Nothing Special   »   [go: up one dir, main page]

WO2004081050A1 - 癌特異的抗原を標的とした抗体 - Google Patents

癌特異的抗原を標的とした抗体 Download PDF

Info

Publication number
WO2004081050A1
WO2004081050A1 PCT/JP2004/003048 JP2004003048W WO2004081050A1 WO 2004081050 A1 WO2004081050 A1 WO 2004081050A1 JP 2004003048 W JP2004003048 W JP 2004003048W WO 2004081050 A1 WO2004081050 A1 WO 2004081050A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
human
cells
cancer
protein
Prior art date
Application number
PCT/JP2004/003048
Other languages
English (en)
French (fr)
Inventor
Kimihisa Ichikawa
Shu Takahashi
Toshinori Agatsuma
Keisuke Fukuchi
Takehiro Hirai
Original Assignee
Sankyo Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT04718767T priority Critical patent/ATE434044T1/de
Priority to NZ542220A priority patent/NZ542220A/en
Application filed by Sankyo Company Limited filed Critical Sankyo Company Limited
Priority to EP04718767A priority patent/EP1602669B1/en
Priority to US10/548,688 priority patent/US7855056B2/en
Priority to BRPI0408238-9A priority patent/BRPI0408238A/pt
Priority to AU2004220182A priority patent/AU2004220182B2/en
Priority to MXPA05009715A priority patent/MXPA05009715A/es
Priority to DE602004021567T priority patent/DE602004021567D1/de
Priority to DK04718767T priority patent/DK1602669T3/da
Priority to CA002518787A priority patent/CA2518787A1/en
Publication of WO2004081050A1 publication Critical patent/WO2004081050A1/ja
Priority to US11/223,812 priority patent/US7361340B2/en
Priority to NO20054631A priority patent/NO20054631L/no
Priority to HK06100346.5A priority patent/HK1078593A1/xx
Priority to US11/345,651 priority patent/US20070025996A1/en
Priority to US11/872,479 priority patent/US7741447B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to an antibody that can be used for cancer treatment, a pharmaceutical composition for treating cancer, which comprises the body as an active ingredient, a method for detecting cancer, and a kit for detecting cancer.
  • tumor cells express a unique antigen protein (hereinafter, sometimes referred to as a tumor-associated antigen) depending on the cell type. Therefore, attempts are being made to develop new therapeutic methods for tumors by using this tumor-associated antigen as a target.
  • Monoclonal monocytes that show a specific antigen-antibody response to tumor-associated bovine cells have various biological immune reactions (antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity ( It is known that it induces cancer cells by inducing CDC), etc., and induces cell death.
  • ADCC antibody-dependent cellular cytotoxicity
  • CDC complement-dependent cytotoxicity
  • Monoclonal K-forms useful for treating tumors have been developed.
  • monoclonal antibodies useful for the treatment of epilepsy are limited to several tumor types, such as metastatic breast cancer, acute myeloid leukemia, refractory chronic lymphoma, non-Hodgkin's lymphoma, and multiple myeloma.
  • tumor types such as metastatic breast cancer, acute myeloid leukemia, refractory chronic lymphoma, non-Hodgkin's lymphoma, and multiple myeloma.
  • monoclonal antibody that can be used for treating other tumors.
  • Human oculospanin is a protein obtained as an Expressed Sequence Tag (EST) clone from genes expressed in the retinal pigment epithelium and ocular choroid (Molecular Vision, (2002) 8, 25-220).
  • the human oculospanin gene has an open-reading frame of 1068 bp, and the human oculospanin has a length of amino acid from 355 amino acids.
  • the molecular weight estimated from the DNA sequence is 36.4 kDa, the relationship between human oculospanin and tumor has not been clarified. Disclosure of the invention
  • the present invention provides a method for detecting a cancer by detecting a gene that is specifically expressed in a cancer, and detecting the expression of the gene, a kit for detecting a cancer used in the detection method, and a method for specifically expressing an expression product of the gene.
  • An object of the present invention is to provide an antibody that binds and has cytotoxic activity, and a pharmaceutical composition for treating cancer comprising the antibody as an active ingredient.
  • the present inventors searched for a gene that is specifically expressed in human cancer tissues, and the expression level of the human oculospanin gene, whose function was unknown, has been significantly increased in melanocytic cells. Accordingly, the present invention provides a method for detecting cancer using the gene, a kit for detecting cancer, and a pharmaceutical composition for treating cancer, which contains an anti-human oculospanin antibody, thereby completing the present invention.
  • cytotoxic activity is apoptosis induction, (1) or
  • a method for detecting cancer comprising the following steps 1) to 4):
  • a method for detecting cancer comprising the following steps 1) to 3):
  • step 2) measuring the expression level of at least one of the proteins described in step 1) above in a sample collected from a normal person;
  • the method for measuring the expression level of a polynucleotide is characterized in that it is a Northern plot method, a dot plot method, a slot blot method, RT-PCR, a liponuclease-protected assay or a run-on assay. , (12), (14) and (15);
  • the method for measuring the expression level of a polynucleotide is characterized in that a gene chip or an array made of DNA comprising a partial sequence of each DNA of a complementary DNA group or a DNA group derived from a specimen is used. , (12), (14) and (15);
  • a kit for detecting a cancer containing at least one or more selected from the group consisting of the following 1) to 3):
  • Kit for detecting cancer containing at least one of the following 1) and 2): 1) Protein consisting of the amino acid sequence shown in SEQ ID NO: 2 in Sequence Listing and SEQ ID NO in Sequence Listing Specifically binds to a protein consisting of the amino acid sequence shown in 4, A body for detecting the protein;
  • a pharmaceutical composition for treating cancer comprising at least one of the antibodies according to (1) to (11).
  • a pharmaceutical composition for treating cancer comprising an oligonucleotide having a nucleotide sequence represented by SEQ ID NO: 1 in the Sequence Listing or a nucleotide sequence complementary to a partial distribution sequence of the sequence,
  • the upper diagram of FIG. 1 is a graph showing the expression of the human oculospanin gene in various cell lines.
  • the lower diagram of FIG. 1 is a graph showing the expression levels of the human oculospanin gene in healthy human skin samples and melanophora samples.
  • the upper diagram of FIG. 2 is a graph showing the expression level of the human oculospanin gene in a healthy human skin sample and a skin tissue-derived melanoma sample.
  • the lower diagram of FIG. 2 is a graph showing the expression level of the human oculospanin gene in a healthy human skin sample and a lymphoma node-derived melanoma sample.
  • FIG. 3 is a graph showing the expression level of the human occulospanin gene in a sample derived from a healthy human lymph node and a melanosample derived from a lymph node tissue.
  • FIG. 4 is a view showing expression of a human occulospanin gene product in NIH3T3 cells.
  • Figure 5 shows the results of anti-oculospanis using cells expressing human oculospanins.
  • 4 is a graph showing the antibody-dependent cytotoxic activity of the antibody.
  • a compound having a therapeutic effect on cancer refers to a compound having an activity of suppressing cancer growth and an activity of reducing cancer.
  • cancer and “tumor” are used interchangeably.
  • the term “gene” is intended to include not only DNA but also its mRNA, cDNA and its cRNA. Therefore, the term “human oculospanin gene J” in the present invention includes DNA, mRNA, cDNA and cDNA of human oculospanin.
  • polynucleotide refers to a nucleic acid. They are used interchangeably and include DNA, RNA, probes, oligonucleotides, and primers.
  • RNA fraction refers to a fraction containing RNA.
  • cells includes cells in an animal individual and cultured cells.
  • cell carcinogenesis means that cells exhibit abnormal growth, such as losing sensitivity to the contact inhibition phenomenon or exhibiting anchorage-independent growth. A cell exhibiting such abnormal growth is referred to as “cancer cell J.
  • a protein having a function equivalent to the oncogenic activity of a cell having human oculospanin is also referred to as a human oculospanin.
  • oncogene (Oncoge) in the present invention includes oncogenes and proto-oncogenes (Proto-Oncogene) in addition to oncogenes.
  • cytotoxicity refers to causing pathological changes in cells in any way, not only direct trauma but also DNA cleavage, base dimer formation, and chromosomal damage. This refers to any structural or functional damage to any cell, such as cleavage, damage to cell division machinery, or reduced activity of various enzymes. “Cytotoxic activity” in the present invention means causing the above-mentioned cell injury.
  • hybridizing under stringent conditions means that hybridization is performed at 68 ° C. in a commercially available hybridization solution ExpressHyb Hybridization Solution (manufactured by Clontech), or DNA is synthesized. Hybridization at 68 ° C in the presence of 0.7-1.0 M NaC1 using a fixed filter After performing the daidze reaction, use 0.1- to 2-fold concentration SSC solution (1x concentration SSC consists of 150 mM NaCl and 15 mM sodium citrate), and Hybridization under conditions that can be identified by washing with C or equivalent conditions.
  • the expression level of the human occulospanin gene in various human cell lines was significantly higher in melanocytes than in other tissues, and moreover in melanomas than in normal melanocytes. It has been found by the present inventors that the expression level is significantly increased. For example, comparing the expression levels of human oculospanin among melanocytes, lymphoblasts, glial cells, and epithelial cells, the expression levels are significantly higher in melanocytes, and normal skin cells and melanoma cells. Comparing the expression levels of human oculospanin in the above, the present inventors found that the expression level was remarkably high in melanomas.
  • human oculospanin is involved in canceration of cells and / or proliferation of cancer cells. That is, by measuring the expression level of human occulospanin in each cell and / or each tissue, the state of canceration and / or proliferation of cancer cells caused by overexpression of human occulospanin can be determined. Can be determined.
  • Such cancers include, for example, skin cancers, in particular, melanoma. If the expression of human occulospanin is significantly greater than that of other tissues, other cancers may be used. It can also be applied to cancer.
  • the nucleotide sequence of the open reading frame (0RF) of the human oculospanin gene is shown in SEQ ID NO: 1 in the sequence listing, and its amino acid sequence is shown in SEQ ID NO: 2 in the sequence listing.
  • OCSP Homo sapiens oculospanin
  • mRNA accession number: NM_ 0 3 1 9 4 5
  • GenBank accession number: NM_ 0 3 1 9 4 5
  • the nucleotide sequence of the cDNA used is also shown in SEQ ID NO: 3 in the sequence listing, and 0RF is shown in nucleotide numbers 65 to 112 of SEQ ID NO: 3.
  • Hit Oculus registered in GenBank An amino acid sequence identical to the amino acid sequence of panin is shown in SEQ ID NO: 4 in the sequence listing.
  • amino acid sequence of human oculospanin one or several amino acids are substituted, deleted or added, and the protein having the same biological activity as human oculospanin is also a protein of human oculospanin. include. .
  • human oculospanin is highly expressed in cancer cells, particularly in melanoma, it is considered to be involved in canceration of cells, particularly skin cells, and / or proliferation of cancer cells.
  • the ⁇ sample '' refers to blood, body fluid, prostate, testis, penis, bladder, kidney, oral cavity, pharynx, lips, tongue, gingiva, nasopharynx, esophagus, stomach, Tissues or excretions such as small intestine, large intestine, colon, liver, gallbladder, Teng, nose, lung, bone, soft tissue, skin, breast, uterus, ovary, brain, thyroid, lymph node, muscle, adipose tissue, etc.
  • the skin or the lymph node is more preferable in the present invention.
  • Method for detecting cancer using the expression level of human occulospanin gene The method for detecting cancer using the expression level of the human occulospanin gene is specifically described in the following steps 1) to 4) It is a method including.
  • Step 1) Extracting the total RNA fraction from the sample collected from the subject;
  • human-derived tissue obtained by a method appropriate to the appropriate experimental ethical standards Is directly dissolved in a solvent for RNA extraction (for example, one containing a component that inactivates liponuclease, such as phenol).
  • the cells were collected by a method such as gently squeezing with a scraper or gently extracting the cells from the tissue with a protease such as trypsin so as not to destroy the cells in the tissue. Then, immediately proceed to the RNA extraction step. .
  • RNA extraction methods include guanidine thiocyanate 'cesium chloride ultracentrifugation method, guanidine thiocyanate-hot phenol method, guanidine hydrochloride method, and acid guanidine thiocyanate-phenol-clonal form method (Chomczynski, P. an d Sacc iN, Anal. Biochem. (1987), 162, 156-159), etc., but the acid guanidine thiocyanate / phenol / chloroform method is preferred.
  • reagents for RNA extraction for example, ISOGEN (manufactured by Futtsubon Gene Co., Ltd.), TRIZOL reagents (manufactured by Gibco 'PRL)) and the like can also be used according to the protocol attached to the reagents.
  • ISOGEN manufactured by Futtsubon Gene Co., Ltd.
  • TRIZOL reagents manufactured by Gibco 'PRL
  • the obtained total RNA fraction is preferably further purified and used only for mRNA if necessary.
  • the purification method is not particularly limited.
  • mRNA is adsorbed to a biotinylated oligo (dT) probe, and streptavidin-immobilized paramagnetic particles are used by utilizing the binding between biotin and streptavidin.
  • the mRNA can be purified by eluting the mRNA.
  • a method of adsorbing mRNA onto an oligo (dT) cellulose column and then eluting the mRNA and purifying it may be employed.
  • the step of purifying these mRNAs is not essential for the method of the present invention, and the total RNA fraction should be used in the subsequent steps as long as the expression of the target polynucleotide can be detected. You can also. '
  • a normal person means a person who does not have cancer. Whether a person is normal or not can be determined by measuring the concentration of human oculospanin and determining whether or not the value falls within a numerical range determined in advance as a normal person. The correlation between the expression level of the gene and the degree of cancer formation in normal subjects is checked in advance, and the subject is a normal subject by measuring the expression level of human oculospanin in a sample collected from the subject. Or not. Preparation of the total RNA fraction from normal subjects should be performed in the same manner as in step 1) above. Can be.
  • Step 3) A step of measuring the expression level of the human occulospanin gene in the total RNA fraction described in step 1) above and the total RNA fraction described in step 2) above: here, human occulospanin
  • the expression level of the gene is determined by the polynucleotide comprising the nucleotide sequence shown in SEQ ID NO: 1 in the Sequence Listing, or the polynucleotide comprising the nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 1 in the Sequence Listing and the string. This is indicated by the expression level of a polynucleotide that hybridizes under various conditions. '
  • Examples of the immobilized sample include the following.
  • a gene chip on which an antisense oligonucleotide synthesized on the basis of an EST (expressedseqsecncetag) sequence or mRNA sequence on a database is immobilized.
  • a gene chip is a gene chip manufactured by Affymetrix (A fymetrix) (Lip shut z,. J. et al., Nature Genet. (1999) 21, suppl iment, 20-24). ) Can be used, but the present invention is not limited to this, and it may be produced based on a known method.
  • human-derived mRNA is preferable.
  • human U95 set or U133 set manufactured by Affymetrix can be used.
  • the invention is not limited thereto, and for example, those derived from closely related animals can be used.
  • cDNA or RT-PCR product prepared from human, total RNA, or total RNA obtained from a specific tissue. It was cloned by performing a reverse transcriptase reaction or PCR using a primer prepared based on the sequence information of the EST database and other information.
  • This cDNA and RT-PCR product Differential expression of total RNA between humans with and without tumors was determined by the subtraction method (Diatchenki, L, et al, Proc. Natl. Acad. Sci. USA, (1996) 93, 6025-6030) and the differential display method (Liang, P., et al Nucleic Acids Res., (1992) 23, 3685-3690). Good.
  • the labeled probe use not a specific mRNA clone but a label of all expressed mRNAs.
  • unpurified mRNA may be used as a starting material for preparing the cap, it is preferable to use poly (A) + RNA purified by the method described above.
  • poly (A) + RNA purified a method for preparing a labeled probe and a detection and analysis method using various types of immobilized samples will be described.
  • a biotin-labeled cRNA probe is prepared according to the protocol (Affimetrix Expression Analysis Technical Manual) attached to the Affimetrix GeneChip. Then, according to the protocol (Expression Analysis Technology Manual) attached to the gene chip manufactured by Affimetrics, hybridization was performed using an analysis device (GeneChip Fluidics Station 400) manufactured by Affymetrix. Perform an analysis and analysis to detect and analyze luminescence by avidin.
  • cDNA When preparing cDNA from poly (A) + RNA in reverse transcriptase reaction, it is necessary to label cDNA so that cDNA can be detected.When labeling with fluorescent dye Then, dDNA is labeled with a fluorescent dye (eg, Cy3, Cy5, etc.), and the cDNA is fluorescently labeled. At this time, if poly (A) + RNA derived from melanoma cells and poly (A) + RNA derived from control cells are labeled with different dyes, both will be mixed during the subsequent hybridization. Can be used.
  • a fluorescent dye eg, Cy3, Cy5, etc.
  • the array to be used is not limited to a commercially available array, and may be a home-made array or a specially prepared array.
  • a labeled isotope is prepared by adding a radioisotope (for example, d-CTP, etc.), and hybridization is performed by a conventional method.
  • a radioisotope for example, d-CTP, etc.
  • hybridization is performed by a conventional method.
  • the method according to any one of the above (a) to (c) hybridizes a probe derived from each human tissue to the solid-phased sample of the same lot. At this time, the conditions other than the hybridization used except for the hybridization are the same.
  • a fluorescently labeled probe if each probe is labeled with a different fluorescent dye, the mixture of both probes can be hybridized to one solid-phased sample at a time, and the fluorescence intensity can be read ( Brown, P.0. Et al. Nature Genet., (1999) 21, supplement, p.33-37).
  • Step 4) The difference in the expression level of the gene measured in the above step 3) between the total RNA fraction derived from the above step 1) and the total RNA fraction derived from the above step 2) is analyzed, and the above step 1) is analyzed. 4. The step of detecting cancer in a subject according to the above.
  • a cancer in which the expression level of human oculospanin is significantly increased is cancer, especially skin cancer. Further, it can be determined that there is a high possibility that melanoma is present, and cancer can be detected.
  • the expression level is significantly increased, for example, when analysis is performed using Affimetrix's gene chip and Affimetrix's microarray Suite Ver. This means that the averagedifference value of the cell-derived gene is significantly increased as compared to normal melanocytes.
  • the concentration of the human occulospanin gene is measured, and it is analyzed whether or not the value falls within the numerical range determined in advance as a normal value.
  • a cancer can be detected by determining that it has cancer, or a sample collected from a subject by previously examining the correlation between the expression level of the human occulospanin gene and the degree of cancer formation in normal humans. By measuring the expression level of the human occulospanin gene in the above, it can be determined whether or not the subject is a normal person.
  • a method for detecting cancer using the expression level of human occulospanin is, specifically, a method including the following steps 1) to 3).
  • sample After removing insoluble substances by performing high-speed centrifugation as necessary, prepare the sample as a sample for ELISA / RIA or a sample for Westin blot as follows.
  • the recovered skin or lymph node may be used as it is, or may be appropriately diluted with a buffer.
  • Western blot (electrophoresis) samples for example, use the extract of skin or lymph node as it is, or dilute appropriately with buffer, and use SDS-polyacrylamide electrophoresis 21-mercator. Mix with a sample buffer containing ethanol (eg, from Sigma).
  • a dot / slot plot for example, the collected skin or lymph node extract itself or appropriately diluted with a buffer solution is directly adsorbed to the membrane using a plotting device.
  • the sample is precipitated by immunoprecipitation, a method using ligand binding, etc., and detected without immobilization.
  • the sample to be detected can be immobilized as it is.
  • a nitrocellulose membrane e.g., manufactured by Bio-Rad Co., Ltd.
  • a nylon membrane e.g., etc.
  • Hybond-I ECL (Amersha-Pharmacia) etc.), Cotton Membrane (for example, Protosorbent Filter-1 (Bio-Rad) etc.), or Polyvinylidene Difluoride (PVDF) membrane (for example, Bio-Rad) And the like).
  • Cotton Membrane for example, Protosorbent Filter-1 (Bio-Rad) etc.
  • PVDF Polyvinylidene Difluoride
  • a 96-well plate for example, Imnoplate / Maxisorp (produced by Nunc) is used to prepare a sample or a dilution thereof (for example, 0.05).
  • % Phosphate buffered saline containing sodium azide diluted in PBS
  • the protein is adsorbed on the inner bottom surface of the well to be immobilized by leaving it overnight or at 37 for 1 to 3 hours.
  • Antibodies to human oculospanin can be obtained from the amino acid sequence of human oculospanin or human oculospanin using a conventional method (see, for example, Shinsei Kagaku Kenkyusho 1, Protein 1, p. 389-397, 1992). It can be obtained by immunizing an animal with any selected polypeptide and collecting and purifying antibodies produced in the living body. Further, according to a known method (for example, Kohler and Milstein, Nature 256, 495-497, 1975, Kennet, R. ed., Monoclonal Ant ibody p.
  • a monoclonal antibody can also be obtained by establishing a hybridoma by fusing an antibody-producing cell that produces an antibody against oculospanin with a myeloma cell.
  • human oculospanin as an antigen can be obtained by producing a human oculospanin gene in a host cell by genetic manipulation. Specifically, a vector capable of expressing a human oculospanin gene can be prepared, introduced into a host cell to express the gene, and the expressed human oculospanin can be purified.
  • the expression level of human oculospanin is represented by expression a of a protein comprising an amino acid sequence shown in SEQ ID NO: 2 in the sequence listing.
  • the expression level can be measured using the above-mentioned anti-human occulospanin antibody by a known method such as the western blot method / dot / slot blot method.
  • Step 2) Step of measuring the expression level of the protein described in 1) above in a sample collected from a normal person:
  • the measurement of the expression level of human touloculospanin in a sample collected from a normal person can be performed in the same manner as in the above step 1).
  • Step 3) a step of analyzing the difference between the expression level of the protein measured in the above step 1) and the expression S of the protein measured in the above step 2) to detect cancer in the subject.
  • the concentration of human oculospanin is measured, and it is analyzed whether or not the concentration falls within the numerical range determined in advance as a normal person value.
  • Cancer can be detected by determining that it has cancer, or by examining in advance the correlation between the expression level of human * oculospanin and the degree of cancer formation in normal humans, it is possible to detect human cancer in a sample collected from a subject. • It is also possible to determine whether or not the subject is a normal person by measuring the expression level of toulospanin.
  • a human cDNA library derived from a cell expressing human ococulospanin is prepared according to a known method such as colony hybridization method, etc. Obtain full-length cDNA. This full-length cDNA is introduced into a mouse or a human cell to be highly expressed, and it is examined whether or not the cell is affected.
  • a method of incorporating the obtained full-length cDNA into a virus vector and administering it to an animal can be mentioned.
  • a virus vector for example, cDNA is incorporated into a DNA virus such as a retrovirus, an adenovirus, an adeno-associated virus, a herpes virus, a vaccinia virus, a box virus, a polio virus, or an RNA virus.
  • the method introduced in is mentioned. Among them, methods using retrovirus, adenovirus, adeno-associated virus, and vaccinia virus are preferable.
  • Non-viral gene transfer methods include a method of directly expressing expression plasmid into muscle (DNA vaccine method), Ribosome method, Lipofection method, microinjection method, calcium phosphate method, electoral poration method, etc. Among them, the DNA vaccine method and the ribosome method are preferred.
  • full-length cDNA is introduced into muscle cells, hepatocytes, adipocytes, or muscle cells, hepatocytes, adipocytes, skin cells, etc. derived from human, mouse, rat, etc. Highly expressed, the function of each target cell, specifically, the function of regulating glycolipid metabolism such as production and uptake of glycolipids or accumulation of glycogen, or what effect on cell morphology You can consider whether it will appear. Conversely, an antisense nucleic acid against all R R ⁇ of the gene to be tested can be introduced into cells, and the effect on the function and morphology of each target cell can be examined.
  • the cDNA When introducing full-length cDNA into an animal or a cell, the cDNA is incorporated into a vector containing an appropriate promoter and a sequence involved in expression of the gene, and the vector is used to transform a host cell.
  • a vertebrate cell expression promoter one having a promoter located upstream of a gene to be normally expressed, an RNA splice site, a polyadenylation site, and a transcription termination sequence can be used. May have a replication origin if necessary.
  • An example of such an expression vector is pSV2dhfr (Subramani, S. et al., Mol. Cell. Biol., (1981) 1, .854-864) which has an initial promoter of SV40.
  • Retrovirus vectors pLNCX, pLNSX, pLXIN, pSIR manufactured by Clontech
  • cosmid vector-1 pAxCw manufactured by Takara Bio Inc.
  • the expression vector is prepared by the method of acetylaminoethyl (DEAE) -Axtran (Luthman, H. and Magnusson, G., Nucleic Acids Res. (1983) 11, .1295-1308), Calcium-DNA co-precipitation method (Graham, FL and van der Eb, AJ Virology, (1973) 52, p.456-457), and electric pulse perforation method (Neumann, E.
  • COS cells COS cells (Gluzman, Y. Cel 1 (1981) 23, p.175-182, ATCC: CRL-1650), which are monkey cells, and Chinese hamster ovary cells (1, .841-845).
  • CH ⁇ cell, AT CC: CCL-161) dihydrofolate reductase-deficient strain Urlaub, G. and Chasin, LA Pro c. Natl. Acad. Sci. USA (1980) 77, p.4126-4220
  • It can be incorporated into human fetal kidney-derived 293 cells (ATCC: CRL-15773) and the like, but is not limited thereto. Thus, a desired transformant can be obtained.
  • the target gene is highly expressed in normal animals by genetic manipulation. It is also possible to prepare transgenic animals in such a way as to study the effects on cell morphology. Conversely, in an animal having melanoma, a knockout animal in which the target gene has been disrupted can be prepared to determine the state of the cell.
  • the human oculospanin gene and / or the human oculospanin can be detected using a kit containing at least one selected from the group consisting of the following 1) to 5).
  • a continuous oligonucleotide primer having a length of 15 to 30 bases for specifically amplifying a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing;
  • the primer described in 1) above is a commercially available primer design software (for example, Wisconsin) based on the nucleotide sequence of the human occulospanin gene (the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing). It can be easily designed and amplified by conventional methods, such as by using GCG package Ver. 10.2).
  • a primer for example, in order to amplify a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 1 in the Sequence Listing, an oligonucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 5 in the Sequence Listing is used.
  • a combination of oligonucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 6 in the column list can be used.
  • the probe described in 2) above specifically hybridizes to human oculospanin. It is a polynucleotide to be hybridized and has a length of 100 to 150 bases, preferably 300 to 600 bases.
  • These primers and probes may be labeled with an appropriate label (for example, an enzyme label, a radioactive label, a fluorescent label, etc.), or may be linked with a linker.
  • the solid-phased sample described in 3) above is prepared by immobilizing the probe described in 2) above on a solid phase such as a glass plate or nylon membrane.
  • the method for preparing such an immobilized sample has already been described in the section “(1) Cancer detection method using the expression level of human occulospanin gene” in the section “2. Cancer detection method”.
  • (1) Measurement method using solid-phased sample for example, a gene chip, a cDNA array, an oligo array, a membrane filter, and the like.
  • the kit of the present invention can further include a thermostable DNA polymerase, dNTP (a mixture of dATP, dCTP, dGTP, and dTTP) and a buffer.
  • dNTP a mixture of dATP, dCTP, dGTP, and dTTP
  • the heat-resistant DNA polymerase include Taq DNA polymerase, LAT aq DNA pollym erase (manufactured by Takara Shuzo), Tth DNA polymerase, and Pfu DNA polymerase.
  • the buffer is selected according to the DNA polymerase used, and Mg 2+ or the like is added as necessary.
  • the antibody described in 4) and 5) above is a method for detecting cancer using the expression level (3) of human oculospanin (protein expression S) in the above section “2. Method for detecting cancer”. And the method described in “5. Production of human occulopanin antibody”.
  • the antibody may be labeled with an appropriate label (for example, an enzyme
  • the kit of the present invention can be used for the detection of the human occulospanin gene and / or the human occlusion spanin, and is also used for determining the presence or absence of cancer and for screening for a substance that suppresses cancer growth. be able to.
  • a human oculopanin or a polypeptide comprising at least six consecutive partial amino acid sequences thereof is used as an antigen for producing a human oculopanin antibody.
  • Peptides and derivatives obtained by adding an arbitrary amino acid sequence or a carrier to them can be given.
  • Human occulospanin can be used by directly purifying it from human tumor tissue or tumor cells, and can also be obtained by synthesizing human 'oculopanin in vitro or by producing it in host cells by genetic engineering.
  • human 'oculopanin is inserted into a vector capable of expressing it, and then synthesized in a solution containing enzymes, substrates and energy substances required for transcription and translation, or other prokaryotic organisms.
  • the protein can be obtained by expressing human oculopanin by transforming a eukaryotic host cell.
  • the nucleotide sequence of the cDNA of human 'oculopanin is described in the literature (Graeme Wistow, Steven L. Bernstein, M.
  • cDNA of human oculospanin can be obtained by using a cDNA library expressing human oculospanin as a type I and using a primer that specifically amplifies human oculospanin cDNA. It can be obtained by the so-called PCR method that performs a chain reaction (hereinafter referred to as ⁇ pCRJ) [see Saiki, RK, et al. (1988) Science 239, 487-49].
  • Examples of the in vitro synthesis of polypeptides include, but are not limited to, a rapid translation system (RTS) manufactured by Kyushu Diagnostics.
  • RTS rapid translation system
  • MRNA is transcribed by T7 RNA polymerase, then translated by liposomes in E. coli lysate, and the desired polypeptide is synthesized in the reaction solution (Biochemica, 1, 20). -23 (2001), Biochemica, 2, 28-29 (2001).
  • Prokaryotic host cells include, for example, Escherichia coli and Bacillus subtilis.
  • the host cell is transformed with a plasmid vector containing regulatory elements and a replicon or origin of replication compatible with the host.
  • the vector is preferably a vector having a sequence capable of imparting phenotypic (phenotypic) selectivity to transformed cells.
  • K12 strain or the like is often used as Escherichia coli
  • pBR322 or pUC-based plasmid is generally used as a vector, but is not limited thereto, and various known strains and vectors may be used. Can be used.
  • tryptophan (trp) promoter In Escherichia coli, tryptophan (trp) promoter, lactose (lac) promoter, tryptophan lactose (tac) promoter, lipoprotein (lpp) promoter, polypeptide chain extension H tufB) promoter and the like, and any promoter can be used for production of a desired polypeptide.
  • Bacillus subtilis for example, 207-25 strain is preferable, and as a vector, pTU ⁇ 228 (Ohmura, K. et al. (1984) J. Biochem. 95, 87-93) is used.
  • pTU ⁇ 228 Ohmura, K. et al. (1984) J. Biochem. 95, 87-93
  • the present invention is not limited to this.
  • extracellular secretory expression is also possible.
  • Eukaryotic host cells include cells such as vertebrates, insects, and yeast.
  • vertebrate cells include COS cells, which are monkey cells (Gluzman, Y. (198 1) Cell 23, 175 -182, AT CCCRL— 1650), mouse fibroblast NIH 3T3 (AT CCN o. CRL—168 5) and Chinese hamster ovary cells (CHO cells, AT CCCCL—61).
  • COS cells which are monkey cells (Gluzman, Y. (198 1) Cell 23, 175 -182, AT CCCRL— 1650), mouse fibroblast NIH 3T3 (AT CCN o. CRL—168 5) and Chinese hamster ovary cells (CHO cells, AT CCCCL—61).
  • Strain deficient in dihydrofolate reductase Urlaub, G. and Chasin, LA (1980) Proc. Natl. Acad. Sci. USA 77, 4126-4220 is often used, but is not limited thereto. .
  • RNA splice site As vertebrate cell expression promoters, those having a promoter located upstream of the gene to be normally expressed, an RNA splice site, a polyadenylation site, and a transcription termination sequence can be used. It may also have a replication origin if necessary.
  • An example of such an expression vector is the first Zytomegalovirus. 3.1 (produced by Invitrogen) having an early promoter and pSV2dhfr. (Subramani, S. et al. (1981) Mol. Cell. Biol. 1) having an early promoter of SV40. , 854-864), but are not limited thereto.
  • the expression vector when using COS cells or NIH 3T 3 cells as host cells, the expression vector has the SV40 origin of replication, and is capable of autonomous growth in COS cells or NIH 3 T 3 cells. Further, those having a transcription promoter overnight, a transcription termination signal, and an RNA splice site can be used.
  • the expression vector is prepared by the DE AE-dextran method (Luthman, H. andd Magnusson, G. (1983) Nucleic Acids Res. 11, 1295-1308), calcium phosphate DNA co-precipitation method (Graham , FL and van der Eb, AJ (1973) Virol ogy 52, 456-457), and electric pulse drilling ('Neumann, E. et al.
  • the transformant obtained as described above can be cultured according to a conventional method, and the culture produces the target polypeptide inside or outside the cell.
  • Various commonly used cells can be appropriately selected depending on the host cell. If, in a medium such as RPMI 1 6 4 0 medium and Dulbecco's modified Eagle's medium (hereinafter referred to as "DME M"), can be used after the addition of serum components such as ⁇ shea calf serum as necessary.
  • DME M Dulbecco's modified Eagle's medium
  • the recombinant protein produced in the cells of the transformant or extracellularly by the above culture can be separated and purified by various known separation procedures utilizing the physical and chemical properties of the protein. it can.
  • Various types of liquid chromatography such as treatment with ordinary protein precipitants, ultrafiltration, molecular sieving chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity chromatography, high-performance liquid chromatography (HPLC) Dialysis, a combination thereof, and the like.
  • HPLC high-performance liquid chromatography
  • An example of an antibody that specifically binds to human oculospanin is a monoclonal antibody that specifically binds to human oculospanin, and the method of obtaining the antibody is as described below. .
  • myeloma preparation of myeloma cells
  • a method for producing a monoclonal antibody will be described in detail along the above steps, but the method for producing the antibody is not limited thereto.
  • antibody-producing cells other than spleen cells and myeloma may be used.
  • a Purification of antigen
  • human oculospanin prepared by the method described above or a part thereof can be used.
  • a membrane fraction prepared from the recombinant cells expressing human occulospanin, or the recombinant cells expressing human occulospanins themselves, and the protein of the present invention chemically synthesized using a method well known to those skilled in the art.
  • the partial peptide can also be used as an antigen.
  • the antigen obtained in step (a) is mixed with an adjuvant such as Freund's complete or incomplete adjuvant or potato pancreatic milk, and the animal is immunized as an immunogen.
  • an animal used for a known hybridoma production method can be used without any trouble.
  • a mouse, a rat, a goat, a sheep, a wedge, a horse, and the like can be used.
  • a mouse or rat as an animal to be immunized from the viewpoint of availability of myeloma cells to be fused with the isolated antibody-producing cells.
  • the strains of mice and rats actually used are not particularly limited.
  • mice for example, strains A, AKR, BALB / c, BDP, BA, CE, C3H-, 57BL, C57BR, C57L, DBA, FL, HTH, HT1, LP, NZB, NZW, RF, RIII, SJL, SWR, WB, 129, etc.
  • a rat for example, Low, Lewis, Spraque, Daeley, ACI, BN, Fischer, etc. can be used.
  • mice and rats can be obtained from experimental animal breeding distributors such as Japan Marie, Japan Charls River, Japan SLC and The Jackson Laboratories.
  • mice and the low strain in rats are particularly preferred as immunized animals in view of the compatibility with myeloma cells described below.
  • a mouse in which the biological mechanism for removing the self-progenitor is reduced that is, an autoimmune disease mouse, in consideration of the homology between the antigen and the human in the mouse.
  • the age at the time of immunization of these mice or rats is preferably 5 to 12 weeks, and more preferably 6 to 8 weeks.
  • a preferred method in the present invention is specifically described as follows, for example. That is, first, a membrane protein fraction, which is an antigen, or a cell that expresses the antigen is intradermally or intraperitoneally administered to an animal. However, in order to enhance the immunity efficiency, it is preferable to use both of them.
  • Intradermal administration is performed in the first half and intraperitoneal administration is performed only in the second half or the last time, whereby the immunity efficiency can be particularly increased.
  • the antigen administration schedule varies depending on the type of animal to be immunized, individual differences, and the like.In general, the antigen administration frequency is preferably 3 to 6 times and the administration interval is 2 to 6 weeks, and the administration frequency is 3 to 4 times and the administration interval. More preferably, 2 to 4 weeks. If the number of administrations is excessively increased, the antigen will be wasted, and if the administration interval is set too long, it is not preferable because the aging of the animals leads to a low activation of cells.
  • the dose of the antigen varies depending on the type of animal, individual differences, and the like, but is generally about 0.05 to 5 ml, preferably about 0.1 to 0.5 ml.
  • the booster immunization is performed 1 to 6 weeks, preferably 2 to 4 weeks, more preferably 2 to 3 weeks after the administration of the antigen as described above. If this booster is too late after 6 weeks or earlier than 1 week, the boost will have less effect.
  • the dose of the antigen for booster immunization varies depending on the type and size of the animal, but is generally 0.05 to 5 ml, preferably 0.1 to 0.
  • the volume should be about 5 ml, more preferably about 0.1 to 0.2 ml. Unnecessary large doses not only reduce the immune effect, but are not desirable for the immunized animals.
  • One to ten days, preferably two to five days, and more preferably two to three days after the above booster, spleen cells or lymphocytes containing bovine production cells are aseptically removed from the immunized animal.
  • the antibody titer is measured at that time, and the efficiency of the subsequent operation can be increased by using an animal having a sufficiently high antibody titer as a source of the antibody-producing cells.
  • the antibody titer used here includes various known techniques such as the RIA method, the ELISA method, the fluorescent antibody method, and the passive hemagglutination method. The detection sensitivity, speed, accuracy, and operation From the viewpoint of the possibility of automation, the RIA method or the ELISA method is more preferable.
  • the antibody titer in the present invention can be measured, for example, by the following procedure according to the ELISA method.
  • the purified or partially purified antigen is adsorbed on a solid surface such as a 96-well plate for ELISA, and the solid surface on which the antigen is not adsorbed is exposed to a protein irrelevant to the antigen, for example, a serum albumin (hereinafter referred to as “serum albumin”).
  • serum albumin hereinafter referred to as “serum albumin”.
  • an antibody against a mouse antibody labeled with an enzyme is added as a second antibody, and the antibody is bound to the mouse antibody.
  • a substrate of the enzyme is added, and the change in absorbance due to color development based on the decomposition of the substrate is measured. Calculate the value.
  • Isolation of antibody-producing cells from these spleen cells or lymphocytes can be performed by a known method (eg, Kohler et al., Nature, 256, 495, 1975; Kohler et al., Eur. J. Immnol., 6 , 511, 1977; ilstein et al., Nature, 266, 550, 1977; Walsh, Nature, 266, 495, 1977).
  • a known method eg, Kohler et al., Nature, 256, 495, 1975; Kohler et al., Eur. J. Immnol., 6 , 511, 1977; ilstein et al., Nature, 266, 550, 1977; Walsh, Nature, 266, 495, 1977.
  • MEM Eagle's minimum essential medium
  • myeoma cells used for cell fusion there is no particular limitation on the myeoma cells used for cell fusion, and they can be appropriately selected from known cell lines and used.
  • HGPRT Hoxan thi ne-guanine phoshor ibos y 1 tran sf erase
  • the power of using is preferred.
  • X63-Ag8 (X63), NSl-Ag4 / l (NS1), P3X63-Ag8.Ul (P3U1), X63-Ag8.653 (X63.653), SP2 / 0 -Agl 4 (SP2 / 0), MPC11-45.6TG1.7 (45.6TG), F0, S149 / 5XX0, BU.1, etc., 210.RSY3.Ag.1.2.3 (Y3), etc.
  • HGPRT-deficient strains can be obtained, for example, from American Type Culture Collection (ATCC).
  • These cell lines are prepared in an appropriate medium, for example, an 8-azaguanine medium [RPMI-1640 medium supplemented with glutamine, 2-mercaptoethanol, gentamicin, and fetal calf serum (hereinafter referred to as “FCS”). Medium supplemented with 8—azaguanine], Iscove's Modified Dulbecco's Medium (hereinafter referred to as “IMDM”), or Dulbecco's Modified Eagle Medium (hereinafter “DMEM”). 3-4 days before cell fusion, including normal medium [eg, containing 10% FCS] Subcultured ASF 1 0 4 medium (Ajinomoto Co., Ltd.)], set aside 2 X 1 0 7 or more cell number day of fusion.
  • 8-azaguanine medium RPMI-1640 medium supplemented with glutamine, 2-mercaptoethanol, gentamicin, and fetal calf serum
  • FCS fetal calf serum
  • FCS fetal calf serum
  • the fusion of the antibody-producing cells with the Mie cell is performed by a known method (Weir.DM, Handbook of Experimental Immunology Vol.I.II.III., Blackwe 11 Scientific Publications, Oxford ( 1987), Rabat, EA and Mayer, MM, Experimental.Immunochemistry, Charles C Thomas Publisher Spigfield, Illinois (1964)).
  • Such methods include, for example, a chemical method of mixing antibody-producing cells and myeoma cells in a high-concentration polymer solution such as polyethylene dalicol, a physical method using electrical stimulation, and the like. be able to.
  • specific examples of the above chemical methods are as follows.
  • the polyethylene glycol solution having a molecular weight of 1500 to 6000, preferably 2,000 to 4,000 is preferably used at a temperature of 30 to 40 ° C, preferably 35 to 38 ° C.
  • the fang-body producing cells and the Mie cell are mixed for 1 to 10 minutes, preferably for 5 to 8 minutes.
  • the method for selecting the hybridoma obtained by the above-mentioned cell fusion is not particularly limited.
  • a HAT (hypoxanthine'aminobuterin-thymidine) selection method CKohler et al., Nature, 256, 495 (1975); Mi 1 s tein at al., Nature 266, 550 (1977)].
  • This method is effective when obtaining hybridomas using myeloma cells of an HGPRT-deficient strain that cannot survive aminobuterin.
  • culturing unfused cells and hybridomas in a HAT medium only hybridomas having aminobuterin resistance can be selectively left and grown.
  • methylcellulose method soft agarose method
  • limiting dilution method can be used as the method for closing the hybridoma [eg, Barbara, BM and Stanley, MS: Selected Methods in Cellular Immunology, WH] See Freeman and Company, San Francisco (1980).
  • This closing Methods include limiting dilution, which involves diluting the culture so that one hybridoma is contained in each well of the plate, soft agar, which collects colonies by culturing in a soft agar medium, and micromanipulation.
  • One method is to take out and culture one cell at a time, and the other is to use a cell saw to separate one cell.
  • the limiting dilution method is particularly preferable.
  • a microplate is inoculated with a feeder such as a rat fetal fibroblast cell line or a normal mouse spleen cell, thymocyte, or ascites cell.
  • a feeder such as a rat fetal fibroblast cell line or a normal mouse spleen cell, thymocyte, or ascites cell.
  • the hybridoma is diluted in the medium so that it becomes 0.2 to 0.5 cells / 0.2 ml, and the diluted hybridoma suspension is added to each well in a volume of 0.2 mL.
  • Propagate hybridoma clones by adding 1 ml each and continuing cultivation for about 2 weeks while replacing about 1/3 of the medium with a new medium at regular intervals (for example, every 3 days). be able to.
  • cloning by limiting dilution is repeated 2 to 4 times, and those with a stable antibody titer are selected as anti-human oculospanin monoclonal antibody-producing hybridoma strains.
  • One of the eighty dorma strains cloned in this way was named 03B8-2C9-4F3, and was deposited at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary (Tsukuba East, Ibaraki Prefecture). Deposit number FE RM BP— 08627 on February 17, 2004 at 1-chome, No. 1, Central No. 6).
  • the antibody titer in the present invention can be measured, for example, by the following procedure according to the ELISA method.
  • a solid-phase surface such as a 96-well plate for ELISA, and solid antigen-adsorbed cells are not adsorbed.
  • BSA serum serum albumin
  • an antibody against the mouse antibody labeled with an enzyme is added as the second antibody to bind to the mouse antibody. Calculate the antibody titer. Such screening may be performed after the hybridoma has been cloned as described above, or may be performed before it.
  • the hybridoma obtained by the above method can be stored in liquid nitrogen or in a freezer at 80 ° C or lower in a frozen state.
  • hybridomas are cultured by changing the medium from HT medium to normal medium.
  • Large-scale culture is performed by rotary culture using large culture bottles or single spinner culture.
  • a monoclonal antibody that specifically binds to the protein of the present invention can be obtained.
  • a hybridoma into the peritoneal cavity of a mouse of the same strain (for example, the above-mentioned BAL B / c) or NuZNu mouse, and growing the hybridoma, the monoclonal antibody of the present invention can be produced in a large amount. Can be obtained. If administered intraperitoneally, 2, 6, 10, 10 or 14 in advance (3 to 7 days before) — tetramethylpen
  • mineral oils such as (2, 6, 10, 1-tetramethyl pen t adecane) (pristane) produces more ascites.
  • mineral oils such as (2, 6, 10, 1-tetramethyl pen t adecane) (pristane) produces more ascites.
  • previously injected with immunosuppressive agents into the abdominal cavity of a mouse and the High Priestess dormer and the same strain After inactivation of the T cells, 1 after 2 days 0 0 6 -1 0 seven High Priestess de one Ma 'clonal cell Suspended in serum-free medium
  • a monoclonal antibody having a concentration of about 100 times or more as compared with that in a culture solution can be obtained.
  • the monoclonal antibody obtained by the above method can be purified, for example, by a method described in Weir, DM: Handbook of Experimental Immunology Vol. I, II, III, Blackwel Scientific Publications, Oxford (1978). That is, there are ammonium sulfate salting out method, gel filtration method, ion exchange chromatography method, affinity chromatography method and the like. Of these methods, the ammonium sulfate salting out method is repeated 3 to 4 times, preferably 3 to 6 times to obtain a monoclonal antibody. Can be purified. However, this method results in a very low yield of the purified monoclonal antibody.
  • a highly purified monoclonal antibody can be obtained in a high yield.
  • the combination and sequence of the ammonium sulfate salting out method and other methods include: a) ammonium sulfate salting out method—ion exchange chromatography—one method—gel filtration method, b) ammonium sulfate salting out method—ion exchange chromatography—affinity chromatography C) Ammonium sulfate salting out method-gel filtration method-affinity chromatography method, etc., but in order to obtain a monoclonal antibody with high purity and high yield, the above-mentioned c) Combinations are particularly preferred.
  • a commercially available monoclonal antibody purification kit for example, MAbTrapG11 kit; manufactured by Pharmacia
  • the monoclonal antibody thus obtained has high antigen specificity for human oculospan.
  • the determination of the isotype and subclass of the thus obtained monoclonal antibody can be performed as follows. First, as an identification method,
  • Immunoglobulin G is a light polypeptide chain having a molecular weight of about 230,000 (hereinafter, referred to as “light chain”) and a heavy chain having a molecular weight of about 500,000. It is composed of two polypeptide chains (hereinafter referred to as “heavy chains”). Both the heavy and light chains have a repeating structure of amino acid sequence conserved regions consisting of about 110 residues, and these are the basic units of the three-dimensional structure of IgG (hereinafter referred to as “domains”). Is configured. The heavy and light chains are composed of four consecutive and two domains, respectively.
  • the amino-terminal domain has a greater variation in amino acid sequence between antibody molecules than other domains, and this domain has a variable domain (V domain). ").
  • V domain variable domain
  • the heavy and light chain V domains complementarily associate to form a variable region.
  • the remaining domains form a constant region as a whole.
  • the constant region has a sequence that is characteristic of each animal species.For example, the mouse IgG constant region is different from the human IgG constant region because the mouse IgG constant region is different from the human IgG constant region. Recognized as foreign by the immune system, resulting in a Human Anti Mouse Antibody (HAMA) response.
  • HAMA Human Anti Mouse Antibody
  • mouse antibodies cannot be administered repeatedly to humans.
  • it is necessary to modify the antibody molecule so as not to generate a HAM ⁇ response while maintaining the specificity of the antibody.
  • such a domain generally has a long cylindrical structure in which two layers of antiparallel ⁇ -sheets consisting of three to five] chains are stacked.
  • variable region three loops are assembled in each of the V domains of the heavy and light chains to form an antigen-binding site.
  • Each of these loops is a complementarity determining region
  • CDR (. com rement arity determining region: J3 ⁇ 4 It is called “CDR.”)
  • the amino acid sequence variation is the most remarkable.
  • the portion of the variable region other than the CDR generally has a role of maintaining the structure of the CDR, and is called a “framework”.
  • Kabat et al. Collected a large number of primary sequences of the variable regions of the heavy and light chains, and created a table in which each primary sequence was classified into CDRs and frameworks based on the conservation of the sequences. SEQUENCES OF IMMUNOLOGICAL INTEREST, 5th edition, NIH publication, No. 91-3242, EA Kabatt et al.).
  • each framework Acid sequences were divided into subgroups with common features. Furthermore, it was found that there was a corresponding framework between human and mouse.
  • a chimeric antibody was proposed in which the variable region of a mouse-derived antibody was combined with a human-derived constant region (see Pro atl. Acad. Sci. U. S.A. 81, 6851-6855, (1984)).
  • chimeric antibodies still contain many non-human amino acid residues and can induce a HAMA response, especially when administered for long periods of time (Begent et al. Br. J. Cancer, 62., 487). , (1990)).
  • an antibody derived from a non-human mammal having a CDR to be transplanted is defined as "dona-one”, and a human antibody to which the CDR is to be transplanted is defined as "ax-e-u-ichi”.
  • the present invention also complies with this definition. I will.
  • a point to be considered when performing the CDR transplantation method is to preserve the structure of the CDR as much as possible and to maintain the activity of the immunoglobulin molecule. To achieve this goal:. (i) Which subgroup should Axep select?
  • amino acid is in the immediate vicinity of one of the CDRs
  • amino acid has a side chain atom within about 3 A of the CDR in the three-dimensional immunoglobulin model and is capable of interacting with the antigen or with the CDR of the humanized antibody.
  • the DNA encoding the heavy chain or light chain of the human oculospanin monoclonal antibody of the present invention is prepared by preparing mRNA from hybridoma cells producing the anti-human oculospanin monoclonal antibody. Then, the mRNA is converted to cDNA with reverse transcriptase, and then the DNA encoding the heavy chain or light chain of the antibody is isolated.
  • a guanidine-thiosinate-hot-phenol method for the extraction of mRNA, a guanidine-thiosinate-hot-phenol method, a guanidine-thiosineto-guanidine-hydrochloric acid method or the like may be employed, but the guanidine-thiosinate-cesium chloride method is preferred.
  • a poly (A) + RNA purification carrier such as oligo (dT) cellulose or oligo (dT) latex beads. It can be carried out by a method or a method of directly purifying from a cell lysate using the carrier.
  • the method for preparing the total RNA is as follows: Alkali sucrose density gradient centrifugation [see Dougherty, WG and Hiebert, E. (1980) Viology 101, 466-474], guanidine thiosineto phenol method
  • the guanidine thiocyanate trifluorocesium method, the phenol SDS method, and the like can also be employed. It is suitable.
  • Using the poly (A) + RNA obtained as described above as type III synthesize a single-stranded cDNA by reverse transcriptase reaction, and then synthesize a double-stranded cDNA from the single-stranded cDNA.
  • This method includes the SI nuclease method [Efstratiadis,
  • the double-stranded cDNA obtained in this manner is incorporated into a cloning vector, the resulting recombinant vector is introduced into a microorganism such as Escherichia coli, and transformed, and tetracycline resistance or ampicillin resistance is used as an indicator. As a result, a transformant can be selected. Transformation of Escherichia coli is performed by the Hanahan method [see Hanahan, D. (1983) J. Mol. Biol. 166, 557-580], that is, to competent cells prepared in the presence of chloridium chloride, magnesium chloride or rubidium chloride. The method can be carried out by adding the recombinant DNA vector. When a plasmid is used as a vector, it is necessary to have the above drug resistance gene. Cloning vectors other than plasmids, such as lambda phage, can also be used.
  • sense strand and antisense strand oligonucleotide primers corresponding to a part of the amino acid sequence are synthesized, and these are combined to form a polymer primer.
  • Perform a ze-chain reaction [see Saiki, RK, et al. (1988) Science 239, 487-49] to encode the desired anti-human oculospanin antibody heavy or light chain subunit.
  • the DNA fragment is amplified.
  • cDNA synthesized by reverse transcriptase reaction from mRNA of a hybridoma producing an anti-human-oculospanin monoclonal antibody can be used.
  • D NA fragment thus prepared can either be incorporated into a commercial directly bra corner de vector using kit Bok etc., the fragments were labeled with 32 P, 35 S or Pio Chin like, it
  • the target clone can also be selected by performing colony hybridization or plaque hybridization using the probe.
  • each subunit may be obtained by using a well-known method such as electrophoresis or force column chromatography.
  • a preferred method is to isolate the N-terminal amino acid sequence of each of the subunits using an automatic protein sequencer (for example, PPSQ-10 manufactured by Shimadzu Corporation) or the like.
  • an automatic protein sequencer for example, PPSQ-10 manufactured by Shimadzu Corporation
  • a method for collecting cDNAs encoding the respective subunits of the anti-human oculosvanin monoclonal antibody protein can be obtained by a known method [Maniatis, T., et al.
  • the oligonucleotide corresponding to the amino acid sequence Reotide is synthesized (in this case, either a nucleotide sequence deduced with reference to codon usage or a plurality of nucleotide sequences combining possible nucleotide sequences can be used, and in the latter case, inosine is included.
  • the sequence of the DNA obtained in this manner can be determined by, for example, the chemical modification method of maxam-gilpart [see Maxam, AM and Gilbert, W. (1980) in "Methods in Enzymology” 65, 499-576] It can be carried out by a xynucleotide chain termination method [see Messing, J. and Vieira, J. (1982) Gene 19, 269-276] and the like. '
  • DNA nucleotide sequencing can be performed efficiently and safely. From the nucleotide sequence of the DNA of the present invention thus determined and the N-terminal amino acid sequence of each of the heavy and light chains, all amino acids of the heavy and light chains of the monoclonal antibody of the present invention were obtained. The sequence can be determined.
  • Each of the heavy and light chains of immoglopurin consists of a variable region and a constant region, and the variable region further comprises a complementarity-determining region (hereinafter referred to as “CDR”; each of the heavy chain and the light chain has three sites). And the framework regions adjacent to them (four at each of the heavy and light chains).
  • CDR complementarity-determining region
  • the amino acid sequence of the constant region is common between antibodies having the same immunoglobulin subclass regardless of the type of antigen.
  • the amino acid sequence of the variable region especially the CDR
  • studies comparing the amino acid sequence data of many antibodies show that the CDR position and the length of the framework sequence are It is known that antibody subunits that succumb to the same subgroup are almost similar [Rabat, EA, el al. (1991) in "Sequence of Proteins of Immunological Interest Vol. II": US Department of Health and Human Services].
  • the chain length of F RH that is, the framework region closest to the N-terminal side of the heavy chain may be usually shorter than (30 amino acids).
  • the framework region has a minimum of 18 amino acids. Examples are known [see Kabat et al., Supra].
  • the chain length of the N-terminal framework region of the heavy chain is set to 18 amino acids or more and 30 amino acids or less, as long as the function as an anti-human oculospanin antibody is not impaired.
  • the peptide having the same amino acid sequence as the CDR of the light chain or the heavy chain determined as described above, or a peptide having a continuous partial amino acid sequence therein, is subjected to an artificial modification operation to obtain the CDR.
  • an artificial modification operation By approaching the three-dimensional structure formed in an anti-human oculospanin antibody molecule, it is possible to impart binding activity to human oculospanin alone [see, for example, US Pat. No. 5,331,7.3].
  • modified peptides having the same amino acid sequence as CDR or a contiguous partial amino acid sequence therein are also encompassed in the molecules of the present invention.
  • the cassette mutation method [Toshimitsu Kishimoto, "Natural Chemistry Laboratory 2 Nucleic Acid III Recombinant DNA Technology” 242 -251].
  • Such various types of DNA can be prepared by a conventional method such as the phosphophytate-triester method (see Hunkapiller, M., et al. (1984) Nature 310, 105-111). It can also be produced by chemical synthesis of nucleic acids.
  • the codon for the desired amino acid is known per se and may be arbitrarily selected. For example, the codon for the desired amino acid can be determined according to a conventional method in consideration of the codon usage of the host to be used.
  • nucleotide sequence codons can be partially modified by site-directed mutagenesis using a primer consisting of a synthetic oligonucleotide encoding the desired modification (site specific mutagenesis) according to a conventional method. Genesis) [Mark, DF, et al. (1984) Proc. Natl. Acad. Sci. USA 81, 5662-5666]. Whether or not a certain DNA hybridizes with DNA encoding the heavy chain or light chain of the anti-human occulospanin monoclonal antibody of the present invention can be determined by, for example, determining the DNA by a random primer method [ Feinberg, AP and Vogelstein, B. (1983) Anal, biochem.
  • the DNA to be examined is adsorbed on, for example, a nitrocellulose membrane or a nitrocellulose membrane and, if necessary, subjected to a treatment such as alkali denaturation, and then solidified by heating or ultraviolet rays.
  • This membrane contains 6 XSSC (1 XSSC is 0.15 M sodium chloride, 0.05 M trisodium citrate solution), 5% denhardt solution, 0.1% sodium dodecyl sulfate (SDS) immersed in Purehaipuri Daizeshiyo down solution from the incubated over 4 hours 5 5 ° C, the same pre-hybridization Dizeshiyo down solution pro portion of the previously prepared final specific activity 1 XI 0 6 cp mZm 1 and ⁇ so that the In addition, incubate at 60 ° C. Thereafter, the operation of washing the membrane with 6 XSSC at room temperature for 5 minutes is repeated several times, and further washing with 2 XSSC for 20 minutes, and then performing autoradiography.
  • a DNA encoding the heavy chain or light chain of the humanized anti-human oculospanin antibody of the present invention is hybridized from an arbitrary cDNA library or genomic library. Can be isolated [see Maniatis, T., et al. (1982) in Molecular Cloning A laboratory Manual Cold Spring Harbor Laboratory, NY.].
  • each of the DNAs obtained as described above into an expression vector, it is possible to introduce them into prokaryotic or eukaryotic host cells and to express each gene in those host cells.
  • the expression can be carried out by the same method as described in the section “(1) Preparation of antigen” in the section “5. Production of bovine human oculospanin antibody”.
  • the fraction containing the anti-human oculospanin antibody protein which is produced intracellularly or extracellularly in the transformant, can be obtained by various known protein separation procedures utilizing the physical and chemical properties of the protein. , Can be separated and purified. Examples of such a method include, for example, treatment with a normal protein precipitant, ultrafiltration, molecular sieve chromatography (gel filtration), adsorption chromatography, ion-exchange chromatography, affinity, and the like. Various chromatographies such as monochromatography, high performance liquid chromatography (HPLC), dialysis methods, and combinations thereof can be employed.
  • HPLC high performance liquid chromatography
  • the amino acids of the variable region should be changed so that the entire CDR sequence and some amino acid residues of the FR sequence are transferred to the human antibody. You need to design the array. This design follows the following method.
  • molecular modeling J the operation of predicting the tertiary structure from the primary sequence of an antibody molecule (hereinafter, this operation is referred to as “molecular modeling J”) has a limited accuracy of prediction, and amino acids that rarely appear in the subgroup to which the donor belongs are included. It is generally difficult to determine which amino acid residue, donor or acceptor, should be selected at such a position according to the method of Queen et al. According to, the chances of making such a decision can be significantly reduced.
  • the present inventors have provided a novel method for identifying amino acids derived from FRs of donna that are important for maintaining the structure and function of the donna CDR. Has improved.
  • a method for selecting an amino acid residue to be transplanted is as described below. If the amino acid sequences of the donor and the acceptor are aligned, and the amino acid residue is different at the corresponding position in the FRs, it is necessary to determine which residue to select, but this selection However, selection must be made so as not to impair the three-dimensional structure of the donor-derived CDR.
  • amino acid has a side chain atom within about 3 A of the CDR in a three-dimensional immunoglobulin model and is capable of interacting with the antigen or with the CDR of the humanized antibody.
  • the residue shown in 2) often exhibits the property of 3), and therefore, in the present invention, the requirement of 2) is deleted, and two new requirements are separately provided. That is, in the present invention, for amino acid residues on the donor FR to be transplanted with the CDR: a) The amino acid in the FR of the acceptor is rare at that position and the corresponding amino acid of Donna is Normal in position;
  • the amino acid residue is transplanted from the donor FR.
  • amino acids that are found at a frequency of 90% or more at the relevant position for antibodies of the same subclass are ⁇ normal, '' and amino acids that are found at a frequency of less than 10% are ⁇ rare.
  • the distance between two atoms is 0.5 A as the sum of each of the Van der Waals radii. If it is shorter than the value obtained by adding, it is estimated that the two atoms are in van der Waals contact.
  • the distance between polar atoms such as amide nitrogen and carbonyl oxygen in the main chain and side chain is shorter than the average hydrogen bond distance of 2.9 A plus 0.5 A, it is considered that hydrogen bonds exist between them. Estimated.
  • the distance between atoms with opposite charges was shorter than 2.85 A plus 0.5 A, it was assumed that an ion pair was formed between them.
  • Positions 4 103 are specified (all numbers represent amino acid numbers as defined in Kabat et al., Supra; the same applies hereinafter).
  • amino acid residues at these positions will be in contact with the amino acid residues of the CDR in two-thirds of the known antibody variable regions.
  • b) of "the amino acid is expected to interact with the antigen or CDR loop to be transplanted in the three-dimensional structural model of the amino acid in the three-dimensional structural model" satisfies the following requirements. means.
  • the position constitutes the contact surface between the heavy chain and the light chain means the following requirements. From the results of X-ray crystallography of the variable regions of various antibodies, it was found that in the light chain, the amino acid residues at positions 36, 38, 43, 44, 46, 49, 87, 98, heavy In the chain, the amino acid residues at positions 37, 39, 45, 47, 91, 103 and 104 were found to frequently make heavy-light chain contacts. Has been. In molecular modeling, the possibility of heavy chain-light chain contact is foreseen, and if that position matches any of the positions described above, transplantation of donor amino acid residues is prioritized. Otherwise, this requirement d) is not considered.
  • the DNA encoding the variable regions of the heavy and light chains of the humanized anti-human oculospanin antibody of the present invention can be produced by the method described below.
  • a plurality of polynucleotide fragments of 60 to 70 nucleotides consisting of the partial nucleotide sequence of the DNA are chemically synthesized so as to be alternate on the sense side and the antisense side, and then each polynucleotide fragment is synthesized.
  • the DNA is ligated and bound with DNA ligase to obtain a DNA having DNAs encoding the variable regions of the heavy chain and light chain of the desired humanized anti-human oculos vanin antibody.
  • DNA encoding the entire amino acid sequence of the variable region of Axepui can be separated from the human immunoglobulin and the CDR-encoding region can be subjected to nucleotide substitution by methods well known to those skilled in the art. Introduce an enzyme cleavage sequence. After cleaving the region with the corresponding restriction enzyme, a nucleotide sequence encoding the CDR of the donor is synthesized, and linked by DNA ligase to obtain the desired humanized anti-human urospanin antibody. DNA encoding the variable regions of the chains and light chains can be obtained. '
  • the desired humanized anti-human antibody is preferably prepared according to the following method (see Holton et al., Gene, 77, 61-68, (1989)). DNAs encoding the variable regions of the heavy and light chains of the oculospanin antibody can be obtained.
  • (A) and (B) two kinds of DNAs respectively encoding two kinds of amino acid sequences desired to be connected are referred to as (A) and (B) for convenience.
  • the primer is (D).
  • a chimera-type sense primer in which 20 to 30 nucleotides on the 3 ′ side of (A) and 20 to 30 nucleotides on the 5 ′ side of (B) are linked (hereinafter, this primer is referred to as (E) And an antisense primer complementary thereto (hereinafter, this primer is referred to as (F)).
  • PCR is performed using the sense primer (C) and the chimeric antisense primer (F) with the substrate as a substrate, whereby the 3 ′ end of (A) is 20 to 30 at the 5 ′ end of (B). Nucleotide-added DNA can be obtained (this newly obtained DNA is referred to as (G)).
  • the appropriate vector DNA containing (B) as a substrate and performing PCR using the antisense primer (D) and the chimeric sense primer (E) the 5 ′ of (B) can be obtained. DNA having 20 to 30 nucleotides at the 3 ′ terminal side of (A) added to the terminal can be obtained (this newly obtained DNA is referred to as (I-I)).
  • the (G) and (H) thus obtained are complementary at the 40 to 60 nucleotides on the 3 ′ side of (G) and the 40 to 60 nucleotides at the 5 ′ side of (H). It has a nucleotide sequence.
  • the amplified (G) and (H) are mixed and subjected to PCR, (G) and (H) become single-stranded in the first denaturation reaction, and most of the DNA is removed in the subsequent annealing reaction. It returns, but for some DNAs it forms a heteroDNA duplex that anneals with complementary nucleotide sequence regions.
  • the protruding single-stranded portion is repaired, and a chimeric DNA in which (A) and (B) are linked (hereinafter, this DNA is referred to as (I)) can be obtained. Further, by using this (I) as a substrate and performing PCR using a sense primer (C) and an antisense primer (D), (I) can be amplified.
  • this (I) as a substrate and performing PCR using a sense primer (C) and an antisense primer (D)
  • (I) can be amplified.
  • DNAs encoding the CDR regions of the heavy and light chains of the anti-human and oculospanin mouse monoclonal antibodies and the FR regions of the human immunoglobulin IgG are encoded. Furthermore, the above-mentioned ligation reaction is carried out using DNA encoding the secretion signal of human immunoglobulin IgG as (A) and (B) in case 'pi' case, respectively. Can be.
  • the codon for the desired amino acid is known per se, and its selection may be arbitrary.
  • the codon can be determined according to a conventional method in consideration of the codon usage of the host to be used. Partial modification of these nucleotide sequence codons can be performed by a conventional method using site specific mutagenesis (Mark, DF, Marker) using a primer consisting of a synthetic oligonucleotide encoding the desired modification. Natl. Acad. Sci. USA 81, 5662-5666) and the like. Therefore, when chemically synthesizing each primer, by designing each primer in advance to introduce point mutations, the variable regions of the heavy chain and light chain of the desired anti-human-clospanin antibody can be co-located. You can get the DNA you want. .
  • prokaryotic or eukaryotic host cells By incorporating each of the thus obtained DNAs of the present invention into expression vectors, prokaryotic or eukaryotic host cells can be transformed. Furthermore, by introducing an appropriate promoter and a sequence involved in expression into these vectors, each gene can be expressed in each host cell.
  • a recombinant anti-human oculospanin antibody can be easily produced with high yield and high purity.
  • a complete human antibody means a human antibody having only the gene sequence of an antibody derived from human chromosome.
  • the complete human ochulospanin human antibody is obtained by a method using a human antibody-producing mouse having a human chromosome fragment containing the genes for the H and L chains of the human antibody (Tomizuka, K. et al., Nature Genet. ics, 16, p.133-143, 1997 .; Kuroiwa, Y.et.al., Nuc. Acids Res., 26, p.3447-3448, 1998 .; Yoshida, H.et.al., Animal Cell Technology: Basic and Applied Aspects vol.
  • Methods for confirming that the recombinant anti-human oculospanin antibody thus produced specifically binds to human oculospanin include, for example, a method of evaluating a bovine titer during mouse immunization. Similar ELISA methods are preferred.
  • anti-human oculospanin antibodies obtained by the method described in the section “5. Production of anti-human oculopanin antibody”, an antibody or human antibody that neutralizes the biological activity of human oculopaninin. An antibody that specifically damages cancer cells that express oculospanin can be obtained. These antibodies can be used as a medicine, especially as a therapeutic agent against cancer, because they inhibit the biological activity of human toxourospanin in vivo, that is, inhibit the canceration of cells.
  • the activity of neutralizing the biological activity of human oculospanin by an anti-human oculospanin antibody in vitro can be measured by, for example, the activity of suppressing cell carcinogenesis in a cell overexpressing human oculospanin.
  • the mouse fibroblast cell line NIH3T3, which overexpresses human oculospanin, is cultured, and anti-human oculospanin antibodies are added to the culture system at various concentrations to form focus, colony formation and The inhibitory activity against spheroid proliferation can be measured.
  • In vitro anti-human oculospanin antibody-induced cancer cell-inducing activity includes, for example, antibody-dependent cytotoxicity exhibited by anti-human oculospanin antibody against cells overexpressing human oculospanin; It can be measured by complement-dependent cytotoxic activity or complement-dependent cytotoxic activity.
  • 293 T cells overexpressing human oculomouth spanin are cultured, anti-human oculospanin antibodies are added to the culture system at various concentrations, and mouse spleen cells are added for an appropriate time. After the culture, the cell death induction ratio with respect to cells overexpressing human occulospanin can be measured.
  • the therapeutic effect of anti-human urokurospanin antibodies on cancer using experimental animals was determined by, for example, By administering the same anti-oculospanin antibody to a transgenic animal overexpressing, the change in cancer cells can be measured.
  • the thus obtained antibody that neutralizes the biological activity of human oculospanin or the antibody that specifically damages cancer cells that express human oculospanin is used as a medicament especially for the purpose of treating cancer. It is useful as a composition or as an antibody for immunological diagnosis of such a disease.
  • Suitable types of cancer include, but are not limited to, skin cancer and melanoma, which is a type of skin cancer.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of an anti-human oculospanin antibody and a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative and / or adjuvant.
  • the substance used in the formulation acceptable in the pharmaceutical composition of the present invention is preferably non-toxic to the person to whom the pharmaceutical composition is administered, preferably at the dosage and administration concentration.
  • the pharmaceutical composition of the present invention changes or maintains pH, osmotic pressure, viscosity, clarity, color, isotonicity, color, sterility, stability, dissolution rate, sustained release rate, absorption rate, and permeability. It can contain pharmaceutical substances for holding or holding. Pharmaceutical substances include, but are not limited to: glycine, alanine. Amino acids such as glutamine, asparagine, arginine or lysine, antimicrobial agents, ascorbic acid, sodium sulfate or bisulfite.
  • Antioxidants such as sodium phosphate, citrate, borate buffer, hydrogen carbonate, buffer such as tris-HCl solution, filler such as mannitol or glycine, ethylenediamine Chelating agents such as acetic acid (EDTA), caffeine, polyvinylpyrrolidine, complexing agents such as ⁇ -cyclodextrin / hydroxypropyl 1 / 3—cyclodextrin, and increasing amounts of glucose, mannose or dextrin; Ingredients, other carbohydrates such as monosaccharides, disaccharides and dulose, mannose dextrin, coloring , Flavoring agents, diluents, emulsifiers and hydrophilic polymers such as polyvinylpyrrolidine, low molecular weight polypeptides, salt-forming counterions, benzoconic chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, Preservatives such as chlor
  • the amount of the substance for these preparations added is preferably 0.0'1 to 100 times, particularly preferably 0.1 to 10 times, the weight of the anti-human oculospanin antibody.
  • the composition of a suitable pharmaceutical composition in a formulation can be appropriately determined by those skilled in the art according to the disease to be applied, the administration route, and the like.
  • Excipients and carriers in pharmaceutical compositions may be liquid or solid. Suitable excipients and carriers may be water for injection, saline, artificial cerebrospinal fluid, or other substances commonly used for parenteral administration. Neutral saline or saline containing serum albumin can also be used as the carrier.
  • the pharmaceutical composition may also contain a Tris buffer with a pH of 7.0-8.5, an acetate buffer with a pH of 4.0-5.5, or sorpitol or other compounds.
  • the pharmaceutical composition of the present invention is prepared as an appropriate drug having the required purity in the selected composition and as a lyophilized product or liquid. Pharmaceutical compositions containing the human oculospanin antibodies can also be formed as lyophilized products using suitable excipients such as squeeze.
  • the pharmaceutical composition of the present invention can be prepared for parenteral administration or can be prepared for oral gastrointestinal absorption.
  • the composition and concentration of the preparation can be determined depending on the administration method, and the affinity of the anti-human oculospanin antibody for human oculospanin contained in the pharmaceutical composition of the present invention, that is, human. Based on these results, the higher the affinity (lower the Kd value), the lower the dose to humans, and the more effective it is for the dissociation constant (Kd value) for oculospanin.
  • the dose of the pharmaceutical composition of the present invention to a human can also be determined.
  • the dose should be about 0.:! ⁇ 100mkg may be administered once every 1-30 days.
  • Examples of the form of the pharmaceutical composition of the present invention include injections containing iv drops, suppositories, nasal drops, sublingual drops, and transdermal absorbents. 7. Search for directly interacting substances
  • Another embodiment of the present invention includes a drug design method based on the three-dimensional structure of the protein, which aims at obtaining a substance that suppresses the activity of human occulospanin.
  • a technique is known as a rational drug design method, and is used to search for a compound that efficiently inhibits or activates functions such as enzyme activity and binding to ligands, cofactors, or DNA. It's being used.
  • inhibitors of proteases which are already mentioned anti-HIV agents, are well known. It is considered that generally well-known techniques such as X-ray crystallography and nuclear magnetic resonance can be used in the three-dimensional structural analysis of the human oculospanin of the present invention.
  • a substance that suppresses the functions of human and oculospanins it is possible to design using a computer-drag design (CADD).
  • a computer-drag design is a low molecular weight compound (International Patent Application Publication No. WO99 / 58585) that inhibits the function of AP-1 which is expected as a new genomic drug for the treatment of rheumatoid arthritis. It has been done. In this way, substances that directly bind to human oculospanin or inhibit the function of human oculospanin by inhibiting the interaction of human oculospanin with other factors can be used. Obtainable.
  • Still another embodiment relates to a polypeptide to which the human oculospanin of the present invention associates, that is, a partner protein of human oculospanin. That is, the present invention relates to a method for screening a partner protein that regulates the activity of human oculospanin.
  • One embodiment of the screening method includes a step of contacting a test protein sample with human oculospanin and selecting a protein that binds to human oculospanin.
  • a method for example, there is a method of performing affinity purification of a protein binding thereto using purified human oculospanin.
  • An example of a specific method is as follows. A fusion of human oculospanin with a sequence consisting of six histidines as an affinity tag is prepared, and this is extracted with a cell extract (pre-charged to a nickel-agarose column).
  • the fractions that passed through the column were incubated at 4 ° C for 12 hours, and then the nickel-agarose carrier was added to the mixture and incubated at 4 ° C for 1 hour. After sufficiently washing the lug agarose carrier with a washing buffer, the protein in the cell extract that specifically binds to human oculospanin is eluted and purified by adding 10 OmM imidazole. , Determine this structure. In this way, a complex is formed with a protein that directly binds to human oculospanin and a protein that has no binding activity to human oculospanin but directly binds to human oculospanin as a subunit.
  • a functional class of a substance that inhibits the interaction between human oculospanin and the partner protein is obtained. It can be used for leaning.
  • a fusion protein of human oculospanin and daltathione S-transferase was prepared and bound to a microphone-mouth plate covered with an anti-glutathione S-transferase antibody. Thereafter, the biotinylated partner protein is brought into contact with the fusion protein, and binding to the fusion protein is detected with streptavidinated alkaline phosphatase.
  • a test substance is also added, and a substance that promotes or inhibits the binding between the fusion protein and the partner protein is selected.
  • a substance which directly acts on the fusion protein or a substance which directly acts on the partner protein is obtained. If the binding between the fusion protein and the partner protein is indirect and is via some other factor, for example, in the presence of a cell extract containing the factor, Atsushi is done. In this case, a substance that acts on the factor may be selected.
  • an anticancer agent such as a prostate can be prepared according to the test method using an expression vector of the human oculospanin gene described above.
  • Candidate substances useful as cancer therapeutics can be screened.
  • a polynucleotide having a nucleotide sequence encoding such a suppressor can be used as a gene for cancer. Can be used for treatment.
  • Such polynucleotides can be obtained, for example, by analyzing the amino acid sequence of the identified inhibitor, synthesizing an oligonucleotide probe consisting of a nucleotide sequence encoding the amino acid sequence, and synthesizing a cDNA library or genomic library. It can be obtained by performing cleaning.
  • the peptide having an inhibitory activity on the function of human oculospanin is derived from a randomly synthesized human epeptide library
  • a DNA comprising a nucleotide sequence encoding the amino acid sequence of the peptide is chemically synthesized. I do. '
  • a gene encoding the inhibitor thus obtained is incorporated into, for example, a viral vector, and the virus (detoxified) having the recombinant viral vector is transmitted to a patient.
  • Anticancer factors are produced in the patient's body and have the function of suppressing the growth of cancer cells, so that cancer can be treated.
  • Methods for introducing a gene therapy agent into cells include a gene transfer method using a viral vector or a non-viral gene transfer method (Nikkei Science, April 1994, 20-45). Page, Experimental Medicine Special Edition, 12 (15) (1994), Experimental Medicine Supplement “Basic Technology for Gene Therapy”, Yodosha (1996)) can be applied.
  • Non-viral gene transfer methods include direct injection of the expression plasmid into the muscle (DNA vaccine method), ribosome method, lipofectin method, and myelinomic method. Examples include a cloinjection method, a calcium phosphate method, and an electroreaction method, and a DNA vaccine method and a ribosome method are particularly preferable.
  • the gene therapy agent when administered by the in vivo method, it is administered by an appropriate administration route such as vein, artery, subcutaneous, intradermal, intramuscular, etc., depending on the disease, symptom and the like.
  • the gene therapy agent When administered by the in vivo method, the gene therapy agent is generally used as an injection or the like, but if necessary, a conventional carrier may be added.
  • ribosome preparations such as suspensions, freezers, and centrifugal concentrated freezers can be used.
  • a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 1 of the sequence listing or a nucleotide sequence complementary to a partial sequence of the sequence can be used for so-called antisense therapy.
  • the antisense molecule is a DNA consisting of usually 15 to 30 mer, or a phosphorothioate, methylphosphonate or morpholine thereof, which is complementary to a part of the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing.
  • stable RNA derivatives such as 2′-O-alkyl RNA.
  • antisense molecules are introduced into cells by methods well known in the art of the present invention, such as by microinjection, liposomal encapsulation, or expression using a vector having an antisense sequence. Can be.
  • Such an antisense therapy is described in SEQ ID NO:
  • a composition useful as a medicine containing the antisense oligonucleotide can be produced by a known method such as mixing a pharmaceutically acceptable carrier. Examples of such carriers and manufacturing methods are described in Applied Antisense Oligonucleotide Technology.
  • Antisense Ori Formulations containing tide may be mixed with excipients, diluents, etc. per se or as appropriate pharmacologically acceptable, and orally in tablets, capsules, granules, powders or syrups. Alternatively, it can be administered parenterally by injection, suppository, patch, or external preparation. These preparations may contain excipients (e.g., lactose, sucrose, dextrose, sugar derivatives such as mannitol, sorbitol; corn starch, potato starch, starch derivatives such as alpha starch, dextrin; crystalline cellulose).
  • excipients e.g., lactose, sucrose, dextrose, sugar derivatives such as mannitol, sorbitol; corn starch, potato starch, starch derivatives such as alpha starch, dextrin; crystalline cellulose.
  • Organic derivatives such as gum arabic; dextran; pullulan; and silicate derivatives such as light anhydrous silicic acid, synthetic aluminum silicate, calcium silicate, and magnesium aluminate silicate; hydrogen phosphate Phosphates such as calcium; carbonates such as calcium carbonate; inorganic excipients such as sulfates such as calcium sulfate; and lubricants (eg, stearic acid, stearic acid) Calcium stearate, such as calcium and magnesium stearate; talc Waxes such as beads, gays, etc .; boric acid; azidoic acid; sulfates such as sodium sulfate; glycosyl; fumaric acid; sodium benzoate; DL leucine; sodium lauryl sulfate, lauryl Lauryl sulfates such as magnesium sulfate; silicic acids such as silicic anhydride and silicic acid hydrate; and the above-mentioned starch derivatives
  • Colloidal clays such as beamum; metal hydroxides such as magnesium hydroxide and aluminum hydroxide; anionic surfactants such as sodium polyarylsulfate and calcium stearate; cations such as benzalkonium chloride.
  • Ionic surfactants; and nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene sorbin fatty acid ester, and sucrose fatty acid ester.
  • Stabilizer Paraoxybenzoic acid esters such as methylparaben and propylparaben; alcohols such as chlorobutanol, benzyl alcohol and phenylethyl alcohol; benzalkonium chloride; phenols such as phenol and cresol; thimerosal; And sorbic acid.
  • Flavoring agents for example, commonly used sweeteners, sour agents, flavors, etc.
  • additives such as diluents. And manufactured in a known manner.
  • a colloid dispersion system can be used in addition to the above.
  • the colloid dispersion system is expected to have the effect of increasing the stability of the compound in vivo and the effect of efficiently transporting the compound to a specific organ, tissue or cell.
  • Colloidal dispersions are not limited as long as they are commonly used, but are based on polymer complexes, nanocapsules, microspheres, peas, and oil-in-water emulsifiers, lipids including micelles, mixed micelles, and ribosomes. Ribosomes and vesicles of artificial membranes, which have the effect of efficiently transporting a compound to a specific organ, tissue or cell (Mannino et al. , Biotechniques, 1988, 6, 682; Blume and Cevc, Biochem. Et Biophys. Acta, 1990, 1029, 91; Lappalainen et al., Ant iviral Res., 1994, 23, 119; Chonn and Cul 1 is, Current Op. Biotech., 1995, 6, 698).
  • Monomembrane ribosomes can encapsulate a significant proportion of the aqueous buffer containing macromolecules, and the compound is encapsulated in this aqueous inner membrane, (Fraley et al., Trends ioiochem. Sci., 1981, 6, 77)
  • the composition of ribosomes is usually determined by lipids, especially phospholipids, especially phase transition temperatures. High lipid phospholipids are usually complexed with one or more steroids, especially cholesterol.
  • phosphatidyl compounds such as ngolipids, phosphatidylethanolamines, cereprosides and gangliosides, and particularly useful is diasylphosphatidylglycerol.
  • the lipid moiety contains 14-18 carbon atoms, especially 16-18 carbon atoms, and is saturated (double bond inside the 14-18 carbon atom chain).
  • the typical phospholipids are phosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphodies. And tidylcholine.
  • the targeting of colloidal dispersions can be either passive or active. Passive targeting is achieved by taking advantage of the ribosome's natural tendency to distribute to cells in the reticulum of organs containing sinusoids.
  • active targeting can be achieved, for example, by using a protein coat of a virus (Morish ita et al., Proc. Natl. Acad. Sci. (USA), 1993, 90,8474 :), a monoclonal antibody (or the like).
  • Binding specific ligands such as sugars, glycolipids or proteins (or suitable oligopeptide fragments thereof) to ribosomes, or organs and cells other than naturally occurring localized sites Techniques for modifying the ribosome by changing the composition of the ribosome to achieve distribution into types can be cited.
  • the surface of the targeted colloid dispersion can be modified in various ways.
  • lipid groups can be incorporated into the ribosome lipid bilayer to maintain the target ligand in tight association with the lipid bilayer.
  • Various linking groups can be used to link the lipid chain to the targeting ligand.
  • Target ligands that bind to specific cell surface molecules that are predominantly found on cells where delivery of the oligonucleotides of the invention are desired include, for example, (1) predominantly dependent on the cells where delivery is desired Specific to hormones, growth factors or their appropriate oligopeptide fragments, or (2) antigenic epitopes predominantly found on target cells, which bind to the specific cell receptor being expressed Or a suitable fragment thereof (eg, Fab; F (ab ′) 2), which binds to a polyclonal or monoclonal antibody.
  • the two or more bioactive agents can be combined and administered within a single liposome. Agents that increase the intracellular stability and Z or targeting of the contents can also be added to the colloid dispersion.
  • the dosage varies depending on symptoms, age, etc., but in the case of oral administration, the lower limit is 1 mg (preferably 30 mg) and the upper limit is 200 mg (preferably 150 mg) per dose. mg), in the case of injection, lower limit 0.1 lmg (preferably 5 mg), upper limit 100 mg (preferably 500 mg) subcutaneous injection, intramuscular injection Alternatively, it can be administered by intravenous injection.
  • lower limit 0.1 lmg preferably 5 mg
  • upper limit 100 mg (preferably 500 mg) subcutaneous injection, intramuscular injection Alternatively, it can be administered by intravenous injection.
  • each operation relating to gene manipulation is referred to as "Molecular Cloning" (written by Sambrook, J., Fritsch, EF and Maniatis, T., Cold Spring Harbor Laboratory Press, 1989). The method was used in accordance with the method described in (1), or when a commercially available reagent or kit was used, it was used in accordance with the instructions for the commercially available product.
  • Primer-1 is an oligonucleotide having 4 bases and a CACC added as a Kozak sequence upstream of the initiation codon of the human oculospanin gene, and has nucleotide numbers 1 to 23 of SEQ ID NO: 1 in the sequence listing.
  • CACC 4 nucleotide sequence
  • Primer 1-2 is an oligonucleotide consisting of a complementary strand of a nucleotide sequence consisting of nucleotide numbers 1043 to 1065 of SEQ ID NO: 1 in the sequence listing.
  • the PCR reaction was performed using PL ATINUM P fx DNA Polymerase (manufactured by Impitogen) according to the attached protocol. Specifically, to the obtained first strand cDNA dNA0. Lil, synthetic primer 1 and synthetic primer 2 having a concentration of lO pmol Zl were added to 1.5 1 and 10 XP fx Am plifaction Buffer 5, respectively.
  • UV—Free G DNA was purified from agarose gel by using el Purification Kit (manufactured by Invitrogen) according to the protocol attached thereto.
  • concentration of the purified cDNA was determined using lkb DNA L adder (Invitrogen, Inc.) using 1 PI Image Analysis Software Version 3.5 (Kodak Digital Science 'EDA S290: manufactured by Kodak). Was used as the concentration standard for the measurement.
  • the NM— 0 3 1 9 4 5c DNA obtained in Example 2 a) was converted into p ENTR / D _T ⁇ It was cloned into a PO vector.
  • the NM__ 0 3 1 9 4 5c DNA was mixed with the p ENTR ZD-TO PO vector to which the Topoisom erase was bound in the reaction buffer provided with the kit, and incubated at room temperature for 30 minutes.
  • Escherichia coli One S hot TO P10 Chemical 1y Chemical E.co1i (manufactured by Invitrogen) was transformed, and LB containing 50 Ig / m1 kanamycin was transformed. The cells were cultured on an agar medium. As a result, E. coli colonies that had grown with resistance to namycin were selected and cultured overnight at 37 in 1 ml of liquid TB medium containing 50 ng / m1 of kanamycin. the plasmid DNA was isolated and purified by using the M iniprep 9 6 K it (manufactured by Mi Ripoa Co.).
  • the gene was transferred to the expression vector PcDNA3.1 / DEST40 (Invitrogen) using the GAT EWAY TM system.
  • GAT EWAY TM LRC 1 onase TM Enzyme Mix manufactured by Invitrogen
  • 4 a LRR eaction Buffer 41 p ENTR / D -TO P O-NM_0 3 1 9 4 5 0.3 ⁇ g
  • Plasmid DNA (pcDNA3.1-DEST40-NM — 031945) was isolated and purified by using 1A GEN.
  • Plasmid pcDNA3.DEST40-NM-031945 obtained in Example 2 was transfected into NIH 3T3 cells as follows.
  • NIH 3 T 3 cells Transfection was carried out by lipofection using Lipofectamine TM 2000 Reagent from Invitrogen. That is, first, NIH 3T3 cells were grown in a 6-well plate until they became semi-confluent. Cells were washed once with DMEM containing no antibiotics and containing 10% fetal serum, and then D ⁇ ⁇ containing 100% antibiotics and containing 10% fetal serum. ⁇ was added.
  • DMEM serum-free medium
  • 2 ⁇ g of plasmid DNA pcDNA3.1-DEST40-NM_031945
  • DMEM serum-free medium
  • 4 ⁇ l of Lipofect amine TM 2000 Reagent were added and mixed.
  • the DNA solution and the Lipofect amine solution were mixed and left at room temperature for 20 minutes. Thereafter, a DNA-Lipofect amine mixed solution was added to the cells, and the cells were cultured at 37 ° C under 5% CO 2 .
  • DMEM 1 ml containing 1 0% ⁇ shea fetal serum after 4 hours the cells, 3 7 ° (:, and cultured overnight at 5% C 0 2 below.
  • NIH 3T3 cells obtained by transfection with cDNA-free negative control or pcDNA3.1-DEST40-NM-0331945 were washed with PBS (-) buffer (manufactured by Invitrogen). Cells were lysed in a sample buffer (manufactured by PIORAD) containing 2-mercaptoethanol for SDS-polyacrylamide electrophoresis (SDS-PAGE), and 12.5% polyacrylamide gel (e SDS-PAGE was carried out under reducing conditions using Pajiel E-T12.5 L AT-1 Co., Ltd.).
  • the PVD F membrane is blocked (once for 30 minutes at room temperature) with Block Ace (manufactured by Snow Brand Co., Ltd.), and then a plastic bag (trade name: Hyprivac, manufactured by Cosmo Bayo Co., Ltd.) ), Added anti-V5 antibody (1000-fold dilution) and 5 ml of block ess, and shaken at room temperature for 1 hour.
  • the membrane was taken out and washed with PBS containing 0.05% Tween 20 (hereinafter referred to as “0.05% Tween 20—PBS”) (1 minute at room temperature for 1 minute).
  • BAL B—3T3 cells American Type Culture Collection No. CCL-163
  • CS Dulbecco's modified Eagle medium containing 10% serum
  • DMEM Dulbecco's modified Eagle medium containing 10% serum
  • DNA solution and Geneporter TM 2 solution were mixed and left at room temperature for 20 minutes. Thereafter, DNA- G eneporter TM 2 mixture example pressurized to the cell (4m l / tray), 3 7 ° C, 5 % C 0 2 and cultured under.
  • the DMEM 5 0 m l / Torei added to cells containing 2 0% ⁇ shea serum after 4 hours, 3 7 "C, under 5% CO 2 and incubated overnight.
  • the cells cultured by the above method are washed with a PBS (-) buffer (manufactured by InV Itrogen). Collect the cells using a cell scraper (Sumitomo Bei-Cry 1, manufactured by K.K.) and suspend the cells in 8.0 mM ml of 5 mM Tris buffer. Leave the cell solution for 30 minutes at 4 ° C. Disrupt the cells with a D ounce Type B homogenizer (30 strokes). Centrifuge at 1000 G for 10 minutes and collect the supernatant. The supernatant is centrifuged at 800 G for 100 minutes with an ultracentrifuge (manufactured by Hitachi, Ltd.) to collect the precipitate. Enrich the membrane fraction with a sucrose density gradient.
  • mice To the precipitate, add 5 mM Tris buffer pH 8.050001, and homogenize the cell solution with a Dounce Tye B homogenizer (10 strokes).
  • the cell membrane fraction is identified by the western blotting method described in the section on expression confirmation and used as an immunogen.
  • Example 4 Immunization and cell fusion of mice
  • the spleen was excised from the mouse 3 days after the booster immunization, and the spleen was extracted with 20 mM HEPES buffer (pH 7.3), 350 mg / m 1 sodium bicarbonate, 0.05 mM ⁇ -mercaptoethanol, Serum-free RPMI containing 50 units / m 1 penicillin, 50 g / m 1 streptomycin, 300 / m 1 L-glutamic acid 1640 medium (10.4 gZ little RPMI 1 640 Nissi (1): Nissui Pharmaceutical Co., Ltd.) (hereinafter referred to as "serum-free RPMI medium") Place in 10 ml mesh (Celsto Reina: Falcon) Use spatula to crush. After the cell suspension that has passed through the mesh is centrifuged to precipitate spleen cells, the spleen cells are washed twice with serum-free RPMI medium, and then suspended in serum-free RPMI medium to determine the number of cells.
  • the following cell fusion procedure is performed while keeping the plastic centrifuge tube containing the pellets at 37 ° C in a beaker containing warm water. 1 ml of 50 (w / V) polyethylene glycol 150 (manufactured by Behringer Mannheim) was slowly added to the pellet while stirring the pellet at the tip of the pipette. Then, serum-free R pre-heated to 37 C Add 1 ml of PMI medium slowly in two portions, then add 7 ml of serum-free RPMI medium.
  • HAT medium J hypoxanthine 'aminopterin' thymidine medium
  • FCS hypoxanthine 'aminopterin' thymidine medium
  • thymus After extracting thymus from a 4- to 10-week-old BALB / c mouse female (purchased from Japan SLC), crush it with a spatula on a mesh (Cell Strainer; Falcon) and pass through the mesh
  • the cells thus obtained are washed twice with a hypoxanthine / thymidine medium containing 10% FCS (hereinafter referred to as “HT medium”; Kirk's Mannheim).
  • HT medium hypoxanthine / thymidine medium containing 10% FCS
  • Thymic cells of one mouse were suspended in 30 ml of HT medium containing 10% FCS, and the suspension was used as a feeder cell solution.
  • the culture solution containing the fused cells obtained in the above (4-2) is diluted 10 to 100 times with a feeder cell solution depending on the cell density, and the density of the fused cells is 5 cells / m 1 Dilute serially with feeder one cell solution to give 1 cell / m1 and 0.5 cell / 'm1.
  • Each sample prepared in this manner is dispensed into a 96-well microplate for cell culture at a ratio of 1001 / well, and cultured at 37 under 5% CO 2 for 5 days.
  • the maintenance culture of human oculospanin-expressing cells was performed using RPMI 1640 (manufactured by Inpitrogen), 10 fetal bovine serum (manufactured by Moregate Biotech), 20 mM HEPES (manufactured by Sigma), and 55 i ⁇ 2-mercaptoethanol (manufactured by Invitrogen). ) in the added medium (culture area), and 37 ° C, 53 ⁇ 4! C0 2 under. Transfer the cells expressing human occulospanin in the logarithmic growth phase to a cell culture flask at 2 ⁇ 10 4 cellsZcm 2 and culture for 3 days.
  • the 96-well U-bottom plate was centrifuged with HITACHI himac CF8DL at 15000 rpm for 1 minute (centrifugation condition 2), and the supernatant was removed with 200 1 chip. After hitting the side of the 96-well U-bottom plate to suspend the cells expressing human occulospanin, adjust the concentration to 10 / zg / ml and 5 ⁇ g / mK 2.5 ⁇ g / ml in a medium cooled on ice. Add the hybridoma culture supernatant ⁇ 1 / well. Incubate the 96-well U-bottom plate every 15 minutes at 4 ° C for 1.5 hours while stirring with a plate mixer (Fujirebio).
  • the human occulospanin-expressing cells obtained in Example 3 were cultured and grown in RPMI 1640 medium containing 10% FCS at 37 ° C and 5% carbon dioxide. From 1 X 1 0 7 cells suspension prepared in cell Zm 1, the U-shaped bottom 9 6-well microplate (manufactured by Nunc) dispensed at 5 0 1 Z Ueru min, centrifuged (9 0 X g , 4 ° C, 10 minutes). The supernatant is removed, the culture supernatant of the fused cells cultured in the above (4-1-3) is added at 50 1 / well, and the mixture is stirred. The mixture is allowed to stand on ice for 1 hour, and then centrifuged (90%). X g, ⁇ 0 min) and remove the supernatant. 1 0 0 0
  • FITC Fluorescein-5-isothiocyanate
  • the cell solution is added by adding 501, and the cells are fixed by leaving still on ice for 10 minutes. After centrifugation (90 X g, 4.C, 10 minutes) to remove the supernatant, wash again with buffer for flow cytometry 100.1 / well, and pellet the pellet by flow cytometry. 1. Use the suspension in the 100 ⁇ l ⁇ -well solution for re-use as a sample for single-hole cytometry. The FITC fluorescence intensity of the cells in each sample is measured with a flow cytometer (Epics Elite; manufactured by Cole Yuichisha) (excitation wavelength: 488 nm, detection wavelength: 530 nm).
  • a flow cytometer Epics Elite; manufactured by Cole Yuichisha
  • the FITC fluorescence intensity of a clearly higher value (approximately 100 to 100) was obtained than that of the human oculospanin-expressing cells (FITC fluorescence intensity of approximately 0.3) to which no fusion cell culture supernatant was added.
  • the fused cells corresponding to the indicated samples are selected.
  • the mouse-mouse hybridoma produced in Example 4 was replaced with 10% FCS.
  • AS F medium 1 in liters containing, 3 7 ° C, and cultured under 5% carbon dioxide, and grown until IX 1 0 6 cells Zm l.
  • the culture was centrifuged (1000 rpm, 2 minutes), the supernatant was discarded, and the precipitated cells were washed once with serum-free ASF medium, and resuspended in 1 liter of serum-free ASF medium. Incubate at 7 ° (: 5% carbon dioxide for 48 hours.
  • Each eluate was placed in a test tube containing 1.125 ml of 1 M Tris-hydrochloric acid (pH 9.0), and immediately after completion of the elution, a centrifugal tube type ultrafilter (Centreprep 10; (Grace Japan Co., Ltd.) and centrifuged at 30000 ⁇ g at 4 ° C. for 2 hours. After removing the filtrate collected in the lower part of the filter, add 15 ml of PBS to the upper part, and repeat the operation of centrifuging again at 30000 xg and 4 ° C for 2 hours five times. However, perform the fifth centrifugation until the liquid volume in the upper part of the filter becomes 0.5 ml, and use the liquid remaining in the upper part of the filter as the anti-human oculospanin antibody sample. ,
  • Antibody-dependent cytotoxicity is measured as an indicator of biological activity.
  • RPMI 164 medium Invitrogen, hereinafter referred to as RPMI medium
  • 10% fetal serum Methicillin
  • Effecta cells are prepared as follows. After counting the J774A.1 cells (Dainippon Pharmaceutical) in the presence of 10 O ng / ml of macrophage colony-stimulating factor (Sigma) for 3 days by trypan blue staining, the RPM I in the culture area to prepare to 1 X 1 0 6 cells / m 1. Seed 100 l (lxl 0 5 cells) on the 96-well round bottom microplate and centrifuge the plate at 150 rpm for 5 minutes. Incubate for 4 hours. To the positive control well, add l% Trion X-100 instead of effecta cells to completely kill BATDA-labeled human oculospanin-expressing cells.
  • Cell death induction rate (%) (count of each test well—count of negative control / well) / (count of positive control / one count of negative control) x l O 0
  • the obtained plasmid DNA was subjected to a reaction using Big Dye Terminatorv 3.0 Cyclic Sequencing Rapid Reaction Kit according to the protocol attached thereto, and then ABIPRI SM 310 Nucleotide sequence analysis was performed by DNA Analyzer (Applied Biosystems), and the GenBank accession number (ACCESSI ON NO. NM—O pen of the nucleotide sequence shown in 031945) was used. It was confirmed that the cDNA having the Leading Frame (SEQ ID NO: 1 in the sequence listing) was integrated into the pENT RZD—TOPO vector.
  • Gene transfer was performed to 1 / DEST 40 (manufactured by Invitrogen) using the GATEWAY TM system.
  • GATEWAY TM LRC 1 onase TM Enzyme Mix (manufactured by Invitrogen) 4 a LRR eaction Buffer 41, p ENTR / D -TO P O-NM_0 3 1 9 4 5 0.3 tg
  • pc Prepare 40.3 g of DNA 3.1 / DEST with TE buffer to make 20 n 1 and react at 25 ° C for 1 hour. After the reaction, add 2 ⁇ 1 Proteinase K and react at 37 ° C for 10 minutes. The resulting reaction product was used to transform E.
  • the gene was transferred to the expression vector PEF / DEST 51 (manufactured by Invitrogen) using the GAT EW AY TM system.
  • Escherichia coli One S hot TOPI 0 Chemical 1 y Chemical E. coli (manufactured by Nichroshen) was transformed, and LB agar containing 50 g nom 1 of ampicillin was transformed. Cultured on medium. As a result, Escherichia coli colonies that had grown with resistance to ampicillin were selected and cultured at 37 ° C. in 100 ml of liquid LB medium containing 50 igZml of ampicillin. Plasmid DNA (pEF-DEST5 ⁇ —031945) was isolated and purified using IKit (manufactured by QIAGEN). '
  • BAL B-3 T3 cells (RIKEN clone A31) were prepared using a modified Dulbecco's modified Eagle's medium (hereinafter DMEMJ: SIGMA) containing 10% serum (GIBC0) (hereinafter, BSJ). ) for cell culture were placed 150MmDish (culture area 148c m 2; after incubation at 37, 5% CO2 until semiconfluent E cement in manufactured IWAKI Co., Ltd.) 330 sheets, the EF-DEST51- NM- 031945 BAL B—Transfected into 3T3 cells. Transfection to BALB-3 T3 cells was performed by Lipofexion using Geneporter TM 2 Transcription Reagent from Gene Therapy Systems.
  • DMEMJ Dulbecco's modified Eagle's medium
  • GIBC0 GIBC0
  • the cells were washed once with a serum-free medium (DMEM), and then 20 ml of a serum-free medium (DMEM) was added.
  • DMEM serum-free medium
  • a serum-free medium DMEM
  • Opti-MEM I serum-free medium
  • Geneporter TM 2 Reagent 841 was added and mixed. The DNA solution and the Geneporter TM 2 solution were mixed and left at room temperature for 20 minutes.
  • DNA-Geneporter TM 2 mixture was added to the cells (1 ml / dish), and the cells were cultured at 37 ° C and 5% C% 2 . 3 hours 10% ⁇ shea serum medium was changed to DMEM 20m 1 / dish containing post, 3 7:, and cultured overnight at 5% C0 2 below.
  • plasmid p EF—DEST51—NM—031945 was introduced into 2293T cells as follows. Introduction into 293 T cells was performed using LIPOFEC TAMINE 2000 reagent (Invitorogen). 293 T cells were seeded at a density of 2.5 ⁇ 10 5 Z 9.2 cm 2 and cultured overnight at 37 ° C. under 5% carbon dioxide. In a 5 ml polypropylene tube, mix lOIL LIPOFEC TAM INE 2000 reagent with 2501 OPTI—MEM IR educed—Serum Medium, Invitorogen) and mix at room temperature. The reaction was performed for 5 minutes.
  • the cells cultured by the above method were washed with PBS (-) buffer (Dainippon Pharmaceutical Co., Ltd.). The cells were collected using a cell scraper (manufactured by IWAKI), and suspended in 5 mM Tris buffer 7.4230 ml. The cell solution was left for 30 minutes at 4 ° C. D ounce T ye B homogenizer (50 strokes) The cells were crushed with. The mixture was centrifuged at 100 G for 10 minutes using a centrifuge (manufactured by KUB0TA), and the supernatant was collected.
  • the supernatant was centrifuged for 800 minutes using an ultracentrifuge (BECKMAN), and the precipitate was collected.
  • 57% sucrose in Tris Buffer was added to 14 m, layered, and centrifuged at 78000 G for 16 hours at 4 ° C with a sucrose density gradient to collect the upper layer membrane fraction.
  • 55 ml of 5 mM Tris buffer (pH 7.4) was added to the membrane fraction, and the mixture was centrifuged at 78000 G for 60 minutes at 4 ° C to collect a precipitate.
  • 5 mM Tris buffer pH 7.4 15001 was added, and the cell solution was homogenized with a DounceTypeB homogenizer (10 strokes).
  • the cell membrane fraction was identified by the Wesin blotting method described in the section on expression confirmation.
  • mice [Example 8] Immunization and cell fusion of mice
  • the X10 7 cell expressing human occulospanin gene obtained in Example 7 was intraperitoneally administered to a 5-week-old female BAL BZc mouse (purchased from Nippon S.L.C.). Two, four, six, and eight weeks later, the same human and oculospanin gene-expressing cells (1 ⁇ 10 7 cells / mouse) were intraperitoneally administered for booster immunization.
  • the spleen was excised from the mice 4 days after the booster immunization, and this was supplemented with lOmM HE PES buffer (pI-I7.4), 0.02 mg / m1 sodium carbonate, 300 ⁇ g / ml L-daltamate.
  • Serum-free MEM medium (Eagle MEM medium “Nissi” (1): Nissui Pharmaceutical Co., Ltd., 9.4 g / L) (hereinafter referred to as “serum-free MEM medium J”)
  • the cell suspension was centrifuged to sediment the spleen cells, and the spleen cells were washed twice with serum-free MEM medium and suspended in serum-free MEM medium. After turbidity, the cell number was measured.
  • ⁇ medium a myeloma growth medium containing 15% FBS (GIBC0), 306 g / ml glutamic acid, and 0.05 mM ⁇ -mercaptoethanol (hereinafter referred to as “ ⁇ medium”) at 37 ° C. in the presence of 7% carbon dioxide gas in cell concentration and washed with the same serum-free MEM medium Mie port Ichima cells SP2 / 0 were cultured so as not to exceed 1 X 10 6 cells / m 1, were suspended in serum-free MEM medium measuring the number of cells did. An SP2 / 0 cell suspension equivalent to 1/5 spleen cells and a whole spleen cell suspension were mixed, centrifuged, and the supernatant was completely removed.
  • the following cell fusion operation was performed at room temperature in a plastic centrifuge tube containing a pellet.
  • lml of 40% (w / V) polyethylene glycol 4000 manufactured by Merck
  • 9 ml of the serum-free MEM medium was slowly added in three portions.
  • the tip of the pipet is adjusted to 2.5 ⁇ 10 6 cells / m 1 in hypoxanthine 'aminopterin' thymidine medium containing 20% FBS (hereinafter referred to as “HAT medium; SIGMA”).
  • HAT medium hypoxanthine 'aminopterin' thymidine medium containing 20% FBS
  • Dispense 10 On 1 Z-well into a 96-well microplate for cell culture and culture at 37 ° C (7% CO 2. One day later, add HAT medium 100/1 to all wells. The cells were exchanged every few days thereafter, and the thus obtained fused cells were subjected to screening by the limiting dilution method described below.
  • Each sample prepared in this manner was dispensed 100 1 / wel 1 each onto a 96weU plate in which 100 / LL 1 HY medium had been dispensed into each well in advance, and 37 days and 7% CO 2 gas for 10 days. Cultured.
  • Example 7 The cell membrane fraction obtained in Example 7 was dispensed at 50 ⁇ l / well at 1 g / ml into a 96-well EIA plate (C0STAR). After standing at 4 ° C for 1 day, shake the Array stock solution in the plate well, add 80 1 / wel 1 of 1% BSA to PBS (-), seal the plate, and seal at 4 ° until use. Saved in C. When used, the temperature was returned to room temperature, and the plate was washed three times with Serawasher (manufactured by Bio-Tec) through PBSCPBS-T containing 0.1% Tween20.
  • Serawasher manufactured by Bio-Tec
  • the absorbance at 405 nm and 630 nm was measured with a plate reader (Nalgenquie;> Tournal).
  • the HEK293 cultured cells obtained in Example 7 were grown and grown in a DMEM medium containing 10% FBS at 3.7 ° C. (5% CO 2 gas), and cultured for 24 hours after transfection. Dispense the cell suspension prepared in 2 ⁇ 10 7 cells 1 into 50-well 1-well cells in a 96-well microplate (Corning) and centrifuge
  • FITC Fluorescein-5-isothiocyanate
  • the FITC fluorescence intensity of the cells in each sample was measured by a flow cytometer (FC500; manufactured by BECKMAN) (excitation wavelength: 488 nm, detection wavelength: 530 nm).
  • FC500 flow cytometer
  • detection wavelength: 530 nm detection wavelength: 530 nm
  • Mouse one mouse High Priestess de one Ma prepared in Example 8 was suspended in HY medium so as to be lX10 6 cells / mI, and allowed to stand 37 ° C, 1% C0 2 3 days below.
  • the culture solution thus obtained was centrifuged (1600 rpm, 5 min), the supernatant was collected, and crude purification of IgG was performed under the following conditions.
  • Binding buffer PH7.0 (20mM Na 2 HP0 4 - 12H 2 0, 20mM Na 2 HP0 4 - 2H 2 0) elution buffer one: pH3.0 lOOmM glycine - HC1
  • ProteinG carrier (Amersiam Biosciences) was sampled in the required amount, ethanol was removed, washed once with ultrapure water, washed once with binding buffer, and then combined with binding buffer to prepare a 50% gel slurry. Protein G gel slurry was added to the supernatant, rotated overnight at 4 ° C, and then washed three times with binding buffer.After washing, an elution buffer was added to elute the antibody. The eluate was collected in a sample tube type ultrafilter (amicon Ultrafree-MC: Millipore, 5000 Xg, 4 ° C, 20 minutes) The eluate was added while removing the filtrate collected in the lower part of the filter so that the liquid volume in the upper part of the filter did not fall below 501. After all the eluate was added, PBS (-) was added. Add 3 times the volume of the eluate, exchange the buffer, and The solution remaining in the portion was used as an anti-anti-human oculospanin antibody sample.
  • Antibody-dependent cytotoxic activity was measured as an indicator of biological activity.
  • RPMI 164 medium manufactured by Invitrogen; hereinafter It was adjusted to 8 ⁇ 10 5 ce 11 s / 0.4 ml with RPMI medium.
  • Chromium—51 sodium chromate, manufactured by Amersham Biosciences
  • After addition of 401, 37 ° C, in the presence of 5% carbon dioxide Incubated for 2 hours.
  • Chromium-51-labeled human oculospanin-expressing cells were resuspended in 4 ml of RPMI medium, and purified mouse cells previously prepared at 5 ⁇ g / m 1 in RPMI medium.
  • 5-1 (1 ⁇ 10 4 ce 11 s) was seeded on a 96-well round bottom microplate to which oculospanin antibody 501 was added, and left at 4 for 30 minutes.
  • RPMI medium was added to the negative control well or background well in place of the purified mouse anti-human / oculospanin antibody. '
  • Effecta cells were prepared as follows. That BALB / c - collecting spleen cells according to a standard method from nu / nu mice (female, 7 weeks old), were prepared in 1 5 X 1 0 7 cells / 1 by the counting after RPMI medium with Toripanbu Le one staining.. Seed 10 ⁇ (1.5 x 10 6 eel 1 s) into the 96-well round bottom microplate and centrifuge the plate at 150 rpm for 5 minutes. Incubation was performed for 4 hours in the presence of 5% carbon dioxide. Positive control wells were supplemented with 2% Trion X-100 instead of effector cells to completely kill Chromium-51 labeled human oculospanin-expressing cells.
  • RPMI medium was added to the wells for background measurement instead of effector cells. After incubation for 4 hours, 501 culture supernatants were collected from each well and transferred to a 96-well luma plate (PerkinElmer). After drying at 50 ° C overnight, the amount of Chromium—51 in each well was measured using a microplate scintillation—Shion counter (Top Coat NTX, manufactured by PerkinElmer Inc.).
  • Cell death induction rate (%) (Count of each test well-count for background measurement / count of wells) / (Positive control-count of wells-for background measurement / force of wells) X 100
  • SEQ ID NO: 5 PCR sense primer for amplifying human occulospanin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Hospice & Palliative Care (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Dermatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、癌遺伝子を用いた癌の検出方法、癌治療及び/又は予防効果を有する化合物のスクリーニング方法、及び癌治療及び/又は予防用医薬組成に関する。すなわち、本発明は、ヒト・オキュロスパニン遺伝子の発現を指標とした癌の検出方法、及び、ヒト・オキュロスパニンを特異的に認識し、癌細胞に対する細胞障害性活性を有する抗体を含む医薬組成物を提供する。

Description

明 癌特異的抗原を標的とした抗体 技術分野
本発明は、 癌治療に用いることができる抗体、 該坊体を有効成分として含有 することを特徴'とする癌治療用医薬組成物、 癌の検出方法、 癌の検出用キッ ト に関する。 背景技術
腫瘍細胞は、 細胞の種類に応じて固有な抗原蛋白質 (以下、 腫瘍関連抗原と 記載することがある) を発現することが知られている。 そこで、 この腫瘍関連 抗原をタ一ゲッ トとして腫瘍に対する新たな治療方法を開発しょうとする試み が検討されている。 腫瘍関連坊原に対して特異的な抗原一抗体反応を示すモノ クロ一ナル坊体は、種々の生体免疫反応(抗体依存性細胞性細胞傷害活性 (ADCC)、 補体依存性細胞傷害活性(CDC)等) を誘導して癌細胞を攻撃し、 細胞死を誘導す る事が知られているので、 腫瘍の治療に有用なモノクローナル K体が開発され ている。
しかしながら、 腫癡の治療に有用なモノクローナル抗体は、 転移性乳癌、 急 性骨髄性白血病、 難治性慢性リ ンパ腫、 非ホジキンリ ンパ腫、 多発性骨髄腫な ど、 幾つかの腫瘍種に限られたものが知られているだけであり、 他の腫瘍の治 療に用いることができる、 モノクローナル抗体の取得が求められていた。
腫瘍の治療に有用なモノク口一ナル抗体を取得するためには、 腫癟細胞で特 異的に発現している蛋白質を同定し、 該蛋白質を抗原としたモノクロ一ナル抗 体を取得することが有用である。
ヒ ト · ォキュロスパニン (human oculospanin) は、 網膜色素上皮及ぴ眼球脈 絡膜で発現している遺伝子よりイクスプレス ド ·シークェンス'タグ(Expressed Sequence Tag: EST) クローンとして取得された蛋白質である(Molecular Vision, (2002) 8, 25-220)。 ヒ ト . ォキュロスパニン遺伝子は 1068bpのオープン - リ —ディ ング · フレームを有し、 ヒ ト ' ォ.キュロスパニンは 3 5 5アミノ酸から なり、 DNA配列から推定される分子量は、 36.4kDaであるがヒ ト .ォキュロスパ ニンと腫瘍との関係は明らかとはなつ.ていない。 発明の開示
本発明は、 癌で特異的に発現する遺伝子を見出し、 該遺伝子の発現を検出す ることによる癌の検出方法、 該検出方法に用いる癌検出用キッ ト、 該遺伝子の 発現産物に特異的に結合し、 細胞障害活性を持つ抗体、 該抗体を有効成分とし て含む癌の治療用医薬組成物を提供することを目的とする。
本発明者はヒ ト癌組織で特異的に発現する遺伝子を探索し、 機能が不明であ つた、 ヒ ト ' ォキュロスパニン (human oculospanin) 遺伝子の発現量がメラノ 一マ細胞で顕著に増加していることを見出し、該遺伝子を用いた癌の検出方法、 癌の検出用キッ ト並びに、 抗ヒ ト · ォキュロスパニン抗体を含有する、 癌治療 用医薬組成物を提供し、 本発明を完成させた。
すなわち、 本発明は、
( 1 ) ヒ 卜 · ォキュロスパニンと特異的に結合し、 該蛋白質を発現している 細胞に対し細胞障害活性を持つ抗体、
(2 ) 配列表の配列番号 2に示されるアミノ酸配列からなる蛋白質及び Z又 は配列表の配列番号 4に示されるアミノ酸配列からなる蛋白質と特異的に結合 し、 該蛋白質を発現している細胞に対し細胞傷害活性を持つ抗体、
(3) 細胞傷害活性が抗体依存性細胞傷害活性であることを特徴とする、( 1 ) 又は ( 2 ) に記載の抗体、
(4 ) 細胞傷害活性が補体依存性細胞傷害活性であることを特徴とする、( 1 ) 又は ( 2 ) に記載の抗体、
( 5 ) 細胞傷害活性が補体依存性細胞性細胞傷害活性であることを特徴とす る、 ( 1 ) 又は ( 2 ) に記載の抗体、
( 6 ) 細胞傷害活性がアポトーシス誘導であることを特徵とする、 ( 1 ) 又は
(2 ) に記載の抗体、
( 7) モノクローナル抗体であることを特徴とする、 ( 1 ) 乃至 ( 6 ) のいず れか一つに記載の枋体、
(8 ) マウスハイプリ ドーマ 03 B 8— 2 C 9— 4 F 3 (F E RM B P— 0 8 6 2 7 ) から産生されることを特徴とする、 ( 7 ) に記載の抗体。
( 9 ) ヒ ト化されていることを特徴とする、 ( 1 ) 乃至 ( 8 ) のいずれか一つ に記載の抗体、 _
( 1 0 ) 完全ヒ ト捥体であることを特徵とする、 ( 1 ) 乃至 ( 7 ) のいずれか 一つに記載の抗体、 '
( 1 1 ) I g G抗体であることを特徴とする、 ( 1 ) 乃至 ( 1 0 ) のいずれか 一つに記載の抗体、 '
( 1 2 ) 下記の工程 1 ) 乃至 4 ) を含む、 癌の検出方法 :
1 ) 被験者より採取した検体より、 全 R N A画分を抽出する工程 ;
2 ) 正常人より採取した検体より、 全 RN A画分を抽出する工程 ;
3 ) 上記工程 1 ) 由来の全 R N A画分と上記工程 2 ) 由来の全 R NA画分にお ける、 下記の a ) 又は b ) のいずれか一つに記載のポリヌクレオチドの発現量 を測定する工程 ; - a ) 配列表の配列番号 1 に示されるヌクレオチド配列を含むことからなるボリ ヌク レオチド、
b ) 上記 a ) に記載のボリヌク レオチドと相補的なヌク レオチド配列からなる ポリヌクレオチドとス トリ ンジェントな条件下でハイブリダィズするポリヌク レオチド ;
4 ) 上記工程 1 ) 由来の全 R N A画分と上記工程 2 ) 由来の全 R N A画分との 間における上記工程 3 ) によって測定されたポリヌクレオチドの発現量の差を 解析し、 上記工程 1 ) に記載の被験者の癌を検出する工程、
( 1 3 ) 下記の工程 1 ) 乃至 3 ) を含む、 癌の検出方法 :
1 ) 被験者より採取した検体における、 配列表の配列番号 2 に示されるアミノ酸 配列からなる蛋白質及び Z又は配列表の配列番号 4 に示されるアミノ酸配列か らなる蛋白質の発現量を測定する工程 ;
2 ) 正常人から採取した検体における、 上記工程 1 ) に記載の蛋白質の少なく と もいずれか一つの発現量を測定する工程 ;
3 ) 上記工程 1 ) で検出された蛋白質の発現量と上記工程 2 ) で測定された該蛋 白質の発現量の差を解析し、 被験者の癌を検出する工程、
( 1 4 ) 癌が皮膚癌であることを特徴とする、 ( 1 2 ) 又は ( 1 3 ) のいずれ か一つに記載の方法、 '
( 1 5 ) 癌がメラノーマであることを特徴とする、 ( 1 2 ) 又は ( 1 3 ) のい ずれか一つに記載の方法、
( 1 6 ) ポリヌクレオチドの発現量を測定する方法が、 ノーザンプロッ ト法 、 ドッ トプロッ ト法、 スロッ トブロッ ト法、 R T— P C R、 リポヌクレア一ゼ 保護アツセィ又はランオン · アツセィであることを特徴とする、 ( 1 2 )、 ( 1 4 ) 及び ( 1 5 ) のいずれか一つに記載の方法、
( 1 7 ) ポリヌクレオチドの発現量を測定する方法が検体由来の相補的 D N A群又は摩 DN A群の各 DNAの部分配列からなる D N Aで作製された遺伝子 チップ又はアレイを用いることを特徴とする、 ( 1 2 )、 ( 1 4) 及び ( 1 5 ) の いずれか一つに記載の方法、
( 1 8 ) 蛋白質の発現量の測定方法が'、 該蛋白質に特異的に結合する枋体又は リガンドを用いることを特徴とする、 ( 1 3) 乃至 ( 1 5 ) のいずれか一つに記 載の方法
( 1 9 ) 蛋白質の発現量の測定方法が、 ウェスタンプロッ ト法、 ドッ トプロッ ト法、 スロッ トプロッ ト法又は固相酵素免疫定量法 (E L I S A法) であること を特徴とする、 ( 1 3 ) 乃至 ( 1 5) のいずれか一つに記載の方法、
(2 0 ) 下記の 1 ) 乃至 3 ) からなる群から選択される少なく とも一つ以上を 含む癌の検出用キッ ト :
1 ) 配列表の配列番号 1に示されるヌクレオチド配列からなるポリヌク レオチ ドを特異的に増幅するための 1 5乃至 3 0塩基長の連続したオリゴヌク レオチ ドプライマ一 ;
2 ) 配列表の配列番号 1に示されるヌクレオチド配列からなるポリヌクレオチ ドにス トリ ンジェントな条件下でハイプリダイズし、 該ポリヌクレオチドを検 出するための 1 5ヌクレオチド以上の連続したポリヌクレオチドプローブ ;
3 ) 配列表の配列番号 1に示されるヌクレオチド配列からなるポリヌク レオチ ドが固定された固相化試料。
(2 1 ) 下記の 1 ) 及び 2) の少なく とも一つを含む癌の検出用キッ ト : 1 ) 配列表の配列番号 2に示されるアミノ酸配列からなる蛋白質及ぴノ又は配 列表の配列番号 4に示されるアミノ酸配列からなる蛋白質に特異的に結合し、 該蛋白質を検出するための坊体 ;
2 ) 上記 1 ) に記載の抗体に結合し得る二次抗体。
(2 2 ) 癌が皮膚癌であることを特徴とする、 ( 2 0 ) 又は (2 1 ) に記載の 十ッ ト、
( 2 3 ) 癌がメラノ一マであることを特徴とする、 ( 2 0 ) 又は ( 2 1 ) に記 載のキッ ト、
( 2 4) ( 1 ) 乃至 ( 1 1 ) に記載の抗体の少なく ともいずれか一つを含有 することを特徴とする、 癌の治療用医薬組成物、
(2 5 ) 配列表.の配列番号 1に示されるヌクレオチド配列又は該配列の部分配 列に相補的なヌクレオチド配列を有するオリ ゴヌク レオチドを含む癌の治療用 医薬組成物、
(2 6 ) 癌が皮膚癌であることを特徴とする、 ( 2 4) 又は (2 5 ) のいずれ か一つに記載の医薬組成物、
( 2 7 ) 癌がメラノ一マであることを特徴とする、 ( 2 4) 又は ( 2 5) のい ずれか一つに記載の医薬組成物、
からなる。 図面の簡単な説明
図 1の上図は、 各種細胞株内でのヒ ト · ォキュロスパニン遺伝子の発現- を 示すグラフである。図 1の下図は、健常人皮膚サンプルとメラノ一マサンプルに おけるヒ 卜 · ォキュロスパニン遺伝子の発現量を示すグラフである。
図 2の上図は、 健常人皮膚サンプルと皮膚組織由来メラノーマサンプルにお けるヒ ト · ォキュロスパニン遺伝子の発現量を示すグラフである。 図 2の下図 は、 健常人皮膚サンプルとリ ンパ節組織由来メ ラノ一マサンプルにおけるヒ ト · ォキュロスパニン遺伝子の発現量を示すグラフである。
図 3は、 健常人リ ンパ節由来サンプルとリ ンパ節組織由来メラノ一マサンプ ルにおけるヒ ト · ォキュロスパニン遺伝子の発現量を示すグラフである。
図 4は、 ヒ ト · ォキュロスパニン遺伝子産物の N I H 3 T 3細胞での発現を 示す図である。
図 5は、 ヒ ト · ォキュロスパニン発現細胞を用いた抗ヒ ト · ォキュロスパニ ン抗体による抗体依存性細胞傷害活性を示すグラフである。 発明を実施するための最良の形態
本明細書中において.、 癌治療効果を有する化合物とは、 癌の増殖を抑制する 活性、 癌を縮小する活性を有する化合物をいう。なお、' 本明細書中においては、 「癌」 と 「腫瘍」 は同じ意味に用いている。本明細書中において、 「遺伝子」 と いう語には、 D N Aのみならずその mR N A、 c D N A及びその c R N Aも含 まれるものとする。したがって、 本発明における 「ヒ ト · ォキュロスパニン遺伝 子 J には、 ヒ ト · ォキュロスパニンの DNA、 mRNA、 c DNA及び c RN Aが含まれる。本明細書中において、 「ポリヌクレオチド」 という語は核酸と同 じ意味で用いており、 DNA、 RNA、 プローブ、 オリゴヌクレオチド、 及び プライマ一も含まれている。本明細中においては、 「ポリペプチド」 と 「蛋白質」 は区別せずに用いている。また、 本明細書中において、 「RNA画分」 とは、 R NAを含んでいる画分をいう。 また、 本明細書中において、 「細胞」 には、 動物 個体内の細胞、 培養細胞も含んでいる。本明細書中において、 「細胞の癌化」 と は、 細胞が接触阻止現象への感受性を喪失することや、 足場非依存性増殖を示 すこと等、 細胞が異常な増殖を示すことをいい、 このような異常な増殖を示す 細胞を 「癌細胞 J という。本明細書においては、 ヒ ト . ォキュロスパニンが有す る細胞の癌化活性等と同等の機能を有する蛋白質もヒ ト · ォキュロスパニンと いう。 なお本発明における癌遺伝子 ( O n c o g e ) という語には癌遺伝子の 他に癌原遺伝子、 前癌遺伝子 (P r o t o— O n c o g e n e) も含む。
本発明における、 「細胞傷害」 とは、 何らかの形で、 細胞に病理的な変化をも たらすことをいレ 直接的な外傷にとどまらず、 D N Aの切断や塩基の二量体の 形成、 染色体の切断、細胞分裂装置の損傷、各種酵素活性の低下などあらゆる細 胞の構造や機能上の損傷をいう。 本発明における 「細胞障害活性」 とは上記細 胞傷害を引き起こすことをいう。
本発明において、 「ス トリ ンジェン卜な条件下でハイプリダイズする」 とは、 市販のハイブリダイゼーショ ン溶液 ExpressHyb Hybridization Solution (ク ロンテック社製) 中、 6 8 °Cでハイブリダィズすること、 又は、 DNAを固定 したフィルターを用いて 0. 7— 1. 0 Mの N a C 1存在下 6 8 °Cでハイブリ ダイゼ一シヨ ンを行った後、 0. 1— 2倍濃度の S S C溶液 ( 1倍濃度 S S C とは 1 5 0 mM N a C l、 1 5 mM クェン酸ナトリウムからなる)を用い、 6 8°Cで洗浄することにより同定することができる条件又はそれと同等の条件 でハイブリダィズすることをいう。
1. ヒ ト ' ォキュロスパニン
( 1 ) ヒ ト · ォキュロスパニン遺伝子の特異'的発現の確認
ヒ ト · ォキュロスパニン遺伝子は、 ヒ ト各種細胞株群における遺伝子の発現 量の解析の結果、 他の組織に比べてメラニン細胞で有意に高い発現量を示し、 さらに、 正常なメラニン細胞に比べメラノーマにおいて有意に発現量が増加し ていることが本発明者らによって見出された。例えば、 メラニン細胞、 リ ンパ芽 球、 グリア細胞、 上皮細胞の間でヒ ト · ォキュロスパニンの発現量を比較する と、 メラニン細胞で有意に発現量が高く、 また、 正常な皮膚細胞とメラノ一マ におけるヒ 卜 · ォキュロスパニンの発現量を比較すると、 メラノ一マにおいて 顕著に発現量が高いことが、 本発明者らによって見出された。したがって、 ヒ ト · ォキュロスパニンは細胞の癌化及び/又は癌細胞の増殖に関与していると 考えられる。 すなわち、 ヒ ト · ォキュロスパニンの各細胞、 及び/又は各組織 における発現量を測定することでヒ ト · ォキュロスパニンの過剰発現に起因し て発生する癌化及び./又は癌細胞、 の増殖の状態を判定することができる。 こ のような癌としては、 例えば、 皮膚癌、 特にメラノ一マを挙げることができる が、 ヒ ト · ォキュロスパニンの発現量が他の組織より有意に増殖している癌で あれば皮膚癌以外の癌にも適用することができる。
ヒ ト · ォキュロスパニン遺伝子のオープン · リーディ ング ' フレーム (Open Reading Frame: 0RF) のヌク レオチド配列は、 配列表の配列番号 1に示されて おり、 そのアミノ酸配列は配列表の配列番号 2に示されている。ヒト ·ォキュ口 ス ^ニンの c DNAiま、 G e n B a n k iこ Homo sapiens oculospanin (OCSP), mRNA (ァクセッショ ン番号 : NM_ 0 3 1 9 4 5 ) として登録されており、 G e n B a n kに登録されている c D N Aのヌクレオチド配列は、 配列表の配列 番号 3にも示されており、 0RF は配列番号 3のヌクレオチド番号 6 5乃至 1 1 2 9に示されている。また、 G e n B a n kに登録されているヒ ト ·ォキュロス パニンのアミノ酸配列と同一のアミノ酸配列は配列表の配列番号 4に示されて いる。なお、 ヒ ト · ォキュロスパニンのアミノ酸配列において、 1若しくは数個 のアミノ酸が置換、 欠失、 付加されたアミノ酸配列からなり、 ヒ ト · ォキュ口 スパニンと同等の生物活性を有する蛋白質もヒ ト · ォキュロスパニンに含まれ る。 .
2 . 癌の検出方法
ヒ ト · ォキュロスパニンは癌細胞、 特にメラノーマで高い発現が認められる ので細胞、 特に皮膚細胞の癌化及び/又は癌細胞の増殖に関与していると考え られる。 なお、 「検体」 とは、 被験者や臨床検体等から得られた、 血液、 体液、 前立腺、 精巣、 陰茎、 膀胱、 腎臓、 口腔、 咽頭、 口唇、 舌、 歯肉、 鼻咽頭、 食 道、 胃、 小腸、 大腸、 結腸、 肝臓、 胆嚢、 滕臓、 鼻、 肺、 骨、 軟部組織、 皮膚 、 乳房、 子宮、 卵巣、 脳、 甲状腺、 リ ンパ節、 筋肉、 脂肪組織等の組織又は排 泄物等の試料を意味するが、 本発明においては皮膚又はリ ンパ節がより好まし い
( 1 ) ヒ ト · ォキュロスパニン遗伝子の発現量を利用した癌の検出方法 ヒ ト · ォキュロスパニン遺伝子の発現量を利用した癌の検出方法は、 具体的 には、 以下の工程 1 ) 乃至 4 ) を含む方法である。
1 ) 被験者より採取した検体より 全 R N A画分を抽出する工程 ;
2 ) 正常人より採取した検体より、 全 R N A画分を抽出する工程 ;
3 ) 上記工程 1 ) に記載の全 R N A画分と上記工程 2 ) に記載の全 R N A画分に おけるヒ 卜 · ォキュロスパニン迫伝子の発現 Sを測定する工程 ;
4 ) 上記工程 1 ) 由来の全 R N A画分と上記工程 2 ) 由来の全 R N A画分との間 における上記工程 3 )によって測定された遺伝子の発現量の差を解析し、 上記ェ 程 1 ) に記載の被験者の癌を検出する工程。
以下、 各工程を具体的に説明する。
a ) 工程 1 ) 被験者より採取した検体より、 全 R N A画分を抽出する工程 ; 検体から全 R N A画分を抽出するに際しては、 適切な実験の倫理基準に適し た方法で入手したヒ ト由来組織を R N A抽出用の溶媒 (例えばフヱノール等、 リポヌクレア一ゼを不活性化する作用を有する成分を含むもの) で直接溶解す るか又は、 該組織の細胞を破壊しないように、 スクレーパーで慎重に搔きとる か、 もしくはトリプシン等の蛋白質分解酵素を用いて穏やかに組織から細胞を 抽出するなどの方法により、 細胞を回収した後、 速やかに R N A抽出工程に移 行する。 .
RNAの抽出方法としては、 チォシアン酸グァニジン ' 塩化セシウム超遠心 法、 チォシアン酸グァニジン · ホッ トフエノール法、 グァニジン塩酸法、 酸性 チォシアン酸グァニジン · フエノール · クロ口ホルム法 (Chomczynski,P. an d Sacc i.N., Anal . Biochem. (1987), 162, 156-159) などを採用しうるが、 酸 性チオシアン酸グァニジン · フェノール · クロロホルム法が好適である。 また 、 市販の RNA抽出用試薬 (例えば、 I S O GEN (二ツボンジーン (株) 製 ) 、 TR I Z OL試薬 (ギブコ ' ピーアールエル社製) ) 等を試薬に添付のプ 口 トコールに従って用いることもできる。
得られた全 RNA画分は、 必要に応じてさらに mRNAのみに精製して用い るのが好ましい。 精製方法は特に限定されないが、 例えばピオチン化したオリ ゴ ( d T) プローブに mRNAを吸着させ、 さらにス トレプトアビジンを固定 化した常磁性粒子に、 ピオチン/ス トレプトァビジン間の結合を利用して mR N Aを捕捉し洗浄操作の後、 mRNAを溶出することにより、 mRNAを精製 することができる。 また、 オリ ゴ ( d T) セルロースカラムに mRNAを吸着 させて、 次にこれを溶出して精製する方法も採用し得る。 ただし、 本発明の方 法のためには これら mRNAの精製工程は必須ではなく、 検出対象のポリヌ クレ才チドの発現の検出が可能である限りにおいて、 全 R N A画分をその後の 工程に用いることもできる。 '
b ) 工程 2 ) 正常人より採取した検体より、 全 R N A画分を抽出する工程 : 本発明において、 正常人とは、 癌を有さない人を意味する。 正常人であるか否 かは、 ヒ ト · ォキュロスパニンの濃度を測定し、 あらかじめ正常人の値として 決められている数値範囲に入るか否かで判定することもできるし、 ヒ ト . ォキ ュロスパニンの発現量と、 正常人の癌の形成度の相関をあらかじめ調べておく ことによって、 被験者から採取した検体におけるヒ ト · ォキュロスパニンの発 現量を測定することによつて被験者が、 正常人であるか否かを判定することも できる。 正常人よりの全 R N A画分の調製は、 上記工程 1 ) と同様に行う こと ができる。
c ) 工程 3) 上記工程 1 ) に記載の全 R N A画分と上記工程 2 ) に記載の全 RN A画分におけるヒ ト · ォキュロスパニン遺伝子の発現量を測定する工程 : ここで、 ヒ ト · ォキュロスパニン遺伝子の発現量は配列表の配列番号 1に示 されるヌクレオチド配列を含むことからなるポリヌクレオチド又は、 配列表の 配列番号 1に示されるヌクレオチド配列と相補的なヌクレオチド配列からなる ポリヌク レオチドとス トリ ンジェン 1、な条件下で八イブリダイズするポリヌク レオチドの発現量で示される。 '
ヒ ト ■ ォキュロスパニン遺伝子の発現量の測定方法として、 固相化試料を用 いた測定方法と、 その他のいくつかの測定方法について説明する。
( a) 固相化試料を用いた測定方法
( i ) 固相化試料
固相化試料としては、 例えば以下のものが挙げられる。
(ィ) 遺伝子チップ :
デ一夕べース上の E S T ( e x p r e s s e d s e q u e n c e t a g ) 配列又は m R N A配列をもとに合成したアンチセンスォリゴヌクレオチドが 固相化された遺伝子チップを用いることがでぎる。 このような遺伝子チップと してはァフィ メ トリ ックス ( A ί f y m e t r i x ) 社製の遺伝子チップ(Lip shut z, . J . e t al., Nature Genet. (1999) 21 , suppl imen t, 20 - 24)を用いるこ とができるが、 これに限定されず、 公知の方法に基づき作製してもよい。 ヒ ト 細胞由来の mRN Aを解析する場合には、 ヒ ト由来のものが好ましく、 例えば 、 ァフィ メ トリ ックス社製ヒ ト U 9 5セッ ト又は U 1 3 3セッ トを用いること ができる。 しかしながら、 それらに限定されず、 例えば近縁種の動物由来のも のも使用可能である。
(口) ヒ ト、 全 R N Aあるいは特定の組織から得た全 R N Aより作製された c DNA又は RT— P C R産物が固相化された、 アレイ又はメンブレンフィル 上記 c DNA又は RT— P C R産物は、 ヒ トの E S Tデータベース等の配列 情報を基に作製されたプライマ一で逆転写酵素反応や P C Rを実施することに よりクローン化されたものである。 この c D N Aや R T— P C R産物は、 あら かじめ腫瘍を有するヒ トと腫瘍を有さないヒ トの間で発現量の異なる全 RNA を、 サブトラクシヨ ン法 (Diatchenki, L, et al, Proc. Natl. Acad. Sci.USA, ( 1996) 93, 6025-6030) 、 ディ ファレンシャルディスプレイ法 ( L i ang, P.,. e t alN ucleic Acids Res. , (1992) 23, 3685-3690) などを利用して選択されたもので あってもよい。 また、 アレイやフィルタ一は市販のもの (例えば、 インテリジ ーン : タカラバイオ社製等) を使用してもよいし、 上記 c DNAや RT— P C R産物を市販のスポッターで (例えば、 G M S 4 1 7アレイヤー : 夕.カラバイ ォ社製等) を用いて固相化することにより作製してもよい。 '
(ii) プローブの作製と解析
標識プロ一ブは、 特定の mRNAクローンではなく、 発現している全ての m RNAを標識したものを用いる。 プロ一プ作製のための出発材料としては精製 していない mR N Aを用いてもよいが、 前述の方法で精製したポリ (A) + R N Aを用いることが望ましい。 以下に、 各種固相化試料を用いた場合の、 標識 プローブの調製方法と検出、 解析方法について説明する。
(ィ) ァフィ メ トリ ックス社製遺伝子チップ :
ァフィ メ トリ クス社製遺伝子チップに添付されたプロ トコール (ァフィメ ト リ ックス社発現解析技術マニュアル) に従ってピオチン標識した c R N Aプロ —ブを作製する。 次いでァフィ メ トリ ックス社製遺伝子チップに添付のプロ ト コール (発現解析技術マニュアル) に従って、 ァフィ メ ト リ ックス社製の解析 装置 (G e n e C h i p F l u i d i c s S t a t i o n 4 0 0 ) を用 いてハイブリダイゼ一ショ ン及び解析を行い、 アビジンによる発光を検出、 解 析を行う。
(口) アレイ :
逆転写酵素反応でポリ ( A) +RN Aから c DN Aを作製する際に、 c D N Aの検出ができるように c D NAを標識しておく ことが必要であり、 蛍光色素 で標識する場合には、 蛍光色素 (例えば C y 3、 C y 5など) で標識された d — UT Pなどを加えておく ことにより c DN Aを蛍光標識する。 このとき、 メ ラノーマ細胞由来のポリ (A) + R N Aと対照細胞由来のポリ (A) +RNAを それぞれ異なる色素で標識しておけば、 後のハイプリダイゼーショ ン時には両 者を混合して用いることができる。 アレイとして例えば、 夕カラバイオ (株) 社の巿販ァレイを用いる場合、 同社のプロ トコールに従いハイプリダイゼーシ ヨン及び洗浄を行って、 蛍光シグナル検出機 (例えば GM S 4 1 8アレイズキ ャナー (タカラパイォ (株) 社製) 等) で蛍光シグナルを検出後、 解析を行う。 ただし、 使用するアレイとしては市販のものに限定されず、 自家製のもの、 特 別に作製したものでもよい。
(八) メンブレンフィルター :
逆転写酵素でポリ (A) +RN Aから c DN Aを作製する際に、 放射性同位元 素 (例えば、 d— C T P等を加えることにより標識プロ一プを調製し、 常法に よりハイブリダィゼ一シヨ ンを行い、 例えば、 市販のフィル夕一製マイクロア レ一である、 ア トラスシステム (クロンテック社製) を用いてハイブリダィゼ —シヨ ン及び洗浄を行った後、 解析装置 (例えば、 アトラスイメージ : クロン テック社製等) を用いて検出、 解析を行う。
前記 (ィ) 乃至 (ハ) のいずれに記載の方法も、 同一ロッ トの固相化試料に ヒ ト各組織由来のプローブをハイブリダィズさせる。 このとき、 使用するプロ —ブ以外のハイプリダイゼ一ショ ン以外の条件は同じとする。 蛍光標識プロ一 ブを用いる場合には、 それぞれのプローブを異なる蛍光色素で標識しておけば 一つの固相化試料に両プローブの混合物を一度にハイブリダィズさせて蛍光強 度を読み取ることができる(Brown、 P.0. et al. Nature Genet. , (1999) 21, supplement, p.33— 37)。
( b ) その他の測定方法
上記以外の測定方法としてサブ卜ラクシヨ ンクローニング法 (実験医学別 冊 新 遺伝子工学ハンドブック、 羊土社刊(1996) p.32-35参照) 、 ディ ファ レンシャルディスプレイ法 (基礎生化学実験法 4 核酸 ·遺伝子実験 II.応用 編、 柬京化学同人(2001), P125-128) 、 レポ一ター遺伝子を用いた方法 (クロ ラムフエニコ一ルァセチルトランスフェラーゼ (例えば、 p CAT S— B a s i cベクタ一 : プロメガ社製を使用。 ) や /3—ガラク トシダ一ゼ (例えば、 p )3 g a l — B a s i c : プロメガ社製を使用。 ) 、 分泌型アル力リホスファタ ーゼ (例えば、 P S EAP 2— B a s i c : クロンテツク社製を使用。 ) 、 綠 色蛍光蛋白質 (g r e e n— ; f l u o r e s c e n t p r o t e i n) (例え ば、 p E G F P— 1 : クロンテック社製を使用。 ) ) があるがこれらに限定さ れない。
工程 4) 上記工程 1 ) 由来の全 R N A画分と上記工程 2 ) 由来の全 RNA画 分との間における上記工程 3 )によって測定された遺伝子の発現量の差を解析 し、 上記工程 1 ) に記載の被験者の癌を検出する工程。
正常人由来の検体と被験者由来の検体との間でヒ ト · ォキュロスパニンの発 現量の差を解析し、 ヒ ト · ォキュロスパニンの発現量が有意に増加している検 体では癌、 特に皮膚癌、 更にはメラノーマが存在する可能性が高いと判定する ,ことができ、 癌を検出することができる。発現量が有意に増加しているとは、 例 えば、 ァフィメ トリ ックス社の遺伝子チップを用いて、 ァフィメ トリ ックス社 の m i c r o a r r a y S u i t e V e r . 3. 0を用いて解析した場合 、 メラノ一マ細胞由来の遺伝子の A v e r a g e d i f f e r e n c e値が 正常メラニン細胞に比べて有意に.増加している場合をいう。
また、 ヒ ト · ォキュロスパニン遺伝子の濃度を測定し、 あらかじめ正常人の 値として決められている数値範囲に入るか否かを解析し正常人の値として決め られている範囲を超えている場合には癌を有すると判定することで癌を検出す ることもできるし、 ヒ 卜 · ォキュロスパニン遺伝子の発現量と、 正常人の癌の 形成度の相関をあらかじめ調べておく ことによって、 被験者から採取した検体 におけるヒ ト · ォキュロスパニン遺伝子の発現量を測定することによって被験 者が、 正常人であるか否かを判定することもできる。
( 3) ヒ ト · ォキュロスパニンの発現量 (蛋白質の発現量) を利用した癌 の検出方法
ヒ ト · ォキュロスパニンの発現量を利用した癌の検出方法は、 具体的には、 以下の工程 1 ) 乃至 3 ) を含む方法である。
1 ) 被験者より採取した検体における、 ヒ ト ·ォキュロスパニンの発現量を測定 する工程 :
2 ) 正常人よ'り採取した検体における、 上記 1 ) に記載の蛋白質の発現量を測定 する工程 :
3 ) 上記工程 1 ) で測定された蛋白質の発現量と上記工程 2 ) で測定された該蛋 白質の発現量の差を解析し、 被験者の癌を検出する工程。 以下、 各工程を具体的に説明する。
a) 工程 1 ) 被験者より採取した検体における、 ヒ ト ' ォキュロスパニンの 発現量を測定する工程 :
( a ) 検体より蛋白質測定用試料の調製
検体は、 必要に応じて高速遠心を行うことにより、 不溶性の物質を除去した 後、 以下のように E L I S A / R I A用試料やウェス夕ンブロッ ト用試料とし て調製する。
E L I S A Z R I A用試料としては、 例えば回収した、 皮膚又はリ ンパ節を そのまま使用するか、 緩衝液で適宜希釈したものを用いる。 ウェスタンブロッ ト用 (電気泳動用) 試料は、 例えば、 皮膚又はリ ンパ節の抽出液をそのまま使 用するか、 緩衝液で適宜希釈して、 S D S —ポリアク リルアミ ド電気泳動用の 2 一メルカ トルエタノールを含むサンプル緩衝液 (シグマ ( S i g m a ) 社製 等) と混合する。 ドッ ト/スロッ トプロッ トの場合は、 例えば回収した皮膚又 はリ ンパ節の抽出液そのもの、 又は緩衝液で適宜希釈したものを、 プロッティ ング装置を使用するなどして、 直接メンプレンへ吸着させる。
( b ) 試料の固相化
上記のようにして得られた試料中の蛋白質を特異的に検出するためには、 試 料を免疫沈降法、 リガンドの結合を利用した方法等によって、 沈殿させ、 固相 化せずに検出することもできるし、 そのまま検出する該試料を固相化すること もできる。 蛋白質を固相化する場合において、 ウエスタンプロッ ト法、 ドッ ト プロッ ト法又はスロッ トブロッ ト法に用いられるメンブレンとしては、 ニトロ セルロースメンブレン (例えば、 バイオラッ ド社製等) 、 ナイロンメンプレン (例えば、 ハイボンド一 E C L (アマシャ ^ · フアルマシア社製) 等) 、 コッ トンメンブレン (例えば、 プロッ トァブソーベン トフィルタ一 (バイオラッ ド 社製) 等) 又はポリ ピニリデン · ジフルオリ ド ( P V D F ) メンブレン (例え ば、 バイオラッ ド社製等) 等が挙げられる。
E L I S A法/ R I A法で蛋白質の検出 · 定量を行うためには、 専用の 9 6 穴プレート (例えば、 ィムノプレート · マキシソープ (ヌンク社製) 奪) に試 料又はその希釈液 (例えば 0 . 0 5 % アジ化ナトリウムを含むリ ン酸緩衝生 理食塩水 (以下 「 P B S」 という) で希釈したもの) を入れて 4 乃至室温で 一晩、 又は 3 7 で 1乃至 3時間静置することにより、 ゥエル内底面に蛋白質 を吸着させて固相化する。
ヒ ト · ォキュロスパニンに対する抗体は、 常法を用いて (例えば、 新生化学 実験講座 1、 蛋白質 1、 p.389-397、 1992参照。 ) 、 ヒ ト ' ォキュロスパニン又 はヒ ト ·ォキュロスパニンのアミノ酸配列から選択される任意のポリペプチド を動物に免疫し、 生体内に産生される抗体を採取、 精製することによって得る ことができる。 また、 公知の方法 (例えば、 Kohler and Mi lstein, Nature 25 6, 495-497, 1975、Kennet, R. ed. , Monoclonal Ant ibody p.365-367, 1980, Prenum Press, N.Y. ) に従って、 ヒ ト · ォキュロスパニンに対する抗体を産生 する抗体産生細胞とミエローマ細胞とを融合させることによりハイプリ ド一マ を樹立し、 モノクローナル抗体を得ることもできる。
なお、 抗原となるヒ ト · ォキュロスパニンはヒ ト ' ォキュロスパニン遺伝子 を遺伝子操作により宿主細胞に産生させることによって得ることができる。具 体的には、 ヒ ト . ォキュロスパニン ¾伝子を発現可能なベクターを作製し、 こ れを宿主細胞に導入して該遺伝子を発現させ、 発現したヒ ト · ォキュロスバニ ンを精製すればよい。
( c ) ヒ ト ·ォキュロスパニンの発現量の測定
. ヒ ト · ォキュロスパニンの発現量は、 配列表の配列番号 2に示されるァミノ 酸配列からなる蛋白質の発現 aで示される。 : 発現量の測定は、 上記抗ヒ ト ·ォキュロスパニン抗体を用いてウェスタンプロ ッ ト法ゃドッ ト /スロッ トブロッ 卜法等公知の方法を用いて測定することがで さる。
b) 工程 2 ) 正常人より採取した検体における、 上記 1 ) に記載の蛋白質の発 現量を測定する工程 :
正常人より採取した検体におけるヒ ト■ォキュロスパニンの発現量の測定は上 記工程 1 ) と同様の方法で行う ことができる。
c) 工程 3 ) 上記工程 1 ) で測定された蛋白質の発現量と上記工程 2 ) で測定 された該蛋白質の発現 Sの差を解析し、 被験者の癌を検出する工程。
正常人由来の検体と被験者由来の検体との間でヒ ト · ォキュロスパニンの発 現量の差を解析し、 ヒ ト · ォキュロスパニンの発現量が有意に増加している検 体では癌、 特に皮膚癌、 更にはメラノ一マが存在する可能性が高いと判定する ことができ、 癌を検出することができる。
また、 ヒ ト . ォキュロスパニンの濃度を測定し、 あらかじめ正常人の値とし て決められている数値範囲に入るか否かを解析し正常人の値として決められて いる範囲を超えている場合には癌を有すると判定することで癌を検出すること もできるし、 ヒ ト * ォキュロスパニンの発現量と、 正常人の癌の形成度の相関 をあらかじめ調べておく ことによって、 被験者から採取した検体におけるヒ ト • ォキュロスパニンの発現量を測定することによって被験者が、 正常人である か否かを判定することもできる。
3 . ヒ ト 'ォキュロスパニン遺伝子及びヒ ト · ォキュ口スパニンの検定 ヒ ト · ォキュロスパニン遺伝子及びヒ ト · ォキュロスパニンは、 ヒ 卜の正常 組織の間ではメラニン細胞で発現量が有意に増加しており、 更に、 正常なメラ ニン細胞に比べ、 メラノーマで発現量が有意に増加している。
ヒ ト ·ォキュロスパニンの機能を調べる方法としては、 まず、 ヒ ト · ォキュ口 スパニンを発現している細胞由来のヒ ト c D N Aライブラリーから、 コロニ一 ハイブリダィゼ一シヨ ン法等、 公知の方法に従い、 完全長 c D N Aを取得する 。 この完全長 c D N Aをマウス又はヒ ト細胞に導入して高発現させ、 細胞に影 響が生じるか否かを検討する。
c D N Aを動物個体内で発現させるためには、 得られた完全長 c D N Aをゥ ィルスべク夕一に組み込み、 動物に投与する方法が挙げられる。 ウィルスべク タ一による遺伝子導入方法としては例えば、 レトロウイルス、 アデノウイルス 、 アデノ関連ウィルス、 ヘルぺスウィルス、 ワクシニアウィルス、 ボックスゥ ィルス、 ポリオウイルス等の D N Aウィルス、 又は R N Aウィルスに c D N A を組み込んで導入する方法が挙げられる。 なかでも、 レ トロウイルス、 アデノ ウィルス、 アデノ関連ウィルス、 ワクシニアウィルスを用いた方法が好ましい 非ウィルス性の遺伝子導入方法としては、 発現プラスミ ドを直接筋肉内に投 与する方法 (D N Aワクチン法) 、 リボソーム法、 リポフエクシヨ ン法、 マイ クロインジェクショ ン法、 リ ン酸カルシウム法、 エレク ト口ポレーシヨ ン法等 が挙げられ、 なかでも、 D NAワクチン法、 リボソーム法が好ましい。
また、 培養細胞に対して、 完全長 c D NAをヒ ト、 マウス、 ラッ ト等由来の 筋肉細胞、 肝細胞、 脂肪細胞、 あるいは筋肉細胞、 肝細胞、 脂肪細胞、 皮膚細 胞等へ導入し、 高発現させ、 各標的細胞の有する機能、 具体的には、 糖^脂質 の産生や取り込み、 あるいはグリコーゲンの蓄積等の糖脂質代謝を調節する機 能、 あるいは細胞の形態にどの様な影響が現れるかを検討することができる。 逆に、 試験する遺伝子の全 R Ν Αに対するアンチセンス核酸を、 細胞に導入し 、 各標的細胞の機能や形態にどの様な影響が出るかを調べることもできる。 完全長 c D N Aを動物又は細胞に導入するにあたっては、 適当なプロモータ —及び形質発現に関わる配列を含むベクタ一に該 c D NAを組み込み、 該べク ターで宿主細胞を形質転換させる。 脊椎動物細胞の発現プロモータ一としては 、 通常発現しょう とする遺伝子の上流に位置するプロモータ一、 R NAのスプ ライス部位、 ポリアデニル化部位、 及び転写終結配列等を有するものを使用で き、 さらにこれは必要により複製起点を有してもよい。 該発現べクタ一の例と しては、 S V 4 0の初期プロモータ一を有する p S V 2 d h f r (Subramani, S. et aし, Mol. Cell. Biol., (1981) 1, .854-864) 、 レトロウイルスベクター p L N C X、 p L N S X、 p L X I N , p S I R (クロンテック (C l o n t e c h ) 社製) 、 コス ミ ドベクタ一 p A x Cw (タカラバイオ社製) 等が挙げ られるが、 これに限定されない。 該発現べクタ一は、 ジェチルアミノエチル ( D E A E ) —アキス 卜ラン法 (Luthman, H. and Magnusson, G. , Nucleic Ac i ds Res. (1983) 11, .1295-1308) 、 U ン酸カルシゥム一 D N A共沈殿法(Graham, F. L. and van der Eb, A. J. Virology, (1973) 52, p.456-457)、 及び電気パルス 穿孔法(Neumann, E. et aし, EMB0 J. (1982) 1, .841-845)などによりサルの 細胞である C O S細胞(Gluzman, Y. Cel 1 (1981) 23, p.175-182, ATCC: C R L - 1 6 5 0 )やチャイニーズ ·ハムスター卵巣細胞 ( C H〇細胞、 AT C C : C C L一 6 1 ) のジヒ ドロ葉酸還元酵素欠損株 (Urlaub,G. and Chasin, L. A. Pro c. Natl. Acad. Sci. USA(1980) 77, p.4126 - 4220) 、 ヒ ト胎児腎臓由来 2 9 3細胞 (AT C C : C R L— 1 5 7 3 ) 等に取り込ませることができるが、 こ れらに限定されない。 かく して所望の形質転換体を得ることができる。
また、 遺伝子操作により、 正常動物において、 目的とする遺伝子が高発現す るようにトランスジェニック動物を作製し、 細胞の形態にどの様な影響が現れ るかを検討することも可能である。 逆に、 メラノ一マを有する動物において、 対象とする遺伝子を破壊したノックアウ ト動物を作製し細胞の状態を判定する ことができる。
4 . ヒ ト ' ォキュロスパニン遺伝子及び/又はヒ ト · ォキュロスパニン検出 用キッ ト ' ■
ヒ ト · ォキュロスパニン遺伝子及び/又はヒ ト . ォキュロスパニンは、 以下 の 1 ) 乃至 5 ) からなる群から選択される少なく とも一つ以上を含むキッ トを 用いて検出することができる。
1 ) 配列表の配列番号 1 に示されるヌクレオチド配列からなるポリヌクレオチ ドを特異的に増幅するための 1 5乃至 3 0塩基長の連続したオリゴヌクレオチ ドプライマ一;
2 ) 配列表の配列番号 1 に示されるヌクレオチド配列からなるポリヌクレオチ ドにス トリ ンジェントな条件下でハイプリダイズし、 孩ポリヌクレオチドを検 出するための 1 5ヌクレオチド以上の連続したポリヌク レオチドプローブ ;
3 ) 配列表の配列番号 1 に示されるヌクレオチド配列からなるポリヌクレオチ ドが固定された固相化試料 ;
4 ) 配列表の配列番号 2 に示されるアミノ酸配列からなる蛋白質に特異的に.結 合し、 該蛋白質を検出するための抗体 ;
5 ) 上記 4 ) に記載の抗体に結合し得る二次抗体。
前記 1 ) 記載のプライマ一は、 ヒ ト · ォキュロスパニン遗伝子のヌクレオチ ド配列 (配列表の配列番号 1 に示されるヌクレオチド配列) に基づき市販のプ ライマ一設計ソフ ト (たとえば、 W i s c o ns i n GCG p ac kage Ve r s i on 1 0. 2 ) を用 いる等、 常法により容易に設計し、 増幅することができる。 このようなプライ マ一としては例えば、 配列表の配列番号 1 に記載のヌクレオチド配列からなる ポリヌクレオチドを増幅するためには配列'表の配列番号 5 に示されるヌクレオ チド配列からなるオリゴヌクレオチドと配列表の配列番号 6 に示されるヌクレ ォチド配列からなるオリ ゴヌクレオチドの組合せを使用することができる。 ま た、 前記 2 ) に記載のプローブは、 ヒ ト · ォキュロスパニンに特異的にハイプ リダイズするポリヌクレオチドであって、 1 0 0乃至 1 5 0 0塩基長、 好まし くは 3 0 0乃至 6 0 0塩基長である。 これらのプライマーやプローブは、 適当 な標識により ラベル (例えば、 酵素標識、 放射性標識、 蛍光標識等) されてい てもよく、 また、 リ ンカ一を付加していてもよい。
上記 3 ) に記載の固相化試料は、 上記 2 ) に記載のプローブをガラス板、 ナ イロンメンプレン等の固相に固定することにより作製される。 このような固相 化試料の作成方法については、 既に 「2. 癌の検出方法」 の項の 「 ( 1 ) ヒ ト • ォキュロスパニン遺伝子の発現量を利用した癌の検出方法」 の項中の 「 ( 1 ) 固'相化試料を用いた測定方法」 の項で説明した通りであり、 例えば、 遺伝子 チップ、 c DNAアレイ、 オリゴアレイ、 メンブレンフィルタ一等を挙げるこ とができる。
本発明のキッ トには、更に耐熱性 D N Aポリ メラ一ゼ、 d NT P (d AT P、 d C T P、 d G T P、 d T T Pの混合物) 及び緩衝液を含めることもできる。 耐熱性 D N Aボリ メラ一ゼとしては T a q D N Aポリ メラ一ゼ、 L A T a q D N A p o l ym e r a s e (宝酒造社製)、 T t h DNAポリ メラ一 ゼ、 P f u D N Aポリメラ一ゼなどが例示できる。 緩衝液は使用する D N Aポ リメラ一ゼに応じて選ばれ、 必要に応じて Mg 2 +などが添加されている。 前記、 4 ) 及び 5 ) に記載の抗体は上記 「「2. 癌の検出方法」 の項の Γ ( 3 ) ヒ ト · ォキュロスパニンの発現量 (蛋白質の発現 S) を利用した癌の検出 方法」 の項や 「 5. 钪ヒ ト · ォキュロパニン抗体の製造」 の項に記載した方法 により作製することができる。 該抗体は、 適当な標識により ラベル (例えば、 酵素標識、 放射性標識、 蛍光標識等) されていてもよい。
本発明のキッ 卜はヒ 卜 · ォキュロスパニン遣伝子及び/又はヒ ト · ォキュ口 スパニンの検出に用いることができ、 癌の有無の判定や、 癌の増 ¾を抑制する 物質のスクリーニングにも用いることができる。
5. 坊ヒ ト · ォキュロパニン抗体の製造
( 1 ) 抗原の調製
坊ヒ ト ' ォキュロパニン抗体を作製するための抗原としては、 ヒ ト ' ォキュ ロパニン又はその少なく とも 6個の連続した部分アミノ酸配列からなるポリべ プチド、 あるいはこれらに任意のアミノ酸配列や担体が付加された誘導体を挙 げることができる。
ヒ ト · ォキュロスパニンは、 ヒ トの腫瘍組織あるいは腫瘍細胞から直接精製 して使用することができ、 また、 ヒ ト ' ォキュロパニンを i n v i t r oに て合成する、 あるいは遺伝子操作により宿主細胞に産生させることによって得 ることができる。 遺伝子操作では、 具体的には、 ヒ ト ' ォキュロパニンを発現 可能なベクターに組み込んだ後、 転写と翻訳に必要な酵素、.基質及びエネルギ —物質を含む溶液中で合成する、 あるいは他の原核生物、 又は真核生物の宿主 細胞を形質転換させることによってヒ ト ' ォキュロパニンを発現させることに より、 該蛋白質を得ることが出来る。 ヒ ト ' ォキュロパニンの c D NAのヌク レオチド配列は、 文献(Graeme Wistow, Steven L. Bernstein, M. Keith Wyatt, Robert N. Far iss, Ami ta Behal , Jeffrey W. Touchman, Gerard Bouf f ard, Don Smith, and Kather ine Per terson (2002) Expressed sequence tag analysis of human RPE/choro i ds for the NEIBank Project: Over 6000 non-redundant transcri ts, npve 1 and s lice variants, Molecular Vision 8:2-5-220)に記 載されており、 GenBank にァクセッショ ン番号 NM— 0 3 1 9 4 5で登録され ており、 また、 その O R Fは配列表の配列番号 1 にも記載されている。ヒ ト · ォ キュロスパニンの c D NAは例えば、 ヒ ト · ォキュロスパニンを発現している c D NAライブラリ一を铸型として、 ヒ ト ' ォキュロスパニン c D N Aを特異 的に増幅するプライマーを用いてポリメラ一ゼ連鎖反応 (以下 Γ p C R J とい う) [Saiki, R. K., et aし (1988) Science 239, 487-49 参照 ] を行なう、 い わゆる P C R法により取得することができる。
ポリべプチドのイン · ビ卜ロ ( i n V i t r o ) 合成としては、 例えば口 シュ · ダイァグノスティ ックス社製のラピッ ド トランスレーショ ンシステム ( R T S ) が挙げられるが、 これに限定されない。 R T Sを用いる場合を例に挙 げると、 目的の遺伝子を T 7 プロモータ一により制御される発現ベクターにク ローニングし、 これを i n V i t r oの反応系に添加すると、 最初に铸型 D NAより T 7 RNAポリ メラ一ゼにより mR NAが転写され、 その後大腸菌溶 解液中のリポソ一ム等により翻訳が行われ、 目的のポリぺプチドが反応液中に 合成される(Biochemica, 1, 20-23 (2001) , Biochemica, 2, 28-29 (2001)。 原核細胞の宿主としては、 例えば、 大腸菌 (Escherichia coli) や枯草菌 (B acillus subtilis) などが挙げられる。 目的の遺伝子をこれらの宿主細胞内で 形質転換させるには、 宿主と適合し得る種由来のレブリ コンすなわち複製起点 と、 調節配列を含んでいるプラスミ ドベクタ一で宿主細胞を形質転換させる。 また、 ベクターとしては、 形質転換細胞に表現形質 (表現型) の選択性を付与 することができる配列を有するものが好ましい。
例えば、 大腸菌としては K 1 2株などがよく用いられ、 ベクターとしては、 一般に p B R 3 2 2や p U C系のプラスミ ドが用いられるが、 これらに限定さ れず、 公知の各種菌株、 及びベクターがいずれも使用できる。
プロモーターとしては、 大腸菌においては、 トリプトファン (trp) プロモ一 ター、 ラク トース (lac) プロモーター、 トリプトファン · ラク ト一ス (tac) プロモーター、 リポプロテイン (lpp) プロモータ一、 ポリペプチド鎖伸張 H子 Tu (tufB) プロモーター等が挙げられ、 どのプロモータ一も目的のポリべプチ ドの産生に使用することができる。
枯草菌としては、 例えば 2 0 7 - 2 5株が好ましく、 ベクタ一としては p T U Β 2 2 8 (Ohmura, K. et al. (1984) J. Biochem. 95, 87-93) などが用い られるが、 これに限定されるものではない。 枯草菌の Q;—アミラーゼのシグナ ルぺプチド配列をコ―ドする D N A配列を連結することにより、 菌体外での分 泌発現も可能となる。
真核細胞の宿主細胞には、 脊椎動物、 昆虫、 酵母などの細胞が含まれ、 脊椎 動物細胞としては、 例えば、 サルの細胞である C O S細胞 (Gluzman, Y. (198 1) Cell 23, 175-182、 AT C C C R L— 1 6 5 0 ) 、 マウス繊維芽細胞 N I H 3 T 3 (AT C C N o . C RL— 1 6 5 8 ) やチャイニーズ · ハムスター 卵巣細胞 (CHO細胞、 AT C C C C L— 6 1 ) のジヒ ド口葉酸還元酵素欠 損株 (Urlaub, G. and Chasin, L. A. (1980) Proc. Natl. Acad. Sci. USA 7 7, 4126-4220) 等がよく用いられているが、 これらに限定されない。
脊椎動物細胞の発現プロモ一夕一としては、 通常発現しょう とする遺伝子の 上流に位置するプロモ一夕一、 R N Aのスプライス部位、 ポリアデニル化部位 、 及ぴ転写終結配列等を有するものを使用でき、 さらにこれは必要により複製 起点を有してもよい。 該発現べクタ一の例としては、 ザイ トメガロウィルス初 期プロモーターを有する p C D N A 3. 1 (インビトロジェン社製) 、 S V 4 0の初期プ Πモーターを有する p S V 2 d h f r. (Subramani, S. et al. (19 81) Mol. Cell. Biol. 1, 854-864) 等が挙げられるが、 これに限定されない。 宿主細胞として、 C O S細胞あるいは N I H 3 T 3細胞を用いる場合を例に 挙げると、 発現ベクターとしては、 S V 4 0複製起点を有し、 C O S細胞ある いは N I H 3 T 3細胞において自立増殖が可能であり、 さらに、 転写プロモ一 夕一、 転写終結シグナル、 及び R NAスプライス部位を備えたものを用いるこ とができる。 該発現べクタ一は、 D E AE—デキス トラン法 (Luthman, H. an d Magnusson, G. (1983) Nucleic Acids Res. 11, 1295-1308) 、 リ ン酸カルシ ゥムー D NA共沈殿法 (Graham, F. L. and van der Eb, A. J. (1973) Virol ogy 52, 456-457) 、 及び電気パルス穿孔法 ('Neumann, E. et al. (1982) EMB 0 J. 1, 841-845) などにより C O S細胞、 あるいは N I H 3 T 3細胞に取り込 ませることができ、 かく して所望の形質転換細胞を得ることができる。 また、 宿主細胞として C H 0細胞を用いる場合には、 発現べクタ一と共に、 抗生物質 G 4 1 8耐性マ一力一として機能する n e o遺伝子を発現し得るベクタ一、 例 えは p R S V n e o ( Sambrook, J. et a 1. (1989) : Molecular CI oning A Laboratory Manual " Cold Spring Harbor Laboratory, NY) や p S V 2 n e o (Southern, P. J. and Berg, P. (1982) J. Mol. Ap l. Genet. 1, 327-341 ) などをコ · 卜ランスフエク 卜し、 G 4 1 8耐性のコロニーを選択することに より、 目的のポリぺプチドを安定に産生する形質転換細胞を得ることができる 上記のようにして得られる形質転換体は、 常法に従い培養することができ、 該培養により細胞内、 又は細胞外に目的のポリペプチドが産生される。 該培養 に用いられる培地としては、 採用した宿主細胞に応じて慣用される各種のもの を適宜選択でき、 例えば、 上記 C O S細胞であれば、 R P M I 1 6 4 0培地や ダルベッコ変法イーグル培地 (以下 「DME M」 という) などの培地に、 必要 に応じゥシ胎児血清などの血清成分を添加したものを使用できる。
上記培養により、 形質転換体の細胞内又は細胞外に産生される組換え蛋白質 は、 該蛋白質の物理的性質や化学的性質などを利用した各種の公知の分離操作 法により分離 · 精製することができる。 該方法としては、 具体的には例えば、 通常の蛋白質沈殿剤による処理、 限外濾過、 分子ふるいクロマトグラフィー ( ゲル濾過) 、 吸着クロマトグラフィー、 イオン交換クロマトグラフィー、 ァフ ィニティークロマトグラフィー、 高速液体クロマトグラフィー (H P L C ) な どの各種液体クロマトグラフィー、 透析法、 これらの組合せなどを例示できる 。 また、 発現させる組換え蛋白質に 6残基からなるヒスチジンを繋げることに より、 ニッケルァフィ二ティ一カラムで効率的に精製することができる。 上記 方法を組み合わせることにより容易に高収率、 高純度で目的とするポリべプチ ドを大量に製造できる。
( 2 ) 抗ヒ ト · ォキュロスパニンモノクローナル抗体の製造
ヒ ト · ォキュロスパニンと特異的に結合する抗体の例として、 ヒ ト · ォキュ ロスパニンと特異的に結合するモノク口一ナル抗体を挙げることができるが、 その取得方法は、 以下に記載する通りである。
モノク口一ナル抗体の製造にあたっては、 一般に下記のような作業工程が必 要である。 すなわち、
( a ) 抗原として使用する生体高分子の糈製、
( b ) 抗原を動物に注射することにより免疫した後、 血液を採取しその抗体価 を検定して脾臓摘出の時期を決定してから、 抗体産生細胞を調製する工程、
( c ) 骨髄腫細胞 (以下 「ミエローマ」 という) の調製、
( d ) 抗体産生細胞とミエ口一マとの細胞融合,
( e ) 目的とする抗体を産生するハイプリ ドーマ群の選別、
( f ) 単一細胞クローンへの分割 (クローニング) 、
( g ) 場合によっては、 モノクローナル抗体を大量に製造するためのハイプリ ド一マの培養、 又はハイプリ ドーマを移植した動物の飼育、
( h ) このようにして製造されたモノク口一ナル抗体の生理活性、 及びその結 合特異性の検討、 あるいは標識試薬としての特性の検定、 等である。
以下、 モノクローナル抗体の作製法を上記工程に沿って詳述するが、 該抗体 の作製法はこれに制限されず、 例えば脾細胞以外の抗体産生細胞及びミエ口一 マを使用することもできる。
( a ) 抗原の精製 抗原としては、 前記したような方法で調製したヒ ト · ォキュロスパニン又は その一部を使用することができる。 また、 ヒ ト · ォキュロスパニン発現組換え 体細胞より調製した膜画分、 又はヒ ト · ォキュロスパニン発現組換え体細胞自 身、 さらに、 当業者に周知の方法を用いて、 化学合成した本発明の蛋白質の部 分ペプチドを抗原として使用することもできる。
( b ) 抗体産生細胞の調製
工程 ( a ) で得られた抗原と、 フロインドの完全又は不完全アジュバント、 又は力リ ミ ヨゥパンのような助剤とを混合し、 免疫原として実験動物に免疫す る。 実験動物は公知のハイプリ ドーマ作製法に用いられる動物を支障なく使用 することができる。 具体的には、 たとえばマウス、 ラッ ト、 ャギ、 ヒッジ、 ゥ シ、 ゥマ等を使用することができる。 ただし、 摘出した抗体産生細胞と融合さ せるミエローマ細胞の入手容易性等の観点から、 マウス又はラッ トを被免疫動 物とするのが好ましい。 また、 実際に使用するマウス及びラッ トの系統は特に 制限はなく、 マウスの場合には、 たとえば各系統 A、 AKR 、 BALB/c、 BDP 、 BA、 CE、 C3H -, 57BL, C57BR 、 C57L、 DBA 、 FL、 HTH 、 HT1 、 LP、 NZB 、 NZW 、 RF、 R III、 SJL 、 SWR 、 WB、 129 等が、 またラッ トの場合には、 たとえば、 Low 、 Lewis 、 Spraque 、 Da eley 、 ACI 、 BN、 Fischer 等を用いることができる。 これらのマウス及びラッ トは例えば日本クレア、 日本チヤ—ルスリバ一、 日本 SLC、 The Jackson Laboratories 等実験動物飼育販売業者より入手することが できる。このうち、 後述のミエローマ細胞との融合適合性を勘案すれば、 マウス では BALB/c 系統が、 ラッ トでは low 系統が被免疫動物として特に好ましい。 また、 抗原のヒ トとマウスでの相同性を考慮し、 自己坊体を除去する生体機構 を低下させたマウス、 すなわち自己免疫疾患マウスを用いることも好ましい。 なお、 これらマウス又はラッ 卜の免疫時の週齢は、 好ましくは 5〜 1 2週齢、 さらに好ましくは 6〜 8週齢である。
ヒ ト · ォキュロスパニン又はこの組換え体によって動物を免疫するには、 例 え は 、 We i r, D. M. , Handbook of Experimental Immunology Vol.1. II. III. ,Blackwell Scientific Publications, Oxford (1987)、 Kabat, E. A. and Mayer, M. M. , Experimental Immunochemi s t ry, Charles C Thomas Publisher Spigf ield, Illinois (1964) 等に詳しく記載されている公知の方法を用いるこ とができる。 これらの免疫法のうち、 この発明において好適な方法を具体的に 示せば、 たとえば以下のとおりである。, すなわち、 まず、 抗原である膜蛋白画 分、 もしくは抗原を発現させた細胞を動物の皮内又は腹腔内に投与する。 ただ し、免疫効率を高めるためには両者の併用が好ましく、前半は皮内投与を行い、 後半又は最終'回のみ腹腔内投与を行う と、特に免疫効率を高めることができる。 抗原の投与スケジュールは、 被免疫動物の種類、 個体差等により異なるが、 一 般には、 抗原投与回数 3 ~ 6回、 投与間隔 2 ~ 6週間が好ましく、 投与回数 3 〜 4回、 投与間隔 2〜 4週間がさらに好ましい。 投与回数を過度に増やすと抗 原を浪費し、 また投与間隔を広げすぎると動物の老化による細胞の低活性化を 招くために好ましくない。 また、 抗原の投与量は、 動物の種類、 個体差等によ り異なるが、 一般には、 0. 05〜5 m l , 好ましくは 0. 1〜0. 5m l 程度とする。 追 加免疫は、 以上の通りの钪原投与の 1〜 6週間後、 好ましくは 2〜 4週間後、 さらに好ましくは 2〜 3週間後に行う。 この追加免疫の時期が 6週間目より遅 すぎるか、 あるいは 1週間目より早すぎると追加免疫の効果が少ない。 なお、 追加免疫を行う際の抗原投与量は、 動物の種類、 大きさ等により異なるが、 一 般に、 例えばマウスの場合には、 0. 05〜5 m l , 好ましくは 0. 1〜0. 5 m l、 さら に好ましくは .0. 1〜0. 2 m l程度とする。 不必要の大量投与は免疫効果を低下さ せるだけでなく、 被免疫動物にとっても好ましいものではない。
上記追加免疫から 1〜 1 0 日後 好ましくは 2〜 5 日後 さ らに好ましくは 2〜 3 日後に被免疫動物から坊体産生細胞を含む脾臓細胞又はリ ンパ球を無菌 的に取り出す。 なお、 その際に抗体価を測定し、 抗体価が十分高くなつた動物 を抗体産生細胞の供給源として用いれば、 以後の操作の効率を高めることがで きる。 ここで用いられる抗体価の測定法としては、 R I A法、 E L I S A法、 蛍光抗体法、 受身血球凝集反応法など種々の公知技術があげられるが、 検出感 度、 迅速性、 正確性、 及び操作の自動化の可能性などの観点から、 R I A法又 は E L I S A法がより好適である。
本発明における抗体価の測定は、 例えば E L I S A法によれば、 以下に記載 するような手順により行う ことができる。 まず、 精製又は部分精製した抗原を E L I S A用 9 6穴プレート等の固相表面に吸着させ、 さ らに抗原が吸着して いない固相表面を抗原と無関係な蛋白質、例えばゥシ血清アルブミン(以下「B S A」 という) により覆い、 該表面を洗浄後、 第一抗体として段階希釈した試 料 (例えばマウス血清) に接触させ、 上記抗原に試料中のモノクローナル抗体 を結合させる。 さらに第二抗体として酵素標識されたマウス抗体に対する抗体 を加えてマウス抗体に結合させ、 洗浄後該酵素の基質を加え、 基質分解に基づ く発色による吸光度の変化等を測定することにより、 抗体価を算出する。
これらの脾臓細胞又はリ ンパ球からの抗体産生細胞の分離は、公知の方法(例 えば、 Kohler et al. , Nature, 256, 495, 1975; Kohler et al. , Eur. J. Immnol., 6, 511, 1977; ilstein et al. , Nature, 266, 550, 1977; Walsh, Nature, 266, 495, 1977) に従って行うことができる。 例えば、 脾臓細胞の場合には、 細胞を 細切してステンレスメッシュで濾過した後、 イーグル最小必須培地 (MEM) に浮遊させて抗体産生細胞を分離する一般的方法を採用することができる。
( c ) 骨髄腫細胞 (以下、 「ミエ口一マ」 という) の調製
細胞融合に用いるミエ口一マ細胞には特段の制限はなく、 公知の細胞株から 適宜に選択して用いることができる。 ただし、 融合細胞からハイプリ ドーマを 選択する際の利便性を考慮して、 その選択手続が確立している H G P R T (H oxan t h i ne-guan i ne phos hor i bos y 1 t ran s f erase)欠損株を用いるの力 好ま し い 。 す な わ ち 、 マ ウ ス 由 来 の X63- Ag8(X63) 、 NSl-Ag4/l (NS1) 、 P3X63-Ag8.Ul (P3U1) 、 X63-Ag8.653 (X63.653) 、 SP2/0-Agl 4 (SP2/0) 、 MPC11-45.6TG1.7(45.6TG) , F0 、 S149/5XX0 , BU.1 等、 ラ ッ ト 由 来 の 210. RSY3. Ag.1.2.3(Y3) 等 、 ヒ ト 由 来 の U266AR (SKO-007) 、 GM1500 · GTG-A12 (GM1500) , UC729- 6、 L I CR-L0W-HMy 2 (HMy2)、 8226AR/NIP4-1 (NP41)等で ある。 これらの H G P R T欠損株は例えば、 American Type Culture Col lection (ATCC)等から入手することができる。
これらの細胞株は、 適当な培地、 例えば 8 —ァザグァニン培地 [R P M I — 1 6 4 0培地にグルタミン、 2 —メルカプトエタノール、 ゲンタマイシン、 及 びゥシ胎児血清 (以下 「F C S」 という) を加えた培地に 8 —ァザグァニンを 加えた培地] 、 イスコフ改変ダルベッコ培地 (Iscove' s Modified Dulbecco' s Medium ; 以下 「 I M D M」 という)、 又はダルベッ コ改変イーグル培地 (Dulbecco' s Modi fied Eagle Medium; 以下 「DMEM」 という) で継代培養 するが、 細胞融合の 3乃至 4 日前に正常培地 [例えば、 1 0 % F C Sを含む A S F 1 0 4培地 (味の素 (株) 社製)] で継代培養し、 融合当日に 2 X 1 07 以上の細胞数を確保しておく。
( d) 細胞融合
抗 体 産 生 細 胞 と ミ エ 口 一 マ 細 胞 と の 融 合 は 、 公 知 の 方 法 (Weir.D.M. ,Handbookof Experimental Immunology Vol. I. II. III., Bl ackwe 11 Scientific Publications, Oxford (1987) 、 Rabat, E. A. and Mayer, M. M. , Experimental . Immunochemi s t ry, Charles C Thomas Publisher Spigfield, Illinois (1964) 等) に従い、 細胞の生存率を極度に低下させない 程度の条件下で適宜実施することができる。 そのような方法は、 例えば、 ポリ エチレンダリ コール等の高濃度ポリマ一溶液中で抗体産生細胞とミエ口一マ細 胞とを混合する化学的方法、 電気的刺激を利用する物理的方法等を用いること ができる。 このうち、 上記化学的方法の具体例を示せば以下のとおりである。 すなわち、 高濃度ポリマ一溶液としてポリエチレングリ コールを用いる場合に は、 分子量 1500〜6000、 好ましくは 2000〜4000 のポリエチレングリコール溶 液中で、 3 0〜4 0°C、 好ましくは 3 5〜 3 8 °Cの温度で枋体産生細胞とミエ 口一マ細胞とを 1〜 1 0分間、 好ましくは 5〜 8分間混合する。
( e ) 八イブリ ドーマ群の選択
上記細胞融合により得られるハイプリ ドーマの選択方法は特に制限はないが、 通常 H A T (ヒポキサンチン ' アミノブテリ ン · チミジン) 選択法 CKohler et al . , Nature, 256, 495 (1975); Mi 1 s tein at al. , Nature 266, 550 (1977)〕 が用いられる。 この方法は、 アミノブテリ ンで生存し得ない H G P R T欠損株 のミエローマ細胞を用いてハイプリ ドーマを得る場合に有効である。すなわち、 未融合細胞及びハイプリ ドーマを HAT培地で培養することにより、 アミノブ テリ ンに対する耐性を持ち合わせたハイプリ ドーマのみを選択的に残存させ、 かつ増殖させることができる。
( f ) 単一細胞クローンへの分割(クロ一ニング)
ハイプリ ドーマのクロ一ニング法としては、 例えばメチルセルロース法、 軟 ァガロース法、 限界希釈法等の公知の方法を用いる こ とができる 〔例えば Barbara, B. M. and Stanley, M.S. : Selected Me thods in Cellular Immunology, W.H. Freeman and Company, San Francisco ( 1980) 参照〕。 このクロ一ニング 法としては、 プレートの 1ゥエルに 1個のハイプリ ド一マが含まれるように希 釈して培養する限界希釈法、 軟寒天培地中で培養しコロニーを回収する軟寒天 法、 マイクロマニュピレー夕一によって 1個づつの細胞を取り出し培養する方 法、 セルソー夕一によって 1個の細胞を分離する 「ソ一タク口一ン」 などが挙 げられる。 これらの方法のうち、特に限界希釈法が好適である。 この方法では、 マイクロプレートにラッ ト胎児由来繊維芽細胞株、 あるいは正常マウス脾臓細 胞、 胸腺細胞、 腹水細胞などのフィーダ一(feeder)を接種しておく。 一方、 あ らかじめハイブリ ド一マを 0. 2〜0. 5個/ 0. 2m l になるように培地中 で希釈し、 この希釈したハイブリ ド一マの浮遊液を各ゥエルに 0. 1 m 1ずつ 入れ、 一定期間毎 (例えば 3 日毎) に約 1 / 3の培地を新しいものに交換しな がら 2週間程度培養を続けることによつでハイプリ ド一マのクローンを増殖さ せることができる。
抗体価の認められたゥエルについて、 例えば限界希釈法によるクローニング を 2〜 4回繰返し、 安定して抗体価の認められたものを抗ヒ ト . ォキュロスパ ニンモノクローナル抗体産生ハイプリ ドーマ株として選択する。 このようにし てクローニングされた八イブり ドーマ株のひとつは、 03 B 8 - 2 C 9 - 4 F 3と命名され、 独立行政法人産業技術総合研究所特許生物寄託センター (茨城 県つく ば巿東 1丁目 1番地 1 中央第 6 ) に 2 0 0 4年 2月 1 7 日付けで、 寄 託番号 F E RM B P— 0 8 6 2 7 として寄託されている。
( g ) ハイプリ ドーマ培養によるモノクローナル抗体の調製
このようにして選択されたハイプリ ドーマは、 これを培養することにより、 モノクローナル抗体を効率よく得ることができるが、 培養に先立ち、 目的とす るモノクローナル抗体を産生する八イブリ ドーマをスク リーニングすることが 望ましい。 このスクリ一ニングにはそれ自体既知の方法が採用できる。
本発明における抗体価の測定は、 例えば E L I S A法によれば、 以下に記載 するような手順により行う ことができる。 まず、 精製又は部分精製したヒ 卜 - ォキュロスパニン、 もしくはヒ ト · ォキュロスパニンを発現させた細胞を E L I S A用 9 6穴プレート等の固相表面に吸着させ、 さ.らに抗原が吸着していな い固相表面を坊原と無関係な蛋白質、 例えばゥシ血清アルブミン (以下 「B S A」 という) により覆い、 該表面を洗浄後、 第一坊体として段階希釈した試料 (例えばマウス血清) に接触させ、 上記抗原に試料中の抗ヒ ト . ォキュロスパ ニン抗体を結合させる。 さらに第二抗体として酵素標識されたマウス抗体に対 する抗体を加えてマウス抗体に結合させ、 洗浄後該酵素の基質を加え、 基質分 解に基づく発色による吸光度の変化等を測定することにより、 抗体価を算出す る。 なお、 このようなスクリーニングは、 上記のようにハイプリ ドーマをクロ 一二ングした後で行ってもよいし、 その前に行ってもよい。
,以上の通りの方法によって得たハイプリ ドーマは、 液体窒素中又は 8 0°C以 下の冷凍庫中に凍結状態で保存することができる。
クロ一ニングを完了したハイプリ ドーマは、 培地を HT培地から正常培地に 換えて培養される。 大量培養は、 大型培養瓶を用いた回転培養、 あるいはスピ ナ一培養で行われる。 この大量培養における上清を、 ゲル濾過等、 当業者に周 知の方法を用いて精製することにより、 本発明の蛋白質に特異的に結合するモ ノクロ一ナル钪体を得ることができる。 また、 同系統のマウス (例えば、 上記 の BAL B/c )、あるいは N uZN uマウスの腹腔内にハイプリ ドーマを注射 し、 該ハイプリ ドーマを増殖させることにより 本発明のモノク口一ナル抗体 を大量に含む腹水を得ることができる。 腹腔内に投与する場合には、 事前 ( 3 〜 7 日 前 ) に 2 , 6 , 1 0 , 1 4 —テ ト ラ メ チ ル ペ ン 夕 デカ ン
(2, 6, 10, 1 -tetramethyl pen t adecane) (プリスタン) 等の鉱物油を投与する と、 より多量の腹水が得られる。 たとえば, ハイプリ ドーマと同系統のマウス の腹腔内に予め免疫抑制剤を注射し、 T細胞を不活性化した後、 2 0 日後に 1 06〜 1 07個のハイプリ ド一マ 'クローン細胞を血清を含まない培地中に浮遊
( 0. 5 m l ) させて腹腔内に投与し、 通常腹部が膨満し、 腹水にたまったと ころでマウスより腹水を採取する。 この方法により、 培養液中に比べて約 1 0 0倍以上の濃度のモノク口一ナル抗体が得られる。
上記方法により得たモノクローナル抗体は、 例えば Weir, D.M.: Handbook of Experimental Immunology Vol . I , II , III, Blackwel 1 Scientific Publications, Oxford (1978) に記載されている方法で精製することができる。 すなわち、 硫安塩析法、 ゲル濾過法、 イオン交換クロマトグラフィー法、 ァフ ィニティ一クロマトグラフィー法等である。 これらの方法のうち、 硫安塩析法 を 3〜4回、 好ましくは 3〜 6回繰り返すことによって、 モノクロ一ナル抗体 を精製することが可能である。 しかしこの方法では精製モノクローナル抗体の' 収率が極めて低くなる。 そのため、 硫安分画法を 1〜 2回行った粗精製モノク ローナル ¾体について、 ゲル濾過法、 イオン交換クロマトグラフィー法、 ァフ ィ二ティ一クロマトグラフィ一法等から選ばれた少なく とも 1種類、 好ましく は 2種類の方法を行う ことによって、 高純度に精製されたモノク口一ナル抗体 を高収率で得ることができる。硫安塩析法と他法との組合せ及び順序としては、 a)硫安塩析法—イオン交換クロマトグラフィ一法一ゲル濾過法、 b)硫安塩析法 一イオン交換クロマトグラフィー法一ァフィ二ティークロマトグラフィー法、 c)硫安塩析法—ゲル濾過法ーァフイエティ一クロマトグラフィ一法等を例示す ることができるが、高純度でかつ高収率にモノク口一ナル抗体を得るためには、 上記 c)の組合せが特好ましい。
精製の簡便な方法としては、市販のモノク口一ナル抗体精製キッ ト(例えば、 M A b T r a p G 1 1 キッ ト;フアルマシア社製)等を利用することもできる。 かく して得られるモノクローナル抗体は、 ヒ ト · ォキュロスパンに対して髙 い抗原特異性を有する。
( h ) モノクローナル抗体の検定
かく して得られたモノクローナル抗体のアイソ夕ィプ及びサブクラスの決定 は以下のように行う ことができる。 まず、 同定法としてはォクテルロニー
( Ouch t e r l ony) 法、 E L I S A法 又は R I A法が挙げられる。 ォクテルロニ —法は簡便ではあるが、 モノクローナル抗体の濃度が低い場合には濃縮操作が 必要である。 一方、 E L I S A法又は R I A法を用いた場合は、 培養上清をそ のまま抗原吸着固相と反応させ、 さらに第二次抗体として各種ィムノグロプリ ンアイソタイプ、 サブクラスに対応する抗体を用いることにより、 モノクロ一 ナル抗体のアイソタイプ、 サブクラスを同定することが可能である。 また、 さ らに簡便な方法として、 市販の同定用のキッ ト (例えば、 マウスタイパーキッ ト ; パイオラッ ド社製) 等を利用することもできる。
さらに、 蛋白質の定量は、 フォーリ ンロウリー法、 及び 2 8 0 n mにおける 吸光度 [ 1 . 4 ( 0 D 2 8 0 ) =ィムノグロブリ ン l m g / m l ] より算出す る方法により行うことができる。
( 3 ) ヒ ト化抗ヒ ト · ォキュロスパニン抗体の作製 免疫グロブリ ン G (以下、 単に 「 I g G」 という。) は、 分子量約 2 3 0 0 0 の軽ポリべプチド鎖 (以下 「軽鎖」 という。)、 分子量約 5 0 0 0 0の重ポリぺ プチド鎖 (以下 「重鎖」 という。) 各 2本ずつから構成される。 重鎖、 軽鎖とも 約 1 1 0残基からなる、 アミノ酸配列が保存されている領域の繰り返し構造を 持ち、 これらは I g Gの 3次元構造の基本単位 (以下、 「ドメイン」 という。) を構成する。 重鎖及び軽鎖は、 それぞれ連続した 4個、 及び 2個のドメインか ら構成されている。 重鎖、 軽鎖いずれにおいても、 ァミ ノ末端のドメイ ンは他 のドメインに比べ各抗体分子間でのアミノ酸配列の変異が大きく、 このドメィ ンは可変ドメイン (variable domain : 以下、 「Vドメイ ン」 という。) と呼ば れる。 I g Gのァミノ末端においては、 重鎖、 軽鎖の Vドメインが相補的に会 合し可変領域を形成している。 これに対し、 残余の ドメインは、 全体として定 常領域を形成する。 定常領域は、 各動物種に特徴的な配列を有し、 例えば、 マ ウス I g Gの定常領域はヒ ト I g Gの定常領域とは異なっているので、 マウス I g Gはヒ トの免疫系によって異物として認識され、 その結果、 ヒ ト抗マウス 抗体 (Human Anti Mouse Ant ibody : 以下 「HAMA」 という。) 応答が起こる
(シュロッフら、 Cancer Res. , 5^ 879-85 (1985)参照)。 従って、 マウス抗体 はヒ トに繰返し投与することはできない。 このような抗体をヒ トに投与するた めには、 抗体の特異性を保持したまま HAM Α応答を起こさないように抗体分 子を修飾する必要がある。
X線結晶構造解析の結果によれば、 一般に、 このようなドメインは 3本から 5本の ]3 鎖からなる逆平行 β シー トが二層重なり合った長円筒状の構造をと る。 可変領域では、 重鎖、 軽鎖の Vドメインそれぞれにっき各 3個のループが 集合 し、 抗原結合部位 を形成する 。 こ の各ルー プは相補性決定領域
(. com l emen t ar i ty determining region: J¾ 「CD R」 とレ う。) と はれ、 アミノ酸配列の変異が最も著しい。 可変領域の C D R以外の部分は、 一般に、 CD Rの構造を保持する役割を有し、 「フレームワーク」 と呼ばれる。 カバトら は、 重鎖、 軽鎖の可変領域の一次配列を多数収集し、 配列の保存性に基づき、 それぞれの一次配列を C D R及びフレームワークに分類した表を作成した (力 ノ'トら、 SEQUENCES OF IMMUNOLOGICAL INTEREST, 5th edition, NIH publ ication, No.91 -3242, E. A. Kabatt et al. 参照)。 また、 各フレームワークは、 ァミノ 酸配列が共通の特徴を有する複数のサブグループに分類された。 さらに、 ヒ ト とマウスの間で対応するフレームワークが存在することも見いだされた。
このような I g Gの構造的特徴に関する研究から以下のヒ ト化抗体の作製法 が考案された。
研究初期の段階では、 マウス由来抗体の可変領域をヒ ト由来の定常領域に锋 合したキメラ抗体が提案された(Pro atl. Acad. Sci. U. S.A. 81, 6851-6855, (1984) 参照)。 しかし、 そのようなキメラ抗体は、 依然として、 多くの非ヒ ト アミノ酸残基を含むので、 特に長期間投与した場合には HAMA応答を誘導し うる (Begent ら Br. J. Cancer, 62., 487, (1990) 参照)。
ヒ トに対し HAMA応答を発現する可能性のある、 非ヒ トほ乳動物由来のァ ミノ酸残基を更に少なくする方法として、 C D R部分のみをヒ ト由来の抗体に 組み込む方法が提案された (Nature, 321 , 522-525, (1986)参照) が、 一般に、 抗原に対する免疫グロブリ ン活性を保持するには C D Rのみの移植では不十分 であった。
一方、 チヨ ッチアらは、 1987年、 X線結晶構造解析データを用い、
(i) C D Rのアミノ酸配列中には、 抗原に直接結合する部位と C D R自体の構 造を維持する部位とが存在し、 C D Rの取り得る三次元構造は、 複数の典型的 なパターン (カノ二カル構造) に分類されること、
(i i)カノ二カル構造のクラスは、 C D Rのみならずフレ一ムワーク部分の特定 の位置のアミ ノ酸の種類によって決定されること、 を見いだした ( J. ol. Biol. , 196, 901-917, (1987)参照)。
この知見に基づき、 C D R移植法を用いる場合、 C D Rの配列に加え一部の フレームワークのアミノ酸残基もヒ ト抗体に移植する必要性が示唆された (特 表平 4-502408号参照)。
一般に、 移植すべき C D Rを有する非ヒ ト哺乳動物由来の抗体は 「ドナ一」、 C D Rが移植される側のヒ ト抗体は 「ァクセプ夕一」 と定義されるが、 本発明 もこの定義に従う ことにする。
C D R移植法を実施する際に考慮すべき点は、 可能な限り C D Rの構造を保 存し、 免疫グロブリ ン分子の活性を保持することにある。 この目的を達成する ため : . (i) ァクセプ夕一は、 いずれのサブグループに属するものを選択すべきか ;
(ii)ドナーのフレームワークからいずれのアミノ酸残基を選択すべきか の 2点に留意する必要がある。
クイーンらは、 ドナーのフレームワークのアミ ノ酸残基が、 以下の基準の少 なく ともひとつに該当する場合、 CD R配列とともにァクセプ夕一に移植する デザインの方法を提唱じた (特表平 4-502408号参照) :
(a) ァクセプターのフレームワーク領域中のアミノ酸がその位置において稀で あり、 ドナーの対応するアミノ酸がァクセプ夕一の前記位置において普通であ る。
(b) 該アミノ酸が C D Rのひとつのすぐ近くである。
(c) 該アミノ酸が三次元免疫グロプリ ンモデルにおいて C D Rの約 3 A以内に 側鎖原子を有し、 そして抗原と又はヒ 卜化抗体の C D Rと相互作用することが できると予想される。
本発明の ヒ 卜 · ォキュロスパニンモノクローナル抗体の重鎖又は軽鎖をコ —ドする D N Aは、 上記抗ヒ ト · ォキュロスパニンモノクローナル抗体を産生 するハイプリ ド一マ細胞より mRN Aを調製し、 該 mR N Aを逆転写酵素で c DNAに変換してから、 該抗体の重鎖又は軽鎖をコードする DNAをそれぞれ 単離することにより得られる。
m R N Aの抽出にあたっては、 グァニジン · チオシァネート · ホッ ト · フエ ノール法、 グァニジン · チオシァネ一ト—グァニジン · 塩酸法なども採用しう るが、 グァニジン · チオシァネート · 塩化セシウム法が好適である。 細胞から の mRNAの調製は、 まず全 RNAを調製し、 該全 RNAからオリゴ ( d T) セルロースやオリゴ ( d T) ラテックスビーズ等のボリ ( A) +RNA精製用担 体を用いて精製する方法、 又は細胞ライセー トから該担体を用いて直接精製す る方法により実施できる。 全 RN Aの調製方法としては、 アル力リ ショ糖密度 勾配遠心分離法 [Dougherty, W. G. and Hiebert, E. (1980) Viology 101, 466-474参照]、 グァニジンチオシァネ一ト · フエノール法、 グァニジンチオシ ァネート · トリ フルォロセシウム法、 フエノール · S D S法等も採用し得るが、 グァニジンチオシァネート及び塩化セシウムを用いる方法 [Chirgwin, J. M. , et al. (1979) Biochemistry 18, 5294- 5299参照] が好適である。 上記のごとく して得られたポリ (A) +RNAを铸型として、 逆転写酵素反応 により一本鎖 c D N Aを合成した後、 この一本鎖 c D N Aからニ本鎖 c D N A を合成することができる。この方法としては S Iヌクレアーゼ法 [Efstratiadis,
Α·, et al. (1976) Cell 7, 279-288 参照]、 グブラ ホフマン法 [Gubler, U. and Hoffman, B. J. (1983) Gene 25, 263-269 夢照]、 ォカャマーバーグ法 [Okayama, H. and Berg, P. (1982) Mol. Cell. Biol. 2, 161-170 参照] 等 を採用し得るが、 本発明においては、 一本鎖 c D N Aを铸型としてポリメラ一 ゼ連鎖反応 (以下 「P C R」 という) [Saiki, R. K. , et al. (1988) Science 239, 487- 49 参照] を行なう、 いわゆる R T— P C R法が好適である。
このようにして得られた二本鎖 c D NAをクローニングベクタ一に組み込み, 得られた組換えベクターを大腸菌等の微生物に導入して形質転換させ、 テトラ サイクリ ン耐性あるいはアンピシリ ン耐性等を指標として形質転換体を選択す ることができる。大腸菌の形質転換は、ハナハン法 [Hanahan, D. (1983) J. Mol. Biol. 166, 557-580 参照]、 すなわち塩化力ルシゥムや塩化マグネシウム又は 塩化ルビジウムを共存させて調製したコンピテント細胞に、 該組換え D N Aベ クタ一を加える方法により実施することができる。 なお、 ベクタ一としてブラ スミ ドを用いる場合は、 上記の薬剤耐性遺伝子を有することが必要である。 ま た、 プラスミ ド以外のクロ一ニングベクター、 例えばラムダ系のファージ等を 用いることも可能である。
上記により得られた形質転換株から、 目的の抗ヒ ト , ォキュロスパニンモノ ク口一ナル抗体の各サブュニッ トをコードする c D NAを有する株を選択する 方法としては、 例えば以下に示す各種方法を採用できる。 なお、 上記 R T— P C R法により 目的の c D NAを特異的に増幅した場合は、 これらの操作を省略 することが可能である。
( a) ポリメラ一ゼ連鎖反応を用いる方法
目的蛋白質のアミノ酸配列の全部又は一部が解明されている場合、 該ァミノ 酸配列の一部に対応するセンスス トランドとアンチセンスス 卜ランドのオリゴ ヌクレオチドプライマ一を合成し、 これらを組み合わせてポリメラ一ゼ連鎖反 応 [Saiki, R. K., et al. (1988) Science 239, 487-49 参照] を行ない、 目 的の抗ヒ ト · ォキュロスパニン抗体重鎖あるいは軽鎖サブュニッ トをコードす る D NA断片を増幅する。 ここで用いる铸型 D N Aとしては、 例えば抗ヒ ト - ォキュロスパニンモノクローナル钪体を産生するハイブリ ドーマの mR N Aよ り逆転写酵素反応にて合成した c D N Aを用いることができる。
このようにして調製した D NA断片は、 市販のキッ 卜等を利用して直接ブラ スミ ドベクターに組み込むこともできるし、 該断片を 32P、 35Sあるいはピオ チン等で標識し、 これをプローブとして用いてコロニーハイブリダィゼ一ショ ン又はプラークハイブリダィゼ一シヨ ンを行う ことにより 目的のクローンを選 択することもできる。
例えば、 本発明の抗ヒ ト · ォキュロスパニンモノクロ一ナル抗体の各サブュ ニッ 卜の部分アミノ酸配列を調べる方法としては、 電気泳動や力ラムクロマト グラフィ一などの周知の方法を用いて各サブュニッ トを単離してから、 自動プ ロティンシークェンサ一 (例えば、 島津製作所 (株) 製 PPSQ-10) 等を利用し てそれぞれのサブュニッ 卜の N末端アミノ酸配列を解析する方法が好適である。 上記のごとく して得られた目的の形質転換株より、 抗ヒ ト · ォキュロスバニ ンモノクローナル抗体蛋白質の各サブュニッ トをコードする c D N Aを採取す る方法は、 公知の方法 [Maniatis, T., et aし (1982) in "Molecular Cloning A Laboratory Manual Cold Spring Harbor Laboratory, NY. 参 flg」 ίこ従レ 実 施できる。 例えば細胞よりベクタ一 D Ν Αに相当する画分を分離し、 該プラス ミ ド D N Aより 目的とするサブュニッ 卜をコードする D N A領域を切り出すこ とにより行う ことが可能である。
( b ) 合成オリ ゴヌクレオチドプローブを用いるスク リーニング法
目的蛋白質のアミノ酸配列の全部又は一部が解明されている場合(該配列は、 複数個連続した特異的配列であれば、 目的蛋白質のどの領域のものでもよい)、 該アミノ酸配列に対応するオリゴヌク レオチドを合成し (この場合、 コ ドン使 用頻度を参考に推測されるヌクレオチド配列、 又は考えられるヌクレオチド配 列を組み合わせた複数個のヌクレオチド配列のいずれも採用でき、 また後者の 場合イノシンを含ませてその種類を減らすこともできる)、 これをプローブ (3Z P、 35Sあるいはピオチン等で標識する) として、 形質転換株の D NAを変性 固定したニトロセルロースフィルターとハイブリダィズさせ、 得られたポジテ ィブ株を選別する。 このようにして得られる D N Aの配列の決定は、 例えばマキサム一ギルパー ト の化学修飾法 [Maxam, A. M. and Gilbert, W. (1980) in "Methods in Enzymology" 65, 499-576参照] やジデォキシヌクレオチド鎖終結法 [Messing, J. and Vieira, J. (1982) Gene 19, 269-276 参照] 等により実施することが できる。 '
また近年、 蛍光色素を用いた自動塩基配列決定システムが普及している (例 えばパーキンエルマ一ジャパン社製シークェンスロポッ ト" CATALYST 800"及び モデル 373AD NAシ一クェンサ一等)。
こうしたシステムを利用することで、 D NAヌク レオチド配列決定操作を能 率よく、 かつ安全に行う ことも可能である。 このようにして決定された本発明 の D N Aの各ヌクレオチド配列、 及び重鎖及び軽鎖の各 N末端アミノ酸配列デ —夕から、 本発明のモノク口一ナル抗体の重鎖及び軽鎖の全アミノ酸配列を決 定することができる。
ィムノグロプリ ンの重鎖及び軽鎖は、 いずれも可変領域及び定常領域からな り、 可変領域はさらに相補性決定領域 (以下 「C D R」 と記す ; 重鎖 · 軽鎖と もに各 3か所) 及びそれらに隣接するフレームワーク領域 (重鎖 · 軽鎖ともに 各 4か所) からなる。
このうち、 定常領域のァミノ酸配列は、 抗原の種類に関係なく、 ィムノグロ ブリ ンサブクラスが同一である抗体間では共通である。 一方、 可変領域 特に C D Rのアミ ノ酸配列は各抗体に固有のものであるが 数多くの抗体のァミ ノ 酸配列データを比較した研究によれば、 C D Rの位置やフレームワーク配列の 長さは、 同じサブグループに屈する抗体サブュニッ トの間ではほぼ類似してい ることが知られている [Rabat, E. A., el al. (1991) in "Sequence of Proteins of Immunological Interest Vol. II": U.S. Department of Health and Human Services 参照]。 従って、 例えば抗ヒ ト · ォキュロスパニンモノクローナル抗 体の抗体の重鎖及び軽鎖の各アミノ酸配列とそれら公知のアミノ酸配列デ一夕 とを比較することにより、 各アミノ酸配列における C D Rやフレームヮ一ク領 域及び定常領域の位置を決定することができる。 なお、 F RH,、 すなわち重鎖 の最も N末端側のフレームワーク領域の鎖長については、 通常 ( 3 0アミノ酸) より短いことがあり、 例えば、 該フレームワーク領域が最小 1 8アミノ酸であ る例などが知られている [前出 Kabat et al. 参照]。 このことから本発明の抗 体においては、 抗ヒト · ォキュロスパニン抗体としての機能を損なわない限り において、 重鎖の N末端のフレームワーク領域の鎖長を 1 8アミノ酸以上 3 0 アミノ酸以下とするが、 好適には 3 0アミノ酸である。
なお、 上記のようにして決定された軽鎖又は重鎖のそれぞれの C D Rと同じ アミノ酸配列、 もしくはその中の連続した部分アミノ酸配列を有するぺプチド を、 人為的な修飾操作を施して該 C D Rが抗ヒ ト . ォキュロスパニン抗体分子 中で形成する立体構造に近付けることにより、 単独でヒ ト . ォキュロスパニン に対する結合活性を付与せしめることが可能である [例えば、 米国特許第 5 3 3 1 5 7.3号公報参照]。 したがって、 そのように修飾された、 C D Rと同じァ ミノ酸配列、もしくはその中の連続した部分アミノ酸配列を有するぺプチドも、 本発明の分子に包含される。
アミノ酸配列中の任意の一つもしくは二つ以上のアミノ酸を欠失させた改変 体を作製するにあたっては、 カセッ ト変異法 [岸本利光、 "新生化学実験講座 2 · 核酸 III 組換え DNA技術" 242-251参照] などに従う ことができる。 こ の様な各種の D N Aは、 例えばフ ォス フ ァイ ト . ト リ エステル法 [Hunkapiller, M. , et al. (1984) Nature 310, 105-111参照] 等の常法に従 い、 核酸の化学合成により製造することもできる。 なお、 所望アミノ酸に対す るコ ドンは、 それ自体が公知であり その選択も任意でよく、 例えば使用する 宿主のコ ドン使用頻度を考慮して常法に従い決定することも可能である。 これ らヌクレオチド配列コ ドンの一部改変は、 常法に従い、 所望の改変をコードす る合成オリ ゴヌクレオチドからなるプライマ一を利用した部位特異的変異導入 法 (サイ トスぺシフィ ック · ミュー夕ジエネシス) [Mark, D.F. , et al. (1984) Proc. Natl. Acad. Sci. USA 81, 5662-5666参照] 等に従う ことができる。 また、 ある DNAが本発明の抗ヒ ト · ォキュロスパニンモノク口一ナル抗体 の重鎖又は軽鎖をコードする D N Aとハイブリダィズするか否かは、 例えば、 該 D N Aを、 ランダムプライマ一法 [Feinberg, A. P. and Vogel stein, B. (1983) Anal, biochem. 132, 6-13 参照]やニック トランスレーショ ン法 [Mani at i s, T. , et al. (1982) in" Molecular Cloning A laboratory Manual" Cold Spring Harbor Laboratory, NY. 参照] 等に従い [ α—32Ρ] d C Τ Ρ等で標識したプローブ DNAを用いて、 以下に記載するような実験を行う ことにより調べることがで さる。
まず調べよう とする D N Aを、 例えばニトロセルロース膜やナイ口ン膜等に 吸着させ、 必要に応じてアルカリ変性等の処理を行ってから、 加熱あるいは紫 外線等によ り固相化させる。 この膜を、 6 X S S C ( 1 X S S Cは 0. 1 5 M 塩化ナトリ ウム、 0. 0 5 M クェン酸三ナトリウム溶液) と 5 % デンハ ート溶液、 0. 1 % ドデシル硫酸ナトリウム (S D S) を含むプレハイプリ ダイゼーシヨ ン溶液に浸し、 5 5 °Cで 4時間以上保温してから、 先に調製した プロ一ブを同様のプレハイブリ ダィゼーシヨ ン溶液に最終比活性 1 X I 06 c p mZm 1 と^るように加え、 6 0 °Cでー晚保温する。 その後、 膜を室温下で 6 X S S Cで 5分間の洗浄する操作を数回繰り返し、 さらに 2 X S S Cで 2 0 分間洗浄してから、 ォー トラジオグラフィーを行う。
上記のような方法を利用して、 任意の c DNAライブラリ一又はゲノムライ ブラリ一から、 本発明のヒ ト化抗ヒ ト · ォキュロスパニン抗体の重鎖又は軽鎖 をコー ドする D NAとハイ ブリ ダィズする D NAを単離する こ とができる [Mani a t i s , T. , e t al . (1982) in Molecular Cloning A laboratory Manual Cold Spring Harbor Laboratory, NY. 参照]。
上記のごとく して得られる各 DNAを、 それぞれ発現ベクターに組み込むこ とにより、 原核生物又は真核生物の宿主細胞に導入し それらの宿主細胞で各 遺伝子を発現させることが可能である。 発現方法は上記 「 5. 坊ヒ ト · ォキュ ロスパニン抗体の製造」 の項の 「( 1 ) 抗原の調製」 の項に記載した方法と同一 の方法によって行う ことができる。
形質転換体の細胞内又は細胞外に生産される、 抗ヒ ト · ォキュロスパニン抗 体蛋白質を含む画分は、 該蛋白質の物理的性質や化学的性質等を利用した各種 公知の蛋白質分離操作法により、 分離 · 精製することができる。 かかる方法と しては、 具体的には例えば通常の蛋白質沈澱剤による処理、 限外濾過、 分子ふ るいクロマ トグラフィー (ゲル濾過)、 吸着クロマトグラフィー、 イオン交換ク 口マ トグラフィ一、 ァフィ二ティ一クロマトグラフィー、 高速液体クロマトグ ラフィ一 (H P L C) 等の各種クロマトグラフィー、 透析法、 及びこれらの組 合せ等を採用できる。 坊ヒト'ォキュロスパニンマウスモノクローナル抗体をヒ ト化するためには、 決定された C D R配列全体及び F R配列の一部のアミノ酸残基をヒ ト抗体へ移 植するように、 可変領域のアミノ酸配列を設計する必要がある。 この設計は、 以下の方法に従う。
従来、 ヒ ト化のデザインを行う場合、 ァクセプタ一のサブグループの選択指 針としては、 a)天然のアミノ酸配列を有する公知のヒ ト抗体の重鎖、 軽鎖の天 然の組合せをそつ く りそのまま用いる、
b)重鎖、 軽鎖が属するサブグループとしての組合せは保存するが、 重鎖、 軽鎖 としては、 それぞれ異なるヒ ト抗体に由来し、 ドナ一の重鎖、 軽鎖のアミノ酸 配列と同一性が高いアミノ酸配列、 又は、 コンセンサス配列を用いる、 のいずれかが選択されている。 本発明においても、 上記の指針に従う ことがで きるが、 これらと異なる方法として、
c)サブグループの組合せを考慮することなく、 ドナ一の F Rと最も同一性の高 い重鎖、 軽鎖の F Rをヒ ト抗体の一次配列のライブラリ一の中から選択する、 という方法を採用することも可能である。 これらの選択法により、 ドナー及び ァクセプタ一間での、 F R部分のアミノ酸の同一性を少なく とも 7 0 %以上と することが可能となる。 この方法を採用することにより、 ドナーより移植する アミノ酸残基の数をより少なくすることが可能となり、 H A M A応答誘導を減 少させることができる。
また、 抗体分子の一次配列より三次構造を予測する操作 (以下、 この操作を 「分子モデリ ング J という) はその予測精度に限界があり、 そのドナーが属す るサブグループにおいて稀にしか出現しないアミノ酸残基の役割を十分に特定 することができない。 クイーンらの方法に従い、 かかる位置においてドナー、 ァクセプターのいずれのアミノ酸残基を選択すべきかを判断することは一般に 困難である。 c)の選択法によれば、 このような判断をする機会を著しく減少す ることができる。
本発明者らは、 ドナ一の C D Rの構造及び機能を維持するために重要なドナ —の F R由来のアミノ酸を同定するための新規な方法を提供することによって. このヒ ト化の方法をさらに改良している。
軽鎖、 重鎖それぞれのヒ トァクセプ夕一分子が選択された後、 ドナ一の F R より移植するアミノ酸残基を選択する方法は、 以下に記載する通りである。 ドナ一とァクセプターのアミノ酸配列を並べ、 両者の F Rの対応する位置で アミ ノ酸残基が異なっていた場合、 どちらの残基を選択するべきかを決定する 必要があるが、 この選択においては、 ドナー由来の C D Rの三次元構造を損な わないよう選択を行う必要がある。
クィーンらは前述の特表平 4一 5 0 2 4 0 8号において、 F R上のアミノ酸 残基が、 以下の要件の少なく ともひとつに該当する場合、 C D R配列とともに ァクセプターに移植する方法を提唱した :
1 ) ァクセプターのヒ ト F R領域中のアミノ酸がその位置において稀であり、 ドナ一の対応するアミノ酸がァクセプ夕一の前記位置において普通である ;
2 ) 該アミノ酸が C D Rのひとつのすぐ近くである ;
3 ) 該アミノ酸が三次元免疫グロブリ ンモデルにおいて C D Rの約 3 A以内に 側鎖原子を有し、 そして抗原と又はヒ ト化抗体の C D Rと相互作用することが できると予想される。
ここで 2 ) で示された残基はしばしば 3 ) の性質を示すことより、 本発明で はこの 2 ) の要件を削除し、 別に新たに 2種の要件を設ける。 すなわち、 本発 明では、 C D Rと共に移植すべきドナーの F R上のアミノ酸残基については : a ) ァクセプターの F R中のアミノ酸がその位置において稀であり ドナ一の対 応するァミ ノ酸が当該位置において普通であるか ;
) 該アミ ノ酸が三次元構造モデルにおいて C D Rの構成アミノ酸原子と抗 原又は移植すべき C D Rループとの相互作用が予想されるか ;
c ) 当該位置が力ノ二カルクラス決定残基であるか ;
d ) 当該位置が重鎖と軽鎖の接触面を構成するか、
である場合に、 ドナーの F Rから当該アミノ酸残基を移植することにする。
a ) の要件では、 前述したカバトの表に従い、 同一サブクラスの抗体につい て当該位置で 9 0 %以上の頻度で見いだされるアミノ酸を 「普通」、 1 0 %未満 の頻度で見いだされるアミノ酸を 「稀」 と定義する。
c ) の要件では、 「当該位置がカノ二カルクラス決定残基であるか」 否かにつ いては、 前述したチヨ ッチアの表に従い、 一義的に決定することができる。 b )、 d ) の要件については、 予め抗体可変領域の分子モデリ ングが必要とな る。 分子モデリ ング用ソフ トウェアとしては、 市販のものならいずれのものも 採用し得るが、 好適には、 A b M (オックスフォ一ド . モレキュラー ' リ ミテ イ ツ ド社製) を使用することができる。
分子モデリ ングの予測精度には一定の限界があるので、 本発明においては、 種々め抗体の可変領域の X線結晶解析の実験結果を参照することにより、 分子 モデリングから得られる構造予測の確からしさを 2段階に区別する。
本発明においては、 A b M等の分子モデリ ング用ソフ トウェアによって構築 されたところの可変領域の 3次元構造において、 2原子間の距離が、 各々のフ アンデルワールス半径の和に 0. 5 Aを加えた値より短いとき、 当該 2原子間 はファンデルワールス接触していると推定した。 主鎖及び側鎖のアミ ド窒素、 カルポニル酸素など極性の原子間距離が平均の水素結合距離である 2. 9 Aに 0. 5 A加えた距離より短い場合は、その間に水素結合が存在すると推定した。 さらに、 相反する電価を持つ原子間が、 2. 8 5 Aに 0. 5 A加えた距離より 短い場合は、 その間にイオン対が形成されているものと推定した。
一方、 種々の抗体の可変領域の X線結晶構造解析の実験結果から、 サブダル ープと無関係に、高頻度に C D Rとの接触が見いだされる F R上の位置として、 軽鎖では、 1 、 2、 3、 4、 5、 2 3、 3 5、 3 6、 4 6、 4 8、 4 9、 5 8、 6 9、 7 1、 8 8番の位置、 重鎖では、 2、 4、 2 7、 2 8、 2 9、 3 0、 3 6、 3 8、 4 6 4 7、 4 8、 4 9 , 6 6、 6 7、 6 9 7 1、 7 3 ¾ 7 8、 9 2、 9 3、 9 4、 1 0 3番の位置が特定される (数字はいずれも前出カバト らの文献において定義されるァミノ酸番号を表わす。 以下において同じ)。 分子 モデリ ングと同じ基準を適用した場合、 これらの位置のアミノ酸残基は、 公知 の抗体可変領域の 3分の 2 において C D Rのァミノ酸残基との接触が認められ る。 これらの知見に基づき、 b ) の 「該アミノ酸が三次元構造モデルにおいて、 C D Rの構成アミ ノ酸原子が抗原又は移植すべき C D Rループとの相互作用が 予想される」 とは、 以下の要件を意味する。
分子モデリ ングにおいて、 F Rと C D Rとの接触の可能性が予見された F R の位置が、 X線結晶解析により実験的に F Rと C D Rとの接触が高頻度に検出 される位置のいずれかに一致する場合は、 ドナーのアミノ酸残基の移植を優先 する。 それ以外の場合は、 この要件 b) は考慮しない。 '
d ) の 「当該位置が重鎖と軽鎖の接触面を構成する」 とは、 以下の要件を意 味する。 種々の抗体の可変領域の X線結晶解析の実験結果から、 軽鎖において は、 3 6、 3 8、 4 3、 44、 4 6、 4 9、 8 7、 9 8番目のアミノ酸残基、 重鎖においては、 3 7、 3 9、 4 5、 4 7、 9 1、 1 0 3、 1 0 4番目のアミ ノ酸残基が、 高頻度に重鎖一軽鎖間接触をすることが認められている。 分子モ デリ ングにおいて、 重鎖一軽鎖間接触の可能性が予見され、 その位置が上述の 位置のいずれかに一致する場合は、 ドナーのアミノ酸残基の移植を優先する。 それ以外の場合は、 この要件 d) は考慮しない。
本発明のヒ ト化抗ヒ ト · ォキュロスパニン抗体の重鎖及び軽鎖の可変領域を コードする DN Aは、 以下に記載する方法で製造することができる。
例えば、 6 0乃至 7 0ヌク レオチドの、 該 D N Aの部分ヌクレオチド配列か らなる複数のポリヌクレオチド断片を、 センス側及びアンチセンス側において 互い違いになるように化学合成し、 その後各ポリヌクレオチ ド断片をァ二一リ ングし、 DNAリガーゼにより結合し、 所望のヒ ト化抗ヒ ト · ォキュロスバニ ン抗体の重鎖及び軽鎖の可変領域をコードする D N Aを有する D N Aを得るこ とができる。
別の方法として、 ァクセプ夕一の可変領域の全アミノ酸配列をコードする D N Aをヒ トリ ンパ球より分離し、 C D Rをコードする領域に当業者に周知の方 法でヌクレオチド置換を行う ことにより、 制限酵素切断配列を導入する。 対応 する制限酵素で該領域を切断した後、 ドナーの CD Rをコードするヌクレオチ ド配列を合成し、 D N Aリガ一ゼにより結合して、 所望のヒ ト化抗ヒ ト · ォキ ュロスパニン抗体の重鎖及び軽鎖の可変領域をコ一ドする D N Aを得ることが できる。 '
さらに、 本発明では、 好適には以下に述べるォ一パーラップ · ェクステンシ ヨ ン ' P C R法 (ホルトンら、 Gene, 77, 61-68, (1989) 参照) に従い、 所望 のヒ ト化抗ヒ 卜 · ォキュロスパニン抗体の重鎖及び軽鎖の可変領域をコードす る DNAを得ることができる。
すなわち、 接続を所望する 2種のアミノ酸配列をそれぞれコードする 2種の DNAを、 便宜的に (A) 及ぴ (B) とする。 (A) の 5 ' 側にァニールする 2 0乃至 4 0ヌク レオチドのセンスプライマー (以下、 このプライマーを ( C ) とする。) 及ぴ (B) の 3 ' 側にァニールする 2 0乃至 4 0ヌクレオチドのアン チセンスプライマ一 (以下、 このプライマーを (D) とする) を化学合成する。 さらに、 (A) の 3 ' 側の 2 0乃至 3 0ヌクレオチドと (B) の 5 ' 側 2 0乃至 3 0ヌクレオチドを連結した、 キメラ型のセンスプライマー (以下、 このブラ イマ一を (E) とする) 及びこれに相補的なアンチセンスプライマ一 (以下、 このプライマ一を (F) とする) を合成する。 (A) を含む適当なベクター DN A
を基質にして、 センスプライマー ( C ) 及びキメラ型アンチセンスプライマ一 ( F ) を用いた P C Rを行う ことにより、 (A) の 3 ' 末端に (B) の 5 ' 末端 側 2 0乃至 3 0ヌク レオチドが付加した D N Aを得ることができる (この新た に得られた DN Aを (G) とする)。 同様に、 (B) を含む適当なベクタ一 DN Aを基質にして、 7ンチセンスプライマー (D) 及びキメラ型センスプライマ 一 ( E ) を用いた P C Rを行う ことにより、 (B) の 5 ' 末端に ( A) の 3 ' 末 端側 2 0乃至 3 0ヌクレオチドが付加した D N Aを得ることができる (この新 たに得られた D N Aを (I- I) とする。)。 このようにして得られた (G) と (H) は、 ( G) の 3 ' 側 4 0乃至 6 0ヌク レオチドと (H) の 5 ' 側 4 0乃至 6 0ヌ ク レオチドにおいて相補的なヌク レオチ ド配列を保持している。 増幅された (G) 及び (H) を混合して P C Rを行った場合、 1回目の変性反応で (G) と (H) は 1本鎖になり、 その後のアニーリ ング反応で殆どの DNAは元に戻 るが、 一部の D N Aについては相補的ヌクレオチド配列領域でァニ一リ ングす るへテロ DNA 2本鎖を形成する。 その後の伸長反応で、 突出した 1本鎖部分 が修復され、 (A) と (B) が連結したキメラ型の D N A (以下、 この DNAを ( I ) とする。) を得ることができる。 さらにこの ( I ) を基質として、 センス プライマー ( C ) とアンチセンスプライマー (D) を用い P C Rを行う ことに より、 ( I ) を増幅することができる。 本発明では、 抗ヒ トヒ ト · ォキュロスパ ニンマウスモノク口一ナル抗体の重鎖及び軽鎖の C D R領域をコ一ドする DN A及ぴヒ ト免疫グロプリ ン I g Gの F R領域をコードする DNA、 さらには、 ヒ ト免疫グロブリ ン I g Gの分泌シグナルをコードする DNAを、 それぞれケ 一ス ' パイ ' ケースにより (A) 及び (B) として上記の連結反応を行う こと ができる。
なお、 所望アミノ酸に対するコ ドンは、 それ自体公知であり、 その選択も任 意でよく、 例えば使用する宿主のコ ドン使用頻度を'考慮して常法に従い決定で きる。 これらヌクレオチド配列コ ドンの一部改変は、 常法に従い、 所望の改変 をコードする合成オリゴヌクレオチドからなるプライマーを利用したサイ トス ぺシフィ ック · ミュータジエネシス (site specific mutagenesis ) (Mark, D. F. , et al. (1984) Proc. Natl. Acad. Sci. USA 81, 5662 - 5666 参照) 等に従 う ことができる。 したがって、 各プライマ一を化学合成する際に、 予め点突然 変異を導入するように各プライマ一を設計することにより、 所望の抗ヒ ト · ォ キュロスパニン抗体の重鎖及び軽鎖の可変領域をコ一ドする D NAを得ること ができる。 .
このようにして得られた本発明の各 DNAをそれぞれ発現ベクターに組み込 むことにより、 原核生物又は真核生物の宿主細胞を形質転換させることができ る。 さらに、 これらベクターに適当なプロモーター及び形質発現に関わる配列 を導入することにより、 各々の宿主細胞において各遺伝子を発現させることが 可能である。
上記方法により、 容易に高収率、 高純度で組換え抗ヒ ト · ォキュロスパニン 抗体を製造できる。
(4) 抗ヒ ト · ォキュロスパニン完全ヒ ト坊体の作製
完全ヒ ト抗体とは、 ヒ ト染色体由来の抗体の遗伝子配列のみを有するヒ 卜抗 体を意味する。 杭ヒ ト · ォキュロスパニン完全ヒ ト抗体は、 ヒ ト抗体の H鎖と L鎖の遺伝子を含むヒ ト染色体断片を有するヒ ト抗体産生マウスを用いた方法 ( Tomizuka, K.et al., Nature Genet ics, 16, p.133-143, 1997.; Kuroiwa, Y.et.al., Nuc. Acids Res., 26, p.3447-3448, 1998.; Yoshida, H.et.al., Animal Cell Technology: Basic and Applied Aspects vol. 10, p.69-73 (Kitagawa, Y.,Matuda, T. and Iijima, S. eds.), Kluwer Academic Publishers, 1999. ; Tomizuka, K.et.al., Proc. Natl. Acad. Sci. USA, 97, 722-727, 2000.等を参 照。) や、 ヒ ト抗体ライブラリ一より選別したファージディスプレイ由来のヒ ト 钪体を取得する方法 (Wormstone, I. M.et.al, Investigative Ophthalmology & Visual Science. 43(7), p.2301-8, 2002; Carmen, S. et.al" Briefings in Functional Genomics and Proteomics, 1 (2), p .189-203, 2002; Siriwardena, D . et.al., Opthalmology, 109(3), p .427- 431, 2002等参照。)によって取得すること ができる。
このようにして作製される組換え抗ヒ ト · ォキュロスパニン抗体がヒ ト · ォ キュロスパニンと特異的に結合することを確認する方法としては、 例えば、 マ ウス免疫時に坊体価の評価を行う場合と同様の E L I S A法が好適である。
6 . 抗ヒ ト · ォキュロスパニン抗体を含有する医薬
上述の 「 5 . 抗ヒ ト ' ォキュロパニン抗体の製造」 の項に記載された方法で 得られる抗ヒ ト · ォキュロスパニン抗体の中から、 ヒ ト . ォキュロスパニンの 生物活性を中和する抗体又はヒ ト · ォキュロスパニンを発現する癌細胞を特異 的に傷害する抗体を得ることができる。これらの抗体は、 生体内でのヒ ト .ォキ ュロスパニンの生物活性、即ち、細胞の癌化を阻害することから、 医薬として、 特に癌に対する治療剤として用いることができる。 i n v i t r oでの抗ヒ ト · ォキュロスパニン抗体によるヒ ト · ォキュロスパニンの生物活性の中和活 性は例えば、 ヒ ト · ォキュロスパニンを過剰発現している細胞における細胞の 癌化の抑制活性で測定することができる。例えば、 ヒ ト ·ォキュロスパニンを過 剰発現しているマウス繊維芽細胞株 N I H 3 T 3 を培養し、 培養系に種々の濃 度で抗ヒ 卜 ' ォキュロスパニン抗体を添加し、 フォーカス形成、 コロニー形成 及びスフエロィ ド増殖に対する抑制活性を測定することができる。 i n V i t r oでの抗ヒ ト · ォキュロスパニン抗体による癌細胞の傷害活性は例えば、 ヒ ト · ォキュロスパニンを過剰発現している細胞に対して抗ヒ ト · ォキュロス パニン抗体の示す抗体依存性細胞障害活性、 補体依存性細胞障害活性又は補体 依存性細胞性細胞障害活性で測定することができる。 例えば、 ヒ ト · ォキュ口 スパニンを過剰発現している 2 9 3 T細胞を培養し、 培養系に種々の濃度で抗 ヒ ト · ォキュロスパニン抗体を添加し、 さらにマウス脾臓細胞を添加して適当 時間培養後の、 ヒ ト · ォキュロスパニン過剰発現細胞に対する細胞死誘導率を 測定することができる。 i n V i V oでの実験動物を利用した抗ヒ ト · ォキ ュロスパニン抗体の癌に対する治療効果は、' 例えば、 ヒ ト · ォキュロスパニン を過剰に発現している トランスジエニック動物に同ヒ ト · ォキュロスパニン抗 体を投与し、 癌細胞の変化を測定することができる。
このようにして得られたヒ ト 'ォキュロスパニンの生物活性を中和する抗体 又はヒ ト · ォキュロスパニンを発現する癌細胞を特異的に傷害する抗体は、 医 薬として特に癌の治療を目的とした医薬組成物として、 あるいはこのような疾 患の免疫学的診断のための抗体として有用である。癌の種類としては、皮膚癌や 皮膚癌の一種であるメラノ一マを好適に挙げることができるがこれらに限定さ れない。
本発明は、 治療に有効な量の抗ヒ ト · ォキュロスパニン抗体と薬学上許容さ れる希釈剤、 担体、 可溶化剤、 乳化剤、 保存剤及び/又は補助剤を含む医薬組 成物も提供する。
本発明の医薬組成物において許容される製剤に用いる物質としては好ましく は投与量や投与濃度において、 医薬組成物を投与される者に対して非毒性のも のが好ましい。
本発明の医薬組成物は、 p H、 浸透圧、 粘度、 透明度、 色、 等張性、 色、 無菌 性、 安定性、 溶解率、 徐放率、 吸収率、 浸透率を変えたり、 維持したり、 保持 したりするための製剤用の物質を含むことができる。製剤用の物質として以下 のものを挙げることができるが、 これらに制限されない : グリ シン、 ァラニン . グルタミ ン、 ァスパラギン、 アルギニン又はリジン等のアミ ノ酸類、 抗菌剤 、 ァスコルビン酸、 硫酸ナトリウム又は亜硫酸水素ナト リウム等の抗酸化剤 リ ン酸、 、 クェン酸、 ホウ酸バッファ一、 炭酸水素、 トリスー塩酸 (Tr i s- Hc l ) 溶液等の緩衝剤、 マンニトールやグリ シン等の充填剤、 エチレンジァミン四 酢酸 (EDTA) 等のキレート剤、 カフェイン、 ポリ ビニルピロリジン、 β —シク ロデキス トリ ンゃヒ ドロキシプロピル一 /3 —シクロデキス トリ ン等の錯化剤、 グルコース、 マンノース又はデキス トリ ン等の増量剤、 単糖類、 二糖類やダル コース、 マン.ノースゃデキス トリン等の他の炭水化物、 着色剤、 香味剤、 希釈 剤、 乳化剤やポリ ビニルピロリ ジン等の親水ポリマ一、 低分子量ポリペプチド 、 塩形成対イオン、 塩化べンズアルコニゥム、 安息香酸、 サリチル酸、 チメロ サール、 フエネチルアルコール、 メチルパラベン、 プロピルパラベン、 クロレ キシジン、 ソルビン酸又は過酸化水素等の防腐剤、 グリセリ ン、 プロピレン - ダリコール又はポリエチレンダリコール等の溶媒、 マンニトール又はソルピト —ル等の当アルコール、 懸濁剤、 PEG、 ソルビタンエステル、 ポリ ソルビテート 20やポリ ソルビテート 80等ポリ ソルビテート、 トリ トン (t r i t on) 、 トロメタ ミン (t r ome t ham i ne) 、 レシチン又はコレステロール等の界面活性剤、 スクロ' 一スゃソルビトール等の安定化増強剤、 塩化ナトリ ウム、 塩化カリウムやマン 二トール *ソルビトール等の弹性増強剤、 輸送剤、 希釈剤、 賦形剤、 及び/又は 薬学上の補助剤。 これらの製剤用の物質の添加量は、 抗ヒ ト · ォキュロスパニ ン抗体の重量にたいして 0 . 0 '1〜1 0 0倍、 特に 0 . 1〜1 0倍添加するの が好ましい。製剤中の好適な医薬組成物の組成は当業者によって、 適用疾患、 適 用投与経路などに応じて適宜決定することができる。
医薬組成物中の賦形剤や担体は液体でも固体でもよい。適当な賦形剤や担 体は注射用の水や生理食塩水、 人工脳脊髄液や非経口投与に通常用いられてい る他の物質でもよい。中性の生理食塩水や血清アルプミンを含む生理食塩水を 担体に用いることもできる。医薬組成物には P H7. 0— 8. 5の Tr i sバッファ一や pH 4. 0-5. 5の酢酸バッファ一やそれらにソルピトールや他の化合物を含むことも できる。本発明の医薬組成物は選択された組成で必要な純度で適当な薬剤とし て、 凍結乾燥品あるいは液体として準備される。拚ヒ ト 'ォキュロスパニン抗体 を含む医薬組成物はスク ΰ—スのような適当な賦形剤を用いた凍結乾燥品とし て成型されることもできる。
本発明の医薬組成物は非経口投与用に調製することもできるし、 経口による 消化管吸収用に調製することもできる。製剤の組成及び濃度は投与方法によつ て決定することができるし、 本発明の医薬組成物に含まれる、 抗ヒ ト · ォキュ ロスパニン抗体のヒ ト ' ォキュロスパニンに対する親和性、 即ち、 ヒ ト . ォキ ュロスパニンに対する解離定数 (K d値) に対し、 親和性が高い (K d値が低 い) ほど、 ヒ トへの投与量を少なく薬効を発揮することができるので、 この結 果に基づいて本発明の医薬組成物の人に対する投与量を決定することもできる 。投与量は、 ヒ ト型抗ヒ ト ·ォキュロスパニン抗体をヒ トに対して投与する際に は、 約 0 . :!〜 1 0 0 m k gを 1〜 3 0 日間に 1 回投与すればよい。
本発明の医薬組成物の形態としては、 点滴を含む注射剤、 坐剤、 経鼻剤、 舌 下剤、 経皮吸収剤などが挙げられる。 7 . 直接相互作用する物質の探索
本発明の他の一つの態様としては、 ヒ ト · ォキュロスパニンの活動を抑制す るような物質を得ることを目的とした、 該蛋白質の立体構造をべ一スとしたド ラッグデザインの手法を含む。 このような手法は、 ラショナルドラッグデザィ ン法として知られており、 酵素活性などの機能や、 リガンド、 コファクタ一、 又は D N Aへの結合などを効率よく阻害もしくは活性化させるような化合物の 探索に利用されている。 この例として、 すでに上巿されている抗 H I V剤であ るプロテア一ゼの阻害剤がよく知られている。 本発明のヒ ト · ォキュロスパニ ンの三次元構造解析においても、 X—線結晶解析や核磁気共鳴法といった一般 的によく知られている手法が利用できると考えられる。 さらに、 ヒ 卜 , ォキュ ロスパニンの機能を抑制する物質の探索には、 コンピュータ一ドラッグデザィ ン ( C A D D ) を活用した設計も可能である。 この例としては、 慢性関節リウ マチ治療の新たなゲノム新薬として期待されている A P— 1 の働きを阻害する 低分子化合物 (国際特許出願公開 W O 9 9 / 5 8 5 1 5号) などが知られてい る。 このような方法により、 ヒ ト · ォキュロスパニンに直接結合するか、 ある いはヒ ト · ォキュロスパニンと他の因子との相互作用を阻害することにより、 ヒ ト · ォキュロスパニンの機能を抑制するような物質を得ることができる。 さらに、 他の一つの態様は、 本発明のヒ ト · ォキュロスパニンが会合するポ リぺプチド、 すなわちヒ ト · ォキュロスパニンのパ一トナー蛋白質に関する。 すなわち、 本発明は、 ヒ ト · ォキュロスパニンの活性を調節するパートナ一蛋 白質のスクリ一ニング方法に関する。
このスクリ一ニング方法の一つの態様は、 ヒ ト . ォキュロスパニンに被験蛋 白質試料を接触させ、 ヒ ト · ォキュロスパニンに結合する蛋白質を選択するェ 程を含む。 このような方法としては、 例えば、 精製したヒ ト · ォキュロスパニ ンを用いて、 これに結合する蛋白質のァフィ二ティ一精製を行う方法が挙げら れる。 具体的な方法の一例を示せば、 ヒ ト . ォキュロスパニンにヒスチジン 6 個よりなる配列をァフィ二ティ一タグとして融合したものを作製して、 これを 細胞の抽出液 (予めニッケル一ァガロースカラムにチヤ一ジして、 このカラム を素通り した画分) と 4 °Cで 1 2時間インキュベートし、 次いで、 この混合物 に別途ニッケルーァガロース担体を加えて 4 °Cで 1時間インキュベートする。 二ッケ.ルーァガロース担体を洗浄バッファ一で十分洗浄した後、 1 0 O m Mィ ミダゾールを加えることにより、 ヒ ト · ォキュロスパニンと特異的に結合する 細胞抽出液中の蛋白質を溶出させて精製し、 この構造を決定する。 このように して、 ヒ ト · ォキュロスパニンと直接結合する蛋白質、 及びヒ ト · ォキュロス パニンとの結合活性は持たないが、 サブユニッ トとしてヒ ト · ォキュロスパニ ンに直接結合する蛋白質と複合体を形成することにより間接的にヒ ト ' ォキュ ロスパニンに結合する蛋白質が精製できる [実験医学別冊、 バイオマニュアル シリーズ 5 「転写因子研究法」 p p 2 1 5— 2 1 9 (羊土社刊)]。
別の方法としては、 ファーウェスタンプロッ ト法 [実験医学別冊、 「新遺伝子 工学ハンドブック」 p p 7 6— 8 1 (羊土社刊)] や、 酵母や哺乳類動物細胞を 用いたッ一パイブリ ッ ドシステム法 [実験医学別冊、 「新造伝子工学ハンドブッ ク J p p 6 6 - 7 5 (羊土社刊)、 「チェックメイ ト · マンマリアン · ツーハイ ブリ ツ ドシステム」 (プロメガ社製)] によるクローニングも可能であるが、 こ れらの方法に限定されない。
このようにして、 ヒ ト · ォキュロスパニンと直接もしくは間接的に相互作用 するパ一 トナー蛋白質の c D N Aが得られれば、 ヒ ト · ォキュロスパニンと該 パートナー蛋白質との相互作用を阻害する物質の機能的スク リーニングに利用 することができる。 具体的には、 例えば、 ヒ 卜 · ォキュロスパニンとダルタチ オン S—トランスフェラ一ゼとの融合蛋白質を調製して、 抗グル夕チオン S— トランスフエラ一ゼ抗体で覆ったマイク口プレートに結合させた後., ピオチン 化した該パートナ一蛋白質をこの融合蛋白質と接触させ、 該融合蛋白質との結 合をス トレプトアビジン化アルカリホスファタ一ゼで検出する。 ピオチン化し た該パートナー蛋白質添加の際、 被験物質も添加し、 融合蛋白質と該パートナ 一蛋白質との結合を促進あるいは阻害する物質を選択する。 この方法では、 融 合蛋白質に直接作用する物質又は該パ一トナー蛋白質に直接作用する物質が得 られる。 , 融合蛋白質と該パ一トナー蛋白質との結合が間接的であり、 何らかの別の因 子を介しているような場合には、 例えば該因子を含むような細胞抽出液存在下 で、 同様に上記アツセィを行う。 この場合には、 該因子に対して作用するよう な物質も選択される可能性がある。 , また、 得られたパートナー蛋白質が、 ヒ ト · ォキュロスパニンの機能を抑制 する活性を有している場合には、 既に記載したヒ ト · ォキュロスパニン遺伝子 の発現ベクターを応用した試験方法に従って 抗癌剤、 例えば、 前立腺癌の治 療剤として有用な候補物質のスクリーニングを行う ことができる。 また、 得ら れたパートナー蛋白質が、 ヒ ト · ォキュロスパニンの機能を抑制する活性を有 している場合には、 このような抑制因子をコードするヌクレオチド配列を有す るポリヌクレオチドは、 癌の遺伝子治療に用いることができる。
そのようなポリヌクレオチドは、 例えば同定された阻害因子のアミノ酸配列 を解析し、 該アミノ酸配列をコ一ドするヌクレオチド配列からなるオリ ゴヌク レオチドプローブを合成して c D N Aライブラリーやゲノムライブラリ一のス ク リーニングを行うことにより取得できる。 また、 ヒ ト · ォキュロスパニンの 機能の阻害活性を有するぺプチドが、 ランダムに合成された人エペプチドライ ブラリー由来である場合は、 該ペプチドのアミ ノ酸配列をコードするヌクレオ チド配列からなる D N Aを化学合成する。 '
遺伝子治療においては、 そのようにして得られた阻害因子をコードする遺伝 子を、 例えばウィルスベクターに組み込んで、 該組換えウィルスベクタ一を有 するウィルス (無毒化されたもの) を患者に感染させる。 患者体内では抗癌因 子が産生され、 癌細胞の増殖抑制機能を有するので、 癌の治療が可能となる。 造伝子治療剤を細胞内に導入する方法としては、 ウィルスベクターを利用し た遗伝子導入方法、 あるいは非ウィルス性の遺伝子導入方法 (日経サイェン ス, 1 994年 4月号, 20- 45頁、 実験医学増刊, 1 2 ( 1 5) ( 1 994)、 実験医学別冊 「遺伝子 治療の基礎技術」 ,羊土社 ( 1 996 ) ) のいずれの方法も適用することができる。 ウィルスベクタ一による遺伝子導入方法としては、 例えばレトロウイルス、 アデノウイルス、 アデノ関連ウィルス、 ヘルぺスウィルス、 ワクシニアウィル ス、 ボックスウィルス、 ポリオウイルス、 シンビスウィルス等の D N Aウィル ス又は R N Aウィルスに、 阻害因子あるいはその変異体をコードする D N Aを 組み込んで導入する方法が挙げられる。 このうち、 レトロウイルス、 アデノウ ィルス、 アデノ関連ウィルス、 ワクシニアウィルスを用いた方法が、 特に好ま しい。 非ウィルス性の遺伝子導入方法としては、 発現プラスミ ドを直接筋肉内 に投与する方法 (D N Aワクチン法)、 リボソーム法、 リポフエクチン法、 マイ クロインジェクショ ン法、 リ ン酸カルシウム法、 エレク トロボレ一シヨ ン法等 が挙げられ、 特に DNAワクチン法、 リボソーム法が好ましい。
また遺伝子治療剤を実際に医薬として作用させるには、 DNAを直接体内に 導入するインピポ (invivo) 法及びヒ トからある種の細胞を取り出し体外で D NAを該細胞に導入し、 その細胞を体内に戻すェクスビポ (exvivo) 法がある (日経サイエンス, 1994年 4月号, 20-45頁、 月刊薬事, 36 (1) , 23- 48 ( 1994)、 実験 医学増刊, 12 (15) (1994))。
例えば、 該遺伝子治療剤がインビポ法により投与される場合は、 疾患、 症状 等に,応じ、 静脈、 動脈、 皮下、 皮内、 筋肉.内等、 適当な投与経路により投与さ れる。 またインビポ法により投与する場合は、 該遺伝子治療剤は一般的には注 射剤等とされるが、 必要に応じて慣用の担体を加えてもよい。 また、 リポソ一 ム又は膜融合リボソーム (センダイウィルス―リポソ一ム等) の形態にした場 合は、 懸濁剤、 凍結剤、 遠心分離濃縮凍結剤等のリボソーム製剤とすることが できる。
配列表の配列番号 1に示されるヌクレオチド配列に相補的なヌクレオチド配 列又は該配列の部分配列に相補的なヌクレオチド配列は、 いわゆるアンチセン ス治療に用いることができる。 アンチセンス分子は、 配列表の配列番号 1に示 されるヌクレオチド配列の一部に相捕的な、 通常 1 5乃至 3 0 me rからなる DNA, もしくはそのホスホロチォエート、 メチルホスホネート又はモルフォ リ ノ誘導体などの安定な DN A誘導体、 2 ' — O—アルキル RNAなどの安定 な RNA誘導体として用いられ得る。 そのようなアンチセンス分子を、 微量注 入、 リポソ一ムカプセル化により、 あるいはアンチセンス配列を有するベクタ 一を利用して発現させるなど、 本発明の技術分野において周知の方法で、 細胞 に導入することができる。 このようなアンチセンス療法は、 配列表の配列番号
1に示されるヌクレオチド配列がコードする蛋白質の活性が増加しすぎること によって引き起こされる病気の治療に有用である。
上記アンチセンスオリゴヌク レオチドを含む医薬として有用な組成物は、 医 薬として許容できる担体の混合などの公知の方法によって製造され得る。 この ような担体と製造方法の例は、 Applied Ant isense Oligonucleotide Technology
( 1998 Wiley-Liss, Inc. ) に記載されている。 アンチセンスオリ ゴヌク レ^ チドを含む製剤は、 それ自体あるいは適宜の薬理学的に許容される、 賦形剤、 ' 希釈剤等と混合し、 錠剤、 カプセル剤、 顆粒剤、 散剤若しくはシロップ剤等に より経口的に、 又は、 注射剤、 坐剤、 貼付剤、 若しくは、 外用剤等により非経 口的に投与することができる。 これらの製剤は、 賦形剤 (例えば、 乳糖、 白糖、 葡萄糖、 マンニトール、 ソルビトールのような糖誘導体 ; トウモロコシデンプ ン、 パレイショデンプン、 α澱粉、 デキス トリ ンのような澱粉誘導体 ; 結晶セ ルロースのようなセルロース誘導体 ; アラビアゴム ; デキス トラン ; プルラン のような有機系賦形剤 ; 及び、 軽質無水珪酸、 合成珪酸アルミニウム、 珪酸カ ルシゥム、 メ夕珪酸アルミン酸マグネシウムのような珪酸塩誘導体 ; 燐酸水素 カルシウムのような燐酸塩 ; 炭酸カルシウムのような炭酸塩 ; 硫酸カルシウム のような硫酸塩等の無機系賦形剤を挙げることができる。)、 滑沢剤 (例えば、 ステアリ ン酸、 ステアリ ン酸カルシウム、 ステアリ ン酸マグネシウムのような ステアリ ン酸金厲塩 ; タルク ; コロイ ドシリ力 ; ビーズヮックス、 ゲイ蟖のよ うなワックス類 ; 硼酸 ; アジどン酸 ; 硫酸ナトリウムのような硫酸塩 ; グリコ —ル ; フマル酸 ; 安息香酸ナトリウム ; D Lロイシン ; ラウリル硫酸ナトリウ ム、 ラウリル硫酸マグネシウムのようなラウリル硫酸塩 ; 無水珪酸、 珪酸水和 物のような珪酸類;及び、 上記澱粉誘導体を挙げることができる。)、 結合剤 (例 えば、ヒ ドロキシプロピルセルロース、ヒ ドロキシプロピルメチルセルロース、 ポリ ビエルピロリ ドン、 マクロゴール、 及び., 前記賦形剤と同様の化合物を挙 け'ることができる。)、 崩壊剤 (例えば、 低置換度ヒ ドロキシプロピルセルロー ス、 カルボキシメチルセルロース、 カルボキシメチルセルロースカルシウム、 内部架橋カルボキシメチルセルロースナトリウムのようなセルロース誘導体 ; カルボキシメチルスターチ、 カルボキシメチルスターチナ卜リウム、 架橋ポリ ビニルピロリ ドンのような化学修飾されたデンプン · セルロース類を挙げるこ とができる。)、 乳化剤 (例えば、 ベントナイ ト、 ビーガ厶のようなコロイ ド性 粘土 ; 水酸化マグネシウム、 水酸化アルミニウムのような金属水酸化物 ; ラゥ リル硫酸ナトリウム、 ステアリ ン酸カルシウムのような陰イオン界面活性剤 ; 塩化ベンザルコニゥムのような陽イオン界面活性剤 ; 及び、 ポリオキシェチレ ンアルキルエーテル、 ポリオキシエチレンソルビ夕ン脂肪酸エステル、 ショ糖 脂肪酸エステルのような非イオン界面活性剤を挙げることができる。)、 安定剤 (メチルパラベン、 プロピルパラベン.のようなパラォキシ安息香酸エステル 類 ; クロロブ夕ノール、 ベンジルアルコール、 フエニルエチルアルコールのよ うなアルコール類 ; 塩化ベンザルコニゥム ; フエノール、 クレゾ一ルのような フエノール類 ; チメロサール ; デヒ ド口酢酸 ; 及び、 ソルビン酸を挙げること ができる。)、 矯味矯臭剤 (例えば、 通常使用される、 甘味料、 酸味料、 香料等 を挙げることができる。)、希釈剤等の添加剤を用いて周知の方法で製造される。 本発明の化合物を患者へ導入する方法については、 上記に加えてコロイ ド分 散系を用いることができる。 コロイ ド分散系は化合物の生体内の安定性を高め る効果や、 特定の臓器、 組織又は細胞へ化合物を効率的に輸送する効果が期待 される。 コロイ ド分散系は、 通常用いられるものであれば限定しないが、 高分 子複合体、 ナノカプセル、 ミクロスフエア、 ピーズ、 及び水中油系の乳化剤、 ミセル、 混合ミセル及びリボソームを包含する脂質をベースとする分散系を挙 げる事ができ、 好ましくは、 特定の臓器、 組織又は細胞へ化合物を効率的に輸 送する効果のある、 複数のリボソーム、 人工膜の小胞である (Mannino et al. , Biotechniques, 1988, 6, 682 ;Blume and Cevc, B i ochem. e t Biophys. Acta, 1990, 1029, 91; Lappalainen et al. , Ant iviral Res ., 1994, 23, 119 ; Chonn and Cul 1 is , Current Op. Biotech. , 1995, 6, 698 )。
0. 2 — 0. 4 mのサイズ範囲をとる単膜リボソームは、 巨大分子を含有 する水性緩衝液のかなりの割合を被包化し得、 化合物はこの水性内膜に被胞化 され、 生物学的に活性な形態で脳細胞へ輸送され'る (Fraley et al. , Trends Β iochem. Sci. , 1981, 6, 77 )„ リボソームの組成は、 通常、 脂質、 特にリ ン脂質、 とりわけ相転移温度の高いリ ン脂質を 1種又はそれ以上のステロイ ド、 特にコ レステロールと通常複合したものである。 リポソ一ム生産に有用な脂質の例は 、 ホスファチジルグリセロール、 ホスファチジルコリ ン、 ホスファチジルセリ ン、 スフイ ンゴ脂質、 ホスファチジルエタノールァミン、 セレプロシド及びガ ングリオシドのようなホスファチジル化合物を包含する。 特に有用なのはジァ シルホスファチジルグリセロールであり、 ここでは脂質部分が 1 4— 1 8の炭 素原子、 特に 1 6 — 1 8の炭素原子を含有し、 飽和している ( 1 4一 1 8の炭 素原子鎖の内部に二重結合を欠いている)。 代表的なリ ン脂質は、 ホスファチジ ルコ リ ン、 ジパルミ トイルホスファチジルコリ ン及びジステアロイルホスファ チジルコリ ンを包含する。
リポソームを包含するコロイ ド分散系の標的化は、 受動的又は能動的のいず れかであってもよい。 受動的な標的化は、 洞様毛細血管を含有する臓器の網内 系細胞へ分布しょうとするリボソーム本来の傾向を利用することによって達成 される。 一方、 能動的な標的化は、 例えば、 ウィルスの蛋白質コート (Morish ita et aし, Proc. Natl. Acad. Sci. (U.S.A.), 1993, 90,8474 :)、モノクロ一ナル抗 体 (又はその適切な結合部分)、 糖、 糖脂質又は蛋白質 (又はその適切なオリ ゴ ペプチドフラグメント) のような特定のリガンドをリボソームへ結合させるこ と、 又は天然に存在する局在部位以外の臓器及ぴ細胞型への分布を達成するた めにリボソームの組成を変えることによってリボソームを修飾する手法等を挙 げる事ができる。 標的化されたコロイ ド分散系の表面は様々なやり方で修飾さ れ得る。 リボソームで標的したデリバリーシステムでは、 脂質二重層との緊密 な会合において標的リガンドを維持するために、 リボソームの脂質二重層へ脂 質基が取込まれ得る。 脂質鎖を標的リガンドと結びつけるために様々な連結基 が使用され得る。 本発明のオリゴヌクレオチドのデリパリ一が所望される細胞 の上に支配的に見出される特定の細胞表面分子に結合する標的リガンドは、 例 えば、 ( 1 ) デリパリ一が所望される細胞によって支配的に発現される特定の細 胞受容体と結合している、 ホルモン、 成長因子又はその適切なオリゴぺプチド フラグメン ト、 又は ( 2 ) 標的細胞上で支配的に見出される抗原性ェピ トープ と特異的に結合する、 ポリクロ一ナル又はモノクローナル抗体、 又はその適切 なフラグメント (例えば、 F a b ; F ( a b ' ) 2 )、 であり得る。 2 種又は それ以上の生物活性剤は、 単一のリポソ一ム内部で複合し、 投与することもで きる。 内容物の細胞内安定性及び Z又は標的化を高める薬剤をコロイ ド分散系 へ追加することも可能である。
その使用量は症状、 年齢等により異なるが、 経口投与の場合には、 1回当り 下限 l mg (好適には、 3 0 mg)、 上限 2 0 0 0 mg (好適には、 1 5 0 0 mg) を、 注射の場合には、 1回当 り下限 0. l mg (好適には、 5 mg)、 上限 1 0 0 0 mg (好適には、 5 0 0 mg) を皮下注射、 筋肉注射又は静脈注射によって投与する ことができる。 以下、 実施例を示してこの発明を詳細かつ具体的に説明するが、 本発明はこれ らの実施例に限定されるものではない。 なお、 下記実施例において遺伝子操作 に関する各操作は特に明示がない限り、「モレキュラークローニング(Molecular Cloning) 」 ( Sambrook, J. , Fritsch, E.F. 及 び Maniatis, T. 著 , Cold SpringHarbor Laboratory Press より 1989年に発刊) に記載の方法により行う か、 又は、 市販の試薬やキッ トを用いる場合には市販品の指示書に従って使用 した。
[実施例 1 ] 癌細胞で特異的に発現している遺伝子の選別
配列表の配列番号 1 と部分的に重複するヌクレオチド配列を有する E S T プローブ (Af f imetrix Genechip HG-133 probe 223795— at : ァフィ メ トリクス 社製) について、 G e n e L o g i c 社製のデータベース (GeneExpress Software System Release 1.4.2) を用いて発現プロファイル解析を行った。 各種細胞株内でのヒ ト · ォキュ口スパニン遗伝子の発現 Sを比較した結果、 メラニン細胞 (メラノサイ ト : melanocyte) 8例は、 他の細胞株群、 すなわち 血球系細胞サンプル 1 2例、 グリァ細胞株サンプル 6例、 上皮系細胞サンプル 6 2例と比較して有意に高く転写されていた(順に P値 < 0. 0 0 0 1、 = 0. 0 0 0 7、 < 0. 0 0 0 1 図 1上パネル )
次に組織由来サンプルでのヒ ト ·ォキュロスパニン遺伝子の発現 aを比較した。 健常人皮膚サンプル 66例、 及びメラノーマサンプル 33例について転写量を比 較したところ、 メラノ一マサンプルにおいて有意に高く転写されていた (P値 く 0. 0 0 0 1 : 図 1下パネル)。 また、 健常人皮膚サンプル 66例と、 メラノ 一マサンプルのうち、 皮膚組織由来サンプル 1 2例を比較したところ、 メラノ —マサンプルにおいて有意に高く転写されていた ( P値 = 0. 0 0 0 7 : 図 2 上パネル)。
一方、 健常人皮膚サンプル 66例と、 メラノ一マサンプルのうち、 リ ンパ節組 織由来サンプル 1 2例を比較したところ、 メラノ一マサンプルにおいて有意に 高く転写されていた (P値 = 0. 0 0 0 3 : 図 2下パネル)。
さらに、 健常人リ ンパ節由来サンプル 1 3例と、 メラノーマサンプルのうち、 リ ンパ節組織由来サンプル 1 2例を比較したところ、 メラノ一マサンプルにお いて有意に高く転写されていた ( P値 = 0. 0 0 1 1 : 図 3パネル)。
[実施例 2 ] ヒ ト · ォキュロスパニン遺伝子の取得と発現プラスミ ドの構築 a ) P C R反応
ヒ ト · ォキュロスパニン c D NAを P C Rで増幅するためのプライマ一として 5' -CACCATGGAGGAGGGGGAGAGGAGCCC- 3' (プライマ一 1 :配列表の配列番号 5 ) 及び、
5' -GCCCCGGGCGGGTTTGGCAGCGG-3 ' (プライマ一 2 : 配列表の配列番号 6 ) の配列を有するオリ ゴヌクレオチドを常法に従って合成した。 なお、 プライマ — 1 はヒ ト · ォキュ.ロスパニン遺伝子の開始コ ドン上流に K o z a k配列とし て 4塩基、 CACCを付加したオリゴヌクレオチドであり,、 配列表の配列番号 1 の ヌクレオチド番号 1乃至 2 3からなるヌクレオチド配列の 5 ' 側に 4塩基配列 (CACC) 付加した塩基配列からなるオリゴヌクレオチドである。この CACC配列 は、 クロ一ニングベクタ一 p E NT R/D— TO P Oへの組み込みの際にべク ター 3 ' 末端と相補鎖を形成するため、 fi伝子の方向性を保持したベクタ一へ の組み込みを可能としている。 プライマ一 2 は配列表の配列番号 1 のヌクレオ チド番号 1 0 4 3乃至 1 0 6 5からなるヌクレオチド配列の相補鎖からなるォ リ ゴヌクレオチドである。
P C R反応は P L AT I N UM P f x D N A P o l y m e r a s e (ィ ンピトロジェン社製)を添付プロ トコ一ルに従って用いて行つた。具体的には、 得られたファース トス トランド c D NA 0. l i l に l O p m o l Z l の 濃度の合成プライマ一 1 と合成プライマー 2 をそれぞれ 1. 5 1 、 1 0 X P f x Am p l i f a c t i o n B u f f e r 5 x 1 、 1 0 m M d N T P M i xを 1. 5 μ 1 、、 5 0 mM M g S 04を 1 1 、 P L A T I N UM P f x D N A P o l ym e r a s e 0. 5 1 、 1 0 X P C R x E n h a n c e r S o l u t i o n 1 0 1 、 滅菌精製水 2 8. 9 I を添 加し、 5 0 μ 1 の P C R反応溶液を作製した。 P C R反応は、 P e l t i e r T h e r m a l C y c l e r T P C— 2 0 0 D N A E n g i n e (ェ ムジェ一リサーチ (M J R e s e a r c h ) 社製) により行った。 まず 9 4 "C で 2分加熱した後、 引き続き 9 4°Cで 3 0秒、 6 5 °Cで 2分の温度サイクルを 5回、 続いて 9 4 °Cで 3 0秒、 6 0 °Cで 4 0秒、 6 8 °Cで 1分 2 0秒の温度サ イクルを 5回、 続いて 9 4 °Cで 3 0秒、 5 5 °Cで 4 0秒、 6 8でで 1分 2 0秒 の温度サイクルを 5回、 続いて 94 °Cで 3 0秒、 5 0 で 4 0秒、 6 8 °Cで 1 分 2 0秒の温度サイクルを 3 5回繰り返し、 最後に 6 8 °Cで 1 0分間保温して から、 4 °Cに保存した。 目的 c DNAは、 反応物を 1. 5 %のァガロースゲル で電気泳動し、 NM_ 0 3 1 9 4 5 c DNA ( 1 0 6 9 b ρ ) の増幅を確認 後、 S. N. A. P . UV— F r e e G e l P u r i f i c a t i o n K i t (インビトロジェン社製) をその添付プロ トコ一ルに従って用いること によりァガロースゲルより DNAを精製した。 精製された c DNAの濃度は、 1 P I m a g e A n a l y s i s S o f t w a r e V e r s i o n 3. 5 (K o d a k D i g i t a l S c i e n c e' EDA S 2 9 0 : コ ダック社製) を用い、 l k b DNA L a d d e r (インビトロジェン社製) を濃度標準物にして測定した。
b ) ヒ ト · ォキュロスパニン c DNAの p E NT RZD— TO P Oベクタ —へのクローニング
p ENTR D i r e c t i o n a l TO P O C l o n i n g K i t s (インピトロジェン社製) を添付プロ トコールに従って用い、 実施例 2 a ) に よって得られた NM— 0 3 1 9 4 5 c DNAを p ENTR/D _T〇 P Oベ クタ一にクローニングした。 N M__ 0 3 1 9 4 5 c DNAを、 キッ ト付属の 反応バッファ一中で T o p o i s om e r a s eを結合させてある p E N T R ZD— TO P Oベクターと混合し室温で 3 0分間インキュベートした。 得られ た反応物を用いて大腸菌 O n e S h o t TO P 1 0 C h e m i c a l 1 y C o m p e t e n t E . c o 1 i (インビトロジェン社製) を形質転換し、 5 0 I g /m 1 のカナマイシンを含む L B寒天培地上で培養した。 その結果力 ナマイシン耐性を示して生育してきた大腸菌コロニ一を選択して、 1 m l の 5 0 n g/m 1 のカナマイシンを含む液体 T B培地中で 3 7でで一晩培養し、 M o n t a g e P l a s m i d M i n i p r e p 9 6 K i t (ミ リポア社 製) を利用することによりプラスミ ド DNAを単離精製した。 得られたプラス ミ ド DNAについて、 B i g D y e T e r m i n a t o r v 3. 0 C y c l e S e q u e n c i n g R e a d y R e a c t i o n K i tをそ の添付プロ トコールに従って用いることにより反応を行った後、 AB I P R I S M 3 1 0 0 D N A An a l y z e r (アプライ ド ' バイオシステム ズ社製) によりヌクレオチド配列解析を行い、 G e n B a n k ァクセッショ ン番号 (AC C E S S I ON NO. NM_ 0 3 1 9 4 5 に示されるヌクレ ォチド配列の O p e n R e a d i n g F r ameを有する c DNA (配列表 の配列番号 1 ) が、 p E N T RZD— T O P Oベクターに組み込まれているこ とを確認した。 ' '
次に発現用べクタ一 P c DNA 3.1 /D E S T 4 0 (インビトロジェン社製) へ GAT EWAYTMシステムを用いて遺伝子の乗せ替えを行った。 すなわち、 GAT EWAY™ L R C 1 o n a s e™ E n z ym e M i x (イン ビトロジェン社製) 4 a L R R e a c t i o n B u f f e r 4 1 、 p ENTR/D -TO P O-NM_0 3 1 9 4 5 0. 3 < g、 p c D N A 3. 1 /D E S T 4 0 0. 3 / gを T Eバッファ一で 2 0 \ι 1 に調製し、 2 5 °Cで 1時間反応させる。反応後、 2 a 1 の P r o t e i n a s e Kを加え、 3 7。C にて 1 0分間反応させる。 得られた反応物を用いて大腸菌 O n e S h o t T
0 P 1 0 C h em i c a l 1 y C omp e t e n t E . c o l i (イン ピトロジェン社製) を形質転換し、 5 0 gZm 1 のアンピシリ ンを含む L B 寒天培地上で培養した。 その結果アンピシリ ン耐性を示して生育してきた大腸 菌コロニーを選択して、 1 0 0 m l の 5 0 it g / m 1 のアンピシリ ンを含む液 体 L B培地中で 3 7 °Cでー晚培養し , P 1 a s m i cl MA X I K i t (Q
1 A G E N社製)を利用することによりプラスミ ド DN A (pcDNA3.1-DEST40-NM — 031945) を単離精製した。
[実施例 3 ] ヒ ト · ォキュロスパニン遺伝子の細胞への導入と発現されたヒ ト · ォキュロスパニン遺伝子産物の確認、 及び免疫原としてのヒ ト · ォキュ口 スパニン発現細胞の膜画分の調製
a )プラスミ ド pcDNA3.1-DEST40-NM_031945の N I H 3 T 3細胞への トラン スフエクシヨ ン
実施例 2によって得られたプラスミ ド pcDNA3.卜 DEST40-NM— 031945 を N I H 3 T 3細胞に以下のようにトランスフエクシヨ ンした。 N I H 3 T 3細胞への トランスフエクシヨ ンは (株) I n v i t r o g e n製の L i p o f e c t a m i n e™ 2 0 0 0 R e a g e n t を用いてリポフエクシヨ ンにより行 つた。 すなわち、 まず N I H 3 T 3細胞を 6穴プレートにてセミコンフルェン トになるまで増殖させた。 細胞を抗生物質の入っていない、 1 0 % ゥシ胎児 血清を含む DMEMで一度洗浄したのち、 2 0 0 1 の抗生物質の入っていな い、 1 0 % ゥシ胎児血清を含む D Μ Ε Μを加えた。 次に 1. 5 m 1エツペン ドルフチューブ中に無血清培地 (DMEM) 1 0 0 1 と、 上記方法にて回収 したプラスミ ド DN A (pcDNA3.1-DEST40-NM_031945) 2 μ gを加え、 混合し た。 別の 1. 5 m 1エツペンドルフチューブ中に無血清培地 (DMEM) 9 6 Ai l と、 L i p o f e c t am i n e TM 2 0 0 0 R e a g e n t 4 μ. 1 を加え、 混合した。 DNA溶液と L i p o f e c t am i n e溶液を混合し、 室温にて 2 0分間放置した。 その後、 DNA— L i p o f e c t am i n e混 合液を細胞に加え、 3 7 °C、 5 % C O 2下で培養した。 4時間後 1 0 % ゥ シ胎児血清を含む DMEM 1 m l を細胞に加え、 3 7 ° (:、 5 % C 02下で 一晩培養した。
b )プラスミ ド pcDNA3.1-DEST40-NM_031945の N I H 3 T 3細胞での発現の 確認
このようにして得られた細胞培養物を回収した。 c DNAを含まないネガティ プコントロール又は pcDNA3.1 - DEST40-NM— 031945 でトランスフエク トして得 た N I H 3 T 3細胞を P B S (—) 緩衝液 ( (株) I n v i t r o g e n製) で洗浄した。 細胞を S D S—ポリアクリルアミ ド電'気泳動 (S D S— P AGE) 用の 2—メルカプトエタノールを含むサンプル緩衝液 (パイォラッ ド社製) に 溶解し、 1 2. 5 % ポリアクリルアミ ドゲル ( e パジエル E - T 1 2. 5 L ア ト一 (株) 社製) を用いて、 還元条件下で S D S— P A G Eを行った。 電気泳動後、 ポリアクリルアミ ドゲルからバンドを転写緩衝液 ( 1 9 2 mM グリ シン、 2 0 % メタノール、 2 5 mM トリス) 中でゲルメンブレン転写 装置 (マリ ソル社製、 N P 7 5 1 3 ) を用いて 4 、 1 2 0分、 2 0 0 mAの 条件で P o l y v i n y l i d e n e D i f 1 u o r i d e ( P V D F ) メ ンブレン (ミ リポア社製) に転写した。 ' 転写後の P VD Fメンブレンについて、 抗 V 5タグ抗体 ( (株) I n v i t r o g e n製) を用いたウエスタンプロッ ト解析を行った。 すなわち、 まず P VD Fメンブレンをブロックエース((株)雪印製)にて、 ブロッキング (室温で 3 0分間を 1回) した後、 プラスチックバッグ (商品名ハイプリバック、 コス モバイォ (株) 社製) に入れ、 抗 V 5夕グ抗体 ( 1 0 0 0倍希釈)、 ブロックェ ス 5 m 1添加して室温で 1時間振とうした。 1時間後、 メンプレンを取り 出し 0. 0 5 %のツイ一ン 2 0を含む P B S (以下 「0. 0 5 % Tw e e n 2 0— P B S」 という) で洗浄した (室温で 1 5分間を 1回、 次いで 5分間を 2回) その後、 メンブレンを新しいプラスチックバッグに移し、 西洋ヮサビぺ ルォキシダ一ゼ標識抗ゥサギ I g G抗体 (アマシャム · フアルマシア社製) を 0. 0 5 % T w e e n 2 0— P B Sで 5 0 0 0倍に希釈した溶液 3 0 m 1 を 入れ、 を室温で 1時間振とう した。 1時間後、 メンブレンを取り出し、 0. 0 5 % T w e e n 2 0 _ P B Sで 1 5分間 X 1回、 次いで 5分間 X 4回洗浄し た。 洗浄後、 メンブレンをラップフィルム上に置き、 E C Lウェスタンブロッ ティ ング検出溶液 (アマシャム · フアルマシア社製) を用いて、 抗 V 5夕グ抗 体が結合するパンドの検出を行った (メンプレンをラップフィルム上に置き、 E C Lウエスタンプロッティ ング検出溶液に 1分間浸した後、 X線フィルムを 感光させた ( 1分間))。 その結果、 抗 V 5夕グ抗体により、 pcDNA3.卜 DEST40 -匪 — 031945 プラスミ ド DNAを導入して得られた N I H 3 T 3細胞に特異的な バンドが検出された (図 4 )。
c ) プラスミ ド cDNA3.卜 DEST40—NM— 031945の BAL B— 3 T 3細胞への 卜ランスフエクショ ン
B AL B— 3 T 3細胞 (American Type Cul ture Collection No. C C L - 1 6 3 ) を、 1 0 % ゥシ血清 (ギブコ社製) (以下 「C S」 という) を含むダル ベッコ変法イーグル培地 (以下 「DMEM」 という : 日水製薬 (株) 社製) を 入れた細胞培養用フラ トレイ (培養面積 5 0 0 c m2; 住友ベークライ ト (株) 社製) 3 枚中でセミコンフルェントになるまで 3 7 °C、 5 % 炭酸ガス下で培 養した後、 pcDNA3.卜 DEST40-NM— 031945を BAL B— 3 T 3細胞に トランスフ ェクシヨ ンした。 BAL B— 3 T 3細胞へのトランスフエクシヨ ンは (株) G e n e T h e r a y S y s t e m s製の G e n e p o r t e r TM 2 T r a n s f e e t i o n . R e a g e n tを用いてリポフエクシヨ ンにより 行った。 すなわち、 細胞を無血清培地 (DMEM) で一度洗浄したのち、 5 0 0m l の無血清培地 '(DMEM) を加えた。 次に 5 0m l ファルコンチュ一ブ 中に N e w D N A D i l u e n t 6m l と、 上記方法にて回収したプラ スミ ド DNA (pcDNA3.1-DEST40-NM_031945) 2 4 0 μ gを加え、 混合した。 別の 5 0 m l ファルコンチューブ中に無血清培地 (DMEM) 4. 8 m l と、 G e n e p o r t e r™ 2 R e a g e n t 1 2 0 0 /x l を加え、混合し た。 D N A溶液と G e n e p o r t e r™ 2溶液を混合し、 室温にて 2 0分 間放置した。 その後、 DNA— G e n e p o r t e r TM 2混合液を細胞に加 え (4m l /トレイ) 、 3 7 °C、 5 % C 02下で培養した。 4時間後 2 0 % ゥシ血清を含む DMEM 5 0m l /トレィを細胞に加え、 3 7 "C、 5 % CO 2下で一晩培養した。
d) 細胞膜画分の調製
上記の方法にて培養した細胞を P B S (—) 緩衝液 ( (株) I n V i t r o g e n製) で洗浄する。 セルスクレーパー(住友べ一クライ 1、 (株) 社製)を用 いて細胞を回収し、 5mM T r i sバッ フ ァ一 p H 8. 0 7 m l に懸濁 する。 4 °Cにて 3 0分間細胞溶液を放置する。 D o u n c e T y p e B ホ モジェナイザー ( 3 0ス トローク) にて細胞'を破砕する。 1 0 0 0 Gで 1 0分 間遠心し、上清を回収する。上清を 7 8 0 0 0 G 1 0 0分間、超遠心分離機(日 立 (株) 製)にて遠心し、 沈殿を回収する。 ショ糖密度勾配により、 膜画分を濃 縮する。 すなわち、 沈殿を 5 7 %ショ糖 0.2 5 M T r i sバッファ一: p I 8. 0 3 mLに溶解する。 超遠心用チューブに移しかえ、 その細胞溶液の上 へ 3 7. 2 % 5 7 %ショ糖 0.2 5 M T r i sパッ フ ァ一 p H 8. 0 3 m L、 0.2 5 M 5 7 %ショ糖 0.2 5 M T r i sノ 'ッファー p H 8.0 1. 5 mLを重層する。 超遠心分離機にて、 7 5 5 0 0 G 1 6時間遠心する。 チ ユーブ中の溶液を上方より l mLずつ回収する。 各フラクショ ンに 1 0 mLの 5mM T r i sゾ ッファ一 p H 8. 0を加え、 7 8 0 0 0 G 1時間超遠 心し、 沈殿を回収する。 沈殿に 5mM T r i sバッファ一 p H 8. 0 5 0 0 1 を加え、 D o u n c e T y e B ホモジェナイザー ( 1 0ス ト ローク) にて細胞溶液を均一化する。 発現確認の項で述べたウェスタンブロッ ティ ング法により、 細胞膜画分を同定し、 免疫原とする。 [実施例 4 ] マウスの免疫及び細胞融合
( 4一 1 ) 免疫
実施例 3で得られたヒ ト · ォキュロスパニン発現細胞の膜画分溶液 1 m 1 (全蛋白質量; 1 0 0 g) を 4〜 1 0週令の B A L BZ cマウス雌 (日本ェ スエルシー社より購入) 腹腔内に投与した。 2週間後、 同様の膜画分溶液 ( 2 0 g蛋白質/マウス) を腹腔内に投与し追加免疫する。
(4 - 2 ) 細胞融合
追加免疫 3 日後のマウスより脾臓を摘出し、 これを 2 0 mM H E P E S緩 衝液( p H 7 . 3 )、 3 5 0 m g /m 1 炭酸水素ナ トリウム、 0. 0 5 mM β 一メルカプトエタノール、 5 0単位/ m 1 ペニシリ ン、 5 0 g / m 1 ス トレブトマイシン、 3 0 0 / m 1 L一グルタミン酸を含む無血清 R P M I 1 6 4 0培地 ( 1 0. 4 gZリ ッ トル R P M I 1 6 4 0 「二ッスィ」 ( 1 ) : 日水製薬 (株) 社製) (以下 「無血清 R PM I培地」 という) 1 0 m l 中に入れ メッシュ (セルス ト レイナ一 : ファルコン社製) 上でスパーテルを用いてつぶ す。 メッシュを通過した細胞懸濁液を遠心して脾臓細胞を沈澱させた後、 この 脾臓細胞を無血清 R P M I培地で 2回洗浄してから、 無血清 R P M I培地に懸 濁して細胞数を測定する。
—方、 1 0 % F C S (ギブコ ' ピーァ一ルエル社製) を含む A S F 1 0 4 培地 (味の素 (株) 社製) (以下 「血清入 O A S F培地」 という) にて、 3 7。C、 5 % 炭酸ガス存在下で細胞濃度が 1 X I 08 細胞 Zm 1 を越えないように培 養したミエローマ細胞 N S 1 (American Type Culture Collection TIB-18 ) を同様に無血清 R P M I培地で洗浄し、 無血清 R P M I培地に懸濁して細胞数 を測定する。
3 X 1 07個相当の N S 1細胞懸濁液と、 3 X 1 08個相当の脾臓細胞懸濁液 を混合し、 遠心後、 上清を完全に除去する。 以下の細胞融合の操作は、 ペレツ 卜の入ったプラスチック遠沈管を温水を入れたビーカー中で 3 7 °Cに保温しな がら実施する。 このペレッ トに、 5 0 (w/ V ) ポリエチレングリ コール 1 5 0 0 (ベ一リ ンガー . マンハイム社製) 1 m l を、 ピペッ トの先でペレツ トを撹拌しながらゆつ く り添加した後、 予め 3 7 Cに加温しておいた無血清 R PM I培地 l m l を 2回に分けてゆつく り添加し、 さらに 7 m l の無血清 R P M I培地を添加する。 遠心後、 上清を除去し、 1 0 % F C Sを含むヒポキサ ンチン ' アミノプテリ ン ' チミジン培地 (以下 「HAT培地 J という ; ベ一リ ンガー . マンハイム社製) 1 0 m l を、 ピペッ トの先でゆっ く り撹拌しながら 添加する。さらに 1 0 % F C Sを含む HAT培地 2 0 m l を添加した後に、 細胞培養用 9 6穴マイクロプレートに 1 0 O 1 /ゥエルずつ分注し、 3 7 °C、 5 %炭酸ガス下で培養する。 7〜8 日後、 培地が黄色味を'帯びたゥエルには新 しい H A T培地を, 1 0 0 a 1 ウエルずつ加えた。 このようにして得られた融 合細胞を、 以下に記載する限界希釈法によるスクリーニングに供する。
(4一 3) 限界希釈
4〜 1 0週令の B A L B / cマウス雌 (日本エスエルシー社より購入) より 胸腺を摘出後、 メッシュ (セルス トレイナ一 ; ファルコン社製) 上でスパ一テ ルを用いてつぶし、 メッシュを通過した細胞を 1 0 % F C Sを含むヒポキサ ンチン · チミジン培地 (以下 Γ H T培地」 という ; ベ一リ ンガ一 ' マンハイム 社製) で 2回洗浄する。 マウス 1匹分の胸腺細胞を 1 0 % F C Sを含む H T 培地 3 0 m l に懸濁したものをフィーダー細胞液とした。 上記 ( 4 - 2 ) で 得られた融合細胞を含む培養液を、 細胞密度に応じてフィーダ一細胞液で 1 0 乃至 1 0 0倍に希釈し、さらに融合細胞の密度が 5細胞/ m 1、 1細胞/ m 1、 0. 5細胞/' m 1 となるように、 フィーダ一細胞液で段階希釈する。 このよう にして調製した各試料を、 細胞培養用 9 6穴マイクロプレー卜に 1 0 0 1 / ゥエルずつ分注し、 3 7で、 5 %炭酸ガス下で 5日間培養する。
( 4一 4 ) 選別
(4一 4一 1 ) 細胞 E L I S A
ヒ ト . ォキュロスパニン発現細胞の維持培養は、 RPMI 1640 (インピトロジェ ン社製) に 10 牛胎児血清(Moregate Biotech社製)、 20mM HEPES (シグマ社製)、 55 i Μ 2—メルカプトエタノール(インビトロジェン社製) を添加した培地(培 地) にて、 37°C、 5¾!C02 下で行う。 対数増殖期にあるヒ ト · ォキュロスパニン 発現細胞を 2X104cellsZcm2で細胞培養用フラスコへまきこみ、 3 日間培養す る。 このように調製したヒ ト .ォキュロスパニン発現細胞を全て 50mlチューブ へ移し、 HITACHI himac CF8DLで 1000rpm、 5分間遠心分離する (遠心分離条件 1)。 上清を除き、 培地でヒ ト ' ォキュロスパニン発現細胞を懸濁後、 0.4%トリ パンブルー溶液 (シグマ社製) を使用し、 生細胞数を計測する。 培地でヒ ト · ォキュロスパニン発現細胞を生細胞 107cel Is/ml に調製し、 96穴 U底プレート に lOO l/well ずつ分注する。 96 穴 U底プレートを HITACHI himac CF8DL で 15000rpm、 1 分間遠心分離し (遠心分離条件 2)、 上清を 200 1 チップで抜き取 つた。 96穴 U底プレートの側面をたたいてヒ ト · ォキュロスパニン発現細胞を 懸濁後、 氷中で冷やした培地で 10/z g/ml、 5^ g/mK 2.5μ g/ml の濃度に調製し たハイプリ ドーマ培養上清を ΙΟΟμ 1/well ずつ添加する。 15 分毎に 96穴 U底 プレー トをプレートミキサ一 (フジレビォ社製) で攪拌しながら、 4°Cで 1.5 時間反応させる。 反応終了後、 96穴 U底プレートを遠心分離条件 2で遠心分離 し、 上清を 200 i l チップで抜き取る。 PBS (-) (日水製薬社製) に 5%牛胎児血 清を添加した溶液 (PBS-5¾FBS) を 200 1/wellずつ添加し、 プレー トミキサ一 で攪拌後、 遠心分離条件 2で遠心分離し、 上清を 200 μ 1 チップで抜き取る。 以 上の操作をこのあと.2回行う。 96穴 U底プレートの側面をたたいてヒ ト · ォキ ュロスパニン発現細胞を懸濁後、 氷中で冷やした PBS- 5%FBSで 500倍に希釈し たペルォキシダーゼ標識抗ヒ ト IgG 抗体 (Kirkegaard & Perry Laboratories 社製) を 100 1/well ずつ添加し、 15 分毎に 96穴 U底プレートをプレ一トミ キサ一で攪拌しながら、 4°Cで 1.5 時間反応させる。 反応終了後、 96 穴 U底プ レートを遠心分離条件 1 で遠心分離し, 上清を チップで抜き取った。
PBS- 5%FBS を 200 / 1/well ずつ添加し、 プレー トミキサーで攪拌後、 遠心分離 条件 2で遠心分離し、 上清を 200 ^ 1 チップで抜き取る。 以上の操作をこのあと 2回行る。 96穴 U底プレー トの側面をたたいてヒ ト · ォキュロスパニン発現細 胞を懸濁後、 室温にしたペルォキシダ一ゼ用発色基質 (ナカライテスク'社製) を 100 1/wel lずつ添加し、 プレートミキサーで 10分間攪拌する。 遠心分離条 件 2で遠心分離後、 上清 50 1/wel l を 96穴平底プレートへ移し、 プレートリ ーダー ( 1420 ARV0 マルチラベルカウンタ一、 パ一キンエルマ一社製) で 05nm の吸収を測定する。
(4一 4— 2 ) フローサイ トメ一夕一
実施例 3で取得したヒ ト · ォキュロスパニン発現細胞を、 1 0 % F C Sを 含む R PM I 1 6 4 0培地中で、 3 7 °C、 5 %炭酸ガス下で培養し増殖させて から、 1 X 1 07細胞 Zm 1 に調製した細胞懸濁液を、 U字底 9 6穴マイクロプ レート (ヌンク社製) に 5 0 1 Zゥエルずつ分注し、 遠心分離 ( 9 0 X g、 4°C、 1 0分) する。 上清を除去し、 上記 ( 4一 3 ) で培養する融合細胞の培 養上清を 5 0 1 /ゥエル加えて撹拌した後、 氷上で 1時間静置してから、 遠 心分離 ( 9 0 X g、 Ϊ 0分) して上清を除去する。 ペレッ トを 1 0 0
1 /ゥエルのフロ一サイ トメ トリ一用緩衝液 ( 5 % F C S , 0. 0 4 % (w / V ) アジ化ナトリウムを含む P B S ) で 2回洗浄した後、 5 0 0倍希釈し た フ ル ォ レ ツ セ イ ン 一 5 — イ ソ チ オ シ ァ ネ ー ト (Fluorescein- 5- isothiocyanate ; 以下 「F I T C」 という) 標識ャギ抗マウ ス I g G抗体 I g G画分 (オルガノ ン · テク二力社製) 5 0 i 1 を二次抗体と して加え、 氷上で 1時間静置する。 遠心分離 ( 9 0 X g、 1 0分) して 上清を除去してから、 ペレッ トをフローサイ トメ トリ一用緩衝液 1 0 0 ^ 1 / ゥエルで 2回洗浄後、 3. 7 % ホルマリ ン溶液 5 0 1 を添加し、 氷上で 1 0分静置することにより細胞を固定する。 遠心分離 ( 9 0 X g、 4。C、 1 0 分) して上清を除去してから、 再度フローサイ トメ トリ一用緩衝液 1 0 0 1 ./ゥエルで洗浄し、 ペレツ トをフローサイ トメ 1、 リ一用緩衝液 1 0 0 β 1 ウ エルに懸濁したものをフ口一サイ トメ トリ一用試料とする。 各試料中の細胞の F I T C蛍光強度をフ口一サイ 卜メーター (エピックス · エリー ト ; コール夕 一社製) で測定する (励起波長 : 4 8 8 n m、. 検出波長 : 5 3 0 nm)。 その結 果、 融合細胞培養上清を添加しなかったヒ ト · ォキュロスパニン発現細胞 (F I T C蛍光強度約 0. 3 ) より も明らかに高値 (約 1 0 0 — 1 0 0 0 ) の F I T C蛍光強度を示した試料に対応する融合細胞を選別する。
( 4一 5 ) クローニング
上記 ( 4 - 4 ) で選別される細胞群について、 上記 ( 4 - 3 ) から ( 4 - 4 ) の一連の工程を 5回繰り返すことにより、 ヒ ト · ォキュロスパニン発現細胞と 結合するが導入前の細胞と結合しない単一な抗体を産生するハイプリ ドーマを 数クローン得る。
[実施例 5 ] ヒ ト · ォキュロスパニンモノクローナル坊体の精製
実施例 4で作出されるマウス一マウスハイプリ ドーマを、 1 0 % F C Sを 含む AS F培地 1 リ ッ トル中で、 3 7 °C、 5 % 炭酸ガス下で培養し、 I X 1 06細胞 Zm l となるまで増殖させる。培養液を遠心分離 ( 1 0 0 0 r p m、 2分間) し、 上清を捨て、 沈澱した細胞を無血清 A S F培地で 1回洗浄後、 無 血清 A S F培地 1 リ ッ トルに再懸濁し、 3 7 ° (:、 5 % 炭酸ガス下で 4 8時間 培養する。 この培養液を遠心分離 ( 1 0 0 0 r p m、 2分間) し、 上清を回収 して透析チューブ (排除限界分子量 1 2 0 0 0— 1 4 0 0 0 ; ギブコ ' ビーァ 一ルエル社製) に入れ、 1 0倍量の 1 0111 リ ン酸ナトリウム緩衝液 ( p H 8. 0 ) に対して透析する。 この透析チューブ内液からの I g Gの粗精製を、 高速液体ク口マトグラフィ一装置 (F P L Cシステム ; フアルマシア社製) を 用いて以下に記載する条件で行う :
カラム : D EAE—セファロース C L— 6 Bカラム (カラムサイズ 1 0 m 1 ; フアルマシア製) ;
溶媒 : 1 OmM リ ン酸ナトリウム緩衝液 ( p H 8. 0)
流速 : 1 m 1 Z分 ;
溶出 : 1 M 塩化ナト リ ウムの直線濃度勾配 .( 0— 5 0 %、 1 8 0分)。 溶出液を 5 m lずつ分画し、 各分画中の抗ヒ ト .· ォキュロスパニン抗体価を、 ヒ ト · ォキュロスパニン蛋白質を用いた EL I S A法により検定する。 まず、 実施例 3で調製するヒ ト , ォキュロスパニン発現細胞より調製した膜画分溶液 を E L I S A用 9 6穴マイクロプレート中に 1 0 0 1 /ゥェル入れ、 3 7 °C で 1時間保温した後、 この溶液を捨て、 各ゥエルを P B S— T w e e n 1 0 0 1 /ゥエルで 3回洗浄する。 次に 2 % ゥシ血清アルブミ ンを含む P B S 1 0 0 1 /ゥエ を入れて 3 7 °Cで 1時間保温する。 P B S— Tw e e n 1 0 011 1 /ゥエルで 3回洗浄した後に、 各溶出分画 1 0 0 IX 1 を入れて 3 7でで 1時間保温する。 さらに、 P B S—Twe e n 1 0 0 ^ 1 /ゥエルで 3回洗浄した後に、 P B S— Twe e nで 2 0 0 0倍希釈した西洋ヮサビペル ォキシダ一ゼ標識抗マウスィムノグロプリ ン抗体 (アマシャム社製) 1 0 0 1 /ゥエルを添加して 3 7 °Cで 1時間反応させ、 P B S—Twe e n 1 0 0 1 Zゥエルで 3回洗浄する。 次に西洋ヮサビペルォキシダーゼ基質 (バイオ ラッ ド社製) 1 0 0 1 Zゥエルを入れて 5分間静置した後、 マイクロプレー トリ一ダ一で各ゥエルの 4 1 5 n mの吸光度を測定する。 その結果、 吸光度の大きかった分画を集め、 抗体ァフィ二ティ一精製用カラ ム (ハイ トラップ ' プロテイ ン Gカラム、 カラム体積 5 m l ; フアルマシア 社製) 2本に供与する。 カラム内を 2 5 m l ノ力ラムの平衡化緩衝液 ( 2 0 m M リ ン酸ナトリ ウム緩衝液 ( p H 7. 0 )) にて洗浄した後に、 1 5 m 1 ノ力 ラムの溶出緩衝液 ( 0. 1 M グリ シン—塩酸 ( p H 2. 7 )) にて抗体を溶出 する。 それぞれの溶出液は、 1 . 1 2 5 m l の 1 M トリス—塩酸 ( p H 9. 0 ) を入れた試験管内に受け、 溶出終了後ただちに遠心管型限外濾過器 (セン トリプレツプ 1 0 ; グレースジャパン (株) 製) の上部に入れて、 3 0 0 0 X g、 4 °Cで 2時間遠心した。 濾過器下部に回収された濾液を除去後、 上部に 1 5 m l の P B Sを加えて、 再び 3 0 0 0 X g、 4 °Cで 2時間遠心する操作を 5 回繰り返す。 ただし 5回目の遠心は濾過器上部内の液量が 0. 5 m l になるま で行い、 この濾過器上部に残った液を抗ヒ ト · ォキュロスパニン抗体試料とす る。 ,
[実施例 6 ] 細胞傷害活性
生物活性の指標として、 抗体依存性細胞傷害活性を測定する。
ヒ ト · ォキュロスパニン発現細胞 (実施例 3 ) を ト リパンブルー染色法で計 数後、 1 0 %ゥシ胎児血清 (M o r e g a t e社製) を含む R P M I 1 6 4 0 培地 (インビトロジェン社製、 以下 R P M I培地) で 1 X 1 0 6 c e 1 1 s /m l に調製した。 2. 5 ,u 1 の b i s ( a c e t o x ym e t h y l ) 2, 2 : 6 ' , 2 ' — t e r p y r i d i n e — 6 , 6 ' — d i c a r b o x y 1 i c a c i d (B AT D A標識試薬、 パーキンエルマ一社製) を添加 後よく攪拌し、 3 7で、 5 %二酸化炭素存在下 3 0分間、 途中 5分間隔で転倒 混和しながらインキュベートする。 R P M I培地 1 0 m l を添加して攪拌後 1 5 0 0 r p mで 5分間遠心分離し、 この洗浄操作をさらに 2回繰り返す。 この ようにして得られた B A T D A標識ヒ ト · ォキュロスパニン発現細胞を R P M
1 1 6 4 0培地 1 0 m l に再懸濁し、 あらかじめ R P M I 1 6 4 0培地で 1 g/m 1 に調製した精製マウス抗ヒ ト · ォキュロスパニン抗体 もしくは ハ イブリ ドーマ培養上清を添加して 4 °Cに 3 0分間静置した 9 6穴丸底マイク 口プレートに 5 0 1 ( 5 x 1 0 3 c e 1 1 s ) ずつ播種して 4 °Cでさらに 3 0 分間静置する。 陰性コン トロールゥエルには精製マウス抗ヒ ト · ォキュロスパ ニン抗体 もしくは ハイプリ ドーマ上清の代りに R PM I 1 6 4 0培地を 添加する。
ェフエクタ一細胞は以下のように調製する。 あらかじめ 1 0 O n g/m l の マクロファージコロニ一刺激因子 (シグマ社製) 存在下で 3 日間培養した J 7 7 4 A. 1細胞 (大日本製薬) を トリパンブル一染色法で計数後、 R PM I培 地で 1 X 1 06 c e l l s /m 1 に調製する。 先の 9 6穴丸底マイクロプレ —トに 1 0 0 l ( l x l 05 c e l l s ) ずつ播種してプレートを 1 5 0 0 r pmで 5分間遠心し、 3 7°C、 5 %二酸化炭素存在下 4時間インキュベートす る。 陽性コントロールゥエルには、 B AT D A標識ヒ ト ' ォキュロスパニン発 現細胞を完全に殺傷するためェフエクタ一細胞の代りに l %T r i o n X - 1 0 0を添加する。 4時間のインキュベート後、 各ゥエルから 2 0 1 の培養 上清を採取して 9 6穴白色プレートに移し、 ユーロピウム溶液 (パーキンエル マ一社製) 2 0 0 // 1を添加する。 室温で 1 5分間振とう後、 時間分解蛍光を 測定する。
各ゥエルの細胞死誘導率は以下の計算式より算出する。 細胞死誘導率 (%) = (各テス トウエルのカウント—陰性コン トロールゥエルのカウン ト) / (陽性 コントロールゥエルのカウント一陰性コントロ一ルゥエルのカウント) x l O 0
R PM I 1 64 0培地のみのコントロールと比較し、 精製マウス坊ヒ ト ' ォ キュロスパニン抗体若しくはハイプリ ドーマ上清の添加により、 ヒ ト · ォキュ ロスパニン発現細胞への細胞死の誘導が認められる。
[実施例 7 ] 免疫原及び抗体検出系抗原としてのヒ ト · ォキュロスパニン発 現細胞及びその膜画分の調製 '
a ) プラスミ ド pEF-DEST51- NM_031945の構築
p E N T R D i r e c t i o n a l TO P〇 C l o n i n K i t s (インピトロジヱン社製) を添付プロ トコールに従って用い、 実施例 2 a ) によって得られた NM— 0 3 1 9 4 5 c DNAを p E NTRZD— T〇 P O ベクターにクロ一ニングした。 ΝΜ— 0 3 1 94 5 c DNAを、 キッ ト付属 の反応バッファ一中で T o p o i s o m e r a s eを結合させてある p ENT R/D - T O P Oベクターと混合し室温で 3 0分間インキュベートした。 得ら れた反応物を用いて大腸菌 O n e S h o t TO P 1 0 C h e m i c a l 1 y C omp e t e n t E. c o l i (インビトロジヱン社製) を形質転換 し、 5 0 μ gZm 1 のカナマイシンを含む L B寒天培地上で培養した。 その結 果カナマイシン耐性を示して生育してきた大腸菌コロニーを選択して、 1 m 1 の 5 0 ^ g /m 1 のカナ.マイシンを含む液体 T B培地中で 3 7 °Cでー晚培養し, M o n t a g e P I a s m i d M i n i p r e p 9 6 K i t (ミ リポア社 製) を利用することによりプラスミ ド DNAを単離精製した。 得られたプラス ミ ド DNAについて、 B i gD y e T e r m i n a t o r v 3. 0 C y c l e S e q u e n c i n g R e a d y R e a c t i o n K i tをそ の添付プロ トコールに従って用いることにより反応を行つた後、 A B I P R I SM 3 1 0 0 DNA An a l y z e r (アプライ ド · バイオシステム ズ社製) によりヌクレオチド配列解析を行い、 G e n B a n k ァクセッショ ン番号 (A C C E S S I ON NO. N M— 0 3 1 9 4 5 に示されるヌク レ ォチド配列の O p e n R e a d i n g F r ameを有する c DNA (配列表 の配列番号 1 ) が、 p E N T RZD— T O P Oベクタ一に組み込まれているこ とを確認した。
.次に発現用べクタ一 p c DNA 3。 1 /D E S T 4 0 (インビトロジェン社製) へ GATEWAY TMシステムを用いて遺伝子の乗せ替えを行った。 すなわち、 G A T E W A Y™ L R C 1 o n a s e™ E n z ym e M i x (イン ビトロジェン社製) 4 a L R R e a c t i o n B u f f e r 4 1、 p ENTR/D -TO P O-NM_0 3 1 9 4 5 0. 3 t g、 p c D N A 3. 1/D E S T 4 0 0. 3 gを TEバッファ一で 2 0 n 1 に調製し、 2 5 °Cで 1時間反応させる。反応後、 2 β 1の P r o t e i n a s e Kを加え、 3 7 °C にて 1 0分間反応させる。 得られた反応物を用いて大腸菌 0 n e S h o t T O P 1 0 C h em i c a l 1 y C omp e t e n t E . c o l i (イン ビトロジェン社製) を形質転換し、 5 0 gZm 1 のアンピシリ ンを含む L B 寒天培地上で培養した。 その結果アンピシリ ン耐性を示して生育してきた大腸 菌コロニーを選択して、 1 0 0 m l の S O gZm l のアンピシリ ンを含む液 体 B培地中で 3 7 °Cでー晚培養し、 P l a s m i d MA X I K i t (Q I A G E N 社 製 ) を 利 用 す る こ と に よ り プ ラ ス ミ ド D N A (pcDNA3.卜 DEST40-NM— 031945) を単離精製した。
同様に発現用べクタ一 P E F/D E S T 5 1 (インビトロジェン社製) へ G A T EW A YTMシステムを用いて遺伝子の乗せ替えを行った。 すなわち、 GAT E WAY™ L R C l o n a s e™ E n z ym e M i x (インビトロ ジェン社製) 4 1 、 L R R e a c t i o n B u f f e r 4 μ 1 、 ρ Ε N T R/D - T O P O-NM_0 3 1 9 4 5 0. 3 g、 p E F/D E S T 5 I 0. 3 gを T Eバッファ一で 2 0 1 に調製し、 2 5 °Cで 1時間反応さ せる。 反応後、 2 μ 1 の P r o t e i n a s e Kを加え、 3 7 °Cにて 1 0分 間反応させる。 得られた反応物を用いて大腸菌 O n e S h o t T O P I 0 C h e m i c a l 1 y C o m p e t e n t E . c o l i ( ンヒ 卜ロシェ ン社製) を形質転換し、 5 0 gノ m 1 のアンピシリ ンを含む L B寒天培地上 で培養した。 その結果アンピシリ ン耐性を示して生育してきた大腸菌コロニ一 を選択して、 1 0 0 m l の 5 0 i gZm l のアンピシリ ンを含む液体 L B培地 中で 3 7 でー晚培養し、 P l a s m i d MAX I K i t (Q I A G E N 社製) を利用することによりプラスミ ド DNA (pEF-DEST5卜丽— 031945) を単 離精製した。 '
b ) プラスミ ド EF-DEST51- NM_031945の B AL B— 3 T 3細胞及ぴ 2 9 3 T細胞への 1、ランスフエクシヨ ン
B AL B - 3 T 3細胞 (理研 clone A31) を、 1 0 % ゥシ血清 (GIBC0製) (以下 Γ B S J という) を含むダルべッコ変法イーグル培地 (以下 Γ D M E M J という : SIGMA社製) を入れた細胞培養用 150mmDish (培養面積 148c m2; IWAKI 社製) 330 枚中でセミコンフルェントになるまで 3 7 、 5 % 炭酸ガス下で 培養した後、 EF-DEST51- NM— 031945 を B AL B— 3 T 3細胞にトランスフエ クシヨ ンした。 B A L B— 3 T 3細胞への トランスフエクシヨ ンは (株) G e n e T h e r a p y S y s t e m s 製の G e n e p o r t e r T M 2 T r a n s f e e t i o n R e a g e n t を用いてリポフエクシヨ ンにより 行った。 すなわち、 細胞を無血清培地 (DMEM) で一度洗浄したのち、 20m 1 の無血清培地 (DMEM) を加えた。 次に 5 O m l ファルコンチューブ中に e w D A 0 1 1 1 6 11 1; を 0.601 1 と、 上記方法にて回収したプラス ミ ド D N A (pEF-DEST51- ΝΜ_031945) 24 μ gを加え、 混合した。 別の 5 0m l ファルコンチューブ中に無血清培地 (Opti- MEM I;GIBC0 社製) 0.35 m l と、 G e n e p o r t e r™ 2 R e a g e n t 84 1 を加え、 混合した。 D NA溶液と G e n e p o r t e r™ 2溶液を混合し、室温にて 2 0分間放置 した。 その後、 DNA— G e n e p o r t e r™ 2混合液を細胞に加え (1 m 1 /dish) 、 3 7 °C、 5 % C〇 2下で培養した。 3時間後 10% ゥシ血清 を含む DMEM 20m 1 /dishに培地交換して、 3 7 :、 5 % C02下で一晩 培養した。
また、 プラスミ ド p E F— D E S T 5 1— NM— 0 3 1 9 4 5を 2 9 3 T細 胞に以下のように導入した。 2 9 3 T細胞への導入は、 L I P O F E C TAM I N E 2 0 0 0試薬 ( I n v i t o r o g e n社) を用いて行つた。 2 9 3 T 細胞を 2. 5 X 1 05個 Z 9. 2 c m2の密度でまき込み、 3 7 °C、 5 %炭酸ガ ス下で一晩培養した。 5 m 1ポリプロピレン製チューブで、 l O i l の L I P O F E C TAM I N E 2 0 0 0試薬と 2 5 0 1 の O P T I — MEM I R e d u c e d— S e r um M e d i um 、 I n v i t o r o g e n社) を混 合し、 室温で 5分間反応させた。 別の 5 m 1 ポリ プロピレン製チューブで、 4 II gのプラスミ ド p E F— D E S T 5 1— NM— 0 3 1 9 4 5と 2 5 0 n 1 の O P T I -MEM I R e d u c e d - S e r um M e d i umを混合し た。 L I P O F E C TAM I NE溶液と DNA溶液を混合し、 室温で 2 0分間 反応させた。 一晩培養した 2 9 3 T細胞の培養上清を除き、 2 m 1 / 9. 2 c m 2の割合で抗生物質が入っていない 1 0 %ゥシ胎児血清 (M o r e g a t e 社) を含むダルべッコ変法イーグル培地 (G I B C O社) を添加した。 L I P O F E C T AM I N E— D N A混合液を 2 9 3 T細胞へ添加し、 3 7 °C、 5 % 炭酸ガス下で 2 日間晚培養した。
c ) 細胞膜画分の調製 (10L分)
上記の方法にて培養した細胞を P B S (—) 緩衝液 (大日本製薬 (株) 製) で洗浄した。セルスクレーパー(IWAKI社製)を用いて細胞を回収し、 5 mM T r i sノ'ッファ一 p H 7.4230m 1 に懸濁した。 4 °Cにて 3 0分間細胞溶液を 放置した。 D o u n c e T y e B ホモジェナイザー (50ス トローク) にて細胞を破砕した。 1 0 0 0 Gで 1 0分間、 遠心分離機 (KUB0TA製) にて遠 心し、 上清を回収した。
上清を 7 8 0 0 0 G 1 0 0分間、 超遠心分離機(BECKMAN 製)にて遠心し、 沈殿を回収した。沈殿に 57%スクロース in Tr is Bufferを 14mに加え、重層し、 78000G、 16時間、 4°Cでショ糖密度勾配にて遠心し、 上層の膜画分を回収した。 膜画分に 5mM Trisバッファ一 pH7.4 55ml を加え、 78000G、 60分、 4°Cで遠心 し、 沈殿を回収した。 沈殿に 5 mM T r i sノ ッファー p H 7.4 1500 1 を加え、 D o u n c e T y p e B ホモジェナイザ一 ( 1 0ス トローク) にて細胞溶液を均一化した。 発現確認の項で述べたウェス夕ンブロッテイ ング 法により、 細胞膜画分を同定した。
[実施例 8 ] マウスの免疫及び細胞融合
a ) 免疫
実施例 7で得られたヒ ト · ォキュロスパニン遺伝子発現細胞 l X107cell を 5 週令の BAL BZ cマウス雌(日本エスエルシ一より購入)腹腔内に投与した。 2,4, 6, 8週間後、 同様のヒ ト , ォキュロスパニン遗伝子発現細胞 (1 X 107 cell /マウス) を腹腔内に投与し追加免疫した。
b ) 細胞融合
追加免疫 4日後のマウスより脾臓を摘出し、 これを lOmM HE P E S緩衝 液 ( p I-I7.4)、 0.02m g /m 1 炭酸水索ナトリ ウム、 300 μ g/ml L -ダルタミ ン酸を含む無血清 MEM培地 (イーグル MEM培地「ニッスィ」 ( 1 ): 日水製薬 (株) 社製 9.4g/L) (以下 「無血清 MEM培地 J という) 10m l 中に入れ、 21G' の注射 針とピンセッ トを使い脾臓細胞を扱き出した。 この細胞懸濁液を遠心して脾臓 細胞を沈澱させた後、 この脾臓細胞を無血清 MEM培地で 2回洗浄してから、 無 血清 MEM培地に懸濁して細胞数を測定した。
一方、 15% F B S (GIBC0社製)、 306 g/ml グルタミン酸、 0.05mM β - メルカプトエタノールを含むミエローマ増殖培地(以下「ΜΕ培地」という) にて、 3 7 °C、 7% 炭酸ガス存在下で細胞濃度が 1 X 106細胞/ m 1 を越えないよう に培養したミエ口一マ細胞 SP2/0を同様に無血清 MEM培地で洗浄し、無血清 MEM 培地に懸濁して細胞数を測定した。 脾臓細胞の 1/5個相当の SP2/0細胞懸濁液と、 全脾臓細胞懸濁液を混合し、 遠心後、 上清を完全に除去した。 以下の細胞融合の操作は、 ペレッ トの入った プラスチック遠沈管を室温で実施した。 このペレッ トに、 40% (w/ V ) ポ リエチレングリ コ一ル 4000 (Merck 社製) lm l を、 遠心管を振りながらゆつ く り添加した後、 予め 3 7 こ加温しておいた無血清 MEM培地 9m 1 を 3 回に 分けてゆっく り添加した。 遠心後、 上清を除去し、 20% F B Sを含むヒポキ サンチン ' アミノプテリ ン ' チミジン培地 (以下 「 HAT培地」 という ; SIGMA 社製) 2.5X106cells/m 1 になるように、 ピペッ トの先でゆっ く り撹拌しなが ら添加した。 細胞培養用 9 6穴マイクロプレートに 1 0 O n 1 Zゥエルずつ分 注し、 3 7 ° (:、 7%炭酸ガス下で培養した。 1 日後、 HAT培地を全 well に 100/ 1 添加し、 その後も 2、 3 日毎に交換した。 このようにして得られた融合細胞 を、 以下に記載する限界希釈法によるスクリ一二ングに供した。
c ) 限界希釈
上記 b ) で得られた融合細胞を含む培養液を、 HT培地 (2nd cloning以降は HY 培地) で細胞の密度が lcel 1/wel 1 ( lOcel Is/ml) , 5 eel ls/ el 1 (50cel ls/ml) となるように段階希釈した。 こう して調整した各試料をあらかじめ 100/LL 1 の HY培地を各 well に分注しておいた 96weU プレートに、 100 1/wel 1ずつ分注 し、 37 、 7%炭酸ガス下で 10 日間培養した。
d) 選別
d - 1 ) E L I S A
実施例 7で取得した細胞膜画分を 1 g/ml で 50μ 1/well ずつ 96穴 EIAプレ —ト(C0STAR社製)へ分注した。 1 日間 4度で放置後、 プレート内の枋原液をよ く振り捨て、 PBS (-)に 1%BSAを添加した溶液を 80 1/wel 1 添加し、 プレート シールをし、 使用時まで 4°Cで保存した。 使用時に室温に戻し、 0.1% Tween20 入り PBSCPBS- T)を通した Serawasher (Bio- Tec社製)でプレートを 3回洗浄した。 一次抗体として細胞融合後 10- 12 日経過した細胞培養上清 50 1 を加え、 室温 で一時間静置した。一次抗体反応終了後、 PBS-Tで 3回洗浄し、 PBS- T に 0.5¾BSA を添加した溶液 (抗体希釈液) で 5000倍に希釈したアル力リホスファターゼ標 識抗マウス IgG抗体 (BIO SOURCE社製) を 50 1 /we 11 ずつ添加し、 室温で一 時間静置した。 二次抗体反応終了後、 室温に戻したアルカリホスファタ一ゼ用 発色基質 P-二ト口フエニル.リン酸 2Na6H20(pNP?、和光純薬工業社製) を lmg/ml 濃度で pNPPBuifer ( 97ml/l ジエタノールァミン、 0. lg/1 MgCl2 - 6H20 PH9.8) に溶解し、 100 l/well 加えた。 プレートリーダ一 (ナルジェンクイ; >ターナ ショナル社製) で 405nm、 630nmの吸光度を測定した。
d - 2 ) フローサイ トメーター
実施例 7で取得した HEK293培養細胞を、 1 0 % F B Sを含む DMEM培地中 で、 3.7 ° (:、 5 %炭酸ガス下で培養し増殖させ、 トランスフエクシヨ ン後 24 時間培養してから、 2X107 細胞 1 に調製した細胞懸濁液を、 字底 9 6 穴マイクロプレート (Corning社製) に 50 μ 1 ノウエルずつ分注し、 遠心分離
( 1000 X g、 20°C、 5 分) した。 上清を除去し、 上記 c ) で垴養する融合細 胞の培'養上清を 50 1 /ゥエル加えて撹拌した後、 氷上で 0.75 時間静置して から、 遠心分離 ( 1000 X g、 20で、 5分) して上清を除去した。 ペレッ トを 150/Z
1 Zゥエルのフローサイ トメ トリ一用緩衝液 ( 5 % F B Sを含む MEM) で 2 回洗浄した後、 33 倍希釈したフルォレツセイ ン一 5 —イ ソチオシァネー ト
(Fluorescein- 5- isothiocyanate ; 以下 「F I T C」 という) 標識ゥサギ抗マ ウス I g G抗体 I g G画分(和光純薬工業社製) 100 1 を二次抗体として加え、 氷上で 0.75時間静置した。 遠心分離 ( 1000 X g、 20°C、 5分) して上清を除去 してから、 ペレッ トをフローサイ トメ トリ一用緩衝液 150 1 /ゥエルで 2 回 洗浄し、 ペレッ トをフ口一サイ トメ トリー用緩衝液 500 1 /'ゥエルに懸濁し たものをフローサイ トメ トリ一用試料とした。 各試料中の細胞の F I T C蛍光 強度をフローサイ トメ一夕一 (FC500 ; BECKMAN社製) で測定した (励起波長 : 4 8 8 nm、 検出波長: 5 3 0 nm)。 その結果、 融合細胞培養上清を添加しな かつた HEK293 transient発現細胞よりも高値の F I T C蛍光強度を示した試料 に対応する融合細胞を選別した。
e ) クロ一ニング
上記 d) で選別される細胞群について、 上記 c ) から d ) の一連の工程を 2 回繰り返すことにより、 HEK293 transient発現細胞と結合するが抗ヒ ト · ォキ ュロスパニン発現プラスミ ド導入前の細胞と結合しない単一な抗体を産生する ハイプリ ドーマを数クローン得た。 このようにしてクローニングされたハイブ リ ド一マ株のひとつは、 0 3 B 8 — 2 C 9 — 4 F 3 と命名され、 独立行政法人 産.業技術総合研究所特許生物寄託センタ一に 2 0 0 4年 2月 1 7 日付けで、 寄 託番号 F E RM B P— 0 8 6 2 7 として寄託されている。
[実施例 9 ] 抗ヒ ト · ォキュロスパニンモノク口一ナル抗体の精製
実施例 8で作製されたマウス一マウスハイプリ ド一マを、 lX106cells/mI と なるよう HY培地に懸濁し、 37°C、 1% C02下で 3 日間静置した。 こう して得ら れた培養液を遠心分離 ( 1600rpm、 5min) し、 上清を回収して IgGの粗精製を以 下の条件で行つた。
結合バッファー : PH7.0 (20mM Na2HP04 - 12H20, 20mM Na2HP04 - 2H20) 溶出バッファ一 : pH3.0 lOOmM グリ シン- HC1
中和パッファー : ρΗ9· 0 1M Tris-HCl
ProteinG担体(Amersiam Biosciences社製を必要量分取し、エタノール除去後、 超純水で 1回 wash、結合パッファ一で 1 回 wash後、結合パッファーを加えて、 50%ゲルスラリーとした。ハイプリ ドーマ上清に ProteinGゲルスラリ一を加え, 一昼夜 4°Cで rotate後、 結合バッファ一で 3回洗浄した。 洗浄後、 溶出バッフ ァーを加え、 抗体を溶出させた。 溶出液は溶出バッファーの 1/10量の中和バッ ファーを入れたチューブ内に受けた。 溶出液はサンプルチューブ型限外濾過器 (amicon Ultrafree- MC:Millipore社製の上部に入れて、 5000 Xg、 4°C、 20分 間で遠心し、 瀘過器下部に回収されたろ液を除去しつつ、 濾過器上部の液量が 50 1 を下回らないよう溶出液を添加した。 溶出液を全て添加した後、 PBS (-) を溶出液の 3倍分の volume を加え、 Buffer交換し、 この濾過器上部に残った 液を抗抗ヒ ト · ォキュロスパニン抗体試料とした。
[実施例 1 0 ] 細胞傷害活性
生物活性の指標として、 抗体依存性細胞傷害活性を測定した。 実施例 7で作 製されたヒ ト · ォキュロスパニン発現細胞を トリパンブル一染色法で計数後、 1 0 %ゥシ胎児血清 (M o r e g a t e社製) を含む R P M I 1 6 4 0培地 ( インビトロジェン社製、 以下 R P M I培地) で 8 X 1 0 5 c e 1 1 s / 0. 4 m l に調製した。 C h r o m i u m— 5 1 (クロム酸ナトリウム、 アマシャ ムバイオサイエンス社製) 4 0 1 を添加後、 3 7 °C、 5 %二酸化炭素存在下 、 2時間インキュベートした。 R P M I培地 8 m 1 を添加して攪拌後 1 5 0 0 r p mで 5分間遠心分離し、 この洗浄操作をさらに 2回繰り返した。 このよう にして得られた C h r o m i u m - 5 1標識ヒ ト · ォキュロスパニン発現細胞 を R P M I培地 4 m 1 に再懸濁し、 あらかじめ R P M I培地で 5 μ. g /m 1 に 調製した精製マウス钪ヒ ト'ォキュロスパニン抗体 5 0 1を添加した 9 6穴丸 底マイクロプレートに 5 0 1 ( 1 X 1 0 4 c e 1 1 s ) ずつ播種して 4でで 3 0分間静置した。 陰性コントロールゥエル もしくは バックグラウンド測 定用ゥエルには精製マウス抗ヒ 卜 · ォキュロスパニン抗体の代りに R P M I培 地を添加した。 '
ェフエクタ一細胞は以下のように調製した。 すなわち B A L B / c — n u / n uマウス (メス · 7週齢) より定法に従って脾臓細胞を採取し、 トリパンブ ル一染色法で計数後 R P M I培地で 1 . 5 X 1 0 7 c e l l s / 1 に調製 した。 先の 9 6穴丸底マイクロプレー トに 1 0 Ο μ ΐ ( 1. 5 X 1 0 6 e e l 1 s ) ずつ播種してプレートを 1 5 0 0 r p mで 5分間遠心し、 3 7 °C、 5 % 二酸化炭素存在下 4時間ィンキュベ一トした。 陽性コントロールゥエルには、 C h r o m i u m— 5 1標識ヒ ト · ォキュロスパニン発現細胞を完全に殺傷す るためエフェクター細胞の代り に 2 % T r i o n X— 1 0 0 を添加した。 バッ クグラウンド測定用ゥエルにはエフェクター細胞の代りに R P M I培地を添 加した。 4時間のインキュベート後、 各ゥエルから 5 0 1の培養上清を採取 して 9 6穴ルーマプレート (パーキンエルマ一社製) に移した。 5 0 °Cで一晩 乾燥させ、 各ゥエルの C h r o m i u m— 5 1量をマイクロプレートシンチレ —シヨ ンカウンタ一 (T o p C o u n t N T X、 パーキンエルマ一社製) で 測定した。
各ゥエルの細胞死誘導率は以下の計算式より算出した。 細胞死誘導率 {%) = (各テス トウエルのカウント一バックグラウンド測定用ゥエルのカウント) / (陽性コントロールゥエルのカウント一バックグラウンド測定用ゥエルの力 ゥン卜) X 1 0 0
陰性コン トロ一ルと比較し、 精製マウス抗ヒ ト · ォキュロスパニン抗体の添 加により、 ヒ ト ·ォキュロスパニン発現細胞への細胞死の誘導が認められた(図
5 ) „ 産業上の利用の可能性
本発明により、 ヒ ト · ォキュロスパニンがメラノ一マで発現量が顕著に増 加していることが見出され、 該遗伝子を用いた癌.の検出方法、 癌の検出用キッ トが提供され、 更に、 ォキュロスパニンに対する細胞傷害活性を有する坊体、 該抗体を含む癌治療用医薬組成物が提供された。 配列表フリーテキス 卜
配列番号 5 : ヒ ト · ォキュロスパニン増幅用 P C Rセンスプライマ一

Claims

請 求 の 範 囲
I . ヒ ト · ォキュロスパニンと特異的に結合し、 該蛋白質を発現している細 胞に対し細胞障害活性を持つ抗体。
2. 配列表の配列番号 2 に示されるアミノ酸配列からなる蛋白質及び Z又は 配列表の E列番号 4に示されるアミノ酸配列からなる蛋白質と特異的に結合し, 該蛋白質を発現している細胞に対し細胞傷害活性を持つ抗体。
3. 細胞傷害活性が抗体依存性細胞傷害活性であることを特徴とする、 請求 項 1又は 2 に記載の抗体。
4. 細胞傷害活性が補体依存性細胞傷害活性であることを特徴とする、 請求 項 1又は 2 に記載の抗体。
5. 細胞傷害活性が補体依存性細胞性細胞傷害活性であることを特徴とする、 請求項 1又は 2 に記載の抗体。
6. 細胞傷害活性がアポ卜一シス誘導であることを特徴とする、 請求項 1又 は 2 に記載の抗体。
7. モノクローナル抗体であることを特徴とする、 請求項 1乃至 6のいずれ か一つに記載の抗体。
8. マウス八イブリ ドーマ 0 3 B 8 — 2 C 9 — 4 F 3 (F E RM B P— 0
8 6 2 7 ) から産生されることを特徴とする、 請求項 7 に記載の抗体。
9. ヒ 卜化されていることを特徴とする、 請求項 1乃至 8のいずれか一つに 記載の抗体。
1 0. 完全ヒ 卜抗体であることを特徴とする、 請求項 1乃至 7 のいずれか一 つに記載の抗体。
I I . I g G抗体であることを特徴とする、 請求項 1乃至 1 0のいずれか一 つに記載の抗体。
1 2. 下記の工程 1 ) 乃至 4 ) を含む、 癌の検出方法 :
1 ) 被験者より採取した検体より、 全 RN A画分を抽出する工程 ;
2 ) 正常人より採取した検体より、 全 R N A画分を抽出する工程 ;
3 ) 上記工程 1 ) 由来の全 RN A画分と上記工程 2 ) 由来の全 R NA画分にお ける、 下記の a) 又は b) のいずれか一つに記載のポリヌクレオチドの発現量 を測定する工程 ;
a ) 配列表の配列番号 1 に示されるヌク レオチド配列を含むことからなるポリ ヌクレオチド、
b ) 上記 a ) に記載のポリヌクレオチドと相補的なヌクレオチド配列からなる ポリヌクレオチドとス トリ ンジ'ェントな条件下で八イブリダイズするポリヌク レオチド ;
4 ) 上記工程 1 ) 由来の全 R N A画分と上記工程 2 ) 由来の全 R N A画分との 間における上記工程 3 ) によって測定されたポリヌクレオチドの発現量の差を 解析し、 上記工程 1 ) に記載の被験者の癌を検出する工程。
1 3 . 下記の工程 1 ) 乃至 3 ) を含む、 癌の検出方法 :
1 ) 被験者より採取した検体における、 配列表の配列番号 2に示されるアミノ酸 配列からなる蛋白質及び/又は配列番号 4に示されるアミノ酸配列から成る蛋 白質の発現量を測定する工程 ;
2 ) 正常人から採取した検体における、 上記工程 1 ) に記載の蛋白質の少なく と もいずれか一つの発現量を測定する工程 ;
3 ) 上記工程 1 ) で検出された蛋白質の発現量と上記工程 2 ) で測定された該蛋 白質の発現量の差を解析し、 被験者の癌を検出する工程。
1 4 . 癌が皮膚癌であることを特徴とする、 請求項 1 2又は 1 3に記載の方法
1 5 . 癌がメラノーマであることを特徴とする、 請求項 1 2又は 1 3に記載の 方法。
1 6 . ポリヌクレオチドの発現 Sを測定する方法が、 ノーザンプロッ ト法、 ドッ トブロッ ト法、 スロッ トプロッ ト法、 R T — P C R、 リポヌクレア一ゼ保 護アツセィ又はランオン · アツセィであることを特徴とする、 請求項 1 2 、 1 4及び 1 5のいずれか一つに記載の方法。
1 7 . ポリヌクレオチドの発現量を測定する方法が検体由来の相補的 D N A 群又は該 D N A群の各 D N Aの部分配列からなる D N Aで作製された遺伝子チ ップ又はァレイを用いることを特徴とする、 請求項 1 2 、 1 4及び 1 5のいず れか一つに記載の方法。
1 8 . 蛋白質の発現量の測定方法が、 該蛋白質に特異的に結合する抗体又はリ ガンドを用いることを特徴とする、請求項 1 3乃至 1 5のいずれか一つに記載の 方法。
1 9 . 蛋白質の発現量の測定方法が、 ウェスタンプロッ ト法、 ドッ トプロッ ト 法、 スロッ トブロッ ト法又は崮相酵素免疫定量法 (E L I S A法) であることを 特徴とする、 請求項 1 3乃至 1 5のいずれか一つに記載の方法。
2 0 . 下記の 1 ) 乃至 3 ) ·からなる群から選択される少なく とも一つ以上を含 む癌の検出用キッ ト :
1 ) 配列表の配列番号 1 に示されるヌクレオチド配列からなるポリヌクレオチ ドを特異的に増幅するための 1 5乃至 3 0塩基長の連続したオリ ゴヌクレオチ ドプライマ一 ;
2 ) 配列表の配列番号 1 に示されるヌ.クレオチド配列からなるポリヌクレオチ ドにス トリ ンジェン卜な条件下でハイブリダイズし、 該ポリヌクレオチドを検 出するための 1 5ヌクレオチド以上の連続したポリヌク レオチドプローブ ; 3 ) 配列表の配列番号 1 に示されるヌクレオチド配列からなるボリヌク レオチ ドが固定された固相化試料。
2 1 . 下記の 1 ) 及び 2 ) の少なく とも一つを含む癌の検出用キッ 卜 :
1 ) 配列表の配列番号 2 に示されるアミノ酸配列からなる蛋白質及び/又は配 列表の配列番号 4に示されるアミノ酸配列からなる蛋白質に特異的に結合し、 該蛋白質を検出するための抗体 ;
2 ) 上記 1 ) に記載の抗体に結合し得る二次抗体。
2 2 . 癌が皮膚癌であることを特徵とする、 請求項 2 0又は 2 1 に記載のキ ッ 卜。
2 3 . 癌がメラノ一マであることを特徴とする、 請求項 2 0又は 2 1 に記載 のキッ ト。
2 4 . 請求項 1乃至 1 1 に記載の抗体の少なく ともいずれか一つを含有する ことを特徴とする、 癌の治療用医薬組成物。
2 5 . 配列表の配列番号 1 に示されるヌクレオチド配列又は該配列の部分配列 に相補的なヌクレオチド配列を有するオリ ゴヌクレオチドを含む癌の治療用医, 薬組成物。
2 6 . 癌が皮膚癌であることを特徴とする、 請求項 2 4又は 2 5のいずれか 一つに記載の医薬組成物。 ' 2 7 . 癌がメラノ一マであることを特徴とする、 請求項 2 4又は 2 5のいず れか一つに記載の医薬組成物。
PCT/JP2004/003048 2003-03-10 2004-03-09 癌特異的抗原を標的とした抗体 WO2004081050A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
DK04718767T DK1602669T3 (da) 2003-03-10 2004-03-09 Antistof mod et tumor-specifikt antigen som target
DE602004021567T DE602004021567D1 (de) 2003-03-10 2004-03-09 Antikörper gegen tumorspezifisches antigen als ziel
EP04718767A EP1602669B1 (en) 2003-03-10 2004-03-09 Antibody against a tumor-specific antigen as target
NZ542220A NZ542220A (en) 2003-03-10 2004-03-09 Antibody against the tumor specific antigen oculospanin
BRPI0408238-9A BRPI0408238A (pt) 2003-03-10 2004-03-09 anticorpo, método de detectar cáncer, conjunto para detecção de cáncer, e, composição farmacêutica para tratar cáncer
AU2004220182A AU2004220182B2 (en) 2003-03-10 2004-03-09 Antibody against tumor specific antigen as target
CA002518787A CA2518787A1 (en) 2003-03-10 2004-03-09 Antibody against tumor specific antigen as target
AT04718767T ATE434044T1 (de) 2003-03-10 2004-03-09 Antikörper gegen tumorspezifisches antigen als ziel
US10/548,688 US7855056B2 (en) 2003-03-10 2004-03-09 Antibody against tumor specific antigen as target
MXPA05009715A MXPA05009715A (es) 2003-03-10 2004-03-09 Anticuerpo contra antigeno especifico de tumor como objetivo.
US11/223,812 US7361340B2 (en) 2003-03-10 2005-09-09 Antibody against tumor specific antigen as target
NO20054631A NO20054631L (no) 2003-03-10 2005-10-07 Antistoff mot tumorspesifikt antigen som mal
HK06100346.5A HK1078593A1 (en) 2003-03-10 2006-01-09 Antibody against a tumor-specific antigen as target
US11/345,651 US20070025996A1 (en) 2003-03-10 2006-01-31 Oculospanin as a tumor specific antigen and methods and compositions utilizing same
US11/872,479 US7741447B2 (en) 2003-03-10 2007-10-15 Antibody against tumor specific antigen as target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003063648 2003-03-10
JP2003-063648 2003-03-10

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/548,688 A-371-Of-International US7855056B2 (en) 2003-03-10 2004-03-09 Antibody against tumor specific antigen as target
US11/223,812 Continuation US7361340B2 (en) 2003-03-10 2005-09-09 Antibody against tumor specific antigen as target
US11/345,651 Continuation-In-Part US20070025996A1 (en) 2003-03-10 2006-01-31 Oculospanin as a tumor specific antigen and methods and compositions utilizing same

Publications (1)

Publication Number Publication Date
WO2004081050A1 true WO2004081050A1 (ja) 2004-09-23

Family

ID=32984436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003048 WO2004081050A1 (ja) 2003-03-10 2004-03-09 癌特異的抗原を標的とした抗体

Country Status (20)

Country Link
US (4) US7855056B2 (ja)
EP (1) EP1602669B1 (ja)
JP (1) JP4462964B2 (ja)
KR (1) KR20050116374A (ja)
CN (2) CN1784426A (ja)
AT (1) ATE434044T1 (ja)
AU (1) AU2004220182B2 (ja)
BR (1) BRPI0408238A (ja)
CA (1) CA2518787A1 (ja)
DE (1) DE602004021567D1 (ja)
DK (1) DK1602669T3 (ja)
ES (1) ES2327408T3 (ja)
HK (1) HK1078593A1 (ja)
MX (1) MXPA05009715A (ja)
NO (1) NO20054631L (ja)
NZ (1) NZ542220A (ja)
RU (1) RU2345090C2 (ja)
TW (1) TW200508249A (ja)
WO (1) WO2004081050A1 (ja)
ZA (1) ZA200507298B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2530393A1 (en) * 2003-07-02 2005-01-13 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US20110195857A1 (en) * 2010-02-10 2011-08-11 Selinfreund Richard H Systems for analyzing stabilized biomarkers
WO2012060558A2 (ko) 2010-11-05 2012-05-10 주식회사 엘지화학 안전성이 향상된 이차전지
EP2589609A1 (en) * 2011-11-03 2013-05-08 Pierre Fabre Medicament Antigen binding protein and its use as addressing product for the treatment of cancer
US20140224373A1 (en) * 2013-02-12 2014-08-14 MPS Enterprises, Inc. Lay-flat hose for oilfield hydraulic fracturing operations
ES2821964T3 (es) * 2014-10-10 2021-04-28 Innate Pharma Bloqueo de CD73
KR102665199B1 (ko) * 2018-11-15 2024-05-14 삼성디스플레이 주식회사 레이저 장치 및 이를 이용한 기판 식각 방법
WO2021072139A1 (en) * 2019-10-11 2021-04-15 Massachusetts Institute Of Technology Formulations for gastrointestinal delivery of oligonucleotides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191692A (ja) * 1994-08-04 1996-07-30 Bristol Myers Squibb Co ヒトガンに有効な新規なbr96抗体異性体
WO2001009187A2 (en) * 1999-07-29 2001-02-08 Medarex, Inc. Human monoclonal antibodies to her2/neu
WO2003025138A2 (en) * 2001-09-17 2003-03-27 Protein Design Labs, Inc. Methods of diagnosis of cancer compositions and methods of screening for modulators of cancer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331573A (en) * 1990-12-14 1994-07-19 Balaji Vitukudi N Method of design of compounds that mimic conformational features of selected peptides
US5728821A (en) * 1994-08-04 1998-03-17 Bristol-Myers Squibb Company Mutant BR96 antibodies reactive with human carcinomas
US6384065B1 (en) 1998-05-08 2002-05-07 Toyama Chemical Co., Ltd. Spiro compounds or salts thereof and preventives/remedies for autoimmune diseases and AP-1 inhibitors containing the same
US7442776B2 (en) * 1999-10-08 2008-10-28 Young David S F Cancerous disease modifying antibodies
US20020172986A1 (en) * 2000-08-21 2002-11-21 Leiby Kevin R. 23228, a novel human tetraspanin family member and uses thereof
US7361343B2 (en) * 2003-01-21 2008-04-22 Arius Research Inc. Cytotoxicity mediation of cells evidencing surface expression of CD63
US20030124579A1 (en) * 2001-09-05 2003-07-03 Eos Biotechnology, Inc. Methods of diagnosis of ovarian cancer, compositions and methods of screening for modulators of ovarian cancer
US20070042360A1 (en) * 2001-09-17 2007-02-22 Eos Biotechnology, Inc. Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
EP1571968A4 (en) 2002-04-16 2007-10-17 Genentech Inc COMPOSITIONS AND METHODS FOR DIAGNOSIS AND TREATMENT OF TUMORS
US7361342B2 (en) * 2003-01-21 2008-04-22 Arius Research Inc. Cancerous disease modifying antibodies
US7393531B2 (en) * 2003-01-21 2008-07-01 Arius Research Inc. Cytotoxicity mediation of cells evidencing surface expression of MCSP
CA2530393A1 (en) * 2003-07-02 2005-01-13 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191692A (ja) * 1994-08-04 1996-07-30 Bristol Myers Squibb Co ヒトガンに有効な新規なbr96抗体異性体
WO2001009187A2 (en) * 1999-07-29 2001-02-08 Medarex, Inc. Human monoclonal antibodies to her2/neu
WO2003025138A2 (en) * 2001-09-17 2003-03-27 Protein Design Labs, Inc. Methods of diagnosis of cancer compositions and methods of screening for modulators of cancer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AZORSA D.O. ET AL: "A general approach to the generation of monoclonal antibodies against members of the tetraspanin superfamily using recombinant GST fusion proteins", J. IMMUNOL. METHODS, vol. 229, no. 1-2, 1999, pages 35 - 48, XP002194216 *
LONGO N. ET AL: "Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells", BLOOD, vol. 98, no. 13, 2001, pages 3717 - 3726, XP002290253 *
MAMMALIAN GENE COLLECTION PROGRAM TEAM: "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences", PNAS USA, vol. 99, no. 26, 2002, pages 16899 - 16903, XP002964739 *
WISTOW G. ET AL: "Expressed sequence tag analysis of human RPE/choroid for the NEIBank Project: Over 6000 non-redundant transcripts, novel genes and splice variants", MOL. VIS., vol. 8, 2002, pages 205 - 220, XP002979786 *

Also Published As

Publication number Publication date
EP1602669B1 (en) 2009-06-17
CN1784426A (zh) 2006-06-07
US20080146785A1 (en) 2008-06-19
EP1602669A4 (en) 2006-08-09
US20070166312A1 (en) 2007-07-19
CA2518787A1 (en) 2004-09-23
RU2005128277A (ru) 2006-06-10
BRPI0408238A (pt) 2006-03-01
CN102151334A (zh) 2011-08-17
KR20050116374A (ko) 2005-12-12
US7361340B2 (en) 2008-04-22
HK1078593A1 (en) 2006-03-17
NZ542220A (en) 2008-04-30
US20060127405A1 (en) 2006-06-15
AU2004220182A1 (en) 2004-09-23
DE602004021567D1 (de) 2009-07-30
TW200508249A (en) 2005-03-01
DK1602669T3 (da) 2009-09-14
EP1602669A1 (en) 2005-12-07
ES2327408T3 (es) 2009-10-29
MXPA05009715A (es) 2005-10-18
US7741447B2 (en) 2010-06-22
NO20054631D0 (no) 2005-10-07
ZA200507298B (en) 2006-06-28
AU2004220182B2 (en) 2007-12-06
JP4462964B2 (ja) 2010-05-12
JP2004290187A (ja) 2004-10-21
ATE434044T1 (de) 2009-07-15
US7855056B2 (en) 2010-12-21
US20070025996A1 (en) 2007-02-01
RU2345090C2 (ru) 2009-01-27
NO20054631L (no) 2005-12-09

Similar Documents

Publication Publication Date Title
JP6440759B2 (ja) 破骨細胞関連蛋白質Siglec−15を標的とした抗体
JP5078104B2 (ja) 破骨細胞関連タンパク質を標的とした抗体
TWI443109B (zh) 抗epha2抗體
KR20130038278A (ko) in vivo 에서 항종양 활성을 갖는 항인간 TROP-2 항체
US7741447B2 (en) Antibody against tumor specific antigen as target
KR20100023869A (ko) 페리오스틴의 Exon-17 부위에 의해 코드되는 펩티드에 대한 항체를 함유하는 암 치료제
WO2016171107A1 (ja) Fgfr2の検出
TW201023893A (en) Antibodies recognizing oxygen-regulated protein 150 expressed on cancer cells and methods of using same
JP4633491B2 (ja) 破骨細胞関連タンパク質を標的とした抗体
KR20140144934A (ko) Cthrc1의 발현 및 활성 억제제를 유효성분으로 포함하는 췌장암 치료 및 전이억제용 조성물
WO2022075482A1 (ja) がん治療用医薬
TW200914044A (en) Anti human Sulf1 antibody
JP2004267118A (ja) 癌遺伝子及びその用途

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1-2005-501632

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 170641

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 542220

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2004718767

Country of ref document: EP

Ref document number: 2005/07298

Country of ref document: ZA

Ref document number: 2518787

Country of ref document: CA

Ref document number: 05091402

Country of ref document: CO

Ref document number: 1020057016909

Country of ref document: KR

Ref document number: 2005128277

Country of ref document: RU

Ref document number: 11223812

Country of ref document: US

Ref document number: 200507298

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/009715

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 01835/KOLNP/2005

Country of ref document: IN

Ref document number: 1835/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004220182

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1200501478

Country of ref document: VN

ENP Entry into the national phase

Ref document number: 2004220182

Country of ref document: AU

Date of ref document: 20040309

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004220182

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20048126663

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004718767

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057016909

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0408238

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 11223812

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007166312

Country of ref document: US

Ref document number: 10548688

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10548688

Country of ref document: US