Nothing Special   »   [go: up one dir, main page]

WO2002041373A1 - Electron beam correction method and electron beam exposure system - Google Patents

Electron beam correction method and electron beam exposure system Download PDF

Info

Publication number
WO2002041373A1
WO2002041373A1 PCT/JP2001/009814 JP0109814W WO0241373A1 WO 2002041373 A1 WO2002041373 A1 WO 2002041373A1 JP 0109814 W JP0109814 W JP 0109814W WO 0241373 A1 WO0241373 A1 WO 0241373A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
electron
irradiation position
electron beams
detected
Prior art date
Application number
PCT/JP2001/009814
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Hamaguchi
Hiroshi Yasuda
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Publication of WO2002041373A1 publication Critical patent/WO2002041373A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe

Definitions

  • the present invention relates to an electron beam correction method and an electron beam exposure device.
  • This application is related to the following Japanese patent application. For those designated countries that are allowed to be incorporated by reference to the literature, the contents described in the following application are incorporated into this application by reference and are incorporated as a part of the description of this application.
  • an object of the present invention is to provide an electron beam correction method and an electron beam exposure apparatus that can solve the above-mentioned problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous embodiments of the present invention. Disclosure of the invention
  • an irradiation position of two or more electron beams is corrected in an electron beam exposure apparatus that exposes a wafer with two or more electron beams.
  • An electron beam correction method wherein two or more electrons Detecting at least one of the coordinates of the irradiation position of at least one of the beams of the electron beam; and, based on the detected coordinates, at least one other electron other than the one electron beam whose coordinates have been detected. Calculating a correction value for correcting a beam irradiation position.
  • the electron beam exposure apparatus includes storage means for preliminarily storing a positional relationship between one electron beam and another electron beam, and the calculating step includes irradiating another electron beam using the positional relationship stored in the storage means. A correction value for correcting the position may be calculated.
  • the electron beam exposure apparatus includes an electron beam generation unit that generates two or more electron beams, and a member having two or more openings through which each of the two or more electron beams passes.
  • One of the coordinates of the irradiation position of one of the one or more electron beams is detected, and the calculation step is based on the detected coordinates.
  • a correction value for correcting a shift in the irradiation position of an electron beam other than the electron beam at which one coordinate of the irradiation position is detected may be calculated.
  • the detection step the irradiation position of the electron beam at which one coordinate is detected is detected, and in the calculation step, irradiation is performed based on the detected irradiation position by uniformly stretching and rotating the entire members of the electron beam exposure apparatus.
  • a correction value for correcting a shift in the irradiation position of an electron beam other than the electron beam whose position has been detected may be calculated.
  • the irradiation position of the electron beam at which one coordinate is detected is detected, and in the calculation step, the irradiation position is detected based on the detected irradiation position due to the parallel movement of the members of the electron beam exposure apparatus.
  • a correction value for correcting a shift in the irradiation position of an electron beam other than the electron beam may be calculated.
  • the electron beam generator generates three or more electron beams, the member has three or more openings through which each of the three or more electron beams passes, and the detecting step includes the three or more electron beams. Detecting the irradiation positions of the two electron beams of the beams, and calculating the position by uniformly expanding, contracting, rotating, and translating the members of the electron beam exposure apparatus based on the irradiation positions of the two electron beams. An electron beam other than the two electron beams A correction value for correcting the deviation of the irradiation position may be calculated.
  • the electron beam generating section generates four or more electron beams
  • the member has four or more openings through which each of the four or more electron beams passes
  • the detecting step includes the four or more electron beams. Detecting the irradiation positions of the three electron beams of the beams, and calculating, based on the irradiation positions of the three electron beams, rotation, translation, and two orthogonal movements of the members of the electron beam exposure apparatus. A correction value for correcting a shift in the irradiation position of an electron beam other than the three electron beams due to expansion and contraction in each of the directions may be calculated.
  • the electron beam generator generates five or more electron beams, the member has five or more openings through which each of the five or more electron beams passes, and the detecting step includes the five or more electron beams. Detecting an irradiation position of at least four electron beams of the beam, and calculating, based on the irradiation positions of the at least four electron beams, rotation, translation, non-linear expansion, It is also possible to calculate a correction value for correcting a shift of the irradiation position of an electron beam other than at least four electron beams due to expansion and contraction in each of two directions orthogonal to each other.
  • the method may further include a calibration step of calibrating each of the two or more electron beams, and the calculating step may calculate a correction value based on the calibration irradiation positions of the two or more calibrated electron beams.
  • the electron beam exposure apparatus further includes a wafer stage on which a wafer is mounted, and the stage has a mark portion for detecting an irradiation position of the two electron beams. May be detected using the same mark portion.
  • an electron beam exposure apparatus for exposing a wafer with two or more electron beams, and an electron gun for generating two or more electron beams, A deflecting unit for independently deflecting two or more electron beams, a wafer stage on which a wafer is mounted, and an irradiation position of at least one of the two or more electron beams provided on the wafer stage.
  • a position detecting unit that detects at least one of the coordinates of the irradiation position of at least one electron beam based on the detected coordinates, and a position detection unit that detects an irradiation position of an electron beam other than the electron beam whose coordinates are detected based on the detected coordinates.
  • a calculation unit that calculates a correction value to be corrected; and a deflection control unit that controls the deflection unit to deflect an electron beam other than the electron beam whose coordinates are detected based on the correction value.
  • a slit portion having two or more slits for shaping the cross-sectional shape of each of the two or more electron beams; and an electron lens portion having two or more electron lenses for focusing each of the two or more electron beams.
  • the calculating unit is configured to perform, on the basis of the detected coordinates, at least one of expansion, contraction, rotation, and translation of at least one of the deflection unit, the slit unit, and the electron lens unit, other than the electron beam whose coordinates have been detected.
  • a correction value for correcting a shift in the irradiation position of the electron beam may be calculated.
  • FIG. 1 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention.
  • FIG. 2 shows a flowchart of the entire operation of the electron beam exposure apparatus 100.
  • FIG. 3 shows a flowchart of the operation of the electron beam exposure apparatus 100 in the irradiation position correction step (S600).
  • FIG. 4 shows an example of the arrangement of the electron guns 104 and an example of the wafer stage 46.
  • FIG. 5 shows an example of a method for detecting the irradiation position of the electron beam in the irradiation position detection step (S80).
  • FIG. 1 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention.
  • the electron beam exposure apparatus 100 includes an exposure unit 150 that performs a predetermined exposure process on the wafer 44 by an electron beam, and a control system 140 that controls the operation of each component included in the exposure unit 150. Prepare.
  • the exposure unit 150 generates an electron beam inside the housing 8, and forms an electron beam forming means 110 for shaping the cross-sectional shape of the electron beam as desired.
  • Irradiation switching means 1 1 2 for independently switching the irradiation power or not for each electron beam, and wafer projection system 1 for adjusting the direction and size of the image of the pattern transferred to wafer 44
  • An electron optical system including 14 is provided.
  • the exposure unit 150 includes a stage system including a wafer stage 46 on which a wafer 44 whose pattern is to be exposed is mounted, and a wafer stage driving unit 48 for driving the wafer stage 46. Further, the exposure section 150 is used to detect secondary electrons and reflected electrons emitted from the mark section 56 by the electron beam applied to the mark section 56 provided on the wafer stage 46.
  • a detection unit 40 is provided. The electron detection unit 40 outputs a detection signal corresponding to the detected amount of backscattered electrons to the backscattered electron processing unit 94.
  • the electron beam shaping means 110 includes an electron beam generator 10 for generating a plurality of electron beams, and a plurality of openings for shaping the cross-sectional shape of the irradiated electron beam by passing the electron beam.
  • an electron beam generator 10 for generating a plurality of electron beams, and a plurality of openings for shaping the cross-sectional shape of the irradiated electron beam by passing the electron beam.
  • first multi-axis electron lens (16) that focuses a plurality of electron beams independently and adjusts the focus of the plurality of electron beams, and first molded member (14)
  • a first shaping deflecting section 18 and a second shaping deflecting section 20 for independently deflecting a plurality of electron beams that have passed through.
  • the electron beam generator 10 includes a plurality of electron guns 104 and a base on which the electron guns 104 are formed. Material 106.
  • the electron gun 104 is composed of a force sword 12 for generating thermoelectrons and a dalid 102 formed to surround the cathode 12 for stabilizing the thermoelectrons generated by the force sword 12. Have.
  • the force sword 12 and the grid 102 are electrically insulated.
  • the electron beam generator 10 forms an electron gun array by providing a plurality of electron guns 104 at predetermined intervals on a base material 106.
  • the irradiation switching means 1 1 and 2 are configured to focus the plurality of electron beams independently, adjust the focus of the plurality of electron beams, and to independently deflect the plurality of electron beams.
  • a blanking electrode array 26 that independently switches whether or not each electron beam irradiates the wafer 44, and a plurality of openings through which the electron beams pass;
  • An electron beam shielding member 28 that shields the electron beam deflected by the blanking electrode array 26.
  • the blanking electrode array 26 may be a blanking, aperture, array 'device.
  • the wafer projection system 114 focuses a plurality of electron beams independently, and a third multi-axis electron lens 34 that reduces the irradiation diameter of the electron beam, and independently focuses a plurality of electron beams.
  • a fourth multi-axis electron lens 36 that adjusts the focus of the plurality of electron beams; and a deflecting unit 38 that deflects the plurality of electron beams to desired positions on the wafer 44 independently for each electron beam.
  • a fifth multi-axis electron lens 52 that functions as an objective lens for the lens 44 and independently focuses a plurality of electron beams.
  • the control system 140 includes a general control unit 130 and an individual control unit 120.
  • the individual control section 120 includes an electron beam control section 80, a multi-axis electron lens control section 82, a shaping deflection control section 84, a blanking electrode array control section 86, and a deflection control section 92.
  • the general control unit 130 has a calculation unit 132, a memory 134, and a position detection unit 133.
  • the general control unit 130 is, for example, a workstation, and performs general control of each control unit included in the individual control unit 120.
  • the electron beam controller 80 controls the electron beam generator 10.
  • the control unit 82 includes the first multi-axis electronic lens 16, the second multi-axis electronic lens 24, The current supplied to the third multi-axis electronic lens 34, the fourth multi-axis electronic lens 36, and the fifth multi-axis electronic lens 52 is controlled.
  • the molding deflection control section 84 controls the first molding deflection section 18 and the second molding deflection section 20.
  • the blanking electrode array controller 86 controls the voltage applied to the deflection electrodes included in the blanking electrode array 26.
  • the deflection controller 92 controls the voltage applied to the deflection electrodes of the plurality of deflectors included in the deflection unit 38.
  • the backscattered electron processing unit 94 detects the amount of backscattered electrons based on the detection signal output from the electron detection unit 40, and notifies the general control unit 130.
  • Wafer stage control section 96 controls wafer stage drive section 48 to move wafer stage 46 to a predetermined position.
  • a process of correcting the irradiation positions of a plurality of electron beams is performed.
  • a correction value for correcting a displacement of the irradiation positions of a plurality of electron beams caused by deformation of each member of the electron beam exposure apparatus 100 due to expansion, contraction, rotation, translation, or the like is calculated.
  • a predetermined electron beam used for detecting an irradiation position is irradiated on a mark portion 56 provided on the wafer stage 46.
  • the electron detection unit 40 detects reflected electrons of the electron beam applied to the mark unit 56, and outputs a detection signal corresponding to the detected amount of reflected electrons.
  • the position detection unit 1336 detects at least one of the coordinates of the irradiation position of the electron beam based on the detection signal output by the electron detection unit 40.
  • the calculating unit 132 calculates a correction value for correcting the irradiation position of an electron beam other than the electron beam used for detecting the irradiation position, based on the coordinates of the detected irradiation position of the electron beam.
  • the memory 1334 stores the irradiation position of the electron beam detected by the position detection unit 1.36 and the irradiation position of another electron beam detected by the calculation unit 1332.
  • the calculation unit 1332 includes a first molded member 14, a second molded member 22, a first multi-axis electronic lens 16, a second multi-axis electron lens 24, a member having a plurality of openings.
  • the wafer 44 After calculating the correction value for the electron beam irradiation position by the above operation, the wafer 44 is subjected to exposure processing using the correction value.
  • the operation of the electron beam exposure apparatus 100 in the exposure processing will be described.
  • the operation of irradiating the mark portion 56 with the electron beam is performed by irradiating the wafer 44 with the electron beam in the exposure processing. This operation may be substantially the same as the operation performed.
  • the electron beam generator 10 generates a plurality of electron beams.
  • the first molded member 14 is provided with a plurality of electron beams generated by the electron beam generating unit 10 and applied to the first molded member 14, by a plurality of openings provided in the first molded member 14.
  • a plurality of electron beams may be generated by further including means for dividing the electron beam generated in the electron beam generation unit 10 into a plurality of electron beams.
  • the first multi-axis electron lens 16 independently focuses a plurality of rectangularly shaped electron beams, and independently adjusts the focus of the electron beam on the second formed member 22 for each electron beam.
  • the first shaping / deflecting unit 18 independently deflects the plurality of electron beams formed into a rectangular shape in the first shaping member 14 so as to irradiate a desired position on the second shaping member.
  • the second shaping deflection unit 20 deflects the plurality of electron beams deflected by the first shaping deflection unit 18 in directions substantially perpendicular to the second shaping member 22, respectively. Illuminate. Then, the second forming member 22 including the plurality of openings having the rectangular shape is configured to irradiate the wafer 44 with the plurality of electron beams having the rectangular cross-sectional shape applied to the second forming member 22. Is further shaped into an electron beam having a cross-sectional shape of
  • the second multi-axis electron lens 24 independently focuses the plurality of electron beams and adjusts the focus of the electron beam on the blanking electrode array 26 independently.
  • the plurality of electron beams whose focus has been adjusted by the second multi-axis electron lens 24 are
  • the blanking electrode array control unit 86 controls whether or not to apply a voltage to a deflection electrode provided near each aperture in the blanking electrode array 26.
  • the blanking electrode array 26 switches whether to irradiate the wafer 44 with the electron beam based on the voltage applied to the deflection electrode.
  • the electron beam not deflected by the blanking electrode array 26 passes through the third multi-axis electron lens 34. Then, the third multi-axis electron lens 34 reduces the electron beam diameter of the electron beam passing through the third multi-axis electron lens 34. The reduced electron beam passes through an opening included in the electron beam shielding member 28. Further, the electron beam shielding member 28 shields the electron beam deflected by the blanking electrode array 26. The electron beam that has passed through the electron beam shielding member 28 is incident on the fourth multi-axis electron lens 36. Then, the fourth multi-axis electron lens 36 independently focuses the incident electron beams, and adjusts the focus of the electron beams with respect to the deflection unit 38, respectively. The electron beam whose focus has been adjusted by the fourth multi-axis electron lens 36 is incident on the deflection unit 38.
  • the deflection control unit 92 controls a plurality of deflectors included in the deflection unit 38 based on the correction value calculated by the calculation unit 132, and controls each of the deflectors that have entered the deflection unit 38.
  • the electron beam is independently deflected to a position to be irradiated on the wafer 44.
  • the fifth multi-axis electron lens 52 adjusts the focal point of each electron beam passing through the fifth multi-axis electron lens 52 with respect to the wafer 44.
  • the fifth multi-axis electron lens 52 has a cross-sectional shape to be irradiated on the wafer 44. Each electron beam is applied to a desired position to be applied to the laser beam 44.
  • FIG. 2 is a flowchart showing the entire operation of the electron beam exposure apparatus 100 according to the present embodiment. This flowchart starts in S10.
  • stage position calibration stage (S20) the stage position of the wafer stage 46 provided with the mark portion 56 is calibrated.
  • the irradiation position configuration step (S30) the irradiation positions of all the electron beams are detected by irradiating all the electron beams to the mark section 56, and the irradiation positions of the individual electron beams are calibrated.
  • the exposure processing stage (S40) a predetermined number of exposure processes are performed based on the calibration values determined in the stage position calibration stage (S20) and the irradiation position calibration stage (S30).
  • S50 it is determined whether the desired number of exposure processes has been completed.
  • the irradiation position correction stage (S60) detects a predetermined electron beam irradiation position and determines the position of the electron beam used in the exposure process. The irradiation position is corrected.
  • the irradiation position is corrected.
  • the correction of the irradiation position of the electron beam in the irradiation position correction step (S60) is preferably performed, for example, for each lot or each wafer.
  • FIG. 3 is a flowchart of the operation of the electron beam exposure apparatus 100 in the irradiation position correction stage (S60).
  • the mark portion 56 is irradiated with a detection electron beam that is a predetermined electron beam of the plurality of electron beams used for the exposure processing, and the detection electron beam is detected.
  • the coordinates of the irradiation position are detected.
  • the irradiation position storing stage (S90), the coordinates of the detected irradiation position are stored in the memory 1 34 of the overall control unit 130.
  • the process returns to the irradiation position detection step (S80), and the coordinates of the irradiation position of another detection electron beam are detected and irradiation is performed.
  • the irradiation position detected Store the coordinates. If it is determined in S100 that the coordinates of the required electron beam irradiation position have been detected, then in the correction value calculation step (S110), based on the detected coordinates, other than the electron beam for detection is used. A correction value for correcting the irradiation position of the electron beam is calculated.
  • the memory 134 of the general control unit 130 stores the positional relationship between the irradiation positions of the respective electron beams, and in the correction value calculation stage (S110), the memory 133 is used.
  • a correction value for correcting the irradiation position of another electron beam may be calculated using the positional relationship stored in the.
  • the deformation of the member having a plurality of openings of the electron beam exposure apparatus 100 includes uniform uniform expansion and contraction, rotation, parallel movement, nonlinear expansion and contraction, and expansion and contraction in each of two orthogonal directions.
  • the part 130 preferably determines the number of coordinates of the irradiation position of the electron beam to be detected, according to the combination of the deformations to be considered.
  • one of the coordinates of the irradiation position of one electron beam for example, the direction in which the wafer stage 46 is continuously moved during the exposure processing is set in the X direction
  • the X coordinate or the y coordinate of the irradiation position with respect to the reference point is detected, and based on the detected coordinates in the correction value calculation step (S110)
  • the displacement of the irradiation position of an electron beam other than the electron beam at which one coordinate of the irradiation position is detected due to one of uniform expansion and contraction and rotation of the member having a plurality of openings of the electron beam exposure apparatus 100 May be calculated.
  • the irradiation position of one electron beam for example, the X coordinate and the y coordinate in the XY coordinate system described above are detected, and the correction value calculating step (S110) Then, based on the detected irradiation position, an electron beam other than the electron beam whose irradiation position has been detected due to the uniform uniform expansion and contraction and rotation of the member having the plurality of openings of the electron beam exposure apparatus 100 based on the detected irradiation position.
  • a correction value for correcting the deviation of the irradiation position may be calculated.
  • the irradiation position detection step (S800) the irradiation position of one electron beam is detected, and in the correction value calculation step (S110), the electron beam exposure device is used based on the detected irradiation position.
  • a correction value for correcting a shift in the irradiation position of an electron beam other than the electron beam whose irradiation position is detected due to the parallel movement of a member having a plurality of openings of 100 is calculated. You may.
  • the irradiation position detection step (S800) the irradiation positions of the two electron beams are detected.
  • the correction value calculation step (S110) the electron beam exposure is performed based on the irradiation positions of the two electron beams.
  • a correction value for correcting a shift in the irradiation position of an electron beam other than the two electron beams due to uniform expansion and contraction, rotation, and parallel movement of a member having a plurality of openings of the apparatus 100 may be calculated. .
  • the irradiation position detection step (S800) the irradiation positions of the three electron beams are detected.
  • the correction value calculation step (S110) the electron beam exposure is performed based on the irradiation positions of the three electron beams.
  • the irradiation positions of at least four electron beams are detected, and in the correction value calculating step (S110), based on the irradiation positions of the at least four electron beams.
  • the electron beam exposure apparatus 100 having a plurality of openings by rotation, parallel movement, nonlinear expansion and contraction, and expansion and contraction in each of two orthogonal directions.
  • a correction value for correcting the displacement of the irradiation position may be calculated.
  • the overall control unit 130 performs the stage position calibration step (S20) and the irradiation position calibration step. Based on the calibration value determined in (S30), it is preferable to detect the irradiation position by irradiating a detection electron beam and calculate a correction value.
  • the general control unit 130 performs the previous irradiation position correction step of the predetermined time. It is preferable that the irradiation position is detected by irradiating a detection electron beam based on the correction value calculated in (S60), and the correction value is calculated.
  • the gun control unit 130 executes the irradiation in the previous irradiation position detection step (S 80) of the predetermined time.
  • the coordinates of the irradiation position of the electron beam similar to the electron beam whose irradiation position has been detected are detected again, and in the correction value calculation step (S110), in the previous irradiation position detection step (S800) of the predetermined time, It is preferable that the correction value be calculated again based on the detected coordinates and the coordinates detected in the predetermined irradiation position detecting step (S80).
  • the coordinates detected in the previous irradiation position detection step (S80) of the predetermined time are extracted from the memory 1334 of the overall control unit 130.
  • FIG. 4 shows an example of the arrangement of the electron guns 104 and an example of the stage 46.
  • FIG. 4A shows a substrate 106 on which 69 electron guns 104 are arranged.
  • the wafer stage 46 has a mark portion 56 and a mirror portion 58.
  • the electron beam exposure apparatus 100 further includes a laser interferometer 60 outside the stage 4, and uses the mirror section 58 and the laser interferometer 60 to calibrate the position of the wafer stage 46. .
  • the operation of calibrating the stage position in the stage position calibration stage (S20) in FIG. 2 will be described with reference to FIGS. 4 (a) and 4 (b).
  • the laser interferometer 60 irradiates the mirror 58 provided on the wafer stage 46 with a plurality of lasers, receives the reflected light of the laser, and sets the wafer based on the optical path difference between the irradiated laser and the reflected light.
  • the parameters such as the position and inclination of the stage 46 and the inclination and warpage of the mirror 58 are detected.
  • the overall control unit 130 calculates a calibration value for calibrating the stage position of the wafer stage 58 based on the parameters, and thereafter moves the wafer stage 46 to a desired position using the calibration value. Note that, during the exposure processing, the direction in which the wafer stage 46 is continuously moved is defined as the X direction, and the direction substantially perpendicular to the X direction is defined as the y direction.
  • FIG. 5 shows an example of an electron beam irradiation position detection method in the irradiation position detection step (S80).
  • a case will be described in which the irradiation positions of three electron beams are detected, and the irradiation positions of electron beams other than the three electron beams are calculated.
  • Fig 5 As shown in (a), FIG. 5 (b), and FIG. 5 (c), the irradiation positions of the three electron beams are detected using the same mark portion 56. By detecting the irradiation positions of a plurality of electron beams using the same mark portion 56, the relative position between the plurality of electron beams can be measured with high accuracy.
  • the irradiation positions of a plurality of electron beams may be detected using a plurality of mark portions, and the irradiation positions of the electron beams may be detected using marks provided on a wafer for detecting the irradiation position. May be detected.
  • V X g X * C + r x * Cy + o x
  • Vy g y * C y + r y * Cx + o y
  • AVx and AVy are displacements between the position to be irradiated by the electron beam and the irradiation position of the detected electron beam.
  • Cx and Cy are relative coordinates of the plurality of electron guns 104 and are known values.
  • g x and gy are unknown expansion and contraction coefficients
  • r x and ry are unknown rotation coefficients
  • ox and oy are unknown translation coefficients.
  • the calculation unit 132 of the overall control unit 130 calculates Based on 1) and (2), a correction value for correcting the irradiation position of the electron beam is calculated. Therefore, by detecting the irradiation positions of the three electron beams, six unknown values are obtained, and the irradiation positions of a plurality of electron beams other than the three electron beams can be calculated. Then, based on the calculated irradiation positions of the plurality of electron beams, a correction value for correcting the irradiation position of each electron beam can be calculated.
  • V y g y * C y + r y * C x
  • the irradiation positions of the two electron beams By detecting the irradiation positions of the two electron beams, four unknown values are obtained, and the irradiation positions of a plurality of electron beams other than the two electron beams can be calculated. Further, by detecting the irradiation positions of the two electron beams, it is possible to calculate a correction value for correcting a shift of the irradiation positions of the electron beams due to expansion and contraction and rotation. Similarly, by detecting the irradiation position of one electron beam, it is possible to calculate a correction value for correcting a shift of the irradiation position of the electron beam due to one of expansion, contraction, rotation, and translation.
  • the electron beam correction method and the electron beam exposure apparatus 100 of the present embodiment it is possible to calculate the irradiation positions of many electron beams by detecting the irradiation positions of a few electron beams. Therefore, a correction value for correcting the irradiation positions of many electron beams can be calculated in a short time without detecting the irradiation positions of many electron beams.
  • an electron beam correction method and an electron beam correction method for correcting the irradiation position of an electron beam other than the electron beam by detecting the irradiation position of the predetermined electron beam An exposure apparatus can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Abstract

An electron beam correction method for correcting irradiation positions of at least two electron beams in an electron beam exposure system for exposing wafers by at least two electron beams, the method comprising a detection step for detecting at least one of coordinates of the irradiation position of at least one electron beam out of at least two electron beams, and a calculating step for calculating a correction value for correcting the irradiation position of at least one electron beam other than the one electron beam having its coordinates detected.

Description

明 細 書 電子ビーム補正方法及び電子ビーム露光装置 技術分野  Description Electron beam correction method and electron beam exposure apparatus
本発明は、電子ビーム補正方法及び電子ビーム露光装置に関する。また本出願 は、下記の日本特許出願に関連する。文献の参照による組み込みが認められる指 定国については、 下記の出願に記載された内容を参照により本出願に組み込み、 本出願の記載の一部とする。  The present invention relates to an electron beam correction method and an electron beam exposure device. This application is related to the following Japanese patent application. For those designated countries that are allowed to be incorporated by reference to the literature, the contents described in the following application are incorporated into this application by reference and are incorporated as a part of the description of this application.
特願 2 0 0 0— 3 4 8 4 6 2 出願日 平成 1 2年 1 1月 1 5日 背景技術  Japanese Patent Application No. 2 0 0 0— 3 4 8 4 6 2 Filing Date Heisei 12 January 1 15 Background Technology
近年の半導体デバイスの微細化に伴い、 電子ビーム露光装置の半導体デバイスの 量産での利用に向け、 露光処理や電子ビーム照射位置の補正処理の高速化が望まれ ている。  With the recent miniaturization of semiconductor devices, there has been a demand for faster exposure processing and correction processing of electron beam irradiation positions for use in mass production of electron beam exposure apparatuses.
し力 しながら、 従来の電子ビーム露光装置では、 全ての電子ビームの照射位置を 補正するために全ての電子ビームの照射位置を検出しなくてはならないため、 非常 に長い時間を要し、短時間で電子ビームの照射位置を補正する方法が望まれている。 そこで本発明は、上記の課題を解決することのできる電子ビーム捕正方法及ぴ 電子ビーム露光装置を提供することを目的とする。この目的は請求の範囲におけ る独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更 なる有利な具体例を規定する。 発明の開示  However, the conventional electron beam exposure apparatus needs to detect all the irradiation positions of the electron beams in order to correct the irradiation positions of all the electron beams. There is a demand for a method of correcting the irradiation position of the electron beam with time. Therefore, an object of the present invention is to provide an electron beam correction method and an electron beam exposure apparatus that can solve the above-mentioned problems. This object is achieved by a combination of features described in the independent claims. The dependent claims define further advantageous embodiments of the present invention. Disclosure of the invention
このような目的を達成するために、本発明の第 1の形態によると、 2つ以上の 電子ビームにより、 ウェハを露光する電子ビーム露光装置において、 2つ以上の 電子ビームの照射位置を補正する電子ビーム補正方法であって、 2つ以上の電子 ビームのうちの少なくとも 1つの電子ビームの照射位置の座標の少なくとも 1 つを検出する検出段階と、検出された座標に基づいて、座標が検出された 1つの 電子ビーム以外の少なくとも 1つの他の電子ビームの照射位置を捕正する補正 値を算出する算出段階とを備える。 In order to achieve such an object, according to the first aspect of the present invention, an irradiation position of two or more electron beams is corrected in an electron beam exposure apparatus that exposes a wafer with two or more electron beams. An electron beam correction method, wherein two or more electrons Detecting at least one of the coordinates of the irradiation position of at least one of the beams of the electron beam; and, based on the detected coordinates, at least one other electron other than the one electron beam whose coordinates have been detected. Calculating a correction value for correcting a beam irradiation position.
電子ビーム露光装置は、 1つの電子ビームと他の電子ビームとの位置関係を予 め格納する格納手段を備え、算出段階は、格納手段に格納された位置関係を用い て他の電子ビームの照射位置を補正する捕正値を算出してもよい。  The electron beam exposure apparatus includes storage means for preliminarily storing a positional relationship between one electron beam and another electron beam, and the calculating step includes irradiating another electron beam using the positional relationship stored in the storage means. A correction value for correcting the position may be calculated.
電子ビーム露光装置は、 2つ以上の電子ビームを発生する電子ビーム発生部と、 2つ以上の電子ビームのそれぞれが通過する 2つ以上の開口部を有する部材と を備え、検出段階は、 2つ以上の電子ビームのうちの 1つの電子ビームの照射位 置の座標の 1つを検出し、算出段階は、検出された座標に基づいて、 電子ビーム 露光装置の部材の全体均等伸縮及び回転の一方による、照射位置の 1つの座標が 検出された電子ビーム以外の電子ビームの照射位置のずれを捕正する捕正値を 算出してもよい。  The electron beam exposure apparatus includes an electron beam generation unit that generates two or more electron beams, and a member having two or more openings through which each of the two or more electron beams passes. One of the coordinates of the irradiation position of one of the one or more electron beams is detected, and the calculation step is based on the detected coordinates. A correction value for correcting a shift in the irradiation position of an electron beam other than the electron beam at which one coordinate of the irradiation position is detected may be calculated.
検出段階は、 1つの座標が検出された電子ビームの照射位置を検出し、算出段 階は、検出された照射位置に基づいて、電子ビーム露光装置の部材の全体均等伸 縮及び回転による、照射位置が検出された電子ビーム以外の電子ビームの照射位 置のずれを補正する補正値を算出してもよい。  In the detection step, the irradiation position of the electron beam at which one coordinate is detected is detected, and in the calculation step, irradiation is performed based on the detected irradiation position by uniformly stretching and rotating the entire members of the electron beam exposure apparatus. A correction value for correcting a shift in the irradiation position of an electron beam other than the electron beam whose position has been detected may be calculated.
検出段階は、 1つの座標が検出された電子ビームの照射位置を検出し、算出段 階は、検出された照射位置に基づいて、電子ビーム露光装置の部材の平行移動に よる、照射位置が検出された電子ビーム以外の電子ビームの照射位置のずれを補 正する補正値を算出してもよい。  In the detection step, the irradiation position of the electron beam at which one coordinate is detected is detected, and in the calculation step, the irradiation position is detected based on the detected irradiation position due to the parallel movement of the members of the electron beam exposure apparatus. A correction value for correcting a shift in the irradiation position of an electron beam other than the electron beam may be calculated.
電子ビーム発生部は、 3つ以上の電子ビームを発生し、部材は、 3つ以上の電 子ビームのそれぞれが通過する 3つ以上の開口部を有し、検出段階は、 3つ以上 の電子ビームのうちの 2つの電子ビームの照射位置を検出する段階を含み、算出 段階は、 2つの電子ビームの照射位置に基づいて、電子ビーム露光装置の部材の 全体均等伸縮、 回転、 及び平行移動による、 2つの電子ビーム以外の電子ビーム の照射位置のずれを補正する補正値を算出してもよい。 The electron beam generator generates three or more electron beams, the member has three or more openings through which each of the three or more electron beams passes, and the detecting step includes the three or more electron beams. Detecting the irradiation positions of the two electron beams of the beams, and calculating the position by uniformly expanding, contracting, rotating, and translating the members of the electron beam exposure apparatus based on the irradiation positions of the two electron beams. An electron beam other than the two electron beams A correction value for correcting the deviation of the irradiation position may be calculated.
電子ビーム発生部は、 4つ以上の電子ビームを発生し、部材は、 4つ以上の電 子ビームのそれぞれが通過する 4つ以上の開口部を有し、検出段階は、 4つ以上 の電子ビームのうちの 3つの電子ビームの照射位置を検出する段階を含み、算出 段階は、 3つの電子ビームの照射位置に基づいて、電子ビーム露光装置の部材の 回転、 平行移動、 及び直交する 2つの方向のそれぞれに対する伸縮による、 3つ の電子ビーム以外の電子ビームの照射位置のずれを捕正する補正値を算出して あよい。  The electron beam generating section generates four or more electron beams, the member has four or more openings through which each of the four or more electron beams passes, and the detecting step includes the four or more electron beams. Detecting the irradiation positions of the three electron beams of the beams, and calculating, based on the irradiation positions of the three electron beams, rotation, translation, and two orthogonal movements of the members of the electron beam exposure apparatus. A correction value for correcting a shift in the irradiation position of an electron beam other than the three electron beams due to expansion and contraction in each of the directions may be calculated.
電子ビーム発生部は、 5つ以上の電子ビームを発生し、部材は、 5つ以上の電 子ビームのそれぞれが通過する 5つ以上の開口部を有し、検出段階は、 5つ以上 の電子ビームのうちの少なくとも 4つの電子ビームの照射位置を検出する段階 を含み、算出段階は、 少なくとも 4つの電子ビームの照射位置に基づいて、 電子 ビーム露光装置の部材の回転、 平行移動、 非線形伸縮、及ぴ直交する 2つの方向 のそれぞれに対する伸縮による、少なくとも 4つの電子ビーム以外の電子ビーム の照射位置のずれを補正する補正値を算出してもよい。  The electron beam generator generates five or more electron beams, the member has five or more openings through which each of the five or more electron beams passes, and the detecting step includes the five or more electron beams. Detecting an irradiation position of at least four electron beams of the beam, and calculating, based on the irradiation positions of the at least four electron beams, rotation, translation, non-linear expansion, It is also possible to calculate a correction value for correcting a shift of the irradiation position of an electron beam other than at least four electron beams due to expansion and contraction in each of two directions orthogonal to each other.
1つの電子ビームの照射位置の座標の少なくとも 1つを再度検出する再検出 段階と、検出段階において検出された座標と、再検出段階において検出された座 標とに基づいて、 補正値を再度算出する再算出段階とをさらに備えてもよい。  A re-detection step of re-detecting at least one of the coordinates of the irradiation position of one electron beam, and a correction value is calculated again based on the coordinates detected in the detection step and the coordinates detected in the re-detection step. And a recalculation step.
2つ以上の電子ビームのそれぞれを校正する校正段階をさらに備え、算出段階 は、校正された 2つ以上の電子ビームの校正照射位置に基づいて、補正値を算出 してもよい。  The method may further include a calibration step of calibrating each of the two or more electron beams, and the calculating step may calculate a correction value based on the calibration irradiation positions of the two or more calibrated electron beams.
電子ビーム露光装置は、 ウェハが載置されるウェハステージをさらに備え、 ゥ ヱハステージは、 2つの電子ビームの照射位置を検出するためのマーク部を有し、 検出段階は、 2つの電子ビームのそれぞれの照射位置を、 同一のマーク部を用い て検出してもよい。  The electron beam exposure apparatus further includes a wafer stage on which a wafer is mounted, and the stage has a mark portion for detecting an irradiation position of the two electron beams. May be detected using the same mark portion.
本発明の第 2の形態によると、 2つ以上の電子ビームにより、 ウェハを露光す る電子ビーム露光装置であって、 2つ以上の電子ビームを発生させる電子銃と、 2つ以上の電子ビームをそれぞれ独立に偏向させる偏向部と、ウェハが載置さ れるウェハステージと、 ウェハステージに設けられ、 2つ以上の電子ビームのう ちの少なくとも 1つの電子ビームの照射位置を検出するためのマーク部と、マー ク部に照射された少なくとも 1つの電子ビームの反射電子を検出し、検出された 反射電子の量に対応する検出信号を出力する電子検出部と、検出信号に基づいて、 少なくとも 1つの電子ビームの照射位置の座標の少なくとも 1つを検出する位 置検出部と、検出された座標に基づいて、座標が検出された電子ビーム以外の電 子ビームの照射位置を補正する補正値を算出する算出部と、 補正値に基づいて、 座標が検出された電子ビーム以外の電子ビームを偏向させるように偏向部を制 御する偏向制御部とを備える。 According to a second aspect of the present invention, there is provided an electron beam exposure apparatus for exposing a wafer with two or more electron beams, and an electron gun for generating two or more electron beams, A deflecting unit for independently deflecting two or more electron beams, a wafer stage on which a wafer is mounted, and an irradiation position of at least one of the two or more electron beams provided on the wafer stage. A mark portion for detection, an electron detection portion that detects reflected electrons of at least one electron beam applied to the mark portion, and outputs a detection signal corresponding to the amount of the detected reflected electrons; A position detecting unit that detects at least one of the coordinates of the irradiation position of at least one electron beam based on the detected coordinates, and a position detection unit that detects an irradiation position of an electron beam other than the electron beam whose coordinates are detected based on the detected coordinates. A calculation unit that calculates a correction value to be corrected; and a deflection control unit that controls the deflection unit to deflect an electron beam other than the electron beam whose coordinates are detected based on the correction value. Prepare.
2つ以上の電子ビームのそれぞれの断面形状を成形する 2つ以上のスリット を有するスリット部と、 2つ以上の電子ビームのそれぞれを集束させる 2つ以上 の電子レンズを有する電子レンズ部とをさらに備え、算出部は、検出された座標 に基づいて、 偏向部、 スリツト部、 及び電子レンズ部の少なくとも 1つの伸縮、 回転、及び平行移動の少なくとも 1つによる、座標が検出された電子ビーム以外 の電子ビームの照射位置のずれを補正する補正値を算出してもよい。  A slit portion having two or more slits for shaping the cross-sectional shape of each of the two or more electron beams; and an electron lens portion having two or more electron lenses for focusing each of the two or more electron beams. The calculating unit is configured to perform, on the basis of the detected coordinates, at least one of expansion, contraction, rotation, and translation of at least one of the deflection unit, the slit unit, and the electron lens unit, other than the electron beam whose coordinates have been detected. A correction value for correcting a shift in the irradiation position of the electron beam may be calculated.
なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、 これらの特徴群のサブコンビネーションも又発明となりうる。  The above summary of the present invention does not list all of the necessary features of the present invention, and a sub-combination of these features may also be an invention.
図面の簡単な説明 ' Brief description of the drawings ''
図 1は、 本発明の一実施形態に係る電子ビーム露光装置 1 0 0の構成を示す。 図 2は、 電子ビーム露光装置 1 0 0の動作全体のフローチャートを示す。  FIG. 1 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention. FIG. 2 shows a flowchart of the entire operation of the electron beam exposure apparatus 100.
図 3は、 照射位置補正段階 (S 6 0 ) における、 電子ビーム露光装置 1 0 0の 動作のフローチャートを示す。  FIG. 3 shows a flowchart of the operation of the electron beam exposure apparatus 100 in the irradiation position correction step (S600).
図 4は、 電子銃 1 0 4は配列例及びウェハステージ 4 6の一例を示す。  FIG. 4 shows an example of the arrangement of the electron guns 104 and an example of the wafer stage 46.
図 5は、 照射位置検出段階 (S 8 0 ) における、 電子ビームの照射位置検出方 法の一例を示す。 発明を実施するための最良の形態 FIG. 5 shows an example of a method for detecting the irradiation position of the electron beam in the irradiation position detection step (S80). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 発明の実施の形態を通じて本発明を説明するが、 以下の実施形態はクレー ムにかかる発明を限定するものではなく、 又実施形態の中で説明されている特徴の 組み合わせの全てが発明の解決手段に必須であるとは限らない。  Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims, and all combinations of the features described in the embodiments are examples of the invention. It is not always necessary for the solution.
図 1は、 本発明の一実施形態に係る電子ビーム露光装置 1 0 0の構成を示す。 電子ビーム露光装置 1 0 0は、電子ビームによりウェハ 4 4に所定の露光処理を 施す露光部 1 5 0と、露光部 1 5 0に含まれる各構成の動作を制御する制御系 1 4 0を備える。  FIG. 1 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention. The electron beam exposure apparatus 100 includes an exposure unit 150 that performs a predetermined exposure process on the wafer 44 by an electron beam, and a control system 140 that controls the operation of each component included in the exposure unit 150. Prepare.
露光部 1 5 0は、 筐体 8内部において複数の電子ビームを発生し、 電子ビームの 断面形状を所望に成形する電子ビーム成形手段 1 1 0と、 複数の電子ビームをゥヱ ハ 4 4に照射する力否かを、 それぞれの電子ビームに対して独立に切替える照射切 替手段 1 1 2と、 ウェハ 4 4に転写されるパターンの像の向き及ぴサイズを調整す るウェハ用投影系 1 1 4を含む電子光学系を備える。 また、 露光部 1 5 0は、 パタ ーンを露光すべきウェハ 4 4を載置するウェハステージ 4 6と、 ウェハステージ 4 6を駆動するウェハステージ駆動部 4 8とを含むステージ系を備える。 さらに、 露 光部 1 5 0は、 ウェハステージ 4 6に設けられたマーク部 5 6に照射された電子ビ ームによりマーク部 5 6から放射された 2次電子や反射電子等を検出する電子検出 部 4 0を備える。 電子検出部 4 0は、 検出した反射電子の量に対応した検出信号を 反射電子処理部 9 4に出力する。  The exposure unit 150 generates an electron beam inside the housing 8, and forms an electron beam forming means 110 for shaping the cross-sectional shape of the electron beam as desired. Irradiation switching means 1 1 2 for independently switching the irradiation power or not for each electron beam, and wafer projection system 1 for adjusting the direction and size of the image of the pattern transferred to wafer 44 An electron optical system including 14 is provided. The exposure unit 150 includes a stage system including a wafer stage 46 on which a wafer 44 whose pattern is to be exposed is mounted, and a wafer stage driving unit 48 for driving the wafer stage 46. Further, the exposure section 150 is used to detect secondary electrons and reflected electrons emitted from the mark section 56 by the electron beam applied to the mark section 56 provided on the wafer stage 46. A detection unit 40 is provided. The electron detection unit 40 outputs a detection signal corresponding to the detected amount of backscattered electrons to the backscattered electron processing unit 94.
電子ビーム成形手段 1 1 0は、 複数の電子ビームを発生させる電子ビーム発生部 1 0と、 電子ビームを通過させることにより、 照射された電子ビームの断面形状を 成形する複数の開口部を有する第 1成形部材 1 4および第 2成形部材 2 2と、 複数 の電子ビームをそれぞれ独立に集束し、 複数の電子ビームの焦点を調整する第 1多 軸電子レンズ 1 6と、 第 1成形部材 1 4を通過した複数の電子ビームを独立に偏向 する第 1成形偏向部 1 8およぴ第 2成形偏向部 2 0とを有する。  The electron beam shaping means 110 includes an electron beam generator 10 for generating a plurality of electron beams, and a plurality of openings for shaping the cross-sectional shape of the irradiated electron beam by passing the electron beam. (1) Molded member (14) and second molded member (22), first multi-axis electron lens (16) that focuses a plurality of electron beams independently and adjusts the focus of the plurality of electron beams, and first molded member (14) A first shaping deflecting section 18 and a second shaping deflecting section 20 for independently deflecting a plurality of electron beams that have passed through.
電子ビーム発生部 1 0は、 複数の電子銃 1 0 4と、 電子銃 1 0 4が形成される基 材 1 0 6とを有する。 電子銃 1 0 4は、 熱電子を発生させる力ソード 1 2と、 カソ ード 1 2を囲むように形成され、 力ソード 1 2で発生した熱電子を安定させるダリ ッド 1 0 2とを有する。 力ソード 1 2とグリッド 1 0 2とは、 電気的に絶縁される のが望ましい。 本実施例において、 電子ビーム発生部 1 0は、 基材 1 0 6に、 複数 の電子銃 1 0 4を、 所定の間隔に有することにより、 電子銃ァレイを形成する。 照射切替手段 1 1 2は、 複数の電子ビームを独立に集束し、 複数の電子ビームの 焦点を調整する第 2多軸電子レンズ 2 4と、 複数の電子ビームをそれぞれ独立に偏 向させることにより、 それぞれの電子ビームをウェハ 4 4に照射するか否かを、 そ れぞれの電子ビームに対して独立に切替えるプランキング電極アレイ 2 6と、 電子 ビームを通過させる複数の開口部を含み、 ブランキング電極アレイ 2 6で偏向され た電子ビームを遮蔽する電子ビーム遮蔽部材 2 8とを有する。 他の例においてブラ ンキング電極アレイ 2 6は、 ブランキング ·アパーチャ ·アレイ 'デバイスであつ てもよい。 The electron beam generator 10 includes a plurality of electron guns 104 and a base on which the electron guns 104 are formed. Material 106. The electron gun 104 is composed of a force sword 12 for generating thermoelectrons and a dalid 102 formed to surround the cathode 12 for stabilizing the thermoelectrons generated by the force sword 12. Have. Preferably, the force sword 12 and the grid 102 are electrically insulated. In the present embodiment, the electron beam generator 10 forms an electron gun array by providing a plurality of electron guns 104 at predetermined intervals on a base material 106. The irradiation switching means 1 1 and 2 are configured to focus the plurality of electron beams independently, adjust the focus of the plurality of electron beams, and to independently deflect the plurality of electron beams. A blanking electrode array 26 that independently switches whether or not each electron beam irradiates the wafer 44, and a plurality of openings through which the electron beams pass; An electron beam shielding member 28 that shields the electron beam deflected by the blanking electrode array 26. In another example, the blanking electrode array 26 may be a blanking, aperture, array 'device.
ウェハ用投影系 1 1 4は、 複数の電子ビームをそれぞれ独立に集束し、 電子ビー ムの照射径を縮小する第 3多軸電子レンズ 3 4と、 複数の電子ビームをそれぞれ独 立に集束し、 複数の電子ビームの焦点を調整する第 4多軸電子レンズ 3 6と、 複数 の電子ビームをウェハ 4 4の所望の位置に、 それぞれの電子ビームに対して独立に 偏向する偏向部 3 8と、 ゥヱハ 4 4に対する対物レンズとして機能し、 複数の電子 ビームをそれぞれ独立に集束する第 5多軸電子レンズ 5 2とを有する。  The wafer projection system 114 focuses a plurality of electron beams independently, and a third multi-axis electron lens 34 that reduces the irradiation diameter of the electron beam, and independently focuses a plurality of electron beams. A fourth multi-axis electron lens 36 that adjusts the focus of the plurality of electron beams; and a deflecting unit 38 that deflects the plurality of electron beams to desired positions on the wafer 44 independently for each electron beam. And a fifth multi-axis electron lens 52 that functions as an objective lens for the lens 44 and independently focuses a plurality of electron beams.
制御系 1 4 0は、 統括制御部 1 3 0及ぴ個別制御部 1 2 0を備える。 個別制御部 1 2 0は、 電子ビーム制御部 8 0と、 多軸電子レンズ制御部 8 2と、 成形偏向制御 部 8 4と、 プランキング電極アレイ制御部 8 6と、 偏向制御部 9 2と、 反射電子処 理部 9 4と、 ゥ ハステージ制御部 9 6とを有する。 統括制御部 1 3 0は、 算出部 1 3 2と、 メモリ 1 3 4と、 位置検出部 1 3 6とを有する。 また、 統括制御部 1 3 0は、 例えばワークステーションであって、 個別制御部 1 2 0に含まれる各制御部 を統括制御する。 電子ビーム制御部 8 0は、 電子ビーム発生部 1 0を制御する。 多 :、制御部 8 2は、 第 1多軸電子レンズ 1 6、 第 2多軸電子レンズ 2 4、 第 3多軸電子レンズ 3 4、 第 4多軸電子レンズ 3 6および第 5多軸電子レンズ 5 2 に供給する電流を制御する。 The control system 140 includes a general control unit 130 and an individual control unit 120. The individual control section 120 includes an electron beam control section 80, a multi-axis electron lens control section 82, a shaping deflection control section 84, a blanking electrode array control section 86, and a deflection control section 92. A backscattered electron processing unit 94; and a stage control unit 96. The general control unit 130 has a calculation unit 132, a memory 134, and a position detection unit 133. The general control unit 130 is, for example, a workstation, and performs general control of each control unit included in the individual control unit 120. The electron beam controller 80 controls the electron beam generator 10. Multi: The control unit 82 includes the first multi-axis electronic lens 16, the second multi-axis electronic lens 24, The current supplied to the third multi-axis electronic lens 34, the fourth multi-axis electronic lens 36, and the fifth multi-axis electronic lens 52 is controlled.
成形偏向制御部 8 4は、 第 1成形偏向部 1 8および第 2成形偏向部 2 0を制御す る。 プランキング電極ァレイ制御部 8 6は、 ブランキング電極ァレイ 2 6に含まれ る偏向電極に印加する電圧を制御する。 偏向制御部 9 2は、 偏向部 3 8に含まれる 複数の偏向器が有する偏向電極に印加する電圧を制御する。 反射電子処理部 9 4は 、 電子検出部 4 0から出力された検出信号に基づいて反射電子の量を検出し、 統括 制御部 1 3 0に通知する。 ウェハステージ制御部 9 6は、 ウェハステージ駆動部 4 8を制御し、 ウェハステージ 4 6を所定の位置に移動させる。  The molding deflection control section 84 controls the first molding deflection section 18 and the second molding deflection section 20. The blanking electrode array controller 86 controls the voltage applied to the deflection electrodes included in the blanking electrode array 26. The deflection controller 92 controls the voltage applied to the deflection electrodes of the plurality of deflectors included in the deflection unit 38. The backscattered electron processing unit 94 detects the amount of backscattered electrons based on the detection signal output from the electron detection unit 40, and notifies the general control unit 130. Wafer stage control section 96 controls wafer stage drive section 48 to move wafer stage 46 to a predetermined position.
本実施形態に係る電子ビーム露光装置 1 0 0の動作について説明する。 まず、 ゥ ェハステージ 4 6に設けられたマーク部 5 6を用いて、 複数の電子ビームの照射位 置の捕正処理を行う。 当該補正処理では、 例えば伸縮、 回転、 平行移動等による電 子ビーム露光装置 1 0 0の各部材の変形等により生じる複数の電子ビームの照射位 置のずれを補正する補正値を算出する。  The operation of the electron beam exposure apparatus 100 according to the present embodiment will be described. First, using the mark portion 56 provided on the wafer stage 46, a process of correcting the irradiation positions of a plurality of electron beams is performed. In the correction process, for example, a correction value for correcting a displacement of the irradiation positions of a plurality of electron beams caused by deformation of each member of the electron beam exposure apparatus 100 due to expansion, contraction, rotation, translation, or the like is calculated.
まず、 照射位置の検出に用いる所定の電子ビームをウェハステージ 4 6に設けら れたマーク部 5 6に照射させる。 電子検出部 4 0は、 マーク部 5 6に照射された電 子ビームの反射電子を検出し、 検出された反射電子の量に対応する検出信号を出力 する。 そして、 統括制御部 1 3 0において、 位置検出部 1 3 6は、 電子検出部 4 0 によって出力された検出信号に基づいて、 電子ビームの照射位置の座標の少なくと も 1つを検出する。 そして、 算出部 1 3 2は、 検出された電子ビームの照射位置の 座標に基づいて、 照射位置の検出に用いられた電子ビーム以外の電子ビームの照射 位置を補正する補正値を算出する。 また、 メモリ 1 3 4は、.位置検出部 1. 3 6によ つて検出された電子ビームの照射位置、 及び算出部 1 3 2によって検出された他の 電子ビームの照射位置が格納される。  First, a predetermined electron beam used for detecting an irradiation position is irradiated on a mark portion 56 provided on the wafer stage 46. The electron detection unit 40 detects reflected electrons of the electron beam applied to the mark unit 56, and outputs a detection signal corresponding to the detected amount of reflected electrons. Then, in the overall control unit 130, the position detection unit 1336 detects at least one of the coordinates of the irradiation position of the electron beam based on the detection signal output by the electron detection unit 40. Then, the calculating unit 132 calculates a correction value for correcting the irradiation position of an electron beam other than the electron beam used for detecting the irradiation position, based on the coordinates of the detected irradiation position of the electron beam. The memory 1334 stores the irradiation position of the electron beam detected by the position detection unit 1.36 and the irradiation position of another electron beam detected by the calculation unit 1332.
当該算出部 1 3 2は、 複数の開口部の有する部材である第 1成形部材 1 4、 第 2 成形部材 2 2、 第 1多軸電子レンズ 1 6、 第 2多軸電子レンズ 2 4、 第 3多軸電子 レンズ 3 4、 第 4多軸電子レンズ 3 6、 第 5多軸電子レンズ 5 2、 第 1成形偏向部 1 8、 第 2成形偏向部 2 0、 偏向部 3 8等の伸縮、 回転、 及ぴ平行移動等による電 子ビームの照射位置のずれを補正する補正値を算出することが好ましい。 The calculation unit 1332 includes a first molded member 14, a second molded member 22, a first multi-axis electronic lens 16, a second multi-axis electron lens 24, a member having a plurality of openings. 3 Multi-axis electron lens 34, 4th multi-axis electron lens 36, 5th multi-axis electron lens 52, 1st shaping deflection unit It is preferable to calculate a correction value for correcting a deviation of the irradiation position of the electron beam due to expansion, contraction, rotation, and parallel movement of the second shaping / deflecting unit 20, the deflecting unit 38, and the like.
以上の動作により、 電子ビーム照射位置を補正値を算出した後、 当該補正値を用 いてウェハ 4 4に露光処理を行う。 以下、 露光処理における電子ビーム露光装置 1 0 0の動作について説明するが、 上述した補正処理においてマーク部 5 6に電子ビ ームを照射する動作は、 露光処理においてウェハ 4 4に電子ビームを照射する動作 と略同一であってよい。  After calculating the correction value for the electron beam irradiation position by the above operation, the wafer 44 is subjected to exposure processing using the correction value. Hereinafter, the operation of the electron beam exposure apparatus 100 in the exposure processing will be described. In the above-described correction processing, the operation of irradiating the mark portion 56 with the electron beam is performed by irradiating the wafer 44 with the electron beam in the exposure processing. This operation may be substantially the same as the operation performed.
電子ビーム発生部 1 0は、 複数の電子ビームを生成する。 第 1成形部材 1 4は、 電子ビーム発生部 1 0により発生し、 第 1成形部材 1 4に照射された複数の電子ビ ームを、 第 1成形部材 1 4に設けられた複数の開口部を通過させることにより成形 する。 他の例においては、 電子ビーム発生部 1 0において発生した電子ビームを複 数の電子ビームに分割する手段を更に有することにより、 複数の電子ビームを生成 してもよレ、。  The electron beam generator 10 generates a plurality of electron beams. The first molded member 14 is provided with a plurality of electron beams generated by the electron beam generating unit 10 and applied to the first molded member 14, by a plurality of openings provided in the first molded member 14. To form. In another example, a plurality of electron beams may be generated by further including means for dividing the electron beam generated in the electron beam generation unit 10 into a plurality of electron beams.
第 1多軸電子レンズ 1 6は、 矩形に成形された複数の電子ビームを独立に集束し 、 第 2成形部材 2 2に対する電子ビームの焦点を、 電子ビーム毎に独立に調整する 。 第 1成形偏向部 1 8は、 第 1成形部材 1 4において矩形形状に成形された複数の 電子ビームを、 第 2成形部材における所望の位置に照射するように、 それぞれ独立 に偏向する。  The first multi-axis electron lens 16 independently focuses a plurality of rectangularly shaped electron beams, and independently adjusts the focus of the electron beam on the second formed member 22 for each electron beam. The first shaping / deflecting unit 18 independently deflects the plurality of electron beams formed into a rectangular shape in the first shaping member 14 so as to irradiate a desired position on the second shaping member.
第 2成形偏向部 2 0は、 第 1成形偏向部 1 8で偏向された複数の電子ビームを、 第 2成形部材 2 2に対して略垂直な方向にそれぞれ偏向し、 第 2成形部材 2 2に照 射する。 そして矩形形状を有する複数の開口部を含む第 2成形部材 2 2は、 第 2成 形部材 2 2に照射された矩形の断面形状を有する複数の電子ビームを、 ウェハ 4 4 に照射すべき所望の断面形状を有する電子ビームにさらに成形する。  The second shaping deflection unit 20 deflects the plurality of electron beams deflected by the first shaping deflection unit 18 in directions substantially perpendicular to the second shaping member 22, respectively. Illuminate. Then, the second forming member 22 including the plurality of openings having the rectangular shape is configured to irradiate the wafer 44 with the plurality of electron beams having the rectangular cross-sectional shape applied to the second forming member 22. Is further shaped into an electron beam having a cross-sectional shape of
第 2多軸電子レンズ 2 4は、 複数の電子ビームを独立に集束して、 プランキング 電極アレイ 2 6に対する電子ビームの焦点を、 それぞれ独立に調整する。 そして、 第 2多軸電子レンズ 2 4により焦点がそれぞれ調整された複数の電子ビームは、 ブ  The second multi-axis electron lens 24 independently focuses the plurality of electron beams and adjusts the focus of the electron beam on the blanking electrode array 26 independently. The plurality of electron beams whose focus has been adjusted by the second multi-axis electron lens 24 are
'、電極アレイ 2 6に含まれる複数のアパーチャを通過する。 ブランキング電極ァレイ制御部 8 6は、 ブランキング電極ァレイ 2 6における各 アパーチャの近傍に設けられた偏向電極に電圧を印加する力否かを制御する。 ブラ ンキング電極アレイ 2 6は、 偏向電極に印加される電圧に基づいて、 電子ビームを ウェハ 4 4に照射させるか否かを切替える。 'Pass through a plurality of apertures contained in the electrode array 26. The blanking electrode array control unit 86 controls whether or not to apply a voltage to a deflection electrode provided near each aperture in the blanking electrode array 26. The blanking electrode array 26 switches whether to irradiate the wafer 44 with the electron beam based on the voltage applied to the deflection electrode.
ブランキング電極アレイに 2 6により偏向されない電子ビームは、 第 3多軸電子 レンズ 3 4を通過する。 そして第 3多軸電子レンズ 3 4は、 第 3多軸電子レンズ 3 4を通過する電子ビームの電子ビーム径を縮小する。 縮小された電子ビームは、 電 子ビーム遮蔽部材 2 8に含まれる開口部を通過する。 また、 電子ビーム遮蔽部材 2 8は、 ブランキング電極アレイ 2 6により偏向された電子ビームを遮蔽する。 電子 ビーム遮蔽部材 2 8を通過した電子ビームは、 第 4多軸電子レンズ 3 6に入射され る。 そして第 4多軸電子レンズ 3 6は、 入射された電子ビームをそれぞれ独立に集 束し、 偏向部 3 8に対する電子ビームの焦点をそれぞれ調整する。 第 4多軸電子レ ンズ 3 6により焦点が調整された電子ビームは、 偏向部 3 8に入射される。  The electron beam not deflected by the blanking electrode array 26 passes through the third multi-axis electron lens 34. Then, the third multi-axis electron lens 34 reduces the electron beam diameter of the electron beam passing through the third multi-axis electron lens 34. The reduced electron beam passes through an opening included in the electron beam shielding member 28. Further, the electron beam shielding member 28 shields the electron beam deflected by the blanking electrode array 26. The electron beam that has passed through the electron beam shielding member 28 is incident on the fourth multi-axis electron lens 36. Then, the fourth multi-axis electron lens 36 independently focuses the incident electron beams, and adjusts the focus of the electron beams with respect to the deflection unit 38, respectively. The electron beam whose focus has been adjusted by the fourth multi-axis electron lens 36 is incident on the deflection unit 38.
偏向制御部 9 2は、 算出部 1 3 2によつで算出された補正値に基づいて、 偏向部 3 8に含まれる複数の偏向器を制御し、 偏向部 3 8に入射されたそれぞれの電子ビ ームを、 ウェハ 4 4に対して照射すべき位置にそれぞれ独立に偏向する。 第 5多軸 電子レンズ 5 2は、 第 5多軸電子レンズ 5 2を通過 "るそれぞれの電子ビームのゥ ェハ 4 4に対する焦点を調整する。 そしてウェハ 4 4に照射すべき断面形状を有す るそれぞれの電子ビームは、 ゥヱハ 4 4に対して照射すべき所望の位置に照射され る。  The deflection control unit 92 controls a plurality of deflectors included in the deflection unit 38 based on the correction value calculated by the calculation unit 132, and controls each of the deflectors that have entered the deflection unit 38. The electron beam is independently deflected to a position to be irradiated on the wafer 44. The fifth multi-axis electron lens 52 adjusts the focal point of each electron beam passing through the fifth multi-axis electron lens 52 with respect to the wafer 44. The fifth multi-axis electron lens 52 has a cross-sectional shape to be irradiated on the wafer 44. Each electron beam is applied to a desired position to be applied to the laser beam 44.
露光処理中、 ウェハステージ駆動部 4 8は、 ウェハステージ制御部 9 6からの指 示に基づき、 一定方向にウェハステージ 4 6を連続移動させるのが好ましい。 そし て、 ゥヱハ 4 4の移動に合わせて、 電子ビームの断面形状をウェハ 4 4に照射すベ き形状に成形し、 ゥヱハ 4 4に照射すべき電子ビームを通過させるアパーチャを定 め、 さらに偏向部 3 8によりそれぞれの電子ビームをゥヱハ 4 4に対して照射すベ き位置に偏向させることにより、 ウェハ 4 4に所望の回路パターンを露光すること ができる。 図 2は、 本実施形態に係る電子ビーム露光装置 100の動作全体のフローチヤ一 トである。 S 10で本フローチャートが開始する。 ステージ位置校正段階(S 20) で、 マーク部 56が設けられたウェハステージ 46のステージ位置の校正を行う。 照射位置構成段階 (S 30) で、 全ての電子ビームをマーク部 56に照射すること により全ての電子ビームの照射位置を検出して、 個々の電子ビームのそれぞれの照 射位置の校正を行う。 露光処理段階 (S 40) で、 ステージ位置校正段階 (S 20) 及び照射位置校正段階 (S 30) において決定された校正値に基づいて、 所定回数 の露光処理を行う。 S 50で、 所望回数の露光処理が完了したか否かを判断する。 S 50で所望回数の露光処理が完了していないと判断された場合、 照射位置補正段 階 (S 60) で、 所定の電子ビームの照射位置を検出して露光処理に用いる電子ビ ームの照射位置の補正を行う。 ステージ位置校正段階 (S 20) 及び照射位置校正 段階 (S 30) において決定された校正値を用いて検出用の電子ビームをマーク部 56に照射することにより、 複数の電子ビームの照射位置のずれを補正する補正値 を算出する。 そして、 露光処理段階 (S40) で、 照射位置捕正段階 (S 60) に おいて算出された補正値に基づいて、 所定の露光処理を行う。 S 50で所望回数の 露光処理が完了したと判断した場合、 S 70で本フローチャートを終了する。 照射 位置補正段階 (S 60) による電子ビームの照射位置の捕正は、 例えばロット毎や ウェハ毎に行うことが好ましい。 During the exposure processing, it is preferable that the wafer stage driving section 48 continuously moves the wafer stage 46 in a fixed direction based on an instruction from the wafer stage control section 96. Then, according to the movement of ゥ ヱ C 44, the cross-sectional shape of the electron beam is shaped into a shape that should irradiate the wafer 44, and the aperture for passing the electron beam to be irradiated to 4C 44 is defined. A desired circuit pattern can be exposed on the wafer 44 by deflecting each electron beam to a position where the electron beam 44 should be irradiated by the unit 38. FIG. 2 is a flowchart showing the entire operation of the electron beam exposure apparatus 100 according to the present embodiment. This flowchart starts in S10. In the stage position calibration stage (S20), the stage position of the wafer stage 46 provided with the mark portion 56 is calibrated. In the irradiation position configuration step (S30), the irradiation positions of all the electron beams are detected by irradiating all the electron beams to the mark section 56, and the irradiation positions of the individual electron beams are calibrated. In the exposure processing stage (S40), a predetermined number of exposure processes are performed based on the calibration values determined in the stage position calibration stage (S20) and the irradiation position calibration stage (S30). In S50, it is determined whether the desired number of exposure processes has been completed. If it is determined in S50 that the desired number of exposure processes have not been completed, the irradiation position correction stage (S60) detects a predetermined electron beam irradiation position and determines the position of the electron beam used in the exposure process. The irradiation position is corrected. By using the calibration values determined in the stage position calibration step (S20) and the irradiation position calibration step (S30) to irradiate the mark portion 56 with an electron beam for detection, the deviation of the irradiation position of a plurality of electron beams can be achieved. Calculate the correction value for correcting. Then, in the exposure processing step (S40), a predetermined exposure processing is performed based on the correction value calculated in the irradiation position correction step (S60). If it is determined in S50 that the desired number of exposure processes has been completed, the flow chart ends in S70. The correction of the irradiation position of the electron beam in the irradiation position correction step (S60) is preferably performed, for example, for each lot or each wafer.
図 3は、 照射位置 ¾ί正段階 (S 60) における、 電子ビーム露光装置 100の動 作のフローチャートである。 照射位置検出段階 (S 80) で、 露光処理に用いる複 数の電子ビームのうちの所定の電子ビームである検出用の電子ビームをマーク部 5 6に照射して、 当該検出用の電子ビームの照射位置の座標を検出する。 照射位置格 納段階 (S 90) で、 検出された照射位置の座標を統括制御部 130のメモリ 1 3 4に格納する。 S 100で、 必要な電子ビームの照射位置の座標が検出されたカ否 かを判断する。 S 100で必要な電子ビームの照射位置の座標が検出されていない と判断した場合、 照射位置検出段階 (S 80) に戻り、 他の検出用の電子ビームの 照射位置の座標を検出し、 照射位置格納段階 (S 90) で、 検出された照射位置の 座標を格納する。 S 1 0 0で必要な電子ビームの照射位置の座標が検出されたと判 断した場合、 補正値算出段階 (S 1 1 0 ) で、 検出された座標に基づいて、 検出用 の電子ビーム以外の電子ビームの照射位置を補正する補正値を算出する。 本実施例 において、 統括制御部 1 3 0のメモリ 1 3 4は、 それぞれの電子ビームの照射位置 の位置関係を格納しており、 補正値算出段階 (S 1 1 0 ) で、 メモリ 1 3 4に格納 された当該位置関係を用いて他の電子ビームの照射位置を補正する補正値を算出し てもよい。 FIG. 3 is a flowchart of the operation of the electron beam exposure apparatus 100 in the irradiation position correction stage (S60). In the irradiation position detection step (S80), the mark portion 56 is irradiated with a detection electron beam that is a predetermined electron beam of the plurality of electron beams used for the exposure processing, and the detection electron beam is detected. The coordinates of the irradiation position are detected. In the irradiation position storing stage (S90), the coordinates of the detected irradiation position are stored in the memory 1 34 of the overall control unit 130. In S100, it is determined whether or not the coordinates of the required electron beam irradiation position have been detected. If it is determined in S100 that the coordinates of the required irradiation position of the electron beam have not been detected, the process returns to the irradiation position detection step (S80), and the coordinates of the irradiation position of another detection electron beam are detected and irradiation is performed. In the position storage stage (S90), the irradiation position detected Store the coordinates. If it is determined in S100 that the coordinates of the required electron beam irradiation position have been detected, then in the correction value calculation step (S110), based on the detected coordinates, other than the electron beam for detection is used. A correction value for correcting the irradiation position of the electron beam is calculated. In the present embodiment, the memory 134 of the general control unit 130 stores the positional relationship between the irradiation positions of the respective electron beams, and in the correction value calculation stage (S110), the memory 133 is used. A correction value for correcting the irradiation position of another electron beam may be calculated using the positional relationship stored in the.
なお、 電子ビーム露光装置 1 0 0の複数の開口部を有する部材の変形は、 全体均 等伸縮、 回転、 平行移動、 非線形伸縮、 直交する 2つの方向のそれぞれに対する伸 縮等があり、 統括制御部 1 3 0は、 考慮すべき当該変形の組み合わせに応じて、 検 出する電子ビームの照射位置の座標の数を定めることが好ましい。 具体的には、 照 射位置検出段階(S 8 0 )で、 1つの電子ビームの照射位置の座標の 1つ、例えば、 露光処理中、 ウェハステージ 4 6を連続移動させる方向を X方向、 また X方向と略 垂直な方向を y方向とする x y座標系において、 基準点に対する照射位置の X座標 又は y座標を検出し、補正値算出段階(S 1 1 0 )で、検出された座標に基づいて、 電子ビーム露光装置 1 0 0の複数の開口部を有する部材の全体均等伸縮及ぴ回転の 一方による、 照射位置の 1つの座標が検出された電子ビーム以外の電子ビームの照 射位置のずれを補正する補正値を算出してもよい。 ' また、照射位置検出段階(S 8 0 ) で、 1つの電子ビームの照射位置、例えば、 上述の X y座標系において X座標及び y座標を検出し、補正値算出段階(S 1 1 0 ) で、検出された照射位置に基づいて、 電子ビーム露光装置 1 0 0の複数の開 口部を有する部材の全体均等伸縮及ぴ回転による、照射位置が検出された電子ビ ーム以外の電子ビームの照射位置のずれを補正する補正値を算出してもよい。 また、照射位置検出段階(S 8 0 )で、 1つの電子ビームの照射位置を検出し、 補正値算出段階 (S 1 1 0 ) で、 検出された照射位置に基づいて、 電子ビーム露 光装置 1 0 0の複数の開口部を有する部材の平行移動による、照射位置が検出さ れた電子ビーム以外の電子ビームの照射位置のずれを補正する補正値を算出し てもよい。 The deformation of the member having a plurality of openings of the electron beam exposure apparatus 100 includes uniform uniform expansion and contraction, rotation, parallel movement, nonlinear expansion and contraction, and expansion and contraction in each of two orthogonal directions. The part 130 preferably determines the number of coordinates of the irradiation position of the electron beam to be detected, according to the combination of the deformations to be considered. Specifically, in the irradiation position detection step (S80), one of the coordinates of the irradiation position of one electron beam, for example, the direction in which the wafer stage 46 is continuously moved during the exposure processing is set in the X direction, In the xy coordinate system in which the direction substantially perpendicular to the X direction is the y direction, the X coordinate or the y coordinate of the irradiation position with respect to the reference point is detected, and based on the detected coordinates in the correction value calculation step (S110) The displacement of the irradiation position of an electron beam other than the electron beam at which one coordinate of the irradiation position is detected due to one of uniform expansion and contraction and rotation of the member having a plurality of openings of the electron beam exposure apparatus 100 May be calculated. 'In the irradiation position detecting step (S800), the irradiation position of one electron beam, for example, the X coordinate and the y coordinate in the XY coordinate system described above are detected, and the correction value calculating step (S110) Then, based on the detected irradiation position, an electron beam other than the electron beam whose irradiation position has been detected due to the uniform uniform expansion and contraction and rotation of the member having the plurality of openings of the electron beam exposure apparatus 100 based on the detected irradiation position. A correction value for correcting the deviation of the irradiation position may be calculated. In the irradiation position detection step (S800), the irradiation position of one electron beam is detected, and in the correction value calculation step (S110), the electron beam exposure device is used based on the detected irradiation position. A correction value for correcting a shift in the irradiation position of an electron beam other than the electron beam whose irradiation position is detected due to the parallel movement of a member having a plurality of openings of 100 is calculated. You may.
また、照射位置検出段階(S 8 0 )で、 2つの電子ビームの照射位置を検出し、 補正値算出段階 (S 1 1 0 ) で、 2つの電子ビームの照射位置に基づいて、 電子 ビーム露光装置 1 0 0の複数の開口部を有する部材の全体均等伸縮、回転、及ぴ 平行移動による、 2つの電子ビーム以外の電子ビームの照射位置のずれを補正す る補正値を算出してもよい。  In the irradiation position detection step (S800), the irradiation positions of the two electron beams are detected. In the correction value calculation step (S110), the electron beam exposure is performed based on the irradiation positions of the two electron beams. A correction value for correcting a shift in the irradiation position of an electron beam other than the two electron beams due to uniform expansion and contraction, rotation, and parallel movement of a member having a plurality of openings of the apparatus 100 may be calculated. .
また、照射位置検出段階(S 8 0 )で、 3つの電子ビームの照射位置を検出し、 補正値算出段階 (S 1 1 0 ) で、 3つの電子ビームの照射位置に基づいて、 電子 ビーム露光装置 1 0 0の複数の開口部を有する部材の回転、平行移動、及び直交 する 2つの方向のそれぞれに対する伸縮による、 3つの電子ビーム以外の電子ビ ームの照射位置のずれを補正する補正値を算出してもよい。  In the irradiation position detection step (S800), the irradiation positions of the three electron beams are detected. In the correction value calculation step (S110), the electron beam exposure is performed based on the irradiation positions of the three electron beams. A correction value for correcting a shift in the irradiation position of an electron beam other than three electron beams due to rotation, parallel movement, and expansion and contraction of a member having a plurality of openings of the apparatus 100 in each of two orthogonal directions. May be calculated.
また、 照射位置検出段階 (S 8 0 ) で、 少なくとも 4つの電子ビームの照射位 置を検出し、 補正値算出段階 (S 1 1 0 ) で、 少なくとも 4つの電子ビームの照 射位置に基づいて、電子ビーム露光装置 1 0 0の複数の開口部を有する部材の回 転、 平行移動、 非線形伸縮、及ぴ直交する 2つの方向のそれぞれに対する伸縮に よる、少なくとも 4つの電子ビーム以外の電子ビームの照射位置のずれを補正す る補正値を算出してもよい。  Further, in the irradiation position detecting step (S800), the irradiation positions of at least four electron beams are detected, and in the correction value calculating step (S110), based on the irradiation positions of the at least four electron beams. Of the electron beam exposure apparatus 100 having a plurality of openings by rotation, parallel movement, nonlinear expansion and contraction, and expansion and contraction in each of two orthogonal directions. A correction value for correcting the displacement of the irradiation position may be calculated.
また、照射位置校正段階(S 3 0 )の後の 1回目の照射位置補正段階(S 6 0 ) において統括制御部 1 3 0は、 ステージ位置校正段階(S 2 0 ) 及び照射位置校 正段階 (S 3 0 ) において決定された校正値に基づいて、 検出用の電子ビームを 照射することにより照射位置を検出し、補正値を算出することが好ましレ、。また、 照射位置校正段階(S 3 0 ) の後の複数回目である所定回目の照射位置補正段階 ( S 6 0 ) において統括制御部 1 3 0は、 当該所定回目の前回の照射位置補正段 階 (S 6 0 ) において算出された補正値に基づいて、検出用の電子ビームを照射 することにより照射位置を検出し、 補正値を算出することが好ましい。  In the first irradiation position correction step (S60) after the irradiation position calibration step (S30), the overall control unit 130 performs the stage position calibration step (S20) and the irradiation position calibration step. Based on the calibration value determined in (S30), it is preferable to detect the irradiation position by irradiating a detection electron beam and calculate a correction value. In a plurality of irradiation position correction steps (S 60), which is a plurality of times after the irradiation position calibration step (S 30), the general control unit 130 performs the previous irradiation position correction step of the predetermined time. It is preferable that the irradiation position is detected by irradiating a detection electron beam based on the correction value calculated in (S60), and the correction value is calculated.
さらに、複数回目である所定回目の照射位置補正段階(S 6 0 ) において銃括 制御部 1 3 0は、 当該所定回目の前回の照射位置検出段階 (S 8 0 ) において照 射位置を検出した電子ビームと同様の電子ビームの照射位置の座標を再度検出 し、補正値算出段階(S 1 1 0 )で、当該所定回目の前回の照射位置検出段階(S 8 0 ) において検出した座標と、 当該所定回目の照射位置検出段階 (S 8 0 ) に おいて検出した座標とに基づいて、補正値を再度算出することが好ましい。 この とき、 当該所定回目の前回の照射位置検出段階 (S 8 0 ) において検出された座 標は、 統括制御部 1 3 0のメモリ 1 3 4から抽出する。 Further, in the irradiation position correction step (S 60) of a plurality of predetermined times, the gun control unit 130 executes the irradiation in the previous irradiation position detection step (S 80) of the predetermined time. The coordinates of the irradiation position of the electron beam similar to the electron beam whose irradiation position has been detected are detected again, and in the correction value calculation step (S110), in the previous irradiation position detection step (S800) of the predetermined time, It is preferable that the correction value be calculated again based on the detected coordinates and the coordinates detected in the predetermined irradiation position detecting step (S80). At this time, the coordinates detected in the previous irradiation position detection step (S80) of the predetermined time are extracted from the memory 1334 of the overall control unit 130.
また、 複数の検出用の電子ビームの照射位置を検出する場合、 同一のマーク部 5 6を用いて複数の電子ビームの照射位置を検出することが好ましい。 同一のマーク 部 5 6を用いて電子ビームの照射位置を検出することにより、 各マーク部 5 6間の 特性に基づく補正値の誤差を低減させることができる。  When detecting the irradiation positions of a plurality of detection electron beams, it is preferable to detect the irradiation positions of the plurality of electron beams using the same mark portion 56. By detecting the irradiation position of the electron beam using the same mark portion 56, it is possible to reduce the error of the correction value based on the characteristic between the mark portions 56.
図 4は、電子銃 1 0 4の配列例及ぴゥヱハステージ 4 6の一例を示す。 図 4 ( a ) は、 6 9個の電子銃 1 0 4が配置された基材 1 0 6を示す。 図 4 ( b ) に示すよう に、 ウェハステージ 4 6は、 マーク部 5 6及ぴミラー部 5 8を有する。 また、 電子 ビーム露光装置 1 0 0は、 ゥヱハステージ 4 6の外部にレーザ干渉計 6 0をさらに 備え、 ミラー部 5 8とレーザ干渉計 6 0とを用いてウェハステージ 4 6の位置を校 正する。 図 4 ( a ) 及ぴ図 4 ( b ) を用いて、 図 2のステージ位置校正段階 (S 2 0 ) においてゥヱハステージの位置を校正する動作について説明する。 レーザ干渉 計 6 0は、ウェハステージ 4 6に設けられたミラー 5 8に複数のレーザを照射して、 当該レーザの反射光を受け取り、 照射したレーザと反射光との光路差に基づいて、 ウェハステージ 4 6の位置及ぴ傾き、 ミラー 5 8の傾き及ぴ反り等のパラメータを 検出する。 統括制御部 1 3 0は、 当該パラメータに基づいてウェハステージ 5 8の ステージ位置を校正する校正値を算出し、 以後、 ウェハステージ 4 6を当該校正値 を用いて所望の位置に移動させる。 なお、 露光処理中、 ウェハステージ 4 6を連続 移動させる方向を X方向、 また X方向と略垂直な方向を y方向とする。  FIG. 4 shows an example of the arrangement of the electron guns 104 and an example of the stage 46. FIG. 4A shows a substrate 106 on which 69 electron guns 104 are arranged. As shown in FIG. 4B, the wafer stage 46 has a mark portion 56 and a mirror portion 58. Further, the electron beam exposure apparatus 100 further includes a laser interferometer 60 outside the stage 4, and uses the mirror section 58 and the laser interferometer 60 to calibrate the position of the wafer stage 46. . The operation of calibrating the stage position in the stage position calibration stage (S20) in FIG. 2 will be described with reference to FIGS. 4 (a) and 4 (b). The laser interferometer 60 irradiates the mirror 58 provided on the wafer stage 46 with a plurality of lasers, receives the reflected light of the laser, and sets the wafer based on the optical path difference between the irradiated laser and the reflected light. The parameters such as the position and inclination of the stage 46 and the inclination and warpage of the mirror 58 are detected. The overall control unit 130 calculates a calibration value for calibrating the stage position of the wafer stage 58 based on the parameters, and thereafter moves the wafer stage 46 to a desired position using the calibration value. Note that, during the exposure processing, the direction in which the wafer stage 46 is continuously moved is defined as the X direction, and the direction substantially perpendicular to the X direction is defined as the y direction.
図 5は、 照射位置検出段階 (S 8 0 ) における、 電子ビームの照射位置検出方法 の一例を示す。 本例においては、 3つの電子ビームの照射位置を検出し、 当該 3つ の電子ビーム以外の電子ビームの照射位置の算出する場合について説明する。 図 5 (a)、 図 5 (b)、 及ぴ図 5 (c) に示すように、 同一のマーク部 56を用いて、 3つの電子ビームの照射位置を検出する。 同一のマーク部 56を用いて複数の電子 ビームの照射位置を検出することにより、 複数の電子ビーム間の相対位置を精度よ く測定することができる。 また他の例においては、 複数のマーク部を用いて、 複数 の電子ビームの照射位置を検出してもよく、 また照射位置検出用のウェハに設けら れたマークを用いて電子ビームの照射位置を検出してもよい。 FIG. 5 shows an example of an electron beam irradiation position detection method in the irradiation position detection step (S80). In this example, a case will be described in which the irradiation positions of three electron beams are detected, and the irradiation positions of electron beams other than the three electron beams are calculated. Fig 5 As shown in (a), FIG. 5 (b), and FIG. 5 (c), the irradiation positions of the three electron beams are detected using the same mark portion 56. By detecting the irradiation positions of a plurality of electron beams using the same mark portion 56, the relative position between the plurality of electron beams can be measured with high accuracy. In another example, the irradiation positions of a plurality of electron beams may be detected using a plurality of mark portions, and the irradiation positions of the electron beams may be detected using marks provided on a wafer for detecting the irradiation position. May be detected.
次に、 検出用の電子ビームの照射位置に基づいて、 当該検出用の電子ビーム以外 の電子ビームの照射位置を算出する方法の一例について説明する。 第 1成形部材 1 4、 第 2成形部材 22、 第 1多軸電子レンズ 16、 第 2多軸電子レンズ 24、 第 3 多軸電子レンズ 34、 第 4多軸電子レンズ 36、 第 5多軸電子レンズ 52、 第 1成 形偏向部 18、 第 2成形偏向部 20、 偏向部 38等の伸縮、 回転、 及び平行移動に よる 1つの電子ビームの照射位置の変動量 Δ V X、 Δ V yを、  Next, an example of a method of calculating the irradiation position of an electron beam other than the detection electron beam based on the irradiation position of the detection electron beam will be described. First molded member 14, Second molded member 22, First multi-axis electron lens 16, Second multi-axis electron lens 24, Third multi-axis electron lens 34, Fourth multi-axis electron lens 36, Fifth multi-axis electron The variation amount ΔVX, ΔVy of the irradiation position of one electron beam due to expansion, contraction, rotation, and parallel movement of the lens 52, the first shaping deflection unit 18, the second shaping deflection unit 20, the deflection unit 38, etc.
Δ V X = g X * C + r x*Cy + o x · · · ( 1 ) Δ V X = g X * C + r x * Cy + o x
Δ Vy = g y * C y + r y*Cx + o y · · - (2) Δ Vy = g y * C y + r y * Cx + o y
とする。 AVx、 AVyは、 当該電子ビームが照射すべき位置と、 検出された電子 ビームの照射位置との変位である。 Cx、 C yは、 複数の電子銃 104の相対的な 座標であり、 既知の値である。 また、 g x、 gyは未知の伸縮係数、 r x、 r yは 未知の回転係数、 o x、 o yは未知の平行移動係数である。 ここで本実施例におい て、 複数の電子ビームのそれぞれに独立に生じる電子ビームの照射位置のずれは変 動量 AVx、 AVyと比較して小さいため、 統括制御部 130の算出部 132は、 式 (1) 及び (2) に基づいて、 電子ビームの照射位置を補正する補正値を算出す る。 したがって、 3つの電子ビームの照射位置を検出することにより、 6つの未知 数の値が求められ、 当該 3つの電子ビーム以外の複数の電子ビームの照射位置を算 出できる。 そして、 算出された複数の電子ビームの照射位置に基づいて、 それぞれ の電子ビームの照射位置を補正する補正値を算出できる。 And AVx and AVy are displacements between the position to be irradiated by the electron beam and the irradiation position of the detected electron beam. Cx and Cy are relative coordinates of the plurality of electron guns 104 and are known values. Also, g x and gy are unknown expansion and contraction coefficients, r x and ry are unknown rotation coefficients, and ox and oy are unknown translation coefficients. Here, in the present embodiment, since the deviation of the irradiation position of the electron beam, which occurs independently of each of the plurality of electron beams, is smaller than the fluctuation amounts AVx and AVy, the calculation unit 132 of the overall control unit 130 calculates Based on 1) and (2), a correction value for correcting the irradiation position of the electron beam is calculated. Therefore, by detecting the irradiation positions of the three electron beams, six unknown values are obtained, and the irradiation positions of a plurality of electron beams other than the three electron beams can be calculated. Then, based on the calculated irradiation positions of the plurality of electron beams, a correction value for correcting the irradiation position of each electron beam can be calculated.
また、複数の開口部を有する部材の平行移動を考慮しない場合、式(1)及び(2) は、 厶 V x = g x * C x + r x * C y · · - ( 3 ) In addition, when the parallel movement of the member having a plurality of openings is not considered, the equations (1) and (2) are V x = gx * C x + rx * C y
Δ V y : g y * C y + r y * C x · · - ( 4 )  Δ V y: g y * C y + r y * C x
となり、 2つの電子ビームの照射位置を検出することにより、 4つの未知数の値が 求められ、当該 2つの電子ビーム以外の複数の電子ビームの照射位置を算出できる。 また、 2つの電子ビームの照射位置を検出することにより、 伸縮及び回転による電 子ビームの照射位置のずれを補正する補正値を算出できる。 同様に、 1つの電子ビ ームの照射位置と検出することにより、 伸縮、 回転、 及び平行移動のうちの 1つに よる電子ビームの照射位置のずれを補正する捕正値を算出できる。  By detecting the irradiation positions of the two electron beams, four unknown values are obtained, and the irradiation positions of a plurality of electron beams other than the two electron beams can be calculated. Further, by detecting the irradiation positions of the two electron beams, it is possible to calculate a correction value for correcting a shift of the irradiation positions of the electron beams due to expansion and contraction and rotation. Similarly, by detecting the irradiation position of one electron beam, it is possible to calculate a correction value for correcting a shift of the irradiation position of the electron beam due to one of expansion, contraction, rotation, and translation.
本実施形態の電子ビーム捕正方法及ぴ電子ビーム露光装置 1 0 0によれば、数 少ない電子ビームの照射位置の検出することにより、多くの電子ビームの照射位 置を算出することができる。 したがって、多くの電子ビームの照射位置を検出す ることなく、短時間で多くの電子ビームの照射位置を補正する補正値を算出する ことができる。  According to the electron beam correction method and the electron beam exposure apparatus 100 of the present embodiment, it is possible to calculate the irradiation positions of many electron beams by detecting the irradiation positions of a few electron beams. Therefore, a correction value for correcting the irradiation positions of many electron beams can be calculated in a short time without detecting the irradiation positions of many electron beams.
以上発明の実施の形態を説明したが、本出願に係る発明の技術的範囲は上記の 実施の形態に限定されるものではない。 上記実施の形態に種々の変更を加えて、 請求の範囲に記載の発明を実施することができる。そのような発明が本出願に係 る発明の技術的範囲に属することもまた、 請求の範囲の記載から明らかである。  Although the embodiments of the present invention have been described above, the technical scope of the present invention according to the present application is not limited to the above embodiments. The invention described in the claims can be implemented by adding various changes to the above embodiment. It is also apparent from the scope of the claims that such an invention belongs to the technical scope of the invention according to the present application.
; 産業上の利用可能性 Industrial applicability
以上の説明から明らかなように、本発明によれば、所定の電子ビームの照射位 置の検出することにより、当該電子ビーム以外の電子ビームの照射位置を補正す る電子ビーム補正方法及び電子ビーム露光装置を提供することができる。  As is apparent from the above description, according to the present invention, an electron beam correction method and an electron beam correction method for correcting the irradiation position of an electron beam other than the electron beam by detecting the irradiation position of the predetermined electron beam An exposure apparatus can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 2つ以上の電子ビームにより、 ゥヱハを露光する電子ビーム露光装置におい て、前記 2つ以上の電子ビームの照射位置を補正する電子ビーム補正方法であつ て、 1. An electron beam correction method for correcting an irradiation position of the two or more electron beams in an electron beam exposure apparatus for exposing a wafer with two or more electron beams,
前記 2つ以上の電子ビームのうちの少なくとも 1つの電子ビームの照射位置 の座標の少なくとも 1つを検出する検出段階と、  A detecting step of detecting at least one of coordinates of an irradiation position of at least one of the two or more electron beams;
検出された前記座標に基づいて、前記座標が検出された前記 1つの電子ビーム 以外の少なくとも 1つの他の電子ビームの照射位置を補正する補正値を算出す る算出段階と  A calculating step of calculating, based on the detected coordinates, a correction value for correcting an irradiation position of at least one other electron beam other than the one electron beam whose coordinates have been detected;
を備えることを特徴とする電子ビーム補正方法。 An electron beam correction method comprising:
2 . 前記電子ビーム露光装置は、前記 1つの電子ビームと前記他の電子ビームと の位置関係を予め格納する格納手段を備え、  2. The electron beam exposure apparatus includes a storage unit that stores a positional relationship between the one electron beam and the other electron beam in advance,
前記算出段階は、前記格納手段に格納された前記位置関係を用いて前記他の電 子ビームの前記照射位置を補正する前記補正値を算出する  The calculating step calculates the correction value for correcting the irradiation position of the another electron beam using the positional relationship stored in the storage unit.
ことを特徴とする請求項 1に記載の電子ビーム補正方法。 2. The electron beam correction method according to claim 1, wherein:
3 . 前記電子ビーム露光装置は、 2つ以上の電子ビームを発生する電子ビーム発 生部と、前記 2つ以上の電子ビームのそれぞれが通過する 2つ以上の開口部を有 する部材とを備え、  3. The electron beam exposure apparatus includes an electron beam generation unit that generates two or more electron beams, and a member that has two or more openings through which each of the two or more electron beams passes. ,
前記検出段階は、前記 2つ以上の電子ビームのうちの 1つの電子ビームの照射 位置の座標の 1つを検出し、 , 前記算出段階は、検出された前記座標に基づいて、前記電子ビーム露光装置の 前記部材の全体均等伸縮及び回転の一方による、前記照射位置の前記 1つの前記 座標が検出された電子ビーム以外の前記電子ビームの照射位置のずれを補正す る前記捕正値を算出する  The detecting step detects one of coordinates of an irradiation position of one of the two or more electron beams, and the calculating step includes the step of exposing the electron beam based on the detected coordinates. Calculating the correction value for correcting a shift of the irradiation position of the electron beam other than the electron beam at which the one of the coordinates of the irradiation position is detected due to one of the entire uniform expansion and contraction and rotation of the member of the apparatus.
ことを特徴とする請求項 1に記載の電子ビーム補正方法。 2. The electron beam correction method according to claim 1, wherein:
4 . 前記検出段階は、前記 1つの座標が検出された前記電子ビームの前記照射位 置を検出し、 4. The detecting step is the irradiation position of the electron beam at which the one coordinate is detected. Position is detected,
前記算出段階は、検出された前記照射位置に基づいて、前記電子ビーム露光装 置の前記部材の全体均等伸縮及び回転による、前記照射位置が検出された前記電 子ビーム以外の電子ビームの照射位置のずれを補正する前記補正値を算出する ことを特徴とする請求項 3に記載の電子ビーム補正方法。  The calculating step includes, based on the detected irradiation position, an irradiation position of an electron beam other than the electron beam at which the irradiation position has been detected, based on uniform expansion, contraction, and rotation of the entire member of the electron beam exposure apparatus. 4. The electron beam correction method according to claim 3, wherein the correction value for correcting the deviation is calculated.
5 . 前記検出段階は、前記 1つの座標が検出された前記電子ビームの前記照射位 置を検出し、  5. The detecting step includes detecting the irradiation position of the electron beam at which the one coordinate is detected,
前記算出段階は、検出された前記照射位置に基づいて、前記電子ビーム露光装 置の前記部材の平行移動による、前記照射位置が検出された前記電子ビーム以外 の電子ビームの照射位置のずれを補正する前記補正値を算出する  The calculating step corrects, based on the detected irradiation position, a shift in the irradiation position of an electron beam other than the electron beam whose irradiation position is detected due to the parallel movement of the member of the electron beam exposure device. Calculate the correction value
ことを特徴とする請求項 3に記載の電子ビーム補正方法。 4. The electron beam correction method according to claim 3, wherein:
6 . 前記電子ビーム発生部は、 3つ以上の電子ビームを発生し、 前記部材は、 前 記 3つ以上の電子ビームのそれぞれが通過する 3つ以上の開口部を有し、 前記検出段階は、前記 3つ以上の電子ビームのうちの 2つの電子ビームの照射 位置を検出する段階を含み、  6. The electron beam generator generates three or more electron beams, and the member has three or more openings through which each of the three or more electron beams passes. Detecting an irradiation position of two electron beams of the three or more electron beams,
前記算出段階は、前記 2つの電子ビームの前記照射位置に基づいて、前記電子 ビーム露光装置の前記部材の全体均等伸縮、 回転、及び平行移動による、 前記 2 つの電子ビーム以外の電子ビームの照射位置のずれを補正する前記補正値を算 出する '  In the calculating step, based on the irradiation positions of the two electron beams, the irradiation positions of the electron beams other than the two electron beams by uniformly expanding, contracting, rotating, and translating the entire member of the electron beam exposure apparatus Calculate the correction value to correct the deviation
ことを特徴とする請求項 3に記載の電子ビーム補正方法。 4. The electron beam correction method according to claim 3, wherein:
7 . 前記電子ビーム発生部は、 4つ以上の電子ビームを発生し、 前記部材は、 前 記 4つ以上の電子ビームのそれぞれが通過する 4つ以上の開口部を有し、 前記検出段階は、前記 4つ以上の電子ビームのうちの 3つの電子ビームの照射 位置を検出する段階を含み、  7. The electron beam generator generates four or more electron beams, and the member has four or more openings through which each of the four or more electron beams passes. Detecting the irradiation positions of three electron beams of the four or more electron beams,
前記算出段階は、前記 3つの電子ビームの前記照射位置に基づいて、前記電子 ビーム露光装置の前記部材の回転、平行移動、及び直交する 2つの方向のそれぞ れに対する伸縮による、前記 3つの電子ビーム以外の電子ビームの照射位置のず れを補正する前記捕正値を算出する The calculating step includes, based on the irradiation positions of the three electron beams, rotation, translation, and expansion and contraction of the member of the electron beam exposure apparatus in each of two orthogonal directions. No irradiation position of electron beam other than beam Calculate the correction value to correct for this
ことを特徴とする請求項 3に記載の電子ビーム補正方法。 4. The electron beam correction method according to claim 3, wherein:
8 . 前記電子ビーム発生部は、 5つ以上の電子ビームを発生し、 前記部材は、 前 記 5つ以上の電子ビームのそれぞれが通過する 5つ以上の開口部を有し、  8. The electron beam generator generates five or more electron beams, and the member has five or more openings through which each of the five or more electron beams passes.
前記検出段階は、前記 5つ以上の電子ビームのうちの少なくとも 4つの電子ビ ームの照射位置を検出する段階を含み、  The detecting step includes detecting an irradiation position of at least four electron beams of the five or more electron beams,
前記算出段階は、前記少なくとも 4つの電子ビームの前記照射位置に基づいて、 前記電子ビーム露光装置の前記部材の回転、 平行移動、 非線形伸縮、及び直交す る 2つの方向のそれぞれに対する伸縮による、前記少なくとも 4つの電子ビーム 以外の電子ビームの照射位置のずれを補正する前記補正値を算出する  The calculating may include, based on the irradiation positions of the at least four electron beams, rotation, translation, non-linear expansion and contraction of the member of the electron beam exposure apparatus in each of two orthogonal directions. Calculate the correction value for correcting a shift of the irradiation position of the electron beam other than at least four electron beams.
ことを特徴とする請求項 3に記載の電子ビーム補正方法。 4. The electron beam correction method according to claim 3, wherein:
9 .前記 1つの電子ビームの前記照射位置の座標の少なくとも 1つを再度検出す る再検出段階と、  9.A re-detection step of re-detecting at least one of the coordinates of the irradiation position of the one electron beam;
前記検出段階において検出された前記座標と、前記再検出段階において検出さ れた前記座標とに基づいて、 前記補正値を再度算出する再算出段階と  A recalculation step of calculating the correction value again based on the coordinates detected in the detection step and the coordinates detected in the redetection step.
をさらに備えることを特徴とする請求項 1に記載の電子ビーム補正方法。 2. The electron beam correction method according to claim 1, further comprising:
1 0 . 前記 2つ以上の電子ビームのそれぞれを校正する校正段階をさらに備え、 前記算出段階は、校正された前記 2つ以上の電子ビームの校正照射位置に基づ いて、 前記補正値を算出する  10. The method further comprises a calibration step of calibrating each of the two or more electron beams, and the calculating step calculates the correction value based on the calibrated irradiation positions of the two or more electron beams. Do
ことを特徴とする請求項 1に記載の電子ビーム補正方法。 2. The electron beam correction method according to claim 1, wherein:
1 1 . 前記電子ビーム露光装置は、前記ウェハが載置されるウェハステージをさ らに備え、  1 1. The electron beam exposure apparatus further includes a wafer stage on which the wafer is mounted,
前記ゥヱハステージは、前記 2つの電子ビームの照射位置を検出するためのマ 一ク部を有し、  The stage has a mark for detecting the irradiation position of the two electron beams,
前記検出段階は、前記 2つの電子ビームのそれぞれの前記照射位置を、 同一の 前記マーク部を用いて検出する  In the detecting step, the irradiation positions of the two electron beams are detected using the same mark portion.
ことを特徴とする請求項 6に記載の電子ビーム補正方法。 7. The electron beam correction method according to claim 6, wherein:
1 2 . 2つ以上の電子ビームにより、 ウェハを露光する電子ビーム露光装置であ つて、 12. An electron beam exposure apparatus for exposing a wafer with two or more electron beams,
前記 2つ以上の電子ビームを発生させる電子銃と、  An electron gun for generating the two or more electron beams;
前記 2つ以上の電子ビームをそれぞれ独立に偏向させる偏向部と、  A deflecting unit for independently deflecting the two or more electron beams,
前記ウェハが載置されるウェハステージと、  A wafer stage on which the wafer is mounted,
前記ウェハステージに設けられ、前記 2つ以上の電子ビームのうちの少なくと も 1つの電子ビームの照射位置を検出するためのマーク部と、  A mark unit provided on the wafer stage for detecting an irradiation position of at least one of the two or more electron beams;
前記マーク部に照射された前記少なくとも 1つの電子ビームの反射電子を検 出し、検出された前記反射電子の量に対応する検出信号を出力する電子検出部と、 前記検出信号に基づいて、前記少なくとも 1つの電子ビームの照射位置の座標 の少なくとも 1つを検出する位置検出部と、  An electron detection unit that detects reflected electrons of the at least one electron beam applied to the mark unit and outputs a detection signal corresponding to the amount of the detected reflected electrons; and A position detection unit that detects at least one of the coordinates of the irradiation position of one electron beam;
検出された前記座標に基づいて、前記座標が検出された前記電子ビーム以外の 電子ビームの照射位置を補正する補正値を算出する算出部と、  A calculating unit that calculates a correction value for correcting an irradiation position of an electron beam other than the electron beam whose coordinates have been detected, based on the detected coordinates.
前記補正値に基づいて、前記座標が検出された前記電子ビーム以外の前記電子 ビームを偏向させるように前記偏向部を制御する偏向制御部と  A deflection control unit that controls the deflection unit to deflect the electron beam other than the electron beam whose coordinates have been detected based on the correction value;
を備えることを特徴とする電子ビーム露光装置。 An electron beam exposure apparatus, comprising:
1 3 .前記 2つ以上の電子ビームのそれぞれの断面形状を成形する 2つ以上のス リットを有するスリット部と、  13.A slit portion having two or more slits for shaping the cross-sectional shape of each of the two or more electron beams,
前記 2つ以上の電子ビームのそれぞれを集束させる 2つ以上の電子レンズを 有する電子レンズ部と  An electron lens unit having two or more electron lenses for focusing each of the two or more electron beams;
をさらに備え、 Further comprising
前記算出部は、検出された前記座標に基づいて、前記偏向部、前記スリット部、 及び前記電子レンズ部の少なくとも 1つの伸縮、回転、及び平行移動の少なくと も 1つによる、前記座標が検出された前記電子ビーム以外の前記電子ビームの照 射位置のずれを補正する補正値を算出する  The calculation unit detects the coordinates based on at least one of expansion, contraction, rotation, and translation of at least one of the deflection unit, the slit unit, and the electron lens unit based on the detected coordinates. A correction value for correcting a deviation of the irradiation position of the electron beam other than the obtained electron beam.
ことを特徴とする請求項 1 2に記載の電子ビーム露光装置。 The electron beam exposure apparatus according to claim 12, wherein:
PCT/JP2001/009814 2000-11-15 2001-11-09 Electron beam correction method and electron beam exposure system WO2002041373A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-348462 2000-11-15
JP2000348462A JP4401556B2 (en) 2000-11-15 2000-11-15 Electron beam correction method and electron beam exposure apparatus

Publications (1)

Publication Number Publication Date
WO2002041373A1 true WO2002041373A1 (en) 2002-05-23

Family

ID=18822051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009814 WO2002041373A1 (en) 2000-11-15 2001-11-09 Electron beam correction method and electron beam exposure system

Country Status (3)

Country Link
JP (1) JP4401556B2 (en)
TW (1) TW522466B (en)
WO (1) WO2002041373A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006010615D1 (en) * 2005-05-14 2010-01-07 Fei Co Bending signal compensation for a charged particle beam
CN111381436B (en) * 2018-12-27 2024-03-08 中芯国际集成电路制造(上海)有限公司 Method for manufacturing photomask with pattern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518633A1 (en) * 1991-06-10 1992-12-16 Fujitsu Limited Pattern inspection apparatus and electron beam apparatus
US5384463A (en) * 1991-06-10 1995-01-24 Fujisu Limited Pattern inspection apparatus and electron beam apparatus
JPH08191042A (en) * 1995-01-11 1996-07-23 Hitachi Ltd Electron beam exposure system and adjusting method thereof
JPH11233418A (en) * 1998-02-18 1999-08-27 Jeol Ltd Electron beam lithography device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518633A1 (en) * 1991-06-10 1992-12-16 Fujitsu Limited Pattern inspection apparatus and electron beam apparatus
US5384463A (en) * 1991-06-10 1995-01-24 Fujisu Limited Pattern inspection apparatus and electron beam apparatus
JPH08191042A (en) * 1995-01-11 1996-07-23 Hitachi Ltd Electron beam exposure system and adjusting method thereof
JPH11233418A (en) * 1998-02-18 1999-08-27 Jeol Ltd Electron beam lithography device

Also Published As

Publication number Publication date
TW522466B (en) 2003-03-01
JP4401556B2 (en) 2010-01-20
JP2002151398A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
US11037759B2 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
US8384052B2 (en) Electron beam lithography apparatus and electron beam lithography method
US7041988B2 (en) Electron beam exposure apparatus and electron beam processing apparatus
KR20150128605A (en) Lithography apparatus and method, and method of manufacturing an article
JP4612838B2 (en) Charged particle beam exposure apparatus and exposure method therefor
JP2019029484A (en) Multiple charged particle beam lithography apparatus and multiple charged particle beam lithography method
JP7180515B2 (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
KR20190044508A (en) Charged particle beam writing apparatus and charged particle beam writing method
JP2002353112A (en) Close electron beam projection aligner, and methods for measuring and calibrating inclination of electron beam in the close electron beam projection aligner
US8829461B2 (en) Scanning apparatus, drawing apparatus, and method of manufacturing article
JP7017129B2 (en) Charged particle beam drawing device and charged particle beam drawing method
CN115113490A (en) Multi-charged particle beam writing apparatus and adjusting method thereof
JP2003234264A (en) Exposure method, electron beam exposure device and manufacturing method for electronic component
JP4401556B2 (en) Electron beam correction method and electron beam exposure apparatus
JP4401557B2 (en) Electron beam exposure apparatus, electron beam correction method, electron beam exposure method, and semiconductor device manufacturing method
JPH03270215A (en) Charged particle beam exposure process and exposure device
JP6981170B2 (en) Charged particle beam drawing device and charged particle beam drawing method
KR102339276B1 (en) Charged particle beam writing apparatus, and charged particle beam writing method
JP4112791B2 (en) Electron beam correction method and electron beam exposure apparatus
JP2002158156A (en) Electron beam exposure system, electron beam exposing method, and method for fabricating semiconductor element
JP2010021339A (en) Electron beam drawing device
JP7484491B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
JP2008042173A (en) Charged-particle beam drawing method, charged-particle beam drawing device, and program
KR20010039855A (en) Electron beam exposure apparatus, adjusting method, and block mask for adjustment
JP6756229B2 (en) Charged particle beam drawing device and charged particle beam drawing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642