Nothing Special   »   [go: up one dir, main page]

WO2002050607A1 - Unite d'eclairage pour dispositif d'affichage a cristaux liquides - Google Patents

Unite d'eclairage pour dispositif d'affichage a cristaux liquides Download PDF

Info

Publication number
WO2002050607A1
WO2002050607A1 PCT/JP2001/011102 JP0111102W WO0250607A1 WO 2002050607 A1 WO2002050607 A1 WO 2002050607A1 JP 0111102 W JP0111102 W JP 0111102W WO 0250607 A1 WO0250607 A1 WO 0250607A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
crystal display
lighting unit
display device
Prior art date
Application number
PCT/JP2001/011102
Other languages
English (en)
French (fr)
Inventor
Kyoichi Kubomura
Masahiko Hayashi
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to US10/433,617 priority Critical patent/US7036972B2/en
Publication of WO2002050607A1 publication Critical patent/WO2002050607A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects

Definitions

  • the present invention relates to a lighting unit suitably used as a backlight / front light of a liquid crystal display device.
  • the liquid crystal display device has a liquid crystal display element (LCD) and a lighting unit such as a pack light or a front light for illuminating the liquid crystal display element (LCD).
  • a lighting unit such as a pack light or a front light for illuminating the liquid crystal display element (LCD).
  • the light from the irradiation unit is configured to irradiate the back of the LCD.
  • the back-illuminated light beam passes through the LCD, and at that time, changes in the light transmittance of the LCD cause light and dark to display information such as characters and figures.
  • Backlights are roughly classified into sidelight type (also called edge type) and direct type, depending on the arrangement of the light source on the display surface.
  • the sidelight type irradiation unit generally has a linear light source such as a cold cathode fluorescent discharge tube and a light guide plate. Light emitted from the linear light source enters the light guide plate from at least one side surface (ie, the light incident surface) of the light guide plate, and is reflected by the back surface (ie, the reflection surface) having a light reflection function. It is designed to emit from the front (ie, the light exit surface).
  • a linear light source such as a cold cathode fluorescent discharge tube
  • a light guide plate Light emitted from the linear light source enters the light guide plate from at least one side surface (ie, the light incident surface) of the light guide plate, and is reflected by the back surface (ie, the reflection surface) having a light reflection function. It is designed to emit from the front (ie, the light exit surface).
  • the direct irradiation unit has a light source and a light diffusion plate.
  • the light emitted from the light source enters the inside of the light diffusion plate from the back surface (that is, the light incident surface) of the light diffusion plate, is irregularly reflected by the light diffusion material dispersed inside the light diffusion plate, and (I.e., the light exit surface).
  • a fluorescent discharge tube that is, a fluorescent lamp such as a hot cathode fluorescent discharge tube or a cold cathode fluorescent discharge tube
  • the fluorescent discharge tube irradiates ultraviolet rays as well as visible light
  • light guide plates and light diffusers made of transparent resin show a tendency for the transparent resin to deteriorate due to ultraviolet light and to be colored.
  • the liquid crystal display device is used for a long time, the light emitted from the lighting unit is colored (increased chromaticity), and the display quality is deteriorated. .
  • An object of the present invention is to provide a lighting unit for a liquid crystal display device provided with a light guide or a light diffusion plate made of a transparent resin, and to be used for a liquid crystal display device in which the emitted light is less likely to be colored even when used for a long time. It is to provide a lighting unit.
  • Another object of the present invention is to provide a lighting unit for a liquid crystal display device, which has high luminance, excellent heat resistance, and hardly causes coloring even when used for a long period of time.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a light having a wavelength of 300 nm or less is transmitted from a light guide plate or a light diffusion plate used in a liquid crystal display device.
  • a light having a wavelength of 300 nm or less is transmitted from a light guide plate or a light diffusion plate used in a liquid crystal display device.
  • By significantly reducing the amount of ultraviolet light not only in the ultraviolet and far-ultraviolet regions, but also in the near-ultraviolet region in the wavelength range of 300 to 35 O nm, it can be used over a long period of time. It has been found that a lighting unit for a liquid crystal display device in which coloring is unlikely to occur in the emitted light can be obtained.
  • a resin with excellent transparency and heat resistance such as an alicyclic structure-containing resin, as a transparent resin, high brightness, excellent heat resistance, and coloring even when used for a long period of time are achieved. It has been found that a lighting unit for a liquid crystal display device, which hardly occurs, can be obtained.
  • the present invention has been completed based on these findings.
  • an illumination light source for irradiating visible light and (B) a light guide plate or a light diffusion plate having a light entrance surface and a light exit surface.
  • the light guide plate or the light diffusion plate is formed of a transparent synthetic resin, and the light guide plate is provided.
  • a liquid crystal display characterized in that the maximum intensity of light in the ultraviolet region having a wavelength of 350 nm or less, measured over the entire light incident surface of the light diffusion plate, is 2 ii W / (cm 2 -nm) or less.
  • An equipment lighting unit is provided.
  • an illumination light source for irradiating visible light and (B) a light guide plate or a light diffusion plate having a light incident surface and a light emission surface, and the light is emitted from the illumination light source
  • the illumination light source has a maximum emission intensity of 2 // WZ in the ultraviolet region with a wavelength of 35 O nm or less. (cm 2 -nm) or less, and the light guide plate or the light diffusion plate is formed of a transparent synthetic resin.
  • FIG. 1 is a schematic sectional view showing an example of a sidelight type lighting unit.
  • FIG. 2 is a schematic sectional view showing an example of a direct lighting unit.
  • An illumination unit for a liquid crystal display device of the present invention includes (A) an illumination light source that emits visible light, and (B) a light guide plate or a light diffusion plate having a light incident surface and a light exit surface.
  • the illumination light source and the light guide plate or the light diffusion plate are arranged such that the light beam emitted from the illumination light source enters from the light incident surface of the light guide plate or the light diffusion plate.
  • the light rays incident on the light guide plate or the light diffusion plate are emitted from the emission surface and illuminate the liquid crystal display element (LCD) of the liquid crystal display device.
  • LCD liquid crystal display element
  • the maximum intensity of the light at the wavelength 3 5 0 nm or less in the ultraviolet region that measure over the entire surface of the light incident surface of the light guide plate or a light diffusion plate and 2 zWZ (cm 2 ⁇ nm) or less or the maximum intensity of the light at the wavelength 3 5 0 nm or less in the ultraviolet region that measure over the entire surface of the light incident surface of the light guide plate or a light diffusion plate and 2 zWZ (cm 2 ⁇ nm) or less, or By using an illumination light source with a maximum luminous intensity of 2 W / (cm 2 ⁇ nm) or less in the ultraviolet region with a wavelength of 350 nm or less, coloring of the transparent resin light guide plate or light diffusion plate due to ultraviolet deterioration is remarkable. Is greatly reduced.
  • the maximum emission intensity using 2 ⁇ / (cm 2 ⁇ nm ) following the illumination light source in the following ultraviolet region 350 nm, and the light incident surface of the light guide plate or a light diffusion plate By setting the maximum intensity of light in the ultraviolet region with a wavelength of 350 nm or less measured over the entire surface to 2 W / (cm 2 -nm) or less, coloring of the synthetic resin light guide plate or light diffusion plate due to ultraviolet deterioration is improved. It can be significantly reduced.
  • the light source used in the lighting device of the present invention may be any one that can emit visible light. Examples thereof include an incandescent light bulb, a fluorescent discharge tube, a light emitting diode element (LED), and an electorifice luminescence element (EL element). Etc. can be used. This Among these light sources, a fluorescent discharge tube and an LED are preferable from the viewpoints of luminance, color temperature, low heat generation, and low UV irradiation. Among the fluorescent discharge tubes, a cold cathode fluorescent discharge tube is more preferable.
  • the hot cathode fluorescent discharge tube can select an arbitrary wavelength and is suitable for color display.
  • the life tends to be slightly shorter and heat is generated.
  • LEDs have a long life and do not generate heat, but are limited to monocolor.
  • EL has a short life.
  • a cold cathode fluorescent discharge tube has a luminance peak in the visible region, has a long life, and is suitable for color display.
  • a cold cathode fluorescent lamp is most preferable among the illumination light sources, but has a disadvantage of irradiating ultraviolet rays together with visible rays. That is, in a fluorescent discharge tube, a fluorescent substance absorbs and excites ultraviolet light generated inside the tube to generate visible light, and when the visible light is irradiated, a part of the ultraviolet light is also irradiated. This ultraviolet light has strong absorption at specific wavelengths (254 nm and 313 nm).
  • the maximum emission intensity in the ultraviolet region of 350 nm or less is 2 W (cm 2 -nm) or less, preferably 1 / iW / (cm 2 -nm) or less, more preferably Is less than 0.5 WZ (cm 2 ⁇ nm).
  • Illumination light sources satisfying the above conditions include, for example, a cold cathode fluorescent discharge having a tube made of a material having a maximum light transmittance of 85% or less in the ultraviolet region of a wavelength of 200 to 350 nm when measured with a wall thickness of lmm. There is a tube. This maximum light transmittance is preferably 75% or less, more preferably 60% or less.
  • glass that selectively absorbs light in the wavelength region of 200 to 350 nm and has excellent light transmittance in the visible light region is preferable.
  • examples of such glass include, for example, ores containing a large amount of silicon dioxide (Si 2 ), such as porosity glass (Na 2 O ⁇ B 2 ⁇ 3 ⁇ S i O 2 as the main component) and a substance that absorbs light having a wavelength of 350 nm or less.
  • Substances that absorb light with a wavelength of 350 nm or less include, for example, titanium oxide (Ti 2 ), cerium oxide (Ce 2 3 , Ce 0 2 ), zinc oxide (Zn 2 ), tantalum oxide (Ta 2 0 5), zirconium oxide (Z R_ ⁇ 2), a metal oxide such as Bi-containing (S i O) (hereinafter, referred to as "ultraviolet absorbing metal oxide”) is like et be.
  • These ultraviolet absorbing metal oxides can be used alone or in combination of two or more. Further, a method in which only a metal is stably present in the form of a metal ion from those exemplified as the metal oxides can be used.
  • porosilicate glass examples include BFW glass and BFK glass (trade names, manufactured by NEC Corporation).
  • a light source having a metal oxide layer when used, it is possible to further reduce the irradiation of ultraviolet rays (near ultraviolet rays) in the long wavelength region of 300 to 350 nm, particularly, 313 nm. It is preferable because it is possible.
  • a light source having such a metal oxide layer for example, a light source in which a metal oxide layer is formed on the front surface, the Z surface or the back surface of a cold cathode fluorescent discharge tube can be mentioned.
  • the metal oxide include those similar to the above-described ultraviolet absorbing metal oxide that absorbs light having a wavelength of 350 nm or less.
  • Titanium oxide (Ti 2 ) and silicon oxide (SiO) are particularly preferred.
  • the metal oxide layer can be generally formed by coating, but may be formed by a dry process such as evaporation.
  • the metal oxide layer may be a single layer, or may be a laminate of about 2 to 6 layers.
  • the thickness of the metal oxide layer is usually about 0.05 to 1 m, and often about 0.1 to 0.5 m.
  • the light guide plate used in the present invention is a plate-like molded body obtained by molding a transparent resin.
  • the shape of the light guide plate may be a flat plate shape, but may be a wedge shape that gradually becomes thinner as it gets farther from the light source from the viewpoint of reflectivity and lightness.
  • a metal oxide layer that absorbs light having a wavelength of 350 nm or less can be provided on the light incident surface of the light guide plate.
  • the light diffusing plate used in the present invention is a plate-shaped molded body obtained by molding a transparent resin, and has at least one light incident surface and one light emitting surface.
  • the light diffusing plate contains a light reflecting material that has the function of scattering light rays and a layer of Z or air (bubbles) dispersed inside the light diffusing plate, whereby light from the light source incident from the light incident surface is irregularly reflected. While being guided to the light emitting surface.
  • the light reflecting substance examples include organic fine particles and inorganic fine particles. Specifically, organic fine particles such as polystyrene particles and silicon particles; inorganic fine particles such as silica, alumina, and titania; and the like are preferable.
  • the light scattering plate may be provided with a metal oxide layer for absorbing light having a wavelength of 350 nm or less on the light incident surface.
  • the transparent resin used in the present invention is not particularly limited as long as it has a light-transmitting property.
  • examples thereof include an alicyclic structure-containing polymer resin such as a norpolene-based polymer and a vinyl alicyclic hydrocarbon-based polymer; Acrylic resins such as polymethyl methacrylate (PMMA); Polyester resins such as polycarbonate (PC), polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); Polyolefin resins such as polystyrene and polymethylpentene (TPX) Acrylonitrile styrene resin and the like.
  • an alicyclic structure-containing polymer resin such as a norpolene-based polymer and a vinyl alicyclic hydrocarbon-based polymer
  • Acrylic resins such as polymethyl methacrylate (PMMA)
  • Polyester resins such as polycarbonate (PC), polyethylene terephthalate (PET) and polybutylene terephthalate (PBT
  • an alicyclic structure-containing polymer resin an acrylic resin, and a polycarbonate resin are preferable because of their excellent transparency and heat resistance. Resins are most preferred.
  • a light guide plate or a light diffusion plate manufactured from an alicyclic structure-containing polymer resin is used, the emission luminance and heat resistance of the obtained lighting unit are improved. In addition, it is possible to suppress a decrease in luminance during long-term use.
  • the alicyclic structure-containing polymer resin is a polymer containing an alicyclic structure in a repeating unit.
  • the alicyclic structure may be present in any of the main chain and / or the side chain, but from the viewpoint of transparency, those having an alicyclic structure in the main chain are preferred.
  • Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferred from the viewpoint of transparency.
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually in the range of 4 to 30, preferably 5 to 20, more preferably 5 to 15, transparency. Excellent.
  • the proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer may be appropriately selected depending on the purpose of use, but is usually 50% by weight or more, preferably 70% by weight or more, It is more preferably at least 90% by weight. If the proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer is too small, the transparency is undesirably reduced.
  • the remainder other than the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer is not particularly limited, and is appropriately selected depending on the purpose of use.
  • the polymer resin having an alicyclic structure examples include (i) a norbornene-based polymer, (ii) a monocyclic cyclic olefin-based polymer, (iii) a cyclic conjugated gen-based polymer, and (iv) vinyl.
  • examples include alicyclic hydrocarbon-based polymers, and these polymers also include respective hydrogenated products.
  • a hydrogenated norponene polymer, a vinyl alicyclic hydrocarbon polymer and a hydride thereof are preferable, and a hydrogenated norponene polymer is more preferable.
  • the norpolene-based polymer used in the present invention is described in, for example, No. 82 and Japanese Patent Application Laid-Open No. 3-122137, and other known polymers. Specifically, a ring-opened polymer of a norpoleneene-based monomer, a hydrogenated product thereof, and an addition weight of a norpolenene-based monomer And an addition-type copolymer of a norpolene-based monomer and another monomer copolymerizable therewith. Among these, from the viewpoint of transparency, a hydrogenated product of a ring-opened polymer of a norponene-based monomer is most preferable.
  • norponene-based monomer examples include bicyclo [2.2.1] 1-hepto _ 2 -ene (common name: norpolene), 5-methyl-bicyclo [2.2.1] 1 hepto-2-ene, 5,5-Dimethyl-bicyclo [2.2.1] —Heptoto 21-, 5-ethyl-bicyclo [2.2.1] —Hept-2-ene, 5-butyl-bicyclo [2 2.1.
  • the ring-opening polymer of the norpolpene monomer can be obtained by ring-opening polymerization of the norpolene monomer in the presence of a ring-opening polymerization catalyst.
  • a ring-opening polymerization catalyst include, for example, a catalyst system comprising a metal halide such as ruthenium, rhodium, palladium, osmium, iridium, and platinum, a nitrate or acetylacetone compound, and a reducing agent, or titanium, vanadium,
  • a catalyst system comprising a halide or acetylacetone compound of a metal such as zirconium, tungsten or molybdenum and an organoaluminum compound is used.
  • the polymerization reaction is carried out in a solvent or without a solvent, usually at a polymerization temperature of 50 to 100 ° C and a polymerization pressure of 0 to 50 kg / cm 2 .
  • a hydrogenated product of a ring-opening polymer of a norponene-based monomer is obtained by adding a hydrogenation catalyst to a polymerization solution of a ring-opening polymer of a norportene-based monomer and hydrogenating a carbon-carbon double bond with hydrogen.
  • the hydrogenation catalyst is not particularly limited, but a heterogeneous catalyst or a homogeneous catalyst can be used. You.
  • the addition (co) polymer of a norpolene-based monomer or a norpol- ene-based monomer and another monomer copolymerizable therewith is, for example, a monomer component in a solvent or without a solvent, a titanium, zirconium or vanadium compound, and an organic aluminum.
  • a catalyst system consisting of a compound and a (co) polymerization method, usually at a polymerization temperature of 150 ° C. to 100 ° C. and a polymerization pressure of 0 to 50 kg / cm 2. it can.
  • copolymerizable monomers include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1--1-pentene, 3-ethyl-11-pentene, 4-Methyl-1-pentene, 4-Methyl-1-hexene, 4,4-Dimethyl-11-hexene, 4,4-Dimethyl-1-pentene, 4-Ethyl-1-hexene, 3-Ethyl-1-hexene, ⁇ -olefins having 2 to 20 carbon atoms, such as 1-octene, 1-decene, 1-dedecene, 1-tetradecene, 1-hexadecene, 1-year-old kutadecene, and 1-eicosene; cyclobutene, cyclopentene, cyclohexene, 3, 4 -Dimethylcyclopentene, 3-methylcyclohexene
  • the other monomers copolymerizable with the norponene monomer can be used alone or in combination of two or more.
  • a binding unit derived from a norpol- lene-based monomer in the addition copolymer may be combined with a binding unit derived from another copolymerizable monomer. Is usually 30:70 by weight To 99: 1, preferably 50:50 to 97: 3, more preferably 70:30 to 95: 5.
  • Examples of the monocyclic cyclic olefin polymer include, for example, monocyclic cyclic olefin monomers such as cyclohexene, cycloheptene and cyclooctene disclosed in JP-A-64-62616. Can be used.
  • Examples of the cyclic conjugated gen-based polymer include, for example, cyclopentene, cyclohexene, and the like disclosed in Japanese Patent Application Laid-Open No. Hei 6-136577 and Japanese Patent Application Laid-Open No. Hei 7-25831
  • a polymer obtained by subjecting the cyclic conjugated monomer to 1,2_ or 1,4-addition polymerization and a hydrogenated product thereof can be used.
  • vinyl alicyclic hydrocarbon-based polymer examples include, for example, vinyl alicyclic hydrocarbon-based monomers such as biercyclohexene and vinylcyclohexane disclosed in JP-A-51-9989. Polymers and their hydrogenated products, vinyl aromatic compounds such as styrene and polymethylstyrene disclosed in JP-A-63-43910, JP-A-64-17606, etc. A hydrogenated product of the aromatic ring portion of the polymer of the group-based monomer can be used. Copolymers such as random copolymers and block copolymers of vinyl alicyclic hydrocarbon polymers or vinyl aromatic monomers and other monomers copolymerizable with these monomers And its hydrogenated products can also be used. Examples of the block copolymer include diblock, triblock or higher multiblock or gradient block copolymers, and are not particularly limited.
  • the molecular weight of the alicyclic structure-containing polymer resin used in the present invention is appropriately selected according to the purpose of use, but the gel permeation of a cyclohexane solution (a toluene solution when the polymer resin is not dissolved) is used.
  • the weight average molecular weight in terms of polyisoprene or polystyrene measured by the Acetion Chromatograph (GPC) method. When it is always in the range of 5,000 to 500,000, preferably 8,000 to 200,000, and more preferably in the range of 10,000 to 100,000, the mechanical strength and molding processability of the molded body are improved. It is highly balanced and suitable.
  • the glass transition temperature (Tg) of the alicyclic structure-containing polymer resin used in the present invention may be appropriately selected depending on the purpose of use, but is usually 80 or more, preferably 100 ° C to 250 °. C, more preferably in the range of 120 ° C to 200 ° C. When T g is within this range, heat resistance and molding workability are highly balanced, which is preferable.
  • a transparent resin if necessary, a stabilizer such as an antioxidant (antiaging agent), an ultraviolet absorber, a light stabilizer, or a heat stabilizer; a filler such as an organic filler or an inorganic filler.
  • a stabilizer such as an antioxidant (antiaging agent), an ultraviolet absorber, a light stabilizer, or a heat stabilizer
  • a filler such as an organic filler or an inorganic filler.
  • Colorants such as dyes and pigments; additives such as near-infrared absorbers, plasticizers, lubricants, antistatic agents, flame retardants, other resins, and flexible polymers can be combined. These additives can be used alone or in combination of two or more, and the amount of addition is appropriately selected within a range not to impair the purpose of the present invention.
  • the soft polymer is preferably contained in a proportion of 0.001 to 0.5 part by weight, more preferably 0.005 to 0.3 part by weight, based on 100 parts by weight of the alicyclic structure-containing polymer resin. Thus, it is possible to prevent clouding due to moisture absorption without impairing transparency.
  • Lighting unit As a method of forming a light guide plate and a light diffusion plate using a transparent resin, there are injection molding method, extrusion molding method, blow molding method, press molding method, heat melting molding method such as inflation molding method; solution casting method, solution casting method. Solution method such as the method. Among these, the injection molding method and the extrusion molding method are preferable for obtaining a light guide plate and a light diffusion plate having excellent transparency. (8) Lighting unit
  • the illumination unit of the present invention is used as illumination of a liquid crystal display device, and has an illumination light source and a light guide plate or a light diffusion plate as essential components. Light from the illumination light source is arranged to be incident on the light guide plate or the light diffusion plate.
  • the types of lighting units can be broadly classified into (I) pack-light type lighting units and (II) front-light type lighting units.
  • the backlight type lighting unit is installed at the back of the LCD, and the front light type lighting unit is installed at the front of the LCD.
  • Backlight type lighting units can be further classified into sidelight type and direct type.
  • a sidelight type (also called an edge type) lighting unit has an illumination light source and a light guide plate.
  • the illumination light source is generally a linear light source, and is preferably located near at least one side surface (light incident surface) of the light guide plate.
  • the distance between the illumination light source and the light incident surface is usually 0 l to 5 mm, preferably 0.05 to 2 mm, more preferably 0.1 to 1 mm. If the distance between the light source and the light incident surface is too large, the intensity of ultraviolet irradiation on the light incident surface will be small, but the light incident on the light guide plate will be lost, and the light emission luminance of the lighting unit will be reduced. Conversely, if the distance between the light source and the light incident surface is too short, the light incident surface of the light guide plate may be deformed or colored by the heat of the light source.
  • the linear light source may be generally L-shaped or U-shaped other than a linear light source.
  • the light incident surfaces are two and three, respectively.
  • a cold cathode fluorescent discharge tube is preferable from the viewpoint of luminance, life, color display, and the like.
  • FIG. 1 shows a cross-sectional view of one example of a sidelight type lighting unit.
  • the side-light type lighting unit has a light guide plate 1 and an illumination light source 5 formed of a transparent resin.
  • a reflection sheet 2 is provided on the back surface of the light guide plate 1.
  • Light guide plate 1 One of the side surfaces 3 is a light incident surface, and the front surface is a light emitting surface 4.
  • An illumination light source 5 is arranged near the light incident surface 3, and a reflector 6 is arranged around the illumination light source 5.
  • an aluminum vapor-deposited film may be provided, or the back surface may be formed in the shape of a Fresnel mirror.
  • the shape of the light guide plate may be a flat plate shape, but it is preferable to form the light guide plate into a wedge shape such that the thickness becomes thinner as the distance from the light incident surface 3 increases, in order to improve the light reflectivity and reduce the weight.
  • the light emitting surface 4 may be provided with a diffusion layer such as a diffusion sheet or a coating. Light from the illumination light source 5 enters the light guide plate 1 from the light incident surface 3, is reflected by the surface of the thanks sheet 2, and is emitted from the light emission surface 4.
  • the direct-type lighting unit has an illumination light source and a light diffusion plate, and the two plate surfaces of the light diffusion plate serve as a light incident surface and a light emission surface, respectively.
  • the distance between the light source and the light incident surface is usually 0.5 to 50 mm, preferably 1 to 30 mm, more preferably 3 to 20 mm. If the distance between the light source and the light incident surface is too far, the UV irradiation intensity on the light incident surface will be small, but the light incident on the light diffusion plate will be lost, and the light emission luminance of the lighting unit will be reduced. I do. On the other hand, if the distance between the light source and the light incident surface is too short, the light incident surface of the light diffusion plate is deformed or colored by the heat of the light source.
  • the light source may be a planar light source such as Elect-Mouth Luminescence (EL), a point light source such as an LED, or a linear light source such as a fluorescent discharge tube.
  • EL Elect-Mouth Luminescence
  • a point light source such as an LED
  • a linear light source such as a fluorescent discharge tube.
  • Cathode fluorescent tubes are preferred.
  • FIG. 2 shows a cross-sectional view of one example of the direct lighting unit.
  • the light diffusion plate 21 made of a transparent resin contains a light reflection substance 22. Instead of the light reflecting material, air bubbles may be contained.
  • One or more linear light sources 25, 26, 27, 28, 29 are arranged on the back side of the light diffusion plate 21. Instead of a linear light source, a planar light source or a point light source may be arranged.
  • the light from the illumination light source enters from the light incident surface 23 of the light diffusion plate 21, is diffused inside the light diffusion plate, and It is emitted 31 from the launch surface 24.
  • the illumination light source is generally surrounded by the housing 30, but a light reflection layer (reflector) such as a reflection sheet may be provided below the illumination light source.
  • a reflective LCD is used as the LCD.
  • light guide plates such as those having fine irregularities formed on at least one surface of the light guide plate, and those further provided with a transparent plate between the light guide plate and the reflective LCD. Is not particularly limited.
  • the illumination light source is generally a linear light source, and is preferably located near at least one end face of the light guide plate.
  • the distance between the light source and the light incident surface is usually from 0.01 to 5 mm, preferably from 0.05 to 2 mm, more preferably from 0.1 to 1 mm. If the distance between the light source and the light incident surface is too large, the intensity of UV irradiation on the light incident surface will be small, but light incident on the light guide plate will be lost, and the light emission luminance of the lighting unit will be reduced. Conversely, if the distance between the light source and the light incident surface is too short, the light incident surface of the light guide plate may be deformed or colored by the heat of the light source.
  • the linear light source does not have to be linear, and may be L-shaped or U-shaped.
  • a light reflection layer behind the light source.
  • Tg was measured by a differential scanning calorimeter (DSC method).
  • the molecular weight of the transparent resin was measured as a weight average molecular weight in terms of polyisoprene as measured by gel permeation chromatography (GPC) using cyclohexane as a solvent.
  • the light intensity was measured with a light meter (FASTEVERT S-2400: manufactured by Soma Kogaku Co.) corrected by a standard light source (spectral irradiance standard octogen lamp: manufactured by Shio Denki).
  • the maximum light intensity at the light incident surface of the light guide plate or light diffusion plate was determined as the intensity at the maximum emission intensity wavelength of ultraviolet light with a wavelength of 350 nm or less.
  • the maximum emission intensity of the illumination light source in the ultraviolet region below the wavelength of 350 nm is obtained by moving the fiber of the light meter close to the position about 0.5 mm from the light source surface (specifically, the surface of the cold cathode fluorescent tube). It was measured directly as light intensity.
  • the maximum light transmittance of the tube material of the cold cathode fluorescent discharge tube at a wavelength of 200 to 350 nm is determined by measuring the transmittance at 313 nm of a lmm-thick sample using an ultraviolet spectrophotometer. I asked.
  • the luminance and chromaticity of the light-emitting surface were measured on a luminance meter (BM-7: (Manufactured by Topcon Corporation). For chromaticity, the average value of the change ( ⁇ , Ay) in the color coordinates (x, y) was measured.
  • ETD Dodeka 3- E emission
  • DCP Deka 3- E emission
  • DCP tricyclo [4.3.1 0.1 2 '5] de car 3,7 Jen (Jishikuropen evening Zhen; hereinafter, abbreviated as "DCP” 17 0 parts, and 0.7% toluene solution of tungsten hexachloride 40 parts were continuously added over 2 hours to carry out polymerization.
  • 1.06 parts of butyldaricidyl ether and 0.52 parts of isopropyl alcohol were added to the polymerization solution to inactivate the polymerization catalyst and terminate the polymerization reaction.
  • a hydrogenation catalyst a silica-alumina-supported nickel catalyst (manufactured by Nikki Chemical Co., Ltd .; E22U, nickel supported amount 60%) 10 Parts were added and mixed.
  • the inside of the reactor was replaced with hydrogen gas, hydrogen was supplied while stirring the solution, and a hydrogenation reaction was performed at a temperature of 160 ° C and a pressure of 4.5 MPa for 8 hours.
  • reaction solution was filtered to remove the hydrogenation catalyst, and diluted with 800 parts of cyclohexane, and the reaction solution was diluted with 3,500 parts of isopropanol (class 1,000 clean room).
  • the mixture was then filtered through a filter having a pore size of 1 m to precipitate a block copolymer, separated and recovered by filtration, and dried under reduced pressure at 80 ° C for 48 hours.
  • Mw of the block copolymer was 85100, Mw / Mn was 1.17, the hydrogenation ratio of the main chain and the aromatic ring was 99.9%, and that of the block copolymer was 126.5 ° C.
  • the above pellets were preheated and dried at 80 ° C for 4 hours, and then a 14.1 inch light guide plate was injected by injection molding using an injection molding device (product number IS 450 manufactured by Toshiba Machine Co., Ltd.). Molded.
  • the molding conditions were a mold temperature of 70 ° (:, a cylinder temperature of 270 ° C).
  • the thickness of the thick part on the light incident surface side is 2.4 mm and the thickness of the thin part on the opposite side is 0.8 mm, and the light guide plate moves away from the thick part side to the thin part side (straight line).
  • the shape was a wedge shape in which the thickness gradually decreased as the shape of the light source (in the direction substantially perpendicular to the axis of the light source).
  • a reflecting sheet was set on the light reflecting surface of the light guide plate obtained by the above method, and a linear light source and a reflector were set on the side surface (light incident surface) on the thick side of the light guide plate.
  • a cold cathode fluorescent discharge tube (A) with a diameter of 2 mm was used as the linear light source.
  • Porous silicate glass (BFW, manufactured by Nippon Electric Glass) was used for the tube material.
  • the BFW glass had a transmittance of 65% for 1 mm-thick ultraviolet light (313 nm).
  • the distance between the cold cathode fluorescent discharge tube (A) and the light incident surface of the light guide plate was about 0.5 mm.
  • the maximum emission intensity of ultraviolet light with a wavelength of 350 nm or less at the light incident surface of the light guide plate is 1.55 mm (cm 2 , nm), and the chromaticity change after the unit has been lit for 1,000 hours
  • Table 1 The results are shown in Table 1.
  • a pack light unit was manufactured and evaluated in the same manner as in Example 1 except that the surface of which was coated with titanium dioxide was used. The results are shown in Table 1. [Example 3]
  • the backlight unit was the same as in Example 1, except that the surface of the cold cathode fluorescent discharge tube (A) used in Example 1 was coated with manganese oxide (SiO) as the linear light source. Was manufactured and evaluated. The results are shown in Table 1.
  • Example 1 As a linear light source, except for using those cold cathode fluorescent titanium dioxide (T I_ ⁇ 2) coated on the surface of the tube of the discharge tube (A) used in Example 1, Example 1 Similarly pack write Interview Knit Was manufactured and evaluated. The results are shown in Table 1.
  • a backlight unit was manufactured and evaluated in the same manner as in Example 1 except that a light emitting diode (LED) array (diameter lmm, 29 pieces) was used as a light source instead of the cold cathode fluorescent discharge tube. The results are shown in Table 1.
  • LED light emitting diode
  • a light guide plate and a backlight unit were used in the same manner as in Example 4 except that the hydrogenated block copolymer obtained in Production Example 2 was used instead of the hydrogenated ring-opening polymer obtained in Production Example 1. It was manufactured and evaluated. The results are shown in Table 1.
  • the obtained pellets containing the crosslinkable silicone beads were heated and pre-dried for 85 hours and 4 hours, and then subjected to 10.4 injection molding using an injection molding device (product number IS450 manufactured by Toshiba Machine Co., Ltd.). An inch, 2mm thick light diffusion plate was molded.
  • the molding conditions were a mold temperature of 105 ° and a cylinder temperature of 270 ° C.
  • Example 4 Five cold cathode fluorescent discharge tubes coated with titanium dioxide used in Example 4 used in Example 4 were arranged in parallel at equal intervals on the light incident surface of the light diffusion plate obtained by the above method.
  • the intensity at the maximum emission wavelength of ultraviolet light having a wavelength of 350 nm or less on the light incident surface of the light diffusion plate was 0.17 WZ (cm 2 , nm). Thereafter, the change in chromaticity was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • a backlight unit was manufactured and evaluated in the same manner as in Example 2 except that the cold cathode fluorescent discharge tube (B) was not coated with titanium dioxide. The results are shown in Table 1.
  • a lighting unit for a liquid crystal display device which has high luminance, excellent heat resistance, and has no coloring even when used for a long time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

液晶表示装置用照明ュニット <技術分野 >
本発明は、 液晶表示装置のバックライトゃフロントライトなどとして好適 に使用される照明ュニットに関する。 ぐ背景技術 >
液晶表示装置は、 液晶表示素子 (L C D)、 及びそれを照明するパックライ トゃフロントライトなどの照明ュニットを有している。 バックライト付きの 透過型 L C Dの場合には、 照射ュニットからの光線が L C Dの背面に照射さ れるように構成されている。 背面照射された光線は、 L C D内を透過し、. そ の際、 L C Dの光透過性の変化によって明暗が生じて、 文字や図形などの情 報が表示される。
バックライトは、 表示面に対する光源の配置によって、 サイドライト型 (エッジ式ともいう) と直下型に大別される。
サイドライト型照射ユニットは、 一般に、 冷陰極蛍光放電管などの線状光 源と導光板とを有している。 線状光源から照射された光線は、 導光板の少な くとも一つの側面 (即ち、 光入射面) から導光板内部に入射し、 光反射機能 を有する背面 (即ち、 反射面) で反射して、 正面 (即ち、 光出射面) から出 射するように設計されている。
直下型照射ユニットは、 光源と光拡散板とを有している。 光源から照射さ れた光線は、 光拡散板の背面 (即ち、 光入射面) から光拡散板内部に入射し、 光拡散板内部に分散している光拡散物質によって乱反射させられ、 そして、 正面 (即ち、 光出射面) から出射するように設計されている。
近年、 導光板及び光拡散板としては、 軽量で成形性に優れた透明樹脂から 製造されたものが使用されるようになっている。 一方、 液晶表示装置用照明 ユニットにおいては、 多くの場合、 蛍光放電管 (即ち、 熱陰極蛍光放電管や 冷陰極蛍光放電管などの蛍光ランプ) が光源として使用されている。 蛍光放 電管からは、 可視光線とともに紫外線も照射されるため、 透明樹脂から製造 された導光板や光拡散板は、 長時間にわたって使用すると、 紫外線により透 明樹脂が劣化して着色傾向を示すようになる。 その結果、 液晶表示装置を長 時間にわたって使用すると、 照明ユニットから出射される光に着色 (色度の 上昇) が生じて、 表示品質が悪化する。 .
アクリル樹脂製の導光板や光拡散板を備えた照明ュニッ卜において、 蛍光 放電管を構成するガラス管の組成等を変えて、 光源から照射される光線から 紫外線をカットする方法が提案されている。 しかし、 この方法によってカツ トできる紫外線は、 比較的低波長領域 (波長 2 5 0 n m付近) の紫外線に限 られている。 このため、 上記方法は、 透明樹脂の中でも紫外線劣化に対して 比較的耐性のあるァクリル樹脂にはある程度の効果があるものの、 他の有用 な透明樹脂では十分な効果を得ることができない。 そのため、 透明性や耐熱 性に優れた各種透明樹脂を導光板や光拡散板として用いた液晶表示装置用照 明ュニットの開発と実用化が困難であった。
<発明の開示〉
本発明の目的は、 透明樹脂製の導光扳または光拡散板を備えた液晶表示装 置用照明ユニットであって、 長期間にわたって使用しても、 出射光に着色が 生じ難い液晶表示装置用照明ユニットを提供することにある。
また、 本発明の目的は、 輝度が高く、 耐熱性に優れ、 さらに長期間にわた つて使用した場合でも着色が生じ難い液晶表示装置用照明ュニットを提供す ることにある。
本発明者らは、 前記課題を解決すべく鋭意検討した結果、 液晶表示装置に 使用される導光板や光拡散板を透過する光線から、 波長 3 0 0 n m以下の極 紫外線及び遠紫外線領域のみならず、 波長 3 0 0〜3 5 O n mの範囲の近紫 外線領域の光線も含めた紫外線量を著しく低減させることにより、 長期間に わたって使用しても、 出射光に着色が生じ難い液晶表示装置用照明ュニット の得られることを見出した。
また、 透明樹脂として、 脂環式構造含有樹脂などの透明性、 耐熱性などに 優れた樹脂を用いることにより、 輝度が高く、 耐熱性に優れ、 さらに長期間 にわたつて使用した場合でも着色が生じ難い液晶表示装置用照明ュニットの 得られることを見出した。
本発明は、 これらの知見に基いて完成するに至ったものである。
かくして、 本発明によれば、 (A)可視光線を照射する照明光源、 及び (B)光 入射面と光出射面とを有する導光板または光拡散板を有し、 照明光源から照 射された光線が導光板または光拡散板の光入射面から入射するように配置さ れた液晶表示装置用照明ュニットにおいて、 導光板または光拡散板が透明合 成樹脂から形成されており、 かつ、 導光板または光拡散板の光入射面の全面 にわたつて測定した波長 3 5 0 n m以下の紫外線領域における光の最大強度 が 2 ii W/ ( c m2 - n m) 以下であることを特徴とする液晶表示装置用照明 ュニットが提供される。
また、 本発明によれば、 (A)可視光線を照射する照明光源、 及び (B)光入射 面と光出射面とを有する導光板または光拡散板を有し、 照明光源から照射さ れた光線が導光板または光拡散板の光入射面から入射するように配置された 液晶表示装置用照明ユニットにおいて、 照明光源が、 波長 3 5 O n m以下の 紫外線領域における最大発光強度が 2 // WZ ( c m 2 - n m) 以下の光源であ り、 かつ、 導光板または光拡散板が透明合成樹脂から形成されていることを 特徴とする液晶表示装置用照明ュニッ卜が提供される。
<図面の簡単な説明 >
図 1は、 サイドライ卜型照明ュニットの 1例を示す断面略図である。 図 2は、 直下型照明ュニットの 1例を示す断面略図である。
<発明を実施するための最良の形態 >
本発明の液晶表示装置用照明ュニットは、 (A)可視光線を照射する照明光源、 及び (B)光入射面と光出射面とを有する導光板または光拡散板を有している。 この液晶表示装置用照明ュニットでは、 照明光源から照射された光線が導光 板または光拡散板の光入射面から入射するように、 照明光源と導光板または 光拡散板とが配置されている。 導光板または光拡散板に入射した光線は、 出 射面から出射して、 液晶表示装置の液晶表示素子 (L CD) を照明する。
本発明においては、 導光板または光拡散板の光入射面の全面にわたって測 定した波長 3 5 0 nm以下の紫外線領域における光の最大強度が 2 zWZ (cm2 · nm) 以下とするか、 あるいは波長 350 nm以下の紫外線領域に おける最大発光強度が 2 W/ (cm2 · nm) 以下の照明光源を使用するこ とにより、 透明樹脂製の導光板または光拡散板の紫外線劣化による着色が著 しく低減される。
したがって、 本発明の照明ユニットは、 光源を点灯させた状態で長期間に わたって使用しても、 出射光の変色や輝度低下が生じない。 本発明の照明ュ ニットにおいては、 350 nm以下の紫外線領域における最大発光強度が 2 ίΐΨ/ (cm2 · nm) 以下の照明光源を使用し、 かつ、 導光板または光拡散 板の光入射面の全面にわたって測定した波長 3 50 nm以下の紫外線領域に おける光の最大強度が 2 W/ (cm2 - nm) 以下とすることにより、 合成 樹脂製導光板または光拡散板の紫外線劣化による着色をより顕著に低減する ことができる。
(1) 照明光源
本発明の照明装置に使用される光源は、 可視光線を照射し得るものであれ ばよく、 例えば、 白熱電球、 蛍光放電管、 発光ダイオード素子 (L ED)、 ェ レクト口ルミネッセンス素子 (EL素子) などを使用することができる。 こ れらの光源の中でも、 輝度、 色温度、 低発熱性、 低紫外線照射性などの観点 から、 蛍光放電管及び LEDが好ましい。 蛍光放電管の中では、 冷陰極蛍光 放電管がより好ましい。
熱陰極蛍光放電管は、 任意の波長を選択することが可能であり、 カラー表 示に適しているが、 冷陰極蛍光放電管に比べて、 寿命がやや短い傾向を示し、 しかも発熱がある。 LEDは、 寿命が長く、 発熱もないが、 モノカラーに限 定される。 ELは、 寿命が短い。 これに対して、 冷陰極蛍光放電管は、 可視 領域に輝度ピークがあり、 寿命が長く、 カラー表示に適している。
したがって、 照明光源の中では、 冷陰極蛍光放電管が最も好ましいが、 可 視光線とともに紫外線を照射するというデメリットがある。 即ち、 蛍光放電 管では、 管内部で発生した紫外線を蛍光物質が吸収し励起して、 可視光線を 発生するが、 可視光線の照射の際に紫外線も一部照射する。 この紫外線は、 特定波長 (254nm及び 313 nm) に強い吸収を有する。
本発明においては、 光源から照射する光線から波長 254 nm及び 3 1 3 nmを含む波長領域の紫外線を低減した蛍光放電管を使用することがが好ま しい。 より具体的に、 本発明においては、 350 nm以下の紫外線領域にお ける最大発光強度が 2 Wノ (cm2 - nm) 以下、 好ましくは 1 /iW/ (c m2 - nm) 以下、 より好ましくは 0. 5 WZ (cm2 · nm) 以下である 照明光源を使用する。
上記条件を満たす照明光源としては、 例えば、 肉厚 lmmで測定した時、 波長 200〜350 nmの紫外線領域における最大光線透過率が 85 %以下 である材料から構成された管を有する冷陰極蛍光放電管がある。 この最大光 線透過率は、 好ましくは 75%以下、 より好ましくは 60%以下である。
上記材料としては、 200〜 350 nmの波長領域の光線を選択的に吸収 し、 可視光線領域の光線透過性に優れるガラスが好ましい。 このようなガラ スとしては、 例えば、 二酸化ケイ素 (S i〇2) の含有量の多い鉱石として、 ケィ砂、 ゲイ石、 及び長石類を主原料としたポロシリゲートガラス (Na2 O · B23 · S i 02を主成分とするもの) に、 波長 350 nm以下の光線を 吸収する物質を配合したものが挙げられる。
波長 350 nm以下の光線を吸収する物質としては、 例えば、 酸化チタン (T i〇2)、 酸化セリウム (C e23、 C e02)、 酸化亜鉛 (Zn〇)、 酸 化タンタル (Ta 205)、 酸化ジルコニウム (Z r〇2)、 酸化ゲイ素 (S i O) などの金属酸化物 (以下、 「紫外線吸収性金属酸化物」 という) が挙げら れる。 これらの紫外線吸収性金属酸化物は、 それぞれ単独で、 あるいは 2種 以上を組み合わせて使用することができる。 また、 これら金属酸化物として 例示したものの中から、 金属のみを金属イオンの形で安定的に存在させる方 法を用いることができる。
ポロシリケ一卜ガラスの具体例としては、 日本電気硝子社製の商品名 B F Wガラス、 B F Kガラスなどを挙げることができる。
本発明においては、 光源に、 金属酸化物層を有するものを用いた場合に、 300〜 350 nmの長波長領域側の紫外線 (近紫外線)、 特に 313 nmの 紫外線の照射をより低減することができるので好ましい。 このような金属酸 化物層を有する光源としては、 例えば、 冷陰極蛍光放電管の管の表面及び Z または裏面に金属酸化物層を形成したものが挙げられる。 金属酸化物として は、 上記の波長 350 nm以下の光線を吸収する紫外線吸収性金属酸化物と 同様のもの挙げられるが、 これらの中でも、 ガラス管との密着性、 線膨張率 等の観点から、 酸化チタン (T i〇2) 及び酸化ケィ素 (S i O) が特に好ま しい。 金属酸化物層は、 一般に、 コーティングにより形成することができる が、 蒸着などのドライプロセスにより形成してもよい。 金属酸化物層は、 1 層でもよいが、 2〜6層程度の積層としてもよい。
金属酸化物層の厚みは、 通常 0. 05〜1 m程度であり、 多くの場合 0. 1〜0. 5 m程度である。
(2) 導光板
本発明に使用する導光板は、 透明樹脂を成形して得られる板状成形体であ つて、 照明光源からの光線を入射する面 (光入射面) と、 入射した光を反射 する面 (反射面)、 及び光を出射する面 (光出射面) を、 それぞれ 1つ以上有 している。 導光板の形状は、 平板状であっても構わないが、 反射性や軽量性 等の観点から、 光源から遠ざかるにつれて漸次薄くなっていく楔型であつて もよい。 導光板の光入射面には、 波長 3 5 0 n m以下の波長の光線を吸収す る金属酸化物層を設けることができる。
( 3 ) 光拡散板
本発明に使用する光拡散板は、 透明樹脂を成形して得られる板状成形体で あって、 光入射面と光出射面をそれぞれ一つ以上有する。 光拡散板は、 その 内部に光線を散乱する機能を有する光反射物質及び Zまたは空気の層 (泡) などが分散しており、 それによつて、 光入射面から入射した光源からの光を 乱反射させながら光出射面に導くようにしている。
光反射物質としては、 有機微粒子や無機微粒子などが挙げられる。 具体的 には、 ポリスチレン粒子やシリコ一ン粒子などの有機微粒子; シリカ、 アル ミナ、 及びチタニアなどの無機微粒子;などが好ましい。 光散乱板には、 導 光板と同様に、 その光入射面に波長 3 5 0 n m以下の波長の光線を吸収する 金属酸化物層を設けることができる。
( 4 ) 透明樹脂
本発明に用いる透明樹脂は、 光透過性を有する樹脂であれば特に限定され ないが、 例えば、 ノルポルネン系重合体やビニル脂環式炭化水素系重合体な どの脂環式構造含有重合体樹脂;ポリメチルメタクリレート (P MMA) な どのアクリル樹脂;ポリカーボネート (P C)、 ポリエチレンテレフタレート ( P E T ) , ポリブチレンテレフ夕レート (P B T ) などのポリエステル樹 脂;ポリスチレン、 ポリメチルペンテン (T P X) などのポリオレフイン樹 脂;アクリロニトリルスチレン樹脂などが含まれる。 これらの透明樹脂の中 でも、 透明性及び耐熱性に優れることから、 脂環式構造含有重合体樹脂、 ァ クリル樹脂、 及びポリカーボネート樹脂が好ましく、 脂環式構造含有重合体 樹脂が最も好ましい。 特に脂環式構造含有重合体樹脂から製造された導光板 または光拡散板を用いると、 得られる照明ュニットの発光輝度及び耐熱性が 向上し、 前記光源と組み合せることにより、 着色の発生のみならず、 長期使 用時の輝度低下も抑制することができる。
( 5 ) 脂環式構造含有重合体樹脂
脂環式構造含有重合体樹脂は、 繰り返し単位中に脂環式構造を含有する重 合体である。 脂環式構造は、 主鎖及び/または側鎖のいずれに有していても よいが、 透明性の観点からは、 主鎖に脂環式構造を有するものが好ましい。 脂環式構造としては、 シクロアルカン構造、 シクロアルケン構造などが挙げ られるが、 透明性の観点からシクロアルカン構造が好ましい。 脂環式構造を 構成する炭素原子数は、 格別な制限はないが、 通常 4〜3 0個、 好ましくは 5〜2 0個、 より好ましくは 5〜1 5個の範囲であると、 透明性に優れる。 脂環式構造含有重合体中の脂環式構造を有する繰り返し単位の割合は、 使 用目的に応じて適宜選択されればよいが、 通常 5 0重量%以上、 好ましくは 7 0重量%以上、 より好ましくは 9 0重量%以上である。 脂環式構造含有重 合体中の脂環式構造を有する繰り返し単位の割合が過度に少ないと透明性が 低下し、 好ましくない。 脂環式構造含有重合体中の脂環式構造を有する繰り 返し単位以外の残部は、 格別な限定はなく、 使用目的に応じて適宜選択され る。
脂環式構造を含有する重合体樹脂の具体例としては、 ( i ) ノルボルネン系 重合体、 (i i) 単環の環状ォレフィン系重合体、 (i i i) 環状共役ジェン系重合 体、 (iv) ビニル脂環式炭化水素系重合体などが挙げられ、 これらの重合体に は、 それぞれの水素添加物も含まれる。 これらの中でも、 透明性の観点から、 ノルポルネン系重合体水素添加物、 ビニル脂環式炭化水素系重合体及びその 水素化物などが好ましく、 ノルポルネン系重合体水素添加物がより好ましい。
( i ) ノルポルネン系重合体
本発明に使用されるノルポルネン系重合体は、 例えば、 特開平 3— 1 4 8 82号公報や、 特開平 3— 122137号公報などに開示されている公知の 重合体であり、 具体的には、 ノルポルネン系モノマーの開環重合体及びその 水素添加物、 ノルポルネン系モノマーの付加重合体、 ノルポルネン系モノマ —とそれと共重合可能なその他のモノマーとの付加型共重合体などが挙げら れる。 これらの中でも、 透明性の観点から、 ノルポルネン系モノマーの開環 重合体の水素添加物が最も好ましい。
ノルポルネン系モノマ一としては、 ビシクロ 〔2. 2. 1〕 一へプト _ 2 —ェン (慣用名: ノルポルネン)、 5—メチルービシクロ 〔2. 2. 1〕 一へ プトー 2—ェン、 5, 5—ジメチル—ビシクロ 〔2. 2. 1〕 —ヘプトー 2 一ェン、 5—ェチル—ビシクロ 〔2. 2 · 1〕 —ヘプ卜一 2—ェン、 5—ブ チル—ビシクロ 〔2. 2. 1〕 —ヘプト— 2—ェン、 5—へキシル—ビシク 口 〔2. 2. 1〕 一ヘプトー 2—ェン、 5—ォクチル—ビシクロ 〔2. 2. 1〕 一ヘプトー 2—ェン、 5—ォクタデシルービシクロ 〔2. 2. 1〕 —へ プト— 2—ェン、 5ーェチリデン一ビシクロ 〔2. 2. 1〕 —ヘプ卜一 2 - ェン、 5—メチリデン一ビシクロ 〔2. 2. 1〕 一ヘプト— 2—ェン、 5 _ ビニルービシクロ 〔2. 2. 1〕 —ヘプトー 2—ェン、 5 _プロぺニルーピ シクロ 〔2. 2. 1〕 一ヘプトー 2 _ェン、 5—メトキシ—力ルポニル一ビ シクロ 〔2. 2. 1〕 一ヘプトー 2—ェン、 5—シァノ一ビシクロ 〔2. 2. 1〕 一ヘプトー 2—ェン、 5—メチル— 5—メトキシカルポニル—ビシクロ 〔2. 2. 1〕 一へブト— 2—ェン、 5—メトキシカルポ二ルービシクロ 〔2. 2. 1〕 —ヘプト— 2—ェン、 5—エトキシカルポニル—ビシクロ 〔2. 2. 1〕 一ヘプ卜— 2—ェン、 5—メチルー 5—エトキシカルポニル —ビシクロ 〔2. 2. 1〕 一ヘプトー 2—ェン、 ビシクロ 〔2. 2. 1〕 - ヘプトー 5—ェニル— 2—メチルプロピオネイト、 ビシクロ 〔2. 2. 1〕 一ヘプトー 5—ェニルー 2—メチルォクタネイト、 ビシクロ 〔2. 2. 1〕 一ヘプトー 2—ェンー 5、 6—ジカルボン酸無水物、 5—ヒドロキシメチル ービシクロ 〔2. 2. 1〕 一ヘプトー 2—ェン、 5、 6—ジ (ヒドロキシメ チル) ービシクロ 〔2. 2. 1〕 —ヘプトー 2—ェン、 5—ヒドロキシ— i —プロピル一ビシクロ 〔2. 2. 1〕 一へブト一 2—ェン、 ビシクロ 〔2. 2. 1〕 一ヘプトー 2—ェン、 5、 6—ジカルポキシ—ビシクロ 〔2. 2. 1〕 一ヘプト一2—ェン、 ピシクロ 〔2. 2. 1〕 一ヘプトー 2—ェン _ 5、 6—ジカルボン酸イミド、 5—シクロペンチル—ビシクロ 〔2. 2. 1〕 一 ヘプ卜— 2 _ェン、 5—シクロへキシル—ビシクロ 〔2. 2. 1〕 一ヘプ卜 一 2—ェン、 5—シクロへキセニルービシクロ 〔2. 2. 1〕 一ヘプトー 2 一ェン、 5—フエニル一ビシクロ 〔2. 2. 1〕 一ヘプトー 2—ェン、 トリ シクロ 〔4. 3. I 2' 5. 01' 6〕 一デカー 3, 7—ジェン (慣用名ジシクロ ペン夕ジェン)、 トリシクロ 〔4. 3. I 2''5. 016〕 ーデカー 3—ェン、 トリシクロ 〔4. 4. I 2' 5. 0 6〕 一ゥンデ力一 3, 7—ジェン、 トリシ クロ 〔4. 4. I 2' 5. 01' 6] —ゥンデカー 3, 8—ジェン、 トリシクロ 〔4. 4. I 2' 5. 01' 6〕 一ゥンデ力— 3—ェン、 テトラシクロ C7. 4. I 10' 13, 01' 9. 02' 7〕 一トリデカー 2, 4, 6- 11—テトラェン (1, 4ーメタノ一 1, 4, 4 a, 9 a—テトラヒドロフルオレンともいう)、 テト ラシクロ 〔8. 4. I 11' 14. 01' 10. 03' 8〕 ーテトラデカ一 3, 5, 7, 12— 1 1—テトラェン (1, 4—メタノー 1, 4, 4 a, 5, 10, 1 0 a—へキサヒドロアントラセンともいう)、 テトラシクロ 〔4. 4. I 2' 5. Ι 7, ι 0 · o〕 ードデカー 3—ェン (テトラシクロドデセンともいう)、 8— メチル一テトラシクロ 〔4. 4. I2' 5. I7' 10. 0〕 ードデカー 3—ェン、
8—メチル一テトラシクロ 〔4. 4. I 2' 5. I7' 10. 0〕 一ドデカー 3 _ ェン、 8—ェチルーテトラシクロ 〔4. 4. I 2' 5. I 7' 10. 0〕 一ドデカ
— 3—ェン、 8—メチリデンーテトラシクロ 〔4. 4. I 2' 5. I 7' 10.
0〕 ードデ力一 3—ェン、 8—ェチリデンーテトラシクロ 〔4. 4. I2' 5. I 7' 10. 0〕 一ドデ力一 3—ェン、 8—ビニルーテトラシクロ 〔4. 4. 1 2, 5. 17, 10. 0 ] 一ドデカ— 3一ェン、 8—プロべ二ルーテトラシクロ 〔4.
4. I 2' 5. I 7' 10. 0〕 ードデ力— 3—ェン、 8—メトキシカルポニル一 テトラシクロ 〔4. 4. 12' 5. 17· 10. 0〕 一ドデカー 3—ェン、 8—メ チルー 8—メトキシカルポ二ルーテトラシクロ 〔4. 4. I 2' 5. I 7' 10. 0〕 一ドデ力 _ 3—ェン、 8—ヒドロキシメチルーテトラシクロ 〔4. 4. I 2' 5. I 7' 10. 0〕 一ドデカー 3—ェン、 8一力ルポキシーテトラシクロ 〔4. 4. I 2' 5. I 7' 10. 0〕 ードデ力一 3—ェン、 8—シクロペンチル ーテトラシクロ 〔4. 4. I 2' 5. I7' 10. 0〕 ードデ力一 3—ェン、 8— シクロへキシル一テトラシクロ 〔4. 4. I 2' 5. I 7' 10. 0〕 一ドデカー 3—ェン、 8—シクロへキセニルーテトラシクロ 〔4. 4. I 2' 5. I7' 10. 0〕 -ドデカー 3—ェン、 8—フエ二ルーテトラシクロ 〔4. 4. I2' 5. 1 7' 10. 0〕 ードデカー 3—ェン、 ペンタシクロ 〔6. 5. I 1' 8. I 3' 6. 02' 7. 09' 13] 一ペンタデカー 3, 10—ジェン、 ペンタシクロ 〔7. 4. 13, 6. ! 10, i3- o 1' 9. 02' 7〕 一ペンタデカー 4, 1 1ージェンなどが 挙げられる。 これらのノルポルネン系モノマーは、 それぞれ単独であるいは 2種以上を組み合わせて用いられる。
ノルポルネン系モノマーの開環重合体は、 ノルポルネン系モノマーを開環 重合触媒の存在下で開環重合することにより得ることができる。 開環重合触 媒としては、 例えば、 ルテニウム、 ロジウム、 パラジウム、 オスミウム、 ィ リジゥム、 白金などの金属のハロゲン化物、 硝酸塩またはァセチルアセトン 化合物と、 還元剤とからなる触媒系、 あるいはチタン、 バナジウム、 ジルコ 二ゥム、 タングステン、 モリブデンなどの金属のハロゲン化物またはァセチ ルアセトン化合物と、 有機アルミニウム化合物とからなる触媒系が用いられ る。 重合反応は、 溶媒中または無溶媒で、 通常、 一 50 〜 100°Cの重合 温度、 0〜50 k g/cm2の重合圧力で行われる。
ノルポルネン系モノマーの開環重合体水素添加物は、 ノルポルネン系モノ マ一の開環重合体の重合溶液に水素添加触媒を添加し、 水素により炭素一炭 素二重結合を水素添加することにより得ることができる。 水素添加触媒とし ては、 特に限定されないが、 不均一系触媒や均一系触媒を用いることができ る。
ノルポルネン系モノマー、 またはノルポルネン系モノマーとそれと共重合 可能なその他のモノマーとの付加 (共) 重合体は、 例えば、 モノマー成分を、 溶媒中または無溶媒で、 チタン、 ジルコニウムまたはバナジウム化合物と、 有機アルミニウム化合物とからなる触媒系の存在下で、 通常、 一 5 0 °C〜 1 0 0 °Cの重合温度、 0〜5 0 k g / c m2の重合圧力で (共) 重合させる方法 により得ることができる。
共重合可能なその他のモノマーとしては、 例えば、 エチレン、 プロピレン、 1ーブテン、 1一ペンテン、 1一へキセン、 3—メチルー 1ーブテン、 3— メチル— 1—ペンテン、 3 _ェチル _ 1一ペンテン、 4ーメチルー 1一ペン テン、 4ーメチルー 1一へキセン、 4、 4—ジメチルー 1一へキセン、 4、 4一ジメチルー 1一ペンテン、 4一ェチル— 1一へキセン、 3—ェチルー 1 一へキセン、 1ーォクテン、 1—デセン、 1ードデセン、 1ーテトラデセン、 1 _へキサデセン、 1一才クタデセン、 1一エイコセンなどの炭素数 2〜2 0の α—ォレフイン;シクロブテン、 シクロペンテン、 シクロへキセン、 3、 4ージメチルシクロペンテン、 3—メチルシクロへキセン、 2— ( 2—メチ ルプチル) 一 1ーシクロへキセン、 シクロォクテン、 3 a、 5、 6、 7 a - テトラヒドロー 4、 7—メタノー 1 H—インデンなどのシクロォレフイン; 1、 4一へキサジェン、 4一メチル— 1、 4—へキサジェン、 5—メチルー 1、 4一へキサジェン、 1、 7—ォクタジェンなどの非共役ジェン;などが 用いられる。 これらの中でも、 a—ォレフインが好ましく、 エチレンが特に 好ましい。
ノルポルネン系モノマーと共重合可能なその他のモノマーは、 それぞれ単 独で、 あるいは 2種以上を組み合わせて使用することができる。 ノルポルネ ン系モノマーとそれと共重合可能なその他のモノマーとを付加共重合する場 合は、 付加共重合体中のノルポルネン系モノマー由来の結合単位と共重合可 能なその他のモノマー由来の結合単位との割合が、 重量比で通常 3 0 : 7 0 〜9 9 : 1、 好ましくは 5 0 : 5 0〜9 7 : 3、 より好ましくは 7 0 : 3 0 〜9 5 : 5の範囲となるように適宜選択される。
(i i) 単環の環状ォレフィン系重合体
単環の環状ォレフィン系重合体としては、 例えば、 特開昭 6 4— 6 6 2 1 6号公報に開示されているシクロへキセン、 シクロヘプテン、 シクロォクテ ンなどの単環の環状ォレフィン系単量体の付加重合体を用いることができる。
(i i i) 環状共役ジェン系重合体
環状共役ジェン系重合体としては、 例えば、 特開平 6— 1 3 6 0 5 7号公 報ゃ特開平 7— 2 5 8 3 1 8号公報に開示されているシクロペン夕ジェン、 シクロへキサジェンなどの環状共役ジェン系単量体を 1, 2 _または1, 4 - 付加重合した重合体及びその水素添加物などを用いることができる。
(iv) ビニル脂環式炭化水素系重合体
ビニル脂環式炭化水素系重合体としては、 例えば、 特開昭 5 1 - 5 9 9 8 9号公報に開示されているビエルシクロへキセン、 ビニルシクロへキサンな どのビニル脂環式炭化水素系単量体の重合体及びその水素添加物、 特開昭 6 3 - 4 3 9 1 0号公報、 特開昭 6 4 - 1 7 0 6号公報などに開示されている スチレン、 ひーメチルスチレンなどのビニル芳香族系単量体の重合体の芳香 環部分の水素添加物などを用いることができる。 ビニル脂環式炭化水素系重 合体またはビニル芳香族系単量体と、 これらの単量体と共重合可能な他の単 量体とのランダム共重合体、 ブロック共重合体などの共重合体及びその水素 添加物も使用することができる。 ブロック共重合体としては、 ジブロック、 ト リブロック、 またはそれ以上のマルチブロックや傾斜ブロック共重合体など があり、 特に制限はない。
本発明で使用される脂環式構造含有重合体樹脂の分子量は、 使用目的に応 じて適宜選択されるが、 シクロへキサン溶液 (重合体樹脂が溶解しない場合 はトルエン溶液) のゲル ·パーミエーシヨン ·クロマトグラフ (G P C ) 法 で測定したポリイソプレンまたはポリスチレン換算の重量平均分子量で、 通 常 5, 000〜 500, 000、 好ましくは 8, 000〜 200, 000、 より 好ましくは 1 0, 000〜 100, 000の範囲であるときに、 成形体の機械 的強度、 並びに成形加工性とが高度にパランスされて好適である。
本発明で使用される脂環式構造含有重合体樹脂のガラス転移温度 ( T g ) は、 使用目的に応じて適宜選択されればよいが、 通常 80 以上、 好ましく は 1 00°C〜 250°C、 より好ましくは 120°C〜200°Cの範囲である。 T gがこの範囲内にあると、 耐熱性と成形加工性とが高度にバランスされる ので好適である。
(6) 添加剤
本発明においては、 透明樹脂に対して、 必要に応じて、 酸化防止剤 (老化 防止剤)、 紫外線吸収剤、 光安定剤、 熱安定剤などの安定剤;有機フィラーや 無機フィラーなどの充填剤;染料や顔料などの着色剤;近赤外線吸収剤、 可 塑剤、 滑剤、 帯電防止剤、 難燃剤、 他の樹脂、 軟質重合体などの添加剤を配 合することができる。 これらの添加剤は、 単独であるいは 2種以上を組み合 わせて用いることができ、 その添加量は、 本発明の目的を損ねない範囲で適 宜選択される。
添加剤の中でも、 酸化防止剤、 紫外線吸収剤、 光安定剤、 充填剤、 軟質重 合体などが好ましい。 脂環式構造含有重合体樹脂 100重量部に対して、 軟 質重合体を好ましくは 0. 001〜0. 5重量部、 より好ましくは 0. 00 5〜0. 3重量部の割合で含有させると、 透明性を損なうことなく、 吸湿に よる曇りの発生を防ぐことができる。
(7) 成形法
透明樹脂を用いた導光板及び光拡散板の成形方法としては、 射出成形法、 押出成形法、 ブロー成形法、 プレス成形法、 インフレーション成形法などの 加熱溶融成形法;溶液流延法、 溶液キャスト法などの溶液法などが挙げられ る。 これらの中でも、 透明性に優れた導光板及び光拡散板を得るには、 射出 成形法及び押出成形法が好ましい。 ( 8 ) 照明ュニット
本発明の照明ュニットは、 液晶表示装置の照明として使用されるものであ り、 照明光源と導光板または光拡散板を必須部品として有している。 照明光 源からの光線は、 導光板または光拡散板に入射するように配置されている。 照明ユニットの形式は、 (I)パックライト型照明ユニットと(I I) フロント ライト型照明ュニットに大別することができる。 バックライト型照明ュニッ トは、 L C Dの背面に設置され、 フロントライト型照明ユニットは、 L C D の前面に設置される。 バックライト型照明ユニットは、 さらに、 サイドライ ト型と直下型に分類することができる。
(I)バックライト型照明ュニット
サイドライト型 (エッジ式ともいう) 照明ユニットは、 照明光源と導光板 とを有している。 照明光源は、 一般に線状光源であって、 導光板の少なくと も一つの側面 (光入射面) の近傍に位置しているのが好ましい。 照明光源と 光入射面との距離は、 通常 0 l〜5 mm、 好ましくは 0 . 0 5〜2 mm、 より好ましくは 0 . l〜l mmである。 光源と光入射面との距離が遠すぎる と、 光入射面上の紫外線照射強度は小さくはなるが、 導光板に入射する光線 のロスが生じて、 照明ユニットの発光輝度が低下する。 逆に、 光源と光入射 面との距離が近すぎると、 光源の熱により導光板の光入射面が変形したり着 色することがある。
線状光源は、 通常、 直線状以外の L字状やコの字状であってもよく、 これ らの場合には、 光入射面はそれぞれ、 2面及び 3面となる。 光源からの光線 をできる限り効率よく導光板に入射させるためには、 光源の周囲に、 光反射 層 (リフレク夕) を設置するのが好ましい。 線状光源としては、 輝度や寿命、 カラー表示などの観点から、 冷陰極蛍光放電管が好ましい。
図 1に、 サイドライト型照明ユニットの 1例の断面図を示す。 サイドラ ィト型照明ュニットは、 透明樹脂から形成された導光板 1と照明光源 5を有 している。 導光板 1の背面には、 反射シート 2が設けられている。 導光板 1 の 1つの側面 3が光入射面となっており、 前面が光出射面 4となっている。 光入射面 3に近接して、 照明光源 5が配置されており、 その周囲には、 リフ レクタ 6が配置されている。 反射シートに代えて、 例えば、 アルミニウム蒸 着膜を設けてもよく、 あるいは背面をフレネルミラ一の形状に成形してもよ い。 導光板の形状は、 平板状でもよいが、 光反射性の向上と軽量化のために、 光入射面 3から遠ざかるにつれて、 肉厚が薄くなるような楔形に成形するこ とが好ましい。 光出射面 4には、 拡散シートや塗装などによる拡散層を設け てもよい。 照明光源 5からの光線は、 光入射面 3から導光板 1内に入射し、 感謝シート 2の表面で反射して、 光出射面 4から出射 7する。
直下型照明ユニットは、 照明光源と光拡散板とを有し、 光拡散板の 2つの 板面がそれぞれ光入射面及び光出射面となる。 光源と光入射面との距離は、 通常 0 . 5〜 5 0 mm、 好ましくは 1〜 3 0 mm, より好ましくは 3〜 2 0 mmである。 光源と光入射面との距離が遠すぎると、 光入射面上の紫外線照 射強度は小さくなるが、 光拡散板に入射する光線のロスが生じて、 照明ュニ ットの発光輝度が低下する。 逆に光源と光入射面との距離が近すぎると、 光 源の熱により光拡散板の光入射面が変形したり着色する。
光源としては、 エレクト口ルミネッセンス (E L ) などの平面状光源、 L E Dなどの点状光源、 蛍光放電管などの線状光源などのいずれでもよいが、 輝度や寿命、 カラー表示などの点で、 冷陰極蛍光放電管が好ましい。 さらに、 光源からの光をできる限り効率よく光拡散板に入射させるために、 光源の背 後に光反射層 (リフレク夕) を設置するのが好ましい。
図 2に、 直下型照明ユニットの 1例の断面図を示す。 透明樹脂から製造さ れた光拡散板 2 1は、 光反射物質 2 2を含有している。 光反射物質に代えて、 空気の泡を含有させてもよい。 光拡散板 2 1の背面側には、 1つ以上の線状 光源 2 5, 2 6 , 2 7 , 2 8 , 2 9が配置されている。 線状光源に代えて、 平面状光源や点状光源を配置してもよい。 照明光源からの光線は、 光拡散板 2 1の光入射面 2 3から入射し、 光拡散板の内部で拡散され、 そして、 光出 射面 2 4から出射 3 1される。 照明光源は、 一般に、 ハウジング 3 0により 囲まれているが、 照明光源の下方位置に反射シートなどの光反射層 (リフレ クタ) を設けてもよい。
(I I)フロントライト型照明ュニット
基本的にはサイドライト型照明ユニットと同様の構成であるが、 フロント ライト型照明ユニットでは、 導光板から出射された光線は、 L C D表面で反 射し、 その反射光が導光板を再び透過してディスプレイ前面に出射する構成 となっている。 そのため、 L C Dとしては、 反射型 L C Dが用いられる。 導光板の少なくとも一方の面に微細な凹凸形状を形成したり、 また、 導光 板と反射型 L C Dとの間にさらに透明板を設置したものなど、 各種の方式の ものがあるが、 本発明では特に限定されない。
照明光源は、 一般に線状光源であって、 導光板の端面の少なくとも一面の 近傍に位置しているのが好ましい。 光源と光入射面との距離は、 通常 0 . 0 l〜5 mm、 好ましくは 0 . 0 5〜2 mm、 より好ましくは 0 . 1〜 1 mm である。 光源と光入射面との距離が遠すぎると、 光入射面上の紫外線照射強 度は小さくはなるが、 導光板に入射する光のロスが生じて、 照明ユニットの 発光輝度が低下する。 逆に、 光源と光入射面との距離が近すぎると、 光源の 熱により導光板の光入射面が変形したり着色することがある。 線状光源は、 直線状でなくても、 L字状であってもコの字状であってもよい。 さらに、 光 源からの光をできる限り効率よく導光板に入射させるためには、 光源の背後 に光反射層 (リフレタ夕) を設置するのが好ましい。
<実施例 >
以下、 本発明について、 製造例、 実施例及び比較例を挙げて、 より具体的 に説明するが、 本発明は、 これらの実施例に限定されるものではない。
これらの例において、 「部」 は、 特に断りのない限り、 重量基準である。 各 種物性の測定法は、 次のとおりである。 (1) ガラス転移温度 (Tg)
Tgは、 示差走査熱量計 (DSC法) により測定した。
(2) 分子量
透明樹脂の分子量は、 特に記載しない限り、 シクロへキサンを溶媒とする ゲルパ一ミエーシヨンクロマトグラフィー (GPC) で測定されるポリイソ プレン換算値の重量平均分子量として測定した。
(3) 光の強度
光の強度は、 標準光源 (分光放射照度標準八ロゲンランプ:ゥシォ電機 製) により補正した光量計 (FASTEVERT S— 2400 :相馬光学 社製) にて測定した。
導光板または光拡散板の光入射面での光の最大強度は、 波長 350 nm以 下の紫外線の最大発光強度波長における強度として求めた。 照明光源の波長 350 nm以下の紫外線領域における最大発光強度は、 光量計のファイバ一 を光源表面 (具体的には、 冷陰極蛍光放電管表面) から約 0. 5mmの位置 にまで接近させて、 直接、 光の強度として測定した。
(4) 最大光線透過率
冷陰極蛍光放電管の管材料の波長 200〜3 50 nmでの最大光線透過率 は、 紫外分光光度計を用いて、 肉厚 lmmの試料について、 3 13 nmでの 透過率を測定することにより求めた。
(5) 照明ユニットの長期使用時の評価
照明ュニットの長期使用時の評価は、 以下の方法により行った。
照明ユニットを 1, 000時間連続点灯させた後、 その発光面を長辺及び 短辺ともそれぞれ等間隔に 3等分した合計 9個のエリアについて、 輝度及び 色度を輝度計 (BM— 7 : トプコン株式会社製) により測定した。 色度は、 色座標 (x, y) の変化 (Δχ, Ay) の平均値を測定した。
[製造例 1 ]
窒素雰囲気下、 脱水したシクロへキサン 500部に、 1—へキセン 0. 8 2部、 ジブチルエーテル 0. 1 5部、 トリイソブチルアルミニウム 0. 30 部を室温で反応器に入れて混合した。 その後、 混合物を 45°Cに保ちながら、 8—ェチルテトラシクロ [4. 4. 0. I 2' 5. 17' 10] —ドデカー 3—ェ ン (以下、 「ETD」 と略記) 30部、 トリシクロ [4. 3. 0. 12' 5] デ カー 3、 7—ジェン (ジシクロペン夕ジェン;以下、 「DCP」 と略記) 17 0部、 及び六塩化タングステンの 0. 7 %トルエン溶液 40部を 2時間かけ て連続的に添加して重合した。 重合溶液にブチルダリシジルエーテル 1. 0 6部とイソプロピルアルコール 0. 52部を加えて重合触媒を不活性化し、 重合反応を停止させた。
このようにして得られた開環重合体を含有する反応溶液 100部に対して、 シクロへキサン 270部を加え、 さらに水素化触媒としてニッケル一アルミ ナ触媒 (日揮化学社製) 5部を加え、 水素により 50 kg/cm2に加圧して 撹拌しながら温度 200°Cまで加温した後、 4時間反応させて、 ETD/D CP開環重合体水素化ポリマーを 20%含有する反応溶液を得た。 重合体中 の各ノルポルネン系モノマーの共重合比率を、 重合後の溶液中の残留ノルポ ルネン系モノマ一組成 (ガスクロマトグラフィー法による) から計算したと ころ、 ETDZDC P= 15ノ85でほぼ仕込組成に等しかった。 この ET D/D CP開環重合体水素添加物の、 重量平均分子量 (Mw) は 31, 00 0、 水素添加率は 99. 9%、 Tgは 100 Cであった。
[製造例 2]
十分に乾燥し窒素置換した、 攪拌装置を備えたステンレス鋼製反応器に、 脱水シクロへキサン 320部、 スチレンモノマー 60部、 及びジブチルエー テル 0. 38部を仕込み、 6 0°Cで攪拌しながら n—プチルリチウム溶液 (15%含有へキサン溶液) 0. 36部を添加して重合反応を開始した。 1 時間重合反応を行った後、 反応溶液中に、 スチレンモノマー 8部とイソプレ ンモノマー 12部とからなる混合モノマー 20部を添加し、 さらに 1時間重合 反応を行った後、 反応溶液にイソプロピルアルコール 0. 2部を添加して反 応を停止させた。
得られたブロック共重合体の重量平均分子量 (Mw) と分子量分布 (Mw /Mn) を測定したところ、 Mw= 102, 100、 Mw/Mn= 1. 1 1 であった。
次いで、 重合反応溶液 400部を、 攪拌装置を備えた耐圧反応器に移送し、 水素化触媒として、 シリカ一アルミナ担持型ニッケル触媒 (日揮化学工業社 製; E 22U、 ニッケル担持量 60%) 10部を添加して混合した。 反応器 内部を水素ガスで置換し、 さらに溶液を攪拌しながら水素を供給し、 温度 1 60 °C、 圧力 4. 5 MP aにて 8時間水素化反応を行つた。
水素化反応終了後、 反応溶液を濾過して水素化触媒を除去した後、 シクロ へキサン 800部を加えて希釈し、 該反応溶液を 3, 500部のイソプロパノ ール (クラス 1, 000のクリーンルームで、 孔径 1 mのフィルタ一にて濾 過したもの) 中に注いでブロック共重合体を析出させ、 濾過により分離回収 し、 80°Cにて 48時間減圧乾燥させた。
得られたブロック共重合体は、 スチレン由来の繰り返し単位を含有するブ ロック (以下、 「S t」 と略記)、 及びスチレンとイソプレン由来の繰り返し 単位を含有するブロック (以下、 「S t/I p」 と略記) とからなる 2元プロ ック共重合体であり、 それぞれのブロックのモル比は、 S t : S tZl p = 69 : 31 (S t : I p= 10 : 21) であった。 該ブロック共重合体の M wは 85100、 Mw/Mnは 1. 17、 主鎖及び芳香環の水素化率は 99. 9%、 丁8は126. 5°Cであった。
[実施例 1 ]
(1) 導光板の成形
製造例 1で得られた開環重合体水素添加物 100部に、 老化防止剤 (吉富 製薬社製トミノックス TT) 0. 5部と軟質重合体 (旭化成社製タフテック HI 052) 0. 02部を添加し、 2軸混練機 (東芝機械社製 T E M— 35 B、 スクリユー径 37mm、 L/D= 32, スクリュー回転数 250 r ΌΠΙ、 樹脂温度 230° C、 フィードレート 1 0 kg/時間) で混練して押し出し、 ペレツトイ匕した。
上記ペレットを、 80°C、 4時間で加熱予備乾燥を行った後、 射出成形装 置 (東芝機械株式会社製の製品番号 I S 450) を用いて、 射出成形により 14. 1インチの導光板を成形した。 成形条件は、 金型温度 70° (:、 シリン ダー温度 270°Cとした。
得られた導光板は、 光入射面側の肉厚部の厚みが 2. 4mm、 反対側の肉 薄部の厚みが 0. 8 mmであり、 肉厚部側から肉薄部側へ遠ざかる (直線状 光源の軸芯と略垂直方向) につれて厚みが漸次薄くなるような楔型であった。
(2) バックライト照明ユニットの製造
上記方法により得られた導光板の光反射面に反射シートを設置し、 導光板 の肉厚側の側面 (光入射面) に線状光源及びリフレクタを設置した。 線状光 源には、 直径 2 mm φの冷陰極蛍光放電管 (A) を使用した。 管の材料は、 ポロシリゲートガラス (日本電気硝子製 BFW) を使用した。 BFWガラス の lmm厚の紫外線 (3 1 3 nm) 透過率は、 6 5 %であった。 冷陰極蛍光 放電管 (A) と導光板の光入射面との距離を約 0. 5mmとした。 導光板の 光入射面における波長 3 50 nm以下の紫外線の最大発光強度波長における 強度は 1. 55 Ψ (cm2, nm) であり、 ユニットを 1, 000時間点 灯させた後の色度変化量、 及び輝度を測定したところ、 Δχ=0. 0089、 Δγ=0. 0 1 58、 平均輝度が 1802 c dZcm2であった。 結果を表 1 に記載する。
[実施例 2]
線状光源として、 直径 2 mm φの冷陰極蛍光放電管 (B) 〔管材質-ポロシ リケートガラス、 日本電気硝子製 BFK; lmm厚の紫外線 (3 1 3 nm) 透過率 =86 %〕 の管の表面に二酸化チタンコーティングしたものを使用し た以外は、 実施例 1同様にパックライトユニットを製造して評価した。 結果 を表 1に記載する。 [実施例 3 ]
線状光源として、 実施例 1において使用した冷陰極蛍光放電管 (A) の管 の表面に酸化ゲイ素 (S i O) コーティングしたものを使用した以外は、 実 施例 1同様にバックライトユニットを製造して評価した。 結果を表 1に記載 する。
[実施例 4]
線状光源として、 実施例 1において使用した冷陰極蛍光放電管 (A) の管 の表面に二酸化チタン (T i〇2) コーティングしたものを使用した以外は、 実施例 1同様にパックライトュニットを製造して評価した。 結果を表 1に記 載する。
[実施例 5 ]
光源として、 冷陰極蛍光放電管にかえて、 発光ダイオード (LED) ァレ ィ (直径 lmm 、 29個) を使用した以外は、 実施例 1同様にバックライ トユニットを製造して評価した。 結果を表 1に記載する。
[実施例 6]
製造例 1で得られた開環重合体水素添加物に代えて、 製造例 2で得られた水 素化プロック共重合体を用いた以外は、 実施例 4同様に導光板及びバックラ イトユニットを製造して評価した。 結果を表 1に記載する。
[実施例 7 ]
(1) 光拡散板の成形
製造例 2で得られた水素化ブロック共重合体 100部に、 老化防止剤 (吉 富製薬社製トミノックス TT) 0. 5部、 軟質重合体 (旭化成社製タフテツ ク H 1052) 0. 02部、 及び架橋性シリコ一ンビーズ (東芝シリコーン 社製トスパール 145) 2. 9部を添加し、 2軸混練機 (東芝機械社製 TE M— 35 B、 スクリュー径 37mm、 L/D=32、 スクリユー回転数 25 0 r pm、 樹脂温度 210° ( 、 フィードレート 10 k gZ時間) で混練し て押し出し、 ペレツト化した。 得られた架橋性シリコーンビーズ入りのペレットを 85 、 4時間で加熱 予備乾燥を行った後、 射出成形装置 (東芝機械株式会社製の製品番号 I S 4 50) を用いて、 射出成形により 10. 4インチ、 厚み 2mmの光拡散板を 成形した。 成形条件は、 金型温度 105Τ シリンダ一温度 270°Cとした。
(2) パックライト照明ユニットの製造
上記方法により得られた光拡散板の光入射面に実施例 4で使用した二酸化 チタンコートされた冷陰極蛍光放電管を等間隔に 5本、 平行に設置した。 光 拡散板光入射面における波長 350 nm以下の紫外線の最大発光強度波長に おける強度は 0. 17 WZ (cm2, nm) であった。 以降、 実施例 1同様 に色度の変化を測定して評価した。 結果を表 1に記載した。
[比較例 1 ]
線状光源として、 直径 2mm ψの冷陰極蛍光放電管 (C) 〔ポロシリケート ガラス、 日本電気硝子製 B F— 38、 1mm厚の紫外線 (313 nm) 透過 率 =90%〕 を使用した以外は、 実施例 1同様にバックライトユニットを製 造して評価した。 結果を表 1に記載する。
[比較例 2 ]
冷陰極蛍光放電管 (B) に二酸化チタンコーティングしなかった以外は、 実施例 2同様にバックライ卜ユニットを製造して評価した。 結果を表 1に記 載する。
Figure imgf000026_0001
<産業上の利用分野〉
本発明によれば、 輝度が高く、 耐熱性に優れ、 さらに長期に使用した場合 でも着色がない液晶表示装置用の照明ュニットが提供される。

Claims

請求の範囲
1 . (A)可視光線を照射する照明光源、 及び (B)光入射面と光出射面とを有 する導光板または光拡散板を有し、 照明光源から照射された光線が導光板ま たは光拡散板の光入射面から入射するように配置された液晶表示装置用照明 ュニットにおいて、 導光板または光拡散板が透明合成樹脂から形成されてお り、 かつ、 導光板または光拡散板の光入射面の全面にわたって測定した波長 3 5 0 n m以下の紫外線領域における光の最大強度が 2 ιι ( c m2 · η m) 以下であることを特徴とする液晶表示装置用照明ユニット。
2 . 照明光源が、 波長 3 5 0 n m以下の紫外線領域における最大発光強度 が 2 ψ/ ( c m2 · n m) 以下の光源である請求項 1記載の液晶表示装置用 照明ュニット。
3 . 照明光源が、 肉厚 1 mmで測定した時、 波長 2 0 0〜 3 5 0 n mの紫 外線領域における最大光線透過率が 8 5 %以下である材料から構成された管 を有する冷陰極蛍光放電管である請求項 1記載の液晶表示装置用照明ュニッ 卜。
4 . 冷陰極蛍光放電管の管を構成する材料が、 紫外線吸収性金属酸化物を 含有するポロシリケートガラスである請求項 3記載の液晶表示装置用照明ュ ニット。
5 . 紫外線吸収性金属酸化物が、 酸化チタン、 酸化セリウム、 酸化亜鉛、 酸化タンタル、 酸化ジルコニウム、 酸化ゲイ素からなる群より選ばれる少な くとも 1種である請求項 4記載の液晶表示装置用照明ュニット。
6 . 冷陰極蛍光放電管の管を構成する材料が、 ガラス管と、 その表面及び 裏面の少なくとも一方の面に形成された紫外線吸収性金属酸化物層とからな るものである請求項 3記載の液晶表示装置用照明ュニット。
7 . 紫外線吸収性金属酸化物層が、 酸化チタン、 酸化セリウム、 酸化亜鉛、 酸化タンタル、 酸化ジルコニウム、 酸化ケィ素からなる群より選ばれる少な くとも 1種の金属酸化物から形成された層である請求項 6記載の液晶表示装 置用照明ュニット。
8 . 導光板または光拡散板が、 光入射面上に紫外線吸収性金属酸化物層が 形成されたものである請求項 1記載の液晶表示装置用照明ュニット。
9 . 透明樹脂が、 脂環式構造含有重合体樹脂である請求項 1記載の液晶表 示装置用照明ュニット。
1 0 . 透明樹脂が、 酸化防止剤、 紫外線吸収剤、 光安定剤、 充填剤、 及び 軟質重合体からなる群より選ばれる少なくとも 1種の添加剤を含有するもの である請求項 1記載の液晶表示装置用照明ュニット。
1 1 . (A)可視光線を照射する照明光源、 及び (B)光入射面と光出射面とを 有する導光板または光拡散板を有し、 照明光源から照射された光線が導光板 または光拡散板の光入射面から入射するように配置された液晶表示装置用照 明ュニットにおいて、 照明光源が、 波長 3 5 0 n m以下の紫外線領域におけ る最大発光強度が 2 x WZ ( c m2 - n m) 以下の光源であり、 つ、 導光板 または光拡散板が透明合成樹脂から形成されていることを特徴とする液晶表 示装置用照明ュニット。
12. 照明光源が、 肉厚 1 mmで測定した時、 波長 200〜 350n mの 紫外線領域における最大光線透過率が 85%以下である材料から構成された 管を有する冷陰極蛍光放電管である請求項 11記載の液晶表示装置用照明ュ ニット。
13. 冷陰極蛍光放電管の管を構成する材料が、 紫外線吸収性金属酸化物 を配合したポロシリゲートガラスである請求項 12記載の液晶表示装置用照 明ュニッ卜。
14. 紫外線吸収性金属酸化物が、 酸化チタン、 酸化セリウム、 酸化亜鉛、 酸化タンタル、 酸化ジルコニウム、 酸化ケィ素からなる群より選ばれる少な くとも 1種である請求項 13記載の液晶表示装置用照明ュニット。
15. 冷陰極蛍光放電管の管を構成する材料が、 ガラス管と、 その表面及 び裏面の少なくとも一方の面に形成された紫外線吸収性金属酸化物層とから なるものである請求項 12記載の液晶表示装置用照明ュニット。
16. 紫外線吸収性金属酸化物層が、 酸化チタン、 酸化セリウム、 酸化亜 鉛、 酸化タンタル、 酸化ジルコニウム、 酸化ケィ素からなる群より選ばれる 少なくとも 1種の金属酸化物から形成された層である請求項 15記載の液晶 表示装置用照明ユニット。
17. 導光板または光拡散板が、 光入射面上に紫外線吸収性金属酸化物層 が形成されたものである請求項 11記載の液晶表示装置用照明ュニット。
18. 透明樹脂が、 脂環式構造含有重合体樹脂である請求項 11記載の液 晶表示装置用照明ュニット。
1 9 . 透明樹脂が、 酸化防止剤、 紫外線吸収剤、 光安定剤、 充填剤、 及び 軟質重合体からなる群より選ばれる少なくとも 1種の添加剤を含有するもの である請求項 1 1記載の液晶表示装置用照明ュニット。
2 0 . 液晶表示装置のバックライトまたはフロントライトである請求項 1 1記載の液晶表示装置用照明ュニット。
PCT/JP2001/011102 2000-12-18 2001-12-18 Unite d'eclairage pour dispositif d'affichage a cristaux liquides WO2002050607A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/433,617 US7036972B2 (en) 2000-12-18 2001-12-18 Lighting unit for liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-383444 2000-12-18
JP2000383444A JP2002182207A (ja) 2000-12-18 2000-12-18 液晶表示装置用照明ユニット

Publications (1)

Publication Number Publication Date
WO2002050607A1 true WO2002050607A1 (fr) 2002-06-27

Family

ID=18851097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011102 WO2002050607A1 (fr) 2000-12-18 2001-12-18 Unite d'eclairage pour dispositif d'affichage a cristaux liquides

Country Status (3)

Country Link
US (1) US7036972B2 (ja)
JP (1) JP2002182207A (ja)
WO (1) WO2002050607A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050017619A1 (en) * 2003-07-21 2005-01-27 Sheng-Chih Wan Modified high-brightness flat lamp structure
JP4248974B2 (ja) * 2003-09-02 2009-04-02 日東電工株式会社 光源装置および液晶表示装置
WO2005078483A1 (ja) * 2004-02-18 2005-08-25 Zeon Corporation 光学部材、その製造方法およびディスプレイ装置
JP2006134711A (ja) * 2004-11-05 2006-05-25 Toshiba Matsushita Display Technology Co Ltd 面光源装置及びこれを備えた液晶表示装置
TWI313381B (en) * 2005-12-23 2009-08-11 Innolux Display Corp Backlight module and liquid crystal display device
US20080298084A1 (en) * 2007-05-30 2008-12-04 Motorola, Inc. Lighting system for thin reflective display devices
KR20090080775A (ko) * 2008-01-22 2009-07-27 삼성전자주식회사 램프 및 이를 포함하는 표시 장치
US8330896B2 (en) * 2008-07-04 2012-12-11 Sharp Kabushiki Kaisha Liquid crystal display device
GB201305803D0 (en) * 2013-03-28 2013-05-15 Saf T Glo Ltd Emergency lighting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110418U (ja) * 1990-02-27 1991-11-13
JPH09167860A (ja) * 1995-12-14 1997-06-24 Nichia Chem Ind Ltd 面状光源
JPH117010A (ja) * 1997-06-16 1999-01-12 Hitachi Ltd 液晶表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748518A (en) 1972-06-14 1973-07-24 Westinghouse Electric Corp Fluorescent lamp having titania-doped glass envelope with transparent buffer film of titania
JPS5159989A (ja) 1974-11-21 1976-05-25 Mitsui Petrochemical Ind Ketsushoseihoribinirushikurohekisanno seizohoho
JPH07114030B2 (ja) 1986-08-11 1995-12-06 三菱化学株式会社 光デイスク基板
DE3726325A1 (de) 1987-08-07 1989-02-16 Hoechst Ag Verfahren zur herstellung eines olefinpolymers
JP2881751B2 (ja) 1989-03-10 1999-04-12 三井化学株式会社 メッキ用組成物およびメッキ物
JPH0320956A (ja) 1989-07-06 1991-01-29 Sumitomo Cement Co Ltd 紫外線抑制蛍光ランプとその製造方法
JPH03110418A (ja) 1989-09-26 1991-05-10 Toshiba Corp 打点式記録計
JP2712643B2 (ja) 1989-10-06 1998-02-16 日本合成ゴム株式会社 熱可塑性樹脂成形品
JPH03280079A (ja) 1990-03-29 1991-12-11 Toshiba Lighting & Technol Corp 面発光装置
JPH04129164A (ja) 1990-09-19 1992-04-30 Matsushita Electron Corp 紫外線防止形蛍光ランプ
JPH06136057A (ja) 1992-07-28 1994-05-17 Nippon Zeon Co Ltd 水素添加シクロペンタジエン系樹脂、その製造方法、それからなる光学材料、医療用器材、電気絶縁材料、および電子部品処理用器材
US5396406A (en) * 1993-02-01 1995-03-07 Display Technology Industries Thin high efficiency illumination system for display devices
JPH07258318A (ja) 1993-05-21 1995-10-09 Asahi Chem Ind Co Ltd 重合触媒
JPH08264157A (ja) 1995-03-22 1996-10-11 Toshiba Lighting & Technol Corp 蛍光ランプ、照明装置および読取り装置
JP2000251839A (ja) 1999-03-04 2000-09-14 Nec Home Electronics Ltd 冷陰極蛍光ランプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110418U (ja) * 1990-02-27 1991-11-13
JPH09167860A (ja) * 1995-12-14 1997-06-24 Nichia Chem Ind Ltd 面状光源
JPH117010A (ja) * 1997-06-16 1999-01-12 Hitachi Ltd 液晶表示装置

Also Published As

Publication number Publication date
JP2002182207A (ja) 2002-06-26
US20040027512A1 (en) 2004-02-12
US7036972B2 (en) 2006-05-02

Similar Documents

Publication Publication Date Title
US6883938B1 (en) Lighting equipment
TWI471341B (zh) An optical molded body, a light guide plate and a light diffuser thereof
JPWO2007037093A1 (ja) 反射材及び発光ダイオード用反射体
JP2000108137A (ja) 成形体の製造方法および樹脂型
WO2002050607A1 (fr) Unite d&#39;eclairage pour dispositif d&#39;affichage a cristaux liquides
JP2004127680A (ja) 直下型バックライト装置
JP4099870B2 (ja) 車両灯具用レンズ
JP5682667B2 (ja) 白色フィルムおよびそれを用いた面光源
JPH11273437A (ja) 車両用灯具およびこれに用いられる導光体
JP2000221328A (ja) 導光板
JP2010237670A (ja) 白色フィルムおよびそれを用いた面光源
JP2000164017A (ja) エッジライト型導光板およびその製造方法
JP2004326005A (ja) 光拡散性組成物、光拡散体および該光拡散体を備える表示装置
JP2000089032A (ja) 導光板
JPH10111402A (ja) 光拡散性シートとその製造方法
JP5803304B2 (ja) 樹脂組成物及び光反射体
JPH11339520A (ja) 灯具およびランプカバー
JP2000075102A (ja) 集光シート
JP4114283B2 (ja) 導光板及びその製造方法
JP2002228845A (ja) 導光板
JPH11273405A (ja) 車両用灯具のリフレクタ
JP2006010877A (ja) 光多重反射板
JP2004230728A (ja) 導光板の製造方法
JP4016479B2 (ja) 車両用灯具のリフレクタ
JP2004354892A (ja) 光拡散性組成物、光拡散性成形品および液晶表示装置用バックライト装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10433617

Country of ref document: US

122 Ep: pct application non-entry in european phase