US5266630A - Aqueous coating composition containing a functional organic compound, a curing agent, and a dispersing agent - Google Patents
Aqueous coating composition containing a functional organic compound, a curing agent, and a dispersing agent Download PDFInfo
- Publication number
- US5266630A US5266630A US07/100,688 US10068887A US5266630A US 5266630 A US5266630 A US 5266630A US 10068887 A US10068887 A US 10068887A US 5266630 A US5266630 A US 5266630A
- Authority
- US
- United States
- Prior art keywords
- coating composition
- compound
- carbon atoms
- polyamino amide
- ethylenically unsaturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
- C09D163/10—Epoxy resins modified by unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/60—Polyamides or polyester-amides
- C08G18/603—Polyamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/81—Unsaturated isocyanates or isothiocyanates
- C08G18/8141—Unsaturated isocyanates or isothiocyanates masked
- C08G18/815—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
- C08G18/8158—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
- C08G18/8175—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
- C09D201/02—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C09D201/06—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
Definitions
- the invention relates to an aqueous coating composition based on an organic compound and a curing agent for it.
- Aqueous compositions have the important advantage that upon application to or upon use of a co-solvent only little organic solvent is released into the atmosphere. Moreover, the use of water leads to fewer physiological drawbacks and fire and explosion hazards.
- the coating composition according to the invention is characterized in that the organic compound is a compound having at least 2 ⁇ , ⁇ -ethylenically unsaturated carboxylate groups and the curing agent is a polyamino amide having an amine number of 60-1000 built up from a mono- and/or dicarboxylic acid having 2-40 carbon atoms and a polyamine having 2-6 primary amino groups and 2-20 carbon atoms, and the coating composition further comprises a nitroalkane having 1-6 carbon atoms, an organic compound occurring in at least 2 tautomeric forms, and in one of the tautomeric forms a labile hydrogen atom is linked to a carbon atom and which compound contains at least one carbonyloxy group or sulphonyl group, and/or a formic acid ester having a solubility of at least 0.2 g in 100 g of water having a temperature of 20° C., with the exception of tert.butyl formiate.
- European Patent Application No. 55477 discloses an aqueous composition the binder of which is a copolymer built up from an ethylenic monomer and a mixture of aromatic compounds containing on average at least 0.5 epoxy groups and on average of from 0.1 to 0.5 (meth)acryloyl groups per molecule.
- the copolymer thus obtained contains acidic moieties providing water dispersibility when reacted with a basic compound such as an amine.
- the composition may also contain a crosslinking agent such as a polyamino amide, said agent being a compound having functional groups capable of reacting with an epoxy group or hydroxy group derived from an epoxy group of the copolymer.
- crosslinking reaction occurs between an amino group of an polyamino amide and the epoxy group or hydroxy group of the copolymer.
- an amino group is added to the carbon atoms of the ethylenically unsaturated group of the ⁇ , ⁇ -ethylenically unsaturated carboxylate group.
- (meth)acrylic esters of di-, tri- or polyvalent polyols including polyester polyols and polyether polyols, alkyd resins and hydroxy functional (meth)acrylic or vinyl (co)polymer resins; adducts of a hydroxyl group-containing (meth)acrylic ester of a polyol on the one hand to an at least bifunctional isocyanate compound on the other; and adducts of (meth)acrylic acid to an at least bifunctional epoxy compound.
- the compounds envisaged are referred to hereinafter as poly(meth)acryloyl compound.
- suitable (meth)acrylic esters of di-, tri- or polyvalent hydroxyl compounds may be mentioned those of ethylene glycol, propylene glycol, diethylene glycol, tetramethylene diol, neopentyl glycol, hexamethylene diol, cyclohexane diol, bis-(4-hydroxycyclohexyl) methane, glycerol, trimethylol ethane, trimethylol propane and pentaerythritol. These esters may optionally contain a hydroxyl group.
- Such polyols and other suitable hydroxyl compounds such as polyester diols and polyols and polyether diols and polyols, alkyd resins and hydroxyl functional (meth)acrylic or vinyl (co)polymer resins are described, among other places, in Lackeckharze by H. Wagner and H. F. Sarx, 5 th Ed., 1971 (Carl Hanser Verlag, Munchen).
- the hydroxyl group-containing (meth)acrylic esters on the basis of which the adduct to the at least bifunctional isocyanate compound or epoxy compound is formed are (meth)acrylic esters of polyols as also described in the afore-going. It is preferred that use should be made of acrylic esters of hydroxyl compounds having 2-6 hydroxyl groups and 2-10 carbon atoms, such as acrylic esters of dimethylol cyclohexane, ethylene glycol, hexane diol, glycerol, trimethylol propane, pentaerythritol and dipentaerythritol. More particularly, use is made of trimethylol propane diacrylate or pentaerythritol triacrylate.
- At least bifunctional isocyanate compounds which may be used for the above-envisaged adduct may be mentioned aliphatic, cycloaliphatic or aromatic di-, tri- or tetraisocyanates that may or may not be ethylenically unsaturated, such as 1,2-propylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, 2,4,4-trimethyl hexamethylene diisocyanate, dodecamethylene diisocyanate, ⁇ , ⁇ '-dipropylether diisocyanate, 1,3-cyclopentane diisocyanate, 1,2-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, isophorone diisocyanate, 4-methyl-1,3-diisocyanatocyclohexane, trans-vinylidene diisocyanate, dicyclohexyl ethane-4,4'-d
- the di- or polyglycidyl ethers of (cyclo)aliphatic or aromatic hydroxyl compounds such as ethylene glycol, glycerol, cyclohexane diol, mononuclear di- or polyvalent phenols, bisphenols, such as Bisphenol-A and Bisphenol-F, and polynuclear phenols; polyglycidyl ethers of phenol formaldehyde novolak; epoxidized and optionally, subsequently, hydrogenated styrene or divinyl benzene; glycidyl esters of fatty acids containing, for instance, 6-24 carbon atoms; glycidyl (meth)acrylate; an epoxy compound having an isocyanurate group; an epoxidized polyalkadiene such as epoxidized polybutadiene; hydantoin-ep
- epoxy resins are known to a man skilled in the art and need not be further described here. It is preferred that use should be made of a polymer of ethylenically unsaturated compounds containing epoxy groups, such as glycidyl(meth)acrylate, N-glycidyl (meth)acrylamide and/or allyl glycidyl ether, and optionally one or more other copolymerizable, ethylenically unsaturated monomers.
- epoxy groups such as glycidyl(meth)acrylate, N-glycidyl (meth)acrylamide and/or allyl glycidyl ether, and optionally one or more other copolymerizable, ethylenically unsaturated monomers.
- These (co)polymers may be prepared by usual polymerization techniques, use being made of initiators such as UV light, azo compounds such as azobisisobutyronitrile, azobisisovaleronitrile, aromatic peroxides such as benzoyl peroxide, tertiary butyl perbenzoate and (cyclo) aliphatic peroxides such as cumene hydroperoxide.
- initiators such as UV light
- azo compounds such as azobisisobutyronitrile, azobisisovaleronitrile
- aromatic peroxides such as benzoyl peroxide, tertiary butyl perbenzoate
- (cyclo) aliphatic peroxides such as cumene hydroperoxide.
- the copolymers may be stabilized with inhibitors such as hydroquinone, the methyl ether of hydroquinone and benzoquinone.
- Examples of other compounds having at least two ⁇ , ⁇ -ethylenically unsaturated groups include unsaturated polyester resins based on maleic acid or fumaric acid or a derivative thereof.
- Such resins are usually prepared by bringing fumaric acid or maleic acid, alkyl esters of these acids or maleic anhydride, in combination or not with a saturated polycarboxylic acid, such as phthalic acid, isophthalic acid or adipic acid, into reaction with di- or polyvalent polyols, such as ethane diol, propane diol, neopentyl glycol, glycerol, trimethylol propane and pentaerythritil or epoxy groups-containing compounds, for instance the diglycidyl ether of Bisphenol-A.
- Such resins are described in, e.g., "Polyesters and their Applications", Bjorksten Research Laboratories Inc., Reinhold Publishing Corp., New York, pp. 21-27.
- Other suitable compounds are those where in the above-envisaged (meth)acryloyl compounds the (meth)acrylic acid is entirely or in part replaced with some other ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid, such as cinnamic acid.
- the poly(meth)acrylol compound generally has a molecular weight of about 290-15,000, preferably 800-10,000.
- the polyamino amide which according to the invention may be used as second component of the composition is obtained by reacting a mono- and/or dicarboxylic acid having 2-40 carbon atoms and a polyamine having 2-6 primary amino groups and 2-20 carbon atoms.
- Suitable monocarboxylic acids which preferably contain 1-24 carbon atoms, include acetic acid, propionic acid, valeric acid, capronic acid, trimethyl acetic acid, caprylic acid, pelargonic acid, isooctanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid or cerotic acid; aliphatic monocarboxylic acids having one or more conjugated or non-conjugated double C--C bonds, which generally contain 5-24 carbon atoms, such as linseed oil fatty acid, safflower oil fatty acid, soybean oil fatty acid, tall oil fatty acid, wood oil fatty acid, sunflower oil fatty acid, castor oil fatty acid, oiticica oil fatty acid, dehydrated castor oil fatty acid, linoleic acid, linolenic acid, oleic acid, sorbic acid, elaidic acid, ⁇ -eleostearic acid
- suitable dicarboxylic acids which preferably contain 8-36 carbon atoms
- aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, 2,2,4-trimethyl adipic acid, sebacic acid, dimeric fatty acids generally containing 36 carbon atoms
- cycloaliphatic dicarboxylic acids such as hexahydrophthalic acid, hexahydroterephthalic acid, tetrahydrophthalic acid, endomethylene tetrahydrophthalic acid or methylcyclohexane-1,2-dicarboxylic acid
- aromatic dicarboxylic acids such as orthophthalic acid, isophthalic acid or terephthalic acid.
- carboxylic acids are also suitable, of course, mixtures of the above-envisaged mono- and/or divalent carboxylic acids.
- carboxylic acids other carboxylic acids may be used, such as trimellitic acid, and trimerised fatty acids, which acids may be employed in a relatively small amount of not higher than, for instance 30% by weight, preferably less than 10% by weight, calculated on the total amount of carboxylic acid.
- the carboxylic acids may, if desired, contain inert substituents, for instance: halogen, nitro, aceto, or alkyl ether groups. If desired, the above-envisaged acids also may be used as anhydride or acid halide, or in the form of an ester, for instance an ester derived from an alcohol having 1 to 6 carbon atoms.
- Polyamines from which according to the invention the polyamino amide is partly built up are polyamines having 2-6 primary and 0-6 secondary amino groups, preferably 2-3 primary and 0-4 secondary amino groups.
- suitable polyamines are 3-amino-1-(methylamino)propane, 3-amino-1-(cyclohexylamino)propane, N-(2-hydroxyethyl)ethylene diamine, more particularly polyamines of the formula
- group R 1 and the n groups R 2 may be the same or different and represent an alkylene group having 2-6 carbon atoms and preferably 2-4 carbon atoms and n is a number from 1-6, preferably 1-3.
- an alkylene group is also to be understood here a cycloalkylene group or an alkylene group having an ether-oxygen atom.
- Representative polyalkylene polyamines include diethylene triamine, dipropylene triamine, dibutylene triamine, dihexylene triamine, triethylene tetramine, tetraethylene pentamine, tetrapropylene pentamine, pentaethylene hexamine or polyamino compounds having different alkylene groups in a molecule, for instance:
- the two last-mentioned compounds may be prepared for instance by addition of ethylene diamine or diethylene triamine to acrylonitrile, followed by hydrogenation of the product thus prepared.
- Preferred polyamines from which according to the invention the polyamino amide is also partly built up are aliphatic, cycloaliphatic or aromatic amino compounds having 2 or 3 exclusively primary amino groups.
- Examples of such polyamines include ethylene diamine, propylene diamine, butylene diamine, pentamethylene diamine, hexamethylene diamine, decamethylene diamine, 4,7-dioxadecane-1,10-diamine, dodecamethylene diamine, 4,9-dioxadodecane-1,12-diamine, 7-methyl-4,10-dioxatridecane-1,13-diamine, 1,2-diamino cyclohexane, 1,4-diamino cyclohexane, 4,4'-diamino dicyclohexyl methane, bis-(3-methyl-4-amino cyclohexyl)methane, 2,2-bis-(4-amino cyclohe
- the polyamino amide may be prepared in any well-known or convenient manner from the mono- and/or dicarboxylic acid and one or more polyamines, for instance by reacting the reaction components with each other at a temperature generally of 100°-220° C., preferably 115°-190° C. Usually, no solvent is applied, but it is self-evident that one or more solvents, for instance methanol, may optionally be employed.
- the carboxylic acid is usually present in an amount such that according to the invention a polyamino amide having an amine number of 60-1000, preferably of 80-750 and more particularly of 200-600 is obtained.
- polyamino amides also may be applied as adduct to a compound having one or more epoxy groups.
- the polyamino amides may optionally be applied in the form of the ketimine or aldimine of the polyamino amide with ketones such as methylethyl ketone, diethyl ketone, methylisobutyl ketone or methylamyl ketone, or aldehydes, such as formaldehyde, acetaldehyde or isobutyraldehyde.
- polyamino amide In addition to the polyamino amide still other amino compounds may be present.
- amino compounds which are preferably used in aldiminated or ketiminated form may be mentioned aliphatic or cycloaliphatic amines having at least one, preferably 2 to 4, primary amino groups and 2-24 carbon atoms and a molecular weight not higher than 580. It is preferred that these amines should have 0-6 secondary amino groups.
- suitable amino compounds include ethylene diamine, propylene diamine, ethanolamine, propanolamine, butylene diamine, pentamethylene diamine, hexamethylene diamine, decamethylene diamine, 4,6-dioxadecane-1,10-diamine, dodecamethylene diamine, 4,9-dioxadodecane-1,12-diamine, 7-methyl-4,10-dioxatridecane-1,13-diamine, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, 4,4'-diaminodicyclohexyl methane, isophorone diamine, bis-(3-methyl-4-aminocyclohexyl)methane, 2,2-bis-(4-aminocyclohexyl)propane, nitrile tris(ethane amine), polyether polyamines, for instance those that are known under the trade mark Jeffamine
- group R 1 and the n groups R 2 may be the same or different and represent an alkylene group containing 2-6, and preferably 2-4 carbon atoms and n is a number from 1-6 and preferably 1-3.
- an alkylene group is also to be understood here a cycloalkylene group or an alkylene group containing an ether-oxygen atom.
- representative polyalkylene polyamines include diethylene triamine, dipropylene triamine and dibutylene triamine.
- Other suitable amino compounds are adducts of a polyamine or a hydroxylamine to a monoepoxy compound, a monoisocyanate or a monofunctional ⁇ , ⁇ -ethylenically unsaturated carbonyl compound.
- Suitable amino compounds which may optionally be used are adducts of a di- or polyvalent epoxy or isocyanate compound or ⁇ , ⁇ -ethylenically unsaturated carbonyl compound and an amino compound containing at least 1 primary amino group and a group reacting with the di- or polyvalent compound.
- the polyfunctional compounds referred to here may be identical with those mentioned hereinbefore as starting compounds for the poly(meth)acryloyl compound. But there is of course no need for the same polyfunctional compound to be used as starting compound for both the poly(meth)acryloyl compound and the amino compound. As to those polyfunctional compounds, reference is made to the foregoing.
- the ⁇ , ⁇ -ethylenically unsaturated compound to be used with the amino compound in the formation of the adduct is preferably a poly(meth)acryloyl compound mentioned hereinbefore; alternatively, use may be made of a compound having one or more ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid units, such as maleic acid or fumaric acid or an ester thereof.
- the amino compounds that are used in the formation of the adduct thereof to the polyfunctional epoxy compound or isocyanate compound or ⁇ , ⁇ -ethylenically unsaturated carbonyl compound may preferably be the afore-mentioned amino compounds containing 2-24 carbon atoms or, optionally, monoamines, preferably primary monoamines which have a group, for instance a hydroxyl group or mercaptan group, reacting with an epoxy compound or isocyanate compound or an ⁇ , ⁇ -ethylenically unsaturated carbonyl compound.
- polyamino amide is preferably used in the non-blocked form and the amino compound in the blocked form.
- the amino groups of the afore described amino compounds may be blocked with an aldehyde or ketone containing not more than 10 carbon atoms, preferably 3-8 carbon atoms.
- suitable blocking agents for the amino groups include acetone, methylethyl ketone, diethyl ketone, methylisopropyl ketone, methylisobutyl ketone, isobutyraldehyde, cyclohexanone, ethylamyl ketone, diisobutyl ketone, 3-octanone and decanone. It is preferred that use should be made of an aliphatic or cycloaliphatic ketone, more particularly containing 3-8 carbon atoms.
- An effective method of preparing the above-envisaged blocked amino compound is, for example, the addition reaction of the epoxy or isocyanate compound or the ⁇ , ⁇ -ethylenically unsaturated carbonyl compound referred to hereinbefore and an amino-, hydroxyl- or mercaptan-functional ketimine or aldimine.
- the amino group(s) may be blocked after the addition reaction.
- the blocking of amino groups is known per se and need not be further described here.
- the poly(meth)acryloyl compound, the polyamino amide and possibly the amino compound are usually present in amounts such that the ratio of the number of equivalents of ethylenically unsaturated double bonds to the number of equivalents of amine hydrogen is in the range of 0.3 to 3.0, preferably of 1/2 to 2.
- the aqueous composition also contains a nitroalkane, a formic acid ester and/or a certain organic compound occurring in at least 2 tautomeric forms, and in one of the tautomeric forms a labile hydrogen atom is linked to a carbon atom.
- these last-mentioned compounds are hereinafter referred to as CH acid. It has surprisingly been found that the compounds referred to hereinbefore exert an emulsifying action on the present binder system containing a polyamino amide, providing an excellent dispersibility of the binder system in water.
- CH acids examples include 2,4-pentanedione, 1,1,1-trifluoro-2,4 pentanedione, phenylsulphonylpropanone-2, 3-methyl-2,4-pentanedione, and esters, for instance those of a (cyclo)aliphatic or aromatic hydroxyl compound having 1-10 carbon atoms, such as methanol, ethanol, butanol, hexanol, cyclohexanol, phenol, ethylene glycol, glycerol, trimethylol ethane and trimethylol propane, and a carboxylic acid, such as nitroacetic acid, cyanoacetic acid, trifluoroacetic acid, acetyl acetic acid or malonic acid.
- a (cyclo)aliphatic or aromatic hydroxyl compound having 1-10 carbon atoms such as methanol, ethanol, butanol, hexanol, cyclohexanol, phenol,
- esters examples include ethyl nitroacetate, cyclohexyl nitroacetate, benzyl cyanoacetate, ethyl trifluoroacetoacetate, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate and diethyl malonate. It is preferred that use should be made of 2,4-pentanedione, methyl acetoacetate or ethyl acetoacetate or methyl cyanoacetate.
- the CH acid generally has a pka of 3-12, preferably 4-11 and more particularly of 61/2-9.
- the formic acid ester should be an ester of formic acid and a monovalent alcohol having 1-6, more particularly 1-5 carbon atoms.
- suitable alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, isopentanol and ether alcohols such as 2-ethoxyethanol, 2-propoxyethanol and 2-butoxyethanol.
- the ester is a formic acid ester of the general formula ##STR1## wherein R 1 and R 2 may be the same or different and represent a hydrogen atom or an alkyl group, the groups R 1 and R 2 together containing not more than 5 carbon atoms.
- a specially preferred ester is methyl formiate, ethyl formiate or isopropyl formiate.
- Other suitable esters are the esters of formic acid and a bi- or polyvalent hydroxy compound having 2-8 carbon atoms.
- suitable hydroxy compounds may be mentioned ethylene glycol, propylene glycol, glycerol, trimethylol propane and pentaerythritol.
- the formic acid ester may contain one or more hydroxyl groups. It is preferred that the formic acid ester should have a solubility of 0.2-50 g, more particularly 0.5-35 g in 100 g of water having a temperature of 20° C.
- the CH acid is usually employed in an amount such that per N atom of the amino group-containing curing agent 0.3-2 labile H atoms of the CH acid are present.
- Suitable nitroalkanes have 1 to 6, and preferably 1-4 carbon atoms and contain one or two nitro groups. As examples may be mentioned nitromethane, nitroethane, 1- and 2-nitropropane, 1- and 2-nitrobutane and 1,3-dinitropropane. It is preferred that nitroethane or nitropropane should be applied.
- the formic acid ester is generally present in an amount such that 0.3-2 equivalents of formiate are present per equivalent of nitrogen of the amino group-containing curing agent.
- the aqueous coating compositions may be formed from the (meth)acryloyl groups-containing compound, the polyamino amide and the nitroalkane, formic acid ester and/or CH acid in any convenient manner. It is preferred that the (meth)acryloyl groups-containing compound should be dissolved in an appropriate organic solvent and subsequently mixed with a solution of the polyamino amide in an appropriate organic solvent. In actual practice the nitroalkane, formic acid ester and/or the CH acid is either added to the solution of the (meth)acryloyl groups-containing compound or to the common solution of the (meth)acryloyl groups-containing compound and the polyamino amide.
- the aqueous composition may contain the usual additives, such as pigments, fillers, levelling agents, foam suppressing agents, rheology control agents, corrosion inhibitors and inert organic solvents, such as an aliphatic or aromatic hydrocarbon, and compounds such as butyl glycol.
- pigment may previously be mixed with a solution of the binder or a component thereof in an organic solvent.
- the coating composition ready for use generally contains water in an amount of at least 15% by weight, preferably at least 25% by weight and generally not more than 80% by weight.
- the coating composition may be applied to the substrate in any suitable manner, such as by roller coating, spraying, brushing, sprinkling, flow coating or dipping. It is preferred that the composition should be applied by (electrostatic) spraying.
- the invention also pertains to a process of coating a substrate using the aqueous compositions referred to hereinbefore.
- the substrate may be of, for instance, a metal such as aluminium, magnesium, steel, iron, titanium; of a synthetic material such as a fibre-reinforced epoxy resin, polyether-ether ketone, polyimide or polyester; or concrete or asbestos cement.
- the substrate may or may not have been pretreated.
- the coating is generally cured at ambient or elevated temperature, for instance up to not higher than 80° C.
- the coating thickness (after curing) is generally in the range of 10-200 ⁇ m.
- the coating composition according to the invention is harmless to the environment and hard curing, and after curing it is excellently resistant to organic solvents such as petrol, and to water.
- the composition can be excellently used as primer or top coat in the automobile and car repair industry, as decorative coat on concrete and as abrasion resistant coat on wood or concrete.
- the coating thickness of the compositions was determined after the composition had been cured.
- the resistance of the coating to water and premium grade petrol was determined after 1 week's drying by placing on a panel a wad of cotton wool soaked with water for 2 hours or with premium grade petrol for 2 minutes, after which the appearance was visually assessed for hazing and decrease in hardness by scratching with a pencil of a 2B hardness.
- the result is rated “excellent”.
- the result is rated “very good”, when no decrease in hardness, but only slight hazing is observed, and the result is rated “good”, when besides slight hazing a slight reduction in hardness is established which, however, will have disappeared after drying of the coating.
- the resulting reaction mixture was heated to a temperature of 110° C., with air being passed through. The temperature was kept at 110° C. until the acid number of the mixture had decreased to below 2. Next, 272 g of xylene and 73 g of n-butanol were added. A 53.0%-solution of the (meth)acryloyl compound A was obtained having an acid number of 0.9 and a viscosity of 176 cPas.
- reaction mixture was kept at 110° C. until the acid number was below 5. Subsequently, 400 g of the diacrylic ester of Bisphenol A were added. Obtained was a (meth)acryloyl compound D having an acid number of 0.7 and a viscosity of 10000 cPas.
- blocked polyamino amide A is used in the Examples the polyketimine built up from methylisobutyl ketone and a polyamino amide having an amine number of 345-370 (available under the trade mark Versamid 125 of Schering). The polyketimine had an equivalent weight of 325.5, calculated on solid constituents.
- blocked polyamino amide B the polyketimine built up from methylisobutyl ketone and a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering).
- the polyketimine has an equivalent weight of 1269, calculated on solid constituents.
- blocked polyamino amide C the polyketimine built up from hexanone and a polyamino amide having an amine number of 170 (available under the trade mark Epilink 175 of Akzo Chemie).
- the polyketimine has a viscosity of 70 cPas.
- the polyketimine built up from methylisobutyl ketone and 3,3'-dimethyl-4,4'-diamino-dicyclohexyl methane.
- the polyketimine has an equivalent weight of 213, calculated on solid constituents.
- a coating composition was prepared by successively mixing 53.96 g of (meth)acryloyl compound A, 6.48 g of a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering), 5.40 g of blocked amino compound D and 7.19 g of acetyl acetone. To this mixture were added, with stirring, 27.0 g of water. The resulting composition had a solids content of 39.4%, an inversion point at a water content of 25% and a gel time of 55 minutes. The composition was applied to a steel panel in a coating thickness of 80 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 1 hour and handleable after 21/2 hours. The Persoz hardness was 86 seconds after 1 day and 216 seconds after 1 week. The coating was very well resistant to water and excellently resistant to premium grade petrol.
- a coating composition was prepared by successively mixing 43.35 g of (meth)acryloyl compound A, 20.52 g of blocked amino compound C and 4.34 g of nitro ethane. To this mixture were added, with stirring, 31.8 g of water. The resulting composition had a solids content of 39.1%, an inversion point at a water content of 28.9% and a gel time of 8 minutes.
- the composition was applied to a steel panel in a thickness of 68 ⁇ m and dried at an ambient temperature of 20° C. and a relatively humidity of 70%. The coating applied was dust dry after 1/2 hour and handleable after 1 hour. The Persoz hardness was 87 seconds after 1 day and 119 seconds after 1 week. The coating was very well resistant to water and excellently resistant to premium grade petrol.
- a coating composition was prepared by successively mixing 42.02 g of (meth)acryloyl compound B, 21.57 g of a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering) and 5.60 g of methyl cyanoacetate. Subsequently, 30.8 g of water were added, with stirring. The resulting composition had a solids content of 36.6%, an inversion point at 22.4% water content and a gel time of 15 minutes. The composition was applied to a steel panel in a coating thickness of 93 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 3/4 hours and handleable after 11/2 hours. The Persoz hardness was 70 seconds after 1 day and 97 seconds after 1 week. The coating was well resistant to water and to premium grade petrol.
- a coating composition was prepared by successively mixing 53.57 g of (meth)acryloyl compound B, 20.71 g of a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering) and 3.57 g of nitroethane. Subsequently, 32.2 g of water were added, with stirring. The resulting composition had a solids content of 38.3%, an inversion point at 21.4% water content and a gel time of 35 minutes.
- the composition was applied to a steel panel in a coating thickness of 75 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 1/2 hour and handleable after 2 hours.
- the Persoz hardness was 33 seconds after 1 day and 96 seconds after 1 week.
- the coating was very well resistant to water and well resistant to premium grade petrol.
- a coating composition was prepared by successively mixing 44.5 g of (meth)acryloyl compound B, 6.23 g of a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering), 10.09 g of blocked polyamino amide, 1.78 g of acetyl acetone and 1.78 g methyl cyanoacetate.
- the resulting composition had a solids content of 37.8%, an inversion point at 26.7% water content and a gel time of 40 minutes.
- the composition was applied to a steel panel in a coating thickness of 68 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 1/2 hour and handleable after 2 hours. The Persoz hardness was 76 seconds after 1 day and 82 seconds after 1 week. The coating was very well resistant to water and to premium grade petrol.
- a coating composition was prepared by successively mixing 51.90 g of (meth)acryloyl compound B, 13.80 g of a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering) 2.50 g of 3,3'-dimethyl-4,4'-diaminodicyclohexyl methane and 5.80 g of nitroethane. Subsequently, 26.1 g of water were added, with stirring. The resulting composition had a solids content of 42.1%, an inversion point at 24.3% water content and a gel time of 15 minutes.
- the composition was applied to a steel panel in a coating thickness of 69 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 3/4 hours and handleable after 13/4 hours.
- the Persoz hardness was 68 seconds after 1 day and 143 seconds after 1 week. The coating was very well resistant to water and to premium grade petrol
- a coating composition was prepared by successively mixing 46.15 g of (meth)acryloyl compound C, 9.23 g of a polyamino amide having an amine number of 370-410 (available under the trade mark Versamid 140 of Schering) and 4.61 g of nitroethane. Subsequently, 40.0 g of water were added, with stirring. The resulting composition had a solids content of 41.5%, an inversion point at 30.8% water content and a gel time of 5 minutes.
- the composition was applied to a steel panel in a coating thickness of 71 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 1/2 hour and handleable after 3/4 hours.
- the Persoz hardness was 33 seconds after 1 day and 66 seconds after 1 week. The coating was very well resistant to water and excellently resistant to premium grade petrol.
- a coating composition was prepared by successively mixing 49.67 g of (meth)acryloyl compound D, 9.60 g of a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering), 12.58 g of blocked polyamino compound D and 4.97 g of nitroethane. Subsequently, 23.2 g of water were added, with stirring. The resulting composition had a solids content of 54.6%, an inversion point at 16.6% water content and a gel time of 15 minutes.
- the composition was applied to a steel panel in a coating thickness of 82 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 11/2 hours and handleable after 4 hours.
- the Persoz hardness was 13 seconds after 1 day and 27 seconds after 1 week.
- the coating was well resistant to water and very well resistant to premium grade petrol.
- a coating composition was prepared by successively mixing 42.98 g of (meth)acryloyl compound E, 16.91 g of blocked polyamino amide C, 1.00 g of acetyl acetone and 1.00 g of methyl cyanoacetate. To this mixture were added, with stirring, 34.4 g of water. The resulting composition had a solids content of 37.8%, an inversion point at a water content of 28.6% and a gel time of 40 minutes. The composition was applied to a steel panel in a thickness of 68 ⁇ m and dried at an ambient temperature of 20° C. and a relatively humidity of 70%. The coating applied was dust dry after 2 hours and handleable after 24 hours. The Persoz hardness was 11 seconds after 1 day and 21 seconds after 1 week. The coating was well resistant to water and excellently resistant to premium grade petrol.
- a coating composition was prepared by successively mixing 42.6 g of (meth)acryloyl compound A, 11.40 g of a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering), 5.40 g of blocked polyamino compound E and 3.70 g of nitroethane. Subsequently, 36.9 g of water were added, with stirring. The resulting composition had a solids content of 31.6%, an inversion point at 31.3% water content and a gel time of 1 hour.
- the composition was applied to a steel panel in a coating thickness of 35 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 1/2 hour and handleable after 2 hours.
- the Persoz hardness was 96 seconds after 1 day and 155 seconds after 1 week. The coating was very well resistant to water and to premium grade petrol.
- a coating composition was prepared by successively mixing 48.50 g of (meth)acryloyl compound B, 25.90 g of blocked polyamino amide A and 2.90 g of nitroethane. To this mixture were added, with stirring, 22.7 g of water. The resulting composition had a solids content of 41.5%, an inversion point at a water content of 19.4% and a gel time of 1 hour.
- the composition was applied to a steel panel in a coating thickness of 48 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 1 hour and handleable after 21/2 hours.
- the Persoz hardness was 42 seconds after 1 day and 62 seconds after 1 week. The coating was well resistant to water and to premium grade petrol.
- a coating composition was prepared by successively mixing 40.40 g of (meth)acryloyl compound E, 29.70 g of blocked polyamino amide B and 3.00 g of methyl cyanoacetate. To this mixture were added, with stirring, 26.9 g of water. The resulting composition had a solids content of 43.1%, an inversion point at a water content of 24.3% and a gel time of 4 hours.
- the composition was applied to a steel panel in a coating thickness of 54 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust dry after 11/2 hours and handleable after 3 hours.
- the Persoz hardness was 11 seconds after 1 day and 14 seconds after 1 week.
- the coating was well resistant to water and to premium grade petrol.
- a coating composition was prepared by successively mixing 49.0 g of (meth)acryloyl compound B, 13.1 g of a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering) 2.6 g of blocked amino compound D and 2.6 g of methyl formiate. Subsequently, 32.7 g of water were added, with stirring. The resulting composition had a solids content of 40.0%, an inversion point at 24.5% water content and a gel time of 3 hours.
- the composition was applied to a steel panel in a coating thickness of 67 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust-dry after 1 hour and handleable after 2 hours.
- the Persoz hardness was 43 seconds after 1 day and 107 seconds after 1 week.
- the coating was very well resistant to water and to premium grade petrol.
- a coating composition was prepared by successively mixing 45.5 g of (meth)acryloyl compound B, 13.4 g of a blocked polyamino amide C and 2.7 g of ethyl formiate. Subsequently, 37.9 g of water were added, with stirring. The resulting composition had a solids content of 37.4%, an inversion point at 35.0% water content and a gel time of 150 minutes.
- the composition was applied to a steel panel in a coating thickness of 63 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust-dry after 1 hour and handleable after 2 hours.
- the Persoz hardness was 48 seconds after 1 day and 100 seconds after 1 week.
- the coating was excellently resistant to water and well resistant to premium grade petrol.
- a coating composition was prepared by successively mixing 39.5 g of (meth)acryloyl compound B, 23.7 g of blocked polyamino amide A, 6.6 g of butyl glycol and 2.5 g of isopropyl formiate. Subsequently, 26.3 g of water were added, with stirring. The resulting composition had a solids content of 39.8%, and inversion point at 25.0% water content and a gel time of 45 minutes.
- the composition was applied to a steel panel in a coating thickness of 51 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust-dry after 1/2 hour and handleable after 1 hour.
- the Persoz hardness was 58 seconds after 1 day and 125 seconds after 2 week.
- the coating was excellently resistant to water and to premium grade petrol.
- a coating composition was prepared by successively mixing 45.7 g of (meth)acryloyl compound D, 9.1 g of a polyamino amide having an amine number of 80-110 (available under the trade mark Euredur 424 of Schering), 9.1 g of 3,3'-dimethyl-4,4'-diaminodicyclohexyl methane and 5.5 g of isopropyl formiate. Subsequently, 30.6 g of water were added, with stirring. The resulting composition had a solids content of 47.9%, an inversion point at 23.0% water content and a gel time of 30 minutes.
- the composition was applied to a steel panel in a coating thickness of 58 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust-dry after 1/2 hour and handleable after 11/2 hours.
- the Persoz hardness was 25 seconds after 1 day and 52 seconds after 1 week.
- the coating was well resistant to water and excellently
- a coating composition was prepared by successively mixing 42.3 g of (meth)acryloyl compound E, 14.1 g of blocked polyamino amide B, 3.9 g of blocked amino compound E and 4.5 g of n-butyl formiate. Subsequently, 35.2 g of water were added, with stirring. The resulting composition had a solids content of 34.0%, and inversion point at 27.0% water content and a gel time of 60 minutes. The composition was applied to a steel panel in a coating thickness of 47 ⁇ m and dried at an ambient temperature of 20° C. and a relative humidity of 70%. The coating applied was dust-dry after 1/2 hour and handleable after 1 hour. The Persoz hardness was 23 seconds after 1 day and 28 seconds after 1 week. The coating was well resistant to water and excellently resistant to premium grade petrol.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polyurethanes Or Polyureas (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL8602411 | 1986-09-24 | ||
NL8602411 | 1986-09-24 | ||
NL8701707 | 1987-07-20 | ||
NL8701707 | 1987-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5266630A true US5266630A (en) | 1993-11-30 |
Family
ID=26646160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/100,688 Expired - Fee Related US5266630A (en) | 1986-09-24 | 1987-09-24 | Aqueous coating composition containing a functional organic compound, a curing agent, and a dispersing agent |
Country Status (13)
Country | Link |
---|---|
US (1) | US5266630A (ja) |
EP (1) | EP0262720B1 (ja) |
JP (1) | JP2639534B2 (ja) |
CN (1) | CN1036854C (ja) |
AT (1) | ATE62920T1 (ja) |
AU (1) | AU593943B2 (ja) |
BR (1) | BR8704925A (ja) |
CA (1) | CA1338118C (ja) |
DE (1) | DE3769570D1 (ja) |
DK (1) | DK496487A (ja) |
ES (1) | ES2022878B3 (ja) |
FI (1) | FI88050C (ja) |
NO (1) | NO179215C (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5552496A (en) * | 1992-08-27 | 1996-09-03 | Herberts Gesellschaft Mit Beschrankter Haftung | Aqueous polyurethane resin dispersion, processes for its preparation, and its use in aqueous coating compositions |
US6005146A (en) * | 1997-01-16 | 1999-12-21 | Eastman Chemical Company | Stabilized non-polymeric acetoacetate esters that promote adhesion to metallic and oxidized substrates |
US20050148711A1 (en) * | 2003-05-23 | 2005-07-07 | Gerald Sugerman | VOC free water reducible coating vehicles |
USRE39877E1 (en) | 1997-01-09 | 2007-10-09 | Eastman Chemical Company | Non-polymeric acetoacetates as adhesion promoting coalescing agents |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2021017B3 (es) * | 1986-09-24 | 1991-10-16 | Akzo Nv | Composicion de recubrimiento acuosa y proceso para recubrir un sustrato con tal composicion de recubrimiento |
DE68920665T2 (de) * | 1988-08-09 | 1995-08-31 | Akzo Nobel Nv | Beschichtungsmittel. |
US5177152A (en) * | 1988-08-09 | 1993-01-05 | Akzo N.V. | Water-dilutable, crosslinkable binder resin |
US5071481A (en) * | 1989-01-13 | 1991-12-10 | Akzo N.V. | Low-temperature curable compositions based upon polyaromatic aldehyde group-containing compounds and ketiminized polyamino compounds |
EP0401898B1 (en) * | 1989-06-09 | 1994-09-14 | Akzo Nobel N.V. | Liquid coating composition including, as a crosslinking agent, an unblocked monoprimary amine |
US5589534A (en) * | 1990-10-16 | 1996-12-31 | Akzo Nobel N.V. | Aqueous coating compositions including a reactive emulsifier |
US5391624A (en) * | 1992-02-10 | 1995-02-21 | S. C. Johnson & Son, Inc. | Thermosettable compositions |
MY108731A (en) * | 1992-04-16 | 1996-11-30 | Akzo Nv | Aqueous coating compositions |
US5872297A (en) * | 1995-08-24 | 1999-02-16 | S. C. Johnson Commercial Markets, Inc. | Ethylenically-unsaturated 1,3-diketoamide functional compounds |
AU707217B1 (en) * | 1997-12-01 | 1999-07-08 | Nichigo Morton Co., Ltd. | Photoimageable compositions |
ES2250489T3 (es) | 2000-10-25 | 2006-04-16 | Akzo Nobel Coatings International B.V. | Composicion de revestimiento en suspension en agua fotoactivable. |
WO2024106302A1 (ja) * | 2022-11-15 | 2024-05-23 | ハリマ化成株式会社 | プライマー組成物、印刷積層体、および、基材の回収方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3474056A (en) * | 1962-03-20 | 1969-10-21 | Schering Ag | Curing agents for polyepoxides |
GB2075022A (en) * | 1980-04-25 | 1981-11-11 | Deft Inc | Water-reducible epoxy coating compositions |
US4317894A (en) * | 1979-12-11 | 1982-03-02 | Ppg Industries, Inc. | Low temperature cure coating compositions |
US4359556A (en) * | 1981-06-05 | 1982-11-16 | Gulf Oil Corporation | Thermoplastic polyamide hot melt adhesive composition |
US4598108A (en) * | 1984-07-06 | 1986-07-01 | Akzo Nv | Water reducible composition based on an epoxy resin |
US4772680A (en) * | 1985-03-29 | 1988-09-20 | Akzo N.V. | Liquid coating composition and a process for coating a substrate with such coating composition |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4477610A (en) * | 1980-12-23 | 1984-10-16 | Asahi Kasei Kogyo Kabushiki Kaisha | Aqueous dispersion compositions |
EP0203296B2 (en) * | 1985-03-29 | 1997-09-03 | Akzo Nobel N.V. | A liquid coating composition and a process for coating a substrate with such coating composition |
JPS62231267A (ja) * | 1986-03-31 | 1987-10-09 | Mitsubishi Paper Mills Ltd | 静電写真用液体現像剤 |
ES2021017B3 (es) * | 1986-09-24 | 1991-10-16 | Akzo Nv | Composicion de recubrimiento acuosa y proceso para recubrir un sustrato con tal composicion de recubrimiento |
-
1987
- 1987-09-17 EP EP87201766A patent/EP0262720B1/en not_active Expired - Lifetime
- 1987-09-17 JP JP62231266A patent/JP2639534B2/ja not_active Expired - Fee Related
- 1987-09-17 DE DE8787201766T patent/DE3769570D1/de not_active Expired - Fee Related
- 1987-09-17 AT AT87201766T patent/ATE62920T1/de not_active IP Right Cessation
- 1987-09-17 ES ES87201766T patent/ES2022878B3/es not_active Expired - Lifetime
- 1987-09-22 AU AU78862/87A patent/AU593943B2/en not_active Ceased
- 1987-09-22 DK DK496487A patent/DK496487A/da not_active Application Discontinuation
- 1987-09-23 NO NO873980A patent/NO179215C/no unknown
- 1987-09-23 FI FI874157A patent/FI88050C/fi not_active IP Right Cessation
- 1987-09-23 CA CA000547625A patent/CA1338118C/en not_active Expired - Fee Related
- 1987-09-24 BR BR8704925A patent/BR8704925A/pt not_active IP Right Cessation
- 1987-09-24 US US07/100,688 patent/US5266630A/en not_active Expired - Fee Related
- 1987-09-24 CN CN87106510A patent/CN1036854C/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3474056A (en) * | 1962-03-20 | 1969-10-21 | Schering Ag | Curing agents for polyepoxides |
US4317894A (en) * | 1979-12-11 | 1982-03-02 | Ppg Industries, Inc. | Low temperature cure coating compositions |
GB2075022A (en) * | 1980-04-25 | 1981-11-11 | Deft Inc | Water-reducible epoxy coating compositions |
US4359556A (en) * | 1981-06-05 | 1982-11-16 | Gulf Oil Corporation | Thermoplastic polyamide hot melt adhesive composition |
US4598108A (en) * | 1984-07-06 | 1986-07-01 | Akzo Nv | Water reducible composition based on an epoxy resin |
US4772680A (en) * | 1985-03-29 | 1988-09-20 | Akzo N.V. | Liquid coating composition and a process for coating a substrate with such coating composition |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5552496A (en) * | 1992-08-27 | 1996-09-03 | Herberts Gesellschaft Mit Beschrankter Haftung | Aqueous polyurethane resin dispersion, processes for its preparation, and its use in aqueous coating compositions |
USRE39877E1 (en) | 1997-01-09 | 2007-10-09 | Eastman Chemical Company | Non-polymeric acetoacetates as adhesion promoting coalescing agents |
US6005146A (en) * | 1997-01-16 | 1999-12-21 | Eastman Chemical Company | Stabilized non-polymeric acetoacetate esters that promote adhesion to metallic and oxidized substrates |
US20050148711A1 (en) * | 2003-05-23 | 2005-07-07 | Gerald Sugerman | VOC free water reducible coating vehicles |
US20070179227A1 (en) * | 2003-05-23 | 2007-08-02 | Vocfree, Inc. | VOC-free water reducible coating vehicles |
Also Published As
Publication number | Publication date |
---|---|
CN1036854C (zh) | 1997-12-31 |
EP0262720B1 (en) | 1991-04-24 |
NO873980D0 (no) | 1987-09-23 |
FI874157A (fi) | 1988-03-25 |
EP0262720A1 (en) | 1988-04-06 |
DE3769570D1 (de) | 1991-05-29 |
CA1338118C (en) | 1996-03-05 |
JPS6389575A (ja) | 1988-04-20 |
FI88050B (fi) | 1992-12-15 |
JP2639534B2 (ja) | 1997-08-13 |
NO873980L (no) | 1988-03-25 |
ES2022878B3 (es) | 1991-12-16 |
NO179215B (no) | 1996-05-20 |
BR8704925A (pt) | 1988-05-17 |
CN87106510A (zh) | 1988-04-13 |
FI88050C (fi) | 1993-03-25 |
DK496487D0 (da) | 1987-09-22 |
FI874157A0 (fi) | 1987-09-23 |
DK496487A (da) | 1988-03-25 |
AU7886287A (en) | 1988-03-31 |
AU593943B2 (en) | 1990-02-22 |
NO179215C (no) | 1996-08-28 |
ATE62920T1 (de) | 1991-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4929661A (en) | Aqueous coating composition containing a functional organic compound, a curing agent, and a dispersing agent | |
US5266630A (en) | Aqueous coating composition containing a functional organic compound, a curing agent, and a dispersing agent | |
US6395822B1 (en) | Coating composition | |
US5359005A (en) | Stable, one-package, non-gelled coating composition curable under ambient conditions | |
EP0448154A1 (en) | Coating composition including a blocked basic catalyst | |
US4990577A (en) | Liquid coating composition of (meth)acryloyl compound and blocked unsaturated carbonyl compound/amino compound adduct | |
AU643327B2 (en) | Liquid coating agent | |
JP3883628B2 (ja) | Oh官能性ポリアクリレートグラフトコポリマーを含む高固形分バインダー組成物 | |
US4536525A (en) | Aqueous coating composition based on a cationic amino urea resin, process for applying and baking the composition and the coated substrate thus obtained | |
US4981944A (en) | Liquid coating composition curable at ambient temperatures | |
JPH02138377A (ja) | 結合剤組成物、その製造方法及び使用 | |
US5252648A (en) | Compositions containing octadienyl ethers as reactive thinners | |
EP1088040B1 (en) | Use of a crosslinking component comprising a polyamine, a polyketimine or combination thereof | |
US5241001A (en) | Coating composition of aziridinyl polymer and epoxy polymer(s) | |
JPH02202534A (ja) | 自己交叉結合性結合剤の水溶液又は分散液、およびその製造法 | |
JPS61500172A (ja) | 重合体型耐光性安定剤 | |
EP0568134A1 (en) | Aqueous coating compositions | |
CA2234162A1 (en) | Internally blocked polyamine crosslinkers and coating compositions containing the same | |
MXPA00010724A (en) | Polyacrylics containing pendant acetoacetonate moieties | |
WO1992017283A1 (en) | Non-isocyanate ambient temperature curable coating compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AKZO N.V., VELPERWEG 76, 6824 BM ARNHEM, THE NETHE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:NOOMEN, ARIE;PETERS, PETRUS J.;REEL/FRAME:004812/0200 Effective date: 19871009 |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REFU | Refund |
Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: R1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees | ||
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20051130 |