Nothing Special   »   [go: up one dir, main page]

WO2002007227A1 - Light-receiving device and photodetector comprising light-receiving device - Google Patents

Light-receiving device and photodetector comprising light-receiving device Download PDF

Info

Publication number
WO2002007227A1
WO2002007227A1 PCT/JP2001/005963 JP0105963W WO0207227A1 WO 2002007227 A1 WO2002007227 A1 WO 2002007227A1 JP 0105963 W JP0105963 W JP 0105963W WO 0207227 A1 WO0207227 A1 WO 0207227A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
demultiplexed
photodetector
intensity
receiving element
Prior art date
Application number
PCT/JP2001/005963
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Tagami
Kenichi Nakama
Original Assignee
Nippon Sheet Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co., Ltd. filed Critical Nippon Sheet Glass Co., Ltd.
Priority to EP01947946A priority Critical patent/EP1233459A1/en
Priority to CA002385084A priority patent/CA2385084A1/en
Priority to KR1020027003462A priority patent/KR20020037050A/en
Publication of WO2002007227A1 publication Critical patent/WO2002007227A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02024Position sensitive and lateral effect photodetectors; Quadrant photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Definitions

  • the present invention provides a light-receiving element that can continuously detect light intensity and the position of the center of gravity of a spectrum in a long wavelength band (for example, a 1.3 to 5.55 m band) used in the optical communication field.
  • the present invention also relates to a photodetector using such a light receiving element, and further to an optical demultiplexer using the photodetector. Background technology
  • the light condensed by a condenser lens is reflected by a mirror, the reflected light is demultiplexed by a diffraction grating, and the demultiplexed light is detected by a photodetector.
  • An instrument is known (for example, a polychrome overnight photometric system sold by Shimadzu Corporation, model number PSS—100).
  • the photodetector used in the optical demultiplexer is a light receiving element array, and is used as a spectrum monitor of the wavelength.
  • the spectrum of one wavelength is divided by a plurality of (for example, five) light receiving elements, and the position of the center of gravity of the light intensity is monitored. Determined by pitch.
  • the position of the center of gravity of the light intensity refers to the position of the center of gravity of the spectrum distribution because the signal light of each wavelength has a spectrum distribution.
  • the surface of a high-resistance Si substrate i-layer
  • a P-type resistance layer is provided
  • an n-type layer is provided on the back surface
  • an opposing electrode is provided on the p-type resistance layer.
  • the conventional semiconductor position detector uses the Si substrate as described above.
  • semiconductor position detectors using Si substrates have poor sensitivity in the long wavelength band for optical communication. Therefore, when a conventional semiconductor position detector is used as the light receiving element of the optical demultiplexer, it is difficult to detect the position of the center of gravity of the light intensity for light in a long wavelength band. Disclosure of the invention
  • An object of the present invention is to provide a light receiving element used for a photodetector of an optical demultiplexer, which can easily detect the position of the center of gravity of light intensity in a long wavelength band for optical communication. It is here.
  • Another object of the present invention is to provide a photodetector of an optical demultiplexer using such a light receiving element.
  • Still another object of the present invention is to provide an optical demultiplexer using such a photodetector, which has improved resolution.
  • a III-V group having good sensitivity in a long wavelength band.
  • a semiconductor position detector made of a semiconductor compound material is used.
  • a first aspect of the present invention is a light-receiving element, comprising: a layer made of a group III-V compound semiconductor; a first conductivity type resistive layer provided on a surface of the layer; A second conductivity type substrate opposite to the first conductivity type provided on the back surface; and a few opposed faces provided on the resistance layer. And a pair of electrodes.
  • a second aspect of the present invention is a photodetector for detecting the intensity of each demultiplexed light demultiplexed from a signal light in which a plurality of wavelengths are multiplexed and the position of its center of gravity.
  • An array of one or more light receiving elements can be used.
  • a third aspect of the present invention is an optical demultiplexer that demultiplexes a signal light that has been wavelength-division multiplexed and transmitted, the optical means for demultiplexing the signal light, and the demultiplexed light demultiplexed by the optical means.
  • a photodetector for receiving light For this photodetector, a photodetector configured by arranging the aforementioned light receiving elements is used.
  • FIG. 1A is a plan view showing one embodiment of the light receiving element of the present invention for monitoring one wavelength.
  • FIG. 1B is a cross-sectional view taken along the line XY of FIG. 1A.
  • FIG. 2 is a diagram showing a configuration of a circuit for performing position measurement using an output current from a light receiving element.
  • FIG. 3 is a diagram showing a time-division driving type photodetector.
  • FIG. 4 is a diagram illustrating a photodetector that detects the intensity of the demultiplexed light and the position of the center of gravity thereof.
  • FIG. 5 is a plan view of the photodetector shown in FIG.
  • FIG. 6 is a diagram illustrating another example of the photodetector that detects the intensity of the demultiplexed light and the position of the center of gravity.
  • FIG. 7 is a diagram showing one embodiment of the optical demultiplexer of the present invention.
  • FIG. 8 is a diagram for explaining the configuration for detecting the center of gravity of the light intensity of each of the k wavelengths of the C band and the k 2 wavelengths of the L band.
  • FIG. 4 is a diagram showing an example in which the same number of light receiving elements are integrated in two rows on a semiconductor chip. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1A and 1B show a light-receiving element 8 for monitoring one wavelength, which is an embodiment of the light-receiving element of the present invention.
  • 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along the line XY of FIG. 1A.
  • an InGaAs layer (i-layer) 12 and a p-type InP layer 14 are laminated on an n-type InP substrate 10.
  • Electrodes 16 a and 16 3 ⁇ 4 are formed on both ends of the surface of the p-type layer 14, and electrodes (not shown) are formed on the back surface of the n-type substrate 10.
  • the basic operation of the light receiving element 8 will be described. Supodzu bets light incident on the surface of the light receiving element is photoelectrically converted, so flows toward the surface of the p-type layer 1 4 to electrodes 1 6 a, 1 6 b photocurrent, current corresponding to the distance electrode output from the 1 6 a, 1 6 b. Photocurrent I generated at the incident position of the light is split so as inversely proportional to the resistance value to each of the electrodes 1 6 a, 1 6 b. The distance between the electrodes 1 6 a, 1 6 b to L ab, the distance to the entrance position of the light from the electrode 1 6 a a L a.
  • the electrode 1 6 a, 1 current from 6 b I a, I b is expressed by the following equation.
  • I a IX (L ab -L a ) / L ab (1)
  • I n having high sensitivity in a long wavelength band for optical communication is used. Since a GaAs-based material is used, high-sensitivity position detection is possible even in a long wavelength band, where the sensitivity of the conventional Si-based system is insufficient.
  • InGaAs-based materials include III-V compound semiconductors such as GaAs, AlGaAs, InAs, InGaAsP, and the like. Can also be used. In the infrared region, Ge can also be used. Further, since the sum of the currents I a and I b becomes photocurrent I, the intensity of the incident light from the optical current I can be monitored.
  • Figure 2 shows a block diagram of a circuit which performs position measurement using a ⁇ Ka current I a and I b from the electrode 1 6 a, 1 6 b of the light receiving element 8.
  • adder 3 After amplifying the output current I a and I b in preamp 1, 2, adder 3, performs addition and subtraction by the subtracter 4, divided by the divider 5 (I a - I b) / (I a + I When b ) is obtained, the light incident position can be measured from equation (4).
  • FIG. 2 is shown a method of detecting in (4), (3) and this for obtaining the division I a / I b by equation Ru can light incidence position also measuring child.
  • FIG. 3 shows a photodetector 20 for monitoring such demultiplexed N wavelengths i, ⁇ 2 ,..., ⁇ ⁇ .
  • the structure of the photodetector 20 is basically the same as the structure of the light receiving element 8 shown in FIG. 1, but the light receiving section is configured to be large in order to receive all the demultiplexed light. It has been.
  • a signal light containing ⁇ time-divided wavelengths is split into ⁇ pieces by a diffraction grating 22. People i, human 2 wavelengths respectively, ..., demultiplexed light of e N is incident on the photodetector 2 0.
  • the photodetector 20 Since the demultiplexed light is incident on the photodetector 20 in a time-division manner, the photodetector is driven by dividing the time into N pieces according to the timing of the incidence of the demultiplexed light. In this way, the respective light intensity centroids of the N demultiplexed lights are Can be detected. In addition, the intensities of the N demultiplexed lights can be detected from the respective photocurrents as described in FIG.
  • FIG. 4 shows the photodetector 30 for monitoring the demultiplexed N wavelengths, person 2 ,..., ⁇ ⁇ .
  • This photodetector 30 is composed of ⁇ ⁇ light receiving elements, D 2 ,..., D N arranged one-dimensionally.
  • Each light receiving element is the light receiving element described in FIG.
  • FIG. 5 shows a plan view of the photodetector 30.
  • Each light receiving element, the electrode 1 6 a, 1 6 b are arranged side by side in the arrangement direction.
  • the signal light including N wavelengths is split into N light beams by the diffraction grating 22 and is incident on the N light receiving elements, respectively.
  • the position of the center of gravity can be detected.
  • the intensity of each of the N pieces of demultiplexed light is detected from the photocurrent of each light receiving element as described in FIG.
  • a signal light in which N wavelengths are multiplexed is demultiplexed into N light by a diffraction grating or the like.
  • a photodetector that detects the intensity of each demultiplexed light and the position of its center of gravity will be described.
  • FIG. 6 is a diagram for explaining this photodetector.
  • the signal light is split into two by a half mirror 40, and one signal light is split into N by a diffraction grating 42, and the position of the center of gravity of each light intensity is shown in Fig. 5.
  • Detection is performed by the first photodetector 30 described.
  • the other separated signal light is split into N beams by the diffraction grating 44, and is divided into N photo diodes ⁇ ⁇ ⁇ , PD 2 ,..., PD N arranged at each focal position.
  • the second light detector 46 detects the intensities of the N branched lights.
  • the second light detector 46 is more than the first light detector 30. Since the light receiving part can be made small, noise can be reduced and it is suitable for detecting the intensity of weak incident light.
  • Fig. 7 shows an optical communication system of the wavelength division multiplexing transmission system, in which the wavelength division multiplexed light is demultiplexed for each wavelength at the receiving side, and the light intensity of each demultiplexed light and the position of its center of gravity are detected.
  • the available optical splitters are shown.
  • This optical demultiplexer is composed of one input fiber 50, a collimator lens 52, a diffraction grating 54, and a photodetector 56. Assembled using tubular members.
  • the input fiber 50 is fixed to the fiber fixing window 60 on the end face of the transparent fiber mounting tube 58 by a fiber connecting portion 62.
  • the lens 52 is fixed to the end of the intermediate tube 64.
  • the diffraction grating 54 is fixed to a diffraction grating fixing window 68 on the end face of the diffraction grating mounting tube 66.
  • a fiber mounting tube 58 and a diffraction grating mounting tube 66 are provided at both ends of the intermediate tube 64 so as to be movable in the optical axis direction and rotate around the optical axis. Activate alignment is possible as much as possible.
  • the light from the input fiber 50 is demultiplexed by the diffraction grating 54 through the collimator lens 52 and then collimated again.
  • the light converged through the lens 52 is detected by the photodetector 56.
  • the photodetector 56 can detect the position of the light intensity center of gravity of the demultiplexed light and the incident intensity of the demultiplexed light. Like a detector, the light that has been wavelength-division multiplexed is split into two by a half mirror, the position of the light intensity center of gravity is determined by the first photodetector 30, and A configuration for detecting light intensity can also be used.
  • Example 6 the light that has been wavelength-division multiplexed is split into two by a half mirror, the position of the light intensity center of gravity is determined by the first photodetector 30, and A configuration for detecting light intensity can also be used.
  • light wavelength is multiplexed ki pieces of C-band (ki is an integer of 1 or more) the wavelength of the two k of L-band (k 2 is an integer of 1 or more) Is divided into ki band C and k node L 2 by the diffraction grating 70, and the first photodetector composed of ki band light receiving elements for the C band (Not shown) and a second photodetector (not shown) consisting of k band receiving elements for the L band, the light intensity centroid position of each of the (kt + ks) demultiplexed lights is determined. To detect.
  • the first photodetector for the C band and the second photodetector for the L band are provided on separate semiconductor chips, it is difficult to match the relative positions and parallelism between the semiconductor chips with high accuracy Therefore, it is preferable to integrate them on a single semiconductor chip.
  • the demultiplexed light of the C-band and L-band can be condensed into two adjacent rows. it can.
  • the first and second photodetectors arranged in two rows are installed at the focusing position.
  • the light in the C band enters the diffraction grating at an angle closer to the normal direction of the diffraction grating than the light in the L band.
  • the number of light receiving elements to be installed on one semiconductor chip is k!
  • the number is not limited to two and k 2 for L band, and the same number may be provided in two rows. For example, place the ki-number of light receiving elements in two rows during ki ⁇ k 2, when two ⁇ k is disposed k 2 pieces of light receiving elements in two rows, the light receiving element of x 2 columns or k 2 X 2 rows of light receiving elements are formed on one semiconductor chip.
  • FIG. 9 shows an example in which the same number of light receiving elements 8 are integrated in two rows on one semiconductor chip 72.
  • the photodetector having such a configuration can be used for the optical demultiplexer shown in FIG. Industrial applicability
  • the light receiving element is made of a III-V compound semiconductor material having high sensitivity in a long wavelength band, it can be used for a long wavelength band spectrum used in the optical communication field.
  • the intensity and its center of gravity can be detected continuously. Therefore, the resolution can be improved as compared with the conventional light receiving element.
  • a photodetector using such a light receiving element can be realized, and further, by using such a light detector. Therefore, an optical demultiplexer having excellent resolution can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

A light receiving device for readily determining the center of gravity of the light intensity in a long wavelength band for optical communication. An InGaAs layer (i layer) and a p-type InP layer are formed on an n-type InP substrate, and electrodes are formed on the rear surface of the n-type substrate and at the opposite ends on the surface of the p-type layer. A spot light impinging on the surface is transduced photoelectrically to generate a photocurrent flowing laterally on the surface of the p-type layer, and a current corresponding to the distance is outputted from the electrodes at the opposite ends. The center of gravity of the light intensity is determined by calculation based on the values of the currents outputted from the electrodes at the opposite ends, and the light intensity is determined from the sum of the currents outputted from the electrodes at the opposite ends. Furthermore, a photodetector for measuring the light intensity and the center of gravity of each light produced by demultiplexing a wavelength multiplexed signal light is constituted using the light receiving device.

Description

明 細 書  Specification
受光素子および受光素子を用いた光検出器 技 術 分 野  Photodetectors and photodetectors using photodetectors
本発明は、 光通信分野で用いられる長波長帯 (例えば 1 . 3 〜 1 5 5〃 m帯) のスぺク トルに対して、 光強度およびその重心位置を 連続して検出できる受光素子、 およびこのような受光素子を用いた 光検出器、 さらにはこの光検出器を用いた光分波器に関する。 背 景 技 術  The present invention provides a light-receiving element that can continuously detect light intensity and the position of the center of gravity of a spectrum in a long wavelength band (for example, a 1.3 to 5.55 m band) used in the optical communication field. The present invention also relates to a photodetector using such a light receiving element, and further to an optical demultiplexer using the photodetector. Background technology
光分波器として、 集光レンズで集光された光をミラ一で反射し、 反射された光を回折格子で分波し、 分波した分波光を光検出器で検 出する光分波器が知られている (例えば、 島津製作所から販売され ているポリ クロメ一夕測光システム、 型番 P S S — 1 0 0 ) 。 この 光分波器に用いられる光検出器は、 受光素子アレイであ り、 波長の スぺク トルモニタと して用いられている。  As an optical demultiplexer, the light condensed by a condenser lens is reflected by a mirror, the reflected light is demultiplexed by a diffraction grating, and the demultiplexed light is detected by a photodetector. An instrument is known (for example, a polychrome overnight photometric system sold by Shimadzu Corporation, model number PSS—100). The photodetector used in the optical demultiplexer is a light receiving element array, and is used as a spectrum monitor of the wavelength.
このような光検出器では、 1つの波長のスぺク トルを複数個 (例 えば 5個) の受光素子で分割して、 その光強度の重心位置をモニタ するので、 分解能が受光素子の配列ピッチで決まる。 このよう に、 受光素子の配列ピッチに対応した分解能しか得られないため、 従来 の光検出器ではさらに分解能を向上させることが困難であった。 な お、 光強度の重心位置とは、 各波長の信号光にはスぺク トル分布が あるので、 そのスぺク トル分布の重心となる位置をいう ものとする 本出願の発明者は、 このような問題に対処するため光分波器の検 出器の受光素子として、 光点の位置を検出できる半導体位置検出器 を用いることを考えた。 半導体位置検出器は、 前述した受光素子ァ レイ と異な り、 非分割型の素子であるため、 光強度の重心位置を空 間的に連続して検出できるからである。  In such a photodetector, the spectrum of one wavelength is divided by a plurality of (for example, five) light receiving elements, and the position of the center of gravity of the light intensity is monitored. Determined by pitch. As described above, only a resolution corresponding to the arrangement pitch of the light receiving elements can be obtained, so that it was difficult to further improve the resolution with the conventional photodetector. The position of the center of gravity of the light intensity refers to the position of the center of gravity of the spectrum distribution because the signal light of each wavelength has a spectrum distribution. To cope with such a problem, we considered using a semiconductor position detector that can detect the position of the light spot as the light receiving element of the detector of the optical demultiplexer. This is because the semiconductor position detector is a non-segmented element, unlike the above-described light receiving element array, and therefore can continuously detect the position of the center of gravity of the light intensity in a spatially continuous manner.
従来の半導体位置検出器と して、 高抵抗 S i基板 ( i層) の表面 に P型抵抗層を、 裏面に n型層を設け、 p型抵抗層の上に対向する 電極を設けたものが知られている。 As a conventional semiconductor position detector, the surface of a high-resistance Si substrate (i-layer) It is known that a P-type resistance layer is provided, an n-type layer is provided on the back surface, and an opposing electrode is provided on the p-type resistance layer.
このような半導体位置検出器では、 表面層は p n接合を形成する ので、 P型抵抗層に光が入射する と、 光電効果によ り光電流を生成 する。 光の入射位置で発生した光電流は、 それぞれの電極までの抵 抗値に逆比例するように分割されるので、 各電極から取り出される 電流によ り光の入射位置を検出することができる。  In such a semiconductor position detector, since the surface layer forms a pn junction, when light enters the P-type resistance layer, a photocurrent is generated by the photoelectric effect. Since the photocurrent generated at the light incident position is divided so as to be inversely proportional to the resistance value to each electrode, the light incident position can be detected by the current extracted from each electrode.
従来の半導体位置検出器は、 前述したように S i基板を用いてい る。 しかし、 S i基板を用いた半導体位置検出器は、 光通信用の長 波長帯での感度が良くない。 したがって、 従来の半導体位置検出器 を光分波器の受光素子に用いた場合には、 長波長帯の光に対して光 強度の重心位置を検出するのが困難である。 発 明 の 開 示  The conventional semiconductor position detector uses the Si substrate as described above. However, semiconductor position detectors using Si substrates have poor sensitivity in the long wavelength band for optical communication. Therefore, when a conventional semiconductor position detector is used as the light receiving element of the optical demultiplexer, it is difficult to detect the position of the center of gravity of the light intensity for light in a long wavelength band. Disclosure of the invention
本発明の目的は、 光分波器の光検出器に用いられる受光素子であ つて、 光通信用の長波長帯の光強度の重心位置を容易に検出するこ とのできる受光素子を提供するこ とにある。  An object of the present invention is to provide a light receiving element used for a photodetector of an optical demultiplexer, which can easily detect the position of the center of gravity of light intensity in a long wavelength band for optical communication. It is here.
本発明の他の目的は、 このような受光素子を用いた光分波器の光 検出器を提供することにある。  Another object of the present invention is to provide a photodetector of an optical demultiplexer using such a light receiving element.
本発明のさらに他の目的は、 このような光検出器を用いた光分波 器であって、 分解能を向上させた光分波器を提供することにある。  Still another object of the present invention is to provide an optical demultiplexer using such a photodetector, which has improved resolution.
本発明によれば、 受光素子と して、 光通信用の長波長帯 (例えば 1 . 5 5〃m帯) のスペク トルをモニタするために、 長波長帯で感 度の良い III 一 V族半導体化合物材料による半導体位置検出器を 用いる。  According to the present invention, as a light receiving element, in order to monitor a spectrum in a long wavelength band (for example, 1.55 m band) for optical communication, a III-V group having good sensitivity in a long wavelength band. A semiconductor position detector made of a semiconductor compound material is used.
本発明の第 1 の態様は、 受光素子であ り、 III — V族化合物半導 体よ り なる層と、 前記層の表面上に設けられた第 1導電型の抵抗層 と、 前記層の裏面上に設けられた、 前記第 1の導電型とは反対の第 2導電型の基板と、 前記抵抗層の上に設けられた、 対向する少な く とも一対の電極とを備えている。 A first aspect of the present invention is a light-receiving element, comprising: a layer made of a group III-V compound semiconductor; a first conductivity type resistive layer provided on a surface of the layer; A second conductivity type substrate opposite to the first conductivity type provided on the back surface; and a few opposed faces provided on the resistance layer. And a pair of electrodes.
本発明の第 2の態様は、 複数の波長が多重された信号光から分波 された各分波光の強度とその重心位置とを検出する光検出器である このような光検出器に、 上記受光素子を、 1個以上配列したものを 用いるこ とができ る。  A second aspect of the present invention is a photodetector for detecting the intensity of each demultiplexed light demultiplexed from a signal light in which a plurality of wavelengths are multiplexed and the position of its center of gravity. An array of one or more light receiving elements can be used.
本発明の第 3の態様は、 波長多重伝送されてきた信号光を分波す る光分波器であ り、 信号光を分波する光学手段と、 光学手段で分波 された分波光を受光する光検出器とを備えている。 この光検出器に は、 前述した受光素子を配列して構成された光検出器が用いられる 図面の簡単な説明  A third aspect of the present invention is an optical demultiplexer that demultiplexes a signal light that has been wavelength-division multiplexed and transmitted, the optical means for demultiplexing the signal light, and the demultiplexed light demultiplexed by the optical means. And a photodetector for receiving light. For this photodetector, a photodetector configured by arranging the aforementioned light receiving elements is used.
図 1 Aは、 1個の波長をモニタする本発明の受光素子の一実施例 を示す平面図である。  FIG. 1A is a plan view showing one embodiment of the light receiving element of the present invention for monitoring one wavelength.
図 1 Bは、 図 1 Aの X— Y線断面図である。  FIG. 1B is a cross-sectional view taken along the line XY of FIG. 1A.
図 2は、 受光素子からの出力電流を用いて位置計測を行う回路の 構成を示す図である。  FIG. 2 is a diagram showing a configuration of a circuit for performing position measurement using an output current from a light receiving element.
図 3は、 時分割駆動型の光検出器を示す図である。  FIG. 3 is a diagram showing a time-division driving type photodetector.
図 4は、 分波光の強度およびその重心位置を検出する光検出器を 示す図である。  FIG. 4 is a diagram illustrating a photodetector that detects the intensity of the demultiplexed light and the position of the center of gravity thereof.
図 5 は、 図 4で示した光検出器の平面図である。  FIG. 5 is a plan view of the photodetector shown in FIG.
図 6は、 分波光の強度および重心位置を検出する光検出器の他の 例を示す図である。  FIG. 6 is a diagram illustrating another example of the photodetector that detects the intensity of the demultiplexed light and the position of the center of gravity.
図 7は、 本発明の光分波器の一実施例を示す図である。  FIG. 7 is a diagram showing one embodiment of the optical demultiplexer of the present invention.
図 8 は、 Cバン ドの k 個の波長と Lバン ドの k 2 個の波長のそ れそれの光強度の重心位置を検出する構成を説明するための図であ 図 9 は、 1つの半導体チップに同じ数の受光素子を 2列で集積化 した例を示す図である。 発明を実施するための最良の形態 Fig. 8 is a diagram for explaining the configuration for detecting the center of gravity of the light intensity of each of the k wavelengths of the C band and the k 2 wavelengths of the L band. FIG. 4 is a diagram showing an example in which the same number of light receiving elements are integrated in two rows on a semiconductor chip. BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1  Example 1
図 1 A , 図 1 Bに、 本発明の受光素子の一実施例である、 1個の 波長をモニタする受光素子 8 を示す。 図 1 Aは平面図、 図 1 Bは図 1 Aの X— Y線断面図である。 この受光素子 8によれば、 n型 I n P基板 1 0上に、 I n G a A s層 ( i層) 1 2、 p型 I n P層 1 4 を積層している。 p型層 1 4の表面の両端に電極 1 6 a , 1 6 ¾ を、 n型基板 1 0の裏面に電極 (図示せず) を、 形成する。 1A and 1B show a light-receiving element 8 for monitoring one wavelength, which is an embodiment of the light-receiving element of the present invention. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line XY of FIG. 1A. According to the light receiving element 8, an InGaAs layer (i-layer) 12 and a p-type InP layer 14 are laminated on an n-type InP substrate 10. Electrodes 16 a and 16 ¾ are formed on both ends of the surface of the p-type layer 14, and electrodes (not shown) are formed on the back surface of the n-type substrate 10.
この受光素子 8の基本動作を説明する。 受光素子の表面に入射し たスポヅ ト光が光電変換され、 光電流として p型層 1 4の表面を電 極 1 6 a , 1 6 b に向かって流れるので、 その距離に応じた電流が 電極 1 6 a , 1 6 b から出力される。 光の入射位置で発生した光電 流 I は、 それぞれの電極 1 6 a , 1 6 b までの抵抗値に逆比例する ように分割される。 電極 1 6 a , 1 6 b 間の距離を L ab、 電極 1 6 a からの光の入射位置までの距離を L a とする。 The basic operation of the light receiving element 8 will be described. Supodzu bets light incident on the surface of the light receiving element is photoelectrically converted, so flows toward the surface of the p-type layer 1 4 to electrodes 1 6 a, 1 6 b photocurrent, current corresponding to the distance electrode output from the 1 6 a, 1 6 b. Photocurrent I generated at the incident position of the light is split so as inversely proportional to the resistance value to each of the electrodes 1 6 a, 1 6 b. The distance between the electrodes 1 6 a, 1 6 b to L ab, the distance to the entrance position of the light from the electrode 1 6 a a L a.
P型層 1 4の抵抗が均一である と、 電極 1 6 a , 1 6 b からの電 流 I a , I b は次式で表される。 If the resistance of the P-type layer 1 4 is uniform, the electrode 1 6 a, 1 current from 6 b I a, I b is expressed by the following equation.
I a = I X ( L ab- L a ) / L ab ( 1 ) I a = IX (L ab -L a ) / L ab (1)
I b = I -^ L a / 1 ( 2 ) I b = I-^ L a / 1 (2)
ここで、 電流 I a , I b の比、 または 和と差の比を求めると、 Here, when the ratio of the currents I a and I b or the ratio of the sum and the difference is obtained,
ェ a I b 二 L L a ― 1 ( 3 ) A I b 2 LL a ― 1 (3)
( I a - I b ) / ( I a + I b ) (I a - I b) / (I a + I b)
= 1 - ( 2 L a /L ab ) ( 4 ) = 1-(2 L a / L ab) (4)
が得られる。 このよう に、 電流 I a , I b の比、 または、 和と差の 比は、 光強度およびその変動に無関係な値となる。 Is obtained. Thus, current I a, the ratio of I b or the ratio of the sum and difference, the light intensity and independent of the value in the variation.
したがって、 ( 3 ) または ( 4 ) 式の左辺の比が実測できれば、 距離 L a を求めるこ とができる。 したがって、 光強度の変化とは無 関係に、 入射光の正確な位置検出ができる。 Therefore, it is the this to obtain the (3) or (4) of if the ratio of the left side is possible measured, the distance L a. Therefore, accurate position detection of incident light can be performed irrespective of a change in light intensity.
本実施例の受光素子では、 光通信用の長波長帯で感度の高い I n G aA s系の材料を用いているので、 従来の S i系では感度が不十 分であった長波長帯でも高感度位置検出が可能となる。 なお、 I n G a A s系の材料と しては、 III —V族の化合物半導体、 例えば G a A s , A l G a A s , I nA s , I n G a A s Pなどを用いるこ ともできる。 また、 赤外域では、 G eを用いることもできる。 また、 電流 I a と Ib との和が光電流 Iになるので、 光電流 Iから入射光 の強度もモニタできる。 In the light receiving element of the present embodiment, I n having high sensitivity in a long wavelength band for optical communication is used. Since a GaAs-based material is used, high-sensitivity position detection is possible even in a long wavelength band, where the sensitivity of the conventional Si-based system is insufficient. Examples of InGaAs-based materials include III-V compound semiconductors such as GaAs, AlGaAs, InAs, InGaAsP, and the like. Can also be used. In the infrared region, Ge can also be used. Further, since the sum of the currents I a and I b becomes photocurrent I, the intensity of the incident light from the optical current I can be monitored.
図 2は、 受光素子 8の電極 1 6 a , 1 6 b からの岀カ電流 I a と I b を用いて位置計測を行う回路の構成図を示す。 出力電流 I a と I b をプリ アンプ 1, 2で増幅した後、 加算器 3 , 減算器 4で加算 および減算を行い、 除算器 5で除算 ( I a — I b ) / ( I a + I b ) を求めると、 ( 4 ) 式から光入射位置を計測できる。 Figure 2 shows a block diagram of a circuit which performs position measurement using a岀Ka current I a and I b from the electrode 1 6 a, 1 6 b of the light receiving element 8. After amplifying the output current I a and I b in preamp 1, 2, adder 3, performs addition and subtraction by the subtracter 4, divided by the divider 5 (I a - I b) / (I a + I When b ) is obtained, the light incident position can be measured from equation (4).
なお、 図 2は ( 4 ) 式での検出方法を示したが、 ( 3 ) 式による 除算 I a / Ib を求めるこ とで、 光入射位置を計測するこ ともでき る。 Note that FIG. 2 is shown a method of detecting in (4), (3) and this for obtaining the division I a / I b by equation Ru can light incidence position also measuring child.
実施例 2  Example 2
N個に時分割された波長が多重された信号光を、 回折格子などで N個に分波し、 それぞれの重心位置および強度を検出する時分割駆 動型の光検出器の一例について説明する。  An example of a time-division driven photodetector that divides N time-division multiplexed signal light into N light using a diffraction grating and detects the position and intensity of each center of gravity will be described. .
図 3は、 このよう な分波された N個の波長人 i , λ2 , …, λΝ をモニタする場合の光検出器 2 0を示す。 この光検出器 2 0の構造 は、 基本的には図 1に示した受光素子 8の構造に同じであるが、 す ベての分波光を受光するため、 受光部は大き く なるように構成され ている。 図 3において、 Ν個に時分割された波長が含まれる信号光 を、 回折格子 2 2で Ν個に分波する。 波長がそれぞれ人 i , 人 2 , ···, え N の分波光が光検出器 2 0に入射する。 FIG. 3 shows a photodetector 20 for monitoring such demultiplexed N wavelengths i, λ 2 ,..., Λ } . The structure of the photodetector 20 is basically the same as the structure of the light receiving element 8 shown in FIG. 1, but the light receiving section is configured to be large in order to receive all the demultiplexed light. It has been. In FIG. 3, a signal light containing Ν time-divided wavelengths is split into Ν pieces by a diffraction grating 22. People i, human 2 wavelengths respectively, ..., demultiplexed light of e N is incident on the photodetector 2 0.
光検出器 2 0には、 分波光が時分割で入射されるので、 光検出器 は分波光の入射のタイ ミ ングに合わせて、 時間を N個に分割して駆 動する。 このよう にして、 N個の分波光のそれぞれの光強度重心点 を検出できる。 また、 N個の分波光の強度は、 図 1 で説明したよう にそれぞれの光電流から検出できる。 Since the demultiplexed light is incident on the photodetector 20 in a time-division manner, the photodetector is driven by dividing the time into N pieces according to the timing of the incidence of the demultiplexed light. In this way, the respective light intensity centroids of the N demultiplexed lights are Can be detected. In addition, the intensities of the N demultiplexed lights can be detected from the respective photocurrents as described in FIG.
実施例 3  Example 3
N個の波長が多重された信号光を、 回折格子などで N個に分波し それぞれの分波光の強度とその重心位置を検出する光検出器の一例 について説明する。  An example of a photodetector that divides signal light in which N wavelengths are multiplexed into N light by a diffraction grating and detects the intensity of each divided light and the position of its center of gravity will be described.
図 4は、 分波された N個の波長え , 人 2 , …, λ Ν をモニタす る場合の光検出器 3 0 を示す。 この光検出器 3 0は、 1次元に配列 された Ν個の受光素子 , D 2 , ···, D N よ り構成される。 各受 光素子は、 図 1 で説明した受光素子である。 図 5 に、 光検出器 3 0 の平面図を示す。 各受光素子は、 電極 1 6 a , 1 6 b が配列方向に 並ぶように配置される。 FIG. 4 shows the photodetector 30 for monitoring the demultiplexed N wavelengths, person 2 ,..., Λ } . This photodetector 30 is composed of 受 光 light receiving elements, D 2 ,..., D N arranged one-dimensionally. Each light receiving element is the light receiving element described in FIG. FIG. 5 shows a plan view of the photodetector 30. Each light receiving element, the electrode 1 6 a, 1 6 b are arranged side by side in the arrangement direction.
本実施例によれば、 N個の波長が含まれる信号光を、 回折格子 2 2で N個に分波し、 N個の受光素子にそれぞれ入射させるので、 N 個の各分波光の光強度重心位置を検出できる。 また、 N個の各分波 光の強度は、 図 1 で説明したように各受光素子の光電流から検出で さる。  According to the present embodiment, the signal light including N wavelengths is split into N light beams by the diffraction grating 22 and is incident on the N light receiving elements, respectively. The position of the center of gravity can be detected. In addition, the intensity of each of the N pieces of demultiplexed light is detected from the photocurrent of each light receiving element as described in FIG.
実施例 4  Example 4
N個の波長が多重された信号光を、 回折格子などで N個に分波し. それぞれの分波光の強度とその重心位置を検出する光検出器の他の 例について説明する。  A signal light in which N wavelengths are multiplexed is demultiplexed into N light by a diffraction grating or the like. Another example of a photodetector that detects the intensity of each demultiplexed light and the position of its center of gravity will be described.
図 6は、 この光検出器を説明するための図である。 この光検出器 では、 信号光をハーフ ミ ラ一 4 0で 2つに分離し、 一方の信号光は 回折格子 4 2で N個に分波して、 それぞれの光強度重心位置を図 5 に記載した第 1 の光検出器 3 0で検出する。 分離したもう一方の信 号光は、 回折格子 4 4で N個に分波し、 各々の焦点位置に配置した N個のフ ォ トダイ オー ド Ρ Γ^ , P D 2 , …, P D N よ りなる第 2 の光検出器 4 6で N個の分波光の強度を検知する。 FIG. 6 is a diagram for explaining this photodetector. In this photodetector, the signal light is split into two by a half mirror 40, and one signal light is split into N by a diffraction grating 42, and the position of the center of gravity of each light intensity is shown in Fig. 5. Detection is performed by the first photodetector 30 described. The other separated signal light is split into N beams by the diffraction grating 44, and is divided into N photo diodes に Γ ^, PD 2 ,…, PD N arranged at each focal position. The second light detector 46 detects the intensities of the N branched lights.
この実施例では、 第 2の光検出器 4 6 は第 1 の光検出器 3 0 よ り も受光部を小型に作製できるので、 ノイズを低減でき、 微弱な入射 光の強度を検知するのに適している。 In this embodiment, the second light detector 46 is more than the first light detector 30. Since the light receiving part can be made small, noise can be reduced and it is suitable for detecting the intensity of weak incident light.
実施例 5  Example 5
実施例 2 または実施例 3の光検出器を用いた本発明の光分波器の 一実施例について説明する。 図 7は、 波長多重伝送方式の光通信シ ステムにおいて、 波長多重伝送されてきた光を受信側で各波長毎に 分波して、 各分波光の光強度およびその重心位置を検出する際に利 用できる光分波器を示す。 この光分波器は、 1本の入力フ ァ イ バ 5 0、 コ リメ一夕 レンズ 5 2、 回折格子 5 4、 および光検出器 5 6 を 構成要素と し、 互いに嵌合する 3個のチューブ状部材を用いて組み 立てられてい る。 入力フ ァ イ ノ 5 0は、 透明のフ ァ イ バ実装用チュ ープ 5 8の端面のファイバ固定用ウィ ン ドウ 6 0にフ ァイバ連結部 6 2によって固定されている。 コ リメ一夕 レンズ 5 2 は、 中間チュ —ブ 6 4の端部に固定されている。 更に回折格子 5 4は、 回折格子 実装用チューブ 6 6の端面の回折格子固定用ウィ ン ドウ 6 8 に固定 されている。 この例では、 中間チューブ 6 4の両端部に、 フ ァイ バ 実装用チューブ 5 8 と回折格子実装用チューブ 6 6 とが外装されて おり、 光軸方向に移動可能で且つ光軸周り に回転可能としてァクテ ィ プアライ メ ン トできるようになつている。  An embodiment of the optical demultiplexer of the present invention using the photodetector of Embodiment 2 or Embodiment 3 will be described. Fig. 7 shows an optical communication system of the wavelength division multiplexing transmission system, in which the wavelength division multiplexed light is demultiplexed for each wavelength at the receiving side, and the light intensity of each demultiplexed light and the position of its center of gravity are detected. The available optical splitters are shown. This optical demultiplexer is composed of one input fiber 50, a collimator lens 52, a diffraction grating 54, and a photodetector 56. Assembled using tubular members. The input fiber 50 is fixed to the fiber fixing window 60 on the end face of the transparent fiber mounting tube 58 by a fiber connecting portion 62. The lens 52 is fixed to the end of the intermediate tube 64. Further, the diffraction grating 54 is fixed to a diffraction grating fixing window 68 on the end face of the diffraction grating mounting tube 66. In this example, a fiber mounting tube 58 and a diffraction grating mounting tube 66 are provided at both ends of the intermediate tube 64 so as to be movable in the optical axis direction and rotate around the optical axis. Activate alignment is possible as much as possible.
このような構成の光分波器では、 入力フ ァイ ク、 5 0からの光をコ リメ一夕 レ ンズ 5 2 を介して回折格子 5 4で分波してから、 再度コ リメ一夕 レンズ 5 2 を介して収束された光を、 光検出器 5 6で検出 してい る。  In the optical demultiplexer having such a configuration, the light from the input fiber 50 is demultiplexed by the diffraction grating 54 through the collimator lens 52 and then collimated again. The light converged through the lens 52 is detected by the photodetector 56.
実施例 2および 3で説明したように、 光検出器 5 6では、 それぞ れの分波光の光強度重心位置および分波光の入射強度を検出できる また、 実施例 4で示した図 6の光検出器のように、 波長多重伝送 されてきた光をハ一フ ミ ラーで 2つに分離し、 第 1の光検出器 3 0 で光強度重心位置を、 第 2の光検出器 4 6で光強度を検出するとい う構成を用いるこ ともできる。 実施例 6 As described in Embodiments 2 and 3, the photodetector 56 can detect the position of the light intensity center of gravity of the demultiplexed light and the incident intensity of the demultiplexed light. Like a detector, the light that has been wavelength-division multiplexed is split into two by a half mirror, the position of the light intensity center of gravity is determined by the first photodetector 30, and A configuration for detecting light intensity can also be used. Example 6
図 8 は、 光通信システムにおいて、 Cバン ドの k i 個 ( k i は 1 以上の整数) の波長と、 Lバン ドの k 2 個 ( k 2 は 1以上の整数) の波長が多重された光を、 回折格子 7 0でそれぞれ Cバン ドの k i 個と、 Lノ ン ドの k 2 個とに分波し、 Cバン ド用の k i 個の受光素 子よ りなる第 1の光検出器 (図示せず) と Lバン ド用の k 2 個の受 素子よ り なる第 2の光検出器 (図示せず) で、 ( k t + k s ) 個の 分波光のそれぞれの光強度重心位置を検出する。 8, in an optical communication system, light wavelength is multiplexed ki pieces of C-band (ki is an integer of 1 or more) the wavelength of the two k of L-band (k 2 is an integer of 1 or more) Is divided into ki band C and k node L 2 by the diffraction grating 70, and the first photodetector composed of ki band light receiving elements for the C band (Not shown) and a second photodetector (not shown) consisting of k band receiving elements for the L band, the light intensity centroid position of each of the (kt + ks) demultiplexed lights is determined. To detect.
Cバン ド用の第 1 の光検出器と Lバン ド用の第 2 の光検出器を 別々の半導体チップで設ける と、 半導体チップ同士の相対位置や平 行度を高精度で合わせることが困難であるので、 1つの半導体チッ プに集積化するこ とが好ま しい。 Cバン ドの光と Lバン ドの光が回 折格子 7 0へ入射する角度を各々適切に選ぶと、 Cバン ドと Lバン ドの分波光を隣接して 2列に集光することができる。 その集光位置 に 2列に配列した第 1および第 2 の光検出器を設置する。 こ こで、 Cバン ドの光の方が Lバン ドの光よ り も、 回折格子の法線方向によ り近い角度で回折格子に入射することになる。  If the first photodetector for the C band and the second photodetector for the L band are provided on separate semiconductor chips, it is difficult to match the relative positions and parallelism between the semiconductor chips with high accuracy Therefore, it is preferable to integrate them on a single semiconductor chip. By appropriately selecting the angles at which the C-band light and the L-band light enter the diffraction grating 70, the demultiplexed light of the C-band and L-band can be condensed into two adjacent rows. it can. The first and second photodetectors arranged in two rows are installed at the focusing position. Here, the light in the C band enters the diffraction grating at an angle closer to the normal direction of the diffraction grating than the light in the L band.
1つの半導体チップに設置する受光素子の個数は、 Cバン ド用の k! 個と Lバン ド用の k 2 個とに限らず、 同数の数を 2列で設置し てもよい。 例えば、 k i ≥ k 2 の際は k i 個の受光素子を 2列に配 置し、 ≤k 2 個の際は k 2 個の受光素子を 2列に配置して、 x 2列の受光素子あるいは k 2 X 2列の受光素子を 1 つの半導体チ ヅプに形成する。 図 9は、 1 つの半導体チヅプ 7 2に同じ数の受光 素子 8 を 2列で集積化した例を示す。 The number of light receiving elements to be installed on one semiconductor chip is k! The number is not limited to two and k 2 for L band, and the same number may be provided in two rows. For example, place the ki-number of light receiving elements in two rows during ki ≥ k 2, when two ≤k is disposed k 2 pieces of light receiving elements in two rows, the light receiving element of x 2 columns or k 2 X 2 rows of light receiving elements are formed on one semiconductor chip. FIG. 9 shows an example in which the same number of light receiving elements 8 are integrated in two rows on one semiconductor chip 72.
本実施例では、 Cバン ド と Lパン ドの 2つのバン ドについて説明 したが、 一般的に k個のバン ドからなる光に対しては、 k列の受光 素子を 2次元的に配列して分波光の検出を行う ことになる。  In the present embodiment, two bands, the C band and the L band, have been described. However, for light consisting of k bands, k rows of light receiving elements are arranged two-dimensionally. Thus, the demultiplexed light is detected.
このような構成の光検出器は、 図 7に示した光分波器に用いるこ とができる。 産業上の利用可能性 The photodetector having such a configuration can be used for the optical demultiplexer shown in FIG. Industrial applicability
本発明によれば、 長波長帯で感度の高い III 一 V族化合物半導 体材料で受光素子を作製しているので、 光通信分野で用いられる長 波長帯のスぺク トルに対しても強度とその重心位置を連続して検出 できる。 したがって、 従来の受光素子に比べて分解能を向上できる また、 本発明によれば、 このような受光素子を用いた光検出器を実 現でき、 さ らにはこのような光検出器を用いて、 優れた分解能を有 する光分波器を実現できる。  According to the present invention, since the light receiving element is made of a III-V compound semiconductor material having high sensitivity in a long wavelength band, it can be used for a long wavelength band spectrum used in the optical communication field. The intensity and its center of gravity can be detected continuously. Therefore, the resolution can be improved as compared with the conventional light receiving element. Further, according to the present invention, a photodetector using such a light receiving element can be realized, and further, by using such a light detector. Therefore, an optical demultiplexer having excellent resolution can be realized.

Claims

請 求 の 範 囲 The scope of the claims
1 . 長波長帯の光の光強度とその重心位置を検出する受光素子であ つて、  1. A light-receiving element that detects the light intensity of the light in the long wavelength band and the position of the center of gravity,
III 一 V族化合物半導体よ りなる層と、  A layer composed of a III-V compound semiconductor;
前記層の表面上に設けられた第 1導電型の抵抗層と、  A first conductivity type resistance layer provided on the surface of the layer,
前記層の裏面上に設けられた、 前記第 1の導電型とは反対導電型 の第 2導電型の基板と、  A second conductivity type substrate provided on the back surface of the layer and having a conductivity type opposite to the first conductivity type;
前記抵抗層の上に設けられた、 対向する少な く とも一対の電極と を備えるこ とを特徴とする受光素子。  A light-receiving element, comprising: at least a pair of electrodes facing each other provided on the resistance layer.
2. 前記 III — V族化合物半導体は、 I n G a A s , G a A s , A l G a A s , I nA s , I n G aA s Pよ りなる群から選ばれる ことを特徴とする請求項 1記載の受光素子。 2. The III-V compound semiconductor is selected from the group consisting of InGaAs, GaAs, AlGaAs, InAs, and InGaAsP. The light receiving element according to claim 1, wherein
3. 前記 III — V族化合物半導体は、 I n G a A sであるこ とを 特徴とする請求項 2記載の受光素子。 . 3. The light receiving device according to claim 2, wherein the III-V compound semiconductor is InGaAs. .
4. 前記第 1導電型が p型であ り、 前記第 2導電型が n型である と き、 前記第 1導電型の抵抗層は、 p型 Ι η Ρ層であ り、 前記第 2導 電型の基板は、 η型 I n Ρ基板であるこ とを特徴とする請求項 3記 載の受光素子。 4. When the first conductivity type is p-type and the second conductivity type is n-type, the resistance layer of the first conductivity type is a p-type ΙηΡ layer; 4. The light receiving element according to claim 3, wherein the conductive type substrate is an η type In I substrate.
5. N個 ( Nは、 2以上の整数) に時分割された波長が多重された 信号光から分波された各分波光の強度とその重心位置とを検出する 光検出器において、 5. In a photodetector that detects the intensity of each demultiplexed light demultiplexed from signal light in which N time-division multiplexed wavelengths (N is an integer of 2 or more) and the position of the center of gravity,
請求項 1〜 4のいずれかに記載の 1個の受光素子を備え、 この受 光素子を、 各分波光の入射のタイ ミ ングに合わせて、 時間を N個に 分割して駆動するこ とを特徴とする光検出器。 A single light receiving element according to any one of claims 1 to 4, wherein the light receiving element is driven by dividing the time into N in accordance with the timing of the incidence of each demultiplexed light. A photodetector.
6 . N個 ( Nは 2以上の整数) の波長が多重された信号光から分波 された各分波光の強度とその重心位置とを検出する光検出器におい て、 6. In a photodetector that detects the intensity of each demultiplexed light demultiplexed from the signal light in which N wavelengths (N is an integer of 2 or more) and the center of gravity thereof,
請求項 1 〜 4のいずれかに記載の N個の受光素子を、 1次元に配 列したこ とを特徴とする光検出器。  A photodetector, wherein the N light-receiving elements according to any one of claims 1 to 4 are arranged one-dimensionally.
7 . N個 ( Nは 2以上の整数) の波長が多重された信号光から分波 された各分波光の強度とその重心位置とを検出する光検出器におい て、 7. In a photodetector that detects the intensity of each demultiplexed light demultiplexed from the signal light in which N wavelengths (N is an integer of 2 or more) and the position of the center of gravity,
請求項 1 〜 4のいずれかに記載の N個の受光素子が、 1次元に配 列された第 1 の光検出部を備え、 この第 1 の光検出部は、 各分波光 の光強度の重心位置を検出し、  The N light-receiving elements according to any one of claims 1 to 4, further comprising a first light detection unit arranged one-dimensionally, and wherein the first light detection unit detects a light intensity of each demultiplexed light. Detect the center of gravity position,
N個の受光素子が 1次元に配列された第 2の光検出部を備え、 こ の第 2の光検出部は、 各分波光の光強度を検出する、  A second light detection unit in which N light receiving elements are arranged in a one-dimensional manner, the second light detection unit detects the light intensity of each demultiplexed light,
ことを特徴とする光検出器。 A photodetector, characterized in that:
8 . 前記第 2の光検出部の受光素子は、 フォ トダイオー ドであるこ とを特徴とする請求項 7 に記載の光検出器。 8. The photodetector according to claim 7, wherein the light receiving element of the second photodetector is a photo diode.
9 . 複数の波長を含むバン ドが複数個多重された信号光から分波さ れた各分波光の強度とその重心位置とを検出する光検出器において、 請求項 1 〜 4のいずれかに記載の複数個の受光素子を、 各バン ド 対応に、 複数個 1次元に配列したことを特徴とする光検出器。 9. A photodetector for detecting the intensity of each demultiplexed light demultiplexed from a signal light in which a plurality of bands including a plurality of wavelengths are multiplexed and the position of the center of gravity thereof, wherein the photodetector according to any one of claims 1 to 4 A photodetector, characterized in that a plurality of the light receiving elements described above are arranged one-dimensionally for each band.
1 0 . 波長多重伝送されてきた信号光を分波する光分波器において、 前記入射光を分波する光学手段と、 10. An optical demultiplexer that demultiplexes signal light that has been wavelength-multiplexed transmitted, wherein: an optical unit that demultiplexes the incident light;
前記光学手段で分波された分波光を受光する請求項 5 に記載の光 検出器と、  The light detector according to claim 5, which receives the demultiplexed light demultiplexed by the optical unit,
を備えることを特徴とする光分波器。 An optical demultiplexer comprising:
1 1 . 波長多重伝送されてきた信号光を分波する光分波器において 前記入射光を分波する光学手段と、 11. An optical demultiplexer that demultiplexes the signal light that has been wavelength-multiplexed transmitted, and an optical unit that demultiplexes the incident light.
前記光学手段で分波された分波光を受光する請求項 6 に記載の光 検出器と、  The light detector according to claim 6, which receives the demultiplexed light demultiplexed by the optical unit,
を備えることを特徴とする光分波器。 An optical demultiplexer comprising:
1 2 . 波長多重伝送されてきた信号光を分波する光分波器において 前記入射光を 2つに分離する光学手段と、 12. An optical demultiplexer that demultiplexes the signal light that has been wavelength-multiplexed transmitted, and an optical unit that separates the incident light into two.
前記分離された一方の入射光を分波する第 1 の光学手段と、 前記分離された他方の入射光を分波する第 2の光学手段と、 前記第 1 の光学手段で分波された分波光を受光し、 各分波光の光 強度重心位置を検出する請求項 6 に記載の光検出器と、  A first optical unit that splits the one of the separated incident lights, a second optical unit that splits the other of the separated incident light, and a splitter that is split by the first optical unit. The light detector according to claim 6, wherein the light detector receives the wave light, and detects a light intensity centroid position of each demultiplexed light.
前記第 2の光学手段で分波された分波光を受光し、 各分波光の光 強度を検出する受光素子アレイ と、  A light-receiving element array that receives the demultiplexed light demultiplexed by the second optical unit and detects the light intensity of each demultiplexed light;
を備えることを特徴とする光分波器。 An optical demultiplexer comprising:
1 3 . 前記受光素子アレイは、 フ ォ トダイオード · アレイであるこ とを特徴とする請求項 1 2に記載の光分波器。 13. The optical duplexer according to claim 12, wherein the light receiving element array is a photodiode array.
1 4 . 複数の波長を含むバン ドが複数個多重された信号光を分波す る光分波器において 1 4. In an optical demultiplexer that demultiplexes signal light in which multiple bands containing multiple wavelengths are multiplexed.
前記入射光を、 各バン ド毎の分波光に分波する光学手段と、 各バン ド毎の分波光を受光する請求項 6に記載の光検出器が複数 配列された受光手段と、  7. An optical unit for splitting the incident light into split light for each band, and a light receiving unit for receiving the split light for each band, wherein a plurality of photodetectors according to claim 6 are arranged.
を備えるこ とを特徴とする光分波器。 An optical demultiplexer comprising:
PCT/JP2001/005963 2000-07-18 2001-07-10 Light-receiving device and photodetector comprising light-receiving device WO2002007227A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01947946A EP1233459A1 (en) 2000-07-18 2001-07-10 Light-receiving device and photodetector comprising light-receiving device
CA002385084A CA2385084A1 (en) 2000-07-18 2001-07-10 Light-receiving element and photodetector using the same
KR1020027003462A KR20020037050A (en) 2000-07-18 2001-07-10 Light-receiving device and photodetector comprising light-receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000216894A JP2002033507A (en) 2000-07-18 2000-07-18 Photodetector and optical demultiplexer
JP2000-216894 2000-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/959,960 Division US7372124B2 (en) 2000-07-18 2004-10-06 Light-receiving element and photodetector using the same

Publications (1)

Publication Number Publication Date
WO2002007227A1 true WO2002007227A1 (en) 2002-01-24

Family

ID=18712082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005963 WO2002007227A1 (en) 2000-07-18 2001-07-10 Light-receiving device and photodetector comprising light-receiving device

Country Status (8)

Country Link
US (2) US20020149014A1 (en)
EP (1) EP1233459A1 (en)
JP (1) JP2002033507A (en)
KR (1) KR20020037050A (en)
CN (1) CN1383581A (en)
CA (1) CA2385084A1 (en)
TW (1) TW503587B (en)
WO (1) WO2002007227A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201102478D0 (en) 2011-02-11 2011-03-30 Isdi Ltd Radiation detector and method
GB201302543D0 (en) * 2013-02-13 2013-03-27 Isdi Ltd Detector and method
GB2525625B (en) 2014-04-29 2017-05-31 Isdi Ltd Device and method
TWI550836B (en) * 2014-05-06 2016-09-21 友達光電股份有限公司 Photo detector and fabricating method thereof
CA3072769A1 (en) 2017-08-11 2019-02-14 Optipulse Inc. Laser grid structures for wireless high speed data transfers
US10374705B2 (en) 2017-09-06 2019-08-06 Optipulse Inc. Method and apparatus for alignment of a line-of-sight communications link
WO2019162889A1 (en) * 2018-02-22 2019-08-29 8 Rivers Capital, Llc System for multi-channel, diverged-beam optical wireless communication

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113384A (en) * 1978-02-24 1979-09-04 Hitachi Ltd Multi-wave spectroscopic photometer
JPS61120906A (en) * 1984-11-19 1986-06-09 Canon Inc Position detecting element
JPS6373121A (en) * 1986-09-17 1988-04-02 Fujitsu Ltd Spectroscopic device
JPS63153407A (en) * 1986-12-18 1988-06-25 Mitsutoyo Corp Semiconductor position detector
JPH03146833A (en) * 1989-11-01 1991-06-21 Hitachi Ltd Multi-wavelength spectroscope
US5179423A (en) * 1991-07-26 1993-01-12 Kollmorgen Corporation Gain stabilized self-scanning photo-diode array
EP0762170A1 (en) * 1995-08-22 1997-03-12 Sumitomo Electric Industries, Inc. Optical-axis alignment method, optical-axis alignment device, inspection method of optical devices, inspection device of optical devices, method of producing optical module, and apparatus of producing optical module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212020B (en) * 1987-11-03 1991-07-10 Stc Plc Optical detectors.
CA1301897C (en) * 1988-02-29 1992-05-26 Goro Sasaki Method for producing an opto-electronic integrated circuit
US5144397A (en) * 1989-03-03 1992-09-01 Mitsubishi Denki Kabushiki Kaisha Light responsive semiconductor device
US5528071A (en) * 1990-01-18 1996-06-18 Russell; Jimmie L. P-I-N photodiode with transparent conductor n+layer
US5214527A (en) * 1990-09-26 1993-05-25 Bell Communications Research, Inc. Electronically switched multiple-channel optical receiver
FR2706079B1 (en) * 1993-06-02 1995-07-21 France Telecom Integrated laser-modulator monolithic component with quantum multi-well structure.
US6016212A (en) * 1997-04-30 2000-01-18 At&T Corp Optical receiver and demultiplexer for free-space wavelength division multiplexing communications systems
TW400440B (en) 1998-03-11 2000-08-01 Nippon Sheet Glass Co Ltd Optical demultiplexer and method for assembling same
US6334014B1 (en) * 1998-11-02 2001-12-25 Canon Kabushiki Kaisha Optical fiber apparatus provided with demultiplexing/multiplexing unit on fiber's end portion, optical detecting apparatus provided with demultiplexing/multiplexing unit on its light receiving surface, and optical transmission system using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113384A (en) * 1978-02-24 1979-09-04 Hitachi Ltd Multi-wave spectroscopic photometer
JPS61120906A (en) * 1984-11-19 1986-06-09 Canon Inc Position detecting element
JPS6373121A (en) * 1986-09-17 1988-04-02 Fujitsu Ltd Spectroscopic device
JPS63153407A (en) * 1986-12-18 1988-06-25 Mitsutoyo Corp Semiconductor position detector
JPH03146833A (en) * 1989-11-01 1991-06-21 Hitachi Ltd Multi-wavelength spectroscope
US5179423A (en) * 1991-07-26 1993-01-12 Kollmorgen Corporation Gain stabilized self-scanning photo-diode array
EP0762170A1 (en) * 1995-08-22 1997-03-12 Sumitomo Electric Industries, Inc. Optical-axis alignment method, optical-axis alignment device, inspection method of optical devices, inspection device of optical devices, method of producing optical module, and apparatus of producing optical module

Also Published As

Publication number Publication date
TW503587B (en) 2002-09-21
EP1233459A1 (en) 2002-08-21
CA2385084A1 (en) 2002-01-24
KR20020037050A (en) 2002-05-17
CN1383581A (en) 2002-12-04
US7372124B2 (en) 2008-05-13
JP2002033507A (en) 2002-01-31
US20020149014A1 (en) 2002-10-17
US20050058454A1 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
US5760419A (en) Monolithic wavelength meter and photodetector using a wavelength dependent reflector
US7608823B2 (en) Multimode focal plane array with electrically isolated commons for independent sub-array biasing
US6639679B2 (en) Integrated wavelength monitor
US8415608B2 (en) Frequency selective communications system
JPH03227578A (en) Optical element apparatus
US20170241836A1 (en) Apparatus for spectrometrically capturing light with a photodiode which is monolithically integrated in the layer structure of a wavelength-selective filter
WO2002007227A1 (en) Light-receiving device and photodetector comprising light-receiving device
JP6889470B2 (en) Spatial matching reception
JP6884948B2 (en) High speed photo detector array
KR102361181B1 (en) Opto-Electronic Integration Based On-Chip Spectroscopy Devices
CN111947779A (en) Optical signal detection system
Kwa et al. Backside-illuminated silicon photodiode array for an integrated spectrometer
WO2001027573A1 (en) Photodetector array and optical branching filter using the array
JP3683445B2 (en) Optical demultiplexer
Hu et al. 1.55 µm pie-shaped resonant-cavity photodetector arrays for direct-coupled wavelength demultiplexing applications
CA2868210C (en) Optical sensor arrangement
JP2002134765A (en) Spectrum photodetector
JPS6285832A (en) Optical type thermometer
JP2003232682A (en) Optical frequency meter
JP5306781B2 (en) Wavelength selection device
JP2700262B2 (en) Light detection method
KR100292809B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of wavelength division multiplexed optical signal
JPH0923022A (en) Photoelectric converter
JPH0238824A (en) Photodetector apparatus
KR20230110242A (en) Electromagnetic Radiation Spectrum Detection System

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 018019064

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2385084

Country of ref document: CA

Ref document number: 10088275

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027003462

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001947946

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027003462

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001947946

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2003129067

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

WWW Wipo information: withdrawn in national office

Ref document number: 2001947946

Country of ref document: EP