US3772200A - Method of tagging with microparticles - Google Patents
Method of tagging with microparticles Download PDFInfo
- Publication number
- US3772200A US3772200A US00139012A US3772200DA US3772200A US 3772200 A US3772200 A US 3772200A US 00139012 A US00139012 A US 00139012A US 3772200D A US3772200D A US 3772200DA US 3772200 A US3772200 A US 3772200A
- Authority
- US
- United States
- Prior art keywords
- microparticles
- tagging
- substance
- coded
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011859 microparticle Substances 0.000 title abstract description 69
- 238000000034 method Methods 0.000 title abstract description 20
- 239000000126 substance Substances 0.000 abstract description 37
- 238000004519 manufacturing process Methods 0.000 abstract description 24
- 238000011084 recovery Methods 0.000 abstract description 4
- 238000010348 incorporation Methods 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 210000003298 dental enamel Anatomy 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 7
- 239000011324 bead Substances 0.000 description 7
- 239000012876 carrier material Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000002360 explosive Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000123 paper Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- -1 Hafnium Terbium Chemical compound 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005474 detonation Methods 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000004451 qualitative analysis Methods 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 240000002989 Euphorbia neriifolia Species 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 241001147416 Ursus maritimus Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- RDVQTQJAUFDLFA-UHFFFAOYSA-N cadmium Chemical compound [Cd][Cd][Cd][Cd][Cd][Cd][Cd][Cd][Cd] RDVQTQJAUFDLFA-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- VSMBRWIAHOSZNP-UHFFFAOYSA-N cerium rhodium Chemical compound [Rh].[Rh].[Rh].[Ce].[Ce].[Ce].[Ce].[Ce] VSMBRWIAHOSZNP-UHFFFAOYSA-N 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GSOLWAFGMNOBSY-UHFFFAOYSA-N cobalt Chemical compound [Co][Co][Co][Co][Co][Co][Co][Co] GSOLWAFGMNOBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- GAUBTRATJMXRGC-UHFFFAOYSA-N copper scandium Chemical compound [Sc].[Cu].[Cu] GAUBTRATJMXRGC-UHFFFAOYSA-N 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000000804 electron spin resonance spectroscopy Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003721 gunpowder Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 231100000206 health hazard Toxicity 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000004081 narcotic agent Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000003947 neutron activation analysis Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- KZKCOVQRXJUGDG-UHFFFAOYSA-N praseodymium Chemical compound [Pr][Pr] KZKCOVQRXJUGDG-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000004800 psychological effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004677 spark ionization mass spectrometry Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UDKYUQZDRMRDOR-UHFFFAOYSA-N tungsten Chemical compound [W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W][W] UDKYUQZDRMRDOR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/06009—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21H—OBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
- G21H5/00—Applications of radiation from radioactive sources or arrangements therefor, not otherwise provided for
- G21H5/02—Applications of radiation from radioactive sources or arrangements therefor, not otherwise provided for as tracers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K2019/06215—Aspects not covered by other subgroups
- G06K2019/06234—Aspects not covered by other subgroups miniature-code
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S149/00—Explosive and thermic compositions or charges
- Y10S149/123—Tagged compositions for identifying purposes
Definitions
- the method of the present invention enables such identification by including uniquely coded microparticles with substances to be monitored.
- the unique coding is providing by incorporating into individual batches of the microparticles selected combinations of the tagging elements at various concentration levels to provide an inventory of up to uniquely coded batches of microparticles
- L is the number of discrete concentration levels at which the in- 3,772,200 Patented Nov. 13, 1973 ICC dividual elements are used and N is the available number of the tagging elements.
- a small number of tagging elements each used at a few concentration levels provide a very large number of uniquely coded batches.
- microparticles might be made using as the carrier a common glass formulation of the soda lime type and adding combinations of ten selected elements at three discrete concentration levels such as 0.5%, 1% and 2% by weight.
- Homogeneous melts formed into microspheroids by conventional glass bead manufacturing technologies would provide, 1,048,575 different codes, each coded glass microspheroid batch being distinct from the rest.
- the differently coded glass beads or microparticles can be included in each individual unit of production or lot of a substance such as dynamite and later upon recovery can readily be analyzed and correlated with previously recorded code data to identify the exact unit of production. This can be done Without necessarily (a) using a significant amount of the substance in question, (b) significantly damaging the substance, or (c) determining the composition or formulation of the substance. Actually, as with detonated explosives, the substance which contained the coded microparticles need not even be recovered. Only one coded microparticle need remain after destruction of the substance to enable complete and accurate identification.
- microparticles may be as small as one micron, but should be no larger than 250 microns so that only a small weight percent of microparticles need be incorporated into a given substance to provide a sufficient number to guarantee recovery of at least one microparticle. It is believed that microparticles in excess of 20 microns minimize possible health hazards and facilitate the separation and identification of the microparticles from the extraneous matter. Micropheroids having diameters ranging between 20 to 100 microns having been used effectively and eiciently.
- the outward shape of the microparticle may be determined by a particular strength requirement and/or t0 provide a shape that is easily differentiated from extraneous matter under a microscope. Glass microspheroids used to tag dynamite have withstood its explosion and were readily distinguishable by their shape from the debris. While microspheroids are preferred, the microparticles may be flakes, fibers, columns or rods, etc., especially where the substance to be tagged comprises microspheroids.
- the density of the microparticle may be adjusted to aid in separating the microparticle from the extraneous material.
- microparticles having a density of about 4 ,gm/cm.3 having been readily separated from dirt and common debris which generally has much lower density, and for this reason a density of at least 3 is particularly advantageous.
- the microparticles may include magnetic fragments.
- the microparticle In order to be impervious to or unaffected by the substance carrying the microparticle or by any environment to which it will be exposed, the microparticle should comprise glass (vitreous) or ceramic (crystalline) or other refractory material, or possibly a metallic material.
- the tagging elements may be selected from any of the presently available chemical elements. Hhowever, the elements having high natural radioactivity would be generally excluded for health and ecology reasons. The following elements are preferred:
- the elements inthe carrier may be included in the code to permit occasional shifts in codes by changing the carrier material.
- all microspheroids applied to each manufacturer of dynamite may have a unique carrier simply to dilerentiate from other manufacturers.
- Those common impurities present in relatively high concentrations in refractory carrier materials should be avoided as tagging elements. However, parts per million contaminants, within the carrier or tagging raw material, will not normally interfere. The starred elements in the above table are believed to have particular advantage because of economic considerations.
- the tagging elements may exist in the microparticle as a free element, an oxide or other compound thereof. In the ultimate analysis, only the element itself is detected, and its existence in the microparticle as a free element, its oxide or other compound thereof is not differentiated.
- the microparticles may be coded both by selected combinations of the tagging elements and by the levels at which the tagging elements are used.
- Each tagging element should be incorporated in an amount of at least 0.1 percent of the total weight to provide an efficient analytical operation with an electron microprobe analyzer, the present instrument of choice. Because of practical limits with the present analytical instruments, it is believed that the levels of one element should vary from one batch of microparticles to the next by a factor of at least 1.5, a factor of 2 being preferred.
- the lowest level of each element may be the same, for example, 1%. However, some elements lend themselves for use at greater numbers of levels than do others, in which case the number of unique codes becomes:
- La, Lb, and Lc are the number of levels for elements a, b and c, respectively, and so on for the N elements selected for a particular inventory.
- microparticles from one batch are incorporated into an individual unit of production of a substance, it will be necessary to retain recorded data of the code and the unit of production (e.g., date, manufacturing plant, etc.) for subsequent correlation.
- the records may also include specimens from each batch to provide rigid conrmatory analysis of the recovered microparticle should the need arise.
- microparticles could have utility without the same being included within a specific subject but could be merely associated with a substance or placed in anarea to be subsequently acquired by a substance.
- FIG. 1A is a diagrammatic illustration of a microspheroid
- FIG. 1B is a cross-sectional view of a microspheroid having tagging elements interspersed homogeneously throughout a glass carrier;
- FIG. 2 is a diagrammatic use sequence illustrating a system of providing coded microparticles within dynamite to enable tracing of the explosive to its manufacturer after detonation.
- the sphere-like microparticle 10 illustrated in FIGS. 1A and 1B includes tagging elements homogeneously interspersed throughout a refractory carrier material.
- FIG. 2 of the drawing is discussed below in Example VI.
- Example I This composition utilized finely powdered metal oxides, M002, La203, Ce02 and W03, all of standard laboratory stock chemicals. Although these were of high purity, any degree of purity above is acceptable. 'Ihese oxides were weighed to provide metal oxide levels of 18.0%, 31.6%, 33.3% and 17.1% respectively, giving integer ratios of l:2:2:1 for the individual metals themselves. The mixed metal oxides were intimately mixed with BaO-TiOz glass beads to the extent of 4 g. mixed metal oxides to 76 g. of glass beads. The mixture, in a crucible, was tired at about 1400 C. to a homogeneous (by thermal convection) melt in a gas fired furnace.
- Example II A second composition was prepared using the metals Zn, Sr, Cd and Nd in an integer ratio of 4:2:2: 1, respectively, as their oxides except for strontium which was added as its carbonate.
- the metal oxide-carbonate mixture was weighed out to contain 44.2%, 28.6%, 19.3% and 9.9% of the respective compounds, and the well mixed materials were added to BaO-TiO2 glass beads. From this,
- Example I sphere-like microparticles were made as described in Example I. This produced clear, off-white (in bulk) microspheroids of 37 to 149 micron range (400 to 100 mesh). The loss of CO2 from the carbonate in the melt step was not detrimental.
- Example III A third composition was prepared using MnO2, NiOY and SnO in weighed proportions of 26.5%, 42.7% and 19.0%,
- Example II C0203, 1 1.8 respectively, to give a metals integer ratio of 2:1:4:2.
- the metal oxide mixture was intimately mixed with BaO-TiOz glass beads and sphere-like microparticles were made therefrom as described in Example I. This composition produced a clear black colored (in bulk) microspheroid product.
- Example IV A fourth composition was a sol-gel preparation of microparticles.
- a clear, colorless solution was prepared by dissolving with agitation in 110 g. of Iwater 42.70 g. aluminum acetate [Niaproof (TM)] containing the equivalent of 19.0 g. 3Al2O3-B2O3. With continued agitation was added 1.44 g. MnCl24H2O dissolved in 10.0 g. water (0.40 g. Mn), 0.474 g. Cd(CH3COO)2-2H2O dissolved in 10,0 g. Water (0.20 g. Cd), and 1.064 g. CeCl37H2O dissolved in 10.0 g. water (0.40 g. Ce) to give a clear, colorless solution containing:
- Example V A higher density microparticle than described in Example IV was prepared by using a carrier consisting of ZrO2:SiO-2 (1:1) in the following manner: To 58.75 g. zirconium acetate solution (equivalent to 12.9 g. Zr02) was added 0.72 g. MnCl2-4H2O (0.2 g. Mn), 0.95 g. Cd(CII3COO)2-2H2O (0.4 g. Cd), and 0.53 g. CeC13-7H2O (0.2 g. Ce).
- aqueous dispersion having a pH of about 1 prepared from 21.0 g. colloidal silica (30% SiO2) plus 10 drops of concentrated hydrochloric acid. Although the resulting dispersion was slightly cloudy, it was colorless and there was no trace of particulate matter apparent.
- This dispersion was gravity fed through a syringe into 3.5 liters 2-ethylhexanol at room temperature while being agitated as in Example IV, but at about SOO-1000 r.p.m. The addition required about one minute and stirring was continued for 20 minutes to remove water from the microdroplets in the alcohol.
- the wet alcohol was removed by filtration through #54 Whatman iilter paper to recover clear, colorless microspheroids of 2O to 120 microns size range. These were dried at 90- 100 C. for one hour and then placed in a porcelain crucible in an electric furnace and raised to SOO-820 C. over a 3-hour period and cooled. About 20 g. of lavenderbrown, transparent microspheroids were obtained.
- coded microspheroids were made with 3, 4 and 5 different tagging elements at various concentration levels and with various carriers such as titania, alumina and alumina-borosilicate using4 the techniques of Examples IV and V.
- microparticles such a's those from Examples I-V, are produced and maintained in individual batches wherein each and all of the microparticles within one batch will have an identical code. Microparticles from any one batch may then be added to a lot or unit of production of a substance for coding the same.
- the microparticles may be added: to paper for use as money, securities, bonds, documents, labels, etc.; to adhesives, coatings, sealants, etc.; to plastics, resins, foams, etc.; to pharmaceutical items such as drugs, narcotics, medicinals, etc.; to explosives such as gun powder, dynamite and other propellants for munitions; to surface coating substances such as paints, lacquers, enamels pigments, waxes, etc.; and other manufactured goods.
- Paint-like coating substances containing coded microparticles may identify objects such as automobiles. A given code applied to a single automobile or to a series of automobiles would provide identification that would be nearly impossible for a thief to locate rand remove. Identifying paint fragments containing the microparticles might be found on a hit-an-run victim or, in the case of tagged tools, might help convict a burglar.
- Examples VI-VIII illustrate three instances wherein coded microparticles such as those produced in accordance with Examples I-V have been incorporated, recovered and used to identify a specific substance.
- Example VI To 'assist in understanding this example, reference is additionally made to FIG. 2 of the drawing.
- Microparticles 10 of Example I with their identical and unique code noted (in the records 11) were added to dynamite 12 at a weight ratio of 1 part identifier to 1000 parts dynamite. After detonation of the dynamite (1 pound charge), approximately 1.5 kg. of debris 14 was collected from the blast crater 15. The collected debris was then washed with tap water to remove microparticles clinging to the larger objects, after which debris objects in excess of approximately 1A inch in diameter were manually discarded. The remaining blast debris was then thoroughly dried. A representative sample (approximately 1/5 to 1A of the Whole collected debris) was screened through a 60 mesh sieve onto glazed paper to eliminate relatively coarse debris which was discarded.
- the lines were rescreened through a mesh sieve onto glazed paper. Approximately 10 grams of fines were added to a beaker and wetted with acetone. The wetted fines were repeatedly washed with tap water and then with acetone and then dried and transferred to a separation tube, made from a drawn-down 15 rnl. centrifuge tube containing 8 to 10 ml. of diiodomethane (CH2I2) having a density of 3.3 gm./cm.3.
- CH2I2 diiodomethane
- Example VII To 30 g. of an alkyd automobile enamel (Ditzco Enamel DOE-8238 manufactured by Ditzler Automotive Finishes, a subsidiary of Pittsburgh Plate Glass Company) was added 0.03 g. sol-gel microspheroids (produced similarly to the microspheroids of Examples IV and V) with Co, Ni and Sr as coding elements in integer ratio of 412:1. The coded paint was thoroughly mixed by hand shaking in a covered glass jar of 120 cm.3 (4 oz.) capacity for several minutes. This gave a 1:540 identifier to enamel ratio based upon 54% solids content.
- sol-gel microspheroids produced similarly to the microspheroids of Examples IV and V
- Co, Ni and Sr as coding elements in integer ratio of 412:1.
- the coded paint was thoroughly mixed by hand shaking in a covered glass jar of 120 cm.3 (4 oz.) capacity for several minutes. This gave a 1:540 identifier to enamel ratio based upon 54% solids content.
- a separated microspheroid was analyzed according to method described in Example VI and shown to be the CozNizSr (422:1) coded microspheroid incorporated originally into the enamel.
- Example VIII Thirty-two rounds of 9 mm. antebellum Walther P-3-8 pistol ammunition were unloaded and the 11.2 g. (175.2 grains) of the collected powder was mixed with 12.5 mg. of microspheroids of Example III. This gave a powder to identifier ratio of 910: 1. The intimately mixed powdermicrospheroid combination was then reloaded into the previously emptied rounds for use in firing tests.
- a cardboard cylinder was firmly packed with sawdust which was retained with a cardboard disc.
- To this cardboard disc was secured a piece of beef and draped with a clear piece of linen cloth to serve as a crude representation of a clothed iiesh target.
- a rst round containing the mixed powder-microspheroid combination was fired into the horizontally suspended target from approximately 6 rn. (20 feet). Before firing the second round, the beef, cloth and cardboard disc were all replaced and this sequence was repeated for a total of five rounds.
- the punctured target cloths, meat pieces and cardboard discs were individually packaged in polystyrene bags and labelled. The same was done for cleaning swatches used to clean the barrel after the tests, one package of swatches bearing cleaning solvent and oil and a second package item and analyzed as described in Example VI to confirm the original code.
- microspheroid coded dynamite may be acquired or stolen from more than one source, combined and used in a criminal blast, it has been shown that microspheroids recovered from the blast debris did in fact represent the several sources. This was demonstrated in a test blast using three differently coded identifiers all at 1:1000 identifier to dynamite ratio, and the analysis correctly revealed that the three coded dynamites had been used.
- Example VI analytical techniques and instrumentation other than the electron microprobe analysis cited in Example VI may be utilized within the teachings of this invention.
- neutron activation analysis atomic absorption spectroscopy, emission spectroscopy, energy-dispersive X-ray analysis, electron paramagnetic resonance spectrometry and spark-source mass spectrometry could be employed to analyze isolated microparticles.
- this invention might have utility in tagging drugs in which case it may be required, for government approval, to use a biodegradable carrier material such as a material of polymeric nature.
- a method of tagging individual units of production of a substance comprising the steps of: (l) providing microparticles of a refractory carrier material of characteristic geometric shape and size, the broadest dimensions of which are not less than one nor more than 250 microns, containing tagging elements in amounts of at least 0.1 percent of the total weight, which microparticles have a density greater than 3.3 g./cc.
- N is at least 10 and L is at least 3.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
METHOD OF TAGGING INDIVIDUAL UNITS OF PRODUCTION OF A SUBSTANCE BY PROVIDING AN INVENTORY OF BATCHES OF MICROPARTICELS, EACH BATCH BEING UNIFORMLY CODED BY INCORPORATION IN THE MICROPARTICLES A SELECTED COMBINATION OF TAGGING ELEMENTS IN UNIFORM AMOUNTS OF AT LEAST 0.1% OF THE TOTAL WEIGHT OF THE MICROPARTICLE. UNIQUELY CODED MICROPARTICLES ARE INCORPORATED INTO EACH UNIT OF PRODUCTION OF THE SUBSTANCE WHEREBY RECOVERY OF A SINGLE MICROPARTICLE WOULD BE SUFFICIENT TO IDENTIFY THE UNIT OF PRODUCTION OF THE SUBSTANCE.
Description
NOV. 13, 1973 R G LWESAY 3,772,200
METHOD OF TAGGING WITH MICROPARTICLES Filed April 30, 1971 H6. M F/. /0 f V wma/v5 /0 f /C/ Z zh C? /Z M75/Q @E60/Q05 Q 152/457 /5 0F 60055 Q@ United States Patent O M' 3,772,200 METHOD OF TAGGING WITH MICROPARTICLES Richard G. Livesay, White Bear Township, Ramsey County, Minn., assigner to Minnesota Mining and Manufacturing Company, St. Paul, Minn.
Filed Apr. 30, 1971, Ser. No. 139,012 Int. Cl. C09k 3/00; G21h 5 /02 U.S. Cl. 252-301.1 R 11 Claims ABSTRACT OF THE DISCLOSURE FIELD OF THE INVENTION This disclosure relates to a method of tagging a substance such as an explosive to enable subsequent indentification of the substance, its manufacturer, lot and/ or composition.
BACKGROUND OF THE INVENTION It has not previously been possible to identify a specific charge of an explosive after its detonation; obviously, a stamped lot number on the wrapper of dynamite would no longer exist after the blast. Identification of the exploded dynamite would enable authorities to place responsibility on illegal sales and/or on inadequate protection against theft. Identification of the exploded dynamite would provide authorities with knowledge of where and when the specific dynamite was stolen. Mere knowledge as to the type of explosive or that it was homemade would be valuable. Also, the psychological effect of knowing that the dynamite can now be traced, even after detonation, may be an effective deterrent to illicit use of dynamite.
Often in the case of fired ammunition the bullet is sufficiently mutilated on impact to prevent even identification of the caliber of weapon that -was used; of course, with such destruction of the bullet it has not been possible to even know the type of weapon nor to link the bullet with a suspected weapon. Law enforcement personnel could use a system of identifying the type of weapon used and the source of the ammunition when the bullet is mutilated or cant be located.
THE PRESENT INVENTION The method of the present invention enables such identification by including uniquely coded microparticles with substances to be monitored. The unique coding is providing by incorporating into individual batches of the microparticles selected combinations of the tagging elements at various concentration levels to provide an inventory of up to uniquely coded batches of microparticles Where L is the number of discrete concentration levels at which the in- 3,772,200 Patented Nov. 13, 1973 ICC dividual elements are used and N is the available number of the tagging elements. A small number of tagging elements each used at a few concentration levels provide a very large number of uniquely coded batches. For example, an inventory of microparticles might be made using as the carrier a common glass formulation of the soda lime type and adding combinations of ten selected elements at three discrete concentration levels such as 0.5%, 1% and 2% by weight. Homogeneous melts formed into microspheroids by conventional glass bead manufacturing technologies would provide, 1,048,575 different codes, each coded glass microspheroid batch being distinct from the rest.
The differently coded glass beads or microparticles can be included in each individual unit of production or lot of a substance such as dynamite and later upon recovery can readily be analyzed and correlated with previously recorded code data to identify the exact unit of production. This can be done Without necessarily (a) using a significant amount of the substance in question, (b) significantly damaging the substance, or (c) determining the composition or formulation of the substance. Actually, as with detonated explosives, the substance which contained the coded microparticles need not even be recovered. Only one coded microparticle need remain after destruction of the substance to enable complete and accurate identification.
The broadest dimensions of the individual microparticles may be as small as one micron, but should be no larger than 250 microns so that only a small weight percent of microparticles need be incorporated into a given substance to provide a sufficient number to guarantee recovery of at least one microparticle. It is believed that microparticles in excess of 20 microns minimize possible health hazards and facilitate the separation and identification of the microparticles from the extraneous matter. Micropheroids having diameters ranging between 20 to 100 microns having been used effectively and eiciently.
The outward shape of the microparticle may be determined by a particular strength requirement and/or t0 provide a shape that is easily differentiated from extraneous matter under a microscope. Glass microspheroids used to tag dynamite have withstood its explosion and were readily distinguishable by their shape from the debris. While microspheroids are preferred, the microparticles may be flakes, fibers, columns or rods, etc., especially where the substance to be tagged comprises microspheroids.
The density of the microparticle may be adjusted to aid in separating the microparticle from the extraneous material. For example, microparticles having a density of about 4 ,gm/cm.3 having been readily separated from dirt and common debris which generally has much lower density, and for this reason a density of at least 3 is particularly advantageous. To permit magnetic separation of the microparticle from the extraneous material, the microparticles may include magnetic fragments.
In order to be impervious to or unaffected by the substance carrying the microparticle or by any environment to which it will be exposed, the microparticle should comprise glass (vitreous) or ceramic (crystalline) or other refractory material, or possibly a metallic material.
The tagging elements may be selected from any of the presently available chemical elements. Hhowever, the elements having high natural radioactivity would be generally excluded for health and ecology reasons. The following elements are preferred:
*Aluminum *Niobium (columbium) *Antirnony Osmium *Arsensic Palladium *Barium Platinum *Bismuth *Potassium *Cadmium *Praseodymium *Calcium Rhenium *Cerium Rhodium Cesium Rubidium *Chromium uthenium *Cobalt amarium *Copper Scandium Dysprosium Selenium Erbium *Silicon Europium *Silver Gadolinium *odium *Gallium trontium *Germanium *Talrtal'um Gold Te urium Hafnium Terbium Holrnium Thallium *Iridium *Thor'ium Iridium 'Ihulium *Iron *Tin *Lanthanum *Titanium *Lead *Tungsten (Wolfram) *Lithium *Uranium Lutetium *Vanadium *Magnesium Ytteibium *Manganese Y'ttrium *Molybdenum *Zinc *Neodymium *Zirconium *Nickel The tagging elements may be selected to avoid those elements used in the carrier itself. On the other hand, the elements inthe carrier may be included in the code to permit occasional shifts in codes by changing the carrier material. For example, all microspheroids applied to each manufacturer of dynamite may have a unique carrier simply to dilerentiate from other manufacturers. Those common impurities present in relatively high concentrations in refractory carrier materials should be avoided as tagging elements. However, parts per million contaminants, within the carrier or tagging raw material, will not normally interfere. The starred elements in the above table are believed to have particular advantage because of economic considerations.
The tagging elements may exist in the microparticle as a free element, an oxide or other compound thereof. In the ultimate analysis, only the element itself is detected, and its existence in the microparticle as a free element, its oxide or other compound thereof is not differentiated.
As noted above, the microparticles may be coded both by selected combinations of the tagging elements and by the levels at which the tagging elements are used. Each tagging element should be incorporated in an amount of at least 0.1 percent of the total weight to provide an efficient analytical operation with an electron microprobe analyzer, the present instrument of choice. Because of practical limits with the present analytical instruments, it is believed that the levels of one element should vary from one batch of microparticles to the next by a factor of at least 1.5, a factor of 2 being preferred. For convenience of analysis, the lowest level of each element may be the same, for example, 1%. However, some elements lend themselves for use at greater numbers of levels than do others, in which case the number of unique codes becomes:
wherein La, Lb, and Lc are the number of levels for elements a, b and c, respectively, and so on for the N elements selected for a particular inventory.
When the microparticles from one batch are incorporated into an individual unit of production of a substance, it will be necessary to retain recorded data of the code and the unit of production (e.g., date, manufacturing plant, etc.) for subsequent correlation. The records may also include specimens from each batch to provide rigid conrmatory analysis of the recovered microparticle should the need arise.
The microparticles could have utility without the same being included within a specific subject but could be merely associated with a substance or placed in anarea to be subsequently acquired by a substance.
BRIEF DESCRIPTION OF THE DRAWING In the drawing:
FIG. 1A is a diagrammatic illustration of a microspheroid;
FIG. 1B is a cross-sectional view of a microspheroid having tagging elements interspersed homogeneously throughout a glass carrier; and
FIG. 2 is a diagrammatic use sequence illustrating a system of providing coded microparticles within dynamite to enable tracing of the explosive to its manufacturer after detonation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The sphere-like microparticle 10 (microspheroid) illustrated in FIGS. 1A and 1B includes tagging elements homogeneously interspersed throughout a refractory carrier material. FIG. 2 of the drawing is discussed below in Example VI.
The following Examples I-V illustrate live specific microparticle compositions. All percentages stated herein are by weight.
Example I This composition utilized finely powdered metal oxides, M002, La203, Ce02 and W03, all of standard laboratory stock chemicals. Although these were of high purity, any degree of purity above is acceptable. 'Ihese oxides were weighed to provide metal oxide levels of 18.0%, 31.6%, 33.3% and 17.1% respectively, giving integer ratios of l:2:2:1 for the individual metals themselves. The mixed metal oxides were intimately mixed with BaO-TiOz glass beads to the extent of 4 g. mixed metal oxides to 76 g. of glass beads. The mixture, in a crucible, was tired at about 1400 C. to a homogeneous (by thermal convection) melt in a gas fired furnace. Ihe resulting melt was jet formed (a method conventional to the glass bead industry) to sphere-like microparticles, cooled, and screened to to 325 mesh fraction (U.S. Standard Sieve) having a thickness range of to 44 microns. This produced clear, buff colored microspheroids.
Example II A second composition was prepared using the metals Zn, Sr, Cd and Nd in an integer ratio of 4:2:2: 1, respectively, as their oxides except for strontium which was added as its carbonate. The metal oxide-carbonate mixture was weighed out to contain 44.2%, 28.6%, 19.3% and 9.9% of the respective compounds, and the well mixed materials were added to BaO-TiO2 glass beads. From this,
' sphere-like microparticles were made as described in Example I. This produced clear, off-white (in bulk) microspheroids of 37 to 149 micron range (400 to 100 mesh). The loss of CO2 from the carbonate in the melt step was not detrimental.
Example III A third composition was prepared using MnO2, NiOY and SnO in weighed proportions of 26.5%, 42.7% and 19.0%,
C0203, 1 1.8 respectively, to give a metals integer ratio of 2:1:4:2. The metal oxide mixture was intimately mixed with BaO-TiOz glass beads and sphere-like microparticles were made therefrom as described in Example I. This composition produced a clear black colored (in bulk) microspheroid product.
All of the microparticles of Examples I, II, and III had densities greater than 3.3 g./cc., a useful property for facile separation from other substances.
Example IV A fourth composition was a sol-gel preparation of microparticles. A clear, colorless solution was prepared by dissolving with agitation in 110 g. of Iwater 42.70 g. aluminum acetate [Niaproof (TM)] containing the equivalent of 19.0 g. 3Al2O3-B2O3. With continued agitation was added 1.44 g. MnCl24H2O dissolved in 10.0 g. water (0.40 g. Mn), 0.474 g. Cd(CH3COO)2-2H2O dissolved in 10,0 g. Water (0.20 g. Cd), and 1.064 g. CeCl37H2O dissolved in 10.0 g. water (0.40 g. Ce) to give a clear, colorless solution containing:
2% Mn, Cd, Ce and 3A1ZO3'B203 Eighty grams of tbe solution Was slowly poured into 3.5 liters of Z-ethylhexanol at room temperature While being agitated at about 800 r.p.m. with an air motor driven paddle type mixer in a 4-liter beaker. Agitation was continued for an additional 20 minutes to extract water from the microdroplets of solution in the alcohol. The wet alcohol was removed by filtration through l#54 Whatman lter paper to recover transparent, colorless sphere-like particles of 20 to 100 microns size range. 'Ihe particles were dried in an oven at 90-l00 C. for 1% hours to remove residual alcohol and then placed in a porcelain crucible in an electric furnace at room temperature. 'Ihe furnace temperature was raised to 600 C. over a 11/2 hour period, then raised to 850 C. and held at this temperature for an additional 1 hour. The yield was 7.3 g. of light brown, transparent microspheroids.
Example V A higher density microparticle than described in Example IV was prepared by using a carrier consisting of ZrO2:SiO-2 (1:1) in the following manner: To 58.75 g. zirconium acetate solution (equivalent to 12.9 g. Zr02) was added 0.72 g. MnCl2-4H2O (0.2 g. Mn), 0.95 g. Cd(CII3COO)2-2H2O (0.4 g. Cd), and 0.53 g. CeC13-7H2O (0.2 g. Ce).
The salts dissolved readily to form a clear, colorless solution. To this solution was added with agitation an aqueous dispersion having a pH of about 1 prepared from 21.0 g. colloidal silica (30% SiO2) plus 10 drops of concentrated hydrochloric acid. Although the resulting dispersion was slightly cloudy, it Was colorless and there was no trace of particulate matter apparent. This dispersion was gravity fed through a syringe into 3.5 liters 2-ethylhexanol at room temperature while being agitated as in Example IV, but at about SOO-1000 r.p.m. The addition required about one minute and stirring was continued for 20 minutes to remove water from the microdroplets in the alcohol. The wet alcohol was removed by filtration through #54 Whatman iilter paper to recover clear, colorless microspheroids of 2O to 120 microns size range. These were dried at 90- 100 C. for one hour and then placed in a porcelain crucible in an electric furnace and raised to SOO-820 C. over a 3-hour period and cooled. About 20 g. of lavenderbrown, transparent microspheroids were obtained.
Other coded microspheroids were made with 3, 4 and 5 different tagging elements at various concentration levels and with various carriers such as titania, alumina and alumina-borosilicate using4 the techniques of Examples IV and V.
The coded microparticles, such a's those from Examples I-V, are produced and maintained in individual batches wherein each and all of the microparticles within one batch will have an identical code. Microparticles from any one batch may then be added to a lot or unit of production of a substance for coding the same. For example, the microparticles may be added: to paper for use as money, securities, bonds, documents, labels, etc.; to adhesives, coatings, sealants, etc.; to plastics, resins, foams, etc.; to pharmaceutical items such as drugs, narcotics, medicinals, etc.; to explosives such as gun powder, dynamite and other propellants for munitions; to surface coating substances such as paints, lacquers, enamels pigments, waxes, etc.; and other manufactured goods.
Paint-like coating substances containing coded microparticles may identify objects such as automobiles. A given code applied to a single automobile or to a series of automobiles would provide identification that would be nearly impossible for a thief to locate rand remove. Identifying paint fragments containing the microparticles might be found on a hit-an-run victim or, in the case of tagged tools, might help convict a burglar.
The following Examples VI-VIII illustrate three instances wherein coded microparticles such as those produced in accordance with Examples I-V have been incorporated, recovered and used to identify a specific substance.
Example VI To 'assist in understanding this example, reference is additionally made to FIG. 2 of the drawing.
7 Example VII To 30 g. of an alkyd automobile enamel (Ditzco Enamel DOE-8238 manufactured by Ditzler Automotive Finishes, a subsidiary of Pittsburgh Plate Glass Company) was added 0.03 g. sol-gel microspheroids (produced similarly to the microspheroids of Examples IV and V) with Co, Ni and Sr as coding elements in integer ratio of 412:1. The coded paint was thoroughly mixed by hand shaking in a covered glass jar of 120 cm.3 (4 oz.) capacity for several minutes. This gave a 1:540 identifier to enamel ratio based upon 54% solids content.
Three of four previously cleaned and dried plates of 5 cm. x 10 cm. x .56 mm. (2" x 4" x .022) galvanized sheet metal were divided transversely into two equal areas with .6 cm. (MW) strips of masking tape. One-half of each of the three divided plates was brush painted with coded enamel and the other half with the original uncoded enamel. 'Ihe fourth plate was completely painted with the coded enamel and cemented firmly near the end of a piece of wood approximately 36 cm. x 5 cm. x 1.3 cm. (14l x 2" x 1/2) and all of the painted plates were air dried at ambient temperature and relative humidity for one hour, then further dried for one hour under a 300 watt infrared heat lamp at 76 cm. (30) distance.
'Visual inspection of the painted specimens revealed no differences in appearance to the unaided eye. Under 60X magnification, probing with a dissecting needle readily revealed microspheroids within the coded enamel. The specimen attached to the wooden handle was beaten severely against a mounted metal knob as a crude simulation of an automobile impact. Visual examination of the knob revealed transfer of enamel fragments. Under the microscope, microspheroids were observed in the transferred fragments.
A separated microspheroid was analyzed according to method described in Example VI and shown to be the CozNizSr (422:1) coded microspheroid incorporated originally into the enamel.
'Example VIII Thirty-two rounds of 9 mm. antebellum Walther P-3-8 pistol ammunition were unloaded and the 11.2 g. (175.2 grains) of the collected powder was mixed with 12.5 mg. of microspheroids of Example III. This gave a powder to identifier ratio of 910: 1. The intimately mixed powdermicrospheroid combination was then reloaded into the previously emptied rounds for use in firing tests.
A cardboard cylinder was firmly packed with sawdust which was retained with a cardboard disc. To this cardboard disc was secured a piece of beef and draped with a clear piece of linen cloth to serve as a crude representation of a clothed iiesh target. A rst round containing the mixed powder-microspheroid combination was fired into the horizontally suspended target from approximately 6 rn. (20 feet). Before firing the second round, the beef, cloth and cardboard disc were all replaced and this sequence was repeated for a total of five rounds. The punctured target cloths, meat pieces and cardboard discs were individually packaged in polystyrene bags and labelled. The same was done for cleaning swatches used to clean the barrel after the tests, one package of swatches bearing cleaning solvent and oil and a second package item and analyzed as described in Example VI to confirm the original code.
In the case where quantities of microspheroid coded dynamite may be acquired or stolen from more than one source, combined and used in a criminal blast, it has been shown that microspheroids recovered from the blast debris did in fact represent the several sources. This was demonstrated in a test blast using three differently coded identifiers all at 1:1000 identifier to dynamite ratio, and the analysis correctly revealed that the three coded dynamites had been used.
It is appreciated that analytical techniques and instrumentation other than the electron microprobe analysis cited in Example VI may be utilized within the teachings of this invention. 'For example, neutron activation analysis, atomic absorption spectroscopy, emission spectroscopy, energy-dispersive X-ray analysis, electron paramagnetic resonance spectrometry and spark-source mass spectrometry could be employed to analyze isolated microparticles.
It is anticipated that this invention might have utility in tagging drugs in which case it may be required, for government approval, to use a biodegradable carrier material such as a material of polymeric nature.
What is claimed is:
1. A method of tagging individual units of production of a substance comprising the steps of: (l) providing microparticles of a refractory carrier material of characteristic geometric shape and size, the broadest dimensions of which are not less than one nor more than 250 microns, containing tagging elements in amounts of at least 0.1 percent of the total weight, which microparticles have a density greater than 3.3 g./cc. and survive ashing at 400-500 C.; (2) providing an inventory of batches of microparticles, each batch being uniformly coded by ncorporation in the microparticles of a selected combination of the tagging elements, which inventory includes up t0 uniquely coded batches of microparticles where L is the number of discrete concentration levels at which the individual elements lare used and N is the number of available tagging elements, and the microparticles of at least some of the batches contain at least three tagging elements, (3) maintaining a record of the particular elements and their levels employed in each batch of microparticles, and (4) incorporating microparticles from any one batch with only one unit of production of the substance, recovery of a single microparticle being suiiicient to identify the unit of production Iof the substance.
2. A method of tagging individual units of production of a substance according to claim 1 wherein L equals one and qualitative analysis of a microparticle will identify the unit of production of the substance.
3. A method of tagging individual units of production of a substance according to claim 1 wherein L is greater than one and both qualitative and quantitative analysis of a microparticle will identify the unit of production of the substance.
4. A method of tagging individual units of production of a substance according to claim 3 wherein the discrete level of at least one element will vary from one batch of microparticles to another by a factor of at least 1.5.
5. A method as defined in claim 4 wherein N is at least 10 and L is at least 3.
6. A method of tagging individual units of production of a substance according to claim 1 wherein said carrier material is vitreous in nature.
7. A method of tagging individual units of production of a substance according to claim 1 wherein said carrier material is crystalline in nature.
8. A method of tagging individual units of production of a substance according to claim 1 wherein each microparticle is spheroidal.
9. A method as dened in claim 8 wherein the spheroidal microparticles are between 20 and 100 microns in diameter.
10. A method of tagging individual units of production of a substance according to claim 1 wherein the microparticles from a single batch are incorporated into a paintlike surface coating.
11. A method of tagging individual units of production of a substance according to claim 1 wherein the available tagging elements are:
Aluminum Neodymium Antimony Nickel Arsenic Niobium (columbium) Barium Potassium Bismuth Praseodymium Cadmium Selenium Calcium Silicon Cerium Silver Chromium Sodium Cobalt Strontium Copper Tantalum Gallium Thallium Germanium Thorium Indium Tin Iron Titanium Lanthanum Tungsten (Wolfram) Lead Uranium Lithium Vanadium Magnesium Zinc Manganese Zirconium Molybdenum April 1969.
References Cited UNITED STATES PATENTS OTHER REFERENCES Tracy, Coding Documents by Trace Element Inclusion (IBM Technical Disclosure Bulletin, vol. 11, No. 11)
Horowitz et al., Proceedings of the Joint Conference on Prevention and Control of Oil Spills, pp. 283-296 (1969), American Petroleum Institute, New York.
CARL D. QUARFORTH, Primary Examiner E. A. MILLER, Assistant Examiner U.S. Cl. X.R.
117-161 K; 149-2; Z50-106 T
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13901271A | 1971-04-30 | 1971-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3772200A true US3772200A (en) | 1973-11-13 |
Family
ID=22484726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00139012A Expired - Lifetime US3772200A (en) | 1971-04-30 | 1971-04-30 | Method of tagging with microparticles |
Country Status (1)
Country | Link |
---|---|
US (1) | US3772200A (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3967990A (en) * | 1975-03-03 | 1976-07-06 | The United States Of America As Represented By The Secretary Of The Interior | Combination of band-type and line-type emission phosphors with explosive |
US4013490A (en) * | 1973-03-27 | 1977-03-22 | Westinghouse Electric Corporation | Phosphor identification method, particularly adapted for use with explosives, for providing a distinctive information label |
US4018635A (en) * | 1971-05-17 | 1977-04-19 | Westinghouse Electric Corporation | Phosphor combination, particularly adapted for use with explosives, for providing a distinctive information label |
USRE29334E (en) * | 1971-05-17 | 1977-08-02 | Westinghouse Electric Corporation | Phosphor combination and method, particularly adapted for use with explosives, for providing a distinctive information label |
US4053433A (en) * | 1975-02-19 | 1977-10-11 | Minnesota Mining And Manufacturing Company | Method of tagging with color-coded microparticles |
US4131064A (en) * | 1977-07-15 | 1978-12-26 | Westinghouse Electric Corp. | Tagging particles which are easily detected by luminescent response, or magnetic pickup, or both |
US4197104A (en) * | 1978-09-21 | 1980-04-08 | General Electric Company | Magnetic tag process |
US4222330A (en) * | 1978-08-16 | 1980-09-16 | General Electric Company | Magnetically tagging ammunition cartridges |
US4243734A (en) * | 1978-07-10 | 1981-01-06 | Dillon George A | Micro-dot identification |
US4329393A (en) * | 1980-05-21 | 1982-05-11 | Minnesota Mining And Manufacturing Company | Coating compositions for retrospective identification of articles |
US4359399A (en) * | 1980-08-27 | 1982-11-16 | The United States Of America As Represented By The Secretary Of The Air Force | Taggants with explosive induced magnetic susceptibility |
US4363965A (en) * | 1980-10-03 | 1982-12-14 | The Franklin Institute | Detection and identification method employing mossbauer isotopes |
US4390452A (en) * | 1979-08-20 | 1983-06-28 | Minnesota Mining & Manufacturing Company | Microparticles with visual identifying means |
US4397142A (en) * | 1981-12-07 | 1983-08-09 | Minnesota Mining And Manufacturing Company | Coded threads and sheet material useful for making such coded threads |
US4431766A (en) * | 1979-11-05 | 1984-02-14 | Stauffer Chemical Company | Coded polymeric material and method |
US4654165A (en) * | 1985-04-16 | 1987-03-31 | Micro Tracers, Inc. | Microingredient containing tracer |
WO1987006383A1 (en) * | 1986-04-09 | 1987-10-22 | Biotal Limited | Labelling articles it is wished to authenticate |
GB2209831A (en) * | 1986-04-04 | 1989-05-24 | Biotal Ltd | Labelling articles it is wished to authenticate |
US5182051A (en) * | 1990-01-17 | 1993-01-26 | Protechnics International, Inc. | Raioactive tracing with particles |
US5396559A (en) * | 1990-08-24 | 1995-03-07 | Mcgrew; Stephen P. | Anticounterfeiting method and device utilizing holograms and pseudorandom dot patterns |
WO1995032490A1 (en) * | 1994-05-21 | 1995-11-30 | Alpha. Scientific (Holdings) Limited | Identification markers and methods for forming the same |
WO1998006084A1 (en) * | 1996-08-02 | 1998-02-12 | Beijing Sanzhu Xinda Biological Probe Co., Ltd. | A method of nucleic acid code analystic technique used in falseproof label |
US5760394A (en) * | 1996-05-17 | 1998-06-02 | Welle; Richard P. | Isotopic taggant method and composition |
WO2000071966A2 (en) * | 1999-05-25 | 2000-11-30 | Welle Richard P | Fragmented taggant ammunition coding system and method |
US6165248A (en) * | 1999-05-24 | 2000-12-26 | Metallic Fingerprints, Inc. | Evaluating precious metal content in the processing of scrap materials |
US6200628B1 (en) * | 1997-12-29 | 2001-03-13 | Sicpa Holding S.A. | Use of inorganic particles and method for making and identifying a substrate or an article |
US20020084329A1 (en) * | 1997-07-16 | 2002-07-04 | Kaye Paul H. | Coded items for labeling objects |
WO2002086413A1 (en) * | 2001-04-23 | 2002-10-31 | Ut-Battelle, Llc | Tagging of bullets with luminescent materials |
US20030046555A1 (en) * | 2001-08-31 | 2003-03-06 | Bradley Shawn J. | Identity verification using biometrics |
US20030119207A1 (en) * | 2001-12-20 | 2003-06-26 | Dejneka Matthew J. | Detectable labels, methods of manufacture and use |
US20030194374A1 (en) * | 2001-01-17 | 2003-10-16 | Xanodyne Pharmacal, Inc. | Compositions including a visual marker and method of use thereof |
WO2004020453A2 (en) * | 2002-08-29 | 2004-03-11 | E.I. Du Pont De Nemours And Company | Functionalized nanoparticles |
US20040056240A1 (en) * | 2002-09-20 | 2004-03-25 | Toshiyuki Waragai | Adhesive |
US20040058328A1 (en) * | 2002-09-20 | 2004-03-25 | Selena Chan | Controlled alignment of nanobarcodes encoding specific information for scanning probe microscopy (SPM) reading |
WO2004038037A2 (en) * | 2002-09-20 | 2004-05-06 | Intel Corporation | Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (spm) reading |
US20040171076A1 (en) * | 2001-12-20 | 2004-09-02 | Dejneka Matthew J. | Detectable micro to nano sized structures, methods of manufacture and use |
US20040256891A1 (en) * | 2003-06-20 | 2004-12-23 | Horst Schonebeck | Vehicle roof module |
WO2004113869A2 (en) * | 2003-06-17 | 2004-12-29 | Surromed, Inc. | Labeling and authentication of metal objects |
US20050277710A1 (en) * | 2004-06-14 | 2005-12-15 | Joyce Richard P | Tagged resin, method of making a tagged resin, and articles made therefrom |
US7060992B1 (en) | 2003-03-10 | 2006-06-13 | Tiax Llc | System and method for bioaerosol discrimination by time-resolved fluorescence |
US7062312B2 (en) | 2001-01-17 | 2006-06-13 | Pediamed Pharmaceuticals, Inc. | Combination and method including a visual marker for determining compliance with a medication regimen |
US7112445B1 (en) | 2000-05-19 | 2006-09-26 | Richard P Welle | Fragmented taggant coding system and method with application to ammunition tagging |
US20070048365A1 (en) * | 2005-08-24 | 2007-03-01 | Rao John J | Edible coded microsubstrate for pharmaceuticals |
US20070148599A1 (en) * | 2005-09-13 | 2007-06-28 | Randall True | Multiple step printing methods for microbarcodes |
US20070232724A1 (en) * | 2003-01-23 | 2007-10-04 | General Electric Company | Methods for encapsulation of materials and methods for making resinous compositions and articles comprising the same |
US20070248957A1 (en) * | 1995-04-25 | 2007-10-25 | Nova Michael P | Encoded solid supports for biological processing and assays using same |
WO2008098638A1 (en) * | 2007-02-15 | 2008-08-21 | Robert Bosch Gmbh | Hand machine tool, battery pack, and charger |
US20080261011A1 (en) * | 2006-09-19 | 2008-10-23 | Ppg Industries Ohio, Inc | Microporous material containing a security feature |
US7720254B2 (en) | 2006-03-13 | 2010-05-18 | Smi Holdings, Inc. | Automatic microparticle mark reader |
US20100297448A1 (en) * | 2005-09-13 | 2010-11-25 | True Randall J | Miniaturized microparticles |
US20110127763A1 (en) * | 2006-09-19 | 2011-06-02 | Ppg Industries Ohio, Inc. | Microporous material containing a security feature |
WO2013044017A1 (en) | 2011-09-23 | 2013-03-28 | Ppg Industries Ohio, Inc. | Composite crystal colloidal array with photochromic member |
US8866108B1 (en) | 2009-01-26 | 2014-10-21 | Krowker Direny | Microtagging motor vehicles for identification from a paint sample discovered during a criminal investigation |
US20150268017A1 (en) * | 2014-03-24 | 2015-09-24 | Triple D Tracker | Encrypted spectral taggant for a cartridge |
US20170103834A1 (en) * | 2015-10-09 | 2017-04-13 | Lexmark International, Inc. | Methods of Making Physical Unclonable Functions Having Magnetic and Non-Magnetic Particles |
US9892290B2 (en) | 2014-07-03 | 2018-02-13 | Spectra Systems Corporation | Systems and methods of using magnetization to authenticate products |
-
1971
- 1971-04-30 US US00139012A patent/US3772200A/en not_active Expired - Lifetime
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018635A (en) * | 1971-05-17 | 1977-04-19 | Westinghouse Electric Corporation | Phosphor combination, particularly adapted for use with explosives, for providing a distinctive information label |
USRE29334E (en) * | 1971-05-17 | 1977-08-02 | Westinghouse Electric Corporation | Phosphor combination and method, particularly adapted for use with explosives, for providing a distinctive information label |
US4013490A (en) * | 1973-03-27 | 1977-03-22 | Westinghouse Electric Corporation | Phosphor identification method, particularly adapted for use with explosives, for providing a distinctive information label |
US4053433A (en) * | 1975-02-19 | 1977-10-11 | Minnesota Mining And Manufacturing Company | Method of tagging with color-coded microparticles |
US3967990A (en) * | 1975-03-03 | 1976-07-06 | The United States Of America As Represented By The Secretary Of The Interior | Combination of band-type and line-type emission phosphors with explosive |
US4131064A (en) * | 1977-07-15 | 1978-12-26 | Westinghouse Electric Corp. | Tagging particles which are easily detected by luminescent response, or magnetic pickup, or both |
US4243734A (en) * | 1978-07-10 | 1981-01-06 | Dillon George A | Micro-dot identification |
US4222330A (en) * | 1978-08-16 | 1980-09-16 | General Electric Company | Magnetically tagging ammunition cartridges |
US4197104A (en) * | 1978-09-21 | 1980-04-08 | General Electric Company | Magnetic tag process |
US4390452A (en) * | 1979-08-20 | 1983-06-28 | Minnesota Mining & Manufacturing Company | Microparticles with visual identifying means |
US4431766A (en) * | 1979-11-05 | 1984-02-14 | Stauffer Chemical Company | Coded polymeric material and method |
US4329393A (en) * | 1980-05-21 | 1982-05-11 | Minnesota Mining And Manufacturing Company | Coating compositions for retrospective identification of articles |
US4359399A (en) * | 1980-08-27 | 1982-11-16 | The United States Of America As Represented By The Secretary Of The Air Force | Taggants with explosive induced magnetic susceptibility |
US4363965A (en) * | 1980-10-03 | 1982-12-14 | The Franklin Institute | Detection and identification method employing mossbauer isotopes |
US4397142A (en) * | 1981-12-07 | 1983-08-09 | Minnesota Mining And Manufacturing Company | Coded threads and sheet material useful for making such coded threads |
US4654165A (en) * | 1985-04-16 | 1987-03-31 | Micro Tracers, Inc. | Microingredient containing tracer |
GB2209831B (en) * | 1986-04-04 | 1990-05-23 | Biotal Ltd | Labelling articles it is wished to authenticate |
GB2209831A (en) * | 1986-04-04 | 1989-05-24 | Biotal Ltd | Labelling articles it is wished to authenticate |
WO1987006383A1 (en) * | 1986-04-09 | 1987-10-22 | Biotal Limited | Labelling articles it is wished to authenticate |
US5182051A (en) * | 1990-01-17 | 1993-01-26 | Protechnics International, Inc. | Raioactive tracing with particles |
US5396559A (en) * | 1990-08-24 | 1995-03-07 | Mcgrew; Stephen P. | Anticounterfeiting method and device utilizing holograms and pseudorandom dot patterns |
WO1995032490A1 (en) * | 1994-05-21 | 1995-11-30 | Alpha. Scientific (Holdings) Limited | Identification markers and methods for forming the same |
US7935659B2 (en) | 1995-04-25 | 2011-05-03 | Nexus Biosystems, Inc. | Multiplexed assays using encoded solid supports |
US20070248957A1 (en) * | 1995-04-25 | 2007-10-25 | Nova Michael P | Encoded solid supports for biological processing and assays using same |
US20090226891A2 (en) * | 1995-04-25 | 2009-09-10 | Nexus Biosystems, Inc. | Encoded solid supports for biological processing and assays using same |
US5760394A (en) * | 1996-05-17 | 1998-06-02 | Welle; Richard P. | Isotopic taggant method and composition |
WO1998006084A1 (en) * | 1996-08-02 | 1998-02-12 | Beijing Sanzhu Xinda Biological Probe Co., Ltd. | A method of nucleic acid code analystic technique used in falseproof label |
US20020084329A1 (en) * | 1997-07-16 | 2002-07-04 | Kaye Paul H. | Coded items for labeling objects |
US6200628B1 (en) * | 1997-12-29 | 2001-03-13 | Sicpa Holding S.A. | Use of inorganic particles and method for making and identifying a substrate or an article |
US6165248A (en) * | 1999-05-24 | 2000-12-26 | Metallic Fingerprints, Inc. | Evaluating precious metal content in the processing of scrap materials |
WO2000071966A3 (en) * | 1999-05-25 | 2001-04-19 | Richard P Welle | Fragmented taggant ammunition coding system and method |
US20100258718A1 (en) * | 1999-05-25 | 2010-10-14 | Welle Richard P | Fragmented taggant coding system and method with application to ammunition tagging |
US8158433B2 (en) | 1999-05-25 | 2012-04-17 | Richard P Welle | Fragmented taggant coding system and method with application to ammunition tagging |
WO2000071966A2 (en) * | 1999-05-25 | 2000-11-30 | Welle Richard P | Fragmented taggant ammunition coding system and method |
US7112445B1 (en) | 2000-05-19 | 2006-09-26 | Richard P Welle | Fragmented taggant coding system and method with application to ammunition tagging |
US7062312B2 (en) | 2001-01-17 | 2006-06-13 | Pediamed Pharmaceuticals, Inc. | Combination and method including a visual marker for determining compliance with a medication regimen |
US20060235312A1 (en) * | 2001-01-17 | 2006-10-19 | Pediamed Pharmaceuticals, Inc. | Combination and method including a visual marker for determining compliance with a medication regimen |
US20030194374A1 (en) * | 2001-01-17 | 2003-10-16 | Xanodyne Pharmacal, Inc. | Compositions including a visual marker and method of use thereof |
WO2002086413A1 (en) * | 2001-04-23 | 2002-10-31 | Ut-Battelle, Llc | Tagging of bullets with luminescent materials |
US20030046555A1 (en) * | 2001-08-31 | 2003-03-06 | Bradley Shawn J. | Identity verification using biometrics |
US20060252088A1 (en) * | 2001-12-20 | 2006-11-09 | Dejneka Matthew J | Detectable labels, methods of manufacture and use |
US7842516B2 (en) | 2001-12-20 | 2010-11-30 | Corning Incorporated | Detectable labels, methods of manufacture and use |
US7241629B2 (en) | 2001-12-20 | 2007-07-10 | Corning Incorporated | Detectable labels, methods of manufacture and use |
US20040171076A1 (en) * | 2001-12-20 | 2004-09-02 | Dejneka Matthew J. | Detectable micro to nano sized structures, methods of manufacture and use |
US20030119207A1 (en) * | 2001-12-20 | 2003-06-26 | Dejneka Matthew J. | Detectable labels, methods of manufacture and use |
WO2004020453A2 (en) * | 2002-08-29 | 2004-03-11 | E.I. Du Pont De Nemours And Company | Functionalized nanoparticles |
WO2004020453A3 (en) * | 2002-08-29 | 2004-11-11 | Du Pont | Functionalized nanoparticles |
US20040058457A1 (en) * | 2002-08-29 | 2004-03-25 | Xueying Huang | Functionalized nanoparticles |
US6890457B2 (en) * | 2002-09-20 | 2005-05-10 | Toshiyuki Waragai | Adhesive |
US7476786B2 (en) | 2002-09-20 | 2009-01-13 | Intel Corporation | Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (SPM) reading |
US20040056240A1 (en) * | 2002-09-20 | 2004-03-25 | Toshiyuki Waragai | Adhesive |
WO2004038037A3 (en) * | 2002-09-20 | 2004-11-11 | Intel Corp | Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (spm) reading |
US20040058328A1 (en) * | 2002-09-20 | 2004-03-25 | Selena Chan | Controlled alignment of nanobarcodes encoding specific information for scanning probe microscopy (SPM) reading |
US20060281119A1 (en) * | 2002-09-20 | 2006-12-14 | Intel Corporation | Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (SPM) |
US7361821B2 (en) | 2002-09-20 | 2008-04-22 | Intel Corporation | Controlled alignment of nanobarcodes encoding specific information for scanning probe microscopy (SPM) reading |
US7531726B2 (en) | 2002-09-20 | 2009-05-12 | Intel Corporation | Controlled alignment of nanobarcodes encoding specific information for scanning probe microscopy (SPM) reading |
WO2004038037A2 (en) * | 2002-09-20 | 2004-05-06 | Intel Corporation | Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (spm) reading |
US20040126820A1 (en) * | 2002-09-20 | 2004-07-01 | Selena Chan | Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (SPM) reading |
US7705222B2 (en) | 2002-09-20 | 2010-04-27 | Intel Corporation | Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (SPM) |
US7312257B2 (en) | 2003-01-23 | 2007-12-25 | General Electric Company | Polymer encapsulation of high aspect ratio materials and methods of making same |
US20070232724A1 (en) * | 2003-01-23 | 2007-10-04 | General Electric Company | Methods for encapsulation of materials and methods for making resinous compositions and articles comprising the same |
US7060992B1 (en) | 2003-03-10 | 2006-06-13 | Tiax Llc | System and method for bioaerosol discrimination by time-resolved fluorescence |
WO2004113869A3 (en) * | 2003-06-17 | 2005-03-10 | Surromed Inc | Labeling and authentication of metal objects |
WO2004113869A2 (en) * | 2003-06-17 | 2004-12-29 | Surromed, Inc. | Labeling and authentication of metal objects |
US20040256891A1 (en) * | 2003-06-20 | 2004-12-23 | Horst Schonebeck | Vehicle roof module |
WO2005124340A1 (en) * | 2004-06-14 | 2005-12-29 | General Electric Company | Tagged resin, method of making a tagged resin, and articles made therefrom |
US20050277710A1 (en) * | 2004-06-14 | 2005-12-15 | Joyce Richard P | Tagged resin, method of making a tagged resin, and articles made therefrom |
US20070048365A1 (en) * | 2005-08-24 | 2007-03-01 | Rao John J | Edible coded microsubstrate for pharmaceuticals |
US7745092B2 (en) | 2005-09-13 | 2010-06-29 | Affymetrix, Inc. | Multiple step printing methods for microbarcodes |
US20070148599A1 (en) * | 2005-09-13 | 2007-06-28 | Randall True | Multiple step printing methods for microbarcodes |
US7745091B2 (en) | 2005-09-13 | 2010-06-29 | Affymetrix, Inc. | Miniaturized microparticles |
US20100227279A1 (en) * | 2005-09-13 | 2010-09-09 | True Randall J | Methods for producing codes for microparticles |
US20100227770A1 (en) * | 2005-09-13 | 2010-09-09 | Randall True | Brownian microbarcodes for bioassays |
US8945811B2 (en) | 2005-09-13 | 2015-02-03 | Affymetrix, Inc. | Miniaturized microparticles |
US8748079B2 (en) | 2005-09-13 | 2014-06-10 | Affymetrix, Inc. | Multiple step printing methods for microbarcodes |
US20100297336A1 (en) * | 2005-09-13 | 2010-11-25 | Randall True | Multiple Step Printing Methods for Microbarcodes |
US20100297448A1 (en) * | 2005-09-13 | 2010-11-25 | True Randall J | Miniaturized microparticles |
US8592136B2 (en) | 2005-09-13 | 2013-11-26 | Affymetrix, Inc. | Methods for producing codes for microparticles |
US8178278B2 (en) | 2005-09-13 | 2012-05-15 | Affymetrix, Inc. | Miniaturized microparticles |
US20080038559A1 (en) * | 2005-09-13 | 2008-02-14 | Randall True | Miniaturized microparticles |
US8168368B2 (en) | 2005-09-13 | 2012-05-01 | Affymetrix, Inc. | Miniaturized microparticles |
US8088555B2 (en) | 2005-09-13 | 2012-01-03 | Affymetrix, Inc. | Multiple step printing methods for microbarcodes |
US7831042B2 (en) | 2006-03-13 | 2010-11-09 | Smi Holdings, Inc. | Three-dimensional authentication of microparticle mark |
US7720254B2 (en) | 2006-03-13 | 2010-05-18 | Smi Holdings, Inc. | Automatic microparticle mark reader |
US7885428B2 (en) | 2006-03-13 | 2011-02-08 | Smi Holdings, Inc. | Automatic microparticle mark reader |
US8033450B2 (en) | 2006-03-13 | 2011-10-11 | Smi Holdings, Inc. | Expression codes for microparticle marks based on signature strings |
US8223964B2 (en) | 2006-03-13 | 2012-07-17 | Smi Holdings, Inc. | Three-dimensional authentication of mircoparticle mark |
US20110127763A1 (en) * | 2006-09-19 | 2011-06-02 | Ppg Industries Ohio, Inc. | Microporous material containing a security feature |
US20080261011A1 (en) * | 2006-09-19 | 2008-10-23 | Ppg Industries Ohio, Inc | Microporous material containing a security feature |
US8728617B2 (en) | 2006-09-19 | 2014-05-20 | Ppg Industries Ohio, Inc. | Microporous material containing a security feature |
WO2008098638A1 (en) * | 2007-02-15 | 2008-08-21 | Robert Bosch Gmbh | Hand machine tool, battery pack, and charger |
US8866108B1 (en) | 2009-01-26 | 2014-10-21 | Krowker Direny | Microtagging motor vehicles for identification from a paint sample discovered during a criminal investigation |
WO2012082351A2 (en) | 2010-12-17 | 2012-06-21 | Ppg Industries Ohio, Inc. | Microporous material containing a security feature |
US8641933B2 (en) | 2011-09-23 | 2014-02-04 | Ppg Industries Ohio, Inc | Composite crystal colloidal array with photochromic member |
WO2013044017A1 (en) | 2011-09-23 | 2013-03-28 | Ppg Industries Ohio, Inc. | Composite crystal colloidal array with photochromic member |
US20150268017A1 (en) * | 2014-03-24 | 2015-09-24 | Triple D Tracker | Encrypted spectral taggant for a cartridge |
US9892290B2 (en) | 2014-07-03 | 2018-02-13 | Spectra Systems Corporation | Systems and methods of using magnetization to authenticate products |
US20170103834A1 (en) * | 2015-10-09 | 2017-04-13 | Lexmark International, Inc. | Methods of Making Physical Unclonable Functions Having Magnetic and Non-Magnetic Particles |
US10410779B2 (en) * | 2015-10-09 | 2019-09-10 | Lexmark International, Inc. | Methods of making physical unclonable functions having magnetic and non-magnetic particles |
US20190392970A1 (en) * | 2015-10-09 | 2019-12-26 | Lexmark International, Inc. | Methods of Making Physical Unclonable Functions Having Magnetic Particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3772200A (en) | Method of tagging with microparticles | |
US5760394A (en) | Isotopic taggant method and composition | |
US4197104A (en) | Magnetic tag process | |
Lu et al. | Petrogenesis of Paleo-Mesoproterozoic mafic rocks in the southwestern Yangtze Block of South China: Implications for tectonic evolution and paleogeographic reconstruction | |
US3772099A (en) | Phosphor combination and method, particularly adapted for use with explosives, for providing a distinctive information label | |
US3897284A (en) | Tagging explosives with organic microparticles | |
Righter et al. | Significance of highly siderophile elements and osmium isotopes in the lunar and terrestrial mantles | |
Rosenblum et al. | Mineralogy and occurrence of europium-rich dark monazite | |
US4198307A (en) | Polymer based magnetic tags | |
US4018635A (en) | Phosphor combination, particularly adapted for use with explosives, for providing a distinctive information label | |
Brooks et al. | Copper and cobalt in African species of Aeolanthus Mart.(Plectranthinae, Labiatae) | |
Abdelfadil et al. | Mantle source characteristics of the late Neoproterozoic post-collisional gabbroic intrusion of Wadi Abu Hadieda, north Arabian-Nubian Shield, Egypt | |
Chester et al. | The partitioning of elements in crust-dominated marine aerosols | |
Cerny et al. | Niobium-tantalum minerals from granitic pegmatites at Greer Lake, southeastern Manitoba | |
Drake et al. | “Henry's Law” behaviour of Sm in a natural plagioclase/melt system: importance of experimental procedure | |
Mason | Allende meteorite. Cosmochemistry's Rosetta Stone | |
Soddy | Radioactivity | |
Litwin et al. | Basic guidelines for palynomorph extraction and preparation from sedimentary rocks | |
US3155622A (en) | Radioactive magnetic flaw detection composition and process for making same | |
DE2343774C3 (en) | Procedure for labeling individual production units of solid and semi-solid substances | |
Yezerskiy | High pressure polymorphs produced by the shock transformation of coals | |
Watterson et al. | Instrumental neutron activation analysis and the characterization of granitic rocks | |
Hutchison et al. | Chemical methods of rock analysis | |
Sauerer et al. | Abundance and distribution of boron in the Hauzenberg (Bavaria) granite complex | |
Adams et al. | Chemical fractionation of the lunar regolith by impact melting |