Nothing Special   »   [go: up one dir, main page]

WO2003064358A1 - Procede permettant de produire un derive de fluorene - Google Patents

Procede permettant de produire un derive de fluorene Download PDF

Info

Publication number
WO2003064358A1
WO2003064358A1 PCT/JP2002/000634 JP0200634W WO03064358A1 WO 2003064358 A1 WO2003064358 A1 WO 2003064358A1 JP 0200634 W JP0200634 W JP 0200634W WO 03064358 A1 WO03064358 A1 WO 03064358A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorene
thiols
fluorenone
fluorene derivative
weight
Prior art date
Application number
PCT/JP2002/000634
Other languages
English (en)
French (fr)
Inventor
Hiroaki Murase
Mitsuaki Yamada
Yasuhiro Suda
Kazuyuki Ogata
Original Assignee
Osaka Gas Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000231111A priority Critical patent/JP3490960B2/ja
Application filed by Osaka Gas Company Limited filed Critical Osaka Gas Company Limited
Priority to CZ2004-812A priority patent/CZ305728B6/cs
Priority to PCT/JP2002/000634 priority patent/WO2003064358A1/ja
Priority to EP02710363.9A priority patent/EP1471045B1/en
Priority to KR1020047011636A priority patent/KR100846041B1/ko
Priority to CNB028277023A priority patent/CN1271025C/zh
Priority to US10/501,890 priority patent/US20070100170A1/en
Publication of WO2003064358A1 publication Critical patent/WO2003064358A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention relates to a method for producing a fluorene derivative useful as a raw material for optical lenses, films, optical fibers, optical disks, heat-resistant resins and engineering plastics.
  • Optical lenses such as Drump lenses, CDs, CD-ROM pick-up lenses, Fresnel lenses, f f lenses for laser printers, power lenses, projection lenses for rear projection televisions, films such as retardation films and diffusion films, plastics It is expected as a raw material for optical fibers and optical disc substrates.
  • this reaction is a dehydration reaction, it can be handled as an acid catalyst.
  • the handling of hydrogen chloride gas is subject to various laws and regulations, such as the Fire Service Law, the High Pressure Gas Control Law, the Poisonous Substances Control Law, and the Air Pollution Control Law, and there are sufficient safety measures for the installation, handling, and storage of equipment.
  • environmental measures are needed.
  • concentrated sulfuric acid is used as the acid catalyst, the reaction proceeds due to the dehydration ability of concentrated sulfuric acid despite the presence of water.
  • a large amount of sulfuric acid waste liquid is discharged, and waste liquid treatment requires a great deal of labor.
  • a fluorene derivative obtained by a production method using hydrogen chloride gas or concentrated sulfuric acid as a catalyst generally contains an impurity such as a sulfonate and is colored yellow. Therefore, in order to use the fluorene derivative obtained by the above-mentioned production method as a raw material for the above-mentioned poly-carbonate-based resin or polyester-based resin which requires high transparency, it is necessary to highly and strictly refine the fluorene derivative. . For this reason, various purification methods have been studied (Japanese Patent Laid-Open Publication No. Hei 6-321838). However, such refining uses a lot of solvent and requires a long manufacturing process, which is a factor in cost reduction of manufacturing costs.
  • an object of the present invention is to provide a method for safely and easily producing a fluorene derivative in high yield without using hydrogen chloride gas which is difficult to handle.
  • Another object of the present invention is to provide a method for producing a high-purity fluorene derivative excellent in transparency simply and inexpensively without performing complicated purification. Disclosure of the invention
  • a fluorene derivative represented by the formula (II) is produced by subjecting a fluorenone and a phenol represented by the formula (I) to a condensation reaction in the presence of thiols and aqueous hydrochloric acid. .
  • R represents an alkyl group, an alkoxy group, an aryl group or a cycloalkyl group.
  • N represents an integer of 0 to 4.
  • the said phenols, 2 - and the like CI_ 4 alkylphenols are used as the thiols.
  • mercaptocarboxylic acid particularly, 3-mercaptopropionic acid
  • the amount of thiols used is larger than the so-called catalyst amount.
  • an extractant may be added to the reaction mixture to distribute the target compound to the organic layer, and a crystallization solvent may be added to the organic layer to crystallize the target compound.
  • the conventional production method The degree of yellowing or coloring of the fluorene derivative can be reduced remarkably.
  • BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a fluorene derivative of the present invention, fluorenone and phenols are subjected to a condensation reaction in the presence of thiols and aqueous hydrochloric acid.
  • R represents an alkyl group, a cycloalkyl group, an alkoxy group, or an aryl group
  • n is an integer of 0 to 4 (preferably 0 to 3, more preferably 0 to 3). ⁇ 2, especially 0 or 1).
  • the type of the substituent R may be different depending on n indicating the number of the substituents.
  • alkyl group examples include a methyl group, Echiru group, a propyl group, isopropoxy port propyl group, n- butyl group, iso- butyl group, s - butyl groups, is C i_ 4 alkyl groups such as t one Petit Le group can be exemplified.
  • cycloalkyl group a cyclopentyl group, (preferably C 5 - 6 consequent opening alkyl) C 4 _ 8 cycloalkyl group such as cyclohexyl group can be exemplified.
  • alkoxy group examples include 4- alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an iso-butoxy group and a tert-butoxy group.
  • aryl groups include Ci- 4 alkylphenyl groups such as phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,6-dimethylphenyl, and 3,5-dimethylphenyl. Examples include a naphthyl group.
  • the R an alkyl group (e.g., C i_ 4 alkyl group, particularly methyl group), a cycloalkyl group (e.g., cyclohexyl group), Ariru group (e.g., Fuweniru group).
  • alkyl group e.g., C i_ 4 alkyl group, particularly methyl group
  • a cycloalkyl group e.g., cyclohexyl group
  • Ariru group e.g., Fuweniru group
  • substitution positions of the hydroxyl group and the substituent R in the benzene ring are not particularly limited.
  • the hydroxyl group may be in the 2-position, 3-position, It may be any one of the positions, and is preferably the first place.
  • the substitution position of the substituent varies depending on the value of n.
  • 2-position, 3-position, 4-position, 2,3_position, 2,4-position, 2,6-position, 3, Examples are 4-position, 3,5-position and the like, preferably 2_-position, 3-position, 3,5-position, and more preferably 3-position.
  • fluorene derivative examples include, for example, 9,9_bis (4-hydroxyphenyl) fluorene; 9,9_bis (4-hydroxy-2-methylphenyl) fluorene, 9,9-bis (4-hydrophenyl) Xy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3--3-ethylphenyl) fluorene, 9,9-bis (3-hydroxy-16-methylphenyl) fluorene, 9,9-bis ( 2,9-bis (alkylhydroxyphenyl) fluorene, such as 2-hydroxy-4 monomethylphenyl) fluorene, 9,9bis (4-hydroxy-13-t-butylphenyl) fluorene; 9,9-bis (4-hydroxy-3) , 5—Dimethylphenyl) fluorene, 9,9—Bis (4-hydroxy-2,61-dimethylphenyl) fluorene, 9,9_bis (4—H 9,9-bis (dialkylhydroxyphenyl) fluorene, such
  • fluorenone is not particularly limited, it is usually 95% by weight or more, preferably 99% by weight or more.
  • the phenols are represented by the formula (I).
  • R and n in the formula (I) are the same as those in the formula (II).
  • phenols include, for example, phenol, alkylphenol (o-cresol, m_cresol, cresols such as p-cresol), dialkylphenol (2,3-dimethylphenol, 2 , 5-dimethylphenol, 2,6-dimethylphenol, 2,6-di-tert-butylphenol, etc., trialkylphenol, alkoxyphenol (o-methoxyphenol, etc.)
  • Phenyl phenol eg, phenylphenol such as o-, m-phenylphenol
  • cycloalkylphenol eg, 2-hexylhexylphenol
  • the phenols can be used alone or in combination of two or more. Of these phenols, C Bok 4 alkylphenol, e.g. 2-C! _ 4 alkyl phenols (0 cresol Ichiru etc.) are preferable.
  • the purity of the phenols is not particularly limited, but is usually 95% by weight or more, preferably 99% by weight or more.
  • the proportion of the phenols is usually used in excess with respect to fluorenone from the viewpoint of producing the fluorene derivative with good yield and suppressing side reactions.
  • phenols may be used in excess and used as a reaction solvent.
  • the concentration of aqueous hydrochloric acid (aqueous hydrochloric acid) as a catalyst is usually about 5 to 37% by weight (for example, 5 to 36% by weight), preferably 10 to 3% by weight. It is about 7% by weight (for example, 25 to 37% by weight), particularly about 30 to 37% by weight (for example, 35 to 36% by weight).
  • thiols can be used as the thiols as the co-catalyst.
  • mercaptocarboxylic acids thioacetic acid, i3-mercaptopropionic acid, monomercaptopropionic acid, thioglycolic acid, thiooxalic acid, mercaptosuccinic acid, mercaptobenzoic acid, etc.
  • alkyl mercaptans methyl mercaptan, ethyl mercaptan emissions, propyl Melka butane, isopropyl mercaptan, n- butyl methyl Rukapu evening like C!
  • alkyl Melka butane such emissions
  • the salt include an alkali metal salt (such as a sodium salt).
  • the thiols can be used alone or in combination of two or more.
  • mercaptocarboxylic acid for example, 3-mercaptopropionic acid
  • mercaptocarboxylic acid for example, 3-mercaptopropionic acid
  • the thiols used in combination with the aqueous hydrochloric acid solution are used in an amount larger than the usual amount of catalyst, so that high-yield and high yield can be achieved without using hydrogen chloride gas which is difficult to handle. It is possible to obtain a fluorene derivative having a high purity.
  • the ratio (weight ratio) of thiols to hydrochloric acid aqueous solution is usually calculated by converting hydrochloric acid water to hydrochloric acid (hydrogen chloride, HC 1), and thiols Z hydrogen chloride is usually 1 / 1.1 / 1/3, preferably 1/1/3. 0.3 1/2, more preferably about 1 / 0.5 1 Z1.5.
  • hydrochloric acid hydrochloric acid
  • thiols Z hydrogen chloride is usually 1 / 1.1 / 1/3, preferably 1/1/3. 0.3 1/2, more preferably about 1 / 0.5 1 Z1.5.
  • the production method of the present invention can be carried out by charging fluorenone, phenols (1), thiols, and the above hydrochloric acid solution into a reactor and stirring the mixture in an inert gas atmosphere.
  • the inert gas for example, nitrogen gas, argon gas, helium gas and the like can be used.
  • the reaction temperature varies depending on the type of phenols and thiols used, but is usually about 100 ° C. (eg, 180 ° C.), preferably about 250 ° C. If the reaction temperature is too low, the reaction rate will be slow, and if it is too high, side reactions will occur, leading to a decrease in yield.
  • the reaction may be carried out in the presence of a solvent such as toluene or xylene, but can usually be carried out in the absence of a solvent. When an excessive amount of phenols is used as a solvent, the reaction can be performed more smoothly.
  • a solvent such as toluene or xylene
  • the progress of the reaction can be tracked by analytical means such as liquid chromatography, and the time when unreacted fluorenone in the reaction mixture becomes 0.5% by weight or less can be regarded as the end point.
  • the reaction mixture after completion of the reaction usually contains unreacted fluorenone, unreacted phenols, catalysts, by-products, and the like, in addition to the fluorene derivative that is the reaction product.
  • a high-purity fluorene derivative can be obtained from the reaction mixture by a conventional method (for example, means such as concentration, extraction, crystallization, filtration, or chromatography, or a separation and purification means combining them).
  • a conventional method for example, means such as concentration, extraction, crystallization, filtration, or chromatography, or a separation and purification means combining them.
  • by combining at least a crystallization operation, especially a distribution operation and a crystallization operation a highly pure fluorene derivative without coloring can be obtained simply and easily.
  • the partitioning operation can be performed, for example, by adding an extractant (organic solvent alone or a mixed solvent of organic solvent and water) to the reaction mixture and transferring or extracting the target compound to the organic layer.
  • the reaction can be carried out by concentrating the organic layer if necessary, adding a crystallization solvent to the organic layer, and cooling if necessary.
  • a crystallization solvent is added to the residue and mixed and dissolved in many cases. More specifically, in the coexistence of / 3-mercaptopropionic acid and hydrochloric acid, fluorenone is condensed with an excess amount of phenols, and an extractant is added to the reaction mixture to distribute the fluorene derivative to the organic layer.
  • the organic layer may be concentrated, and a crystallization solvent may be added to the residue to crystallize the target compound to obtain a purified fluorene derivative.
  • the reaction mixture may be neutralized with an aqueous alkali solution to remove the aqueous phase, the organic layer may be concentrated, and a crystallization solvent may be added to the residue to crystallize the fluorene derivative.
  • the neutralization treatment can be performed by adding at least an aqueous solution to the reaction mixture.
  • the alkali metal inorganic bases such as metal hydroxides and carbonates, and Z or organic bases can be used.
  • the neutralization treatment may be performed by adding an alkaline aqueous solution together with an extractant to the reaction mixture.
  • the extractant include an organic solvent in which the fluorene derivative is soluble (for example, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as toluene and xylene, and alicyclic hydrocarbons such as cyclohexane). , Halogenated hydrocarbons, etc.) and, if necessary, a mixed solvent of a fluorene derivative with a poor solvent (eg, water).
  • the extractant layer (organic layer) may be washed with water, and after removing the aqueous layer, a crystallization solvent may be appropriately added to the organic layer to precipitate crystals.
  • the organic layer is removed by removing the organic solvent by distillation or the like.
  • the fluorene derivative is crystallized by concentrating and adding a crystallization solvent to the residue.
  • the crystallization solvent is composed of hydrocarbons and a polar solvent, and the polar solvent seems to form inclusion crystals with the fluorene derivative.
  • hydrocarbons examples include aliphatic hydrocarbons such as pentane, hexane, and octane; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; and aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene. And halogenated hydrocarbons such as dichloromethane, dichloroethane, trifluoroethylene and dichlorobenzene. These hydrocarbons can be used alone or in combination of two or more.
  • Preferred hydrocarbons are solvents in which the fluorene derivative is soluble, especially aromatic hydrocarbons (such as toluene).
  • the polar solvent for example, water, alcohols (methanol, E evening Nord, propanol, isopropanol, C 4 alcohols such as blanking evening Nord, especially ⁇ Bok 3 alkyl alcohol), ketones ( ⁇ seton, methyl E chill ketone , methyl isobutyl ketone, Jechiruke tons, E chill propyl ketone, di one n - propyl ketone, di-C E such as diisopropyl port Piruketon - 4 alkyl ketones, especially C 3 - 7 Arukiruke tons), nitriles such (such Asetonitoriru) etc.
  • These polar solvents can be used alone or in combination of two or more.
  • a crystallization solvent composed of aromatic hydrocarbons (particularly toluene) and ketones (particularly acetone) is effective for removing coloring-causing substances (impurities and coloring components).
  • the ratio of the hydrocarbons to the polar solvent is, for example, 0.5 to 10 parts by weight (for example, 1 to 10 parts by weight), preferably 2 to 8 parts by weight of the polar solvent to 1 part by weight of the hydrocarbons. (For example, 2 to 6 parts by weight), especially about 3 to 5 parts by weight.
  • the amount of the crystallization solvent used is usually about 1 to 10 parts by weight, preferably about 1 to 5 parts by weight (for example, 2 to 5 parts by weight) based on 1 part by weight of the residue (or solid content). .
  • the crystallization operation can be performed by a conventional method, for example, by dissolving the residue in a crystallization solvent and cooling the mixture.
  • the precipitated crystals are collected by filtration or the like, washed if necessary, and dried to obtain a highly pure and highly transparent fluorene derivative.
  • the crystallization operation may be repeated, but in the present invention, a single crystallization operation can provide a highly transparent fluorene derivative that is hardly colored.
  • a high-purity fluorene derivative that can be used as a raw material for a polymer requiring transparency (polycarbonate-based resin, polyester-based resin, epoxy resin, etc.) is obtained.
  • the b value of the obtained fluorene derivative in the Hunter color system is, for example, 3 Hereinafter, it is preferably 2 or less, and more preferably 1.5 or less.
  • the present invention instead of using hydrogen chloride gas, which is a gas that is difficult to handle as an acid catalyst, it is possible to use, as an acid catalyst, hydrochloric acid water which did not effectively exhibit its activity because of the presence of water as a reaction inhibition.
  • the fluorene derivative can be obtained safely and easily in high yield. Further, the purity and transparency of the obtained fluorene derivative are high, and it can be used as a polymer raw material in a single crystallization operation, so that the purification cost can be suppressed.
  • the purity was analyzed by high performance liquid chromatography (manufactured by Waters Co., Ltd.) using a reverse-layer column and expressed as area percentage.
  • the b value was calculated from the transmittance measured at a wavelength of 380 to 780 nm using a visible ultraviolet absorption device (manufactured by Hitachi, Ltd.).
  • the yield is It was calculated based on the ratio (molar ratio) of the fluorene derivative to fluorenone.
  • reaction solution 300 g of toluene and 80 g of water were added, followed by adding a 32% by weight aqueous sodium hydroxide solution to neutralize the solution to a pH of about 7, and then removing the aqueous layer. . After the organic layer was heated to 80 ° C, it was washed three times with 80 g of water.
  • Toluene (30 Og) was collected by distillation under reduced pressure, 500 ml of a mixture of toluene and acetone (mixing ratio 1: 4 (weight ratio)) was added to the organic layer, and the mixture was stirred at 70 ° C for 1 hour. After cooling to 10 ° C and crystallization, 140 g (89% yield) of the target product 9,9-bis (4-hydroxy-3-methylphenyl) fluorene was obtained.
  • the purity of the obtained fluorene derivative was 99.6% by weight.
  • the b value is 1.3 (colorless and transparent), and it can be used as a polymer raw material without further crystallization operation.
  • the purity of the obtained fluorene derivative was 99.3% by weight.
  • the b value is 1.7 (colorless and transparent), and it can be used as a polymer raw material without further crystallization.
  • the purity of the obtained fluorene derivative was 99.0% by weight.
  • the b value is 1.8 (colorless and transparent), and it can be used as a raw material for polymers without further crystallization.
  • reaction solution 300 g of toluene and 80 g of water were added, and then an aqueous solution of 32% by weight of sodium hydroxide was added to neutralize the solution until the pH became about pH. Removed. After the organic layer was heated to 80 ° C, it was washed three times with 80 g of water.
  • the purity of the obtained fluorene derivative was 93.9% by weight.
  • the b value was 18.5 (pale yellow), and the crystallization operation had to be performed three more times under the same conditions in order to reduce the b value to 3 or less, which could be used as a polymer raw material.
  • the purity of the obtained fluorene derivative was 96.1% by weight.
  • the b value was 19.3 (pale yellow), and the crystallization operation had to be performed three more times in order to reduce the b value to 3 or less, which can be used as a polymer raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Epoxy Resins (AREA)

Description

明 細 書 フルオレン誘導体の製造方法 技術分野
本発明は、 光学レンズ、 フィルム、 光ファイバ一、 光ディスク、 耐熱性樹脂やエンジニアリングプラスチックなどの素材原料として 有用なフルオレン誘導体の製造方法に関する。 背景技術
近年、 ビスフエノール類を原料とするポリマ一 (例えば、 ポリ力 —ポネート系樹脂、 エポキシ樹脂、 ポリエステル系樹脂など) にお いて、 従来品よりも一層の耐熱性、 透明性および高屈折率を備えた 材料が強く要望されている。 フルオレン誘導体の一種である 9, 9 一ビス ( 4—ヒドロキシフエニル) フルオレン類は、 耐熱性に優れ、 高透明性で高屈折なポリマーを製造するための原料として有望であ り、 自動車用ヘッ ドランプレンズ、 C D、 C D— R O Mピックアツ プレンズ、 フレネルレンズ、 レーザ一プリンター用 f Θ レンズ、 力 メラレンズ、 リアプロジェクシヨンテレビ用投影レンズなどの光学 レンズ、 位相差フィルム、 拡散フィルムなどのフィルム、 プラスチ ック光ファイバ一、 光ディスク基板などの素材原料として期待され ている。
9, 9 一ビス ( 4—ヒドロキシフエニル) フルオレンの合成方法 としては、 フルオレンを空気酸化して得られるフルォレノンを出発 原料とし、 塩'化水素ガスおよびメルカプトプロピオン酸を触媒とし て用いてフ エノ ールと縮合反応させる方法が知 られている CJ.Appl.Polym.Sci., 27(9), 3289, 1982 特開平 6— 1 4 5 0 8 7号 公報、 特開平 8 - 2 1 7 7 1 3号公報〕。
しかし、 この反応は脱水反応であるため、 酸触媒として取扱いの 難しい気体の塩化水素ガスを使用し、 工業的に実施するためには専 用の塩化水素ガス発生および除外装置を設ける必要がある。 また、 塩化水素ガスの取扱いには消防法、 高圧ガス取締法、毒劇物取締法、 大気汚染防止法などの各種法規による規制が適用され、設備の設置、 取扱い、 貯蔵については充分な安全対策、 環境対策が必要である。 なお、 酸触媒として、 濃硫酸を用いる場合は、 水の存在にもかか わらず、 濃硫酸の脱水能力により、 反応は進行する。 しかし、 硫酸 廃液が多量に排出され、 廃液処理に多大な労力を要する。
一方、 塩化水素ガスまたは濃硫酸を触媒とする製造方法で得られ るフルオレン誘導体は、一般にスルホン化物などの不純物が存在し、 黄色に着色する。 従って、 高い透明性が要求される前述のポリ力一 ポネート系樹脂やポリエステル系樹脂の原料として使用するために は、 前記製造方法で得られたフルオレン誘導体を高度かつ厳密に精 製する必要がある。そのため、種々の精製方法が検討されている(特 開平 6 — 3 2 1 8 3 6号公報など)。 しかし、 このような精製では、 多くの溶媒を使用し、 また製造工程が長くなるため、 製造原価のコ ストアツプの要因になる。
従って、 本発明の目的は、 取扱いが難しい塩化水素ガスを使用す ることなく、 安全かつ簡便にフルオレン誘導体を高収率で製造でき る方法を提供することにある。
本発明の他の目的は、 煩雑な精製を行うことなく、 簡便かつ安価 に、 透明性に優れた高純度なフルオレン誘導体を製造する方法を提 供することにある。 発明の開示
本発明者らは、 上記従来技術の問題点に鑑み鋭意検討を重ねた結 果、 塩化水素ガスに代えて塩酸水を用い、 チオール類との共存下で 反応を行うと、 着色度合いの少ない透明性に優れたフルオレン誘導 体を簡便に得ることができることを見出した。 すなわち、 本発明では、 フルォレノンと式 ( I ) で表されるフエ ノール類とを、 チオール類および塩酸水の共存下で縮合反応させる ことにより、 式 (II) で表されるフルオレン誘導体を製造する。
Figure imgf000005_0001
(式中、 Rはアルキル基、 アルコキシ基、 ァリール基又はシクロア ルキル基を表す。 nは 0〜4の整数を表す)
前記フエノール類には、 2 - Ci_4アルキルフエノールなどが含ま れる。 前記チオール類として、 メルカプトカルボン酸 (特に ]3—メ ルカプトプロピオン酸) を用いると、 着色度合いが少なく、 透明性 に優れたフルオレン誘導体が得られる。 また、 チオール類の使用量 をいわゆる触媒量よりも多くするのが好ましい。 例えば、 フルォレ ノンとチオール類との割合 (重量比) は、 フルォレノン/チォ一ル 類 = 1 / 0. 0 1〜 1 / 0. 5、 好ましくは 1 / 0. 0 5〜 1 /0. 3程度である。 チオール類と塩酸水中の塩酸 (塩化水素, HC 1 ) との割合 (重量比) は、 チオール類ノ塩化水素 = 1 Z 0. 1〜 1 / 3、 好ましくは 1/ 0. 3〜 1 / 2程度である。 フルオレン誘導体 には、 9, 9—ビス ( C卜4アルキルヒドロキシフエニル) フルォレ ン、 特に 9 , 9 -ビス (4ーヒドロキシ— 3— C卜 4アルキルフエ二 ル) フルオレンなどが含まれる。
なお、 本発明の方法では、 反応混合物に抽剤を添加して目的化合 物を有機層に分配させ、 有機層に晶析溶媒を添加して目的化合物を 晶析させてもよい。
本発明の方法では、 1回だけの晶析操作により、 従来の製造方法 よりもフルオレン誘導体の黄色度又は着色を格段に低下できる。 発明を実施するための最良の形態 本発明のフルオレン誘導体の製造方法は、 フルォレノンとフエノ ール類とを、 チオール類および塩酸水の共存下で縮合反応させる。
[フルオレン誘導体]
式 (II) で表されるフルオレン誘導体において、 Rはアルキル基、 シクロアルキル基、 アルコキシ基又はァリ一ル基を表し、 nは 0〜 4の整数 (好ましくは 0〜 3、 さらに好ましくは 0〜 2、 特に 0又 は 1 ) を表す。 なお、 置換基 Rの種類は置換基の数を示す nによつ て異なっていてもよい。
アルキル基としては、 メチル基、 ェチル基、 プロピル基、 イソプ 口ピル基、 n—ブチル基、 i s o—ブチル基、 s —ブチル基、 t 一プチ ル基などの C i_4アルキル基が例示できる。
シクロアルキル基としては、 シクロペンチル基、 シクロへキシル 基などの C 4_8シクロアルキル基 (好ましくは C 56シク口アルキル 基) が例示できる。
アルコキシ基としては、 メ トキシ基、 ェトキシ基、 プロポキシ基、 n—ブトキシ基、 i s o—ブトキシ基、 t er t—ブトキシ基などの 4 アルコキシ基が例示できる。
ァリール基としては、 フエニル基、 2—メチルフエニル基、 3— メチルフエニル基、 4 —メチルフエニル基、 2, 6 一ジメチルフエ ニル基、 3 , 5—ジメチルフエニル基などの C i—4アルキルフエニル 基、 ナフチル基などが例示できる。
Rとしては、 アルキル基 (例えば、 C i_4アルキル基、 特にメチル 基)、 シクロアルキル基 (例えば、 シクロへキシル基)、 ァリール基 (例えば、 フヱニル基) が好ましい。
ベンゼン環におけるヒ ドロキシル基と置換基 Rの置換位置は、 特 に制限されず、 例えば、 ヒドロキシル基は、 2—位、 3—位、 4 一 位のいずれであってもよく、 好ましくは 4一位である。 置換基 の 置換位置は、 nの値によっても変動するが、 例えば、 2—位、 3 — 位、 4一位、 2, 3 _位、 2, 4一位、 2 , 6 —位、 3 , 4 -位、 3, 5—位などが例示でき、 好ましくは 2 _位、 3—位、 3, 5 — 位、 さらに好ましくは 3—位である。
フルオレン誘導体の具体例としては、 例えば、 9 , 9 _ビス (4 —ヒドロキシフエニル) フルオレン ; 9 , 9 _ビス (4ーヒドロキ シ— 2 —メチルフエニル) フルオレン、 9, 9 —ビス (4—ヒ ドロ キシ一 3—メチルフエニル) フルオレン、 9, 9 _ビス (4ーヒ ド 口キシ— 3 —ェチルフエニル) フルオレン、 9 , 9 一ビス ( 3 —ヒ ドロキシ一 6 —メチルフエニル) フルォレン、 9, 9 一ビス ( 2 — ヒ ドロキシ— 4 一メチルフエニル) フルオレン、 9 , 9 一ビス ( 4 ーヒドロキシ一 3 — t —ブチルフエニル) フルオレンなどの 9 , 9 一ビス (アルキルヒ ドロキシフエニル) フルオレン ; 9, 9—ビス ( 4—ヒドロキシー 3, 5 —ジメチルフエニル) フルオレン、 9 , 9 —ビス ( 4ーヒドロキシー 2, 6 一ジメチルフエニル) フルォレ ン、 9, 9 _ビス (4—ヒドロキシ— 3 , 5—ジ— tert—ブチルフ ェニル) フルオレンなどの 9, 9 -ビス (ジアルキルヒドロキシフ ェニル) フルオレン ; 9, 9—ビス ( 4—ヒドロキシー 3—シクロ へキシルフェニル) フルオレンなどの 9 , 9 —ビス (シクロアルキ ルヒドロキシフエニル) フルオレン ; 9 , 9 一ビス ( 4ーヒドロキ シ— 3—フエニルフエニル) フルオレンなどの 9 , 9 ―ビス (ァリ ールヒドロキシフエニル) フルオレンなどを挙げることができる。
これらのフルオレン誘導体の中でも、 9 , 9 —ビス (ヒドロキシ フエニル) フルォレン、 9 , 9 —ビス (C 4アルキルヒドロキシフ ェニル) フルオレン、 9, 9 —ビス (ヒドロキシァリールフエニル) フルオレン、 特に 9, 9—ビス ( 4—ヒドロキシー 3 — C卜 4アルキ ルフエニル) フルオレン [例えば、 9, 9 _ビス (4ーヒ ドロキシ 一 3 一メチルフエニル) フルオレン] が好ましい。 [フルォレノン]
フルォレノンの純度は特に限定されないが、 通常、 9 5重量%以 上、 好ましくは 9 9重量%以上である。
[フエノール類]
フエノール類は、 前記式 ( I ) で表される。 式 ( I ) における R 及び nは前記式 (II) と同様である。
フエノール類の具体例としては、 例えば、 フエノール、 アルキル フエノール (o—クレゾ一ル、 m_クレゾ一ル、 ; p—クレゾールな どのクレゾ一ル類)、 ジアルキルフエノール ( 2, 3—ジメチルフエ ノール、 2, 5—ジメチルフエノール、 2 , 6一ジメチルフエノ一 ル、 2, 6—ジ— tert—ブチルフエノールなど)、 トリアルキルフエ ノール、 アルコキシフエノ一ル (o—メ トキシフエノールなどのァ 二ソ一ル類など)、 ァリールフエノール ( o—, m—フエニルフエノ ールなどのフエニルフエノールなど)、 シクロアルキルフエノール ( 2ーシク口へキシルフエノ一ルなど)などを挙げることができる。 フエノール類は、 単独で又は二種以上組み合わせて使用できる。 こ れらのフエノール類のうち、 C卜4アルキルフエノール、 例えば 2― C !_4アルキルフエノール ( 0—クレゾ一ルなど) が好ましい。
フエノール類の純度は特に限定されないが、 通常、 9 5重量%以 上、 好ましくは 9 9重量%以上である。
フエノール類の割合は、 フルオレン誘導体を収率よく生成させる 点及び副反応を抑制する点から、 フルォレノンに対して、 通常、 過 剰量用いられる。 例えば、 両者の割合 (モル比) は、 フルォレノン /フエノール類 = 1 / 2〜 1 / 3 0、好ましくは 1 / 3〜 1 / 2 0、 さらに好ましくは 1ノ 4〜 1 Z 1 0程度である。 なお、 フエノール 類を過剰量使用し、 反応溶媒として用いることもできる。
[塩酸水]
触媒としての塩酸水 (塩酸水溶液) の濃度は、 通常、 5〜 3 7重 量% (例えば、 5〜 3 6重量%) 程度であり、 好ましくは 1 0〜 3 7重量% (例えば、 2 5〜 3 7重量%)、 特に 3 0〜 3 7重量% (例 えば、 3 5〜 3 6重量%) 程度である。 フルォレノンに対する塩酸 水の割合 (重量比) は、 通常、 塩酸 (塩化水素, H C 1 ) 換算で、 フルォレノン Z塩化水素 = 1 / 0 . 0 1〜 1 / 1、 好ましくは 1 Z 0 · 0 5〜 1 / 0 . 5、 さらに好ましくは 1 / 0 . :! 〜 1 / 0 . 3 程度である。 なお、 フルォレノンとフエノール類との反応は脱水反 応であるため、 一般的には、 塩酸水を用いても触媒活性を有効に発 現させることができない。 しかし、 チオール類と組み合わせると、 塩酸水を用いても、 前記反応が有効に進行する。
[チオール類]
助触媒としてのチオール類は、 慣用のチオール類を使用すること ができる。 例えば、 メルカプトカルボン酸 (チォ酢酸、 i3—メルカ プトプロピオン酸、 ひ一メルカプトプロピオン酸、 チォグリコール 酸、 チオシユウ酸、 メルカプトコハク酸、 メルカプト安息香酸など)、 アルキルメルカブタン (メチルメルカプタン、 ェチルメル力プ夕ン、 プロピルメルカブタン、 イソプロピルメルカプタン、 n—ブチルメ ルカプ夕ンなどの C ! _4アルキルメルカブタンなど)、 ァラルキルメ ルカブタン (ベンジルメルカブタンなど) 又はこれらの塩などが挙 げられる。 塩としては、 例えば、 アルカリ金属塩 (ナトリウム塩な ど) が例示できる。 チオール類は、 単独で又は二種以上組み合わせ て使用できる。
これらのチオール類の中でも、 メルカプトカルボン酸 (例えば、 3 _メルカプトプロピオン酸) が好ましい。
フルォレノンに対するチオール類の割合 (重量比) は、 通常、 フ ルォレノン /チォ一ル類 = 1 0 . 0 1 〜 1 / 0 · 5、 好ましくは 1 / 0 . 0 5〜 1 / 0 . 3、 さらに好ましくは 1 / 0 . ' 0 8〜 1 Z 0 . 1 5程度である。 本発明の製造方法では、 塩酸水溶液と組み合 わせて使用するチオール類を通常の触媒量よりも多く用いることに より、 取扱いの難しい塩化水素ガスを用いることなく、 高収率で高 純度のフルオレン誘導体を得ることが可能となる。
チオール類と塩酸水との割合 (重量比) は、 塩酸水を塩酸 (塩化 水素, HC 1 ) に換算して、 通常、 チオール類 Z塩化水素 1 / 0. 1 1 /3、 好ましくは 1 /0. 3 1 / 2、 さらに好ましくは 1 / 0. 5 1 Z 1. 5程度である。 本発明の製造方法では、 チォー ル類と塩酸とを前記割合で用いることにより、 透明性に優れたフル オレン誘導体を簡便に製造することが可能となる。
[フルオレン誘導体の製造方法]
本発明の製造方法は、 フルォレノン、 フエノール類 ( 1 )、 チォー ル類、 及び前記塩酸水を、 反応器に仕込み、 不活性ガス雰囲気中、 攪拌することにより行うことができる。 不活性ガスとしては、 例え ば、 窒素ガス、 アルゴンガス、 ヘリウムガスなどが利用できる。 反応温度は、 使用するフエノール類ゃチオール類の種類によって 異なるが、 通常、 1 0 1 0 0°C (例えば、 1 0 8 0°C) 程度、 好ましくは 2 0 5 0 °C程度である。 反応温度が低すぎると反応速 度が遅くなり、 高すぎると副反応が生じて収率の低下を招く。
反応は、 トルエン、 キシレンなどの溶媒の存在下で行ってもよい が、 通常、 溶媒の非存在下で行うことができる。 また、 過剰量のフ エノール類を溶媒として用いる場合には、 反応をよりスムーズに行 うことができる。
反応の進行は、 液体クロマトグラフィ一などの分析手段により追 跡でき、 反応混合物中に未反応のフルォレノンが 0. 5重量%以下 となった時点を終点とすることができる。 反応終了後の反応混合物 には、 通常、 反応生成物であるフルオレン誘導体以外に、 未反応の フルォレノン、 未反応のフエノール類、 触媒、 副反応生成物などが 含まれている。
反応終了後、 反応混合物から慣用の方法 (例えば、 濃縮、 抽出、 晶析、 濾過、 クロマトグラフィなどの手段又はそれらを組み合わせ た分離精製手段) により高純度なフルオレン誘導体が得られる。 特 に、 少なくとも晶析操作、 なかでも分配操作と晶析操作とを組み合 わせることにより簡便かつ容易に着色のない高純度のフルオレン誘 導体を得ることができる。 分配操作は、 例えば、 反応混合物に抽剤 (有機溶媒単独、 又は有機溶媒と水との混合溶媒) を添加して目的 化合物を有機層に移行又は抽出させることにより行うことができ、 晶析操作は、 必要により有機層を濃縮した後、 有機層に晶析溶媒を 添加し、 必要により冷却することにより行うことができる。
通常、反応混合物から残存する塩酸及びチオール類を除去した後、 残渣に対して晶析溶媒を添加し混合溶解する場合が多い。 より具体 的には、 /3 —メルカプトプロピオン酸及び塩酸の共存下、 フルォレ ノンと、 過剰量のフエノール類とを縮合反応させ、 反応混合物に抽 剤を添加してフルオレン誘導体を有機層に分配させ、 有機層を濃縮 し、 残渣に晶析溶媒を添加して目的化合物を晶析させ、 精製したフ ルオレン誘導体を得てもよい。 また、 反応混合物をアルカリ水溶液 で中和して水相を除去し、 有機層を濃縮し、 残渣に対して、 晶析溶 媒を添加し、 フルォレン誘導体を晶析させてもよい。
前記中和処理は、 反応混合物に対して少なくともアル力リ水溶液 を添加することにより行うことができる。 アル力リとしては、 アル 力リ金属水酸化物、 炭酸塩などの無機塩基及び Z又は有機塩基が使 用できる。 前記中和処理は、 反応混合物に抽剤とともにアルカリ水 溶液を添加することにより行ってもよい。 抽剤としては、 フルォレ ン誘導体を可溶な有機溶剤 (例えば、 へキサンなどの脂肪族炭化水 素類、 トルエン、 キシレンなどの芳香族炭化水素類、 シクロへキサ ンなどの脂環式炭化水素類、 ハロゲン化炭化水素類など) や、 必要 によりフルオレン誘導体に対する貧溶媒 (例えば、 水) との混合溶 媒が使用できる。
中和処理した後、 必要により抽剤層 (有機層) を水で洗浄し、 水 層を除去した後、 有機層に適宜、 晶析用溶媒を添加して結晶を析出 させてもよい。 通常、 有機溶媒を蒸留などにより除去して有機層を 濃縮し、 残渣に対して晶析溶媒を添加することにより、 フルオレン 誘導体を晶析させる。 晶析溶媒は、 炭化水素類と極性溶媒とで構成 されており、 極性溶媒は、 フルオレン誘導体との包接結晶を生成す るようである。
炭化水素類としては、 ペンタン、 へキサン、 オクタンなどの脂肪 族炭化水素類、 シクロへキサン、 メチルシクロへキサンなどの脂環 式炭化水素類、 ベンゼン、 トルエン、 キシレン、 ェチルベンゼンな どの芳香族炭化水素類、 ジクロロメタン、 ジクロロェタン、 トリク ロロエチレン、 ジクロ口ベンゼンなどのハロゲン化炭化水素類など が含まれる。 これらの炭化水素類は単独で又は二種以上混合して使 用できる。 好ましい炭化水素類はフルオレン誘導体を可溶な溶媒、 特に芳香族炭化水素類 (トルエンなど) である。
極性溶媒としては、 例えば、 水、 アルコール類 (メタノール、 ェ 夕ノール、 プロパノール、 イソプロパノール、 ブ夕ノールなどの C 4アルコール、 特に〇卜 3 アルキルアルコール)、 ケトン類 (ァセ トン、 メチルェチルケトン、 メチルイソブチルケトン、 ジェチルケ トン、 ェチルプロピルケトン、 ジ一 n —プロピルケトン、 ジイソプ 口ピルケトンなどのジ C ェ — 4アルキルケトン、特に C 37アルキルケ トン)、 二トリル類 (ァセトニトリルなど) などが例示できる。 これ らの極性溶媒は単独で又は二種以上組み合わせて使用できる。 特に 芳香族炭化水素類 (特にトルエン) とケトン類 (特にアセトン) と で構成された晶析溶媒は、 着色原因物質 (不純物、 着色成分) の除 去に効果的である。
炭化水素類と極性溶媒との割合は、 例えば、 炭化水素類 1重量部 に対して極性溶媒 0 . 5 〜 1 0重量部 (例えば、 1 〜 1 0重量部)、 好ましくは 2 〜 8重量部 (例えば、 2 〜 6重量部)、 特に 3 〜 5重量 部程度である。 晶析溶媒の使用量は、 通常、 残渣 (又は固形分) 1 重量部に対して、 1 〜 1 0重量部、 好ましくは 1 〜 5重量部 (例え ば、 2 〜 5重量部) 程度である。 晶析操作は、 慣用の方法、 例えば、 前記残渣を晶析溶媒に溶解し、 混合液を冷却することにより行うことができる。 析出した結晶を濾 過などにより回収し、 必要により洗浄し、 乾燥することにより高純 度で透明性の高いフルオレン誘導体が得られる。 なお、 晶析操作は 繰り返してもよいが、 本発明では、 1回の晶析操作により殆ど着色 せず透明性の高いフルオレン誘導体を得ることができる。
本発明の製造方法によれば、 透明性が要求されるポリマー (ポリ カーボネート系樹脂、 ポリエステル系樹脂、 エポキシ樹脂など) の 原料となりうる高純度なフルオレン誘導体が得られる。 得られたフ ルオレン誘導体のハンター (Hunter) 表色系における b値 (可視紫 外吸収装置 (波長 3 8 0〜 7 8 0 n m) を用いて測定した透過率に より算出) は、 例えば、 3以下、 好ましくは 2以下、 さらに好まし くは 1 . 5以下である。 産業上の利用可能性
本発明では、 酸触媒'として取扱いの難しい気体の塩化水素ガスを 用いる代わりに、 これまで酸触媒としては水分の存在が反応阻害と なつて活性が有効に発現しなかつた塩酸水を使用できるため、 安全 かつ簡便に高収率でフルオレン誘導体が得られる。 また、 得られる フルオレン誘導体の純度及び透明度が高く、 1回の晶析操作でポリ マー原料として使用できるので、 精製コストを抑制できる。 実施例
以下に、実施例及び比較例に基づいて本発明を詳細に説明するが、 本発明はこれらの実施例に限定されるものではない。
実施例において、純度は高速液体クロマトグラフィ一(Wa t e r s (株) 製) に逆層カラムを用いて分析し、 面積百分率で表示した。 また、 b値は可視紫外吸収装置 ((株) 日立製作所製) を用いて波長 3 8 0 〜 7 8 0 n mで測定した透過率より算出した。 さらに、 収率は、 フ ルォレノンに対するフルオレン誘導体の割合 (モル比) に基づいて 算出した。
実施例 1
撹拌器、 冷却器、 および温度計を備えた 2 Lのガラス容器に、 純 度 9 9重量%のフルォレノン 7 5 g、 0 _クレゾ一ル2 7 08、 β —メルカプトプロピオン酸 8. 5 g、 および 3 6重量%塩酸水 2 7 gを仕込み、 不活性ガス雰囲気中、 2 5 °Cで 6時間、 続いて 3 5 °C で 1 1時間攪拌し、 反応を行った。 反応生成物を HP L Cで分析し た結果、 フルォレノンの残存量は 0. 1重量%以下であった。
得られた反応液に、トルエン 3 0 0 gおよび水 8 0 gを加えた後、 3 2重量%水酸化ナトリゥム水溶液を加えて pHが約 7になるまで 中和した後、 水層を除去した。 有機層を 8 0 °Cに加温した後に、 水 8 0 gで 3回洗浄した。
減圧蒸留により トルエン 3 0 O gを回収し、 有機層にトルエン一 ァセトンの混合液 (混合比率 1 : 4 (重量比)) 5 0 0 m l を加えて 7 0 °Cで 1時間攪拌したのち、 1 0 °Cまで冷却し、 結晶化させるこ とにより、 目的生成物である 9, 9—ビス (4ーヒドロキシー 3 _ メチルフエニル) フルオレン 1 40 g (収率 8 9 %) を得た。
得られたフルオレン誘導体の純度は 9 9. 6重量%であった。 ま た、 b値は 1. 3 (無色透明) であり、 これ以上の晶析操作を行う ことなく、 ポリマー原料として使用できる。
実施例 2
o—クレゾール 2 7 0 gに代えてフエノール 2 2 5 gを用いる以 外は実施例 1と同様にして反応させたところ、目的生成物である 9 , 9—ビス ( 4—ヒドロキシフエニル) フルオレン 1 2 7 g (収率 8 7 %) が得られた。
得られたフルオレン誘導体の純度は 9 9. 3重量%であった。 ま た、 b値は 1. 7 (無色透明) であり、 これ以上の晶析操作を行う ことなく、 ポリマー原料として使用できる。 実施例 3
o—クレゾール 2 7 0 gに代えて o—フエニルフエノール 4 2 5 gを用いる以外は実施例 1と同様にして反応させたところ、 目的生 成物である 9, 9—ビス (4—ヒドロキシー 3—フエニルフエニル) フルオレン 1 8 5 g (収率 9 0 % ) が得られた。
得られたフルオレン誘導体の純度は 9 9 . 0重量%であった。 ま た、 b値は 1 . 8 (無色透明) であり、 これ以上の晶析操作を行う ことなく、 ポリマ一原料として使用できる。
比較例 1
撹拌器、 冷却器、 温度計および塩化水素ガス導入管を備えた 2 L のガラス容器に、 純度 9 9重量%のフルォレノン 7 5 g、 o —クレ ゾ一ル 1 6 0 g及び j8—メルカプトプロピオン酸 2 gを仕込み、 不 活性ガス雰囲気中、 5 0 °Cで加熱撹拌し、 フルォレノンを完全に溶 解させた。 塩化水素ガスを 2 0 0 m l Z分で吹き込むことにより反 応を開始し、 反応温度を 5 0 °Cに保ち、 4時間反応を継続した。 反 応終了後、 窒素ガスを 5 L Z分で 3 0分間吹き込み、 反応器内に残 留する塩化水素ガスを追い出した。
得られた反応液に、 トルエン 3 0 0 gおよび水 8 0 gを加えたの ち、 3 2重量%水酸化ナトリゥム水溶液を加えて p Hが約 Ίになる まで中和した後、水層を除去した。有機層を 8 0 °Cに加温した後に、 水 8 0 gで 3回洗浄した。
減圧蒸留により トルエン 3 0 0 gを回収し、 有機層にトルエン— アセトンの混合液 (混合比率 1 : 4 (重量比)) 5 0 0 m l を加えて 7 0 °Cで 1時間攪拌したのちに、 1 0 °Cまで冷却し、 結晶化させる ことにより、 目的生成物である 9 , 9 一ビス (4ーヒドロキシ— 3 一メチルフエニル) フルオレン 1 2 0 g (収率 7 6 % ) を得た。 得られたフルオレン誘導体の純度は 9 5 . 2重量%であった。 ま た、 b値は 1 2 . 5 (淡黄色) であり、 ポリマー原料として使用可 能な b値 3以下にするためには、 同条件で晶析操作をさらに 3回行 う必要があった。
比較例 2
o —クレゾール 1 6 0 gに代えてフエノール 1 3 3 gを用いる以 外は比較例 1と同様に反応させたところ、 目的生成物である 9, 9 一ビス(4 —ヒドロキシフエニル)フルオレン 1 0 1 g (収率 6 9 % ) が得られた。
得られたフルオレン誘導体の純度は 9 3 . 9重量%であった。 ま た、 b値は 1 8 . 5 (淡黄色) であり、 ポリマー原料として使用可能 な b値 3以下にするためには、 同条件で晶析操作をさらに 3回行う 必要があった。
比較例 3
オルトクレゾール 1 6 0 gに代えてオルトフェニルフエノール 2 5 2 gを用いる以外は比較例 1と同様に反応させたところ、 目的生 成物である 9 , 9—ビス (4—ヒドロキシー 3—フエニルフエニル) フルオレン 1 1 3 g (収率 5 5 % ) が得られた。
得られたフルオレン誘導体の純度は 9 6 . 1重量%であった。 ま た、 b値は 1 9 . 3 (淡黄色) であり、 ポリマー原料として使用可能 な b値 3以下にするためには、 晶析操作をさらに 3回行う必要があ つた。

Claims

/064358
15 請求の範囲 フルォレノンと式 ( I )
OH
(I)
(R)r
(式中、 Rはアルキル基、 アルコキシ基、 ァリール基又はシクロア ルキル基を表す。 nは 0 ~4の整数を表す)
で表されるフエノール類とを、 チオール類および塩酸水の共存下で 縮合反応させて、 式 (II)
Figure imgf000017_0001
(式中、 R及び nは前記に同じ)
で表されるフルオレン誘導体を製造する方法。
2 · 式 ( I ) で表されるフエノール類が、 フエノール又は Cj— 4アルキルフエノールである請求項 1記載の方法。
3. 式 ( I ) で表されるフェノ一ル類が、 2一 C卜4アルキルフ ェノール、 3— Ci_4アルキルフエノールである請求項 1記載の方法,
4. チオール類がメルカプトカルボン酸である請求請 1記載の 方法。
5. フルォレノンとチオール類との割合 (重量比) が、 フルォ レノン/チオール類 = 1ノ 0. 0 1〜 1 Z 0. 5である請求項 1記 載の方法。
6. チオール類と塩酸水中の塩化水素との割合 (重量比) が、 チオール類 Z塩化水素 == 1 / 0. 1〜 1 Z 3である請求項 1記載の 方法。
7. フルォレノンとチオール類との割合 (重量比) が、 フルォ レノン /チオール類 = 1 / 0. 0 5〜 1/0. 3であり、 チオール 類と塩酸水中の塩化水素との割合 (重量比) が、 チオール類 Z塩化 水素 = 1 /0. 3〜 1 Z 2である請求項 1記載の方法。
8. 式 (Π) で表されるフルオレン誘導体が 9 , 9一ビス (C
1_4アルキルヒドロキシフヱニル)フルオレンである請求項 1記載の 方法。
9. フルォレノンと 2一 C — 4アルキルフエノールとを i3一メル カプトプロピオン酸及び塩酸水の共存下で縮合反応させて、 9, 9 一ビス ( 4ーヒ ドロキシー 3— C卜4アルキルフエニル) フルオレン を製造する請求項 1記載の方法。
PCT/JP2002/000634 2002-01-29 2002-01-29 Procede permettant de produire un derive de fluorene WO2003064358A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000231111A JP3490960B2 (ja) 2002-01-29 2000-07-31 フルオレン誘導体の製造方法
CZ2004-812A CZ305728B6 (cs) 2002-01-29 2002-01-29 Způsob výroby derivátu fluorenu
PCT/JP2002/000634 WO2003064358A1 (fr) 2002-01-29 2002-01-29 Procede permettant de produire un derive de fluorene
EP02710363.9A EP1471045B1 (en) 2002-01-29 2002-01-29 Process for producing fluorene derivative
KR1020047011636A KR100846041B1 (ko) 2002-01-29 2002-01-29 플루오렌 유도체의 제조방법
CNB028277023A CN1271025C (zh) 2002-01-29 2002-01-29 芴衍生物的制造方法
US10/501,890 US20070100170A1 (en) 2002-01-29 2002-01-29 Method for producing fluorene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/000634 WO2003064358A1 (fr) 2002-01-29 2002-01-29 Procede permettant de produire un derive de fluorene

Publications (1)

Publication Number Publication Date
WO2003064358A1 true WO2003064358A1 (fr) 2003-08-07

Family

ID=37997385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000634 WO2003064358A1 (fr) 2002-01-29 2002-01-29 Procede permettant de produire un derive de fluorene

Country Status (7)

Country Link
US (1) US20070100170A1 (ja)
EP (1) EP1471045B1 (ja)
JP (1) JP3490960B2 (ja)
KR (1) KR100846041B1 (ja)
CN (1) CN1271025C (ja)
CZ (1) CZ305728B6 (ja)
WO (1) WO2003064358A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248139A (ja) * 2009-04-17 2010-11-04 Taoka Chem Co Ltd 9,9−ビスクレゾールフルオレンの製造法
WO2011016357A1 (ja) * 2009-08-05 2011-02-10 田岡化学工業株式会社 フルオレン誘導体の非晶質形態およびその製造方法
WO2014073559A1 (ja) * 2012-11-07 2014-05-15 三菱瓦斯化学株式会社 ポリホルマール樹脂共重合体及び製造方法
JP2020117461A (ja) * 2019-01-24 2020-08-06 田岡化学工業株式会社 フルオレン骨格を有するビスフェノール化合物の製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3490960B2 (ja) * 2002-01-29 2004-01-26 大阪瓦斯株式会社 フルオレン誘導体の製造方法
US7652126B2 (en) * 2003-10-07 2010-01-26 General Electric Company Monomers and polymers comprising conjugated groups and methods for making thereof
JP4966484B2 (ja) * 2004-07-22 2012-07-04 大阪瓦斯株式会社 フルオレン化合物およびその製造方法
JP5054299B2 (ja) * 2004-12-14 2012-10-24 大阪瓦斯株式会社 フルオレン誘導体の製造方法
JP2007002016A (ja) * 2005-06-21 2007-01-11 Toyobo Co Ltd スルホン酸基含有ポリアリーレンエーテル系化合物およびその用途、スルホン酸基含有ポリアリーレンエーテル系化合物の製造方法
JP4915896B2 (ja) * 2005-07-07 2012-04-11 日本化薬株式会社 エポキシ樹脂の製造法
CN100436391C (zh) * 2006-12-20 2008-11-26 哈尔滨工程大学 磁性固体超强酸催化合成双酚芴的方法
KR101770486B1 (ko) * 2007-02-15 2017-08-22 다오카가가쿠고교가부시키가이샤 플루오렌 유도체의 결정 다형체 및 그 제조 방법
JP5324082B2 (ja) * 2007-12-20 2013-10-23 大阪瓦斯株式会社 9,9−ビス(カルボキシアリール)フルオレン類およびそのエステルの製造方法
JP5325627B2 (ja) * 2008-03-27 2013-10-23 大阪瓦斯株式会社 フルオレン骨格を有するアルコールの製造方法
JP5230019B2 (ja) * 2009-10-02 2013-07-10 田岡化学工業株式会社 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンの製造法
KR101624374B1 (ko) 2009-04-13 2016-05-25 타오카 케미컬 컴퍼니 리미티드 플루오렌 유도체의 제조방법
JP5230015B2 (ja) * 2009-07-27 2013-07-10 田岡化学工業株式会社 フルオレン誘導体の製造法
CN101735020A (zh) * 2009-12-17 2010-06-16 武汉工业学院 一种浓硫酸催化合成双酚芴方法
JP5583987B2 (ja) * 2010-02-22 2014-09-03 帝人株式会社 光弾性定数が低いポリカーボネート樹脂および光学フィルム
CN102659526B (zh) * 2012-04-11 2014-08-20 哈尔滨工程大学 四酚羟基芴化合物及其制备方法
JP6233949B2 (ja) * 2012-12-10 2017-11-22 田岡化学工業株式会社 フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
JP6233950B2 (ja) * 2012-12-25 2017-11-22 田岡化学工業株式会社 フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
CN103819313A (zh) * 2014-02-20 2014-05-28 常州市正锋光电新材料有限公司 一种双酚芴的制备方法
TWI675822B (zh) * 2018-09-12 2019-11-01 中國石油化學工業開發股份有限公司 一種雙酚芴系化合物之製備方法
JP7134579B2 (ja) * 2019-01-24 2022-09-12 田岡化学工業株式会社 フルオレン骨格を有するビスフェノール化合物の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026349A (ja) * 1998-07-10 2000-01-25 Honshu Chem Ind Co Ltd 9,9−ビス(アルキル置換−4−ヒドロキシフェニル)フルオレン類とその製造方法
JP2001206863A (ja) * 2000-01-25 2001-07-31 Osaka Gas Co Ltd フルオレン化合物及びその製造方法
JP2001206862A (ja) * 2000-01-25 2001-07-31 Osaka Gas Co Ltd フルオレン化合物およびその製造方法
JP2002047227A (ja) * 2002-01-29 2002-02-12 Osaka Gas Co Ltd フルオレン誘導体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3439484A1 (de) * 1984-10-27 1986-05-07 Röhm GmbH, 6100 Darmstadt Verfahren zur herstellung von 9,9-bis-(4-hydroxyphenyl)-fluoren
DE4107242A1 (de) * 1991-03-07 1992-09-10 Ruetgerswerke Ag Verfahren zur herstellung von 9,9-bis-(4-hydroxyphenyl-)fluoren
DE19506055A1 (de) * 1995-02-22 1996-09-12 Ruetgerswerke Ag Verfahren zur Herstellung von Fluorenbisphenol
JPH1045655A (ja) * 1996-07-30 1998-02-17 Taoka Chem Co Ltd フルオレン誘導体の製造方法
JPH1045654A (ja) * 1996-07-30 1998-02-17 Taoka Chem Co Ltd フルオレン誘導体の精製方法
DE19638888A1 (de) * 1996-09-23 1998-03-26 Bayer Ag Cokatalysatoren für die Bisphenolsynthese

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026349A (ja) * 1998-07-10 2000-01-25 Honshu Chem Ind Co Ltd 9,9−ビス(アルキル置換−4−ヒドロキシフェニル)フルオレン類とその製造方法
JP2001206863A (ja) * 2000-01-25 2001-07-31 Osaka Gas Co Ltd フルオレン化合物及びその製造方法
JP2001206862A (ja) * 2000-01-25 2001-07-31 Osaka Gas Co Ltd フルオレン化合物およびその製造方法
JP2002047227A (ja) * 2002-01-29 2002-02-12 Osaka Gas Co Ltd フルオレン誘導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1471045A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248139A (ja) * 2009-04-17 2010-11-04 Taoka Chem Co Ltd 9,9−ビスクレゾールフルオレンの製造法
WO2011016357A1 (ja) * 2009-08-05 2011-02-10 田岡化学工業株式会社 フルオレン誘導体の非晶質形態およびその製造方法
JP5568558B2 (ja) * 2009-08-05 2014-08-06 田岡化学工業株式会社 フルオレン誘導体の非晶質体およびその製造方法
WO2014073559A1 (ja) * 2012-11-07 2014-05-15 三菱瓦斯化学株式会社 ポリホルマール樹脂共重合体及び製造方法
US9321887B2 (en) 2012-11-07 2016-04-26 Mitsubishi Gas Chemical Company, Inc. Polyformal resin copolymer and method for producing the same
JP2020117461A (ja) * 2019-01-24 2020-08-06 田岡化学工業株式会社 フルオレン骨格を有するビスフェノール化合物の製造方法
JP7170374B2 (ja) 2019-01-24 2022-11-14 田岡化学工業株式会社 フルオレン骨格を有するビスフェノール化合物の製造方法

Also Published As

Publication number Publication date
CN1617845A (zh) 2005-05-18
KR20040086311A (ko) 2004-10-08
EP1471045B1 (en) 2014-01-08
JP2002047227A (ja) 2002-02-12
CZ2004812A3 (cs) 2004-11-10
US20070100170A1 (en) 2007-05-03
CZ305728B6 (cs) 2016-02-24
JP3490960B2 (ja) 2004-01-26
KR100846041B1 (ko) 2008-07-11
EP1471045A4 (en) 2006-05-03
EP1471045A1 (en) 2004-10-27
CN1271025C (zh) 2006-08-23

Similar Documents

Publication Publication Date Title
WO2003064358A1 (fr) Procede permettant de produire un derive de fluorene
JP4033682B2 (ja) ビスフェノールフルオレン類の製造方法
US8841491B2 (en) Method for producing fluorene derivative
US8445731B2 (en) Process for producing bisphenol compound
KR20060130167A (ko) 황 함량이 감소된 비스페놀 a의 제조 방법
JP3934182B2 (ja) イオン交換樹脂を使用してトリス(ヒドロキシフェニル)化合物を製造する方法
TWI545109B (zh) 4-醯基芳烷基苯酚及其衍生物
US20050176918A1 (en) Production of bisphenol a with reduced isomer formation
KR100843003B1 (ko) 비스페놀 a의 제조방법
JP2008528620A (ja) 1,1,1−トリス(4−ヒドロキシフェニル)アルカンの製造法
JP5054299B2 (ja) フルオレン誘導体の製造方法
JP5062856B2 (ja) 9,9−ビスクレゾールフルオレンの製造法
JP4861128B2 (ja) 9,9−ビス(4−ヒドロキシフェニル)フルオレン類の連続製造方法
US20060004214A1 (en) Methods for preparing 1,1,1-tris(4-hydroxyphenyl)alkanes
JP2010189380A (ja) ビスフェノール化合物の製造方法
JP4871703B2 (ja) 9,9−ビス(4−ヒドロキシフェニル)フルオレン類の包接結晶を利用した連続製造方法
JP5471392B2 (ja) ピリジルエタンチオール化合物の製造方法
JP2011121898A (ja) ピリジルエタンチオール化合物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN CZ KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PV2004-812

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2002710363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047011636

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028277023

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002710363

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2004-812

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2007100170

Country of ref document: US

Ref document number: 10501890

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10501890

Country of ref document: US