Nothing Special   »   [go: up one dir, main page]

WO1998018903A1 - Temperierbares solarelement für solarreaktoren - Google Patents

Temperierbares solarelement für solarreaktoren Download PDF

Info

Publication number
WO1998018903A1
WO1998018903A1 PCT/EP1997/005815 EP9705815W WO9818903A1 WO 1998018903 A1 WO1998018903 A1 WO 1998018903A1 EP 9705815 W EP9705815 W EP 9705815W WO 9818903 A1 WO9818903 A1 WO 9818903A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
temperature control
temperature
reactor
layer
Prior art date
Application number
PCT/EP1997/005815
Other languages
English (en)
French (fr)
Inventor
Volker Benz
Michael Müller
Original Assignee
Röhm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Röhm Gmbh filed Critical Röhm Gmbh
Priority to AU48681/97A priority Critical patent/AU4868197A/en
Publication of WO1998018903A1 publication Critical patent/WO1998018903A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/20Baffles; Ribs; Ribbons; Auger vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/502Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits formed by paired plates and internal partition means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention relates to a temperature-controlled solar element made of translucent or transparent plastic.
  • DE-PS 41 34 813 describes a device for the cultivation of phototrophic microorganisms, consisting of plates made of glass or transparent plastic with intermediate webs, through which a culture medium flows and which can be operated by means of natural and / or artificial light. When using natural light, the reactor plates can track the position of the sun to ensure the highest possible light output. Devices for temperature control of the reactor are not mentioned.
  • EP-A 738 686 (DE application no. 195 14 372.8) describes reactors for photocatalytic wastewater treatment, in which the solar element essentially consists of one or more multi-wall plates made of transparent plastic through which liquid can flow.
  • the particular advantage of the invention is that above all commercially available multi-wall sheets can also be used, so that the production of special reactor elements is not required.
  • transparent multi-wall sheets are preferably used, under certain circumstances, e.g. B. excessive heating of the wastewater to be cleaned should be avoided, translucent plates with reduced light transmission are used.
  • a disadvantage of the known solar elements is that depending on the intensity of solar radiation and other weather conditions, there are very large temperature fluctuations in the interior Reactor medium can come.
  • the chemical, photochemical or photosynthetic processes taking place in the reactors or the solar elements can therefore usually not be kept in a temperature range that is optimal for the respective process.
  • the invention is based on the object of developing a solar element which can be tempered in a simple but effective manner, so that the known photochemical or photosynthetic processes can take place therein within preselected temperature limits independently of the ambient conditions. Complex shading systems should be avoided.
  • an actively or passively temperature-controlled solar element (1) consisting of a multi-plate multi-plate made of translucent or transparent plastic with at least three straps (2) and intermediate webs (3), characterized in that at least one, each with two Belts (2) and the webs (3) between them, the space of the web multi-plate as a functional layer (4a) contains a reactor medium for reactor operation in the form of photochemical or photosynthetic processes and at least one further, each with two belts (2) and the ones in between Web-formed space contains a tempering medium as the tempering layer (4b).
  • the invention is based on the fact that a multi-wall plate with at least three webs is divided into a reactor layer and one or more temperature control layers.
  • the temperature control layer can be designed as a passive temperature control layer.
  • the layer is only filled with a temperature control agent, but is not connected to a cooling circuit.
  • the temperature control agent contained creates a buffer effect against heat or cold.
  • the temperature control layer is preferably designed as an active temperature control layer, in which the temperature control medium can, however, be circulated via a cooling / heating circuit.
  • the functional layer 4a preferably faces the solar light and is tempered by the tempering layer 4b lying behind it and facing away from the sun. This principle offers z. B. with lower overall solar radiation or if only relatively small temperature corrections are to be achieved in the reactor medium.
  • the solar light can also penetrate into the functional layer (4a) through the temperature control layer (4b) facing the sun and the temperature control agent contained therein. Due to the transparency of the solar element and the low absorption of the temperature control agent, there is still a completely sufficient radiation spectrum for reactor operation even after the radiation has passed through the temperature control layer (4b).
  • This principle is particularly favorable for. B. in strong sunlight, in which overheating of the liquid in the functional layer (4a) can be avoided by a cooling effect emanating from the temperature control layer.
  • the liquid in the functional layer (4a) is heated by the temperature control layer (4b). This ensures good heat transfer through the belt separating layers (4a) and (4b). This makes it possible to keep the photochemical or photosynthetic processes inside the reactor within acceptable or even optimal temperature ranges, so that a more efficient use of solar energy is possible.
  • FIGS. 1a, 1b and 1c are each intended to show the same solar element, consisting of an actively temperature-regulating four-wall plate in different views demonstrate.
  • the figures are not to scale and are only used for
  • Fig. 1a Solar element consisting of a four-piece multi-wall sheet, sections in cross-section.
  • Fig. 1b Solar element consisting of a four-gang web plate from above. The webs are alternately milled at the ends and the end faces of the plates are sealed with plastic strips (7) with the exception of the entrances and exits, so that spaces can be flowed through in a meandering manner. The arrows symbolize the direction of flow through the reactor medium or the temperature control medium. The input 5b and the output 6b of the upper temperature control layer are indicated. The reference numerals of the correspondingly underlying inputs (5a, 5b) and outputs (6a, 6b) of the functional layer (4a) and the further (lower) temperature control layer (4b) are given in brackets.
  • Fig. 1c Solar element consisting of a web quadruple plate obliquely from above. In this view, the inputs 5b of the temperature control layers 4b and the input 5a of the functional layer 4a are visible. The position of the layers is symbolized by the dashed line.
  • solar actuator is understood to mean a plant in its entirety. This consists in particular of one or more solar elements, as well as other conventional system parts such as. B. Circulation pump pumps, cooling units, connecting lines etc.
  • the term solar element (1) is understood to mean a multi-plate that can be flowed through with liquid, with at least three straps, wherein a space formed between two straps and webs of the multi-plate is used as a functional layer (4a) for the actual reactor operation in the form of photochemical or photosynthetic processes and at least a further space formed between two straps and webs of the web multiple plate is used as a temperature control layer (4b).
  • a functional layer and a temperature control layer may be included.
  • the actual reactor medium flows through the functional layer (4a).
  • This can e.g. B. in a reactor for photocatalytic wastewater treatment, a TiO 2 suspension (see, for example, EP-A 738 686) or in a bioreactor in which photosythetic processes are supposed to be an algae suspension or an algal culture (see, for example, DE-PS 41 34 813).
  • the temperature control layer (4b) can be designed as an active or passive temperature control layer.
  • the temperature control layer (4b) can be designed as a passive temperature control layer.
  • the layer is only filled with a temperature control agent, but is not connected to a cooling circuit.
  • the temperature control agent contained creates a buffer effect against heat or cold.
  • the chamber of the tempering z. B. filled with water and then sealed.
  • Passive temperature control is particularly suitable for solar elements that are less extreme Are exposed to temperature fluctuations. The advantage lies in the simplicity of the production of the temperature control layer and in the fact that no additional heating or cooling energy has to be provided.
  • the temperature control layer is preferably designed as an active temperature control layer in which the temperature control medium can be circulated via a cooling / heating circuit.
  • This can preferably be air or water. Other gases or liquid media can also be used. It is essential that the temperature control agent does not show any significant absorption in the range of the radiation spectrum required for reactor operation.
  • the throughput of the temperature control means enables the temperature in the liquid system of the functional layer (4a) to be kept constant within certain limits by cooling or heating.
  • the solar element (1) commercially available triple-wall sheets and quadruple-wall sheets made of translucent or preferably transparent plastic are preferably used.
  • the light transmission should be as high as possible, a transmission of at least 40% z. B. with milky colored translucent plastic, preferably over 70%, particularly preferably over 90% with transparent plastic.
  • Suitable plastic materials are e.g. B. polymethyl methacrylate, polycarbonate, polystyrene, polyester or polyolefins or, where appropriate, compatible mixtures of plastics.
  • Polymethyl methacrylate and polycarbonate are preferred, but polymethyl methacrylate is particularly preferred because of the high transparency and the excellent weather resistance.
  • Polymethyl methacrylate is understood to mean a plastic with a high proportion, preferably more than 80% by weight, particularly preferably more than 90% by weight, of methyl methacrylate units.
  • Multi-wall sheets made of transparent polymethyl methacrylate are particularly preferred. In principle, but less preferred, multi-wall sheets with geometries that differ from commercially available multi-wall sheets can also be used or dimensions can be used. Plates with more than three or four belts can also be used. Belt and web thicknesses can of course also be varied.
  • the webs (3) usually run perpendicular to the belt surfaces. Usual dimensions can e.g. In the case of triple-wall sheets, the thickness is approximately 5 to 40 mm, preferably 10 to 35 mm, the spacing between the bars is approx. 5 to 80 mm, the width is approx. 500 to 2500 mm and the lengths are approx.
  • the straps (2) and webs (3) can, for. B. have thicknesses in the range of 0.1 - 5 mm. With the sun facing temperature control layers, it may be advisable to make the outer or both straps delimiting the temperature control layer thinner, preferably half as thick as the other straps, in order to keep the light losses when penetrating the temperature control layer (4b) as low as possible.
  • the multi-wall plate used as solar element (1) serves as a system for carrying out the reactor medium used for the actual reactor operation in the form of photochemical or photosynthetic processes in the functional layer (4a) and at the same time for passive buffering by means of a temperature control agent or temperature control layer (4b) the active implementation of a temperature control agent through the temperature control layer (4b).
  • the layers represent separate compartments.
  • the functional layer has an inlet (inflow opening) 5a and an outlet 6a (outflow opening) for the reactor medium.
  • the temperature control layer (4b) can be completely closed when designed as a passive temperature control layer or, if necessary, can be provided with a reclosable closure.
  • the flow through the functional layer (4a) and an active temperature control layer (4b) can take place in different ways.
  • the flow of the reactor medium or the temperature control medium can run through all in parallel Chambers of a layer. This keeps the flow resistances low.
  • the liquid flows can be directed through all the chambers lying in one layer (meandering guidance).
  • the solar element z. B. be designed so that the majority of the end faces, with the exception of the inputs (5a, 5b) or outputs of the functional layer (4a) and the temperature control layer (4b) or the temperature control layers (4b), by metal or preferably plastic parts is tightly closed.
  • the ends of the hollow chambers can be combined in a collecting channel which is formed by the adapter.
  • a meandering flow through the hollow chamber can also be created, e.g. first the web ends are alternately milled or broken out and then the end faces are closed so that the waste water flows through one cavity after the other before it emerges again from the solar element.
  • Several solar elements can be connected to each other.
  • the flow rates in layers (4a) and (4b) can be selected independently of one another, depending on the desired reactor operating point or the desired heating or cooling capacity.
  • the coolant can be performed in parallel with an active temperature control layer in parallel through all chambers, which at the ends, for. B. open into a collective adapter. However, the coolant can also be guided in a meandering manner in countercurrent to the reactor flow.
  • the reactor medium and the temperature control medium can also be guided in parallel through all chambers of the respective layer, but countercurrent to one another.
  • EP 381 028 describes the connection of a plastic collection adapter to multi-wall sheets, which serve as heat exchange elements, by welding the plastic.
  • the German utility model G 94 055 157 describes e.g. a permanent and stress-free bond for multi-wall sheets made of polymethyl methacrylate. The gluing of the end faces z. B. with plastic strips made of polymethyl methacrylate is particularly suitable for closure for air-filled passive temperature control layers (4b).
  • the band gap relevant for the effect of the photocatalyst or the corresponding radiation spectrum must be taken into account.
  • this is below approximately 390 nm, so that transparent plastics are permeable only in this area.
  • triple-walled or quadruple-walled plates which essentially consist of polymethyl methacrylate, are preferred, while, for example, plates made of polycarbonate are less suitable because of their low permeability to UV light.
  • photocatalysts such as hematite or iron (III) ⁇ Ttan (IV) mixed oxides or photosensitizers such as. B.
  • Multi-wall sheets made of transparent or translucent plastic are available, for example, as multi-walled triple and four-wall sheets Executions in trade.
  • Quadruple-wall sheets are preferably used.
  • triple or quadruple multi-wall sheets or multi-wall sheets with a special geometry can also be used because of their greater stability.
  • Completely transparent multi-wall sheets are preferred because generally the highest possible utilization of solar energy is desired.
  • Panels with slightly lower translucency or translucent panels can e.g. B. under certain circumstances extreme solar radiation and at the same time high outside temperatures.
  • a coating can be carried out with a colloidal, for example 0.1 to 15%, TiO 2 suspension in H2O, which may also contain a wetting agent, for example 1 to 10% by weight of an oxyethylated fatty alcohol.
  • the layer can then be dried or fixed, for example by blowing in warm air.
  • the amount of catalyst in the applied layer should be approximately 0.01 to 5 mg / cm 2 .
  • Triple-wall or quadruple-wall sheets can also be coated by internal flooding. Water-soluble photocatalysts can e.g. B. together with a layer of paint, in which they are fixed, inside the functional layer (4a) of the plates z. B. applied by flooding.
  • a preferred solar element consists of a multi-wall sheet with two outer, actively designed temperature control layers and the functional layer in between.
  • the webs are alternately milled out at the ends.
  • the end faces of the plate are closed with plastic strips made of polymethyl methacrylate except for the entrances and exits of the functional layer or the tempering layers.
  • the solar element can be part of z.
  • a reactor for photocatalytic wastewater treatment can be mounted vertically or at an angle.
  • the cooling of the circulating TiO 2 suspension in the middle functional layer can take place on both sides through the temperature control layers, in which, for. B. water can circulate through a separate heat exchange unit.
  • the temperature of the TiO 2 suspension can in any case above the freezing point of the reactor medium, for. B. in the range between 10 and 60 ° C.
  • the temperature range of the medium in the functional layer for an algae bioreactor can e.g. B. are between 10 and 45 ° C.
  • a triple-walled sheet with a functional layer (4a) and a passively designed temperature control layer (4b), which contains air as the temperature control medium, is used as a solar element and is preferably positioned so that the functional layer (4a) faces the sun.
  • Another preferred arrangement can also consist of two triple-walled plates, the z. B. are arranged vertically so that the plates to a certain extent back to back with the Functional layers (4a) stand against each other on the outside and the tempering layers (4b) face inwards.
  • a further arrangement is a four-gang multi-wall sheet with functional layers (4a) on the outside and a passive tempering layer (4b) on the inside, in which the closed chambers contain air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Die Erfindung betrifft ein aktiv oder passiv temperierbares Solarelement (1), bestehend aus einer flüssigkeitsdurchströmbaren Stegmehrfachplatte aus transluzentem oder transparentem Kunststoff mit mindestens drei Gurten (2) und dazwischen liegenden Stegen (3), dadurch gekennzeichnet, daß mindestens ein, durch jeweils zwei Gurte (2) und die dazwischen liegenden Stege (3) gebildeter Raum der Stegmehrachplatte als funktionelle Schicht (4a) ein Reaktormedium für den Reaktorbetrieb in Form photochemischer oder photosynthetischer Prozesse enthält und mindestens ein weiterer durch jeweils zwei Gurte (2) und die dazwischen liegenden Stege gebildeter Raum als Temperierschicht (4b) ein Temperiermedium enthält. Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines Solarreaktors unter Verwendung der erfindungsgemäßen Solarlelemente.

Description

TEMPERIERBARES SOLARELEMENT FÜR SOLARREAKTOREN
Die Erfindung betrifft ein temperierbares Solarelement aus transluzentem oder transparentem Kunststoff.
Stand der Technik
Die Verwendung von Stegplatten für flüssigkeitsdurchströmte Solarelemente ist bekannt.
DE-PS 41 34 813 beschreibt eine Einrichtung zur Kultivierung von phototrophen Mikroorganismen, bestehend aus Platten aus Glas oder transparentem Kunststoff mit zwischenliegenden Stegen, die von einem Kulturmedium mäanderförmig durchströmt wird und mittels Anwendung von natürlichem und/oder Kunstlicht betrieben werden kann. Bei der Verwendung von natürlichem Licht können die Reaktorplatten dem Sonnenstand nachgeführt werden, um eine möglichst hohe Lichtausbeute sicherzustellen. Vorrichtungen zur Temperierung des Reaktors sind nicht erwähnt.
EP-A 738 686 (DE Anmelde.-Nr. 195 14 372.8) beschreibt Reaktoren zur photokatalytischen Abwasserreinigung, bei denen das Solarelement im wesentlichen aus einer oder mehreren flüssigkeitsdurchströmbaren Stegmehrfachplatten aus transparentem Kunststoff besteht. Der besondere Vorteil der Erfindung besteht darin, daß vor allem auch handelsübliche Stegmehrfachplatten zur Anwendung kommen können, so daß die Herstellung spezieller Reaktorelemente entfällt. Obwohl transparente Stegmehrfachplatten bevorzugt verwendet werden, können unter Umständen, unter denen z. B. eine übermäßige Erwärmung des zu reinigenden Abwassers vermieden werden soll, auch transluzente Platten mit verminderter Lichtdurchlässigkeit eingesetzt werden.
Ein Nachteil der bekannten Solarelemente liegt darin, daß es im Inneren je nach Intensität der Sonneneinstrahlung und sonstigen Witterungsbedingungen zu sehr großen Temperaturschwankungen im Reaktormedium kommen kann. Die in den Reaktoren bzw. den Solarelementen ablaufenden chemischen, photochemischen oder photosynthetischen Prozesse können daher meist nicht in einem, für den jeweiligen Prozeß optimalen Temperaturbereich gehalten werden.
Aufgabe und Lösung
Der Erfindung liegt die Aufgabe zugrunde ein Solarelement zu entwickeln, das auf einfache, jedoch effektive Weise temperierbar ist, so daß darin die bekannten photochemischen bzw. photosynthetischen Prozesse innerhalb vorgewählter Temperaturgrenzen unabhängig von den Umgebungsbedingungen ablaufen können. Aufwendige Abschattungssysteme sollten dabei vermieden werden.
Die Aufgabe wurde gelöst durch ein aktiv oder passiv temperierbares Solarelement (1 ), bestehend aus einer flüssigkeitsdurchströmbaren Stegmehrfachplatte aus transluzentem oder transparentem Kunststoff mit mindestens drei Gurten (2) und dazwischen liegenden Stegen (3), dadurch gekennzeichnet, daß mindestens ein, durch jeweils zwei Gurte (2) und die dazwischen liegenden Stege (3) gebildeter Raum der Stegmehrfachplatte als funktionelle Schicht (4a) ein Reaktormedium für den Reaktorbetrieb in Form photochemischer oder photosynthetischer Prozesse enthält und mindestens ein weiterer, durch jeweils zwei Gurte (2) und die dazwischen liegenden Stege gebildeter Raum als Temperierschicht (4b) ein Temperiermedium enthält.
Die Erfindung beruht darauf, daß eine Stegmehrfachplatte mit mindestens drei Stegen, in eine Reaktorschicht und eine oder mehrere Temperierschichten unterteilt wird. Die Temperierschicht kann im einfachsten Fall als passive Temperierschicht ausgelegt sein. In diesem Fall ist die Schicht lediglich mit einem Temperiermittel gefüllt, aber nicht an einem Kühlkreislauf angeschlossen. Durch das enthaltene Temperiermittel tritt ein Pufferwirkung gegenüber Hitze oder Kälte auf. Bevorzugt ist die Temperierschicht als aktive Temperierschicht ausgelegt, bei der das Temperiermittel jedoch über einen Kühl/Heizkreislauf umwälzbar ist.
Die funktionelle Schicht 4a ist bevorzugt dem Solarlicht zugewandt und wird durch die dahinter liegende, der Sonne abgewandte Temperierschicht 4b temperiert. Dieses Prinzip bietet sich z. B. bei insgesamt geringerer Sonneneinstrahlung an oder wenn nur relativ geringe Temperaturkorrekturen im Reaktormedium erreicht werden sollen.
Das Solarlicht kann aber auch durch die der Sonne zugewandte Temperierschicht (4b) und das darin enthaltene Temperiermittel in die funktionelle Schicht (4a) durchdringen. Aufgrund der Transparenz des Solarelements und der nur geringen Absorption des Temperiermittels, ist auch nach dem Durchtritt der Strahlung durch die Temperierschicht (4b) noch ein völlig ausreichendes Strahlungsspektrum für den Reaktorbetrieb vorhanden. Dieses Prinzip ist besonders günstig z. B. bei starker Sonneneinstrahlung, bei der dann eine Überhitzung der Flüssigkeit in der funktioneilen Schicht (4a) durch eine von der Temperierschicht ausgehende Kühlwirkung vermieden werden kann. Umgekehrt kann z. B. bei zu niedrigen Außentemperaturen eine Heizung der Flüssigkeit in der funktionellen Schicht (4a) durch die Temperierschicht (4b) erfolgen. Dabei ist ein guter Wärmeübergang durch den die Schichten (4a) und (4b) trennenden Gurt gewährleistet. Dies ermöglicht es, die photochemischen oder photosynthetischer Prozesse in Innern des Reaktors innerhalb akzeptabler oder gar optimaler Temperaturbereiche zu halten, so daß eine effizientere Ausnutzung der Solarenergie möglich wird.
Die Erfindung wird durch die nachstehenden Figuren erläutert, ist aber nicht auf die dargestellten Ausführungsformen beschränkt. Die Figuren 1a, 1b und 1c sollen jeweils dasselbe Solarelement bestehend aus einer aktiv temperierbaren Stegvierfachplatte in verschiedenen Ansichten zeigen. Die Figuren sind nicht maßstabsgleich und dienen nur der
Verdeutlichung.
Fig. 1a: Solarelement bestehend aus einer Stegvierfachplatte, ausschnittweise im Querschnitt.
Fig. 1b: Solarelement bestehend aus einer Stegvierfachplatte von oben. Die Stege sind alternierend an den Enden ausgefräst und die Stirnseiten der Platten mit Kunststoffstreifen (7) mit Ausnahme der Eingänge und Ausgänge verschlossen, so daß jeweils mäanderförmig durchströmbare Räume entstehen. Die Pfeile symbolisieren die Durchströmungsrichtung des Reaktormediums bzw. des Temperiermediums. Es ist der Eingang 5b und der Ausgang 6b der oberen Temperierschicht angegeben. Die Bezugszeichen der entsprechend darunter liegenden Eingänge (5a, 5b) und Ausgänge (6a, 6b) der funktionellen Schicht (4a) und der weiteren (unteren) Temperierschicht (4b) sind in Klammer angegeben.
Fig. 1c: Solarelement bestehend aus einer Stegvierfachplatte schräg von oben. In dieser Ansicht sind die Eingänge 5b der Temperierschichten 4b und der Eingang 5a der funktionellen Schicht 4a sichtbar. Die Lage der Schichten ist durch die gestrichelte Linie symbolisiert.
Bezugszeichenliste:
1 = Solarelement
2 = Gurte
3 = Stege
4a = funktionelle Schicht
4b = Temperierschicht
5a = Eingang der funktionellen Schicht
5b = Eingang der Temperierschicht
6b = Ausgang der Temperierschicht
7 = Kunststoffstreifen. Ausführung der Erfindung
Unter dem Begriff Solareaktor wird eine Anlage in ihrer Gesamtheit verstanden. Diese besteht insbesondere aus einem oder mehreren Solarelementen, sowie weiteren üblichen Anlagenteilen wie z. B. Umwälzpumpumpen, Kühlaggregaten, Verbindungsleitungen etc..
Unter dem Begriff Solarelement (1) wird eine flüssigkeitsdurchströmbare Stegmehrfachplatte mit mindestens drei Gurten verstanden, wobei ein, zwischen zwei Gurten und Stegen gebildeter Raum, der Stegmehrfachplatte als funktionelle Schicht (4a) für den eigentlichen Reaktorbetrieb in Form photochemischer oder photosynthetischer Prozesse genutzt wird und mindestens ein weiterer zwischen zwei Gurten und Stegen gebildeter Raum der Stegmehrfachplatte als Temperierschicht (4b) genutzt wird. In einer Stegdreifachplatte kann z. B. eine funktionelle Schicht und eine Temperierschicht enthalten sein.
Die funktionelle Schicht (4a) wird vom eigentlichen Reaktormedium durchströmt. Dies kann z. B. bei einem Reaktor zur photokatalytischen Abwasserreinigung eine Tiθ2-Suspension sein (siehe dazu z. B. EP-A 738 686) oder bei einem Bioreaktor, in dem photosythetische Prozesse ablaufen sollen eine Algensuspension bzw. eine Algenkultur sein (siehe dazu z. B. DE-PS 41 34 813).
Die Temperierschicht (4b) kann als aktive oder passive Temperierschicht ausgelegt sein. Die Temperierschicht (4b) kann im einfachsten Fall als passive Temperierschicht ausgelegt sein. In diesem Fall ist die Schicht lediglich mit einem Temperiermittel gefüllt, aber nicht an einem Kühlkreislauf angeschlossen. Durch das enthaltene Temperiermittel tritt eine Pufferwirkung gegenüber Hitze oder Kälte auf. Zu diesem Zweck werden die Kammer der Temperierschicht z. B. mit Wasser gefüllt und anschließend verschlossen. Die passive Temperierung eignet sich insbesondere bei Solarelementen, die weniger extremen Temperaturschwankungen ausgesetzt sind. Der Vorteil besteht in der Einfachheit der Herstellung der Temperierschicht und darin, daß keine zusätzliche Heiz- oder Kühlenergie bereitgestellt werden muß.
Bevorzugt ist die Temperierschicht als aktive Temperierschicht ausgelegt, bei der das Temperiermittel über einen Kühl/Heizkreislauf umwälzbar ist. Hierbei kann es sich bevorzugt um Luft oder Wasser handeln. Es können auch andere Gase oder flüssige Medien verwendet werden. Wesentlich ist, daß das Temperiermittel keine wesentliche Absorption in Bereich des für den Reaktorbetrieb notwendigen Strahlungsspektrums zeigt. Der Durchsatz des Temperiermittels ermöglicht es, durch Kühlen oder Heizen, die Temperatur im Flüssigkeitssystem der funktionellen Schicht (4a) innerhalb bestimmter Grenzen konstant zu halten.
Für das Solarelement (1 ) werden bevorzugt handelsübliche Stegdreifachplatten und Stegvierfachplatten aus transluzentem oder bevorzugt transparentem Kunststoff verwendet. Die Lichtdurchlässigkeit soll dabei möglichst hoch sein, bevorzugt wird eine Transmission von mindestens 40 % z. B. bei milchig eingefärbten transluzentem Kunststoff, bevorzugt über 70 %, besonders bevorzugt über 90 % bei transparentem Kunststoff.
Geeignete Kunststoffmaterialien sind z. B. Polymethylmethacrylat, Polycarbonat, Polystyrol, Polyester oder Polyolefine oder ggf. verträgliche Mischungen von Kunststoffen. Bevorzugt sind Polymethylmethacrylat und Polycarbonat, insbesondere wird jedoch Polymethylmethacrylat wegen der hohen Transparenz und der hervorragenden Witterungsbeständigkeit bevorzugt. Unter Polymethylmethacrylat wird ein Kunststoff mit hohem Anteil, bevorzugt über 80 Gew.-%, besonders bevorzugt über 90 Gew.-% an Methylmethacrylat-Einheiten verstanden. Stegvierfachplatten aus transparentem Polymethylmethacrylat sind besonders bevorzugt. Im Prinzip, jedoch weniger bevorzugt können auch Stegmehrfachplatten mit von handelsüblichen Stegmehrfachplatten abweichenden Geometrien oder Maßen verwendet werden. Ebenso können Platten mit mehr als drei oder vier Gurten verwendet werden. Auch kann können Gurt- und Stegdicken natürlich variiert werden.
Bei den Platten verlaufen die Stege (3) üblicherweise senkrecht zu den Gurtflächen. Übliche Abmessungen können z.B. bei Stegdreifachplatten ca. 5 - 40 mm, bevorzugt 10 - 35 mm Dicke, Stegabstände ca. von 5 bis 80 mm, Breite ca. 500 - 2500 mm und Längen von ca. 1000 - 8000 mm sein. Die Gurte (2) und Stege (3) können z. B. Dicken in Bereich von 0,1 - 5 mm aufweisen. Bei der Sonne zugewandten Temperierschichten kann es zweckmäßig sein, den äußeren oder beide, die Temperierschicht begrenzenden Gurte dünner, bevorzugt halb so dick, wie den oder die übrigen Gurte zu gestalten, um die Lichtverluste beim Durchdringen der Temperierschicht (4b) möglichst gering zu halten.
Die als Solarelement (1) verwendete Stegmehrfachplatte dient als System zur Durchführung des für den eigentlichen Reaktorbetrieb in Form photochemischer oder photosynthetischer Prozesse genutzten Reaktormediums in der funktionellen Schicht (4a) und zugleich zur passiven Pufferung durch ein in der Temperierschicht (4b) enthaltenes Temperiermittel bzw. der aktiven Durchführung eines Temperiermittels durch die Temperierschicht (4b). Die Schichten stellen dabei für sich getrennte Kompartimente dar. Die funktionelle Schicht besitzt einen Eingang (Zuströmöffnung) 5a und einen Ausgang 6a (Ausstromöffnung) für das Reaktormedium. Die Temperierschicht (4b) kann bei der Auslegung als passive Temperierschicht ganz geschlossen sein oder aber ggf. mit einem wiederverschließbaren Verschluß versehen sein. Bei der Auslegung als aktive Temperierschicht muß sie jedoch mindestens einen Eingang (5b), und einen Ausgang (6b) aufweisen, so daß ein durchströmbarer Raum vorhanden ist. Die Durchströmung der funktionellen Schicht (4a) und einer aktiven Temperierschicht (4b) kann auf verschiedene Weise erfolgen. Im einfachsten Fall kann die Strömung des Reaktormediums bzw. des Temperiermediums parallel durch alle Kammern einer Schicht erfolgen. Dadurch werden die Strömungswiderstände gering gehalten. Ebenso können die Flüssigkeitsströme durch alle in einer Schicht liegenden Kammern geleitet werden (Mäanderförmige Führung).
Zweckmäßigerweise kann das Solarelement z. B. so gestaltet werden, daß der größte Teil der Stirnseiten, mit Ausnahme der Eingänge (5a, 5b) bzw. Ausgänge der funktionellen Schicht (4a) und der Temperierschicht (4b) bzw. der Temperierschichten (4b), durch Metall oder bevorzugterweise Kunststoffteile dicht verschlossen wird. Dabei können die Hohlkammern an den Enden in einem Sammelkanal, der durch den Adapter gebildet wird vereinigt werden. Ebenso kann eine mäanderförmige Durchströmung der Hohlkammer angelegt werden, indem z.B. zunächst die Stegenden alternierend ausgefräst oder ausgebrochen und dann die Stirnseiten verschlossen werden, so daß das Abwasser einen Hohlraum nach dem anderen durchströmt, bevor es wieder aus dem Solarelement austritt. Mehrere Solarelemente können miteinander verbunden sein. Die Durchströmungsgeschwindigkeiten in den Schichten (4a) und (4b) können dabei unabhängig voneinander, je nach gewünschtem Reaktorbetriebspunkt bzw. nach der gewünschten Heizoder Kühlleistung gewählt werden. Das Kühlmittel kann bei einer aktiven Temperierschicht parallel durch alle Kammern gleichzeitig geführt werden, die an den Enden z. B. in einen Sammeladapter münden. Das Kühlmittel kann jedoch auch mäanderförmig im Gegenstrom zum Reaktorstrom geführt werden. Auch können das Reaktormedium und das Temperiermedium parallel durch alle Kammern der jeweiligen Schicht jedoch im Gegenstrom zueinander geführt werden.
Zum Verschluß des Solarreaktors sind zahlreiche Systeme für Stegmehrfachplatten bekannt. DE 423 947 beschreibt entsprechende Sammeladapter die mittels Zapfen mit Dichtungen an Mehrkammerkunststoffplatten angeflanscht werden können. Derartige Adapter können auch so ausgeführt sein, daß sie einen mäanderförmigen Verlauf der Flüssigkeitsstöme bewirken, indem auf einer Seite der Kunststoffplatte jeweils zwei benachbarte Kammern miteinander verbunden werden und auf der anderen Seite diese Kammern wiederum mit den jeweils nächsten Kammern verbunden werden. Ein alternierendes Ausfräsen der Stegenden kann so entfallen. Solche Kunststoff- oder Metalladapter können z. B. in einfacher Weise mit Dichtungen versehen werden und durch Spannrahmen angepreßt werden.
EP 381 028 beschreibt den Anschluß eines Kunststoffsammeiadapters an Stegplatten, die als Wärmetauschelemente dienen, durch Verschweißen des Kunststoffs. Das deutsche Gebrauchsmuster G 94 055 157 beschreibt z.B. eine dauerhafte und spannungsrißfreie Verklebung für Stegmehrfachplatten aus Polymethylmethacrylat. Die Verklebung der Stirnseiten z. B. mit Kunststoffstreifen aus Polymethylmethacrylat eignet sich insbesondere zum Verschluß für luftgefüllte passive Temperierschichten (4b).
Bei der Wahl des Kunststoffmaterials ist die für die Wirkung des Photokatalysators relevante Bandlücke bzw. das entsprechende Strahlungsspektrum zu beachten. Diese liegt beim derzeit gebräuchlichsten Katalysator Tiθ2 unterhalb von etwa 390 nm, so daß nur in diesem Bereich durchlässige transparente Kunststoffe in Frage kommen. Bevorzugt werden bei der Verwendung von Tiθ2 als Katalysator Stegdreifachplatten oder Stegvierfachplatten, die im wesentlichen aus Polymethylmethacrylat bestehen, während z.B. Platten aus Polycarbonat wegen ihrer geringen Durchlässigkeit für UV-Licht weniger geeignet sind. Bei der Verwendung von anderen Photokatalysatoren wie z.B. Hämatit oder Eisen(lll)πTtan(IV)-Mischoxiden oder Photosensibilisatoren wie z. B. Methylenblau, die im Bereich des sichtbaren Lichts eine katalytische Wirkung entfalten, können z.B. auch Platten mit geringer UV- Durchlässigkeit oder UV-undurchlässige Platten verwendet werden. Stegmehrfachplatten aus transparentem oder transluzentem Kunststoff sind z.B. als Stegdreifach- und Stegvierfachplatten in unterschiedlichen Ausführungen im Handel. Bevorzugt werden Stegvierfachplatten verwendet. Bei größeren Solarelementen z.B. können jedoch auch Stegdreifach- oder Stegvierfachplatten oder auch Stegmehrfachplatten spezieller Geometrie wegen ihrer höheren Stabilität zum Einsatz kommen. Völlig transparente Stegmehrfachplatten werden bevorzugt verwendet, da in der Regel eine möglichst hohe Ausnutzung der Sonnenenergie gewünscht wird. Platten mit etwas geringerer Lichtdurchlässigkeit bzw. transluzente Platten können z. B. unter Umständen extremer Sonneneinstrahlung und gleichzeitig hoher Außentemperaturen gewählt werden.
Im Falle der photokatalytischen Abwasserreinigung kann z. B. Tiθ2 als Suspension durch die funktionelle Schicht der Stegmehrfachplatte geführt werden. Es ist jedoch im Prinzip auch möglich, den Photokatalysator auf der Innenseite der funktionellen Schicht 4a der Stegmehrfachplatte zu fixieren. Verfahren zur Innenbeschichtung von Stegdoppelplatten mit wasserspreitenden Schichten sind z.B. aus EP 530 617 A1 bekannt. Hierbei werden mittels eines speziellen Werkzeuges Löcher im Obergurt der nach der Extrusion erkalteten Hohlstrangprofile erzeugt, durch die das Beschichtungsmittel eingefüllt werden kann. Um eine vollständige Benetzung der Innenräume zu erreichen wird das Hohlstrangprofil hinter dem Werkzeug im elastischen Bereich nach unten gebogen und kontinuierlich mit dem Beschichtungsmittel benetzt. Nach dem Durchlaufen dieser Wegstrecke wird das Hohlkammerprofil wieder nach oben geführt, so daß überschüssiges Beschichtungsmittel wieder zurückläuft. In analoger Weise kann eine Beschichtung mit einer kolloidalen z.B. 0,1 bis 15 %-igen Tiθ2 Suspension in H2O, die ggf. noch ein Benetzungsmittel enthält, z.B. 1 bis 10 Gew.-% eines oxyethylierten Fettalkohols, vorgenommen werden. Die Schicht kann anschließend z.B. durch Einblasen von Warmluft getrocknet bzw. fixiert werden. Die Katalysatormenge in der aufgebrachten Schicht soll ca. 0,01 bis 5 mg/cm2 betragen. Weiterhin können Stegdreifach- oder Stegvierfachplatten auch durch Innenfluten beschichtet werden. Wasserlösliche Photokatalysatoren können z. B. zusammen mit einer Lackschicht, in der sie fixiert werden, im Innern der funktionellen Schicht (4a) der Platten z. B. durch Fluten aufgebracht werden.
Ein bevorzugtes Solarelement besteht aus einer Stegvierfachplatte mit zwei außen liegenden, aktiv ausgelegtenTemperierschichten und der dazwischen liegenden funktionellen Schicht. Die Stege sind an den Enden alternierend ausgefräst. Die Stirnseiten der Platte sind mit Kunststoffstreifen aus Polymethylmethacrylat bis auf die Eingänge und Ausgänge der funktionellen Schicht bzw. der Temperierschichten verschlossen. Das Solarelement kann als Bestandteil z. B. eines Reaktors für die photokatalytische Abwasserreinigung senkrecht oder schräg stehend angebracht sein. Die Kühlung der zirkulierenden Ti02- Suspension in der mittleren funktionellen Schicht kann beidseitig durch die Temperierschichten erfolgen, in denen man z. B. Wasser über ein separates Wärmeaustauschaggregat zirkulieren läßt. Über eine entsprechende Temperaturmessung mit Regelkreis kann die Temperatur der Tiθ2-Suspension in jedem Fall oberhalb des Gefrierpunktes des Reaktormediums z. B. im Bereich zwischen 10 und 60 °C gehalten werden. Der Temperaturbereich des Mediums in der funktionellen Schicht für eine Algen-Bioreaktor kann z. B. zwischen 10 und 45 °C liegen.
In einer einfachen Anordnung wird eine Stegdreifachplatte mit einer funktionelle Schicht (4a) und einer passiv ausgelegten Temperierschicht (4b), die Luft als Temperiermedium enthält, als Solarelement verwendet und bevorzugt so positioniert, daß die funktionelle Schicht (4a) der Sonne zugewandt ist.
Eine weitere bevorzugte Anordnung kann auch aus zwei Stegdreifachplatten bestehen, die z. B. senkrechtstehend so angeordnet sind, daß die Platten gewissermaßen Rücken an Rücken mit den funktionellen Schichten (4a) nach außen aneinanderstehen und die Temperierschichten (4b) nach innen gewandt sind.
Eine weitere Anordnung ist eine Stegvierfachplatte mit außen liegenden funktionellen Schichten (4a) und innen liegender passiver Temperierschicht (4b), bei der die verschlossenen Kammern Luft enthalten.

Claims

PATENTANSPRÜCHE
1. Aktiv oder passiv temperierbares Solarelement (1), bestehend aus einer flüssigkeitsdurchströmbaren Stegmehrfachplatte aus transluzentem oder transparentem Kunststoff mit mindestens drei Gurten (2) und dazwischen liegenden Stegen (3), dadurch gekennzeichnet, daß mindestens ein, durch jeweils zwei Gurte (2) und die dazwischen liegenden Stege (3) gebildeter Raum der Stegmehrfachplatte als funktionelle Schicht (4a) ein Reaktormedium für den Reaktorbetrieb in Form photochemischer oder photosynthetischer Prozesse enthält und mindestens ein weiterer durch jeweils zwei Gurte (2) und die dazwischen liegenden Stege gebildeter Raum als Temperierschicht (4b) ein Temperiermedium enthält.
2. Solarelement nach Anspruch 1 , dadurch gekennzeichnet, daß die Stegmehrfachplatte eine Stegdreifachplatte oder eine Stegvierfachplatte ist.
3. Solarelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der transparente Kunststoff Polycarbonat oder Polymethylmethacrylat ist.
4. Verfahren zum Betrieb eines Solarreaktors auf der Basis von im Inneren von Solarelementen ablaufenden photokatalytischen oder photosynthetischen Prozessen, dadurch gekennzeichnet, daß die Temperatur des Reaktormediums durch die Verwendung von temperierbaren Solarelementen gemäß eines oder mehrerer der Ansprüche 1 bis 3 geregelt wird.
PCT/EP1997/005815 1996-10-30 1997-10-21 Temperierbares solarelement für solarreaktoren WO1998018903A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU48681/97A AU4868197A (en) 1996-10-30 1997-10-21 Temperature-equalizable solar element for solar reactors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19644992.8 1996-10-30
DE19644992A DE19644992C1 (de) 1996-10-30 1996-10-30 Temperierbares Solarelement für Solarreaktoren

Publications (1)

Publication Number Publication Date
WO1998018903A1 true WO1998018903A1 (de) 1998-05-07

Family

ID=7810342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/005815 WO1998018903A1 (de) 1996-10-30 1997-10-21 Temperierbares solarelement für solarreaktoren

Country Status (3)

Country Link
AU (1) AU4868197A (de)
DE (1) DE19644992C1 (de)
WO (1) WO1998018903A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009094680A1 (de) 2008-01-31 2009-08-06 Martin Mohr Verfahren und einrichtung für einen photochemischen prozess
DE102009045853A1 (de) 2009-10-20 2011-04-21 Wacker Chemie Ag Mehrkammer-Photobioreaktor
FR2964666A1 (fr) * 2010-09-13 2012-03-16 Univ Nantes Dispositif de controle de la temperature d'un photobioreacteur solaire a eclairage direct
WO2015179888A1 (de) 2014-05-30 2015-12-03 Ecoduna Ag Verfahren für einen photochemischen, wie photokatalytischen und/oder photosynthetischen prozess
US9260689B2 (en) 2009-03-12 2016-02-16 Ecoduna Ag Device for a photochemical process

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1153499A (en) * 1997-10-15 1999-05-03 Rohm Gmbh Solar module with a functionally integrated rear side
DE19916597A1 (de) * 1999-04-13 2000-10-19 Fraunhofer Ges Forschung Photobioreaktor mit verbessertem Lichteintrag durch Oberflächenvergrößerung, Wellenlängenschieber oder Lichttransport
DE20017229U1 (de) 2000-10-05 2002-02-14 CED Entsorgungsdienst Chemnitz GmbH, 09114 Chemnitz Reaktor zur Produktion von Biomasse, insbesondere von Algen
AU2003214527A1 (en) * 2002-04-10 2003-10-20 Neil Christopher Hellmann A solar panel structure
DE10222214A1 (de) * 2002-05-16 2003-12-18 Forschungszentrum Juelich Gmbh Photobioreaktor sowie Verfahren zur Produktion von Biomasse
FR2922299A1 (fr) * 2007-10-16 2009-04-17 Fabre Jean Paul Georges Leo Vi Collecteur solaire canalaire.
DE102008036934B4 (de) * 2008-08-08 2014-09-25 Sartorius Stedim Biotech Gmbh Bioreaktor mit Fenster
GB201000593D0 (en) * 2010-01-14 2010-03-03 Morris Peter J Photo-bioreactor and method for cultivating biomass by photosynthesis
AT516115A1 (de) 2014-07-24 2016-02-15 Ecoduna Ag Verfahren für einen photochemischen, wie photokatalytischen und/oder photosynthetischen, Prozess

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564855A1 (fr) * 1984-05-28 1985-11-29 Commissariat Energie Atomique Appareil amovible pour la production intensive et controlee de biomasse.
FR2596412A1 (fr) * 1986-03-26 1987-10-02 Commissariat Energie Atomique Photobioreacteur
FR2662705A2 (fr) * 1984-05-28 1991-12-06 Commissariat Energie Atomique Appareil amovible pour la production intensive et controle de biomasse.
EP0749773A1 (de) * 1995-06-21 1996-12-27 Thomas Lorenz Anordnung zur Aufbereitung kohlendioxidhaltiger Gase

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621323B1 (fr) * 1987-10-02 1990-06-15 Commissariat Energie Atomique Dispositif de production intensive et controlee de micro-organismes par photosynthese
US5150705A (en) * 1989-07-12 1992-09-29 Stinson Randy L Apparatus and method for irradiating cells
DE4134813C2 (de) * 1991-10-22 1994-07-21 Inst Getreideverarbeitung Einrichtung zur Kultivation von phototrophen Mikroorganismen
DE19514372A1 (de) * 1995-04-18 1996-10-24 Roehm Gmbh Reaktoren für die photokatalytische Abwasserreinigung mit Stegmehrfachplatten als Solarelementen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564855A1 (fr) * 1984-05-28 1985-11-29 Commissariat Energie Atomique Appareil amovible pour la production intensive et controlee de biomasse.
FR2662705A2 (fr) * 1984-05-28 1991-12-06 Commissariat Energie Atomique Appareil amovible pour la production intensive et controle de biomasse.
FR2596412A1 (fr) * 1986-03-26 1987-10-02 Commissariat Energie Atomique Photobioreacteur
EP0749773A1 (de) * 1995-06-21 1996-12-27 Thomas Lorenz Anordnung zur Aufbereitung kohlendioxidhaltiger Gase

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009094680A1 (de) 2008-01-31 2009-08-06 Martin Mohr Verfahren und einrichtung für einen photochemischen prozess
US8895289B2 (en) 2008-01-31 2014-11-25 Ecoduna Ag Method and device for photochemical process
US9260689B2 (en) 2009-03-12 2016-02-16 Ecoduna Ag Device for a photochemical process
DE102009045853A1 (de) 2009-10-20 2011-04-21 Wacker Chemie Ag Mehrkammer-Photobioreaktor
WO2011048086A2 (de) 2009-10-20 2011-04-28 Wacker Chemie Ag Mehrkammer-photobioreaktor
CN102575210A (zh) * 2009-10-20 2012-07-11 瓦克化学股份公司 多室光生物反应器
FR2964666A1 (fr) * 2010-09-13 2012-03-16 Univ Nantes Dispositif de controle de la temperature d'un photobioreacteur solaire a eclairage direct
WO2012035027A1 (fr) * 2010-09-13 2012-03-22 Universite De Nantes Dispositif de controle de la temperature d'un photobioreacteur solaire a eclairage direct
JP2013537042A (ja) * 2010-09-13 2013-09-30 ユニヴェルシテ・ドゥ・ナント 直接照射太陽光バイオリアクターの温度を制御するデバイス
WO2015179888A1 (de) 2014-05-30 2015-12-03 Ecoduna Ag Verfahren für einen photochemischen, wie photokatalytischen und/oder photosynthetischen prozess
US11274272B2 (en) 2014-05-30 2022-03-15 Beco Invest B.V. Method for a photochemical process, such as a photocatalytic and/or photosynthetic process

Also Published As

Publication number Publication date
AU4868197A (en) 1998-05-22
DE19644992C1 (de) 1998-03-12

Similar Documents

Publication Publication Date Title
DE19644992C1 (de) Temperierbares Solarelement für Solarreaktoren
EP1326959B1 (de) Bioreaktor für die kultivierung von mikroorganismen sowie verfahren zur herstellung desselben
DE2753860A1 (de) Sonnenblendenvorrichtung, insbesondere als sonnenenergiekollektor
EP0738686B1 (de) Photokatalytische Abwasserreinigung mit Stegmehrfachplatten als Solarelemente
DE2715504A1 (de) Solarenergiesammler
EP2284218A1 (de) Polymerzusammensetzung für Photobioreaktoren
DE4134813A1 (de) Einrichtung zur kultivation von phototrophen mikroorganismen
EP0065679A1 (de) Flächenhaftes flexibles Wärmeaustauscherelement
DE2826202C2 (de) Einrichtung zur Gewinnung von Wärme in einem Teilbereich des Spektrums der Sonnenstrahlung
DE2211773A1 (de) Behälter mit doppelter Wand
EP2427541B1 (de) Vorrichtung zur durchführung photochemischer prozesse
EP3687697A1 (de) Gebäudehüllenflächenelement mit steuerbarer abschattung
DE3046596A1 (de) "sonnenenergiekollektor"
DE102019123117A1 (de) Flächenwärmetauscher, System und Verfahren
EP0968273A2 (de) Anlage zur durchführung von photochemischen und photokatalytischen reaktionen und photoinduzierbaren prozessen
DE102009030532B4 (de) Rotorsystem zur Rückgewinnung der in der Fortluft von lufttechnischen Anlagen enthaltenen Wärmeenergie
EP2655985A2 (de) Fassadenelement
AT508132B1 (de) Bauteil
DE2927717C2 (de)
EP0616180B1 (de) Absorber mit Strömungswegen für einen strömenden Wärmeträger
DE2757088A1 (de) Sonnenenergie-kollektorplatte
DE102008004543A1 (de) Solarkollektor und Verfahren zum Betrieb eines solchen
DE2852089A1 (de) Solarzelle
EP3790842B1 (de) Solarer receiver-reaktor
DE2712884A1 (de) Vorrichtung zur umwandlung von sonnenstrahlung in waerme

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998520007

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase