US20190125557A1 - Expansion ring for a braided stent - Google Patents
Expansion ring for a braided stent Download PDFInfo
- Publication number
- US20190125557A1 US20190125557A1 US16/234,270 US201816234270A US2019125557A1 US 20190125557 A1 US20190125557 A1 US 20190125557A1 US 201816234270 A US201816234270 A US 201816234270A US 2019125557 A1 US2019125557 A1 US 2019125557A1
- Authority
- US
- United States
- Prior art keywords
- stent body
- intersection
- braided
- expansion ring
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/89—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/844—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents folded prior to deployment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/852—Two or more distinct overlapping stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/92—Stents in the form of a rolled-up sheet expanding after insertion into the vessel, e.g. with a spiral shape in cross-section
- A61F2/93—Stents in the form of a rolled-up sheet expanding after insertion into the vessel, e.g. with a spiral shape in cross-section circumferentially expandable by using ratcheting locks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
- A61F2002/8486—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs provided on at least one of the ends
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91591—Locking connectors, e.g. using male-female connections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0061—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0041—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels or rivets, e.g. connecting screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0091—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements connected by a hinged linkage mechanism, e.g. of the single-bar or multi-bar linkage type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2240/00—Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2240/001—Designing or manufacturing processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0004—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
- A61F2250/001—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting a diameter
Definitions
- the present disclosure relates generally to treatment of certain defects in a vasculature of a patient and more particularly, to self-expanding braided stents to a treatment site in a vasculature of a patient.
- Stents are understood as tubular reinforcements that can be inserted into a blood vessel to provide an open path within the blood vessel. Stents have been widely used in intravascular angioplasty treatment of occluded cardiac arteries, wherein the stent may be inserted after an angioplasty procedure to prevent restenosis of the artery. Stents are often deployed by use of delivery devices which cause the stent to open with the objective of reinforcing the artery wall and provide a clear through-path in the artery thereby preventing restenosis.
- a stent that can be used with delivery techniques in vasoocclusive treatment of neurovascular defects that provides selective reinforcement in the vicinity of the neurovascular defect.
- a need also exist for a stent that reduces trauma or risk of rupture to the blood vessel. It is with respect to these and other considerations that the various embodiments described below are presented.
- the present disclosure relates to a braided stent system for delivery into a blood vessel.
- They system may include a stent body having a lumen formed by a plurality of braided members with interstices formed therebetween.
- An expansion ring may be mechanically connected to the lumen of the stent body and be operable to maintain the expansion ring in an opened state by having its frame impart an outwardly expanding radial force to the stent body.
- the frame may include plurality of legs joined at a first intersection and a claw portion mechanically connected to one or more of the interstices of the stent body.
- the claw portion may mechanically connect the expansion ring to one or more of the interstices by extending away from the first intersection through a plurality of the interstices and terminating at a locking mechanism opposite the first intersection.
- the claw portion may include at least two aligned elongate members that extend between the first intersection and the locking mechanism to form a void therebetween.
- One or a plurality of the interstices may pass through the void as the claw portion mechanically connects the expansion ring to the stent body.
- the plurality of legs of the frame may also be bowed and/or oriented in a non-linear configuration causing the frame to be resistant to compression so that the braided stent system is self-expanding.
- the legs may be rotatable, pivotable, and/or twistable a predetermined amount about the first intersection.
- a braided stent system having a stent body having a lumen formed by a plurality of braided members with interstices formed therebetween and a first expansion ring connected to the lumen of the stent body.
- the first expansion ring may include a frame defined by a plurality of interconnected support assemblies that are selectively positioned to impart an outwardly expanding radial force to the stent body, each support assembly can include a plurality of legs joined at a first intersection and connected to one of the other interconnected support assemblies at a second intersection opposite the first intersection.
- Each support assembly can also include a claw portion mechanically connected to one or more of the interstices of the stent body.
- the plurality of legs of the frame may be bowed and/or oriented in a non-linear configuration causing the frame to be resistant to compression so that the braided stent system is self-expanding.
- the legs may be rotatable, pivotable, and/or twistable a predetermined amount about the first intersection.
- the claw portion may also mechanically connect the expansion ring to inner and outer portions of the lumen by extending away from the first intersection, being interlaced through at least two of the interstices, and being terminated at a locking mechanism opposite the intersections.
- the locking mechanism may include a T-shaped end or outwardly extending hooked members operable to fixedly connect to the interstices of the stent body.
- at least one of the claw portions may include a plurality of aligned elongate members that extend between respective first intersections and locking mechanisms to form a void through which the plurality of interstices can pass.
- one or a plurality of braided pairs of the braided members can pass through the void.
- the locking mechanism may also fixedly connect the expansion ring to the stent body by joining ends of the aligned elongate members opposite the first intersection through welding, soldering, crimping, or an adhesive bond.
- the solution is not so limiting, however, and the locking mechanism may fixedly connect the expansion ring to the stent body by joining ends of the aligned elongate members opposite the first intersection through a fastener such as a metallic band and/or ring.
- at least one of the first and/or second intersections can form a V-shape, a U-shape, or an elliptical curve.
- the stent body can include a proximal end, a distal end, and a central portion disposed therebetween.
- the first expansion ring can be disposed on or adjacent the distal or proximal ends of the stent body with the second intersections of the interconnected support assemblies being joined at or adjacent the respective distal or proximal ends.
- One or more additional expansion rings can also be connected to the lumen along or in connection with the central portion of the stent body and/or the opposing, distal or proximal end of the stent body.
- a method of deploying a braided stent body into a vessel comprising the following steps: assembling a plurality of expansion rings to a lumen of the braided stent body, the lumen of the braided stent body being formed by a plurality of braided members with interstices formed therebetween; selectively positioning each expansion ring with the braided stent body; each expansion ring imparting an outwardly expanding radial force thereby maintaining the lumen of the braided stent body in an opened position, each expansion ring comprising: a frame defined by a plurality of interconnected support assemblies comprising a plurality of legs joined at a first intersection and connected to one of the other interconnected support assemblies at a second intersection opposite the first intersection, the legs being twistable about the first and second intersections; and a claw portion disposed opposite the first and second intersections; mechanically connecting the claw portion of each ring to an inner portion of the stent body by interlacing a first elongate member extended
- the method can also include forming a void between the first and second elongate members and respective first intersections and locking mechanisms; and passing one or a plurality of braided pairs of the braided members through the void.
- the method may also include fixedly connecting the expansion ring to the stent body by joining ends of the first and second elongate members opposite the first intersection through welding, soldering, crimping, an adhesive bond, and/or a fastener.
- FIG. 1 depicts a side plan view of one embodiment of the herein disclosed expansion ring assembled at an end of a tubular braided stent body.
- FIG. 2 depicts is another view of one embodiment of the herein disclosed expansion ring assembled with a tubular braided stent body.
- FIG. 3 is a close-up view of plane A-A of FIG. 2 showing certain features of the expansion ring assembled with the tubular braided stent body.
- FIG. 4A is a side plan view of certain features of an exemplary expansion ring having support assemblies.
- FIG. 4B is a side plan view of certain features of an exemplary expansion ring having support assemblies.
- FIG. 4C is a side plan view of certain features of an exemplary expansion ring having support assemblies.
- FIG. 5A is a perspective of an exemplary expansion ring with multiple claws prior to being assembled with a tubular braided stent body.
- FIG. 5B is forward plan view of an example prototype of the exemplary expansion ring of FIG. 5A when assembled with a tubular braided stent body showing its inner lumen in a compressed state at a cross-section of the tubular braided stent body aft of the claw.
- FIG. 5C is a forward plan view of the exemplary expansion ring of FIG. 5B when assembled with a tubular braided stent body showing its inner lumen in a compressed state at a cross-section of the claw.
- FIG. 6 depicts a side plan view of exemplary expansion rings having multiple claws when assembled at respective proximal and distal ends of a tubular braided stent body.
- FIG. 7 is a close-up view of plane B-B of FIG. 6 showing certain features of one of the depicted expansion rings weaved through interstices of the tubular braided stent body with a fixed attachment.
- FIG. 8 depicts a side plan view of exemplary expansion rings having multiple claws when assembled at proximal and distal ends of a tubular braided stent body as well as at least one expansion ring placed along the body between the distal and proximal ends.
- FIG. 9A depicts a side plan view of an exemplary expansion ring assembled with a tubular stent body, wherein a claw of the expansion ring is being secured using a single braid wire pair of the tubular stent body.
- FIG. 9B depicts a side plan view of an exemplary expansion ring assembled with a tubular stent body, wherein a claw of the expansion ring is being secured using two braided wire pairs of the tubular stent body.
- FIG. 9C depicts a side plan view of an exemplary expansion ring assembled with a tubular stent body, wherein a claw of the expansion ring is being secured using three braided wire pairs of the tubular stent body.
- FIG. 10A depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting certain features of the expansion ring entering and exiting braids of the tubular stent body in a first arrangement.
- FIG. 10B depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting certain features of the expansion ring entering and exiting braids of the tubular stent body in a second arrangement.
- FIG. 10C depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting certain features of the expansion ring entering and exiting braids of the tubular stent body in a third arrangement.
- FIG. 11A depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting an embodiment having T-shaped endings.
- FIG. 11B depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting an embodiment having hook-shaped endings.
- FIG. 12A depicts a side plan view an example prototype of one example ring assembled with a tubular stent body along a longitudinal cross section of a claw assembled with the tubular stent body.
- FIG. 12B depicts a side plan view of an example prototype of one example ring assembled with a tubular stent body along a longitudinal cross section of a claw assembled with the tubular stent body.
- vasculature of a “subject” or “patient” may be vasculature of a human or any animal.
- an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc.
- the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like).
- the subject may be any applicable human patient, for example.
- Braided stents may be formed from a plurality of elongate members (e.g. metal wires, polymeric fibers, or strands of material) and these members can be very useful in treatment of neurovascular defects.
- elongate members e.g. metal wires, polymeric fibers, or strands of material
- braided stents have been known to exhibit high internal friction that resists the inherent radial expansion force of the self-expanding braided stent when being deployed to an opened state.
- the relatively high internal friction can render it difficult to open the initially expanding end of the stent which results in deficiencies in anchoring and deployment. This is particularly true for braided stents delivered to the desired vessel location through use of a delivery sheath, microcatheter, or the like, since in a closed state (e.g. compressed or crimped) the stent body typically exhibits friction between the braided members and the delivery sheath or microcatheter.
- braided stents can be delivered to a particular vessel by advancing a blunt surface against a proximal end of the braided stent causing the braided stent to axially compress and expand radially.
- This expansion within the delivery sheath or microcatheter can result in an increased normal force being applied to the inner surface of the delivery sheath, microcatheter, or the like thereby also increasing friction caused by the braided stent.
- a “self-expanding” stent is a stent wherein the particular stent fully deploys upon emerging through a delivery device such as a sheath, microcatheter, or the like.
- a self-expanding stent body emerges, unrestrained outside of the respective delivery device, the self-expanding braided stent should expand and be deployed in the vasculature.
- due to the referenced radial forces and friction stent deployment and recapture following deployment is difficult.
- expansion ring 1 resolves these and other issues by providing a secure, mechanical attachment between ring 1 and the corresponding, braided stent body 12 that increases an outwardly extending radial expansion force of an initial proximal deployment end 6 of body 12 , an opposing distal end 8 of body 12 , and/or a central portion defined between each end 6 and 8 .
- ring 1 includes one or a plurality of interconnected support assemblies 10 that collectively cause the ring to fully anchor itself with the lumen 20 of body 12 by mechanically securing a claw 17 of each assembly 10 to be interlaced with the braided, elongate members 22 of body 12 .
- FIGS. 1 and 2 a side plan view of the herein disclosed ring 1 and corresponding support assemblies 10 is shown disposed at a proximal end 6 of body 12 which may be the later deployed end.
- FIG. 1 is a close up view of one embodiment of ring 1 when assembled with body 12 whereas FIG. 2 shows more of body 12 when an exemplary ring 1 is assembled with body 12 .
- body 12 may also include a distal end 8 (also known as an initially-deployed end) opposite its proximal end 6 as seen more clearly in FIG. 6 , and ring 1 may be mechanically connected at distal end 8 and/or disposed at any positioned between ends 6 and 8 .
- body 12 of FIGS. 1 and2 may be formed from a plurality of elongate members 22 braided or otherwise arranged to form a plurality of interstices 24 .
- Members 22 may be formed from two or more metal wires, or polymeric fibers or strands of material.
- Ring 1 may be constructed from one or multiple interconnect support assemblies 10 that together form a frame of ring 1 that is capable of imparting one or more additive radial forces to an inner wall and/or an outer wall of lumen 20 .
- ring 1 may be selectively positioned and arranged for rapidly opening and/or maintaining body 12 in an opened position without having to weld, solder, glue, or otherwise connect ring 1 to body 12 itself
- FIG. 3 is a close up view of plane A-A of FIG. 2 more clearly showing an exemplary claw 17 of one assembly 10 interlaced with the interstices 24 and braided, elongate members 22 .
- assembly 10 may include a first leg 28 joined with a second leg 30 at a first intersection 31 .
- legs 28 and 30 are seen integrally formed with each other in FIG. 3 , each assembly 10 is not so limited and legs 28 and 30 may be removably attached to each other through a fastener including a band, bolt, clamp, coupling, dowel, hook, latch, key, or the like.
- Legs 28 and 30 may also be adhered to each other or welded to form intersection 31 .
- fasteners and/or legs 28 and 30 can be formed of a radiopaque metal, such as platinum or tantalum, or may be formed of a non-radiopaque material, such as stainless steel.
- each ring 1 is allowed to interlace with body 12 without a permanent or rigid attachment to body 12 such as welding, soldering or a chemical adhesive.
- braided members 22 can also move independently from ring 1 which removes the adverse impact that a permanent or rigid attachment previously had on body 12 to fully expand when assembled with an expansion ring.
- Intersection 31 may also include a rotatable and/or twistable coupling so that each assembly 10 of ring 1 is capable of flexing a predetermined amount when body 12 and ring 1 is in use.
- One or more elongate members 18 may extend from intersection 31 and terminate at a locking mechanism 40 opposite intersection 31 and legs 28 and 30 .
- a plurality of elongate members 18 are shown substantially aligned and offset from each other while being joined at mechanism 40 to form a void 5 therebetween.
- each claw 17 may have respective members passed through and/or interlaced with interstices 24 and members 22 and then joined at mechanism 40 .
- one or more multiple braided pairs 26 of members 22 may be arranged in or in connection with void 5 so that claw 17 may be mechanically attached to inner and outer portions of lumen 20 .
- Mechanism 40 of FIG. 3 may be formed from a weld, crimp, band, clamp, or adhesive so that each of members 18 are fixedly attached to each other.
- FIGS. 4A through 4C are depictions of rings 1 having multiple assemblies 10 though any number of assemblies 10 could be used as needed or required depending on need or preference.
- FIG. 4A specifically depicts two interconnected support assemblies 10 interconnected at a second intersection 32 with leg 28 extended therefrom towards intersection 31 .
- FIG. 4B similarly depicts three interconnected assemblies 10 and
- FIG. 4C depicts four interconnected assemblies 10 .
- assemblies 10 may be integrally formed with each other at intersection 32 or may be joined together using any of the herein described fasteners.
- each assembly 10 can be a compression element capable of flexing a predetermined amount such that FIG. 4A depicts two compression elements, FIG. 4B depicts three compression elements, and FIG. 4C depicts four compression elements.
- ring 1 with corresponding compression elements can move between a compressed configuration before deployment within the vasculature as well as a deployed configuration with a lumen 20 having a greater diameter than the compressed configuration.
- legs 28 and 30 of each assembly 10 at intersections 31 and/or 32 may be formed as a V-shape as shown in FIGS. 4A through 4C with acute and/or oblique angles formed between legs 28 and 30 .
- legs 28 and 30 of each assembly 10 can be formed as “U” shaped, elliptical shaped, curved generally, loop or bight at the junction portion.
- FIG. 5A is a perspective view of exemplary ring 1 with a plurality of interconnected assemblies 10 . While each assembly 10 may be V-shaped as in FIGS. 4A-4C , FIG. 5A depicts how each assembly 10 may be arranged in a bowed orientation. In this regard, legs 28 and/or 30 may include a curved or arched portion that bows with a predetermined resistance to compression. It is to be understood that each assembly 10 of ring 1 may have the same or a different resistance so that each ring 1 can be individualized for the specific vasculature implementation.
- FIG. 5B is a forward plan view of an example prototype of ring 1 of FIG.
- FIG. 5A when assembled with body 12 in a compressed state at a cross section of body 12 aft of claw 17 to show each of legs 28 and 30 and lumen 20 of body 12 .
- a delivery mechanism 150 is depicted in lumen 20 for positioning and assembling each ring 1 with the inner and outer surfaces of body 20 .
- FIG. 5C a forward plan view of ring 1 of FIG. 5B when assembled with body 12 showing its inner lumen 20 in a compressed state at a cross-section of claw 17 with example delivery mechanism 50 .
- each ring 1 in a compressed state each ring 1 is operable to assemble with inner and outer surfaces of body 12 while also providing outward expanding radial forces to the stent body to counter the inwardly applied compression in the compressed state.
- Each assembly 10 and its constituent features may be formed of a superelastic material, such as a nickel-titanium alloy or Nitinol, or may be formed of a non-superelastic material, such as spring steel or MP35N, an alloy of 35% nickel, 35% cobalt, 20% chromium, and 10% molybdenum, by weight.
- Legs 28 and 30 of each assembly 10 may also be formed from a shape memory material having a shape memory position in the opened state.
- FIG. 6 a side plan view of rings 1 being assembled at both ends 6 and 8 of body 12 is shown. It can be seen that claw 17 of each assembly 10 is oriented to mechanically connect with braided members 22 of body 12 whereas opposing intersections 32 of each assembly 10 is in communication with ends 6 and 8 , respectively. It also to be understood that intersection 32 of each assembly 10 formed from joined legs 28 and 30 may be mechanically connected to one or more members 22 and interstices 24 similar to claw 17 . In this regard, legs 28 and 30 at intersection 32 do not need to directly attach to body 12 , for example, by being welded or fastened directly to body 12 itself. Instead, similar to intersection 31 , legs 28 and/or 30 can be directly joined together by being passed through one or more interstices 24 and interlaced with associated members 22 , be joined together, and extend back towards respective intersections 31 .
- FIG. 7 depicts a close-up view of plane B-B of FIG. 6 depicting an exemplary claw 17 interlaced with members 22 and interstices 24 . More specifically, legs 28 and 30 can be seen being joined together at intersection 31 with each of legs 28 and 30 disposed within lumen 20 . After being joined at intersection 31 , claw 17 may have a plurality of substantially aligned elongate members 18 that extend from intersection 31 towards mechanism 40 to form void 5 .
- Mechanism 40 may include any of the previously described fasteners that join each of members 18 together or may be a weld, crimp, chemical adhesive, or the like.
- each member 18 and corresponding void 5 of claw 17 can be weaved with members 22 in a variety of ways.
- only one braided pair 26 can interlaced with members 18 and void 5 of claw 17 ( FIG. 9A )
- two braided pairs 26 can interlace with members 18 and void 5 of claw 17 ( FIG. 9B )
- three braided pairs 26 can interlace with members 18 and void 5 of claw 17 ( FIG. 9C ).
- Members 18 of FIGS. 9A-9C may enter and exit braided pairs 26 at the same location along braided body 12 .
- FIG. 8 similarly depicts a side plan view of rings 1 being selectively positioned at ends 6 and 8 as well as ring 1 being disposed between ends 6 and 8 along a central portion of body 12 . It is to be understood that the embodiment of FIG. 8 is not intended to be limiting and any number of rings 1 can be included between ends 6 and 8 .
- FIGS. 10A-10C additional exemplary side plan views ring 1 assembled with body 12 are shown.
- FIG. 10A three braided pairs 26 are shown interlaced with void 5 and associated members 18 , wherein portions of claw 17 are shown exiting and entering respective braided pairs 26 when claw 17 interlaces with braided body 12 and mechanically attaches thereto.
- claws 17 of FIGS. 10B and 10C enter and exit at different locations of members 22 and interstices 24 than of FIG. 10A even when three braided pairs 26 are in communication with void 5 .
- claw 17 a can include only a single elongate member 18 a extended from intersection 31 a and terminating in a T-shaped locking mechanism 40 a .
- claw 17 a can interlace with a braided pair 26 over intersection 31 a , extend to an outer portion of body 12 until terminating in a T-shaped member of mechanism 40 that can interlace with multiple interstices 24 of body 12 to mechanically connect claw 17 a to body 12 .
- FIG. 11A it can be seen that claw 17 a can include only a single elongate member 18 a extended from intersection 31 a and terminating in a T-shaped locking mechanism 40 a .
- claw 17 a can interlace with a braided pair 26 over intersection 31 a , extend to an outer portion of body 12 until terminating in a T-shaped member of mechanism 40 that can interlace with multiple interstices 24 of body 12 to mechanically connect claw 17 a to body 12 .
- FIG. 11A it can be seen that claw 17 a can include only a single
- claw 17 b can be seen with a plurality of elongate members 18 b extended between intersection 31 b and hooked-end locking mechanism 40 b .
- members 18 b may interlace with members 22 and one or a plurality of braided pairs 26 and terminate in a hooked member of mechanism 40 b .
- the hooked member of mechanism 40 b may have an upwardly extended hooked portion operable to mechanically secure each member 18 b to a braided pair 26 .
- Both of mechanisms 40 a and 40 b may be used in place of welding, an adhesive, crimping, or a fastener of the previously disclosed mechanisms 40 .
- FIGS. 12A and 12B each figure depicts side plan views prototypes of example claws 17 when assembled with body 12 along a longitudinal cross section of claw 17 .
- mechanism 150 and corresponding bump 152 can position member 18 and corresponding gap 5 with one or more members 22 and/or pairs 26 .
- FIGS. 12A and 12B are not intended to be limiting and claw 17 and/or its constituent features may be assembled with body 12 with or without mechanism 150 as needed or desired.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
- Adornments (AREA)
Abstract
Description
- This application is a Divisional of U.S. Ser. No. 15/299,918 filed Oct. 21, 2016, the entirety is incorporated herein by reference.
- The present disclosure relates generally to treatment of certain defects in a vasculature of a patient and more particularly, to self-expanding braided stents to a treatment site in a vasculature of a patient.
- Stents are understood as tubular reinforcements that can be inserted into a blood vessel to provide an open path within the blood vessel. Stents have been widely used in intravascular angioplasty treatment of occluded cardiac arteries, wherein the stent may be inserted after an angioplasty procedure to prevent restenosis of the artery. Stents are often deployed by use of delivery devices which cause the stent to open with the objective of reinforcing the artery wall and provide a clear through-path in the artery thereby preventing restenosis.
- However, the weakness and non-linear nature of the neurovasculature limits the applicability of such stents in procedures, for example, in repairing neurovascular defects. Furthermore, known delivery methods are less useful in vasoocclusive surgery, particularly when tiny vessels, such as those found in the brain, are to be treated. Accordingly, a need exists for a stent that can be used with delivery techniques in vasoocclusive treatment of neurovascular defects that provides selective reinforcement in the vicinity of the neurovascular defect. A need also exist for a stent that reduces trauma or risk of rupture to the blood vessel. It is with respect to these and other considerations that the various embodiments described below are presented.
- In some aspects, the present disclosure relates to a braided stent system for delivery into a blood vessel is disclosed. They system may include a stent body having a lumen formed by a plurality of braided members with interstices formed therebetween. An expansion ring may be mechanically connected to the lumen of the stent body and be operable to maintain the expansion ring in an opened state by having its frame impart an outwardly expanding radial force to the stent body. The frame may include plurality of legs joined at a first intersection and a claw portion mechanically connected to one or more of the interstices of the stent body. The claw portion may mechanically connect the expansion ring to one or more of the interstices by extending away from the first intersection through a plurality of the interstices and terminating at a locking mechanism opposite the first intersection.
- In certain embodiments, the claw portion may include at least two aligned elongate members that extend between the first intersection and the locking mechanism to form a void therebetween. One or a plurality of the interstices may pass through the void as the claw portion mechanically connects the expansion ring to the stent body. The plurality of legs of the frame may also be bowed and/or oriented in a non-linear configuration causing the frame to be resistant to compression so that the braided stent system is self-expanding. The legs may be rotatable, pivotable, and/or twistable a predetermined amount about the first intersection.
- In other embodiments, a braided stent system is disclosed having a stent body having a lumen formed by a plurality of braided members with interstices formed therebetween and a first expansion ring connected to the lumen of the stent body. The first expansion ring may include a frame defined by a plurality of interconnected support assemblies that are selectively positioned to impart an outwardly expanding radial force to the stent body, each support assembly can include a plurality of legs joined at a first intersection and connected to one of the other interconnected support assemblies at a second intersection opposite the first intersection. Each support assembly can also include a claw portion mechanically connected to one or more of the interstices of the stent body.
- The plurality of legs of the frame may be bowed and/or oriented in a non-linear configuration causing the frame to be resistant to compression so that the braided stent system is self-expanding. The legs may be rotatable, pivotable, and/or twistable a predetermined amount about the first intersection.
- The claw portion may also mechanically connect the expansion ring to inner and outer portions of the lumen by extending away from the first intersection, being interlaced through at least two of the interstices, and being terminated at a locking mechanism opposite the intersections. The locking mechanism may include a T-shaped end or outwardly extending hooked members operable to fixedly connect to the interstices of the stent body. The solution is not so limited, however, and at least one of the claw portions may include a plurality of aligned elongate members that extend between respective first intersections and locking mechanisms to form a void through which the plurality of interstices can pass.
- In an example embodiment, one or a plurality of braided pairs of the braided members can pass through the void. The locking mechanism may also fixedly connect the expansion ring to the stent body by joining ends of the aligned elongate members opposite the first intersection through welding, soldering, crimping, or an adhesive bond. The solution is not so limiting, however, and the locking mechanism may fixedly connect the expansion ring to the stent body by joining ends of the aligned elongate members opposite the first intersection through a fastener such as a metallic band and/or ring. Additionally, at least one of the first and/or second intersections can form a V-shape, a U-shape, or an elliptical curve.
- In another example embodiment, the stent body can include a proximal end, a distal end, and a central portion disposed therebetween. The first expansion ring can be disposed on or adjacent the distal or proximal ends of the stent body with the second intersections of the interconnected support assemblies being joined at or adjacent the respective distal or proximal ends. One or more additional expansion rings can also be connected to the lumen along or in connection with the central portion of the stent body and/or the opposing, distal or proximal end of the stent body.
- A method of deploying a braided stent body into a vessel is also disclosed, the method comprising the following steps: assembling a plurality of expansion rings to a lumen of the braided stent body, the lumen of the braided stent body being formed by a plurality of braided members with interstices formed therebetween; selectively positioning each expansion ring with the braided stent body; each expansion ring imparting an outwardly expanding radial force thereby maintaining the lumen of the braided stent body in an opened position, each expansion ring comprising: a frame defined by a plurality of interconnected support assemblies comprising a plurality of legs joined at a first intersection and connected to one of the other interconnected support assemblies at a second intersection opposite the first intersection, the legs being twistable about the first and second intersections; and a claw portion disposed opposite the first and second intersections; mechanically connecting the claw portion of each ring to an inner portion of the stent body by interlacing a first elongate member extended between the respective claw portion and the respective first intersection of the expansion ring with one or more of the interstices and terminated at a locking mechanism opposite the intersections; and translating the braided members in the vessel independently from each expansion ring.
- Since at least one of the claw portions can include a second alignment member substantially aligned with the first elongate member and extended between respective first intersections and locking mechanisms, the method can also include forming a void between the first and second elongate members and respective first intersections and locking mechanisms; and passing one or a plurality of braided pairs of the braided members through the void. The method may also include fixedly connecting the expansion ring to the stent body by joining ends of the first and second elongate members opposite the first intersection through welding, soldering, crimping, an adhesive bond, and/or a fastener.
- Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following detailed description in conjunction with the accompanying figures.
- Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.
-
FIG. 1 depicts a side plan view of one embodiment of the herein disclosed expansion ring assembled at an end of a tubular braided stent body. -
FIG. 2 depicts is another view of one embodiment of the herein disclosed expansion ring assembled with a tubular braided stent body. -
FIG. 3 is a close-up view of plane A-A ofFIG. 2 showing certain features of the expansion ring assembled with the tubular braided stent body. -
FIG. 4A is a side plan view of certain features of an exemplary expansion ring having support assemblies. -
FIG. 4B is a side plan view of certain features of an exemplary expansion ring having support assemblies. -
FIG. 4C is a side plan view of certain features of an exemplary expansion ring having support assemblies. -
FIG. 5A is a perspective of an exemplary expansion ring with multiple claws prior to being assembled with a tubular braided stent body. -
FIG. 5B is forward plan view of an example prototype of the exemplary expansion ring ofFIG. 5A when assembled with a tubular braided stent body showing its inner lumen in a compressed state at a cross-section of the tubular braided stent body aft of the claw. -
FIG. 5C is a forward plan view of the exemplary expansion ring ofFIG. 5B when assembled with a tubular braided stent body showing its inner lumen in a compressed state at a cross-section of the claw. -
FIG. 6 depicts a side plan view of exemplary expansion rings having multiple claws when assembled at respective proximal and distal ends of a tubular braided stent body. -
FIG. 7 is a close-up view of plane B-B ofFIG. 6 showing certain features of one of the depicted expansion rings weaved through interstices of the tubular braided stent body with a fixed attachment. -
FIG. 8 depicts a side plan view of exemplary expansion rings having multiple claws when assembled at proximal and distal ends of a tubular braided stent body as well as at least one expansion ring placed along the body between the distal and proximal ends. -
FIG. 9A depicts a side plan view of an exemplary expansion ring assembled with a tubular stent body, wherein a claw of the expansion ring is being secured using a single braid wire pair of the tubular stent body. -
FIG. 9B depicts a side plan view of an exemplary expansion ring assembled with a tubular stent body, wherein a claw of the expansion ring is being secured using two braided wire pairs of the tubular stent body. -
FIG. 9C depicts a side plan view of an exemplary expansion ring assembled with a tubular stent body, wherein a claw of the expansion ring is being secured using three braided wire pairs of the tubular stent body. -
FIG. 10A depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting certain features of the expansion ring entering and exiting braids of the tubular stent body in a first arrangement. -
FIG. 10B depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting certain features of the expansion ring entering and exiting braids of the tubular stent body in a second arrangement. -
FIG. 10C depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting certain features of the expansion ring entering and exiting braids of the tubular stent body in a third arrangement. -
FIG. 11A depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting an embodiment having T-shaped endings. -
FIG. 11B depicts a close up side plan view of an exemplary expansion ring assembled with a tubular stent body depicting an embodiment having hook-shaped endings. -
FIG. 12A depicts a side plan view an example prototype of one example ring assembled with a tubular stent body along a longitudinal cross section of a claw assembled with the tubular stent body. -
FIG. 12B depicts a side plan view of an example prototype of one example ring assembled with a tubular stent body along a longitudinal cross section of a claw assembled with the tubular stent body. - Although example embodiments of the disclosed technology are explained in detail herein, it is to be understood that other embodiments are contemplated. Accordingly, it is not intended that the disclosed technology be limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The disclosed technology is capable of other embodiments and of being practiced or carried out in various ways.
- It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. By “comprising” or “containing” or “including” it is meant that at least the named compound, element, particle, or method step is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, even if the other such compounds, material, particles, method steps have the same function as what is named.
- In describing example embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Steps of a method may be performed in a different order than those described herein without departing from the scope of the disclosed technology. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.
- As discussed herein, vasculature of a “subject” or “patient” may be vasculature of a human or any animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like). It should be appreciated that the subject may be any applicable human patient, for example.
- Braided stents may be formed from a plurality of elongate members (e.g. metal wires, polymeric fibers, or strands of material) and these members can be very useful in treatment of neurovascular defects. However, when such braided members are intended to be self-expanding in a lumen of a stent body, known manners of activation of the initially expanding end struggle to adequately, reliably, and fully open so that the initially expanding end can be used as an anchor point. Moreover, braided stents have been known to exhibit high internal friction that resists the inherent radial expansion force of the self-expanding braided stent when being deployed to an opened state. More specifically, the relatively high internal friction can render it difficult to open the initially expanding end of the stent which results in deficiencies in anchoring and deployment. This is particularly true for braided stents delivered to the desired vessel location through use of a delivery sheath, microcatheter, or the like, since in a closed state (e.g. compressed or crimped) the stent body typically exhibits friction between the braided members and the delivery sheath or microcatheter.
- In practice, braided stents can be delivered to a particular vessel by advancing a blunt surface against a proximal end of the braided stent causing the braided stent to axially compress and expand radially. This expansion within the delivery sheath or microcatheter can result in an increased normal force being applied to the inner surface of the delivery sheath, microcatheter, or the like thereby also increasing friction caused by the braided stent.
- Known solutions to these issues have depended on factors such as material, size, cell design, internal friction, and extra manipulation by the end-user to reliably, quickly and adequately open the braided stents. In turn, success of the braided stent relied heavily on end-user accuracy in delivery which unnecessarily increases risk of injury to the patient.
- Moreover, such braided, self-expanding stents can be difficult to recapture after being delivered and/or deployed. It is to be understood that a “self-expanding” stent is a stent wherein the particular stent fully deploys upon emerging through a delivery device such as a sheath, microcatheter, or the like. In this respect, when a self-expanding stent body emerges, unrestrained outside of the respective delivery device, the self-expanding braided stent should expand and be deployed in the vasculature. However, due to the referenced radial forces and friction, stent deployment and recapture following deployment is difficult.
- The herein disclosed
expansion ring 1 resolves these and other issues by providing a secure, mechanical attachment betweenring 1 and the corresponding, braidedstent body 12 that increases an outwardly extending radial expansion force of an initialproximal deployment end 6 ofbody 12, an opposingdistal end 8 ofbody 12, and/or a central portion defined between eachend ring 1 includes one or a plurality ofinterconnected support assemblies 10 that collectively cause the ring to fully anchor itself with the lumen 20 ofbody 12 by mechanically securing aclaw 17 of eachassembly 10 to be interlaced with the braided,elongate members 22 ofbody 12. As a result, the total internal friction ofbody 12 is reduced andmembers 22 can movebody 12 independent fromring 1 as discussed more particularly below. Assembling one or moremultiple rings 1 withbody 12 results in relatively easy delivery without the need for accurate positioning ofring 1 withbody 12. In turn, deployment of thebody 12 within the vasculature is more reliable with reduced risk of injury for the end-user. - In the following description, references are made to the accompanying drawings that form a part hereof and that show, by way of illustration, specific embodiments or examples. In referring to the drawings, like numerals represent like elements throughout the several figures. Turning to
FIGS. 1 and 2 , a side plan view of the herein disclosedring 1 andcorresponding support assemblies 10 is shown disposed at aproximal end 6 ofbody 12 which may be the later deployed end.FIG. 1 is a close up view of one embodiment ofring 1 when assembled withbody 12 whereasFIG. 2 shows more ofbody 12 when anexemplary ring 1 is assembled withbody 12. It is to be understood thatbody 12 may also include a distal end 8 (also known as an initially-deployed end) opposite itsproximal end 6 as seen more clearly inFIG. 6 , andring 1 may be mechanically connected atdistal end 8 and/or disposed at any positioned between ends 6 and 8. - As can be seen,
body 12 ofFIGS. 1 and2 may be formed from a plurality ofelongate members 22 braided or otherwise arranged to form a plurality ofinterstices 24.Members 22 may be formed from two or more metal wires, or polymeric fibers or strands of material.Ring 1 may be constructed from one or multipleinterconnect support assemblies 10 that together form a frame ofring 1 that is capable of imparting one or more additive radial forces to an inner wall and/or an outer wall of lumen 20. In this regard,ring 1 may be selectively positioned and arranged for rapidly opening and/or maintainingbody 12 in an opened position without having to weld, solder, glue, or otherwise connectring 1 tobody 12 itself - Turning to
FIG. 3 is a close up view of plane A-A ofFIG. 2 more clearly showing anexemplary claw 17 of oneassembly 10 interlaced with theinterstices 24 and braided,elongate members 22. As can be seen,assembly 10 may include afirst leg 28 joined with asecond leg 30 at afirst intersection 31. Whilelegs FIG. 3 , eachassembly 10 is not so limited andlegs Legs intersection 31. Additionally, if one or more fasteners are used in a particular implementation, they can be removably connected or welded, soldered, and/or crimped. Fasteners and/orlegs - By adding
claw 17 to the end of a crown of eachassembly 10, eachring 1 is allowed to interlace withbody 12 without a permanent or rigid attachment tobody 12 such as welding, soldering or a chemical adhesive. Once theclaw 17 is effectively interlaced and connected with thebody 12 and the desired location, braidedmembers 22 can also move independently fromring 1 which removes the adverse impact that a permanent or rigid attachment previously had onbody 12 to fully expand when assembled with an expansion ring. -
Intersection 31 may also include a rotatable and/or twistable coupling so that eachassembly 10 ofring 1 is capable of flexing a predetermined amount whenbody 12 andring 1 is in use. One or moreelongate members 18 may extend fromintersection 31 and terminate at alocking mechanism 40opposite intersection 31 andlegs FIG. 3 , a plurality ofelongate members 18 are shown substantially aligned and offset from each other while being joined atmechanism 40 to form avoid 5 therebetween. - In order to mechanically attach to
body 12, eachclaw 17 may have respective members passed through and/or interlaced withinterstices 24 andmembers 22 and then joined atmechanism 40. In this regard, one or more multiple braided pairs 26 ofmembers 22 may be arranged in or in connection withvoid 5 so thatclaw 17 may be mechanically attached to inner and outer portions of lumen 20.Mechanism 40 ofFIG. 3 may be formed from a weld, crimp, band, clamp, or adhesive so that each ofmembers 18 are fixedly attached to each other. - Turning to
FIGS. 4A through 4C are depictions ofrings 1 havingmultiple assemblies 10 though any number ofassemblies 10 could be used as needed or required depending on need or preference.FIG. 4A specifically depicts twointerconnected support assemblies 10 interconnected at asecond intersection 32 withleg 28 extended therefrom towardsintersection 31.FIG. 4B similarly depicts threeinterconnected assemblies 10 andFIG. 4C depicts fourinterconnected assemblies 10. It is to be understoodassemblies 10 may be integrally formed with each other atintersection 32 or may be joined together using any of the herein described fasteners. It is to be understood that eachassembly 10 can be a compression element capable of flexing a predetermined amount such thatFIG. 4A depicts two compression elements,FIG. 4B depicts three compression elements, andFIG. 4C depicts four compression elements. In this respect,ring 1 with corresponding compression elements can move between a compressed configuration before deployment within the vasculature as well as a deployed configuration with a lumen 20 having a greater diameter than the compressed configuration. Additionally,legs assembly 10 atintersections 31 and/or 32 may be formed as a V-shape as shown inFIGS. 4A through 4C with acute and/or oblique angles formed betweenlegs legs assembly 10 can be formed as “U” shaped, elliptical shaped, curved generally, loop or bight at the junction portion. - Turning to
FIG. 5A is a perspective view ofexemplary ring 1 with a plurality ofinterconnected assemblies 10. While eachassembly 10 may be V-shaped as inFIGS. 4A-4C ,FIG. 5A depicts how eachassembly 10 may be arranged in a bowed orientation. In this regard,legs 28 and/or 30 may include a curved or arched portion that bows with a predetermined resistance to compression. It is to be understood that eachassembly 10 ofring 1 may have the same or a different resistance so that eachring 1 can be individualized for the specific vasculature implementation.FIG. 5B is a forward plan view of an example prototype ofring 1 ofFIG. 5A when assembled withbody 12 in a compressed state at a cross section ofbody 12 aft ofclaw 17 to show each oflegs body 12. Adelivery mechanism 150 is depicted in lumen 20 for positioning and assembling eachring 1 with the inner and outer surfaces of body 20. Similarly,FIG. 5C a forward plan view ofring 1 ofFIG. 5B when assembled withbody 12 showing its inner lumen 20 in a compressed state at a cross-section ofclaw 17 with example delivery mechanism 50. As can be seen, in a compressed state eachring 1 is operable to assemble with inner and outer surfaces ofbody 12 while also providing outward expanding radial forces to the stent body to counter the inwardly applied compression in the compressed state. - Each
assembly 10 and its constituent features may be formed of a superelastic material, such as a nickel-titanium alloy or Nitinol, or may be formed of a non-superelastic material, such as spring steel or MP35N, an alloy of 35% nickel, 35% cobalt, 20% chromium, and 10% molybdenum, by weight.Legs assembly 10 may also be formed from a shape memory material having a shape memory position in the opened state. - Turning to FIG.6, a side plan view of
rings 1 being assembled at both ends 6 and 8 ofbody 12 is shown. It can be seen thatclaw 17 of eachassembly 10 is oriented to mechanically connect with braidedmembers 22 ofbody 12 whereas opposingintersections 32 of eachassembly 10 is in communication withends intersection 32 of eachassembly 10 formed from joinedlegs more members 22 andinterstices 24 similar to claw 17. In this regard,legs intersection 32 do not need to directly attach tobody 12, for example, by being welded or fastened directly tobody 12 itself. Instead, similar tointersection 31,legs 28 and/or 30 can be directly joined together by being passed through one or more interstices 24 and interlaced with associatedmembers 22, be joined together, and extend back towardsrespective intersections 31. -
FIG. 7 depicts a close-up view of plane B-B ofFIG. 6 depicting anexemplary claw 17 interlaced withmembers 22 andinterstices 24. More specifically,legs intersection 31 with each oflegs intersection 31, claw 17 may have a plurality of substantially alignedelongate members 18 that extend fromintersection 31 towardsmechanism 40 to formvoid 5.Mechanism 40 may include any of the previously described fasteners that join each ofmembers 18 together or may be a weld, crimp, chemical adhesive, or the like. It can also be seen that two braidedpairs 26 ofmembers 22 pass throughvoid 5 and are therefore interlaced with inner and outer portions of lumen 20 andmembers 24 ofbody 12. However, the herein disclosed solution is not so limiting and as shown inFIGS. 9A-9C , eachmember 18 andcorresponding void 5 ofclaw 17 can be weaved withmembers 22 in a variety of ways. For example, only one braidedpair 26 can interlaced withmembers 18 andvoid 5 of claw 17 (FIG. 9A ), two braidedpairs 26 can interlace withmembers 18 andvoid 5 of claw 17 (FIG. 9B ), and/or three braidedpairs 26 can interlace withmembers 18 andvoid 5 of claw 17 (FIG. 9C ).Members 18 ofFIGS. 9A-9C may enter and exit braided pairs 26 at the same location along braidedbody 12. -
FIG. 8 similarly depicts a side plan view ofrings 1 being selectively positioned at ends 6 and 8 as well asring 1 being disposed betweenends body 12. It is to be understood that the embodiment ofFIG. 8 is not intended to be limiting and any number ofrings 1 can be included betweenends - Turning to
FIGS. 10A-10C , additional exemplary side plan views ring 1 assembled withbody 12 are shown. Specifically, inFIG. 10A three braidedpairs 26 are shown interlaced withvoid 5 and associatedmembers 18, wherein portions ofclaw 17 are shown exiting and entering respective braided pairs 26 whenclaw 17 interlaces with braidedbody 12 and mechanically attaches thereto. In contrast,claws 17 ofFIGS. 10B and 10C enter and exit at different locations ofmembers 22 andinterstices 24 than ofFIG. 10A even when three braidedpairs 26 are in communication withvoid 5. - Alternative claw designs are also contemplated for use with
assemblies 10 ofring 1. For example, inFIG. 11A , it can be seen that claw 17 a can include only a single elongate member 18 a extended fromintersection 31 a and terminating in a T-shapedlocking mechanism 40 a. In this embodiment, claw 17 a can interlace with abraided pair 26 overintersection 31 a, extend to an outer portion ofbody 12 until terminating in a T-shaped member ofmechanism 40 that can interlace withmultiple interstices 24 ofbody 12 to mechanically connectclaw 17 a tobody 12. In another alternative embodiment ofFIG. 11B , claw 17 b can be seen with a plurality of elongate members 18 b extended betweenintersection 31 b and hooked-end locking mechanism 40 b. Either or both of members 18 b may interlace withmembers 22 and one or a plurality of braided pairs 26 and terminate in a hooked member ofmechanism 40 b. The hooked member ofmechanism 40 b may have an upwardly extended hooked portion operable to mechanically secure each member 18 b to abraided pair 26. Both ofmechanisms mechanisms 40. - Turning to
FIGS. 12A and 12B , each figure depicts side plan views prototypes ofexample claws 17 when assembled withbody 12 along a longitudinal cross section ofclaw 17. As shown in each ofFIGS. 12A and 12B ,mechanism 150 andcorresponding bump 152 can positionmember 18 andcorresponding gap 5 with one ormore members 22 and/or pairs 26.FIGS. 12A and 12B are not intended to be limiting and claw 17 and/or its constituent features may be assembled withbody 12 with or withoutmechanism 150 as needed or desired. - The specific configurations, choice of materials and the size and shape of various elements can be varied according to particular design specifications or constraints requiring a system or method constructed according to the principles of the disclosed technology. Such changes are intended to be embraced within the scope of the disclosed technology. The presently disclosed embodiments, therefore, are considered in all respects to be illustrative and not restrictive. It will therefore be apparent from the foregoing that while particular forms of the disclosure have been illustrated and described, various modifications can be made without departing from the spirit and scope of the disclosure and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/234,270 US20190125557A1 (en) | 2016-10-21 | 2018-12-27 | Expansion ring for a braided stent |
US17/076,053 US20210038412A1 (en) | 2016-10-21 | 2020-10-21 | Expansion ring for a braided stent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/299,918 US10182927B2 (en) | 2016-10-21 | 2016-10-21 | Expansion ring for a braided stent |
US16/234,270 US20190125557A1 (en) | 2016-10-21 | 2018-12-27 | Expansion ring for a braided stent |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/299,918 Division US10182927B2 (en) | 2016-10-21 | 2016-10-21 | Expansion ring for a braided stent |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/076,053 Division US20210038412A1 (en) | 2016-10-21 | 2020-10-21 | Expansion ring for a braided stent |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190125557A1 true US20190125557A1 (en) | 2019-05-02 |
Family
ID=60182367
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/299,918 Active US10182927B2 (en) | 2016-10-21 | 2016-10-21 | Expansion ring for a braided stent |
US16/234,270 Abandoned US20190125557A1 (en) | 2016-10-21 | 2018-12-27 | Expansion ring for a braided stent |
US17/076,053 Abandoned US20210038412A1 (en) | 2016-10-21 | 2020-10-21 | Expansion ring for a braided stent |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/299,918 Active US10182927B2 (en) | 2016-10-21 | 2016-10-21 | Expansion ring for a braided stent |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/076,053 Abandoned US20210038412A1 (en) | 2016-10-21 | 2020-10-21 | Expansion ring for a braided stent |
Country Status (9)
Country | Link |
---|---|
US (3) | US10182927B2 (en) |
EP (2) | EP3311782B1 (en) |
JP (1) | JP6968655B2 (en) |
KR (1) | KR102486606B1 (en) |
CN (1) | CN107970082B (en) |
AU (1) | AU2017235961A1 (en) |
BR (1) | BR102017022498A2 (en) |
CA (1) | CA2982092A1 (en) |
ES (2) | ES2774061T3 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10561509B2 (en) | 2013-03-13 | 2020-02-18 | DePuy Synthes Products, Inc. | Braided stent with expansion ring and method of delivery |
US10206796B2 (en) | 2014-08-27 | 2019-02-19 | DePuy Synthes Products, Inc. | Multi-strand implant with enhanced radiopacity |
US10076428B2 (en) * | 2016-08-25 | 2018-09-18 | DePuy Synthes Products, Inc. | Expansion ring for a braided stent |
US10292851B2 (en) | 2016-09-30 | 2019-05-21 | DePuy Synthes Products, Inc. | Self-expanding device delivery apparatus with dual function bump |
CN112566566A (en) * | 2018-07-06 | 2021-03-26 | 波士顿科学医学有限公司 | Closed medical device |
AU2019204522A1 (en) | 2018-07-30 | 2020-02-13 | DePuy Synthes Products, Inc. | Systems and methods of manufacturing and using an expansion ring |
US10278848B1 (en) | 2018-08-06 | 2019-05-07 | DePuy Synthes Products, Inc. | Stent delivery with expansion assisting delivery wire |
US10456280B1 (en) | 2018-08-06 | 2019-10-29 | DePuy Synthes Products, Inc. | Systems and methods of using a braided implant |
CN111265278B (en) * | 2018-12-04 | 2023-02-07 | 先健科技(深圳)有限公司 | Thrombus taking device and thrombus taking system |
US11039944B2 (en) | 2018-12-27 | 2021-06-22 | DePuy Synthes Products, Inc. | Braided stent system with one or more expansion rings |
CN113069255B (en) * | 2019-12-17 | 2023-04-18 | 先健科技(深圳)有限公司 | Blood vessel support |
GB202007488D0 (en) * | 2020-05-20 | 2020-07-01 | Oxford Endovascular Ltd | An expandable tube for deployment within a blood vessel |
US20220257395A1 (en) * | 2021-02-15 | 2022-08-18 | John I. Shipp | Stent |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5330500A (en) * | 1990-10-18 | 1994-07-19 | Song Ho Y | Self-expanding endovascular stent with silicone coating |
US5728131A (en) * | 1995-06-12 | 1998-03-17 | Endotex Interventional Systems, Inc. | Coupling device and method of use |
US5769887A (en) * | 1994-11-09 | 1998-06-23 | Endotex Interventional Systems, Inc. | Delivery catheter and graft for aneurysm repair |
US5851217A (en) * | 1990-02-28 | 1998-12-22 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
US6010529A (en) * | 1996-12-03 | 2000-01-04 | Atrium Medical Corporation | Expandable shielded vessel support |
US6110198A (en) * | 1995-10-03 | 2000-08-29 | Medtronic Inc. | Method for deploying cuff prostheses |
US6152956A (en) * | 1997-01-28 | 2000-11-28 | Pierce; George E. | Prosthesis for endovascular repair of abdominal aortic aneurysms |
US6319278B1 (en) * | 2000-03-03 | 2001-11-20 | Stephen F. Quinn | Low profile device for the treatment of vascular abnormalities |
US6325823B1 (en) * | 1999-10-29 | 2001-12-04 | Revasc Corporation | Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use |
US20020111671A1 (en) * | 2001-02-15 | 2002-08-15 | Stenzel Eric B. | Locking stent |
US20030114922A1 (en) * | 2001-10-30 | 2003-06-19 | Olympus Optical Co., Ltd. | Stent |
US6699277B1 (en) * | 2000-03-09 | 2004-03-02 | Diseno Y Desarrollo Medica, S.A. De C.V. | Stent with cover connectors |
US20040236406A1 (en) * | 2003-05-20 | 2004-11-25 | Scimed Life Systems, Inc. | Mechanism to improve stent securement |
US20050125051A1 (en) * | 2003-12-05 | 2005-06-09 | Scimed Life Systems, Inc. | Detachable segment stent |
US20050131516A1 (en) * | 2003-09-29 | 2005-06-16 | Secant Medical, Llc | Integral support stent graft assembly |
US20060069424A1 (en) * | 2004-09-27 | 2006-03-30 | Xtent, Inc. | Self-constrained segmented stents and methods for their deployment |
US20060195175A1 (en) * | 2005-02-25 | 2006-08-31 | Abbott Laboratories Vascular Enterprises Limited | Modular vascular prosthesis having axially variable properties and improved flexibility and methods of use |
US20060287717A1 (en) * | 2005-05-24 | 2006-12-21 | Rowe Stanton J | Methods for rapid deployment of prosthetic heart valves |
US20070203503A1 (en) * | 2003-12-23 | 2007-08-30 | Amr Salahieh | Systems and methods for delivering a medical implant |
US20070213810A1 (en) * | 2005-03-14 | 2007-09-13 | Richard Newhauser | Segmented endoprosthesis |
US20070219613A1 (en) * | 2003-10-06 | 2007-09-20 | Xtent, Inc. | Apparatus and methods for interlocking stent segments |
US20070219612A1 (en) * | 2006-03-20 | 2007-09-20 | Xtent, Inc. | Apparatus and methods for deployment of linked prosthetic segments |
US20080140172A1 (en) * | 2004-12-13 | 2008-06-12 | Robert Hunt Carpenter | Multi-Wall Expandable Device Capable Of Drug Delivery Related Applications |
US20090005848A1 (en) * | 2005-02-25 | 2009-01-01 | Abbott Laboratories Vascular Enterprises Limited | Modular vascular prosthesis and methods of use |
US20090030501A1 (en) * | 2005-08-02 | 2009-01-29 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US20090163951A1 (en) * | 2007-12-19 | 2009-06-25 | Sara Simmons | Medical devices including sutures with filaments comprising naturally derived collagenous material |
US20090192588A1 (en) * | 2008-01-29 | 2009-07-30 | Taeoong Medical Co., Ltd | Biodegradable double stent |
US20100010622A1 (en) * | 2006-03-13 | 2010-01-14 | Abbott Laboratories | Hybrid segmented endoprosthesis |
US20100010619A1 (en) * | 2008-07-08 | 2010-01-14 | Boston Scientific Scimed, Inc. | Closed-Cell Flexible Stent Hybrid |
US20100161036A1 (en) * | 2008-12-19 | 2010-06-24 | Edwards Lifesciences Corporation | Quick-connect prosthetic heart valve and methods |
US20100331972A1 (en) * | 2009-06-26 | 2010-12-30 | Edwards Lifesciences Corporation | Unitary Quick Connect Prosthetic Heart Valve and Deployment System and Methods |
US20140025161A1 (en) * | 2012-07-23 | 2014-01-23 | Abbott Cardiovascular Systems Inc. | Shape memory bioresorbable polymer peripheral scaffolds |
US20140277376A1 (en) * | 2013-03-13 | 2014-09-18 | DePuy Synthes Products, LLC | Braid expansion ring with markers |
US20150119974A1 (en) * | 2013-10-24 | 2015-04-30 | Medtronic, Inc. | Modular valve prosthesis with anchor stent and valve component |
US20190015229A1 (en) * | 2016-01-19 | 2019-01-17 | Jms Co., Ltd. | Synthetic resin stent |
US20190053899A1 (en) * | 2017-08-21 | 2019-02-21 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US20190224008A1 (en) * | 2016-10-03 | 2019-07-25 | University Of Southampton | A frame for an implantable medical device and a method of manufacturing a frame for an implantable medical device |
Family Cites Families (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4610688A (en) * | 1983-04-04 | 1986-09-09 | Pfizer Hospital Products Group, Inc. | Triaxially-braided fabric prosthesis |
US5064435A (en) * | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US6051020A (en) * | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US6165213A (en) * | 1994-02-09 | 2000-12-26 | Boston Scientific Technology, Inc. | System and method for assembling an endoluminal prosthesis |
US5609627A (en) * | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
EP0759730B1 (en) * | 1994-05-19 | 1999-02-10 | Scimed Life Systems, Inc. | Improved tissue supporting devices |
US5476508A (en) * | 1994-05-26 | 1995-12-19 | Tfx Medical | Stent with mutually interlocking filaments |
US5549662A (en) * | 1994-11-07 | 1996-08-27 | Scimed Life Systems, Inc. | Expandable stent using sliding members |
DE19508805C2 (en) * | 1995-03-06 | 2000-03-30 | Lutz Freitag | Stent for placement in a body tube with a flexible support structure made of at least two wires with different shape memory functions |
BE1009277A3 (en) * | 1995-04-12 | 1997-01-07 | Corvita Europ | Guardian self-expandable medical device introduced in cavite body, and method of preparation. |
US5776161A (en) * | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
EP0955954B1 (en) * | 1996-01-05 | 2005-03-16 | Medtronic, Inc. | Expansible endoluminal prostheses |
CN1172636C (en) * | 1997-01-24 | 2004-10-27 | 乔米德有限公司 | Bistable spring construction for a stent and other medical apparatus |
US5817126A (en) * | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
DE19720115C2 (en) * | 1997-05-14 | 1999-05-20 | Jomed Implantate Gmbh | Stent graft |
US5899935A (en) * | 1997-08-04 | 1999-05-04 | Schneider (Usa) Inc. | Balloon expandable braided stent with restraint |
US6033436A (en) * | 1998-02-17 | 2000-03-07 | Md3, Inc. | Expandable stent |
US6015432A (en) * | 1998-02-25 | 2000-01-18 | Cordis Corporation | Wire reinforced vascular prosthesis |
DE69927055T2 (en) * | 1998-12-11 | 2006-06-29 | Endologix, Inc., Irvine | ENDOLUMINAL VASCULAR PROSTHESIS |
US6673107B1 (en) * | 1999-12-06 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Bifurcated stent and method of making |
GB0003387D0 (en) * | 2000-02-14 | 2000-04-05 | Angiomed Ag | Stent matrix |
US6565599B1 (en) * | 2000-12-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Hybrid stent |
US6761733B2 (en) * | 2001-04-11 | 2004-07-13 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
US6733521B2 (en) * | 2001-04-11 | 2004-05-11 | Trivascular, Inc. | Delivery system and method for endovascular graft |
US6821291B2 (en) * | 2001-06-01 | 2004-11-23 | Ams Research Corporation | Retrievable stent and method of use thereof |
US7708771B2 (en) * | 2002-02-26 | 2010-05-04 | Endovascular Technologies, Inc. | Endovascular graft device and methods for attaching components thereof |
US7105018B1 (en) * | 2002-12-30 | 2006-09-12 | Advanced Cardiovascular Systems, Inc. | Drug-eluting stent cover and method of use |
US20050033406A1 (en) * | 2003-07-15 | 2005-02-10 | Barnhart William H. | Branch vessel stent and graft |
FR2865926B1 (en) * | 2004-02-11 | 2006-05-12 | Perouse Laboratoires | TUBULAR PROSTHESIS. |
US7695506B2 (en) | 2004-09-21 | 2010-04-13 | Boston Scientific Scimed, Inc. | Atraumatic connections for multi-component stents |
US8128680B2 (en) * | 2005-01-10 | 2012-03-06 | Taheri Laduca Llc | Apparatus and method for deploying an implantable device within the body |
US20070005127A1 (en) * | 2005-06-17 | 2007-01-04 | Peter Boekstegers | Hinged tissue implant and related methods and devices for delivering such an implant |
FR2894131B1 (en) * | 2005-12-02 | 2008-12-05 | Perouse Soc Par Actions Simpli | DEVICE FOR TREATING A BLOOD VESSEL, AND ASSOCIATED TREATMENT NECESSARY. |
US20070208409A1 (en) * | 2006-03-01 | 2007-09-06 | Boston Scientific Scimed, Inc. | Flexible stent-graft devices and methods of producing the same |
FR2899096B1 (en) * | 2006-04-04 | 2008-12-05 | Perouse Soc Par Actions Simpli | DEVICE FOR TREATING A CIRCULATION CIRCULATION OF THE BLOOD AND METHOD OF PREPARING SAID DEVICE |
EP1849440A1 (en) * | 2006-04-28 | 2007-10-31 | Younes Boudjemline | Vascular stents with varying diameter |
US10137015B2 (en) * | 2006-10-18 | 2018-11-27 | Inspiremd Ltd. | Knitted stent jackets |
JP5201631B2 (en) * | 2007-02-01 | 2013-06-05 | 株式会社カネカ | Body cavity medical device |
EP2117463B1 (en) * | 2007-03-07 | 2018-11-14 | Boston Scientific Limited | Radiopaque polymeric stent |
EP2166983A4 (en) * | 2007-06-22 | 2012-08-22 | Bard Inc C R | Locked segments pushable stent-graft |
US8066755B2 (en) * | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
US20090082847A1 (en) * | 2007-09-26 | 2009-03-26 | Boston Scientific Corporation | System and method of securing stent barbs |
US20090082845A1 (en) * | 2007-09-26 | 2009-03-26 | Boston Scientific Corporation | Alignment stent apparatus and method |
US7815673B2 (en) * | 2008-04-01 | 2010-10-19 | Medtronic Vascular, Inc. | Double-walled stent system |
US20090287145A1 (en) * | 2008-05-15 | 2009-11-19 | Altura Interventional, Inc. | Devices and methods for treatment of abdominal aortic aneurysms |
US20100292777A1 (en) * | 2009-05-13 | 2010-11-18 | Boston Scientific Scimed, Inc. | Stent |
DE102009041025A1 (en) * | 2009-09-14 | 2011-03-24 | Acandis Gmbh & Co. Kg | Medical implant |
CN102100587B (en) | 2009-12-18 | 2013-10-30 | 上海微创医疗器械(集团)有限公司 | Blood vessel bracket prosthesis |
CA2788111C (en) * | 2010-01-29 | 2016-04-05 | Cook Medical Technologies Llc | Collapsing structure for reducing the diameter of a stent |
US9326870B2 (en) * | 2010-04-23 | 2016-05-03 | Medtronic Vascular, Inc. | Biodegradable stent having non-biodegradable end portions and mechanisms for increased stent hoop strength |
US20130041454A1 (en) * | 2011-02-09 | 2013-02-14 | Business Expectations Llc | Sensor Actuated Stent |
EP2683309B1 (en) * | 2011-03-09 | 2021-04-21 | Neuravi Limited | A clot retrieval device for removing occlusive clot from a blood vessel |
US9655722B2 (en) * | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US20130123901A1 (en) * | 2011-11-14 | 2013-05-16 | Robert A. Connor | Stent with in situ determination of wall areas with differences in porosity |
CN107157632B (en) * | 2012-01-25 | 2021-05-25 | 因特脉管有限公司 | Endoluminal device and method |
WO2013151793A1 (en) | 2012-04-06 | 2013-10-10 | Trivascular, Inc. | Low profile stent graft and delivery system |
US10561509B2 (en) * | 2013-03-13 | 2020-02-18 | DePuy Synthes Products, Inc. | Braided stent with expansion ring and method of delivery |
US9907684B2 (en) * | 2013-05-08 | 2018-03-06 | Aneuclose Llc | Method of radially-asymmetric stent expansion |
EP2921140A1 (en) * | 2014-03-18 | 2015-09-23 | St. Jude Medical, Cardiology Division, Inc. | Percutaneous valve anchoring for a prosthetic aortic valve |
US10195025B2 (en) * | 2014-05-12 | 2019-02-05 | Edwards Lifesciences Corporation | Prosthetic heart valve |
CA3018182A1 (en) * | 2016-03-31 | 2017-10-05 | Vesper Medical, Inc. | Intravascular implants |
EP3457985B1 (en) * | 2016-05-16 | 2021-02-17 | Elixir Medical Corporation | Uncaging stent |
-
2016
- 2016-10-21 US US15/299,918 patent/US10182927B2/en active Active
-
2017
- 2017-09-28 AU AU2017235961A patent/AU2017235961A1/en not_active Abandoned
- 2017-10-11 CA CA2982092A patent/CA2982092A1/en active Pending
- 2017-10-19 BR BR102017022498-8A patent/BR102017022498A2/en not_active Application Discontinuation
- 2017-10-20 ES ES17197578T patent/ES2774061T3/en active Active
- 2017-10-20 CN CN201710981691.1A patent/CN107970082B/en active Active
- 2017-10-20 EP EP17197578.2A patent/EP3311782B1/en active Active
- 2017-10-20 KR KR1020170136448A patent/KR102486606B1/en active IP Right Grant
- 2017-10-20 ES ES19214993T patent/ES2923948T3/en active Active
- 2017-10-20 EP EP19214993.8A patent/EP3656358B1/en active Active
- 2017-10-23 JP JP2017204234A patent/JP6968655B2/en active Active
-
2018
- 2018-12-27 US US16/234,270 patent/US20190125557A1/en not_active Abandoned
-
2020
- 2020-10-21 US US17/076,053 patent/US20210038412A1/en not_active Abandoned
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5851217A (en) * | 1990-02-28 | 1998-12-22 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
US5330500A (en) * | 1990-10-18 | 1994-07-19 | Song Ho Y | Self-expanding endovascular stent with silicone coating |
US5769887A (en) * | 1994-11-09 | 1998-06-23 | Endotex Interventional Systems, Inc. | Delivery catheter and graft for aneurysm repair |
US5728131A (en) * | 1995-06-12 | 1998-03-17 | Endotex Interventional Systems, Inc. | Coupling device and method of use |
US6110198A (en) * | 1995-10-03 | 2000-08-29 | Medtronic Inc. | Method for deploying cuff prostheses |
US6010529A (en) * | 1996-12-03 | 2000-01-04 | Atrium Medical Corporation | Expandable shielded vessel support |
US6152956A (en) * | 1997-01-28 | 2000-11-28 | Pierce; George E. | Prosthesis for endovascular repair of abdominal aortic aneurysms |
US6325823B1 (en) * | 1999-10-29 | 2001-12-04 | Revasc Corporation | Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use |
US6319278B1 (en) * | 2000-03-03 | 2001-11-20 | Stephen F. Quinn | Low profile device for the treatment of vascular abnormalities |
US6699277B1 (en) * | 2000-03-09 | 2004-03-02 | Diseno Y Desarrollo Medica, S.A. De C.V. | Stent with cover connectors |
US20020111671A1 (en) * | 2001-02-15 | 2002-08-15 | Stenzel Eric B. | Locking stent |
US20030114922A1 (en) * | 2001-10-30 | 2003-06-19 | Olympus Optical Co., Ltd. | Stent |
US20040236406A1 (en) * | 2003-05-20 | 2004-11-25 | Scimed Life Systems, Inc. | Mechanism to improve stent securement |
US20050131516A1 (en) * | 2003-09-29 | 2005-06-16 | Secant Medical, Llc | Integral support stent graft assembly |
US20070219613A1 (en) * | 2003-10-06 | 2007-09-20 | Xtent, Inc. | Apparatus and methods for interlocking stent segments |
US20050125051A1 (en) * | 2003-12-05 | 2005-06-09 | Scimed Life Systems, Inc. | Detachable segment stent |
US20070203503A1 (en) * | 2003-12-23 | 2007-08-30 | Amr Salahieh | Systems and methods for delivering a medical implant |
US20170196689A1 (en) * | 2003-12-23 | 2017-07-13 | Boston Scientific Scimed, Inc. | Systems and methods for delivering a medical implant |
US20060069424A1 (en) * | 2004-09-27 | 2006-03-30 | Xtent, Inc. | Self-constrained segmented stents and methods for their deployment |
US20080140172A1 (en) * | 2004-12-13 | 2008-06-12 | Robert Hunt Carpenter | Multi-Wall Expandable Device Capable Of Drug Delivery Related Applications |
US20060195175A1 (en) * | 2005-02-25 | 2006-08-31 | Abbott Laboratories Vascular Enterprises Limited | Modular vascular prosthesis having axially variable properties and improved flexibility and methods of use |
US20090005848A1 (en) * | 2005-02-25 | 2009-01-01 | Abbott Laboratories Vascular Enterprises Limited | Modular vascular prosthesis and methods of use |
US20070213810A1 (en) * | 2005-03-14 | 2007-09-13 | Richard Newhauser | Segmented endoprosthesis |
US20060287717A1 (en) * | 2005-05-24 | 2006-12-21 | Rowe Stanton J | Methods for rapid deployment of prosthetic heart valves |
US20090030501A1 (en) * | 2005-08-02 | 2009-01-29 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US20100010622A1 (en) * | 2006-03-13 | 2010-01-14 | Abbott Laboratories | Hybrid segmented endoprosthesis |
US20070219612A1 (en) * | 2006-03-20 | 2007-09-20 | Xtent, Inc. | Apparatus and methods for deployment of linked prosthetic segments |
US20090163951A1 (en) * | 2007-12-19 | 2009-06-25 | Sara Simmons | Medical devices including sutures with filaments comprising naturally derived collagenous material |
US20090192588A1 (en) * | 2008-01-29 | 2009-07-30 | Taeoong Medical Co., Ltd | Biodegradable double stent |
US20100010619A1 (en) * | 2008-07-08 | 2010-01-14 | Boston Scientific Scimed, Inc. | Closed-Cell Flexible Stent Hybrid |
US20100161036A1 (en) * | 2008-12-19 | 2010-06-24 | Edwards Lifesciences Corporation | Quick-connect prosthetic heart valve and methods |
US20100331972A1 (en) * | 2009-06-26 | 2010-12-30 | Edwards Lifesciences Corporation | Unitary Quick Connect Prosthetic Heart Valve and Deployment System and Methods |
US20140025161A1 (en) * | 2012-07-23 | 2014-01-23 | Abbott Cardiovascular Systems Inc. | Shape memory bioresorbable polymer peripheral scaffolds |
US20140277376A1 (en) * | 2013-03-13 | 2014-09-18 | DePuy Synthes Products, LLC | Braid expansion ring with markers |
US20150119974A1 (en) * | 2013-10-24 | 2015-04-30 | Medtronic, Inc. | Modular valve prosthesis with anchor stent and valve component |
US20190015229A1 (en) * | 2016-01-19 | 2019-01-17 | Jms Co., Ltd. | Synthetic resin stent |
US20190224008A1 (en) * | 2016-10-03 | 2019-07-25 | University Of Southampton | A frame for an implantable medical device and a method of manufacturing a frame for an implantable medical device |
US20190053899A1 (en) * | 2017-08-21 | 2019-02-21 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
Also Published As
Publication number | Publication date |
---|---|
EP3311782A1 (en) | 2018-04-25 |
KR20180044210A (en) | 2018-05-02 |
JP6968655B2 (en) | 2021-11-17 |
EP3656358B1 (en) | 2022-07-20 |
EP3311782B1 (en) | 2019-12-11 |
KR102486606B1 (en) | 2023-01-11 |
CN107970082B (en) | 2021-10-29 |
EP3656358A1 (en) | 2020-05-27 |
CA2982092A1 (en) | 2018-04-21 |
AU2017235961A1 (en) | 2018-05-10 |
US20210038412A1 (en) | 2021-02-11 |
JP2018064943A (en) | 2018-04-26 |
BR102017022498A2 (en) | 2018-05-02 |
ES2923948T3 (en) | 2022-10-03 |
US10182927B2 (en) | 2019-01-22 |
CN107970082A (en) | 2018-05-01 |
US20180110636A1 (en) | 2018-04-26 |
ES2774061T3 (en) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210038412A1 (en) | Expansion ring for a braided stent | |
US10821008B2 (en) | Expansion ring for a braided stent | |
AU2018253740B2 (en) | Braid expansion ring with markers | |
US20210282946A1 (en) | Braided stent system with one or more expansion rings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: DEPUY SYNTHES PRODUCTS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LORENZO, JUAN;PEDROSO, PEDRO;SLAZAS, ROBERT;AND OTHERS;SIGNING DATES FROM 20160914 TO 20161011;REEL/FRAME:050003/0781 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |