobilized with a hydrophobic binding adsorbent polymer, MAST, and that the adhesion is inhibited by free cell adhesion peptides.
  • FIG. FIG. 6 is a photograph taken with a differential interference microscope of the state of cell adhesion and extension of T2 cells on a cell adhesion peptide immobilized using MMAC.
  • FIG. 7 is a diagram showing that the adhesion of T2 cells to a cell adhesion peptide substrate immobilized using MMAC is inhibited by heparin.
  • Figure 8 shows that the adhesion of T2 cells to the solid-phased cell adhesion peptide substrate may be competitively inhibited by free peptides or unilaterally by each other. is there.
  • FIG. 9 shows that the affinity of the immobilized LN for the cell-attached peptide was FIB, based on the T2 cell's adhesion to the immobilized FIB-1 peptide.
  • FIG. 3 is a diagram showing a wide range from the same level as _ 1 to 100 times higher.
  • FIG. 10 shows the adhesion of T2 cells to the pseudo-matrix MBAC-peptide, which was diluted to a concentration of 110 gZm1 in serum-free medium and adsorbed and immobilized on a culture dish, and its adhesion.
  • FIG. 2 is a diagram showing that is subjected to competition inhibition by the free cell adhesion peptide.
  • Fig. 11 shows the adhesion of T2 cells to the pseudo-matrix MAST-peptide, which was diluted with serum-free medium to a concentration of 110 ⁇ g / m1 and adsorbed and immobilized on a culture dish. And that the adhesion is inhibited by free cell adhesion peptide.
  • FIG. 4 is a diagram showing that treatment of a pseudo-matrix MBAC-peptide adsorbed and immobilized on a dish with a polyclonal antibody against the peptide specifically inhibits the adhesion of T2 cells.
  • FIG. 13 shows that pseudo-matrix MBAC-peptide, which had been diluted with serum-free medium to a concentration of 1-10 ⁇ g / m1 and adsorbed and immobilized on a culture dish, was treated with heparin.
  • FIG. 2 is a view showing that cell adhesion is specifically inhibited.
  • FIG. 14 shows that the pseudo-matrix MB AC-eptide, which had been diluted with serum-free medium to a concentration of 110 gZm1 and adsorbed and immobilized on a culture dish, was treated with heparin to obtain T2 cells.
  • FIG. 2 is a view showing that adhesion is specifically inhibited.
  • Fig. 15 shows pseudo-matrix MAS T-GRGD SP which was diluted with 50% ethanol to a concentration of 2-20 g / m 1, poured into culture dishes, and air-dried and immobilized. And that the amount of T2 cells suspended in serum-free medium changes depending on the amount of MMAC-GRGDSP applied (0.1-1.0 g / we11).
  • FIG. 3 is a diagram showing a case where a is applied as a reference.
  • Fig. 16 shows the results for the pseudomatrix MAS T—GR GD SP (0.1-1.0 g / we 11) that had been diluted with 50% ethanol, poured into a culture dish, and immobilized.
  • FIG. 2 is a view showing that adhesion of two cells is inhibited by free GR GD SP peptide.
  • FIG. 17 shows the pseudo-matrix MMA C-GR GD SP (0.1-1.1g / we11), which was diluted with 50% ethanol, poured into a culture dish, and air-dried and immobilized.
  • FIG. 2 is a diagram showing that T2 cell adhesion is inhibited by competition by free GRGD SP peptide.
  • Fig. 18 shows a pseudo-matrix MBAC—peptide and MAST—diluted in 50% ethanol, poured into a culture dish, and air-dried / solid-phased.
  • FIG. 19 shows the pseudo-matrix MBAC-FIB-1 and MAST_FIB-1 (0.1-1.0 g) which were diluted with 50% ethanol, poured into a culture dish, and air-dried / solid-phased.
  • FIG. 1 is a diagram showing that treatment of Zwell 1) with a polyclonal antibody against FIB-1 peptide specifically inhibits T2 cell adhesion.
  • the cell culture substrate of the present invention includes, as a substrate, a cell culture substrate using, for example, a biological polymer, a plastic, a natural or synthetic rubber, an inorganic substance or a metal. .
  • biological polymer examples include collagen, gelatin, cellulose, agarose, alginic acid, chitin, chitosan, and the like, and biodegradable polymers such as polylactic acid, polybutylene succinate, and polyprolactone.
  • thermoplastic resin examples include acryl resin, polyvinyl chloride resin, polyethylene resin, polystyrene resin, polypropylene resin, and polymethyl resin.
  • thermosetting resin examples include a pentene resin and a fluororesin, and examples thereof include a phenol resin, a urea resin, an epoxy resin, a melamine resin, and a silicone resin.
  • Examples of the synthetic rubber include butadiene styrene rubber, butadiene acrylonitrile rubber, butyl rubber, polysulfide synthetic rubber, fluororubber, and silicone rubber. Silicon rubber is particularly preferred.
  • inorganic substances include IC substrates such as glass, hydroxyapatite, and silicon, and carbon nanotubes.
  • the metal examples include inert (inert) gold, platinum, titanium, and zinc, and oxides thereof, such as titanium oxide, indium oxide, and ITO (indium oxide and tin).
  • the cell culture substrate is used for a culture dish (well), a printed wiring board, an artificial organ, or the like, and examples of the artificial organ include an artificial blood vessel, an artificial heart-lung machine, an artificial kidney, and the like. Further, a culture dish (well) prepared using silicon rubber as a base material is preferably used.
  • the hydrophobic binding adsorbing polymer is a hydrophobic binding adsorbing polymer having a linear skeleton having hydrophobicity in its molecule and a functional group capable of reacting with a protein or a peptide, and has the following formula [I]
  • X represents CH or NHCH CQ
  • Y represents CH or NHC R 2 CO
  • R 1 represents H, an alkyl group having 1 to 10 carbon atoms
  • R 6 Represents an alkoxy group having 1 to 10 carbon atoms, an aryl or araalkyl group having 6 to 10 carbon atoms, or an aryloxy or araalkyloxy group having 6 to 10 carbon atoms, and R 2 is H or carbon number.
  • Z represents a functional group (reactive group), and may be mutually bonded to X
  • spacer represents (—CH 2 _) p or (one NHCHR 3 CO—) represents q
  • R 3 represents H or an alkyl group having 1 to 10 carbon atoms
  • m represents an integer of 1 or more
  • n represents an integer of 100 to 2000
  • p and q independently represents an integer of 0 or 1 to '8, and r represents an integer of 1 or more).
  • the alkyl group having 1 to 10 carbon atoms includes straight-chain or branched methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.
  • alkoxy group having 1 to 10 carbon atoms include linear or branched methoxy, ethoxy, propoxy, butoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy and the like.
  • the group may be a C 6-10 aryl or arylalkyl group, such as phenyl, naphthyl, benzyl, phenethyl, etc., or an aryloxy or arylalkyloxy group having 6-10 carbon atoms. Examples include phenoxy, naphthoxy .. benzyloxy, phenethyloxy and the like.
  • the functional group is not particularly limited as long as it can react with and bind to a reactive group of a protein or peptide.
  • examples thereof include a carboxyl group, an amino group, a mercapto group, a hydroxyl group and These reactive derivatives can be exemplified.
  • examples of the reactive derivative of a carboxylic acid group include reactive derivatives such as acid halides, acid anhydrides, acid imides and active esters, and isocyanate groups as reactive derivatives of amino groups. Can be. Further, an acid anhydride, an acid imide, or the like may be bonded to X to form a ring.
  • hydrophobic-binding adsorption polymer examples include a hydrophobic-binding adsorption polymer that can be adsorbed on the surface of a cell culture substrate, and a polyalkylene chain or a linear amino acid polymer (polyglycine, polyalanine, polypaline, A hydrophobic binding adsorptive polymer having a hydrophobic linear skeleton such as polyleucine, polyphenylalanine, etc.) and derivatives thereof, directly or via a spacer to the hydrophobic linear skeleton.
  • a hydrophobically-adsorbed polymer having a reactive functional group capable of reacting with a protein or a peptide can be suitably used.
  • the range of n in the formula [I] is from 100 to 2000, and the molecular weight of the hydrophobic binding adsorbing polymer represented by the formula [I] is 15, 000 to 3, 3, 2 Those having a value of about 0,000 are preferred.
  • hydrophobic bonding adsorbing polymer having such a functional group examples include alkylene such as ethylene and propylene or methyl vinyl ether, ethyl vinyl ether, ethyl-1-propenyl ether, butyl vinyl ether, and hexyl vinyl ether.
  • a vinyl compound such as unsaturated ethers or styrene, or one or two or more selected from alanine, glycine, ⁇ -amino acids such as phosphorus, leucine, isoleucine, and phenylalanine; and maleic anhydride; Olefins such as carboxylic anhydride such as maleimide, acid imido, acrylic acid, acrylamide and acrylonitrile; amino acids having a mercapto group such as cysteine; and amino acids having a hydroxyl group such as serine and threonine.
  • copolymers of Jiaminomono force one can be selected from monomers having a reactive group such as carboxylic acid or on two or more kinds of such lysine. These copolymers may be copolymers in which dimers, trimers, and the like are polymerized with each other, but are preferably alternating copolymers. In the case of a monomer having a reactive group, these monocondensation polymers have a hydrophobic linear skeleton formed by condensation.
  • hydrophobic bonding-adsorbing polymer having a functional group of the present invention maleic anhydride, methyl vinyl ether, ethyl vinyl ether, ethyl 11-propenyl ether, butyl vinyl ether, and the like can be used.
  • Copolymers with vinyl compounds such as xyl vinyl ether and styrene are typical examples.
  • MMAC methyl vinyl ether I maleic anhydride copolymer
  • maleic anhydride MB AC butyl vinyl ether / maleic anhydride copolymer
  • MH AC hexy 1 vinyl
  • ether I maleic anhydride copolymer and MAST (styrene I maleic anhydride copolymer), which is a copolymer of maleic anhydride and styrene. I can do it.
  • Such a polymer can be synthesized according to a conventional method of copolymerizing an olefin, or it can be obtained as a commercial product.
  • a linear polymer having a methylene group as a skeleton enables it to be adsorbed to the surface of a cell culture substrate through a hydrophobic bond. It has a low affinity for water due to its nature, and may repel water microscopically, impairing its reactivity. Therefore, as described above, for example, a case where a part of the hydrogen atom of the methylene group is substituted with an alkoxy group such as methoxy, butoxy, hexyloxy, etc., is considered to increase the reaction efficiency due to the presence of the oxygen atom.
  • maleic anhydride which is a reactive group in MMAC, MBAC, MHAC, etc., is a protein or base. It reacts with and binds to the amino or hydroxyl groups of the peptide, but even if this maleic anhydride reacts with water to form a carboxylic acid, it binds to the positive charge of the protein or peptide. can do.
  • the hydrophobic binding adsorption polymer is appropriately selected depending on the material of the cell culture substrate to be used or the purpose of use.
  • the above-mentioned MMAC, MBAC, MHAC and the like are polymers having a methylene skeleton, but a polymer having a main chain of a polyalkylene such as polyethylene or polypropylene having flexibility has flexibility. It is a suitable material for the purpose of coating a silicon rubber culture dish repeatedly.
  • MAST having a styrene skeleton has excellent electrical properties because it has a phenyl group in the side chain, and the skeleton structure is rigid.
  • a highly hydrophobic and hard substrate such as polystyrene, a carbon nanotube with excellent electronic properties, or a metal or metal oxide (for example, ITO) such as gold or platinum with excellent electrical conductivity is used for cells.
  • a metal or metal oxide for example, ITO
  • a metal or metal oxide such as gold or platinum with excellent electrical conductivity.
  • a culture substrate Suitable for coating when used as a culture substrate.
  • the hydrophobically-adsorbed polymer is adsorbed on the surface of the cell culture substrate by hydrophobic bonding instead of chemical bonding by the hydrophobic linear skeleton, the adsorption is performed regardless of the type and material of the cell culture substrate. can do.
  • a solution prepared by dissolving the hydrophobic binding adsorbing polymer in a solvent in advance is used. It can be applied to the culture substrate and dried.
  • a solvent that does not affect the cell culture substrate surface For example, using plastic as a cell culture substrate,
  • MMAC and MB AC are readily soluble in acetone, but acetone attacks the plastic surface.
  • MMAC, MBAC, MHAC, and MAST are sparingly soluble in n-hexane that does not attack plastics.
  • ethanol which is a polar solvent and does not attack the plastic surface.
  • MMAC and MBAC are soluble in ethanol, so they are easier to use than polymers that require acetone or the like, and can be easily air-dried after application.
  • the solid-phase preparation of the cell adhesion protein or peptide of the present invention is obtained by binding and immobilizing a cell adhesion protein or a peptide to a cell culture substrate coated with a hydrophobic binding adsorptive polymer.
  • a hydrophobic bond refers to a covalent bond formed by a reaction between a functional group capable of reacting with a protein or a peptide of an adsorption polymer and a reactive group of a cell adhesion protein or a peptide. Amide bond, thioamide bond, ester bond, thioester bond, and the like, and an amide bond is particularly preferable.
  • examples of the reactive group of the cell adhesion protein or peptide include a lipoxyl group, an amino group, a mercapto group, and a hydroxyl group derived from the terminal or side chain of the protein or peptide.
  • a method of reacting with a functional group capable of reacting with a protein or a peptide of a hydrophobic bond-adsorbing polymer with a reactive group of a cell adhesion protein or a peptide and binding the same a method used for ordinary peptide synthesis can be used.
  • one carbonyl group can be reacted with the other amino group, mercapto group or hydroxyl group in the presence of a condensing agent or as a reactive derivative such as an acid halide, acid anhydride or active ester.
  • a covalent bond such as an amide bond, a thioamide bond or an ester bond is formed.
  • the amino group can be reacted with a hydroxyl group in the presence of a condensing agent or as a reactive derivative such as isocyanate to form an amide bond.
  • the mercapto group and the hydroxyl group can be reacted with a condensing agent or a reactive derivative of a propyloxyl group, mainly in the same manner as described above, to form a thioester bond or an ester bond.
  • the functional group or the reactive group may be provided with a reversible protecting group which is easily removed within a range capable of forming a copolymer with the self-polycondensation or hydrophobic linear skeleton.
  • cell adhesion proteins examples include fibronectin (FN), collagen (Col), laminin (LN), and vitronectin (VN).
  • FN fibronectin
  • Col collagen
  • LN laminin
  • VN vitronectin
  • any peptide in the region related to cell adhesion in the amino acid sequence of the cell adhesion protein described above can be used.
  • the length of these peptides is 3 to 20, preferably 6 to 15, and more preferably 6 to 12 amino acid residues.
  • a peptide having a specific RGD amino acid sequence that binds to the integrin receptor on the cell side is preferable.
  • a specific sequence Tyr-Ala _Val-Thr-Gly-Arg-Gly-Asp-Ser-Pro-Ala-Ser (FIB-1).
  • the G-region of the ⁇ -chain (such as the ⁇ -chain G region ( G—domain) peptides are preferred, for example, from mouse LN, Arg—Lys—Arg—Leu—Gln—Va1 Gin—Leu—Ser—I1e — A rg-T hr (AG73), L eu-G 1 n-G 1 n —A rg-A rg — Ser — Val — L eu — A rg — T hr _L ys — I 1 e ( AG 7 3 T), T hr -L eu -G 1n—L eu—G ln -G 1 u -G 1 y -A rg -L eu—His—P he—Met (AG 7 6.8 ), T hr—L eu -G ln -L eu -G ln -G lu -
  • a solid-phase preparation of a cell adhesion protein or peptide is prepared by coating a cell culture substrate with a hydrophobic-adsorbing polymer in advance by the above-mentioned method and coating the same, and then reacting a functional group capable of reacting with the protein or peptide of the polymer. It can be prepared by reacting with a reactive group of a cell adhesion protein or a peptide.
  • the reaction may be carried out in accordance with the usual peptide binding method.
  • the reaction between MMAC, MAST, etc. previously coated on a cell culture substrate and the cell adhesion peptide is performed at room temperature to 50 ° C.
  • the reaction is preferably carried out at 37 ° C. under neutral or alkaline conditions at pH 7 to 11 for 10 minutes to 48 hours to form a covalent bond and immobilize the solid phase.
  • a functional group capable of reacting with the protein or the peptide of the hydrophobic binding adsorbed polymer is allowed to react with a reactive group of the cell adhesion protein or the peptide in advance, and the reaction product is applied to a cell culture substrate.
  • a solid phase preparation of a protein or peptide can also be prepared.
  • Hydrophobic binding adsorption polymer By using a reaction product (hereinafter referred to as “pseudo-matrix”) in which a protein and a peptide are reacted with a cell adhesion protein or a peptide in advance, a hydrophobic binding adsorption to a cell culture substrate can be achieved.
  • the cell adhesion substrate has been immobilized by the two-step treatment of the reaction, it can be prepared in one step of coating the pseudomatrix.
  • a pseudo matrix for example,
  • the pseudo-matrix is not necessarily the only method of diluting with a culture solution and adsorbing and immobilizing it on the surface of a culture dish.
  • the pseudo-matrix can be diluted with 50% ethanol and applied. In this case, no salt precipitates even when air-dried, and the storage stability at high temperatures is remarkably excellent.
  • reaction between the hydrophobic binding adsorbing polymer and the cell adhesion protein or peptide, and the method of applying the generated pseudo matrix to the cell adhesion substrate can be prepared according to the above method.
  • the reaction between the reactive group of the protein or the peptide of the hydrophobic binding adsorbed polymer and the reactive group of the cell adhesion protein or the peptide is performed by reacting the reactive group of the cell adhesion protein or the peptide with all the functional groups. It is also possible to react (occupation ratio of cell-adhered protein or peptide: 100%), but the occupation ratio is preferably 1 to 50%, more preferably 5 to 15%. Is more preferred. Increasing the occupancy increases the water solubility of the protein or peptide. Therefore, the adsorption rate of the pseudo matrix to the culture substrate decreases, and the solubility in an organic solvent such as ethanol also decreases, so that the precipitation becomes easier. Further, even if the density of the protein or the peptide is increased, it is wasteful if the receptor density of the cell is not increased, which is not economically preferable.
  • the solid-phase preparation of the cell adhesion peptide can be used as various culture substrates, and its performance is demonstrated when FN, which is a typical adhesion protein, is directly immobilized on the cell culture substrate. It has an activity sufficiently comparable to this.
  • the concentration of the cell adhesion peptide in order to immobilize the peptide directly on the cell culture substrate, the concentration of the cell adhesion peptide must be 2.5 mg Z ml or more. In the present invention, 0.25 mg / l or less is sufficient, and even if the amount of the peptide used is less than 1Z10-1 / '100, which is the conventional method, it is efficient and reproducible. Can be immobilized.
  • the cell adhesion protein When the cell adhesion protein is directly immobilized on the cell culture substrate, it is usually applied at a concentration of 5 to 10 ⁇ g Zm1 and this does not pose a problem in ordinary stationary culture. When stretch-cultured on rubber, cells are very easily detached due to weak adsorption of proteins and silicone rubber by hydrophobic bonds. In order to prevent this, a method of adsorbing on silicon rubber via MMAC or the like of the present invention is an effective means.
  • an artificial tissue can be prepared by seeding and culturing the target cell on a solid preparation of a cell adhesion protein or a peptide.
  • the method for producing such an artificial tissue is not particularly limited as long as the method is to inoculate and culture target cells on a solid-phase preparation of a cell adhesion protein or a peptide. Simply seeding the target cells on the product will cause the seeded cells to adhere and then quickly spread. Serum is especially necessary for the culture solution.
  • adhesion and spreading can be further promoted by adding a low concentration of about 1% (usually about 10% is used in cell culture).
  • the target cells include, for example, epithelial cells, endothelial cells or mesenchymal cells
  • the epithelial cells include, for example, epidermal cells, corneal epithelial cells, alveolar epithelial cells, and digestive system cells.
  • Endothelial cells include mucosal epithelial cells, renal glomerular epithelial cells or hepatic parenchymal cells, for example, renal glomerular hair cells, vascular endothelial cells, pulmonary artery vascular endothelial cells, placental vein vascular endothelial cells, aortic vascular endothelial cells, etc.
  • the mesenchymal cells include muscle cells, fat cells, glial cells, Schwann cells, and nerve cells (neurons).
  • any tissue may be used as long as it includes a cell layer and a basement membrane immediately below the cell layer.
  • artificial tissues such as artificial epidermal tissue, artificial corneal epithelial tissue, artificial alveolar epithelial tissue, artificial airway epithelial tissue, artificial renal glomerular tissue, artificial liver parenchymal tissue, artificial vascular endothelial tissue, artificial blood vessel, artificial lung, artificial
  • artificial organs such as liver, artificial kidney, artificial skin, and artificial cornea.
  • the artificial tissue formed by seeding and culturing the target cell on a solid-phase preparation of a cell adhesion protein or a peptide has a hydrophobic binding rather than a chemical bond. Adsorbed to the cell culture substrate surface by binding, it can be adsorbed regardless of the type and material of the cell culture substrate, and can be physically separated from the cell culture substrate surface when desired .
  • the exfoliated artificial tissue can be transplanted while retaining the structure of the basement membrane, so its versatility is even higher.Examples of its application are microartificial blood vessels with an inner diameter of 3 mm or less and implanted humans Examples include artificial tissues and the like, and in particular, epithelial tissues such as artificial spheres, artificial livers, and artificial alveoli.
  • a tissue or an organ in which a tissue and an endothelial tissue are close to each other can be suitably exemplified.
  • the method of seeding cells directly on the surface of the cell culture substrate which is a mechanical support, can be performed for a long time even if the surface of the cell culture substrate is hydrophilically processed. It is difficult to prevent this from happening, and good results cannot be expected.
  • the cell culture substrate coated with the hydrophobic-adsorbing polymer obtained in the present invention is a method of seeding cells on the surface of the cell culture via a linker, so that cells can be efficiently and reproducibly obtained.
  • the solid phase can be well formed, and the results can be significantly improved.
  • the present invention is effective because it gradually peels off from the cell culture substrate surface.
  • a commercially available “cultured cell stretching device” periodically applies a stretching stimulus in one axial direction, and can observe a morphological change of cells due to a forced stretching stimulus in a state close to a living body.
  • the silicon gel coated with the polymer of the present invention is used as the silicon gel (silicone rubber culture dish) used in the present apparatus, the cells do not detach from the culture substrate at the time of stretching stimulation. Cell observation can be performed.
  • a substance having cell adhesion activity can be immobilized on a material that bends and deforms.
  • a material that bends and deforms For example, at present, printed wiring and IC circuits are fabricated on bendable plastics. Such materials are coated with MMAC, MBAC, MAST, etc. by printing technology and immobilized with cell adhesion proteins or peptides as linkers, or proteins or peptides previously bound to reactive polymers. Is immobilized directly on plastic and is useful when cells are arranged as shown in a circuit diagram.
  • a substance having a cell adhesion activity can be immobilized on a material to which cells are unlikely to adhere (a polymer having high hydrophobicity or a smooth surface, an inorganic material, a metal, or the like).
  • a material to which cells are unlikely to adhere a polymer having high hydrophobicity or a smooth surface, an inorganic material, a metal, or the like.
  • artificial blood made of synthetic polymer Hollow fibers for tubes and heart-lung machines are made of a material that is as hydrophobic as possible and has as few as possible irregularities to prevent platelets from adsorbing and forming thrombi. Thrombosis can also occur with these materials, which has become a medical problem that blocks microvessels in the brain and lungs. Attempts have been made to prevent thrombus formation by coating heparin, but thrombus formation is still difficult.
  • vascular endothelial cells have a function of preventing thrombus formation.
  • heparin can be immobilized, or a linker having cell adhesion activity can be immobilized, and vascular endothelial cells can be seeded and used to cover the plastic surface.
  • Collagen fibers are useful as cell adhesion substrates, but their adhesion involves the integrin receptor.
  • integrin acts on the adhesion of epithelial cells and endothelial cells with basement membrane just below the cell layer, not in a normal tissue construction model, but rather in a model that assumes a pathological condition. It is desirable to build an organization in a state where the normally working Syndecan works. For this reason, even if it is attempted to coat the collagen fibers with laminin, a key component of the basement membrane, it is difficult to actually coat the collagen fibers.
  • by coating a collagen fiber with an adhesion peptide in the L- ⁇ chain G region by the method described in the present invention, it is possible to construct a tissue in which syndecan works instead of integrin.
  • Cellulose is an industrial material that is inexpensive, has sufficient strength and semi-permeable properties, can be shaped into various shapes, and is easy to adapt to living organisms. However, since it does not have the functional groups necessary for cell adhesion, it must be coated with cell adhesion molecules for use in artificial organs and cell culture substrates. However, its efficiency and the survivability of the coated material are not good. Therefore, suspension of non-adherent cells Used as a culture substrate, but not suitable for adherent cell culture substrates.
  • the MMAC, MBAC, and MHAC exemplified this time can be applied to such a material because the methylene group is rich in flexibility, and the side chain is formed of methoxy, butoxy, or hexyloxy.
  • the coating of the present invention can be optimized, for example, on the luminal or outer surface of a hollow fiber-shaped tube, and as a result, the substrate for cell adhesion It can be used as
  • the present invention is applicable to other than polystyrene that is usually used for cell culture.
  • cell adhesion proteins or peptides on the surface of implantable plastics, such as artificial blood vessels and artificial lenses used in medical treatment, an environment in which patient cells can easily adhere is created. It can be expected to reduce the burden of work.
  • the present invention will be described more specifically with reference to Examples, but the technical scope of the present invention is not limited to these Examples.
  • Example 1 Coating of silicon well
  • Whether or not the silicon well is coated with MMAC can be determined, for example, by coating the silicon well with MMAC, immobilizing the cell adhesion protein or peptide, and then performing fine analysis as shown in the following example. It can be confirmed by seeding and culturing the cells.
  • Example 2 Static culture of T2 cells
  • the coated silicon gel obtained by the method of Example 1 was combined with 0.1 M Lietano-lamine buffer, fibronectin (FN) of 100 gZm 1 dissolved in ⁇ 8.8, laminin-1 (LN). Pour cell adhesion protein solution or 0.25 mg Zm1 FIB-1 and AG73 cell adhesion peptide solutions, and allow them to react at 37 ° C for several hours or more to check the cell adhesion activity. These proteins or peptides were bound and immobilized (for details of immobilization, see Example 6 described later). Thereafter, a suspension of alveolar type 2 epithelial cells (T2 cells) at 5 ⁇ 10 4 Zcm 2 per unit area was poured, and culture was started in a C02 culture device.
  • T2 cells alveolar type 2 epithelial cells
  • Example 3 T2 cell extension culture 1
  • T2 cells per unit area were seeded on a silicon well on which cell adhesion protein or peptide was immobilized, prepared in substantially the same manner as in Example 2, and allowed to stand for 3 days.
  • the culture was performed. T2 cells grew as in 3d in FIG. 1 (results are not shown because they overlap).
  • the same stretching stimulus as in Fig. 1 was given, and the culture was continued for another day.
  • the state of cell adhesion was photographed with a phase contrast microscope (four rows in the middle row of Fig. 2) (FN, 3dC-1dS, LN, 3dC-ldS, FIB-1, 3dC) _ ld S, and AG 73, 3 d C—ld S).
  • T2 cells were able to strongly adhere to the solid-phased cell adhesion protein or peptide during the three-day stationary culture, and spread and proliferated. Therefore, the T2 cells did not reorient as clearly as in the upper panel even after the cell stretching load was forcibly imposed for one day.
  • Example 5 T2 cell extension culture 3)
  • T2 cells After three days of forced stretch stimulation, the traits of T2 cells are altered depending on the immobilized cell adhesion protein or peptide.
  • LN which is an essential component of the basement membrane structure located immediately below T2 cells in vivo
  • AG73 which is an adhesive peptide thereof
  • cubic type 2 epithelium It changes from cells to flat type 1 epithelial cells.
  • flat type 1 epithelial cells not thick type 2 epithelial cells, repeatedly undergo the most forced cell expansion in the alveoli with respiratory movement. Forced cell spreading for 3 days suggests that type 2 epithelial cells have differentiated into type 1 epithelial cells as in vivo.
  • FN is an extracellular matrix that naturally stimulates cells to proliferate and migrate.
  • the sample can be used as a solid-phased cell adhesion protein or peptide substrate for cell culture as shown in the following Examples.
  • cell adhesion protein and peptide concentrations are set to 2 to 4 ag / m1 and 0.05 g / m1, respectively, in the amount of 1Z5, normal cell culture is not hindered.
  • Example 7 Adhesion of T2 cells to cell adhesion proteins and inhibition of cell adhesion by free cell adhesion peptides
  • the cell adhesion peptides in particular, AG73, A3G72, hA3G75, hA3G83, A4G82, A5G71 and A5G77
  • the peptide inhibited T2 cell adhesion. This is understood to be because these peptides have a strong affinity for cells and inhibited T2 cells from adhering to FN, CoII, LN and VN.
  • the FIB-1 peptide is known as a peptide that inhibits adhesion to FN (usually requires 1 mgZml or more), but the F1B_1-peptide does not exert an inhibitory effect. Even at concentrations as low as 1, the above peptides show inhibitory activity. Like AG73, depending on the type of LN peptide, the inhibitory activity was also exhibited at a concentration of 0.12 mg / ml.
  • Example 8 Adhesion of T2 cells to immobilized cell adhesion peptide substrate and inhibition of cell adhesion by free of said peptide
  • the Yosara were seeded T 2 cells Nigoshi suspended in DM EM medium 6 X 1 0 4 cells / concentration of serum, and cultured 3 7 ° C, 2 4 hours C_ ⁇ 2 incubator. Thereafter, in accordance with the method of Example 7, the cells were fixed with methanol, stained, and the absorbance was measured. Separately, immediately before seeding the cells, the same free peptide as the cell adhesion peptide used for the solid-phase immobilization was added to the cell suspension. After culturing in the same manner as described above, the absorbance was measured. It was also measured when FN was applied as a reference material. The results are shown in FIGS.
  • Fig. 4 shows the results of using a culture dish prepared using MMAC as a hydrophobic binding adsorption polymer, MAST in Fig. 5, and laminin a chain G peptide and FIB-11 peptide as cell adhesion peptides.
  • Contro 1 contains only the immobilized cell adhesion peptide
  • freepeptide contains 0.25 mg / m 1 of the same free peptide as the immobilized cell adhesion peptide. Indicates a coexisting system.
  • the amount of cell adhesion varies with some cell adhesion peptides.
  • Example 8 Using a cell adhesion peptide and T2 cells immobilized on a culture dish, the cells were cultured for 1 to 24 hours according to the method of Example 8. The state of cell adhesion and extension after culture was observed with a differential interference (optical) microscope. Figure 6 shows the results after 1, 6 and 24 hours of culture.
  • Figure 6 shows the results of differential interference microscopy after incubation for 1 hour (A to C), 6 hours (D to L), and 24 hours (M to 0) on the cell culture substrate seeded with T2 cells. Is shown.
  • B, E and M are AG73, C, L and O are FIB-1, F is A3G72, G and N are A4G82, H is A5G71, I used A5G77, J used hA3G75, K used ⁇ G 3G83, and ⁇ and D used F ⁇ as a standard substance.
  • FIG. 7 shows the results regarding the number of adherent cells after culturing for 24 hours.
  • FIG. 8 shows the result of adding a free peptide different from the solid-phased peptide when culturing T 2 cells on the solid-phased cell adhesion peptide according to the method of Example 7.
  • the receptor at FIB-1 is not syndecan, but a cell adhesion molecule called integrin.
  • the binding of integrin to FIB-1 is inhibited by LN peptides such as AG73, but not vice versa. That is, when FIB-1 is immobilized on solid phase, inhibition is effected by free LN peptide, but when AG73 or the like is immobilized, inhibition is not effected by free FIB-1 at all.
  • LN peptides such as AG73
  • AG73 or the like is immobilized, inhibition is not effected by free FIB-1 at all.
  • cell adhesion via syndecan is preferred to cell adhesion via integrin in cell adhesion.
  • the advantage of immobilizing the cell adhesion peptide of the LN ⁇ chain G region as a cell adhesion substrate is clear.
  • Example 1 2 Adhesion of cell adhesion peptide of immobilized LN on the basis of adhesion and binding strength (affin
  • FIG. 9 shows the amount of cell adhesion when T2 cells were cultured on the solid phase peptide for 1 day without serum, and 100% when cultured on solid phase FIB-1.
  • FIGS. 8 and 9 are very effective as a simple method that gives a relative ranking to the binding strength (affinity) of the cell adhesion peptide and allows quantitative consideration of the strength of cell adhesion.
  • Table 1 shows the laminin ⁇ -chain G-region peptide based on the affinity (binding / adhesion) between FIB-1 peptide containing the RGD amino acid sequence and the T2 cell, which binds to integrin in the FN molecule.
  • Very strong bonding ⁇ Adhesion ⁇ class, strongly bonding ⁇ class, B class that adheres to the same degree as FIB-1, and C class that weakly bonds below are shown.
  • the pseudomatrix (MAST-peptide) to which each of the cell adhesion peptides prepared in Example 13 was bound was adsorbed and immobilized on a 96-well culture dish in the same manner as in Example 14; 2 cells were seeded and cultured.
  • Figure 11 shows the results. 1 to: In the entire measured range of 10 g / m 1, MAST—AG73, —A3G72, _A4G82X, —FIB-1 Equivalent cell adhesion was demonstrated. Competition was inhibited by the free cell adhesion peptide, but to a lesser extent than with the MBAC-peptide.
  • Example 16 Inhibition of T2 Cell Adhesion by Treatment of the Peptide with Polyclonal Antibody against Immobilized Pseudo-Matrix
  • the pseudomatrix (MB AC-petide) to which each cell adhesion peptide prepared in Example 13 was bound was diluted with DUEM medium to a concentration of 1 to 10 ⁇ g / m1, and 96 wells were diluted. Each 1001 was poured into a culture dish, allowed to stand still in a CO 2 incubator, and immobilized and immobilized on the culture dish. Unadsorbed MBAC-peptide was removed by washing thoroughly with DMEM medium. Next, antibody 1001, diluted to 4 to 10 gZm 1 in serum-free DMEM, was poured into culture dishes and incubated for 2 to 4 hours to allow binding of the antibody to the peptide. As a control group, normal IgG was used.
  • T 2 cells suspended at a concentration of 6 x 1 0 5 or Zm 1, each 1 0 0 1 Seeding Seeded. After culturing in serum-free for 1 day, the cells were fixed with 100% methanol for 5 minutes, and T2 cells were stained with 0.4% crystal violet 501 for 30 minutes. Excessive staining was washed with water, and the number of adhered cells was counted from the absorbance of the cytoplasm (A595). The results are shown in FIG.
  • Fig. 12 also shows the results of MAST-FI I_1. 2.
  • MAST-FIB-1 was immobilized at a concentration of 5-10 g / m1, the degree of antibody inhibition was low because the affinity for cells was similar to that of Example 15 in MBAC-FIB.
  • the pseudomatrix (MBAC-peptide) to which each of the cell adhesion peptides prepared in Example 13 was bound was diluted with DMEM medium to a concentration of 1 to 10 g Zm 1, and a 96-well culture dish was prepared. Each was poured into a culture dish, allowed to stand in a CO 2 incubator, and immobilized and immobilized on a culture dish. Unadsorbed MBAC-peptide was removed by washing well with DMEM medium. Next, 1 mg / m 1 of heparin-dissolved DMEM 1001 is poured into a culture dish and incubated for 2 hours to bind heparin to the peptide. I let you. The control group was treated with DMEM only.
  • T 2 cells suspended at a concentration of 6 ⁇ 10 5 Zm 1 were seeded at 1001 each.
  • the cells were fixed with 100% methanol for 5 minutes, and stained with 0.4% crystal violet 501 for 30 minutes. Excessive staining was washed with water, and the number of adhered cells was counted from the absorbance of the cytoplasm ( ⁇ 595). The results are shown in FIGS. 13 and 14.
  • Adhesion of T2 cells to both pseudo matrices is based on the standard cell adhesion protein F Slightly lower than N.
  • the amino acid residue that plays the role of a spacer that secures the distance to the hydrophobic adsorbent polymer and eliminates steric hindrance is only one residue of CO, NH—G 1 y—
  • the amino acid residues that contain the GRGD SP sequence and are the most important are the five residues of CO-NH-Tyr-Ala—Val_Thr—Gly_.
  • cell adhesion ability equivalent to that of FN was exhibited (see Examples 21 and 22 and FIGS. 18 and 19).
  • the slight decrease in the amount of T2 cell adhesion in the case of MAS TZMMAC-GR GD SP is considered to be at least one of the causes of steric hindrance caused by the hydrophobic adsorbed polymer to the GR GD SP peptide.
  • the reason that GR GD SP peptide bound to the MAST hydrophobic adsorption polymer has a larger cell adhesion amount than the same peptide bound to the MMAC polymer is that MAST-GRGD SP is a polystyrene culture. This is because the adsorption to the dish is high.
  • Example 19 Adhesion of T2 cells to culture dishes in which MAST-GRGD SP pseudo-matrix dissolved in an aqueous solution containing ethanol was air-dried and immobilized, and competitive inhibition by free GR GD SP peptide) Concentration dependence)
  • Example 18 MAST-GRGDSP was dissolved in 50% ethanol, air-dried and immobilized on a culture dish, and then T2 cells were seeded and cultured. Separately, just before seeding the cells, 0.25 to 4.0 mg of free GRGD SP peptide was added to the cell suspension, and after culturing in the same manner as described above, the absorbance was measured. Figure 16 shows the results. With increasing free GRGDSP concentration, cell adhesion was progressively inhibited, and almost completely inhibited at 4. O mg / ml. This suggests that T2 cells are specifically bound and adhered via the immobilized GRGDSP.
  • Example 20 Adhesion of T2 cells to culture dishes air-dried and immobilized with MMAC-GRGDSP pseudo-matrix dissolved in an aqueous solution containing ethanol, and inhibition of competition by free GRGDSP peptide Concentration dependence
  • Example 18 MMAC-GR'GD SP was dissolved in 50% ethanol, air-dried and immobilized on a culture dish, and then T2 cells were seeded and cultured. Separately, just before seeding the cells, 0.25 to 4.0 mg of free GRGDSP peptide was added to the cell suspension, and after culturing in the same manner as described above, the absorbance was measured. Figure 17 shows the results. As in Example 19, with increasing free GRGDSP concentration, cell adhesion was progressively inhibited, and almost completely inhibited between 1.0 and 4.0 mgZm1. This suggests that the T2 cells are specifically bound and adhered through the immobilized GRGDSP as in Example 19.
  • Example 21 Adhesion of T2 cells to a culture dish in which a pseudo-matrix dissolved in an aqueous solution containing ethanol was air-dried and immobilized, and inhibition of competition by the free peptide
  • MB ACZMA ST—FIB-1 was diluted with 50% ethanol, poured into a culture dish, and air-dried and solidified. Before seeding T2 cells, 4 gZm1 of anti-FIB-1 polyclonal antibody 1001 was poured into a culture dish and incubated for 4 hours to allow the antibody to bind to the immobilized FIB-1 peptide. Controls were treated with normal IgG and then cultured, fixed and stained as in Example 21. Figure 19 shows the results. When the immobilized FIB-1 was 0.1 to 0.25 it gZwe 11, the cell adhesion by the antibody was specifically inhibited. Industrial applicability
  • the use of a silicon gel coated with a hydrophobic binding adsorptive polymer allows the cells to be cultured in a cell culture, for example, even if the cells are subjected to an excessive load that is higher than that usually performed in a cultured cell stretching device. Can grow well without peeling.
  • the solid-phased preparation of the cell adhesion protein or peptide of the present invention is structurally more stable than the preparation in which the cell adhesion protein is directly immobilized, and the cell adhesion peptide is inexpensive. For this reason, it is extremely useful as a substitute for cell adhesion proteins.
  • the performance of the cell adhesion peptide has a sufficient activity as compared with FN which is a typical adhesion protein.
  • structural The stable and inexpensive solid phase LN ⁇ -chain G region peptide is extremely effective as a substitute for LN.
  • pseudo matrices can be completely chemically synthesized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Botany (AREA)
  • General Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、培養皿等の細胞培養基質に効率よく吸着し、細胞接着の再現性に優れた、細胞培養基質表面に疎水結合性吸着ポリマーでコーティングされている細胞培養基質、および、該細胞培養基質に効率よく結合し、細胞接着の再現性に優れた細胞接着蛋白質またはペプチドの固相化標品、更には、該細胞接着ペプチドの固相化標品上に細胞を播種し、培養することにより調製される人工組織を提供するものである。

Description

明 細 書 細胞培養基質および細胞接着蛋白質またはべプチドの固相化標品 技術分野
本発明は、 細胞培養基質表面が疎水結合性吸着ポリマーでコーティン グされている細胞培養基質および該細胞培養基質に結合した細胞接着蛋 白質またはペプチドの固相化標品、 更には、 該固相化標品上に細胞を播 種し、 培養することにより調製される人工組織に関する。 背景技術
動物の体の内外の表面を覆っている細胞層である表皮、 角膜上皮、 肺 胞上皮、 消化器系の粘膜上皮、 腎臓子球体上皮、 肝実質細胞等の上皮組 織は、 外界からの異物 (微生物、 アレルゲン、 化学物質等) が侵入する のを防いでいる。 かかる上皮組織を構成する上皮細胞の外界面は上端面 (apical surface) 、 内側下面は基底面 (basal surface) と呼ばれ、 か かる基底面直下には、 蛋白質やプロテオグリカン等の細胞外基質 (E C M) から成る細胞を含まない基底膜と呼ばれる 5 0〜 1 0 0 nmの薄膜 の構造体が存在する。 基底膜は、 未成熟な上皮細胞が増殖し、 成熟した 細胞に分化して、 本来の形態や、 機能を発現するのに必須の構造体と考 えられている。 即ち、 基底膜なしでは上皮組織は自分自身の維持や本来 のパフォーマンスが達成できない。 多層または単層の上皮細胞層はバリ ァ一として外界からの異物の侵入を防いでいるが、 基底膜自体も物理的 なバリアーとして作用する。 このように、 上皮組織を構成する上皮細胞 と基底膜が協働して、 強固なバリア一を形成し、 体内の生命活動を保護 している。 上皮細胞の他、 内皮細胞、 筋細胞、 脂肪細胞、 シュワン細胞などの実 質細胞と結合組織との界面に形成される細胞外基質の特異な膜状構造物 である基底膜は、 生体の各組織 ·臓器に普遍的に見出される一方で、 腎 糸球体毛細血管ループや神経シナプス膜など高度に特化したものもある したがって、 基底膜には細胞を間質に接着させるだけでなく、 選択的な 物質 ·細胞透過や細胞分化の誘導等の機能があることが明らかにされて いる。 腎糸球体では、 基底膜の陰性荷電が腎のろ過機能を担っていると みなされ、 その陰性荷電は現在パールカンとよばれるへパラン硫酸プロ テオダリカン (H S P G) によることが古典的に知られている。 H S P Gは腎糸球体基底膜だけでなく、 種々の基底膜に、 IV型コラーゲン、 ラ ミニン、 ェンタクチン (二ドジェン) 等と同様に、 その基本的構成分子 として広く分布している。
細胞外マトリックス、 特に基底膜は、 上記のように個体の発生や分化 等の生理現象だけでなく、 癌の増殖転移や炎症などの病態形成にも深く 関与していることが明らかとなりつつあり、 その構成タンパク質の機能 の解明が重要な課題となってきている。 例えば、 基底膜の主要糖タンパ ク質であるラミニンは、 a , β、 ァの 3種類のサブユニットからなる複 合体で、 1 5種類のァイソフォームが知られており、 これらが組織特異 的あるいは発生時の各段階で特異的に発現している。 ラミニンは様々な 生物活性を有している分子量約 9 0万の複雑な巨大分子である。 ラミニ ンのリセプ夕一としては、 a 6 β 1等のインテグリン分子、 α—ジス卜 ダリカン ( α - D G) 、 シンデカン— 1〜 4のへパラン硫酸プロテオグ リカン (H S P G) が報告されている。
細胞が接着可能な薄い細胞外マトリックス層である基底膜の構成成分 と上皮細胞との相互作用が、 移動、 増殖および分化等の細胞機能に影響 及【ましてレ る (Crouch et al . , Basement membrane. In The Lung (ed . R. G. Crystal and J. B. West), pp53.1-53.23. Phi ladephia :
Lippincott-Raven. 1996) 。基底膜の主要成分としては、 前記のように、 ラミニン、 IV型コラーゲン、 へパラン硫酸プロテオダリカン (H S P G) およびェンタクチン (二ドジェン) が知られており (Curr. Opin. Cell Biol. , 6, 674-681, 1994) 、 ラミニン及び IV型コラーゲンのアイソフォ ームを含む基底膜成分の合成には、 間充織細胞が重要な役割を担ってい ると考えられている (Matrix Biol. , 14, 209-211, 1994; J. Biol. Chem. , 268, 26033-26036, 1993) が、 上皮細胞の役割もまた、 重要なものであ る。 H S P Gは、 上皮細胞由来と考えられているが、 ラミニン、 IV型コ ラーゲンおよびェンタクチン (二ドジェン) は、 上皮細胞および間充織 細胞の双方によって、 ィンビポで合成される (Development, 120,
2003-2014, 1994; Gastroenterology, 102, 1835-1845, 1992) 。 連続し た緻密層 (lamina densa) を示すィンビト口での上皮組織モデルを作製 する試みが、今まで数多く行われてきた。腸(J. Cell Biol. , 133, 417-430, 1996)および皮膚(J. Invest. Dermatol. , 105, 597-601 , 1995; J. Invest. Dermatol. , 109, 527-533, 1997; Dev. Dynam. , 197, 255-267, 1993) 等の組織モデルが研究されており、 いくつかの間充織細胞由来基底膜成 分が、基底膜形成に重要な役割を果たしていることも見い出されている。 従来から、 上皮細胞を培養することにより基底膜を構築し、 基底面直 下に基底膜構造体が存する上皮組織を構築する幾つかの方法が報告され ている。 例えば、 本発明者は、 肺胞上皮細胞と肺線維芽細胞との共培養 によりインビトロで基底膜が形成されることを報告した (Cell
Struc.Func. , 22: 603-614, 1997)。 すなわち、 肺線維芽細胞を I型コラ —ゲンゲルに包埋した状態で培養すると、 肺線維芽細胞によってコラー ゲンゲルは収縮し、 堅さを増す。 また、 肺線維芽細胞から分泌された細 胞外基質は、 細胞周囲のコラーゲン線維にまとわりついて沈着する。 そ の形成物はインビポにおける間質と類似することから、 擬似間質と呼ぶ ことができる。 肺線維芽細胞からは、 ラミニン、 IV型コラーゲン、 パー ルカン、 ェン夕クチン (二ドジェン) 等の基底膜構成成分も、 培地中に 分泌される。 この擬似間質化した I型コラーゲン線維上で、 肺胞 2型上 皮細胞株 (S V 4 0— T 2) を 1 4日間程度培養する (T 2— F g e 1 ) と、 肺線維芽細胞から分泌された基底膜構成成分が、 上記肺胞 2型上皮 細胞株の基底面にまで拡散 ·到達し、 基底膜構築の材料として使われる 結果、 基底膜構造体が形成されることを報告した。
また、 希薄な中性コラ一ゲン溶液を、 5 % C〇2中 3 7°Cでインキュ ペートし、 コラーゲン線維を形成させた後、 無菌状態の中で風を当てて 乾燥させた風乾コラーゲン線維基質 ( f i b) を、 上記擬似間質の代替 物として用い、 上記肺胞上皮細胞と肺線維芽細胞との共培養の場合と同 様にして、基底膜を形成することも報告されている (Eur. J. Cell Biol., 78: 867-875, 1999; J. Cell Sci. , 113: 859-868, 2000) 。 この方法の 場合、 コラーゲン溶液の濃度が高いと、 形成されたコラーゲン線維に隙 間が少なく、 あるいは無くなって、 基底膜形成のため上皮細胞を長期間 培養( 1 0日〜 2週間)すると、細胞が剥がれて浮き上がることから(例: Bee ton Dickinson, Fibrillar col lagen co t culture insert) 、 コラ —ゲン溶液濃度は、 0. 3〜 0. 5 mgZm 1が最適であるとされてい る (Eur. J. Cell Biol. , 78: 867-875, 1999; J. Cell Sci. , 113: 859—868, 2000) 。
線維芽細胞を包埋したコラーゲンマトリックスを使用する代わりに、 マトリゲル (Matrigel ; Becton Dickinson 社の登録商標) を共存させ、 コラーゲン線維基質上で肺胞 2型上皮細胞株 ( S V 4 0 -T 2 ) を培養 した。 このときマトリゲルは、 基底膜成分の外来性 (exogenous) 供給源 として機能した。 マ卜リゲルは、 Engelbreth- Holm-Swarm 腫瘍マトリツ クスから抽出された基底膜調製物であり (J. Exp. Med., 145, 204-220, 1977) 、 E CM合成に影響を及ぼす可能性のある種々のサイ 卜力インの 他に、 ラミニン一 1、 ェン夕クチン (二ドジェン) 、 IV 型コラーゲン、 パ一ルカンを含んでいる (Exp. Cell Res. , 202, 1-8, 1992) 。 基底膜 に取り込まれたマトリゲル由来の成分を追跡するために、 マトリゲルを ビォチンで標識した。 標識された基底膜成分の中でも、 主どしてラミニ ンー 1 とェン夕クチン (二ドジェン) が培地中に拡散し、 肺胞上皮細胞 が形成する基底膜中に取り込まれた。 また、 基底膜成分を免疫蛍光染色 し (蛍光) 顕微鏡で観察すると、 マトリゲル量に依存して基底膜形成が 促進すること、 および点状に分泌 ·沈着された基底膜マトリックス成分 がシート状に拡大し、やがて基底膜へと発達して行く過程が観察された。 これらの結果から、 肺胞上皮細胞の基底面下方から供給された外来性ラ ミニンー 1およびェン夕クチン (二ドジェン) が、 インビトロでの上記 上皮細胞による完全な基底膜の形成に大きく関与していることが明らか になっている (J. Cell Sci. , 113: 859-868, 2000) 。
また、 細胞をインビ卜口で付着させ、 培養する方法として、 疎水性組 織培養表面に生体分子をジスルフィ ド結合で結合させた末端基活性化ボ リマー (E GAP) に吸着させ、 細胞を生体分子が結合した E G APコ —ト表面上に播種し、 増殖させる方法が開示されている (特表 2 0 0 1 - 5 1 2 5 6 5 ; W 09 8/ 3 1 7 3 4) 。
培養細胞が基質に接着する際には、 細胞表面に存在するインテグリン 等のリセプター分子を使って接着するのが一般的である。 このため、 細 胞が特異的なリセプ夕一を使って基質に接着することを誘導するには、 細胞接着活性を有する細胞外基質等がリンカーとして利用される。 細胞 外基質には、 代表的なものとしてフィブロネクチン (F N)、 コラーゲン (C o 1 )、 ラミニン (LN) およびビトロネクチン (VN) 等の細胞接 着蛋白質が知られている。 これら細胞接着蛋白質は、 プラスチック培養 皿との疎水結合を利用して、 直接非共有結合で吸着させ、 これらの上に 上皮細胞、 血管内皮細胞、 線維芽細胞等を播種させ、 細胞培養を行うた めの基質として利用されている。 しかし、 これら細胞接着蛋白質は高価 な上、 蛋白質の一般的性質である変成や分解をうけ易く、 価格、 安定性 や保存性等に問題を有している。
また、 細胞接着蛋白質のアミノ酸配列の中で、 細胞接着に関わる領域 のべプチドを上記と同様の方法を用いてプラスチック培養皿に直接吸着 させ、 細胞培養の基質として用いることが出来る。 これら細胞接着蛋白 質に比して、 容易に化学合成できるぺプチドを細胞接着べプチドとして 用いる方法は、 大量生産が容易である点や、 構造が比較的安定なことか ら、 細胞接着基質に用いる利点がある。 しかし、 低分子故にその吸着効 率は蛋白質に比して著しく低く、 数パ一セント程度しか吸着しない。 ま た、 ペプチドにとっても、 プラスチックに吸着されて運動の自由度を奪 われている状態では、 細胞側の受容体と結合するのが難しい。 また、 一 旦吸着したぺプチドも、 その後、 徐々に遊離する。 従って、 ぺプチドを 用いた細胞接着の再現性は芳しくなく、 工業製品としての価値は低い。 本発明者らは、 培養細胞が基質に接着することを誘導するために、 細 胞培養に用いる親水性処理をしたプラスチック製培養皿に代わって、 細 胞接着のリガンド (リセプターの結合相手となる細胞外基質分子) で培 養皿の疎水性表面をコーティングする方法を見いだし、 本発明を完成す るに至った。 この方法は、 細胞接着の受け手であるリガンドとそのリガ ンドを固相化するための相手となる培養皿が、 非共有結合 (疎水結合) で結合することを利用する方法である。
即ち、 本発明は、 培養皿等の細胞培養基質に効率よく吸着し、 細胞接 着の再現性に優れた、 細胞培養基質表面に疎水結合性吸着ポリマーでコ 一ティングされている細胞培養基質、 および、 該細胞培養基質に効率よ く結合し、 細胞接着の再現性に優れた細胞接着蛋白質またはべプチドの 固相化標品、 更には、 該細胞接着ペプチドの固相化標品上に細胞を播種 し、 培養することにより調製される人工組織を提供することにある。 発明の開示
すなわち本発明は、 分子内に疎水性を有する直鎖状骨格と蛋白質また はべプチドと反応しうる官能基とを有している疎水結合性吸着ポリマ一 でコーティングされている'ことを特徴とする細胞培養基質 (請求の範囲 1 ) や、 細胞培養基質の基材が、 生物性ポリマー、 プラスチック、 天然 または合成ゴム、 無機物または金属からなる請求の範囲 1記載の細胞培 養基質 (請求の範囲 2 ) や、 生物性ポリマーが、 コラーゲン、 ゼラチン、 セルロース.. ァガロース、 アルギン酸、 キチン、 キトサン.. または、 生 分解性ポリマーのポリ乳酸、 ポリブチレンサクシネー卜、 ポリ力プロラ ク トンである請求の範囲 2記載の細胞培養基質 (請求の範囲 3 ) や、 プ ラスチックが、熱可塑性樹脂または熱硬化性樹脂である請求の範囲 2記 載の細胞培養基質(請求の範囲 4 ) や、 熱可塑性樹脂が、 ァクリル樹脂、 ポリ塩化ピニル樹脂、ポリエチレン樹脂、 ポリスチレン榭脂、 ポリプロピ レン樹脂、 ポリメチルペンテン樹脂またはフッ素樹脂である請求の範囲 4記載の細胞培養基質 (請求の範囲 5 ) や、 熱硬化性樹脂が、 フエノー ル樹脂、尿素樹脂、 エポキシ樹脂、 メラミン樹脂またはシリコン樹脂であ る請求の範囲 4記載の細胞培養基質 (請求の範囲 6 ) や、 合成ゴムが、 ブタジエンスチレンゴム、 ブタジエンアクリロニトリルゴム、 プチルゴ ム、多硫化系合成ゴム、フッ素ゴムまたはシリコンゴムである請求の範囲 2記載の細胞培養基質 (請求の範囲 7 ) や、 無機物が、 ガラス、 ヒドロ キシァパタイ ト、 I C基材またはカーボンナノチューブである請求の範 囲 2記載の細胞培養基質 (請求の範囲 8 ) や、 金属が、 不活性 ( i n e r t ) な金、 白金、 チタン、 インジウム、 または、 これらの酸化物であ る酸化チタン、 酸化ィンジゥム、 I TO (酸化ィンジゥム · スズ) であ る請求の範囲 2記載の細胞培養基質 (請求の範囲 9) や、 請求の範囲 2 〜 9記載の基材からなる細胞培養基質が、 培養皿 (ゥエル)、 プリント配 線板または人工臓器である請求の範囲 1記載の細胞培養基質' (請求の範 囲 1 0 ) や、 人工臓器が、 人工血管、 人工心肺または人工腎臓である請 求の範囲 1 0記載の細胞培養基質 (請求の範囲 1 1 ) や、 細胞培養基質 が、 シリコンゴムを基材とした培養皿 (ゥエル) である請求の範囲 1ま たは 1 0記載の細胞培養基質 (請求の範囲 1 2) や、 疎水結合性吸着ポ リマーが、 以下の式 [ I ] で表される請求の範囲 1〜 1 2のいずれか記' 載の細胞培養基質
Figure imgf000009_0001
(式中、 Xは、 C Hまたは N H C H C Oを示し、 Yは、 CHまたは NH C R 2 C Oを示し、 R 1は、 H、 炭素数 1〜 1 0のアルキル基、 炭素数 1 〜 1 0のアルコキシ基、 炭素数 6〜 1 0のァリールもしくはァラアルキ ル基または炭素数 6〜 1 0のァリールォキシもしくはァラアルキルォキ シ基を示し、 R 2は、 Hまたは炭素数 1〜 1 0のアルキル基を示し、 Z は、 官能基 (反応基) を示し、 Xと互に結合してもよく、 spacerは、 (一 C H 2 -)p または(― NH C H R 3 C O— )q を示し、 R3は、 Hまたは炭 .〜 1 0のアルキル基を示し、 mは、 1以上の整数を、 nは、 1 0 0〜 2 0 0 0 0の整数を、 pおよび Qは、 独立して 0または 1〜 8の整 数を、 rは、 1以上の整数を示す) (請求の範囲 1 3)、 式 [ I ] で表さ れる疎水結合性吸着ポリマーが、 ビニル系化合物と無水マレイン酸との 共重合体である請求項 1 3記載の細胞培養基質 (請求の範囲 1 4) や、 ビエル系化合物が、 メチルビニルエーテル、 ェチルビニルエーテル、 ブ チルェ一テル、 へキシルビニルエーテルまたはスチレンである請求の範 囲 1 4記載の細胞培養基質 (請求の範囲 1 5) に関する。
また、 本発明は、' 細胞接着蛋白質またはペプチドが、 請求の範囲 1〜 15のいずれか記載の細胞培養基質に結合していることを特徴とする細 胞接着蛋白質またはペプチドの固相化標品 (請求の範囲 1 6) や、 結合 が、 疎水結合性吸着ポリマ一分子内の蛋白質またはべプチドと反応しう る官能基と細胞接着蛋白質またはべプチドの反応性基とが反応し形成さ れる共有結合である請求の範囲 1 6記載の固相化標品(請求の範囲 1 7 ) や、共有結合が、アミ ド結合である請求の範囲 1 7記載の固相化標品(請 求の範囲 1 8) や、 細胞接着蛋白質が、 フイブロネクチン (FN)、 コラ 一ゲン (C o 1 )、 ラミニン (L N) またはビ卜ロネクチン ( VN) であ る請求の範囲 1 6〜 1 8のいずれか記載の固相化標品(請求の範囲 1 9 ) や、 細胞接着ペプチドが、 請求の範囲 19記載の細胞接着蛋白質のアミ ノ酸配列の中で、 細胞接着に関わる領域のぺプチドである請求の範囲 1 6〜 1 8記載の固相化標品 (請求の範囲 2 0 )や、 フイブロネクチン (F N) 蛋白質の細胞接着に関わる領域のペプチドが、 細胞側のインテグリ ン受容体と結合する特異的な A r g - G l y -A s p (RGD) ァミノ 酸配列を有するペプチドである請求の範囲 2 0記載の固相化標品 (請求 の範囲 2 1 ) や、 R GDアミノ酸配列を有するぺプチドが、 T y r— A 1 a -V a 1 -T r - G l y -A r g - G l y -A s p - S e r - P r o— A l a— S e r (F I B— 1 ) である請求の範囲 2 1記載の固相 化標品 (請求の範囲 2 2) や、 ラミニン (LN) 蛋白質の細胞接着に関 わる領域のぺプチドが、 ひ鎖の G領域 (G— d om a i n) ぺプチドで ある請求の範囲 2 0記載の固相化標品 (請求の範囲 2 3) や、 G領域べ プチドが、 A r g -L y s -A r g -L e u - G l n - V a 1 — G l n - L e u - S e r - I 1 e— A r g—T h r (AG 7 3 )、 L e u - G l n - G l n -A r g -A r g - S e r - V a 1 - L e u - A'r g - T h r - L y s - I 1 e (AG 7 3 T), T h r - L e u - G 1 n - L e u - G l n - G l u - G l y -A r g - L e u -H i s — P h e— M e t ( A G 7 6. 8)、 Th r -L e u - G l n - L e u - G 1 n -G l u - G l y -A r g - L e u -H i s - P h e -N l e ( A G 7 6. 8 X)、 V a 1 -L y s -Th r -G l u -Ty r - I 1 e _ L y s— A r g— L y s - A 1 a - P h e -M e t (A G 8 1. 2)、 V a 1 - L y s - T h r— G l u -Ty r - I 1 e— L y s — A r g - L y s — A l a— P h e— N l e ( A G 8 1. 2 X)、 L y s -A s n -A r g - L e u -T h r - I 1 e -G l u - L e u - G l u -V a 1 -A r g -T h r (A 2 G 7 3)、L y s _ P r o -A r g - L e u - G l n - P h e - S e r — L e u— A s p— I l e— G i n— T h r ( A 3 G 7 2 )、 L y s — P e— L e u - G l u— G i n— L y s— A l a— P r o— A r g— A s p - S e r -H i s ( A 4 G 7 3 )、 G l y - G 1 u - L y s - S e r — G i n— P h e— S e r - I 1 e -A r g - L e u - L y s -T r (A 4 G 7 8)、T h r _ L e u— P h e— L e u— A l a - H i s - G 1 y -A r g -L e u -V a 1 — P h e— M e t (A 4 G 8 2 )、 T h r - L e u - P h e -L e u -A l a— H i s - G l y -A r g - L e u - V a 1 - P h e - N 1 e (A4 G 8 2 X)、 G l y— P r o— L e u— P r o - S e r -Ty r -L e u - G l n - P e -V a 1 - G 1 y - I 1 e (A 5 G 7 1 )¾ A r g -A s n -A r g - L e u -H i s - L e
0 u - S e r -M e t - L e u - V a 1 -A r g - P r o (A 5 G 7 3)、 A r g -A s n -A r g -L e u— H i s - L e u— S e r— N l e - L e u - V a l _A r g— P r o (A 5 G 7 3 X), L e u - V a 1 - L e u - P h e -L e u -A s n -H i s — G l y _H i s - P h e - V a 1 - A 1 a (A 5 G 7 7), L e u -V a 1 - L e u - P h e -L. e u 一 A s n— H i s—G l y— H i s ( A 5 G 7 7 f ), L y s - A s n - S e r— P h e— M e t - A 1 a— L e u— T y r— L e u— S e r一 L y s - G 1 y .( h A 3 G 7 5 ) または0 1 _八 3 ]1— 3 6 1"—1: 11 r— I l e— S e r— I 1 e— A r g— A l a— P r o— V a l — Ty r (h A 3 G 8 3 ) である請求の範囲 2 3記載の固相化標品 (請求の範 囲 24) や、 細胞接着ペプチドが、 3〜 2 0個のアミノ酸残基からなる ペプチドである請求の範囲 2 0記載の固相化標品(請求の範囲 2 5)や、 細胞培養基質にコーティングした疎水結合性吸着ポリマーの蛋白質また はべプチドと反応しうる官能基と細胞接着蛋白質またはべプチドとを反 応させることを特徴とする固相化標品の製造方法(請求の範囲 2 6)や、 疎水結合性吸着ポリマーの蛋白質またはべプチドと反応しうる官能基と 細胞接着蛋白質またはべプチドとを反応させ 該反応物を細胞培養基質 にコ一ティングすることを特徴とする固相化標品の製造方法 (請求の範 囲 2 7 ) や、 疎水結合性吸着ポリマ一の蛋白質またはペプチドと反応し うる官能基と細胞接着蛋白質またはべプチドとを反応させて得られる反 応物 (請求の範囲 2 8) に関する。
さらに、 本発明は、 請求の範囲 1 6〜 2 7のいずれか記載の細胞接着 蛋白質またはべプチドの固相化標品上に目的とする細胞を播種し、 培養 することにより調製されることを特徴とする人工組織(請求の範囲 2 9 ) や、 目的とする細胞が、 上皮細胞、 内皮細胞または間充織細胞である請 求の範囲 2 9記載の人工組織 (請求の範囲 3 0 ) や、 上皮細胞が、 表皮 細胞、 角膜上皮細胞、 肺胞上皮細胞、 消化器系の粘膜上皮細胞、 腎臓子 球体上皮細胞または肝実質細胞である請求の範囲 3 0記載の人工組織
(請求の範囲 3 1 )や、 内皮細胞が、 腎臓子球体毛細胞、血管内皮細胞、 肺動脈血管内皮細胞、 胎盤静脈血管内皮細胞または大動脈血管内皮細胞 である請求の範囲 3 0記載の人工組織 (請求の範囲 3 2 ) や、 間充織細 胞が、 筋細胞、 脂肪細胞、 グリア細胞、 シュワン細胞または神経細胞 (二 ュ一ロン)である請求の範囲 3 0記載の人工組織(請求の範囲 3 3 )や、 人工組織が、 人工表皮組織、 人工角膜上皮組織、 人工肺胞上皮組織、 人 ェ気道上皮組織、 人工腎糸球体組織、 人工肝実質組織もしくは人工血管 内皮組織、 または人工血管、 人工肺、 人工肝、 人工腎臓、 人工皮膚もし くは人工角膜である請求の範囲 2 9〜 3 3のいずれか記載の人工組織 (請求の範囲 3 4 ) に関する。 図面の簡単な説明
第 1図は、 疎水結合性吸着ポリマーの M M A Cを用いて細胞外マトリ ックス蛋白質および細胞接着べプチドを固相化したシリコンゥエル上で, 肺胞 2型上皮細胞 (T 2細胞) を静置培養した結果形成された肺胞上皮 組織の位相差顕微鏡写真を示した写真である。
第 2図は、 M M A Cを用いて細胞外マトリックス蛋白質および細胞接 着べプチドを固相化したシリコンゥエル上で、 T 2細胞を伸展培養した 結果形成された肺胞上皮組織の位相差顕微鏡写真を示した写真である。 第 3図は、 培養皿に塗布 * 固相化した細胞外マトリックス蛋白質に対 する T 2細胞の接着が、 遊離の当該細胞接着ペプチドにより阻害される ことを示した図である。
第 4図は、 M M A Cを用いて固相化した細胞接着ペプチド基質に対す る T 2細胞の接着、 およびその接着が遊離の当該細胞接着べプチドによ り競争阻害を受けることを示した図である。
第 5図は、 疎水結合性吸着ポリマーの MA S Tを用いて固相化した細 胞接着ペプチド基質に対する T 2細胞の接着、 およびその接着が遊離の 当該細胞接着べプチドにより競争阻害を受けることを示した図である。 第 6図は、 MMACを用いて固相化した細胞接着ペプチド上における T 2細胞の細胞接着、 伸展の様子を微分干渉顕微鏡で撮影した写真であ る。
第 7図は、 MM ACを用いて固相化した細胞接着べプチド基質に対す る T 2細胞の接着が、 へパリンによって阻害を受けることを示した図で ある。
第 8図は、 固相化細胞接着べプチド基質に対する T 2細胞の接着は、 お互いに遊離べプチドで競争阻害を受ける場合と一方的に競争阻害を受 ける場合があることを示した図である。
第 9図は、 固相化した F I B - 1ベプチドに対する T 2細胞の接着結 合力 (親和性、 affinity) を基準にした場合、 固相化した L Nの細胞接 着べプチドの親和性は、 F I B _ 1 と同程度のものから 1 0 0倍高いも のまで広範囲に亘ることを示した図である。
第 1 0図は、 無血清培地で 1 一 1 0 gZm 1 の濃度に希釈し、 培養 皿に吸着 · 固相化させた偽似マトリックス MB AC— p e p t i d eに 対する T 2細胞の接着、 およびその接着が遊離の当該細胞接着べプチド により競争阻害を受けることを示した図である。
第 1 1図は、 無血清培地で 1 一 1 0 ^ g/m 1 の濃度に希釈し、 培養 皿に吸着 · 固相化させた偽似マトリックス MA S T— p e p t i d eに 対する T 2細胞の接着、 およびその接着が遊離の当該細胞接着ペプチド により競争阻害を受けることを示した図である。
第 1 2図は、 無血清培地で 1 _ 1 0 ^ g/m 1 の濃度に希釈し、 培養 皿に吸着 · 固相化させた偽似マトリックス MBAC— p e p t i d eを 当該べプチドに対するポリクローナル抗体で処理すると、 T 2細胞の接 着が特異的に阻害されることを示した図である。
第 1 3図は、 無血清培地で 1 - 1 0 ^ g/m 1 の濃度に希釈し、 培養 皿に吸着 · 固相化させた偽似マトリックス MBAC— p e p t i d eを へパリンで処理すると、 T 2細胞の接着が特異的に阻害されることを示 した図である。
第 1 4図は、 無血清培地で 1一 1 0 gZm 1 の濃度に希釈し、 培養 皿に吸着 · 固相化させた偽似マトリックス MB AC— e p t i d eを へパリンで処理すると、 T 2細胞の接着が特異的に阻害されることを示 した図である。
第 1 5図は、 5 0 %エタノールで 2 - 2 0 g /m 1 の濃度に希釈し て培養皿に 5 0 1注ぎ、 風乾 · 固相化させた偽似マ卜リックス M A S T- GRGD S Pおよび MM A C— G R GD S Pの塗布量( 0. 1— 1. 0 g/w e 1 1 ) に依存して、 無血清培地に懸濁した T 2細胞の接着 量が変化することを、 F Νを塗布した場合を基準として示した図である。 第 1 6図は、 5 0 %エタノールで希釈して培養皿に注ぎ 風乾 · 固相 化させた偽似マトリックス MAS T— GR GD S P ( 0. 1一 1. 0 g/we 1 1 ) に対する T 2細胞の接着が、 遊離の G R GD S Pぺプチ ドにより競争阻害を受けることを示した図である。
第 1 7図は、 5 0 %エタノールで希釈して培養皿に注ぎ、 風乾 · 固相 化させた偽似マトリックス MMA C - G R GD S P ( 0. 1一 1 · 0 g/w e 1 1 ) に対する T 2細胞の接着が、 遊離の GRGD S Pぺプチ ドにより競争阻害を受けることを示した図である。
第 1 8図は、 5 0 %エタノールで希釈して培養皿に注ぎ、 風乾 · 固相 ィ匕させた偽似マトリックス MBAC— p e p t i d eおよび MA S T—
4 p e p t i d e ( 0. 1— 1. 0 ^ g /w e l l ) に対する T 2細胞の 接着が、 遊離の当該べプチドにより競争阻害をうけることを示した図で める。
第 1 9図は、 5 0 %エタノールで希釈して培養皿に注ぎ、 風乾 · 固相 ィ匕させた偽似マトリックス MBAC— F I B - 1および M A S T _ F I B - 1 ( 0. 1— 1. 0 g Zw e l 1 ) を、 F I B— 1ぺプチドに対 するポリクロ一ナル抗体で処理すると、 T 2細胞の接着が特異的に阻害 されることを示した図である。 発明を実施するための最良の形態
本発明の細胞培養基質は、 基材として、 例えば、 生物製ポリマー、 プ ラスチック、 天然または合成ゴム、 無機物または金属等を使用した細胞 培養基質が挙げられる。 .
生物製ポリマーとしては、 コラーゲン、 ゼラチン、 セルロース、 ァガ ロース、 アルギン酸、 キチン、 キトサン等、 または、 生分解性ポリマー のポリ乳酸、 ポリブチレンサクシネート、 ポリ力プロラクトン等が例示 される。
プラスチックとしては、 熱可塑性樹脂または熱硬化性樹脂何れの樹脂 も使用することができ、熱可塑性樹脂としては、例えば、ァクリル樹脂、 ポリ塩化ビニル樹脂、ポリエチレン樹脂、 ポリスチレン樹脂、 ポリプロピ レン樹脂、 ポリメチルペンテン樹脂またはフッ素樹脂等が、 熱硬化性樹 脂としては、 例えば、 フエノール樹脂、尿素樹脂、 エポキシ樹脂、 メラミ ン樹脂またはシリコン樹脂等が例示される。
合成ゴムとしては、 例えば、 ブタジエンスチレンゴム、 ブタジエンァ クリロニトリルゴム、 ブチルゴム、多硫化系合成ゴム、 フッ素ゴムまたは シリコンゴム等が例示されるが、 特に、 シリコンゴムが好ましい。
5 無機物としては、 ガラス、 ヒドロキシアパタイ ト、 シリコン等の I C 基材またはカーボンナノチューブ等が例示される。
金属としては、 不活性 ( i n e r t ) な金、 白金、 チタン、 ィンジゥ ム、 または、 これらの酸化物、 例えば、 酸化チタン、 酸化インジウム、 I TO (酸化インジウム , スズ) 等が例示される。
• 特にガラスについて、今日の様にプラスチックが汎用される以前は、 培養基質としてガラスが使われていた。 しかし、 接着効率の不安定さや 繰り返し使用することによる表面の凹凸等により、 現在はプラスチック に取って代わられている。 しかし、 その光学透明性は、 優れた特性であ り、 本発明は、 平坦な表面のガラスまたは表面加工を施したガラスに対 しても、 適用することができる。
細胞培養基質は、 培養皿 (ゥエル)、 プリント配線板または人工臓器等 に用いられ、 人工臓器としては、 人工血管、 人工心肺または人工腎臓等 が例示される。 また、 シリコンゴムを基材として作製された培養皿 (ゥ エル) が、 好ましく用いられる。
疎水結合性吸着ポリマーとしては、 分子内に疎水性を有する直鎖状骨 格と蛋白質またはべプチドと反応しうる官能基とを有する疎水結合性吸 着ポリマーであって、 以下の式 [ I ]
Figure imgf000017_0001
(式中、 Xは、 CHまたは NHCH C Qを示し、 Yは、 CHまたは N HC R2 C Oを示し、 R 1は、 H、 炭素数 1〜 1 0のアルキル基、 炭素数
6 1〜 1 0のアルコキシ基、 炭素数 6〜1 0のァリ一ルもしくはァラアル キル基または炭素数 6〜 1 0のァリ一ルォキシもしくはァラアルキルォ キシ基を示し、 R 2は、 Hまたは炭素数 1〜 1 0のアルキル基を示し、 Zは、 官能基 (反応基) を示し、 Xと互に結合してもよく、 spacer は、 (― C H 2 _ )pまたは(一 N H C H R 3 C O—)qを示し、 R 3は、 Hまたは 炭素数 1〜 1 0のアルキル基を示し、 mは、 1以上の整数を'、 nは、 1 0 0〜 2 0 0 0 0の整数を、 pおよび qは、 独立して 0または 1〜'8の 整数を、 rは、 1以上の整数を示す) で表される。
式 [ I ] 中、 炭素数 1〜 1 0のアルキル基としては、 直鎖または分枝 状のメチル、 ェチル、 プロピル、 ブチル、 ペンチル、 へキシル、 へプチ ル、 ォクチル、 ノニル、 デシル等の各基を、 炭素数 1〜1 0のアルコキ シ基としては、 直鎖または分枝状のメ トキシ、 ェ卜キシ、 プロボキシ、 ブトキシ、 ペンチルォキシ、 へキシルォキシ、 ヘプチルォキシ、 ォクチ ルォキシ、 ノニルォキシ、 デシルォキシ等の各基を、 炭素数 6〜1 0の 7リ一ルまたはァラアルキル基としては、 フエニル、 ナフチル、 ベンジ ル、 フエネチル等の各基を、 炭素数 6〜 1 0のァリールォキシまたはァ ラアルキルォキシ基としては.. フエノキシ、 ナフ卜キシ.. ベンジルォキ シ、 フエネチルォキシ等の各基を挙げることができる。
官能基 (反応基) としては、 蛋白質あるいはペプチドの反応性基と反 応して、結合しうるものであれば特に制限されるものではなく、例えば、 カルボキシル基、 アミノ基、 メルカプト基、 水酸基およびこれらの反応 性誘導体等を例示することができる。 また、 力ルポキシル基の反応性誘 導体としては、 酸ハロゲン化物、 酸無水物、 酸イミ ド、 活性エステル等 の反応性誘導体が、 アミノ基の反応性誘導体としてィソシアナ一卜基等 を例示することができる。 また、 酸無水物、 酸イミ ド等は、 Xと結合し て環を形成していても良い。 かかる疎水結合性吸着ポリマーとしては、 細胞培養基質表面に吸着す ることができる疎水結合性吸着ポリマーであって、 分子内にポリアルキ レン鎖あるいは直鎖状アミノ酸ポリマー(ポリグリシン、ポリアラニン、 ポリパリン、 ポリロイシン、 ポリフエ二ルァラニン等) やその誘導体な どの疎水性の直鎖状骨格をもつ疎水結合性吸着ポリマーで、 該疎水性の 直'鎖状骨格に直接、 あるいは、 スぺ一サーを介して蛋白質あるいはぺプ チドと反応できる反応性の官能基とを有する疎水結合性吸着ポリマーを 好適に用いることができる。 かかる式 [ I ] における nの範囲としては 1 0 0〜 2 0 0 0 0であり、 式 [ I ] で表される疎水結合性吸着ポリマ 一の分子量は 1 5 , 0 0 0〜 3 , 2 0 0 , 0 0 0程度のものが好ましい。
また、 かかる官能基を有する疎水結合性吸着ポリマーとしては、 ェチ レン、 プロピレン等のアルキレンもしくはメチルビ二ルェ一テル、 ェチ ルビニルエーテル、 ェチルー 1 一プロぺニルエーテル、 ブチルビニルェ 一テル、 へキシルビニルエーテル等の不飽和エーテル類またはスチレン 等のビニル系化合物や、 ァラニン、 グリシン、 ; リン、 ロイシン、 イソ ロイシン、 フエ二ルァラニン等の αアミノ酸等などから選択できる 1種 または 2種以上と、 無水マレイン酸、 マレインイミ ド等の無水カルボン 酸、 酸ィミ ドゃ、 ァクリル酸、 ァクリルアミ ド、 ァクリロ二トリル等の ォレフィン類や、 システィン等のメルカプト基を有するァミノ酸や、 セ リン、 スレオニン等の水酸基を有するアミノ酸や、 ァスパラギン酸、 グ ル夕ミン酸等のモノアミノジカルボン酸や、 リシン等のジァミノモノ力 ルボン酸など反応基を有するモノマーから選択できる 1種または 2種以 上との共重合体を挙げることができる。 これらの共重合体はそれぞれ二 量体、 三量体等が相互に重合した共重合体であってもよいが、 交互共重 合体であることが好ましい。 また、 反応基を有するモノマーの場合は、 これら自身の単縮重合体は、 縮合により形成される疎水性の直鎖状骨格
8 にスぺーサ一を介せず官能基を有する構造となるため、 本発明の官能基 を有する疎水結合性吸着ポリマ一として適用することができる。
これらのうちで、 本発明の官能基を有する疎水結合性吸着ポリマーと して、 無水マレイン酸と、 メチルビニルエーテル、 ェチルビ二ルェ一テ ル、 ェチルー 1一プロぺニルエーテル、 ブチルビ二ルェ一テル、 へキシ ルビニルエーテル、 スチレン等のビニル系化合物との共重合体が代表例 として例示され、 特に、 無水マレイン酸とメチルビニルエーテルとの共 重合体である M M A C ( methyl vinyl ether I maleic anhydride copolymer), 無水マレイン酸とプチルビ二ルェ一テルとの共重合体であ る MB AC (butyl vinyl ether / maleic anhydride copolymer), 無水 マレイン酸とへキシルビ二ルェ一テルとの共重合体である MH A C (hexy 1 vinyl ether I maleic anhydride copolymer) および無水マレ ィン酸とスチレンとの共重合体である M A S T (styrene I maleic anhydride copolymer) を具体例として挙げることがでる。 かかるポリマ —は、通常のォレフィン類の共重合法に準じ合成可能であり、あるいは、 市販品としても入手可能である。
MMAC、 MB AC, MHAC等の場合、 メチレン基を骨格とする直 鎖ポリマーが、 細胞培養基質表面に疎水性結合で吸着することを可能に しているが、 ポリアルキレン骨格だけだとあまりにも疎水性で、 水との 親和性が低くなり、 微視的には水をはじいて、 反応性に支障がでる可能 性がある。 そこで、 メチレン基の水素原子の一部を上述のように、 例え ば、 メ トキシ、 ブトキシ、 へキシルォキシ等のアルコキシ基置換したも のは、 酸素原子の存在により反応効率が高まると考えられる。 なお、 ァ ルコキシ基に代えて水酸基で置換すると、 分子間で無水カルボン酸とェ ステル結合を作ることから好ましくない。そして、 MMAC、 MBAC、 MH A C等における反応基である無水マレイン酸は、 蛋白質あるいはべ プチドのァミノ基または水酸基等と反応し、 結'合することになるが、 こ の無水マレイン酸がたとえ水と反応してカルボン酸になったとしても、 蛋白質あるいはべプチドの陽電荷とイオン結合することができる。
なお、 疎水結合性吸着ポリマーは、 使用する細胞培養基質の材質ある いは使用目的により適宜選択される。 例えば、 前記の M M A C、 M B A C , M H A C等は、 メチレン骨格を持つポリマーであるが、 懸かるポリ エチレン、 ポリプロピレン等のポリアルキレンを主鎖とするポリマーは 柔軟性を有しており、 例えば、 伸展運動を繰り返すシリコンゴム製培養 皿をコ一ティングする目的には適した素材である。 他方、 スチレン骨格 を持つ M A S Tは、 フエ二ル基を側鎖に有しているため、 電気的性質が 優れており、 骨格構造は剛直である。 この為、 例えば、 ポリスチレンの 様に疎水性が高く堅い基材や、電子特性の優れたカーボンナノチューブ、 あるいは電気伝導性の優れた金や白金等の金属や金属酸化物 (例えば、 I T O )を細胞培養基質として使用する際のコーティングに適している。 そして、上記疎水結合性吸着ポリマ一は、疎水性の直鎖状骨格により、 化学結合でなく疎水性結合で細胞培養基質表面に吸着されることから、 細胞培養基質の種類や材質に関係なく吸着することができる。 その理由 は、長い主鎖の局所では接着面から乖離することがたとえあるとしても、 他の殆どの部分では結合している故に、 乖離した部分もそれほど接着面 から離れることはできない。 その結果、 両者は程なく疎水結合で再度結 合し、 乖離は一時的なものになると考えられる。 細胞接着蛋白質あるい はべプチドが強く疎水結合できない物質であっても、 この疎水結合性吸 着ポリマーは、 その長い疎水性主鎖によって強固に細胞培養基質に結合 することができる。
細胞培養基質に疎水結合性吸着ポリマ一をコーティ ングする方法とし ては、 予め溶媒に溶解し調製した疎水結合性吸着ポリマ一溶液を、 細胞 培養基質に塗布し、 乾燥させれば良い。 疎水結合性吸着ポリマー溶液を 細胞培養基質に塗布する場合には、 細胞培養基質表面を侵さない溶媒を 用いる必要がある。 例えば、 細胞培養基質としてプラスチックを用い、
MMAC、 MB AC, MHAC、 MAS Tを塗布する場合、 MMAC、 MB ACはアセトンに易溶であるが、 アセトンはプラスチック表面を侵 す。 しかし、 プラスチックを侵さない n—へキサンに対しては、 MM A C、 MB AC, MHAC、 MAS Tは難溶性である。 このため、 極性溶 媒でプラスチック.表面も侵さないエタノールを用いるのがよい。 この様 に、 MM A C、 MBACは、 エタノールに可溶のため、 アセトン等を必 要とするポリマ一よりも使い易い上に、 塗布後に簡単に風乾できる。 ま た、 エタノール溶液等として細胞培養基質表面のコ一ティング処理に用 いる場合の MMA C、 MBAC、 MHAC、 MAS T等の濃度としては、 2 a g /m 1〜 1 m g /m 1、 特に 1 0〜 1 0 0 ^ /m 1が好適であ り、 かかるコ一ティング処理を所望する接着の程度に応じて 1〜 3回繰 り返すこともできる。
次に、 本発明の細胞接着蛋白質またはペプチドの固相化標品は、 疎水 結合性吸着ポリマーでコーティングした細胞培養基質に細胞接着蛋白質 またはべプチドを結合して固定化したものであり、 結合は、 疎水結合性 吸着ポリマーの蛋白質またはべプチドと反応しうる官能基と細胞接着蛋 白質またはべプチドの反応性基とが反応して形成される共有結合をいう < 共有結合としては、 下記に説明する、 アミ ド結合、 チォアミ ド結合、 ェ ステル結合およびチォエステル結合等が例示され、 特に、 アミ ド結合が 好ましい。
ここで、 細胞接着蛋白質あるいはペプチドの反応性基としては、 蛋白 質あるいはペプチドの末端あるいは側鎖由来の力ルポキシル基、 ァミノ 基、 メルカプト基、 水酸基等を例示することができる。 疎水結合性吸着ポリマーの蛋白質またはべプチドと反応しうる官能基 と細胞接着蛋白質あるいはべプチドの反応性基と反応し結合させる方法 は、 通常のペプチド合成に用いられている方法が利用できる。 例えば、 一方の力ルポキシル基は、縮合剤の存在下に、あるいは酸ハロゲン化物、 酸無水物、 活性エステル等の反応性誘導体として、 他方のアミノ基、 メ ルカプト基あるいは水酸基と反応させことが出来、 アミ ド結合、 チオア ミ ド結合、 エステル結合等の共有結合を形成する。 アミノ基は、 縮合剤 の存在下に、 あるいはイソシアナート等の反応性誘導体として、 力ルポ キシル基と反応させ、 アミ ド結合を形成させることが出来る。 メルカプ ト基および水酸基は、 主として力ルポキシル基と上記と同様に、 縮合剤 あるいは力ルポキシル基の反応性誘導体と反応させ、 チォエステル結合 またはエステル結合を形成させることができる。 そして、 かかる官能基 あるいは反応基に、 前記の自己重縮合あるいは疎水性の直鎖状骨格とコ ポリマーを形成することができる範囲内で、 簡単に外れる可逆的な保護 基をつけることもできる。
細胞接着蛋白質としては、 フイブロネクチン (FN)、 コラーゲン (C o 1 ), ラミニン( L N )およびビトロネクチン( V— N )等が挙け.られる。 細胞接着べプチドとしては、 上記した細胞接着蛋白質のアミノ酸配列 の中で、 細胞接着に関わる領域のぺプチドであればいずれでも用いるこ とができる。 これらべプチドの長さとしては、 3〜 2 0個、 好ましくは 6〜 1 5個、 より好ましくは 6〜 1 2個のアミノ酸残基である。
F N蛋白質の細胞接着に関わる領域のぺプチドとしては、 細胞側のィ ンテグリン受容体と結合する特異的な RGDアミノ酸配列を有するぺプ チドが好ましく、 例えば、 具体的配列として、 T y r— A l a _V a l -T h r - G l y -A r g - G l y -A s p - S e r - P r o -A l a - S e r ( F I B— 1 ) が例示される。 また、 上皮細胞、 血管内皮細胞、 筋肉細胞、 神経細胞 (ニューロン) 等の機能発現に特に重要と考えられている L N蛋白質の細胞接着に関わ る領域のぺプチドとしては、 α鎖の G領域 (G— d o m a i n) ぺプチ ドが好ましく、 例えば、 マウスの LN由来である、 A r g— L y s— A r g - L e u -G l n -V a 1 一 G i n— L e u— S e r— I 1 e— A r g - T h r ( A G 7 3)、 L e u - G 1 n - G 1 n—A r g - A r g — S e r— V a l — L e u— A r g— T h r _L y s— I 1 e (A G 7 3 T),T h r -L e u -G 1 n— L e u— G l n - G 1 u - G 1 y - A r g - L e u— H i s— P h e— M e t ( A G 7 6. 8)、 T h r— L e u -G l n - L e u -G l n - G l u -G l y -A r g - L e u -H i s 一 P h e—N l e (AG 7 6. 8 X)、 V a 1 - L y s -Th r - G l u — T y r— I 1 e -L y s— A r g— L y s— A l a— P h e— M e t ( A G 8 1. 2)、 V a 1 - L y s -T h r - G l u - Ty r - I 1 e - L y s -A r g - L y s -A l a— P h e— N l e ( A G 8 1. 2 X) L y s -A s n -A r g -L e u -T h r - I l e - G l u - L e u - G 1 u - V a 1 -A r g -T h r (A 2 G 7 3)、 L y s - P r o— A r g— L e u— G i n— P h e— S e r— L e u— A s p— I 1 e— G 1 n - T h r (A 3 G 7 2 )、 L y s - P h e - L e u -G l u - G 1 n - L y s — A 1 a— P r o _A r g— A s p— S e r— H i s (A 4 G 7 3 ), G 1 y -G l υ - L y s - S e r - G 1 n - P h e - S e r - I 1 e— A r g— L e u— L y s — T h r (A 4 G 7 8 )、 T h r— L e u— P h e— L e u— A l a - H i s — G l y— A r g— L e u _V a 1 — P h e— M e t (A 4 G 8 2 )、 T h r— L e u— P h e— L e u— A l a— H i s - G l y— A r g— L e u— V a 1 — P h e— N l e (A 4 G 8 2 X)、 G l y— P r o— L e u— P r o— S e r -Ty r - L e u 一 G i n— P h e— V a l — G l y— I 1 e (A 5 G 7 1 )、 A r g— A s n -A r g -L e u— H i s— L e u— S e r— M e t - L e u— V a 1 - A r g— P r o ( A 5 G 7 3)、 A r g— A s n - A r g - L e u — H i s - L e u - S e r -N l e -L e u -V a 1 — A r g— P r o ( A 5 G 7 3 X)、 L e u— V a 1 - L e u - P h e - L e u -A s n - H i s— G l y— H i s - P h e -V a l -A l a ( A 5 G 7 7 ) また は L e u - V a 1 -L e u - P h e -L e u -A s n -H i s - G 1 y 一 H i s (A 5 G 7 7 f ) 等が、 また、 ヒト L N由来の、 L y s—A s n - S e r— P h e -M e t - A 1 a -L e u— T y r— L e u— S e r -L y s -G l y ( h A 3 G 7 5 ) または G l y— A s n— S e r— T h r - I l e— S e r— I l e— A r g— A l a— P r o— V a l — Ty r (h A 3 G 8 3 ) 等が例示される。 かかる細胞接着ペプチドは、 通常のぺプチド合成法により入手可能である。
細胞接着蛋白質またはべプチドの固相化標品は、 細胞培養基質に上記 方法により疎水結合性吸着ポリマ一をあらかじめ塗布し、 コ一ティング した後、 該ポリマーの蛋白質またはペプチドの反応しうる官能基と細胞 接着蛋白質またはべプチドの反応性基とを反応させることにより調製す ることが出来る。
反応は、 通常のぺプチド結合の方法に準じて行えばよいが、 例えば、 細胞培養基質に予めコ一ティングした MMAC、 MA S T等と細胞接着 ぺプチドとの反応は、 室温〜 5 0°C、 好ましくは 3 7 °Cで、 p H 7〜 1 1の中性ないしアル力リ性で 1 0分〜 4 8時間反応させることにより共 有結合を形成し、 固相化させることが出来る。
また、 疎水結合性吸着ポリマ一の蛋白質またはべプチドと反応しうる 官能基と細胞接着蛋白質またはべプチドの反応性基とを予め反応させ、 該反応物を細胞培養基質に塗布することにより細胞接着蛋白質またはべ プチドの固相化標品を調製することも出来る。 疎水結合性吸着ポリマ一 と細胞接着蛋白質またはべプチドとを予め反応させた反応物(以下、 「偽 似マトリックス」 という) を使えば、 細胞培養基質への疎水結合性吸着 ポリマーのコーティングと蛋白質またはべプチドの固相化反応の二段階 処理で細胞接着基質を固相化していたのが、 偽似マ卜リックスをコーテ イングする一段階で調製することができる。 偽似マトリックスを使用す ると、 例えば、
a ) 培養皿に塗布する工程が簡素化され、 工業生産上は有利となる。 b ) 培養皿以外の基質にもプリント技術を使えば、 吹き付けることによ り容易に塗布出来るので、 種々の基材が培養基質になる。
c ) 細胞接着させる部分をプリントし、 どの様に種々の細胞と共培養す るかデザイン (配置) 出来るようになり、 丁度、 I C回路を設計する 感覚で人工組織を構築することができる。
d )偽似マトリックスは、必ずしも培養液で希釈して培養皿表面に吸着 · 固相化するだけが唯一の方法では無く、 例えば 5 0 %エタノールに希 釈して塗布することも出来る。 この場合は、風乾しても塩は析出せず、 高温での保存性が格段に優れている。
等の利点を有している。
疎水結合性吸着ポリマーと細胞接着蛋白質またはべプチドとの反応、 および生成した偽似マトリックスの細胞接着基質への塗布する方法は、 上記の方法に準じて調製することができる。
疎水結合性吸着ポリマ一の蛋白質またはべプチドの反応しうる官能基 と細胞接着蛋白質またはべプチドの反応性基との反応は、 全ての官能基 に対し細胞接着蛋白質またはべプチドの反応性基を反応させる (細胞接 着蛋白質またはべプチドの占有率 1 0 0 % )させることも可能であるが、 占有率が、 1〜 5 0 %であるのが好ましく、 更に、 5〜 1 5 %であるの がより好ましい。 占有率を高めると、 蛋白質またはペプチドの水溶性の ため偽似マトリックスの培養基質への吸着率が下がり、 また、 ェタノ一 ル等有機溶媒への溶解度も下がり、 析出し易くなつてしまう。 更に、 蛋 白質またはべプチドの密度を上げても、 細胞の受容体密度が上がらなけ れば無駄となり、 経済的にも好ましくない。
特に、 本発明で得られる固相化ペプチドを中性 p H、 3 7 °Cで 4日間 放置しても細胞接着活性に変化は無く、 極めて安定である。 'このことか ら、 細胞接着ペプチドの固相化標品は、 種々の培養基質として用いるこ とができ、 その性能は、 代表的接着蛋白質である F Nを直接細胞培養基 質に固相化した場合と比較しても、 これに十分匹敵する活性を有してい る。 また、 本発明の調製方法によれば、 従来、 細胞培養基質に直接ぺプ チドを固相化するには、 細胞接着ペプチドの濃度を 2 . 5 m g Z m l以 上にする必要があるが、 本発明では 0 . 2 5 m g / 1以下で十分であ り、 ぺプチドの使用量が、従来法の 1 Z 1 0〜 1 /' 1 0 0以下の量でも、 効率良く、 しかも再現性良く固相化できる。
また、 細胞接着蛋白質を細胞培養基質に直接固相化させる場合には、 通常 5〜 1 0 ^ g Zm 1 の濃度で塗布し、 通常の静置培養でこれが問題 になることはないが、 シリコンゴム上で伸展培養する場合には、 蛋白質 とシリコンゴムとの疎水結合による吸着が弱いために、 細胞は大変剥が れ易くなる。 これを防ぐには、 本発明の M M A C等を介してシリコンゴ ムに吸着させる方法が有効な手段となる。
次いで、 細胞接着蛋白質またはべプチドの固相化標品上に目的とする 細胞を播種し、 培養することにより人工組織を調製することが出来る。 かかる人工組織の製造方法としては、 細胞接着蛋白質またはべプチドの 固相化標品上に目的とする細胞を播種し、 培養する方法であれば特に制 限されることはなく、固相化標品上に目的の細胞を播種するだけで、播種 された細胞は接着し、 その後速やかに伸展する。 培養液に特に血清は必 要ないが、 1 %程度の低濃度 (通常の細胞培養では 1 0 %程度使用され る) を添加すれば、 接着、 伸展は更に促進される。
目的とする細胞としては、 例えば、 上皮細胞、 内皮細胞または間充織 細胞等を挙げることができ、 上皮細胞としては、 例えば、 表皮細胞、 角 膜上皮細胞、 肺胞上皮細胞、 消化器系の粘膜上皮細胞、 腎臓子球体上皮 細胞または肝実質細胞等を、 内皮細胞としては、 例えば、 腎臓子球体毛 細胞、 血管内皮細胞、 肺動脈血管内皮細胞、 胎盤静脈血管内皮細胞、 大 動脈血管内皮細胞等を、 間充織細胞としては、 例えば、 筋細胞、 脂肪細 胞、 グリア細胞、 シュワン細胞または神経細胞 (ニューロン) 等をより 具体的に例示することができる。
また、 細胞接着蛋白質またはべプチド上に形成されるヒト等の人工組 織 (人工臓器も含む) としては、 細胞層とその直下の基底膜を含む組織 であればどのようなものでもよいが、 例えば、 人工表皮組織、 人工角膜 上皮組織、 人工肺胞上皮組織、 人工気道上皮組織、 人工腎糸球体組織、 人工肝実質組織、人工血管内皮組織等の人工組織や、人工血管、人工肺、 人工肝、 人工腎臓、 人工皮膚、 人工角膜等の人工臓器を具体的に挙げる ことができる。
そして、 細胞接着蛋白質またはべプチドの固相化標品上に目的とする 細胞を播種し、 培養することにより形成された人工組織は、 上記疎水結 合性吸着ポリマ一が化学結合でなく疎水性結合で細胞培養基質表面に吸 着されていることから、 細胞培養基質の種類や材質に関係なく吸着する ことができ、 また、 所望時には、 細胞培養基質表面から物理的に剥離さ せることがでる。 剥離された人工組織は、 基底膜の構造を保持したまま で移植が可能なことから、 その汎用性が一層高く、 その適用例として、 内径 3 m m以下の微細人工血管や、 体内埋込み型のヒト人工組織等を例 示することができ、 特に、 人工子球体、 人工肝臓、 人工肺胞など上皮組 織と内皮組織が近接する組織や臓器を好適に例示することができる。 インビトロにおける組織や臓器形成あるいは組織再生を行う際に、 力 学的支持体である細胞培養基質表面に直接細胞を播種する方法は、 細胞 培養基質表面を親水加工しても、 長期間細胞剥離を起こさないようにす るのは難しく、 よい結果は期待できない。 これに対し、 本発明で得られ る疎水結合性吸着ポリマーでコ一ティングされた細胞培養基質は、 その 表面にリンカ一を介して細胞を播種する方法で、 細胞を効率よく、 しか も再現性よく固相化でき成績を著しく向上させることができる。 この場 合、 L Nや F Nを直接塗布する方法もあるが、 次第に細胞培養基質表面 から剥がれるので、 本発明が有効である。 例えば、 市販の 「培養細胞伸 展装置」 は、 周期的に一軸方向に伸展刺激を与え、 生体内に近い状態で の強制的伸展刺激による細胞の形態変化を観察することができる。 本装 置に使用されるシリコンゥエル (シリコンゴム製の培養皿) として、 本 発明のポリマーでコーティングされたシリコンゥエルを使用した場合、 伸展刺激の際に培養基質から細胞が剥離することなく、 細胞観察を行う ことができる。
また、 本発明は、 屈曲 *変形する材質に、 細胞接着活性を有する物質 を固相化することができる。 例えば、 現在では、 折り曲げられるプラス チックにプリン卜配線や I C回路が作製されている。 この様な材質に、 プリント技術で M M A C、 M B A C、 M A S T等をコ一ティングし、 リ ンカ一として細胞接着蛋白質またはべプチドを固相化するか、 あるいは 予め反応性ポリマーと結合させた蛋白質またはペプチドをプラスチック に直接固相化し、 細胞を回路図のように配置する際に有用である。
さらに、 本発明は、 細胞が接着し難い材質 (強度の疎水性や滑らかな 表面を有するポリマー、 無機材、 金属等) に、 細胞接着活性を有する物 質を固相化することができる。 例えば、 合成ポリマーで作製した人工血 管や人工心肺のホロファイバ一は、血小板が吸着して血栓を形成しない ように、 極力疎水性で凹凸が少なく滑らかな素材で作製されている。 こ の様な素材でも血栓はでき、それが脳や肺の微小血管に詰まる医療問題 となっている。へパリンをコートして血栓形成を少しでも防止する試み がなされているが、 それでも血栓の形成はなかなか止まない。 この対策 には、 合成ポリマ一を M M A C、 M B A C , M A S T等の反応性ポリマ —でコーティングし、 へパリンを固相化する方法や、 血管内皮細胞でプ ラスチック表面を覆う方法が有効であると考えられている。因みに血管 内皮細胞には、 血栓形成を防止する働きが有る。 その際に、 へパリンの 固相化や、 細胞接着活性を有するリンカ一を固相化し、 血管内皮細胞を 播種し、 プラスチック表面を覆う目的に活用できる。
コラーゲン線維は、 細胞接着基質として有用であるが、 その接着には ィンテグリン受容体が関与する。 しかし、 細胞層直下に基底膜が存在す る上皮細胞、 内皮細胞等の接着に際してィンテグリンが働くのは、 正常 時の組織構築モデルでなく、 むしろ病態時を想定したモデルなので好ま しく無く、 インビポで通常働いているシンデカンが働く状態での組織構 築が望ましい。 この為、 コラーゲン線維を基底膜の重要主成分ラミニン でコラーゲン線維表面をコ一ティングしょうとしても、 実際はコ一ティ ングされ難い。 この代わりとして、 本発明で示した方法でコラーゲン線 維を L Ν α鎖 G領域の接着ペプチドでコーティングすると、 インテグリ ンに代わってシンデカンが働いている組織構築が可能である
セルロースは、 安価で十分な強度と半透膜性を持ち、 色々な形に整形 可能で、 かつ生体に馴染み易い工業資材である。 しかし、 細胞接着に必 要な官能基を有していないので、 人工臓器や細胞培養の基材に用いるに は、 細胞接着分子をコーティングする必要がある。 しかし、 その効率と コーティングした物質の残存性は良くない。 この為、 非接着細胞の懸濁 培養基材に使われるが、 接着性細胞の培養基質には不向きだった。 今回 例示した MM A C、 MBAC、 MHAC (この順に疎水性が増大する) は、 メチレン基が屈曲性に富むのでこの様な素材にも適用でき、 かつ側 鎖をメ トキシ基、 ブトキシ基、 へキシルォキシ基と変えて疎水性を増大 させることにより、 例えばホロファイバー状に形成したチュ一ブの内腔 面や外表面に本発明のコーティングを最適化することができ'、 その結果 細胞接着の基材として使用することが可能になる。
本発明は、 細胞培養に通常使用されるポリスチレン以外にも適用可能 である。 例えば、 医療に使われる人工血管、 人工水晶体等、 埋め込み型 プラスチックの表面に細胞接着蛋白質またはべプチドの固相化処理を施 すことにより、 患者の細胞が容易に接着できる環境が醸成され、 患者の 負担軽減が期待できる。 以下、 実施例を挙げて本発明を更に具体的に説明するが、 この発明の 技術的範囲はこれら実施例に限定されるものではない。 実施例 1 (シリコンゥエルのコ一ティング)
2 0 mmx 2 0 mmX 1 0 mmの溝を有するシリコンゥエルに、 5 0 g /m 1 C MM A C ( I S P, International Specialty Products, US A) のェタノ一ル溶液 0. 5 m l を注ぎ、 余分な溶液は吸い取り、 その後風乾することにより、 M M A Cでコ一ティングされたシリコンゥ エルを得た。
なお、シリコンゥエルが MMACでコーティングされているか否かは、 例えば、 以下の実施例に示すように、 シリコンゥエルを MMACでコー ティングした後、 細胞接着蛋白質またはペプチドを固相化し、 次いで細 胞を播種、 培養することにより確認することが出来る。 実施例 2 (T 2細胞の静置培養)
実施例 1の方法で得たコーティングしたシリコンゥエルに、 0. 1 M リエタノ一ルァミン緩衝液、 ρΗ 8. 8に溶かした 1 0 ζ gZm 1のフ イブロネクチン (FN)、 ラミニンー 1 (L N) の細胞接着蛋白質溶液、 あるいは 0. 2 5 m g Zm 1 の F I B— 1、 AG 7 3の細胞接着べプチ ド溶液を各々注ぎ、 3 7 °Cで数時間以上反応させ、 これらの細胞接着活 性を有する蛋白質あるいはペプチド類を結合し、 固相化した (固相化の 詳細は後述する実施例 6参照)。 その後、 単位面積当たり 5 X 1 04Zc m2の肺胞 2型上皮細胞 (T 2細胞) 懸濁液を注いで、 C02 培養装置 内で培養を開始した。
いずれの細胞接着蛋白質またはべプチドを固相化した場合も、 T 2細 胞は良好に増殖し、 細胞密度が増大した (図 1 )。 このことは、 何れの M MACコ一ティングによる細胞接着蛋白質またはべプチドの固相化反応 も、 細胞毒性を有しないと理解される。
なお、図中の 1 d、 2 dおよび 3 dは、それぞれ培養日数を意味する。 実施例 3 (T 2細胞の伸展培養 1 )
実施例 2の方法とほぼ同様にして調製した、 細胞接着蛋白質またはべ プチドを固相化したシリコンゥエルに単位面積当たり 2 X 1 05/ c m 2の T 2細胞を播種し、 1 日間静置培養した。 播種した細胞が培養面全 体を confluent に伸展していることを確認した後、 培養細胞伸展装置 ((株) スカラテック社製) を用い、 2 5 %伸展率、 毎分 1 5回の頻度で 水平方向に強制的に細胞伸展を開始し、 更に 1 日間培養を継続した。 培 養終了後、細胞接着の状態を位相差顕微鏡で撮影した(図 2の上段 4列)。 固相化 FNや LNの場合 (FN, l d C— I d Sおよび L N, 1 d C
3 一 I d S) は、 それほど顕著ではないが、 固相化した F I B— 1や AG - 7 3細胞接着べプチド上で、強制伸展させながら細胞培養した場合(F I B— 1 , l d C— I d S) および AG 7 3 , 1 d C - 1 d S ) は、 T 2細胞が強制伸展方向と垂直方向 (図 2の写真の縦方向) に自律的に細 長く伸展して、 強制伸展の影響を極力減衰させようと配向し直したこと が明瞭に観察される。 これに比べて、 固相化 FNや L Nの場合はそれほ ど明瞭ではないのは、 固相化した細胞接着蛋白質と細胞との接着が強制 伸展力に対抗できる程度には十分強いため、 配向し直す必要がなかった ためと推測される。 実施例 4 (T 2細胞の伸展培養 2)
実施例 2の方法とほぼ同様にして調製した、 細胞接着蛋白質またはべ プチドを固相化したシリコンゥエルに単位面積当たり 5 X 1 04 / c m 2の T 2細胞を播種し、 3 日間静置培養した。 T 2細胞は、 図 1の 3 d と同様に生育した (結果は、 重複するので示さず)。 次に、 図 1 と同じ強 制伸展刺激を与え、 更に 1 日間培養を継続した。 培養終了後、 細胞接着 の状態を位相差顕微鏡で撮影した(図 2の中段 4列) (FN, 3 d C - 1 d S、 LN, 3 d C - l d S、 F I B— 1, 3 d C _ l d S、 および A G 7 3 , 3 d C— l d S)。
3 日間の静置培養中に T 2細胞は、 固相化した細胞接着蛋白質または ペプチドに強囱に接着でき、 伸展 ·増殖したと考えられる。 そのため、 強制的に細胞伸展負荷を 1 日間課した後でも、 T 2細胞は図 2上段ほど 明瞭に配向し直すことはなかった。 実施例 5 (T 2細胞の伸展培養 3 )
実施例 4の伸展培養とほぼ同様にして、 強制的な伸展培養を 3 日間行 つた。 培養終了後、 細胞接着の状態を位相差顕微鏡で撮影した (図 2の 下段 4列) (FN, 3 d C _ 3 d S、 L N, 3 d C— 3 d S、 F I B— 1, 3 d C - 3 d S、 および A G 7 3 , 3 d C - 3 d S)。
3 日間の強制伸展刺激によって、 T 2細胞の形質は、 固相化した細胞 接着蛋白質またはペプチドに依存して変化している。 特に、 生体内では T 2細胞の直下に存在する基底膜構造体の必須成分である LN、 および その接着べプチドである AG 7 3上に細胞を播種した場合には、 立方体 的な 2型上皮細胞から扁平な 1型上皮細胞様に変化している。 生体内で は、 呼吸運動に伴い肺胞内で最も強制的な細胞伸展を繰り返し受けてい るのは、厚みのある 2型上皮細胞ではなく、扁平な 1型上皮細胞である。 3 日間の強制的細胞伸展は、 生体内と同様に 2型上皮細胞を 1型上皮細 胞に分化させたことを示唆している。 F Nは、 本来細胞に増殖や移動の 刺激を与える細胞外基質である。 固相化した F Nやその細胞接着べプチ ドである F I B— 1上では、 LNや AG 7 3程 1型上皮細胞様にならな かったのは、 FNの持つこの性質のためかもしれない。 なお、 実施例 3〜 5で行った強制的な細胞伸展培養 (伸展率 2 5 %) は、前記した培養細胞伸展装置で通常行われている伸展率 1 0 %に比べ、 かなりの負荷を細胞に与えている。 この為、 本装置に通常この様な負荷 を掛けると細胞は剥離する。 本発明のコーティングしたシリコンゥエル を使用することにより、 剥離することなく、 良好に増殖した。 実施例 6 (細胞接着蛋白質またはべプチドの固相化標品の調製)
全ての操作は無菌操作を前提とする。 始めに、 細胞接着蛋白質の場 合はエタノールに 1 0 i g/m 1 の MMA Cや MA S T等の疎水結合性 吸着ポリマーを、 ぺプチドの場合は 5 0 gZm 1 の MMACや MA S Tを溶かし、 フィルタ一を通した後に細胞培養用に表面処理をしていな い 9 6穴培養皿に 5 0 1ずつ注ぎ、 暫く静置後 MM A C等を吸い取つ て風乾する。 次に、 0. 1 Mトリエタノールァミン緩衝液、 pH 8. 8 溶液に 1 0〜 2 0 /2 gZm 1 の細胞接着蛋白質または 0. 2 5mg/m 1 のペプチドを溶かし、 先程 MMA C等をコートした 9 6穴培養皿に 5 0 1ずつ注ぐ。 3 7 °Cに加温されたィンキュベ一夕一内で加湿しなが ら、 一晩反応させる。 反応終了後、 反応液を吸い取り、 残余の反応液を 培地でリンスして、 細胞接着蛋白質またはべプチドの固相化標品を調製 する。 該標品は、 固相化細胞接着蛋白質またはペプチド基質として、 以 下の実施例に示すように、 細胞培養に供することができる。
なお、 細胞接着蛋白質およびペプチドの濃度を、 1 Z 5量のそれぞ れ 2〜4 a g /m 1および 0. 0 5 m g / m 1 にしても、 通常の細胞培 養に支障は無い。
また、 MM AC等コートだけのときは、 9 6穴培養皿の底面は、 無水 マレイン酸が加水分解して出来たカルボキシル基の陰電荷のため、 細胞 はほとんど接着できない。 実施例 7 (細胞接着蛋白質に対する T 2細胞の接着、 および遊離の細胞 接着べプチドによる細胞接着の阻害)
細胞培養の際に、 細胞接着蛋白質として通常使用されている市販品の FN、 L Nおよび V Nを各々 5 g /m 1 、 1 0 ^ g / 1および 1 0 U g/m 1 の濃度で培養皿に塗布した。 C o 1 I ( I型コラーゲン) の 場合は、 1 mMH C 1 に溶かした 1 0 0 g /m 1 の濃度の C o 1 I を 培養皿に注ぎ、 暫く静置した後、 溶液を除いて風乾し、 使用前に培地で 洗って使用した。次に、上記の細胞外基質を塗布した 9 6穴培養皿上に、 無血清の DMEM培地に懸濁した 6 x 1 05個 Zm 1 の肺胞 2型上皮細 胞 (T 2細胞) を 1 0 0 1づっ播種し、 C02インキュベータ一内で、 3 7°C、 1 日間培養した。 培養終了後、 メタノール 1 0 0 1で細胞を 5分間固定し、 0. 4 %クリスタルバイオレッ ト 5 0 1で 3 0分間細 胞を染色した。過剰な染色は水洗し、細胞質の吸光度(A 5 9 5 )から、 培養皿に塗布された F N、 C o 1 I、 L Nおよび VNに接着した細胞数を 計測した。 ノ
他方、 種々の LN分子のアミノ酸配列の中には、 細胞接着を誘引する 配列の存在が知られている。 合成した何種類かの細胞接着べプチドを、 上記と同様にして調製した細胞培養液に、 0. 2 5mgZm l の濃度で 添加した。 以下、 上記の方法に準じて細胞数を計測した。 その結果を図 3に示す。
細胞接着べプチドの内、特に、 AG 7 3、 A 3 G 7 2、 h A 3 G 7 5、 h A 3 G 8 3 , A 4 G 8 2、 A 5 G 7 1および A 5 G 7 7ぺプチドが、 T 2細胞の接着を阻害した。 これは、 これらのペプチドが、 細胞に強い 親和性を有し、 T 2細胞が、 FN、 C o I I、 L Nおよび VNに接着する ことを阻害したためと理解される。
なお、 F I B— 1ペプチドは FNへの接着を阻害する (通常は、 1 mgZm l以上必要) ペプチドとして知られているが、 F 1 B _ 1ぺプ チドが阻害作用を発揮しない 0. 2 5mgZm 1 という低濃度でも、 上 記べプチドは阻害活性を示している。 A G 7 3の様に、 LNペプチドの 種類によっては、 0. 1 2mg/m 1 の濃度でも同じく阻害活性を示し た。 実施例 8 (固相化した細胞接着ペプチド基質に対する T 2細胞の接着、 および遊離の当該べプチドによる細胞接着の阻害)
実施例 6の方法に準じて調製した細胞接着べプチドが固相化された培 養皿に、 無血清の DM EM培地に 6 X 1 04個/ の濃度に懸 濁した T 2細胞を播き、 C〇 2インキュベーター内で 3 7 °C、 2 4時間 培養した。以下、 実施例 7の方法に準じて、 メ.夕ノールで固定、染色後、 吸光度を測定した。 別途、 細胞を播種する直前に、 固相化に使用されて いる細胞接着ペプチドと同一の遊離ペプチドを細胞懸濁液に添加し、 以 下、 上記と同様に培養後、 吸光度を測定した。 標準物質とじて F Nを塗 布した場合についても、併せて測定した。結果を図 4および図 5に示す。 図 4は、 疎水結合性吸着ポリマーとして MM A Cを、 図 5では MAS Tを、 細胞接着ペプチドとして、 ラミニン a鎖 Gペプチドおよび F I B 一 1ペプチドを使用し調製した培養皿を用いた結果を示している。 図 4 および図 5中、 C o n t r o 1は、 固相化細胞接着ペプチドが存在する のみであり、 f r e e p e p t i d eは、 固相化細胞接着ペプチドと 同一の遊離ペプチドが、 0. 2 5 mg/m 1で共存している系を示す。 細胞接着べプチドの固相化に用いる疎水結合性吸着ポリマーの種類 によって、一部の細胞接着べプチドで細胞接着量に変化は有る。しかし、 遊離の細胞接着ペプチドによって、 MMAC、 MAS T何れの場合も細 胞接着が競争阻害されたことに変わりは無い。 即ち、 細胞は固相化され た細胞接着べプチドを介して接着している。 それ故、 その細胞接着遊離 ぺプチドが共存すると固相化した細胞接着べプチドと遊離の細胞接着べ プチドが、 細胞表面に存在する同一の接着受容体を巡って競合し、 その 結果として細胞接着が阻害された。 このことは、 疎水結合性吸着ポリマ 一を利用して細胞接着べプチドを固相化させ、 それを細胞接着の足場と する方法に、 高い普遍性と信頼性があることを示唆している。
AG 7 3 T, AG 7 6. 8、 AG 8 1. 2、 A 2 G 7 3、 A 4 G 7 8、 A 5 G 7 3の場合は、 一見細胞接着遊離ペプチドによる競争阻害が掛か らなく、 非特異的接着のように見える。 しかし、 これは、 細胞の接着受 容体と細胞接着遊離べプチドとの結合が、 接着受容体と細胞接着固相化 ペプチドとの結合に比して弱いために、阻害が掛からなかった為である。 因みに、 この場合でも、 へパリン処理による接着阻害が掛かる (実施例
1 0および図 7参照) ことから、 細胞接着ペプチドと細胞表面の接着受 容体であるへパラン硫酸プロテオダリカンに属するシンデカンを介した 特異的接着であると考えられる。 実施例 9 (固相化した細胞接着ペプチド基質に対する T 2細胞の細胞接 着 ·伸展の時間経過 Z人工組織の調製)
培養皿に固相化された細胞接着ペプチドおよび T 2細胞を用い、 実施 例 8の方法に準じて、 1〜 24時間培養した。 培養後の細胞接着と伸展 の様子を微分干渉 (光学) 顕微鏡で観察した。 培養 1、 6および 2 4時 間後の結果を図 6に示す。
図 6では、 T 2細胞を播種した細胞培養基質上で、 1時間 (A〜C)、 6時間 (D〜L)、 および 2 4時間 (M〜0) 培養後の微分干渉顕微鏡写 真を示している。
細胞接着ペプチドとして、 B、 Eおよび Mは AG 7 3を、 C、 Lおよ び Oは F I B— 1を、 Fは A 3 G 7 2を、 Gおよび Nは A4 G 8 2を、 Hは A 5 G 7 1を、 Iは A 5 G 7 7を、 Jは hA 3 G 7 5を、 Kは ΙΊ Α 3 G 8 3を、 また、 Αおよび Dは標準物質として F Νを使用した。
F Nより若干劣るが、細胞接着べプチド上でも 1時間で細胞は接着し、 一部の細胞では伸展を開始している。 6時間の培養では、 FNと比べて 遜色なく、 AG 7 3、 A 3 G 7 2および A 4 G 8 2ペプチド上で伸展し ている。 hA 3 G 7 5および hA 3 G 8 3ぺプチド上では、 伸展は遅れ ているが十分接着している。 2 4時間では、 AG 7 3、 A 4 G 8 2およ び F I B _ 1共に、 F N上に播種した場合と同様(図には示していない) に、 殆どの細胞が伸展を完了している。 実施例 1 0 (固相化した細胞接着べプチド基質に対するへパリン処理に よる T 2細胞の接着阻害)
実施例 6の方法に準じて調製した細胞接着べプチドが固相化した培養 皿に l O O z g/ml のへパリン溶液を注ぎ、 2時間インキュベートした。 へパリンが固相化した細胞接着べプチドに結合した後へパリン溶液を除 き、 T 2細胞懸濁液を培養皿に播種した。 2 4時間培養した後の接着細 胞数についての結果を図 7に示す。
原理的には、細胞接着べプチドが先にへパリンと結合して覆われると、 細胞表面に存在するへパリン様糖鎖 (へパラン硫酸) を有する細胞接着 受容体、 即ちへパラン硫酸プロテオダリカンに属する蛋白質であるシン デカンが、 そのへパラン硫酸糖鎖部分を使って細胞接着べプチドと結合 出来なくなるために、 細胞接着が阻害されることを示している。
固相化した L N α鎖 G領域由来細胞接着ペプチドの場合は、 ほとんど の細胞接着が阻害された。 このことは、 固相化ペプチドとへパリンとが 親和性を以つて結合したため、 細胞表面に局在するへパリンと類似の糖 鎖構造を有するシンデカンと細胞接着べプチドとの本来の結合が競合阻 害されたと理解される。
このことから、 A G 7 3 、 A G 7 3 T、 A G 7 6 . 8 、 A G 8 1 . 2 、 A 2 G 7 3 、 A 3 G 7 2 、 A 4 G 7 8 、 A 4 G 8 2 、 A 5 G 7 3 、 A 5 G 7 7 , h A 3 G 7 5 , h A 3 G 8 3の結合相手は、 細胞表面のシンデ カンであると考えられる。 また、 F I B _ 1ぺプチドの場合は阻害が掛 からない。 F Nとの結合に関与する細胞接着受容体はインテグリンひ 5 /3 1であり、 その結合部位が R G Dアミノ酸配列であることは確立され た事実である。 この配列を含む F I B— 1ぺプチドに対してもィンテグ リンが関与するので、 へパリンによる阻害が掛からないのは当然の結果 である。 このこともまた、 本実施例の信頼性を示唆している。 実施例 1 1 (固相化した細胞接着ペプチド基質とは異なる遊離の細胞接 着ペプチドによる T 2細胞の接着阻害)
実施例 7の方法に準じて、 固相化した細胞接着べプチド上で T 2細胞 を培養する際に、 固相化べプチドとは異なる遊離べプチドを添加した結 果を図 8に示す。
固相化したぺプチドを同じべプチドを培養液に遊離の状態で添加する と、 両者は T 2細胞のシンデカンを巡って競争し、 その結果細胞接着が 阻害される (実施例 7参照)。 現在、 シンデカンには遺伝的に 4種類の存 在が知られている。 ここでは、 それぞれのぺプチドに対するシンデカン が、 互いに共有 (融通) し合っている (common) のか、 有る程度の範囲 で重複しているだけか、 それとも互いに排他的なのかを検討した。
例えば、 A G 7 3を固相化した場合、 遊離状態の A G 7 3以外にも、 A 3 G 7 2 、 A 4 G 8 2 、 A 5 G 7 1 、 A 5 G 7 7 、 h A 3 G 7 5 、 h A 3 G 8 3が細胞接着を阻害していることから、 互いにリセプ夕一を共 有し合っていることを示唆している。 しかし、 A G S 1 . 2 、 A G 7 3 Tは阻害できない。
また、 A G 8 1 · 2や A G 7 3 Tを固相化した場合は、 遊離の A G 8 1 . 2や A G 7 3 Tは自分自身の固相化べプチドと競争阻害できないか、 できても極わずかである。 しかし、 上記の L Nペプチドによって、 細胞 接着が阻害されている。
この結果は、 お互いのペプチドはリセプターを共有 (融通) し合って いることを示している。 しかし、 その共有 (融通) は対等ではなく、 ぺ プチド間で受容体との親和性に順位が存在することを伺わせる。 即ち、 AG 7 3、 A 3 G 7 2、 A4 G 8 2、 A 5 G 7 1 > A 5 G 7 7、 A 3 G 7 5、 h A 3 G 8 3 > A G 8 1. 2、 AG 7 3 T。 なお、 AG 7 3 T は、 AG 7 3のアミノ酸配列を入れ替えて作った人工の配列で、 天然に は存在しない。
F I B— 1 のリセプタ一は、 シンデカンではなく、 インテグリンと呼 ばれる細胞接着分子である。そのィンテグリンと F I B— 1 との結合が、 AG 7 3等の L Nペプチドで阻害されるが、 その逆は無い。 即ち、 F I B— 1を固相化した場合は、 遊離の LNペプチドで阻害が掛かるが、 A G 7 3等を固相化した場合は、 遊離の F I B— 1で阻害が全く掛からな い。 このことは、 細胞接着においてィンテグリンを介する細胞接着より もシンデカンを介した細胞接着が優先されることを示している。 この点 でも、 LN α鎖 G領域の細胞接着べプチドを固相化して細胞接着基質と することの利点が明瞭である。 実施例 1 2 (固相化した F I Β— 1ペプチドに対する丁 2細胞の接着 結合力 (親和性、 affinity) を基準にした固相化した L Nの細胞接着べ プチドの結合力)
図 8において、 遊離の F I B— 1ペプチドは、 T 2細胞が固相化 F I B一 1ぺプチドに細胞接着するのを競争阻害しただけでなく、 AG 7 3 Tおよび AG 8 1. 2ペプチドに接着するのも阻害した。 反対に、 遊離 の A G 7 3 Tおよび A G 8 1. 2ぺプチドは、 固相化 F I B— 1に対す る細胞接着を阻害できなかったので、 T 2細胞に対する AG 7 3 Tおよ び AG 8 1. 2ぺプチドの結合力 (affinity) は、 F I B— 1の結合力よ り低い (実施例 1 2および表 1参照、 クラス Cに分類)。
他方、 固相化 F I B _ 1ペプチドに対する細胞接着を、 遊離の AG 7 3および A 4 G 8 2ぺプチドは阻害できたが、 逆の固相化 A G 7 3およ び A 4 G 8 2ぺプチドに対する細胞接着を、 遊離の F I B— 1ぺプチド は阻害できなかった。 従って、 T 2細胞に対する AG 7 3および A 4 G 8 2ぺプチドの結合力 (affinity) は、 F I B— 1の結合力より高い (表 1参照、 クラス AAおよび Aに分類) ことは明白であるが、 どの程度高 いのか不明である。
図 8は、 固相化した細胞接着ペプチドが、 F I B _ 1および AG 7 3 の 2種類混在する場合、 T 2細胞が F I B— 1ぺプチドを介して接着し ているならば遊離の F I B— 1ぺプチドで接着阻害できるが、 A G 7 3 ぺプチドを介して接着しているならば遊離の F I B— 1ぺプチドでは接 着阻害できないことを示唆している。 そこで、 F I B— 1ペプチド量を 0.2 5 m g / 1 に定め、 AG 7 3ぺプチド量を F I B— 1の 1 / 1, 2 5 0量 = 0. 2 0 g Zm 1力 ら 1 / 2量 = 0. 1 2 5mg/m l ま で両者の濃度比を変えて混合し、 疎水性吸着ポリマ一 MMA Cを塗布し た培養皿に固相化させた。 この固相化ペプチド上で T 2細胞を、 無血清 で 1 日間培養した場合の細胞接着量を、 固相化 F I B— 1上で培養した 場合を 1 0 0 %として図 9に示す。
F I B - 1 : AG 7 3 = 1 : 0. 0 04の場合は 依然固相化 F I B 一 1ぺプチドを介して T 2細胞は接着するので、 遊離の F I B - 1ぺプ チドは F I B - 1のみが固相化された場合と同程度に T 2細胞の接着を 阻害した。 しかし、 F I B - 1 : A G 7 3 = 1 : 0. 0 2に増加させた 場合、 既に T 2細胞は固相化 AG 7 3ぺプチドを介して細胞接着するよ うに遷移 (transition) するので、 遊離の F I B— 1ペプチドでは最早 細胞接着を阻害できなかった。 遷移中間点の混合比 = 0. 0 1であるの で、 その逆数 1 0 0は、 AG 7 3対 F I B— 1の T 2細胞に対する結合 力の比を示している。 同様に、 A 3 G 7 2および A 4 G 8 2ペプチドで は、 遷移中間点の混合比 = 0. 1であるので、 T 2細胞に対する結合力
4 は F I B— 1の 1 0倍に相当する。 この結果を踏まえ、 AG 7 3、 A 3 G 7 2、 A 4 G 8 2ぺプチドの T 2細胞に対する結合力をそれぞれクラ ス AA、 Aに分類した (表 1参照)。
図 8において、 遊離の A 5 G 7 1、 A 5 G 7 7 hA 3 G 7 5、 h A 3 G 8 2ぺプチドは、 固相化 F I B - 1ぺプチドへの細胞接着を阻害で きるが、 図 9において遷移中間点の混合比は約 1であるので、 T 2細胞 に対する結合力を Bに分類した (表 1参照)。
図 8および 9で行った方法は、 細胞接着ペプチドの結合力 (親和性、 affinity) に相対的な序列を与え、 細胞接着の強さを定量的に考察できる 簡便な方法として大変有効である。
表 1には、 FN分子の中でィンテグリンと結合する部位 R G Dアミノ 酸配列を含む F I B— 1ペプチドと T 2細胞の親和性 (結合 ·接着力) を基準に、 ラミニン α鎖 G領域ペプチドを、 非常に強く結合 ·接着する ΑΑクラス、 強く接着する Αクラス、 F I B - 1 と同程度に接着する B クラス、およびそれ以下の弱く結合する Cクラスに分類した結果を示す。
(表 1 )
Figure imgf000044_0001
AA:非常に強く結合德する; A:強く結合儒する
B :中程度に結合 する(RB—1ペプチドと同程度)
C : F1B-1ペプチドに比して弱く結合 する 実施例 1 3 (偽似マトリックスの調製)
疎水結合性吸着ポリマー、 M B A C、 M A S Tまたは M M A Cの各々 2 0 0 m gを水に分散させ、 1 N N a〇H溶液を少量ずつ添加し、完全 に溶解さ せた 。 こ れ に 、 W S C ( l-Ethyl-3-(3-dimethylamino propyOcarbodiimide, hydrochloride) 5 O m gをカロ凡て 2時「曰,反応 せ た後、 ペプチド 2 O m gを加えて、 室温で 2時間攪拌反応させた。 反応 終了後、 水に透析してアル力リと低分子を除き、 反応生成物を凍結乾燥 して目的の.偽似マトリックスを調製した。 実施例 1 4 (固相化した偽似マトリックスに対する T 2細胞の接着、 お よび遊離の当該べプチドによる細胞接着の競争阻害一 1 )
実施例 1 3で調製した各々の細胞接着べプチド類を結合させた偽似 マトリックス (MBAC— p e p t i d e ) を、 DME M培地で 1〜 1 0 gZm 1の濃度に希釈し、 9 6穴培養皿に各 1 0 0 1注ぎ、 CO 2インキュベーター内でー晚静置して、 培養皿に吸着 · 固相化させた。 未吸着の MB AC— e t i d eは、 D M E M培地で十分洗って除い た。 次に、 無血清の DMEMに、 6 X 1 05個 Zm 1 の濃度で懸濁した T 2細胞を、 各 1 0 0 1播種した。 無血清で 1 日培養した'後、 メタノ —ル 1 0 0 1で 5分間固定し、 0. 4 %クリスタルバイオレッ ト 5 0 1で 3 0分間 T 2細胞を染色した。 過剰な染色は水洗し、 細胞質の吸 光度 (A 5 9 5 ) から、 接着した細胞数を計測した。 その結果を図 1 0 に示す。
1 H g/m 1 の MBAC— AG 7 3を除き、 測定した全ての範囲内で. MB AC- AG 7 3、 一 A 3 G 7 2、 _ A 4 G 8 2 X、 一 F I B— lは、 FN (フィブロネクチン) を直接塗布した場合と同等の細胞接着能を発 揮した。 また、 遊離の当該細胞接着ペプチドで細胞接着が競争阻害され ることから、 T 2細胞の接着は、 MB ACに結合した細胞接着ペプチド を介した特異的結合によると考えられる。 なお、 MBAC— A 4 G 8 2 Xに対する T 2細胞の接着が遊離の A 4 G 8 2ぺプチドで阻害されたこ とは、 C末端の M e t残基を N 1 e残基に代えても、 細胞接着に関して は同等に機能することを示唆している。 実施例 1 5 (固相化した偽似マトリックスに対する T 2細胞の接着、 お よび遊離の当該べプチドによる細胞接着の競争阻害一 2 )
実施例 1 3で調製した各々の細胞接着べプチド類を結合させた偽似 マトリックス (MA S T— p e p t i d e ) を、 実施例 1 4と同様に 9 6穴培養皿に吸着 · 固相化させ、 T 2細胞を播種 ·培養した。 その結果 を図 1 1に示す。 1〜: 1 0 g/m 1 の測定した範囲全てにおいて、 MA S T— AG 7 3、 —A 3 G 7 2、 _A 4 G 8 2 X、 — F I B— 1は、 F Nを直接塗布 した場合と同等の細胞接着能を発揮した。 また、 遊離の当該細胞接着べ プチ.ドで細胞接着が競争阻害されるが、 その程度は MB AC— p e p t i d eの場合より低かった。 これは、 T 2細胞と M A S T— p e p t i d eの特異的結合が、 T 2細胞と MB AC— p e p t i d eとの結合よ り、 一層強いことによると考えられる。 なお、 MA S T— A 4 G 8 2 X に対する T 2細胞の接着が遊離の A 4 G 8 2ぺプチドで阻害されたこと は、 C末端の M e t残基を N 1 e残基に代えても、 細胞接着に関しては 同等に機能することを示唆している。
また、培養皿に吸着'固相化した p o l yme r— p e p t i d e (偽 似マトリックス) を、 DMEMで 2〜 4日間洗っても細胞接着量はほと んど影響を受けない。 このことは、 培養皿と偽似マトリックスとの結合 は、 十分強く安定していることを示している。 実施例 1 6 (固相化した偽似マトリックスに対する当該べプチドのポリ クローナル抗体処理による T 2細胞の接着阻害)
実施例 1 3で調製した各々の細胞接着べプチド類を結合させた偽似 マトリックス (MB AC - p e t i d e ) を、 D U E M培地で 1〜 1 0 ^ g/m 1 の濃度に希釈し、 9 6穴培養皿に各 1 0 0 1注ぎ、. C O 2ィンキュベー夕一内でー晚静置して、 培養皿に吸着 · 固相化させた。 未吸着の MB AC - p e p t i d eは、 D M E M培地で十分洗って除い た。 次に、 無血清の D MEMで 4〜 1 0 gZm 1 に希釈した抗体 1 0 0 1 を培養皿に注ぎ、 2〜 4時間インキュベートして、 ペプチドに抗 体を結合させた。 対照群には、 正常の I g Gを用いた。 処理後抗体を除 き、 6 x 1 0 5個 Zm 1 の濃度で懸濁した T 2細胞を、 各 1 0 0 1播 種した。 無血清で 1 日培養した後、 メタノール 1 0 0 1で 5分間固定 し、 0. 4 %クリスタルバイオレッ ト 5 0 1で 3 0分間 T 2細胞を染 色した。 過剰な染色は水洗し、 細胞質の吸光度 (A 5 9 5 ) から、 接着 した細胞数を計測した。 結果を図 1 2に示す。
測定した全ての範囲内で、 MBAC— AG 7 3 T、 - AG 8 1. 2 X、 - F I B - 1は、 FNを塗布した場合とほぼ同程度の細胞接着能を発揮 した。 また、 ペプチドに対する抗体処理で、 細胞接着が特異的に阻害さ れたことから、 T.2細胞はべプチドを介して接着していると考えられる。 なお、 MBACの代わりに MAS Tを用いて作製した MA S T— p e p t i d eについても、 同様の結果を得た。 その一例として MA S T— F I Β _ 1の結果も図 1 2に示す。 2. 5 - 1 0 g /m 1で M A S T 一 F I B— 1を固相化した場合、 抗体の阻害程度が低いのは、 実施例 1 5の場合と同様に 細胞に対する親和性が MB AC— F I B— 1より遙 かに強いためであるが、 1 11 g/m 1 にすると固相化 MB A C _ F I B 一 1 と M AS T— F I B— 1は、 抗 F I B— 1抗体処理によって同程度 に阻害された。 実施例 1 7 (固相化した偽似マトリックスに対するへパリン処理による T 2細胞の接着阻害)
実施例 1 3で調製した各々の細胞接着べプチド類を結合させた偽似 マトリックス (MBAC— p e p t i d e ) を、 DM EM培地で 1〜 1 0 g Zm 1 の濃度に希釈し、 9 6穴培養皿に各 1 0 0 1注ぎ、 CO 2インキュベータ一内でー晚静置して、 培養皿に吸着 · 固相化させた。 未吸着の M B AC— p e p t i d eは、 DME M培地で十分洗って除い た。 次に、 1 mg/m 1 のへパリンを溶かした DMEM 1 0 0 1 を培 養皿に注ぎ、 2時間インキュベートして、 ペプチドにへパリンを結合さ せた。 対照群は、 D MEMのみで処理した。 処理後へパリンを除き、 6 X 1 0 5個 Zm 1 の濃度で懸濁した T 2細胞を、 各 1 0 0 1播種した。 無血清で 1 日培養した後、 メタノール 1 0 0 1で 5分間固定し、 0. 4 %クリスタルバイォレツ ト 5 0 1で 3 0分間 Τ 2細胞を染色した。 過剰な染色は水洗し、 細胞質の吸光度 (Α 5 9 5 ) から、 接着した細胞 数を計測した。 結果を図 1 3および図 1 4に示す。
細胞接着べプチドに対するへパリン処理で、 細胞接着が対照群より図 1 3では 2 5〜 4 0 %、 図 1 4では 3 5〜 5 5 %特異的に阻害されたこ とから、 Τ 2細胞は細胞表面に存在するへパリン類似の糖鎖を有する接 着受容体、シンデカンを介して固相化したペプチド、図 1 3の AG 7 3、 A 3 G 7 2、 A 4 G 8 2 X v および図 1 4の AG 7 3 T、 A G 7 6. 8 X、 A G 8 1. 2 X、 A 4 G 7 8、 A 5 G 7 3 Xに接着していると考え られる。 なお、 へパリンによる接着阻害の程度が図 1 4と比して図 1 3 で低いのは、 細胞と固相化した細胞接着ペプチドとの親和性が、 AG 7 3、 A 3 G 7 2、 A 4 G 8 2 Xの場合に一層高いためである (実施例 1 2、 図 9および表 1参照)。 また、 図 1 4の一部の M B A C _ p e p t i d eでは , 1〜 2. 5 a g /m 1で塗布すると -. 細胞接着量が低下し、 へパリンによる阻害の程度も低下している。 これは、 MBAC— p e p t i d eの固相化量が低下し、 そのため細胞接着に占める非特異的接着 が増加した為と推測される。
偽似マトリックス P o 1 ym e r一 A 4 G 8 2 X (図 1 3 )、 -AG 7 6. 8 X、 — AG 8 1. 2 X、 _A 5 G 7 3 X (図 1 4) の作製には、 M e tの代わりに実際の蛋白質には存在しない N 1 eを用いているが、 それぞれ A 4 G 8 2、 A G 7 6. 8、 A G 8 1. 2、 A 5 G 8 3を固相 化した場合 (実施例 8、 図 4および 5参照)' と同等の細胞接着能を発揮 している。 しかも、 へパリンで同様に接着阻害される (実施例 1 0およ び図 7参照) ことから、 T 2細胞は M e t と N 1 eを区別しないで認識 したと考えられる。 M e tは側鎖の S原子が酸化されてスルフォキシド ゃスルフォンになると生物活性を失うことがよくある。 本偽似マ卜リッ クスの場合も同様に失活が危惧されたが、 M e tを N l eで置き換えた ペプチドが本来のペプチドと同等の性能を発揮したことは、 偽似マトリ ックスの一層の安定性を確保し、 その用途を広げる上で有効である。 実施例 1 8 (エタノールを含む水溶液に溶解した偽似マトリックスの塗 布、 および塗布した偽似マトリックスに対する T 2細胞の接着)
5 0 %エタノールに溶解した 2 - 2 O g/m l の MAS T— GRG D S P (G l y -A r g - G l y -A s p - S e r - P r o) および M MAC— G R GD S Pを培養皿に 5 0 1注ぎ、 風乾 · 固相化させた。 次に、 MA S T— GRGD S Pおよび MMAC— GRGD S P ( 0. 1 - 1. 011 g/w e l l ) を塗布した培 ¾皿を無血清の DM EM培地で リンスし、 同培地に 6 X 1 04個 Z 1 0 0 - 1 の濃度に懸濁した T 2細 胞を播き、 C〇2インキュベーター内で 3 7 °C、 2 4時間培養した。 以 下 実施例 7の方法に準じて、 メタノールで固定 染色後、 吸光度を測 定した。 結果を図 1 5に示す。 標準物質として FNを塗布した培養も同 時に行い、 F Nへの細胞接着を基準 ( 1 0 0 %) として示した。
通常の蛋白質ならば、 5 0 %エタノ一ルという条件において変性、 失 活する。 しかし、 MAS T / M M A C - G R GD S Pのみならず、 実施 例 2 1および 2 2に示したように、 偽似マトリックスは 5 0 %ェタノ一 ルに溶かしても安定した細胞接着能を発揮した (実施例 2 1 , 2 2およ び図 1 8、 1 9参照)。 この性能は、 塗布した培養皿を室温で長期間放置 した後も失われなかった。
両偽似マトリックスへの T 2細胞の接着は、 標準の細胞接着蛋白質 F Nより若干低い。 GR GD S Pペプチドの場合、 疎水性吸着ポリマーと の距離を確保し立体障害を解消するスぺーサ一の役割を果たすアミノ酸 残基は、 一 CO · NH— G 1 y—のみの 1残基であるが、 GRGD S P 配列を含みスぺ一サ一となるアミノ酸残基が一 CO - NH-T y r -A l a— V a l _T h r— G l y _の 5残基である F I B— 1ぺプチドの 場合は、 FNと同等の細胞接着能を発揮した (実施例 2 1、. '2 2および 図 1 8、 1 9参照)。 従って、 MAS TZMMAC— GR GD S Pの場合 に T 2細胞接着量が若干低いのは、 GR GD S Pぺプチドに対する疎水 性吸着ポリマーによる立体障害が原因の少なくとも一つと考えられる。 なお、 MA S T疎水性吸着ポリマーに結合した G R GD S Pぺプチドが、 MMACポリマ一に結合した同べプチドに比して細胞接着量が大きいの は、 MAS T— GRGD S Pの方がポリスチレン製培養皿への吸着が高 いためである。 実施例 1 9 (エタノールを含む水溶液に溶解した MA S T— GRGD S P偽似マトリックスを風乾 · 固相化した培養皿への T 2細胞の接着、 お ょぴ遊離の GR GD S Pぺプチドによる競争阻害の濃度依存性)
実施例 1 8と同様に、 5 0 %エタノールに MAS T— G R GD S Pを 溶解し、 培養皿に風乾 · 固相化後、 T 2細胞を播種 ·培養した。 別途、 細胞を播種する直前に、 遊離の GRGD S Pペプチド 0. 2 5〜4. 0 mgZm 1 を細胞懸濁液に添加し、 以下、 上記と同様に培養後、 吸光度 を測定した。 その結果を、 図 1 6に示す。 遊離の G R GD S P濃度の増 加と共に、 細胞接着は次第に阻害され、 4. O mg/m lではほぼ完全 に阻害された。 このことは、 T 2細胞は固相化された G R GD S Pを介 して特異的に結合 ·接着していることを示唆する。 また、 MA S T— G R GD S Pの塗布量を低減すると、 固相化される G R GD S P量が低下 し、 遊離 GR GD S Pペプチドによる競争阻害は一層有効に働いた。 実施例 2 0 (ェタノ一ルを含む水溶液に溶解した MM A C - GR GD S P偽似マトリックスを風乾 · 固相化した培養皿への T 2細胞の接着、 お よび遊離の G R G D S Pペプチドによる競争阻害の濃度依存性)
実施例 1 8と同様に、 5 0 %エタノ一ルに MM A C— GR'GD S Pを 溶解し、 培養皿に風乾 · 固相化後、 T 2細胞を播種 ·培養した。 別途、 細胞を播種する直前に、 遊離の GR GD S Pペプチド 0. 2 5〜 4. 0 mgZm 1 を細胞懸濁液に添加し、 以下、 上記と同様に培養後、 吸光度 を測定した。 その結果を、 図 1 7に示す。 実施例 1 9と同様に、 遊離の G R GD S P濃度の増加と共に、 細胞接着は次第に阻害され、 1. 0〜 4. 0 mgZm 1ではほぼ完全に阻害された。 このことは、 実施例 1 9 と同様に T 2細胞は固相化された G R GD S Pを介して特異的に結 合 ·接着していることを示唆する。 実施例 2 1 (エタノールを含む水溶液に溶解した偽似マトリックスを風 乾 · 固相化した培養皿への T 2細胞の接着、 および遊離の当該べプチド による競争阻害)
実施例 1 8と同様に、 5 0 %エタノールに MB A CZM A S T— AG 7 3および一 F I B— 1を溶解し、 培養皿に風乾 · 固相化後、 T 2細胞 を播種 ·培養した。 別途、 細胞を播種する直前に、 遊離の AG 7 3また は F I B _ 1ペプチド 0. 2 5 mg/m 1 を細胞懸濁液に添加し、以下、 上記と同様に培養後、 吸光度を測定した。 その結果を、 図 1 8に示す。 固相化した AG 7 3および F I B— 1ペプチドに対して、 T 2細胞は F Nを塗布した場合とほぼ同程度に接着した。 また、 遊離の AG 7 3ぺプ チドによって、 細胞接着はほぼ完全に阻害された。 固相化 F I B— 1ぺ プチドの場合、 特に MA S T— F I B— 1の場合は、 固相化した F I B - 1量の低減と共に遊離の F I B— 1ぺプチドによる競争阻害がより有 効に働いた。 実施例 2 2 (エタノールを含む水溶液に溶解した MB A C/MA S T— F I B - 1を風乾 · 固相化した後、 抗 F I B— 1ぺプチド抗体処理によ る T 2細胞の接着阻害)
実施例 2 1 と同様に、 MB ACZMA S T— F I B - 1を 5 0 %エタ ノールで希釈して培養皿に注ぎ、 風乾 · 固相化させた。 T 2細胞を播種 する前に、 4 gZm 1の抗 F I B— 1ポリクロ一ナル抗体 1 0 0 1 を培養皿に注ぎ、 4時間インキュベートして固相化 F I B— 1ペプチド に抗体を結合させた。 対照には正常 I g Gで処理した後、 実施例 2 1と 同様に培養、 固定、 染色した。 その結果を、 図 1 9に示す。 固相化 F I B— 1が 0. 1 一 0. 2 5 it gZw e 1 1で.. 抗体による細胞接着が特 異的に阻害された。 産業上の利用可能性
本発明によると、 疎水結合性吸着ポリマーでコーティングしたシリコ ンゥエルを使用することにより、 細胞培養において、 例えば、 培養細胞 伸展装置で通常行われている以上の過度の負荷を細胞に与えても、 細胞 は剥離することなく、 良好に増殖することができる。
さらに、 本発明によると、 本発明の細胞接着蛋白質またはペプチドの 固相化標品は、 細胞接着蛋白質を直接固相化した標品に比して構造的に 安定で、 細胞接着ペプチドは安価であることより、 細胞接着蛋白質の代 替標品として極めて有用である。 また、 細胞接着ペプチドの性能は代表 的接着蛋白である F Nと比較して、 十分な活性を有する。 また、 構造的 に安定でしかも安価な固相化 L N α鎖 G領域べプチドは、 L N代替物質 として極めて有効である。 さらに、 偽似マトリックスは完全化学合成す ることができる。 生物由来の培養基質を使う場合には、 プリオン、 ウイ ルス、 細菌等が製造過程で混入するリスクを排除するのは困難である。 しかし、 完全合成品を使う場合には、 この様なリスクを排除して人工組 織や人工臓器を作製することができるので、 製造上大変有利である。

Claims

B冃 求 の 範 囲
1 . 分子内に疎水性を有する直鎖状骨格と蛋白質またはべプチドと反応 しうる官能基とを有している疎水結合性吸着ポリマーでコーティングさ れていることを特徴とする細胞培養基質。
2 . 細胞培養基質の基材が、 生物性ポリマー、 プラスチック'、 天然また は合成ゴム、 無機物または金属からなる請求の範囲 1記載の細胞培養基 質。
3 . 生物性ポリマ一が、 コラーゲン、 ゼラチン、 セルロース、 ァガ口一 ス、 アルギン酸、 キチン、 キトサン、 または、 生分解性ポリマ一のポリ 乳酸、 ポリブチレンサクシネート、 ポリ力プロラク トンである請求の範 囲 2記載の細胞培養基質。
4 .プラスチックが、熱可塑性樹脂または熱硬化性榭脂である請求の範囲 2記載の細胞培養基質。
5 . 熱可塑性樹脂が、 アクリル樹脂、 ポリ塩化ビニル樹脂、ポリエチレン 樹脂、 ポリスチレン樹脂、 ポリプロピレン樹脂、 ポリメチルペンテン樹 脂またはフッ素樹脂である請求の範固 4記載の細胞培養基質。
6 . 熱硬化性樹脂が、 フエノール樹脂、尿素樹脂、 エポキシ樹脂、 メラミ ン樹脂またはシリコン樹脂である請求の範囲 4記載の細胞培養基質。
7 . 合成ゴムが、 ブタジエンスチレンゴム、 ブタジエンァクリロ二トリ ルゴム、 ブチルゴム、多硫化系合成ゴム、 フッ素ゴムまたはシリコンゴム である請求の範囲 2記載の細胞培養基質。
8 . 無機物が、 ガラス、 ヒドロキシアパタイ ト、 I C基材またはカーボ ンナノチューブである請求の範囲 2記載の細胞培養基質。
9 . 金属が、 不活性 ( i n e r t ) な金、 白金、 チタン、 ィンジゥム、 または、 これらの酸化物である酸化チタン、酸化ィンジゥム、 I T O (酸 化インジウム · スズ) である請求の範囲 2記載の細胞培養基質。
1 0.請求の範囲 2〜 9記載の基材からなる細胞培養基質が、培養皿(ゥ エル)、プリント配線板または人工臓器である請求の範囲 1記載の細胞培
1 1. 人工臓器が、 人工血管、 人工心肺または人工腎臓である請求の範 囲 1 0記載の細胞培養基質。
1 2. 細胞培養基質が、 シリコンゴムを基材とした培養皿 (ゥエル) で ある請求の範囲 1または 1 0記載の細胞培養基質。
1 3. 疎水結合性吸着ポリマーが、 以下の式 [ I ] で表される請求 の範囲 1〜 1 2のいずれか記載の細胞培養基質。
Figure imgf000055_0001
(式中、 Xは、 C Hまたは N H C H C Oを示し., Yは CHまたは NH C R 2 C〇を示し、 R 1は、 H, 炭素数 1〜 1 0のアルキル基、 炭素数 1 〜 1 0のアルコキシ基、 炭素数 6〜 1 0のァリールもしくはァラアルキ ル基または炭素数 6〜 1 0のァリールォキシもしくはァラアルキルォキ シ基を示し、 R 2は、 Hまたは炭素数 1〜 1 0のアルキル基を示し、 Z は、 官能基 (反応基) を示し、 Xと互に結合してもよく、 spacerは、 (一 C H 2 - )p または(一 NH C H R 3 C O—) q を示し、 R 3は、 Hまたは炭 素数 1〜 1 0のアルキル基を示し、 mは、 1以上の整数を、 nは、 1 0 0〜 2 0 0 0 0の整数を、 pおよび qは、 独立して 0または 1〜 8の整 数を、 rは、 1以上の整数を示す)
1 4. 式 [ I ] で表される疎水結合性吸着ポリマーが、 ビニル系化合物 と無水マレイン酸との共重合体である請求項 1 3記載の細胞培養基質。
1 5. ビニル系化合物が、 メチルビニルエーテル、 ェチルビ二ルェ一テ ル、 ブチルエーテル、 へキシルビニルエーテルまたはスチレンである請 求の範囲 1 4記載の細胞培養基質。
1 6. 細胞接着蛋白質またはべプチドが、請求の範囲 1〜15·のいずれか 記載の細胞培養基質に結合していることを特徴とする細胞接着蛋白質ま たはべプチドの固相化標品。
1 7. 結合が、 疎水結合性吸着ポリマー分子内の蛋白質またはペプチド と反応しうる官能基と細胞接着蛋白質またはべプチドの反応性基とが反 応し形成される共有結合である請求の範囲 1 6記載の固相化標品。
1 8.共有結合が、アミ ド結合である請求の範囲 1 7記載の固相化標品。
1 9. 細胞接着蛋白質が、 フイブロネクチン (F N), コラーゲン (C o 1 )、 ラミニン (LN) またはビトロネクチン (VN) である請求の範囲 1 6〜 1 8のいずれか記載の固相化標品。
2 0. 細胞接着ペプチドが、 請求の範囲 19記載の細胞接着蛋白質のァ ミノ酸配列の中で、 細胞接着に関わる領域のぺプチドである請求の範囲 1 6〜 1 8記載の固相化標品。
2 1. フイブロネクチン (FN) 蛋白質の細胞接着に関わる領域のぺプ チドが、 細胞側のインテグリン受容体と結合する特異的な A r g— G 1 y - A s p (R GD) アミノ酸配列を有するペプチドである請求の範囲 2 0記載の固相化標品。
2 2. R GDアミノ酸配列を有するペプチドが、 Ty r— A l a— V a 1 - T h r - G 1 y - A r g - G 1 y— A s p— S e r - P r o - A 1 a— S e r (F I B— 1 ) である請求の範囲 2 1記載の固相化標品。
2 3. ラミニン (LN) 蛋白質の細胞接着に関わる領域の.ペプチドが、 ひ鎖の G領域 (G_ d oma i n ) ぺプチドである請求の範囲 2 0記載 の固相化標品。
24. G領域ペプチドが、 A r g— L y s — A r g— L e u _G l n— V a l - G l n - L e u - S e r - I 1 e -A r g -T r (AG 7 3). L e u - G l n - G l n -A r g -A r g - S e r - V a 1 - L e u - A r g - T h r— L y s— I 1 e (AG 7 3 T), T h r - L e u -G 1 n— L e u— G l n - G 1 u - G 1 y— A r g— L e u— H i s - P h e -M e t (AG 7 6. 8)、 Th r— L e u - G i n— L e u— G i n — G l u - G l y -A r g - L e u -H i s— P h e— N l e ( A G 7 6. 8 X), V a 1 -L y s -Th r -G l u -T y r - I l e— L y s 一 A r g— L y s — A l a— P h e— M e t ( A G 8 1. 2)、 V a 1 一 L y s— Th r— G l u— Ty. r— I 1 e— L y s — A r g— L y s— A l a— P h e— N l e ( A G 8 1. 2 X ) L y s -A s n -A r g - L e u -T h r - I 1 e -G l u - L e u - G l u - V a 1 一 A r g— T h r ( A 2 G 7 3 )、 L y s _ P r o— A r g— L e u - G i n— P h e - S e r -L e u -A s p - I l e— G i n— T h r (A 3 G 7 2)、 L y s— P h e— L e u— G l u— G l n— L y s — A l a— P r o— A r g— A s p— S e r— H i s (A 4 G 7 3), G 1 y - G l u - L y s— S e r - G 1 n— P h e— S e r— I 1 e— A r g— L e u— L y s - T h r ( A 4 G 7 8 )、 T h r _L e u— P h e— L e u— A l a - H i s -G l y -A r g - L e u -V a 1 一 P h e— M e t ( A 4 G 8 2)、 T h r L e u - P h e— L e u - A l a— H i s - G 1 y - A r g - L e u -V a 1 一 P h e - N l e (A 4 G 8 2 X), G l y— P r o 一 L e u— P r o— S e r— Ty r— L e u— G l n— P h e— V a 1 — G l y— I 1 e (A 5 G 7 1 )、 A r g— A s n— A r g _L e u— H i s - L e u - S e r一 M e t - L e u -V a 1 — A r g— P r o (A 5 G 7 3)、A r g— A s n— A r g _L e u— H i s - L e u - S e r - N 1 e -L e u -V a 1 一 A r g - P r o (A 5 G 7 3 X)、 L e u— V a 1 - L e u - P h e - L e u -A s n -H i s — G l y— H i s — P h e - V a 1 - A 1 a (A 5 G 7 7 )、 L e u— V a 1 - L e u - P h e - L e u -A s n -H i s — G l y— H i s (A 5 G 7 7 f ), L y s -A s n - S e r - P h e -M e t - A 1 a - L e u— Ty r - L e u - S e r -L y s -G l y (h A 3 G 7 5 ) または G l y— A s n— S e r - T h r - I 1 e - S e r - I 1 e— A r g— A l a— P r o— V a l -Ty r (hA 3 G 8 3 )である請求の範囲 2 3記載の固相化標品。
2 5. 細胞接着ペプチドが、 3〜 2 0個のアミノ酸残基からなるぺプチ ドである請求の範囲 2 0記載の固相化標品。
2 6. 細胞培養基質にコ一ティングした疎水結合性吸着ポリマーの蛋白 質またはべプチドと反応しうる官能基と細胞接着蛋白質またはべプチド とを反応させることを特徴とする固相化標品の製造方法。
2 7. 疎水結合性吸着ポリマーの蛋白質またはペプチドと反応しうる官 能基と細胞接着蛋白質またはべプチドとを反応させ、 該反応物を細胞培 養基質にコーティングすることを特徴とする固相化標品の製造方法。
2 8. 疎水結合性吸着ポリマーの蛋白質またはペプチドと反応しうる官 能基と細胞接着蛋白質またはべプチドとを反応させて得られる反応物。
2 9. 請求の範囲 1 6〜 2 7のいずれか記載の細胞接着蛋白質またはべ プチドの固相化標品上に目的とする細胞を播種し、 培養することにより 調製されることを特徴とする人工組織。
3 0. 目的とする細胞が、 上皮細胞、 内皮細胞または間充織細胞である 請求の範囲 2 9記載の人工組織。
3 1. 上皮細胞が、 表皮細胞、 角膜上皮細胞、 肺胞上皮細胞、 消化器系 の粘膜上皮細胞、 腎臓子球体上皮細胞または肝実質細胞である請求の範 囲 3 0記載の人工組織。
3 2 . 内皮細胞が、 腎臓子球体毛細胞、 血管内皮細胞、 肺動脈血管内皮 細胞、 胎盤静脈血管内皮細胞または大動脈血管内皮細胞である請求の範 囲 3 0記載の人工組織。
3 3 . 間充織細胞が、 筋細胞、 脂肪細胞、 グリア細胞、 シュワン細胞ま たは神経細胞 (ニューロン) である請求の範囲 3 0記載の人工組織。
3 4 . 人工組織が、 人工表皮組織、 人工角膜上皮組織、 人工肺胞上皮組 織、 人工気道上皮組織、 人工腎糸球体組織、 人工肝実質組織もしくは人 ェ血管内皮組織、 または人工血管、 人工肺、 人工肝、 人工腎臓、 人工皮 膚もしくは人工角膜である請求の範囲 2 9〜 3 3のいずれか記載の人工 組織。
PCT/JP2004/004077 2003-03-24 2004-03-24 細胞培養基質および細胞接着蛋白質またはペプチドの固相化標品 WO2004085606A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04723031A EP1616939A1 (en) 2003-03-24 2004-03-24 Cell culture medium and solidified preparation of cell adhesion protein or peptide
JP2005504080A JP4555773B2 (ja) 2003-03-24 2004-03-24 細胞培養基質および細胞接着蛋白質またはペプチドの固相化標品
US10/551,052 US8304238B2 (en) 2003-03-24 2004-03-24 Cell culture medium and immobilized preparation of cell adhesion protein or peptide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003081148 2003-03-24
JP2003-081148 2003-03-24
JP2003081147 2003-03-24
JP2003-081147 2003-03-24

Publications (1)

Publication Number Publication Date
WO2004085606A1 true WO2004085606A1 (ja) 2004-10-07

Family

ID=33100354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004077 WO2004085606A1 (ja) 2003-03-24 2004-03-24 細胞培養基質および細胞接着蛋白質またはペプチドの固相化標品

Country Status (4)

Country Link
US (1) US8304238B2 (ja)
EP (1) EP1616939A1 (ja)
JP (1) JP4555773B2 (ja)
WO (1) WO2004085606A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087396A (ja) * 2004-09-27 2006-04-06 National Institute For Environmental Studies 細胞培養基質及びその製造方法
JP2006115723A (ja) * 2004-10-20 2006-05-11 Onchip Cellomics Consortium 細胞培養用マイクロチャンバーおよび細胞構造構築法
WO2007052653A1 (ja) * 2005-10-31 2007-05-10 Strex Incorporation 培養容器および培養装置
WO2007123035A1 (ja) * 2006-04-18 2007-11-01 Strex Incorporation 培養器
JP2009002677A (ja) * 2007-06-19 2009-01-08 Hirosaki Univ 表面弾性波デバイスバイオセンサ
KR100894703B1 (ko) * 2007-10-29 2009-04-24 서강대학교산학협력단 세포의 고정화 방법
JP2010532194A (ja) * 2007-07-05 2010-10-07 ユーシーエル ビジネス ピーエルシー 可変剛性を有する生体材料の製造方法
JP2010220570A (ja) * 2009-03-25 2010-10-07 Sumitomo Bakelite Co Ltd 細胞積層方法
JP2012509676A (ja) * 2008-11-26 2012-04-26 コーニング インコーポレイテッド ナノ粒子の細胞培養表面
JP2014117268A (ja) * 2012-12-19 2014-06-30 Kyoto Institute Of Technology 修飾ポリペプチドを用いた培養面のコーティング
CN110402282A (zh) * 2017-03-07 2019-11-01 东洋油墨Sc控股株式会社 细胞培养用袋状容器及其制造方法
WO2023127779A1 (ja) * 2021-12-27 2023-07-06 積水化学工業株式会社 細胞足場材形成用塗工液及びその製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754406B1 (ko) 2006-06-05 2007-08-31 삼성전자주식회사 카본나노튜브를 이용한 3차원 세포 배양 구조물과 그 제조방법, 그리고 상기 구조물을 이용한 세포 배양 모니터링장치
FR2916367B1 (fr) * 2007-05-25 2009-07-31 Commissariat Energie Atomique Procede de fixation sur un microsysteme de composes a liaisons peptidiques, tels que des proteines, et microsysteme incorporant ces composes.
WO2009099539A2 (en) * 2008-01-30 2009-08-13 Corning Incorporated (meth)acrylate surfaces for cell culture, methods of making and using the surfaces
ATE555191T1 (de) * 2008-01-30 2012-05-15 Geron Corp Synthetische oberflächen zur kultivierung von zellen in chemisch definierten medien
CN101939362A (zh) 2008-01-30 2011-01-05 杰龙公司 用于培养干细胞衍生的少突胶质细胞前体细胞的合成表面
US8329469B2 (en) * 2008-01-30 2012-12-11 Geron Corporation Swellable (meth)acrylate surfaces for culturing cells in chemically defined media
WO2009097411A1 (en) 2008-01-30 2009-08-06 Geron Corporation Synthetic surfaces for culturing stem cell derived cardiomyocytes
US20090246864A1 (en) * 2008-03-14 2009-10-01 Szlosek Paul M Cell culture device and methods for manufacturing and using the cell culture device
US8362144B2 (en) * 2009-05-21 2013-01-29 Corning Incorporated Monomers for making polymeric cell culture surface
WO2011050342A2 (en) * 2009-10-22 2011-04-28 The Regents Of The University Of California Rational design of a biocompatible synthetic laminin-111 polymer and uses thereof
WO2011115974A1 (en) * 2010-03-15 2011-09-22 Indiana University Research And Technology Corporation Engineered lumenized vascular networks and support matrix
CN102747028B (zh) * 2011-04-19 2015-07-29 清华大学 培养层及其制备方法和应用该培养层制备移植体的方法
CN103966096A (zh) * 2014-05-26 2014-08-06 扬州大学 一种细胞培养板及其制备方法和应用
DE102015109599B3 (de) * 2015-06-16 2015-12-31 Zetascience Gmbh Bioaktives Beschichtungsmaterial
CN105688279B (zh) * 2016-02-04 2018-10-26 天津幂方科技有限公司 一种肺替代物及其三维打印与注射成形制造方法
WO2020142439A1 (en) * 2018-12-31 2020-07-09 Saint-Gobain Performance Plastics Corporation Containers and substrates having textured surfaces

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501529A (ja) * 1987-05-04 1990-05-31 ベインズ,アルバート ジェー. 細胞培養装置用の生体適合性ポリオルガノシロキサン組成物
JPH05176761A (ja) * 1991-05-31 1993-07-20 Bio Material Kenkyusho:Kk 細胞処理剤
JPH05209072A (ja) * 1992-01-29 1993-08-20 Japan Synthetic Rubber Co Ltd 基材の表面処理方法
JPH05285217A (ja) * 1992-04-08 1993-11-02 Unitika Ltd 抗感染性カテーテル
JPH07191034A (ja) * 1993-12-27 1995-07-28 Unitika Ltd 病原因子検出材料及びこれを用いた病原因子検出方法
JPH07222920A (ja) * 1994-02-16 1995-08-22 Japan Synthetic Rubber Co Ltd 基材粒子の被覆方法
JPH0894621A (ja) * 1994-09-27 1996-04-12 Unitika Ltd 抗体検出材料及びこれを用いた抗体検出方法
JPH10110104A (ja) * 1996-10-07 1998-04-28 Toyo Ink Mfg Co Ltd 硬化性樹脂組成物、及びその硬化方法
JP2002065246A (ja) * 2000-06-15 2002-03-05 Sumitomo Bakelite Co Ltd 細胞培養基質、その製造方法及び細胞培養方法
JP2002263183A (ja) * 2001-03-09 2002-09-17 Asahi Kasei Corp 生体適合性材料

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200181A (en) * 1988-01-11 1993-04-06 Massachusetts Institute Of Technology Oral bilirubin therapy
JPH05252941A (ja) * 1991-08-12 1993-10-05 Sakai Enetsukusu Kk 動物細胞培養用担体
JP2501529B2 (ja) 1993-06-16 1996-05-29 博司 杉田 X線撮影用のフィルム記録マ―ク
JP3059127B2 (ja) * 1997-09-02 2000-07-04 藤村 昭夫 組織工学を応用した人工臓器
JPH1176400A (ja) * 1997-09-09 1999-03-23 Masahito Nagaki 人工臓器
JP4222658B2 (ja) * 1998-06-23 2009-02-12 テルモ株式会社 細胞支持基材、培養装置および液体処理装置
US6221967B1 (en) * 1999-12-16 2001-04-24 Shell Oil Company Preformed multi-acid adducts useful for grafting polyolefin polymers
GB0024689D0 (en) * 2000-10-09 2000-11-22 Unilever Plc Deodorant products
AU2002214333A1 (en) * 2000-11-22 2002-06-03 Matsuura, Eiji Method of assaying antilaminin-1 antibody and application thereof
WO2002053193A2 (en) * 2001-01-02 2002-07-11 The Charles Stark Draper Laboratory, Inc. Tissue engineering of three-dimensional vascularized using microfabricated polymer assembly technology
JP2002315567A (ja) * 2001-04-18 2002-10-29 Yasuhiko Tabata 細胞接着活性物質を含有してなる幹細胞培養用基材
EP1406680A4 (en) * 2001-06-15 2007-01-10 Johns Hopkins Singapore Pte Lt BIOFUNCTIONAL FIBERS
US20030044866A1 (en) * 2001-08-15 2003-03-06 Charles Boone Yeast arrays, methods of making such arrays, and methods of analyzing such arrays
US20040043508A1 (en) * 2002-09-03 2004-03-04 Frutos Anthony G. Polymer-coated substrates for binding biological molecules
US7126134B2 (en) * 2004-08-19 2006-10-24 Palo Alto Research Center Incorporated Sample manipulator
US20070065415A1 (en) * 2005-09-16 2007-03-22 Kleinsek Donald A Compositions and methods for the augmentation and repair of defects in tissue

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501529A (ja) * 1987-05-04 1990-05-31 ベインズ,アルバート ジェー. 細胞培養装置用の生体適合性ポリオルガノシロキサン組成物
JPH05176761A (ja) * 1991-05-31 1993-07-20 Bio Material Kenkyusho:Kk 細胞処理剤
JPH05209072A (ja) * 1992-01-29 1993-08-20 Japan Synthetic Rubber Co Ltd 基材の表面処理方法
JPH05285217A (ja) * 1992-04-08 1993-11-02 Unitika Ltd 抗感染性カテーテル
JPH07191034A (ja) * 1993-12-27 1995-07-28 Unitika Ltd 病原因子検出材料及びこれを用いた病原因子検出方法
JPH07222920A (ja) * 1994-02-16 1995-08-22 Japan Synthetic Rubber Co Ltd 基材粒子の被覆方法
JPH0894621A (ja) * 1994-09-27 1996-04-12 Unitika Ltd 抗体検出材料及びこれを用いた抗体検出方法
JPH10110104A (ja) * 1996-10-07 1998-04-28 Toyo Ink Mfg Co Ltd 硬化性樹脂組成物、及びその硬化方法
JP2002065246A (ja) * 2000-06-15 2002-03-05 Sumitomo Bakelite Co Ltd 細胞培養基質、その製造方法及び細胞培養方法
JP2002263183A (ja) * 2001-03-09 2002-09-17 Asahi Kasei Corp 生体適合性材料

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087396A (ja) * 2004-09-27 2006-04-06 National Institute For Environmental Studies 細胞培養基質及びその製造方法
JP2006115723A (ja) * 2004-10-20 2006-05-11 Onchip Cellomics Consortium 細胞培養用マイクロチャンバーおよび細胞構造構築法
JP4664646B2 (ja) * 2004-10-20 2011-04-06 一般社団法人オンチップ・セロミクス・コンソーシアム 細胞培養用マイクロチャンバーおよび細胞構造構築法
JPWO2007052653A1 (ja) * 2005-10-31 2009-04-30 ストレックス株式会社 培養容器および培養装置
WO2007052653A1 (ja) * 2005-10-31 2007-05-10 Strex Incorporation 培養容器および培養装置
WO2007123035A1 (ja) * 2006-04-18 2007-11-01 Strex Incorporation 培養器
JP2009002677A (ja) * 2007-06-19 2009-01-08 Hirosaki Univ 表面弾性波デバイスバイオセンサ
JP2010532194A (ja) * 2007-07-05 2010-10-07 ユーシーエル ビジネス ピーエルシー 可変剛性を有する生体材料の製造方法
KR100894703B1 (ko) * 2007-10-29 2009-04-24 서강대학교산학협력단 세포의 고정화 방법
JP2012509676A (ja) * 2008-11-26 2012-04-26 コーニング インコーポレイテッド ナノ粒子の細胞培養表面
JP2010220570A (ja) * 2009-03-25 2010-10-07 Sumitomo Bakelite Co Ltd 細胞積層方法
JP2014117268A (ja) * 2012-12-19 2014-06-30 Kyoto Institute Of Technology 修飾ポリペプチドを用いた培養面のコーティング
CN110402282A (zh) * 2017-03-07 2019-11-01 东洋油墨Sc控股株式会社 细胞培养用袋状容器及其制造方法
CN110402282B (zh) * 2017-03-07 2022-09-20 东洋油墨Sc控股株式会社 细胞培养用袋状容器及其制造方法
WO2023127779A1 (ja) * 2021-12-27 2023-07-06 積水化学工業株式会社 細胞足場材形成用塗工液及びその製造方法

Also Published As

Publication number Publication date
US20060263878A1 (en) 2006-11-23
US8304238B2 (en) 2012-11-06
JPWO2004085606A1 (ja) 2006-06-29
JP4555773B2 (ja) 2010-10-06
EP1616939A1 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
WO2004085606A1 (ja) 細胞培養基質および細胞接着蛋白質またはペプチドの固相化標品
US7125960B2 (en) Crosslinked elastin and process for producing the same
EP0494216B1 (en) Surfaces having desirable cell adhesive effects
US6818620B2 (en) Synthetic compounds and compositions with enhanced cell binding
CA2124583C (en) Synthetic compounds and compositions with enhanced cell binding
Park et al. In situ SVVYGLR peptide conjugation into injectable gelatin-poly (ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization
US5955578A (en) Polypeptide-polymer conjugates active in wound healing
Anderson et al. Modulating the gelation properties of self-assembling peptide amphiphiles
US9090869B2 (en) Temperature responsive sheet that displays reversible properties and cell sheet production method using same
JP5020973B2 (ja) 細胞接着用の組換ゼラチン粒子
Joddar et al. Biological modifications of materials surfaces with proteins for regenerative medicine
US20050282747A1 (en) Methods and compositions for wound healing
ITPD980037A1 (it) Acido ialuronico solfatato e i suoi derivati legati covalentemente a polimeri sintetici pe la preparazione di biomateriali e per il rivesti
US5674848A (en) Bioreactor compositions with enhanced cell binding
JP2001527451A (ja) 細胞結合活性を有するコラーゲン様ポリマー
AU2005291306B2 (en) Covalent grafting of hydrophobic substances on collagen
EP2020435B1 (en) Method of culturing vascular smooth muscle cells, culture device and medical material obtained by the culture
JP2002537025A (ja) 新規な機能を有する生体適合性材料
Cipolla et al. Materials biofunctionalization for tissue regeneration
Ito 5.1 Cell Adhesion Factor Immobilized Materials
JP2002530292A (ja) カップリングしたペプチド
Imanishi Synthesis of Biocomposite Materials
Brown et al. Overview: Therapeutic Uses of Cell-Matrix Adhesive Proteins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504080

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004723031

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004723031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006263878

Country of ref document: US

Ref document number: 10551052

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10551052

Country of ref document: US