US20210282946A1 - Braided stent system with one or more expansion rings - Google Patents
Braided stent system with one or more expansion rings Download PDFInfo
- Publication number
- US20210282946A1 US20210282946A1 US17/320,313 US202117320313A US2021282946A1 US 20210282946 A1 US20210282946 A1 US 20210282946A1 US 202117320313 A US202117320313 A US 202117320313A US 2021282946 A1 US2021282946 A1 US 2021282946A1
- Authority
- US
- United States
- Prior art keywords
- braid
- expansion ring
- proximal end
- looped
- intersection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
- A61B17/12109—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
- A61B17/12113—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12027—Type of occlusion
- A61B17/12031—Type of occlusion complete occlusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
- A61B17/12109—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
- A61B17/12113—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
- A61B17/12118—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm for positioning in conjunction with a stent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/1214—Coils or wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12168—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/844—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents folded prior to deployment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/852—Two or more distinct overlapping stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9522—Means for mounting a stent or stent-graft onto or into a placement instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00778—Operations on blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00902—Material properties transparent or translucent
- A61B2017/00915—Material properties transparent or translucent for radioactive radiation
- A61B2017/0092—Material properties transparent or translucent for radioactive radiation for X-rays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B2017/1205—Introduction devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/823—Stents, different from stent-grafts, adapted to cover an aneurysm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/828—Means for connecting a plurality of stents allowing flexibility of the whole structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
- A61F2002/8486—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs provided on at least one of the ends
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2002/9505—Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument
- A61F2002/9511—Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument the retaining means being filaments or wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0061—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0091—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements connected by a hinged linkage mechanism, e.g. of the single-bar or multi-bar linkage type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0054—V-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2240/00—Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2240/001—Designing or manufacturing processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00071—Nickel or Ni-based alloys
Definitions
- the present disclosure relates generally to treatment of certain defects in a vasculature of a patient and more particularly, to self-expanding braided stents to a treatment site in a vasculature of a patient.
- Stents are understood as tubular reinforcements that can be inserted into a blood vessel to provide an open path within the blood vessel. Stents have been widely used in intravascular angioplasty treatment of occluded cardiac arteries, wherein the stent may be inserted after an angioplasty procedure to prevent restenosis of the artery. Stents are often deployed by use of delivery devices which cause the stent to open with the objective of reinforcing the artery wall and provide a clear through-path in the artery thereby preventing restenosis.
- single wire braided stents have some key advantages such as lower crimp profiles and require lower forces to track the devices during delivery in the vasculature.
- These stents are manufactured by braiding a wire in a pattern (e.g., cylindrical) and are typically manufactured of a self-expanding material, such as Nitinol.
- a significant drawback of these devices is that they have very low radial expansion forces resulting in stent migration and difficulty in accurately placing the device.
- the present disclosure relates to a braided stent system that can include a braid with a proximal end, a distal end, and a lumen formed therebetween.
- the braid can be formed from one or more wires woven to comprise interstices.
- a first expansion ring can be connected to the proximal end of the braid.
- a second expansion ring can be connected to the distal end of the braid.
- Each expansion ring can include a frame that imparts an outwardly expanding radial force to the braid.
- the frame can include a plurality of elongate members interconnected by one or more intersections.
- proximal end and the distal end each comprise looped ends formed from the one or more wires.
- the elongate members of each of the first or second expansion rings are interwoven into and out of adjacent looped ends of the braid.
- intersections of each of the first or second expansion rings are interwoven sequentially whereby each intersection is connected or in communication with a respective looped end of the braid.
- intersections of each of the first or second expansion rings are interwoven sequentially whereby each intersection is wrapped around or hooked with a respective looped end of the braid.
- the elongate members of each of the first or second expansion rings are interwoven sequentially to adjacent looped ends of the braid in the form of a zig-zag shaped assembly.
- the elongate members of each of the first or second expansion rings are interwoven sequentially to adjacent looped ends of the braid in the form of a zig-zag shaped assembly.
- the first expansion ring includes one or more radiopaque bands connected with one or more corresponding elongate members proximal of the proximal end of the braid.
- the first expansion ring includes one or more radiopaque bands connected with one or more corresponding elongate members adjacent a respective intersection connected with a respective looped end and proximal of the proximal end.
- the second expansion ring includes one or more radiopaque bands connected with one or more corresponding elongate members distal of the distal end of the braid.
- the second expansion ring also includes one or more radiopaque bands connected with one or more corresponding elongate members adjacent a respective intersection connected with a respective looped end and distal of the distal end.
- At least one of the first and second expansion ring also includes one or more radiopaque bands connected with one or more corresponding elongate members and corresponding looped end of the braid.
- each elongate member is connected to the corresponding looped end of the braid by wrapping or encircling the respective radiopaque band thereabout.
- each elongate member is oriented parallel to a respective portion of the wire of the corresponding looped end connected to the radiopaque band.
- At least one of the first or second expansion rings comprises a clip that is mechanically connected to one or more of the looped ends.
- one end point of the first or second expansion ring is provided per looped end of the respective proximal or distal end.
- each expansion ring is self-expanding.
- the frame of each expansion ring formed by the elongate members and intersections comprise one of a zig-zag shape, a “V” shape, a “U” shape, a “W” shape, or a double “U” shape.
- a method of using a braid includes providing a braid having a proximal end, a distal end, and a lumen formed therebetween by one or more braided wires; positioning a first expansion ring with the proximal end, the first expansion ring configured to be self-expanding and apply an outward radial force to the proximal end of the braid; positioning a second expansion ring at a distal end of the braid, the second expansion ring configured to be self-expanding and apply an outward radial force to the distal end of the braid; engaging at least one of the first and second expansion rings to a delivery wire; and delivering the braid to an aneurysm by distally advancing the delivery wire.
- the step of positioning the first expansion ring at the proximal end of the braid includes sequentially translating one or more elongate members of the first expansion ring into and out of adjacent looped ends of the proximal end of the braid.
- the step of positioning the second expansion ring at the distal end of the braid includes sequentially translating one or more elongate members of the second expansion ring into and out of adjacent looped ends of the distal end of the braid.
- the step of positioning the first expansion ring at the proximal end of the braid includes positioning one or more intersections of the first expansion ring until each intersection is connected or in communication with a respective looped end of the proximal end of the braid.
- the method also includes wrapping around or hooking each intersection with a respective looped end of the braid.
- the step of positioning the second expansion ring at the distal end of the braid includes positioning one or more intersections of the second expansion ring until each intersection is connected or in communication with a respective looped end of the distal end of the braid.
- the method also includes wrapping around or hooking each intersection with a respective looped end of the braid.
- the method also includes connecting one or more radiopaque bands with one or more corresponding elongate members proximal of the proximal end of the braid.
- the method also includes connecting one or more radiopaque bands with one or more corresponding elongate members adjacent a respective intersection of the first expansion ring connected with a respective looped end of the braid and proximal of the proximal end.
- the method also includes connecting one or more radiopaque bands with one or more corresponding elongate members adjacent a respective intersection of the first expansion ring connected with a respective looped end of the braid and proximal of the proximal end.
- the method also includes wherein at least one of the first and second expansion ring also includes one or more radiopaque bands connected with one or more corresponding elongate members and corresponding looped end of the braid.
- the method also includes connecting each elongate member to a corresponding looped end of the braid by wrapping or encircling the respective radiopaque band thereabout.
- the method also includes orienting parallel an elongate member to a respective wire of the braid extending from a corresponding looped end and connected to the radiopaque band.
- the method also includes connecting one or more of the looped ends or wire of the braid to a void of the clip of the first or second expansion rings.
- the method also includes forming the frame of each expansion ring by the elongate members and intersections into one of a zig-zag shape, a “V” shape, a “U” shape, a “W” shape, or a double “U” shape.
- the braid is a mesh flow diverter.
- the method also includes increasing a radial expansion force of the braid by attaching the first expansion ring at the proximal end and attaching the second expansion ring at the distal end.
- FIG. 1 depicts a side plan view of exemplary self-expanding braid assembled with example expansion rings at respective proximal and distal ends of the example braid.
- FIG. 2 is a close-up view of plane A-A of FIG. 1 depicting an exemplary proximal end of the braid with corresponding looped ends.
- FIG. 3 is a perspective of an exemplary expansion ring prior to being assembled with a braid of this disclosure.
- FIG. 4 is a close-up view of plane B-B of FIG. 1 showing certain features of one of the depicted expansion rings weaved through interstices of an example braid.
- FIG. 5 is a close-up view of plane C-C of FIG. 3 showing an example clip of an example expansion ring of this disclosure.
- FIG. 6 depicts a side plan view of exemplary expansion rings when assembled at proximal and distal ends of an example braid.
- FIG. 7 depicts a side plan view of exemplary expansion rings when assembled at proximal and distal ends of an example braid.
- FIG. 8 depicts a side plan view of exemplary expansion rings when assembled at proximal and distal ends of an example braid.
- FIG. 9 depicts an example endovascular medical system for use in treating an aneurysm with an example braid.
- FIG. 10 shows a flow diagram depicting an example method of this disclosure.
- vasculature of a “subject” or “patient” may be vasculature of a human or any animal.
- an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc.
- the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like).
- the subject may be any applicable human patient, for example.
- Braids may be formed from a plurality of elongate members (e.g. metal wires, polymeric fibers, or strands of material) and these members can be very useful in treatment of neurovascular defects.
- elongate members e.g. metal wires, polymeric fibers, or strands of material
- braided members when such braided members are intended to be self-expanding in a lumen of a stent body, known manners of activation of the initially expanding end struggle to adequately, reliably, and fully open so that the initially expanding end can be used as an anchor point.
- braids have been known to exhibit high internal friction that resists the inherent radial expansion force of the self-expanding braid when being deployed to an opened state. More specifically, the relatively high internal friction can render it difficult to open the initially expanding end of the stent which results in deficiencies in anchoring and deployment.
- braids can be delivered to a particular vessel by advancing a blunt surface against a proximal end of the braid causing the braid to axially compress and expand radially.
- This expansion within the delivery sheath or microcatheter can result in an increased normal force being applied to the inner surface of the delivery sheath, microcatheter, or the like thereby also increasing friction caused by the braid.
- a “self-expanding” stent is a stent wherein the particular stent fully deploys upon emerging through a delivery device such as a sheath, microcatheter, or the like.
- a self-expanding stent body emerges, unrestrained outside of the respective delivery device, the self-expanding braid should expand and be deployed in the vasculature.
- the present inventors have devised delivery systems that overcome these problems, see at least U.S. application Ser. No. 15/281,974, published as U.S. Patent Publication No. 2018/0092766 A1 and issued as U.S. Pat. No. 10,292,851 B2, incorporated herein by reference.
- distal or “proximal” are used in the following description with respect to a position or direction relative to the treating physician or medical interventionalist. “Distal” or “distally” are a position distant from or in a direction away from the physician or interventionalist. “Proximal” or “proximally” or “proximate” are a position near or in a direction toward the physician or medical interventionist.
- occlusion or “clot” or “blockage” are used interchangeably.
- FIG. 1 the herein disclosed expansion ring 30 , 40 is depicted in a side plan view with example braid 10 .
- the depicted system 1 resolves these and other issues by providing a secure, mechanical attachment between ring 30 , 40 and the corresponding, braid 10 that increases an outwardly extending radial expansion force of a proximal 12 and distal 14 end and/or a lumen 16 defined therebetween.
- Each ring 30 , 40 includes a frame with a plurality of interconnected elongate members 38 that collectively cause the ring to connect itself with the respective proximal 12 or distal 14 end of braid 10 .
- the ring 30 , 40 is capable of imparting an outwardly expanding radial force to the braid 10 .
- the respective end of each ring 40 is connected by mechanically securing a clip 35 of each ring 40 to be interlaced and/or interwoven with looped ends 18 of braid 10 .
- elongate members 36 , 38 of each of the first or second expansion rings 30 , 40 are interwoven into and out of adjacent looped ends 18 of the braid 10 . Assembling one or more rings 30 , 40 with braid 10 results in relatively easy delivery without the need for accurate positioning of ring 30 , 40 with braid 10 .
- FIG. 2 depicts a close-up view of plane A-A of FIG. 1 depicting an exemplary proximal end 12 of braid 10 with corresponding looped ends 18 . It can also be seen that wire or wires 22 are braided to form the atraumatic, looped ends 18 . It is understood that the distal end 14 can also have the same or similar looped ends 18 .
- FIG. 3 a perspective view of exemplary ring 30 , 40 is shown with a plurality of interconnected elongate members 36 , 38 . While each frame of ring 30 , 40 that is formed by interconnected elongate members 36 , 38 may be V-shaped as in FIG. 3 , it is understood that the frame of ring 30 , 40 can also be arranged in other bowed orientations. In this regard, members 36 , 38 may include a curved or arched portion that bows with a predetermined resistance to compression. Each frame of rings 30 , 40 , including respective members 36 , 38 , may have the same or a different resistance so that ring 30 , 40 can be individualized for the specific vasculature implementation.
- each 30, 40 is operable to assemble with looped ends 18 of braid 10 while also providing outward expanding radial forces to counter the inwardly applied compression in the compressed state.
- Members 36 , 38 and its constituent features, including intersection 32 and/or any preformed shape such as the bowed V-shape of FIG. 3 may be formed of a superelastic material, such as a nickel-titanium alloy or Nitinol, or may be formed of a non-superelastic material, such as spring steel or MP35N, an alloy of 35% nickel, 35% cobalt, 20% chromium, and 10% molybdenum, by weight.
- Members 36 , 38 may also be formed from a shape memory material having a shape memory position in the opened state.
- FIG. 4 depicts a close-up view of plane B-B of FIG. 1 depicting an intersection 32 of ring 40 interlaced with a looped end 18 of distal end 14 of braid 10 .
- members 38 , 36 can be seen being joined together at intersection 32 .
- Ring 40 including members 36 , 38 and corresponding intersection 32 , can be woven with end 18 in a variety of ways.
- member 38 can be interwoven into and out of adjacent looped ends 18 of the braid 10 , including sequentially through consecutive looped ends 18 , as shown in FIG. 6 .
- intersection 32 can be in a zig-zag shape and/or wrapped around or hooked with a respective looped end 18 of the braid 10 .
- ring 30 is not depicted in FIG. 4 with its intersection 32 connected to a corresponding looped end of proximal end 12 , it is contemplated that ring 30 would similarly connect with end 12 as shown in FIG. 4 .
- FIG. 5 is a close-up view of an example clip 35 of a ring 30 , 40 .
- the frame of ring 30 , 40 may include members 38 , 36 joined together, as shown, at first intersection 32 , whereby intersection 32 can be said clip 35 . While members 38 , 36 are seen integrally formed with each other in FIG. 5 , rings 30 , 40 are not so limited and members 38 , 36 may be removably attached to each other or otherwise connected. Members 38 , 36 may also be adhered to each other, crimped, or welded to form connections 42 . Additionally, if one or more fasteners are used in a particular implementation with connections 42 , they can be removably connected or welded, soldered, and/or crimped. Fasteners and/or members 38 , 36 can be formed of a radiopaque metal, such as platinum or tantalum, or may be formed of a non-radiopaque material, such as stainless steel.
- a radiopaque metal such as platinum or tanta
- each ring 30 , 40 can be interlaced with looped ends 18 without a permanent or rigid attachment thereto (e.g., welding, soldering or a chemical adhesive).
- Intersection 32 including clip 35 , may also include a rotatable and/or twistable hinge-type coupling so that each ring 30 , 40 is capable of flexing a predetermined amount when braid 10 and ring 30 , 40 is in use.
- One or more elongate members 33 may extend from intersection 32 , including from members 38 , 36 , and terminate at connection 42 opposite intersection 32 . Elongate members 33 are shown substantially aligned and offset from each other while being joined at one or more connections 42 to form one or more corresponding voids 37 therebetween through which wires 22 can pass.
- elongate members 33 can be passed through and/or interlaced with wire 22 and corresponding looped end 18 and then joined at the one or more respective connections 42 .
- one or more multiple looped ends 18 or passes by wire 22 may be arranged in or in connection with voids 37 so that clip 35 may be mechanically attached to proximal end 12 or distal end 14 , respectively.
- the one or more connections 42 between elongate members 33 may be formed from a weld, crimp, band, clamp, or adhesive.
- FIG. 6 depicts a side plan view of rings 30 , 40 being selectively positioned at ends 12 , 14 .
- the rings 30 , 40 can be interwoven or otherwise interconnected so that respective intersections 32 of each ring 30 , 40 are in communication with looped ends 18 of braid 10 .
- a corresponding intersection 32 can be provided by either of rings 30 , 40 .
- FIG. 6 is not intended to be limiting and any number of rings 30 , 40 and/or interlaced with looped ends 18 .
- intersections 32 can be pulled or translated or otherwise advanced with respect to looped ends 18 of braid 10 so as to be interwoven sequentially to adjacent looped ends 18 of the braid 10 in the form of a zig-zag shaped assembly.
- FIG. 7 depicts an aspect of a braid 10 of this disclosure with rings, 30 , 40 having radiopaque bands 46 .
- one or more radiopaque bands 46 can be connected with one or more corresponding elongate members 38 of rings 30 , 40 .
- band 46 can be positioned around or otherwise circumferentially around elongate member 38 or member 36 (e.g., axially aligned on the outer surface of a respective member).
- the band 46 can be in contact with braid 10 at looped end 18 or can be just distal or proximal thereof.
- FIG. 8 depicts an aspect of a braid 10 similar the example of FIG. 7 .
- bands 46 can be axially aligned with both member 38 or 36 and wire 22 just proximal or distal of respective looped end 18 so that the “zig-zag” shape is aligned with corresponding shape of wire 22 of the proximal 12 or distal 14 end.
- one or more bands 46 can be wrapped around both the respective wire 22 and elongate member 36 or 38 whereby each of wire and member 36 or 38 are therefore also axially aligned and possibly also in contact.
- FIG. 9 depicts an example endovascular medical system for use in treating an aneurysm AN with the herein disclosed example braid 10 .
- a physician or interventionalist endovascularly introduces a guidewire 50 through the vasculature, typically in an artery located in the groin or by direct access through the carotid artery.
- the guidewire 50 is advanced through the vasculature to the aneurysm.
- a microcatheter 60 tracks distally over the guidewire passing through a lumen defined axially through the microcatheter 60 .
- the braid 10 and corresponding expansion rings 30 , 40 can be distally advanced towards the aneurysm AN for treatment.
- FIG. 10 shows an example method 1000 for using a braid.
- the method can include step 1010 providing a braid having a proximal end, a distal end, and a lumen formed therebetween by one or more braided wires.
- Step 1020 can include positioning a first expansion ring with the proximal end, the first expansion ring configured to be self-expanding and apply an outward radial force to the proximal end of the braid.
- Step 1030 can include positioning a second expansion ring at a distal end of the braid, the second expansion ring configured to be self-expanding and apply an outward radial force to the distal end of the braid.
- Step 1040 can include engaging at least one of the first and second expansion rings to a delivery wire.
- Step 1050 can include delivering the braid to an aneurysm by distally advancing the delivery wire.
- the solutions contemplates many variations and modifications of a system, device, and/or method that can be used to analyze one or more clots and individualize treatment based on the analysis. Variations can include but are not limited to alternative geometries of elements and components described herein, utilizing any of numerous materials for each component or element (e.g. radiopaque materials, memory shape metals, etc.), utilizing additional components, utilizing additional components to perform functions described herein, or utilizing additional components to perform functions not described herein, for example. These modifications would be apparent to those having ordinary skill in the art to which this invention relates and are intended to be within the scope of the claims which follow.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Reproductive Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Neurosurgery (AREA)
- Surgical Instruments (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
An endovascular self-expanding stent system that can include a braid with a proximal end, a distal end, and a lumen formed therebetween. The braid can be formed from one or more wires woven to comprise interstices. A first expansion ring can be connected to the proximal end of the braid. A second expansion ring can be connected to the distal end of the braid. Each expansion ring can include a frame that imparts an outwardly expanding radial force to the braid. The frame can include a plurality of elongate members interconnected by one or more intersections.
Description
- The present application is a divisional application of U.S. patent application Ser. No. 16/234,226 filed Dec. 27, 2018, the contents of which are incorporated by reference in their entirety as if set forth herein.
- The present disclosure relates generally to treatment of certain defects in a vasculature of a patient and more particularly, to self-expanding braided stents to a treatment site in a vasculature of a patient.
- Stents are understood as tubular reinforcements that can be inserted into a blood vessel to provide an open path within the blood vessel. Stents have been widely used in intravascular angioplasty treatment of occluded cardiac arteries, wherein the stent may be inserted after an angioplasty procedure to prevent restenosis of the artery. Stents are often deployed by use of delivery devices which cause the stent to open with the objective of reinforcing the artery wall and provide a clear through-path in the artery thereby preventing restenosis.
- However, the weakness and non-linear nature of the neurovasculature limits the applicability of such stents in procedures, for example, in repairing neurovascular defects. Furthermore, known delivery methods are less useful in vasoocclusive surgery, particularly when tiny vessels, such as those found in the brain, are to be treated.
- In addition, single wire braided stents have some key advantages such as lower crimp profiles and require lower forces to track the devices during delivery in the vasculature. These stents are manufactured by braiding a wire in a pattern (e.g., cylindrical) and are typically manufactured of a self-expanding material, such as Nitinol. A significant drawback of these devices is that they have very low radial expansion forces resulting in stent migration and difficulty in accurately placing the device.
- Accordingly, a need exists for a stent that can be used with delivery techniques in vasoocclusive treatment of neurovascular defects that provides selective, accurate reinforcement in the vicinity of the neurovascular defect. A need also exists for a stent that reduces trauma or risk of rupture to the blood vessel.
- It is with respect to these and other considerations that the various embodiments described below are presented.
- In some aspects, the present disclosure relates to a braided stent system that can include a braid with a proximal end, a distal end, and a lumen formed therebetween. The braid can be formed from one or more wires woven to comprise interstices. A first expansion ring can be connected to the proximal end of the braid. A second expansion ring can be connected to the distal end of the braid. Each expansion ring can include a frame that imparts an outwardly expanding radial force to the braid. The frame can include a plurality of elongate members interconnected by one or more intersections.
- In some aspects, the proximal end and the distal end each comprise looped ends formed from the one or more wires.
- In some aspects, the elongate members of each of the first or second expansion rings are interwoven into and out of adjacent looped ends of the braid.
- In some aspects, intersections of each of the first or second expansion rings are interwoven sequentially whereby each intersection is connected or in communication with a respective looped end of the braid.
- In some aspects, intersections of each of the first or second expansion rings are interwoven sequentially whereby each intersection is wrapped around or hooked with a respective looped end of the braid.
- In some aspects, the elongate members of each of the first or second expansion rings are interwoven sequentially to adjacent looped ends of the braid in the form of a zig-zag shaped assembly.
- In some aspects, the elongate members of each of the first or second expansion rings are interwoven sequentially to adjacent looped ends of the braid in the form of a zig-zag shaped assembly.
- In some aspects, the first expansion ring includes one or more radiopaque bands connected with one or more corresponding elongate members proximal of the proximal end of the braid.
- In some aspects, the first expansion ring includes one or more radiopaque bands connected with one or more corresponding elongate members adjacent a respective intersection connected with a respective looped end and proximal of the proximal end.
- In some aspects, the second expansion ring includes one or more radiopaque bands connected with one or more corresponding elongate members distal of the distal end of the braid.
- In some aspects, the second expansion ring also includes one or more radiopaque bands connected with one or more corresponding elongate members adjacent a respective intersection connected with a respective looped end and distal of the distal end.
- In some aspects, at least one of the first and second expansion ring also includes one or more radiopaque bands connected with one or more corresponding elongate members and corresponding looped end of the braid.
- In some aspects, each elongate member is connected to the corresponding looped end of the braid by wrapping or encircling the respective radiopaque band thereabout.
- In some aspects, each elongate member is oriented parallel to a respective portion of the wire of the corresponding looped end connected to the radiopaque band.
- In some aspects, at least one of the first or second expansion rings comprises a clip that is mechanically connected to one or more of the looped ends.
- In some aspects, one end point of the first or second expansion ring is provided per looped end of the respective proximal or distal end.
- In some aspects, each expansion ring is self-expanding.
- In some aspects, the frame of each expansion ring formed by the elongate members and intersections comprise one of a zig-zag shape, a “V” shape, a “U” shape, a “W” shape, or a double “U” shape.
- In some aspects, a method of using a braid is disclosed. The method includes providing a braid having a proximal end, a distal end, and a lumen formed therebetween by one or more braided wires; positioning a first expansion ring with the proximal end, the first expansion ring configured to be self-expanding and apply an outward radial force to the proximal end of the braid; positioning a second expansion ring at a distal end of the braid, the second expansion ring configured to be self-expanding and apply an outward radial force to the distal end of the braid; engaging at least one of the first and second expansion rings to a delivery wire; and delivering the braid to an aneurysm by distally advancing the delivery wire.
- In some aspects, the step of positioning the first expansion ring at the proximal end of the braid includes sequentially translating one or more elongate members of the first expansion ring into and out of adjacent looped ends of the proximal end of the braid.
- In some aspects, the step of positioning the second expansion ring at the distal end of the braid includes sequentially translating one or more elongate members of the second expansion ring into and out of adjacent looped ends of the distal end of the braid.
- In some aspects, the step of positioning the first expansion ring at the proximal end of the braid includes positioning one or more intersections of the first expansion ring until each intersection is connected or in communication with a respective looped end of the proximal end of the braid.
- In some aspects, the method also includes wrapping around or hooking each intersection with a respective looped end of the braid.
- In some aspects, the step of positioning the second expansion ring at the distal end of the braid includes positioning one or more intersections of the second expansion ring until each intersection is connected or in communication with a respective looped end of the distal end of the braid.
- In some aspects, the method also includes wrapping around or hooking each intersection with a respective looped end of the braid.
- In some aspects, the method also includes connecting one or more radiopaque bands with one or more corresponding elongate members proximal of the proximal end of the braid.
- In some aspects, the method also includes connecting one or more radiopaque bands with one or more corresponding elongate members adjacent a respective intersection of the first expansion ring connected with a respective looped end of the braid and proximal of the proximal end.
- In some aspects, the method also includes connecting one or more radiopaque bands with one or more corresponding elongate members adjacent a respective intersection of the first expansion ring connected with a respective looped end of the braid and proximal of the proximal end.
- In some aspects, the method also includes wherein at least one of the first and second expansion ring also includes one or more radiopaque bands connected with one or more corresponding elongate members and corresponding looped end of the braid.
- In some aspects, the method also includes connecting each elongate member to a corresponding looped end of the braid by wrapping or encircling the respective radiopaque band thereabout.
- In some aspects, the method also includes orienting parallel an elongate member to a respective wire of the braid extending from a corresponding looped end and connected to the radiopaque band.
- In some aspects, the method also includes connecting one or more of the looped ends or wire of the braid to a void of the clip of the first or second expansion rings.
- In some aspects, the method also includes forming the frame of each expansion ring by the elongate members and intersections into one of a zig-zag shape, a “V” shape, a “U” shape, a “W” shape, or a double “U” shape.
- In some aspects, the braid is a mesh flow diverter.
- In some aspects, the method also includes increasing a radial expansion force of the braid by attaching the first expansion ring at the proximal end and attaching the second expansion ring at the distal end.
- Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.
-
FIG. 1 depicts a side plan view of exemplary self-expanding braid assembled with example expansion rings at respective proximal and distal ends of the example braid. -
FIG. 2 is a close-up view of plane A-A ofFIG. 1 depicting an exemplary proximal end of the braid with corresponding looped ends. -
FIG. 3 is a perspective of an exemplary expansion ring prior to being assembled with a braid of this disclosure. -
FIG. 4 is a close-up view of plane B-B ofFIG. 1 showing certain features of one of the depicted expansion rings weaved through interstices of an example braid. -
FIG. 5 is a close-up view of plane C-C ofFIG. 3 showing an example clip of an example expansion ring of this disclosure. -
FIG. 6 depicts a side plan view of exemplary expansion rings when assembled at proximal and distal ends of an example braid. -
FIG. 7 depicts a side plan view of exemplary expansion rings when assembled at proximal and distal ends of an example braid. -
FIG. 8 depicts a side plan view of exemplary expansion rings when assembled at proximal and distal ends of an example braid. -
FIG. 9 depicts an example endovascular medical system for use in treating an aneurysm with an example braid. -
FIG. 10 shows a flow diagram depicting an example method of this disclosure. - Although example embodiments of the disclosed technology are explained in detail herein, it is to be understood that other embodiments are contemplated. Accordingly, it is not intended that the disclosed technology be limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The disclosed technology is capable of other embodiments and of being practiced or carried out in various ways.
- As discussed herein, vasculature of a “subject” or “patient” may be vasculature of a human or any animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like). It should be appreciated that the subject may be any applicable human patient, for example.
- Braids may be formed from a plurality of elongate members (e.g. metal wires, polymeric fibers, or strands of material) and these members can be very useful in treatment of neurovascular defects. However, when such braided members are intended to be self-expanding in a lumen of a stent body, known manners of activation of the initially expanding end struggle to adequately, reliably, and fully open so that the initially expanding end can be used as an anchor point. Moreover, braids have been known to exhibit high internal friction that resists the inherent radial expansion force of the self-expanding braid when being deployed to an opened state. More specifically, the relatively high internal friction can render it difficult to open the initially expanding end of the stent which results in deficiencies in anchoring and deployment. This is particularly true for braids delivered to the desired vessel location through use of a delivery sheath, microcatheter, or the like, since in a closed state (e.g. compressed or crimped) the stent body typically exhibits friction between the braided members and the delivery sheath or microcatheter.
- In practice, braids can be delivered to a particular vessel by advancing a blunt surface against a proximal end of the braid causing the braid to axially compress and expand radially. This expansion within the delivery sheath or microcatheter can result in an increased normal force being applied to the inner surface of the delivery sheath, microcatheter, or the like thereby also increasing friction caused by the braid.
- Known solutions to these issues have depended on factors such as material, size, cell design, internal friction, and extra manipulation by the end-user to reliably, quickly and adequately open the braids. In turn, success of the braid relied heavily on end-user accuracy in delivery which unnecessarily increases risk of injury to the patient.
- Moreover, such braided, self-expanding stents can be difficult to recapture after being delivered and/or deployed. It is to be understood that a “self-expanding” stent is a stent wherein the particular stent fully deploys upon emerging through a delivery device such as a sheath, microcatheter, or the like. In this respect, when a self-expanding stent body emerges, unrestrained outside of the respective delivery device, the self-expanding braid should expand and be deployed in the vasculature. However, due to the referenced radial forces and friction, stent deployment and recapture following deployment is difficult. The present inventors have devised delivery systems that overcome these problems, see at least U.S. application Ser. No. 15/281,974, published as U.S. Patent Publication No. 2018/0092766 A1 and issued as U.S. Pat. No. 10,292,851 B2, incorporated herein by reference.
- The terms “distal” or “proximal” are used in the following description with respect to a position or direction relative to the treating physician or medical interventionalist. “Distal” or “distally” are a position distant from or in a direction away from the physician or interventionalist. “Proximal” or “proximally” or “proximate” are a position near or in a direction toward the physician or medical interventionist. The terms “occlusion”, “clot” or “blockage” are used interchangeably.
- Turning to
FIG. 1 , the herein disclosedexpansion ring example braid 10. The depictedsystem 1 resolves these and other issues by providing a secure, mechanical attachment betweenring braid 10 that increases an outwardly extending radial expansion force of a proximal 12 and distal 14 end and/or alumen 16 defined therebetween. Eachring elongate members 38 that collectively cause the ring to connect itself with the respective proximal 12 or distal 14 end ofbraid 10. Upon interconnection ofelongate members 38 of the frame with the proximal 12 or distal 14 end ofbraid 10, thering braid 10. In some aspects, as shown more particularly inFIG. 3 , the respective end of eachring 40 is connected by mechanically securing aclip 35 of eachring 40 to be interlaced and/or interwoven with looped ends 18 ofbraid 10. In some embodiments,elongate members braid 10. Assembling one ormore rings braid 10 results in relatively easy delivery without the need for accurate positioning ofring braid 10. -
FIG. 2 depicts a close-up view of plane A-A ofFIG. 1 depicting an exemplaryproximal end 12 ofbraid 10 with corresponding looped ends 18. It can also be seen that wire orwires 22 are braided to form the atraumatic, looped ends 18. It is understood that thedistal end 14 can also have the same or similar looped ends 18. - Turning to
FIG. 3 , a perspective view ofexemplary ring elongate members ring elongate members FIG. 3 , it is understood that the frame ofring members rings respective members ring - In a compressed, unexpanded state inside
microcatheter 10, each 30, 40 is operable to assemble with looped ends 18 ofbraid 10 while also providing outward expanding radial forces to counter the inwardly applied compression in the compressed state.Members intersection 32 and/or any preformed shape such as the bowed V-shape ofFIG. 3 , may be formed of a superelastic material, such as a nickel-titanium alloy or Nitinol, or may be formed of a non-superelastic material, such as spring steel or MP35N, an alloy of 35% nickel, 35% cobalt, 20% chromium, and 10% molybdenum, by weight.Members -
FIG. 4 depicts a close-up view of plane B-B ofFIG. 1 depicting anintersection 32 ofring 40 interlaced with a loopedend 18 ofdistal end 14 ofbraid 10. More specifically,members intersection 32.Ring 40, includingmembers intersection 32, can be woven withend 18 in a variety of ways. For example,member 38 can be interwoven into and out of adjacent looped ends 18 of thebraid 10, including sequentially through consecutive looped ends 18, as shown inFIG. 6 . In this respect,intersection 32 can be in a zig-zag shape and/or wrapped around or hooked with a respective loopedend 18 of thebraid 10. Whilering 30 is not depicted inFIG. 4 with itsintersection 32 connected to a corresponding looped end ofproximal end 12, it is contemplated thatring 30 would similarly connect withend 12 as shown inFIG. 4 . -
FIG. 5 is a close-up view of anexample clip 35 of aring ring members first intersection 32, wherebyintersection 32 can be saidclip 35. Whilemembers FIG. 5 , rings 30, 40 are not so limited andmembers Members connections 42. Additionally, if one or more fasteners are used in a particular implementation withconnections 42, they can be removably connected or welded, soldered, and/or crimped. Fasteners and/ormembers - By adding
clip 35 to the intersection ofmembers ring Intersection 32, includingclip 35, may also include a rotatable and/or twistable hinge-type coupling so that eachring braid 10 andring elongate members 33 may extend fromintersection 32, including frommembers connection 42opposite intersection 32.Elongate members 33 are shown substantially aligned and offset from each other while being joined at one ormore connections 42 to form one or morecorresponding voids 37 therebetween through whichwires 22 can pass. - In some aspects,
elongate members 33 can be passed through and/or interlaced withwire 22 and corresponding loopedend 18 and then joined at the one or morerespective connections 42. In those embodiments where more than onevoid 37 is provided, one or more multiple looped ends 18 or passes bywire 22 may be arranged in or in connection withvoids 37 so thatclip 35 may be mechanically attached toproximal end 12 ordistal end 14, respectively. The one ormore connections 42 betweenelongate members 33 may be formed from a weld, crimp, band, clamp, or adhesive. -
FIG. 6 depicts a side plan view ofrings rings respective intersections 32 of eachring braid 10. In certain embodiments, for every looped end 18 acorresponding intersection 32 can be provided by either ofrings FIG. 6 is not intended to be limiting and any number ofrings intersections 32, including itselongate members braid 10 so as to be interwoven sequentially to adjacent looped ends 18 of thebraid 10 in the form of a zig-zag shaped assembly. -
FIG. 7 depicts an aspect of abraid 10 of this disclosure with rings, 30, 40 havingradiopaque bands 46. In particular, one or moreradiopaque bands 46 can be connected with one or more correspondingelongate members 38 ofrings band 46 can be positioned around or otherwise circumferentially aroundelongate member 38 or member 36 (e.g., axially aligned on the outer surface of a respective member). In some embodiments, theband 46 can be in contact withbraid 10 at loopedend 18 or can be just distal or proximal thereof. -
FIG. 8 depicts an aspect of abraid 10 similar the example ofFIG. 7 . However, in the example depicted inFIG. 8 ,bands 46 can be axially aligned with bothmember wire 22 just proximal or distal of respective loopedend 18 so that the “zig-zag” shape is aligned with corresponding shape ofwire 22 of the proximal 12 or distal 14 end. In certain examples, one ormore bands 46 can be wrapped around both therespective wire 22 andelongate member member -
FIG. 9 depicts an example endovascular medical system for use in treating an aneurysm AN with the herein disclosedexample braid 10. During use, a physician or interventionalist endovascularly introduces aguidewire 50 through the vasculature, typically in an artery located in the groin or by direct access through the carotid artery. Theguidewire 50 is advanced through the vasculature to the aneurysm. Once theguidewire 50 is properly positioned, amicrocatheter 60 tracks distally over the guidewire passing through a lumen defined axially through themicrocatheter 60. Once properly positioned (e.g., adjacent or otherwise near the neck of the aneurysm AN, thebraid 10 and corresponding expansion rings 30, 40 can be distally advanced towards the aneurysm AN for treatment. -
FIG. 10 shows anexample method 1000 for using a braid. The method can includestep 1010 providing a braid having a proximal end, a distal end, and a lumen formed therebetween by one or more braided wires.Step 1020 can include positioning a first expansion ring with the proximal end, the first expansion ring configured to be self-expanding and apply an outward radial force to the proximal end of the braid.Step 1030 can include positioning a second expansion ring at a distal end of the braid, the second expansion ring configured to be self-expanding and apply an outward radial force to the distal end of the braid.Step 1040 can include engaging at least one of the first and second expansion rings to a delivery wire. Step 1050 can include delivering the braid to an aneurysm by distally advancing the delivery wire. - It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, other exemplary embodiments include from the one particular value and/or to the other particular value.
- By “comprising” or “containing” or “including” is meant that at least the named compound, element, particle, or method step is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, even if the other such compounds, material, particles, method steps have the same function as what is named.
- In describing example embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Steps of a method may be performed in a different order than those described herein without departing from the scope of the present disclosure. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.
- Some references, which may include various patents, patent applications, and publications, are cited in a reference list and discussed in the disclosure provided herein. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to any aspects of the present disclosure described herein. In terms of notation, “[n]” corresponds to the nth reference in the list. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
- The descriptions contained herein are examples illustrating the solution and are not intended to limit the scope. As described herein, the solution contemplates many variations and modifications of a system, device, and/or method that can be used to analyze one or more clots and individualize treatment based on the analysis. Variations can include but are not limited to alternative geometries of elements and components described herein, utilizing any of numerous materials for each component or element (e.g. radiopaque materials, memory shape metals, etc.), utilizing additional components, utilizing additional components to perform functions described herein, or utilizing additional components to perform functions not described herein, for example. These modifications would be apparent to those having ordinary skill in the art to which this invention relates and are intended to be within the scope of the claims which follow.
- The specific configurations, choice of materials and the size and shape of various elements can be varied according to particular design specifications or constraints requiring a system or method constructed according to the principles of the disclosed technology. Such changes are intended to be embraced within the scope of the disclosed technology. The presently disclosed embodiments, therefore, are considered in all respects to be illustrative and not restrictive. It will therefore be apparent from the foregoing that while particular forms of the disclosure have been illustrated and described, various modifications can be made without departing from the spirit and scope of the disclosure and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.
Claims (20)
1. A method of making a stent, the method comprising:
positioning a first expansion ring at a proximal end of a braid such that the first expansion ring comprises a plurality of elongate members, there is one end point between elongate members of the first expansion ring per looped end of the proximal end of the braid, the first expansion ring being configured to impart an outwardly expanding radial force to the proximal end of the braid; and
positioning a second expansion ring at a distal end of the braid such that the second expansion ring comprises a plurality of elongate members, there is one end point between elongate members of the second expansion ring per looped end of the distal end of the braid, the second expansion ring being configured to impart an outwardly expanding radial force to the distal end of the braid.
2. The method of claim 1 , wherein the step of positioning the first expansion ring at the proximal end of the braid comprises sequentially translating one or more elongate members of the first expansion ring into and out of adjacent looped ends of the proximal end of the braid.
3. The method of claim 1 , wherein the step of positioning the first expansion ring at the proximal end of the braid comprises positioning one or more intersections of the first expansion ring until each intersection is connected or in communication with a respective looped end of the proximal end of the braid.
4. The method of claim 3 , further comprising:
wrapping around or hooking the first expansion ring with a respective looped end of the braid.
5. The method of claim 1 , further comprising:
connecting one or more radiopaque bands with one or more corresponding elongate members adjacent a respective intersection of the first expansion ring connected with a respective looped end of the braid and proximal of the proximal end.
6. The method of claim 1 , further comprising:
wherein at least one of the first and second expansion ring further comprises:
one or more radiopaque bands connected with one or more corresponding elongate members and corresponding looped end of the braid.
7. The method of claim 6 , further comprising:
connecting each elongate member to a corresponding looped end of the braid by wrapping or encircling the radiopaque band thereabout.
8. The method of claim 6 , further comprising:
orienting parallel an elongate member to a respective wire of the braid extending from a corresponding looped end and connected to the one or more radiopaque bands.
9. The method of claim 1 , further comprising:
sequentially interweaving end points of each of the first and second expansion rings such that each end point is wrapped around or hooked with a respective looped end of the braid.
10. A method of making a stent, the method comprising:
weaving one or more wires to form a braid comprising looped ends on a proximal end and a distal end, and interstices along a lumen formed therebetween; and
positioning one or more intersections of a first expansion ring until each intersection is connected to or in communication with the respective looped end of the proximal end of the braid, with a remainder of the first expansion ring disposed external to the braid.
11. The method of claim 10 , wherein the step of positioning one or more intersections of a first expansion ring until each intersection is connected to or in communication with the respective looped end of the proximal end of the braid comprises wrapping around or hooking each intersection of the first expansion ring with a respective looped end of the proximal end of the braid.
12. The method of claim 10 , further comprising:
configuring the stent to impart an outwardly expanding radial force to the braid by attaching the first expansion ring at the proximal end of the braid.
13. The method of claim 10 , further comprising:
positioning one or more intersections of a second expansion ring until each intersection is connected to or in communication with a respective looped end of the distal end of the braid, with a remainder of the second expansion ring disposed external to the braid.
14. The method of claim 13 , wherein the step of positioning one or more intersections of a first expansion ring until each intersection is connected to or in communication with the respective looped end of the proximal end of the braid comprises wrapping around or hooking each intersection of the second expansion ring with a respective looped end of the distal end of the braid.
15. The method of claim 10 , further comprising:
connecting one or more radiopaque bands with one or more corresponding elongate members adjacent a respective intersection of the first expansion ring connected with a respective looped end of the braid and proximal of the proximal end.
16. The method of claim 15 , further comprising:
connecting each elongate member to a corresponding looped end of the braid by wrapping or encircling the radiopaque band thereabout.
17. A method of using a stent, the method comprising:
engaging a delivery wire to at least one of a first expansion ring connected to a proximal end of a braid or a second expansion ring connected to a distal end of the braid;
positioning the braid in a compressed configuration inside a microcatheter;
delivering the braid to an aneurysm by distally advancing the delivery wire; and
deploying the braid such that the at least a portion of the braid exits the microcatheter and at least one of the first or second expansion ring imparts an outwardly expanding radial force on the respective end of the braid.
18. The method of claim 17 , wherein the step of engaging a delivery wire to at least one of a first expansion ring connected to a proximal end of a braid or a second expansion ring connected to a distal end of the braid comprises increasing an outwardly expanding radial force of the braid by attaching the first expansion ring at the proximal end of the braid and attaching the second expansion ring at the distal end of the braid;
19. The method of claim 18 , wherein the step of attaching the first expansion ring at the proximal end of the braid or a second expansion ring connected to a distal end of the braid comprises as least one of:
sequentially translating one or more elongate members of the first or second expansion ring into and out of adjacent looped ends of the proximate or distal end of the braid; and
wrapping around or hooking each intersection of the first or second expansion ring with a respective looped end of the proximate or distal end of the braid.
20. The method of claim 17 , further comprising the step of fully deploying the braid from the microcatheter by distally advancing the delivery wire such that the braid exits the microcatheter and expands from a compressed configuration to an expanded configuration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/320,313 US20210282946A1 (en) | 2018-12-27 | 2021-05-14 | Braided stent system with one or more expansion rings |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/234,226 US11039944B2 (en) | 2018-12-27 | 2018-12-27 | Braided stent system with one or more expansion rings |
US17/320,313 US20210282946A1 (en) | 2018-12-27 | 2021-05-14 | Braided stent system with one or more expansion rings |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/234,226 Division US11039944B2 (en) | 2018-12-27 | 2018-12-27 | Braided stent system with one or more expansion rings |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210282946A1 true US20210282946A1 (en) | 2021-09-16 |
Family
ID=69061133
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/234,226 Active 2039-06-29 US11039944B2 (en) | 2018-12-27 | 2018-12-27 | Braided stent system with one or more expansion rings |
US17/320,313 Abandoned US20210282946A1 (en) | 2018-12-27 | 2021-05-14 | Braided stent system with one or more expansion rings |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/234,226 Active 2039-06-29 US11039944B2 (en) | 2018-12-27 | 2018-12-27 | Braided stent system with one or more expansion rings |
Country Status (5)
Country | Link |
---|---|
US (2) | US11039944B2 (en) |
EP (1) | EP3673875A1 (en) |
JP (1) | JP2020103895A (en) |
KR (1) | KR20200081260A (en) |
CN (1) | CN111388157A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112754584A (en) * | 2021-01-06 | 2021-05-07 | 微创神通医疗科技(上海)有限公司 | Vascular implant and medical equipment |
CN115137536B (en) * | 2022-09-05 | 2022-12-09 | 艾柯医疗器械(北京)股份有限公司 | Bead string-shaped component, stent conveying system comprising same and stent system |
Family Cites Families (352)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4332278A (en) | 1976-04-14 | 1982-06-01 | Titeflex Corporation | Braided-wire sheathing having bundled strands twisted to equalize tension |
US4610688A (en) | 1983-04-04 | 1986-09-09 | Pfizer Hospital Products Group, Inc. | Triaxially-braided fabric prosthesis |
US5275622A (en) | 1983-12-09 | 1994-01-04 | Harrison Medical Technologies, Inc. | Endovascular grafting apparatus, system and method and devices for use therewith |
US4754685A (en) | 1986-05-12 | 1988-07-05 | Raychem Corporation | Abrasion resistant braided sleeve |
US5545208A (en) | 1990-02-28 | 1996-08-13 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
US5064435A (en) | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
DK0480667T3 (en) | 1990-10-09 | 1996-06-10 | Cook Inc | Percutaneous stent construction |
WO1992006734A1 (en) | 1990-10-18 | 1992-04-30 | Ho Young Song | Self-expanding endovascular stent |
US5387235A (en) | 1991-10-25 | 1995-02-07 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5382259A (en) | 1992-10-26 | 1995-01-17 | Target Therapeutics, Inc. | Vasoocclusion coil with attached tubular woven or braided fibrous covering |
US5423849A (en) | 1993-01-15 | 1995-06-13 | Target Therapeutics, Inc. | Vasoocclusion device containing radiopaque fibers |
US5843167A (en) * | 1993-04-22 | 1998-12-01 | C. R. Bard, Inc. | Method and apparatus for recapture of hooked endoprosthesis |
WO1995003010A1 (en) | 1993-07-23 | 1995-02-02 | Cook Incorporated | A flexible stent having a pattern formed from a sheet of material |
US5609627A (en) | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US6165213A (en) | 1994-02-09 | 2000-12-26 | Boston Scientific Technology, Inc. | System and method for assembling an endoluminal prosthesis |
US6051020A (en) | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5556413A (en) | 1994-03-11 | 1996-09-17 | Advanced Cardiovascular Systems, Inc. | Coiled stent with locking ends |
EP0759730B1 (en) | 1994-05-19 | 1999-02-10 | Scimed Life Systems, Inc. | Improved tissue supporting devices |
US5476508A (en) | 1994-05-26 | 1995-12-19 | Tfx Medical | Stent with mutually interlocking filaments |
US5522881A (en) | 1994-06-28 | 1996-06-04 | Meadox Medicals, Inc. | Implantable tubular prosthesis having integral cuffs |
US5549662A (en) | 1994-11-07 | 1996-08-27 | Scimed Life Systems, Inc. | Expandable stent using sliding members |
DE69532966T2 (en) | 1994-11-09 | 2004-10-21 | Endotex Interventional Sys Inc | COMBINATION OF DELIVERY CATHETER AND IMPLANT FOR AN ANEURYSMA |
DE19508805C2 (en) | 1995-03-06 | 2000-03-30 | Lutz Freitag | Stent for placement in a body tube with a flexible support structure made of at least two wires with different shape memory functions |
US5709713A (en) | 1995-03-31 | 1998-01-20 | Cardiovascular Concepts, Inc. | Radially expansible vascular prosthesis having reversible and other locking structures |
US5662622A (en) | 1995-04-04 | 1997-09-02 | Cordis Corporation | Intravascular catheter |
BE1009277A3 (en) | 1995-04-12 | 1997-01-07 | Corvita Europ | Guardian self-expandable medical device introduced in cavite body, and method of preparation. |
US5645558A (en) | 1995-04-20 | 1997-07-08 | Medical University Of South Carolina | Anatomically shaped vasoocclusive device and method of making the same |
US5728131A (en) | 1995-06-12 | 1998-03-17 | Endotex Interventional Systems, Inc. | Coupling device and method of use |
US5702418A (en) | 1995-09-12 | 1997-12-30 | Boston Scientific Corporation | Stent delivery system |
US6193745B1 (en) | 1995-10-03 | 2001-02-27 | Medtronic, Inc. | Modular intraluminal prosteheses construction and methods |
US5776161A (en) | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
US6348066B1 (en) | 1995-11-07 | 2002-02-19 | Corvita Corporation | Modular endoluminal stent-grafts and methods for their use |
US6929659B2 (en) | 1995-11-07 | 2005-08-16 | Scimed Life Systems, Inc. | Method of preventing the dislodgment of a stent-graft |
EP0955954B1 (en) | 1996-01-05 | 2005-03-16 | Medtronic, Inc. | Expansible endoluminal prostheses |
US6010529A (en) | 1996-12-03 | 2000-01-04 | Atrium Medical Corporation | Expandable shielded vessel support |
CN1172636C (en) | 1997-01-24 | 2004-10-27 | 乔米德有限公司 | Bistable spring construction for a stent and other medical apparatus |
US6152956A (en) | 1997-01-28 | 2000-11-28 | Pierce; George E. | Prosthesis for endovascular repair of abdominal aortic aneurysms |
US5817126A (en) | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
DE19720115C2 (en) | 1997-05-14 | 1999-05-20 | Jomed Implantate Gmbh | Stent graft |
US6409755B1 (en) | 1997-05-29 | 2002-06-25 | Scimed Life Systems, Inc. | Balloon expandable stent with a self-expanding portion |
US6635080B1 (en) | 1997-06-19 | 2003-10-21 | Vascutek Limited | Prosthesis for repair of body passages |
US6174330B1 (en) | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US5899935A (en) | 1997-08-04 | 1999-05-04 | Schneider (Usa) Inc. | Balloon expandable braided stent with restraint |
US5916235A (en) | 1997-08-13 | 1999-06-29 | The Regents Of The University Of California | Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities |
US6161399A (en) | 1997-10-24 | 2000-12-19 | Iowa-India Investments Company Limited | Process for manufacturing a wire reinforced monolayer fabric stent |
US6033436A (en) | 1998-02-17 | 2000-03-07 | Md3, Inc. | Expandable stent |
US6015432A (en) | 1998-02-25 | 2000-01-18 | Cordis Corporation | Wire reinforced vascular prosthesis |
US6280467B1 (en) | 1998-02-26 | 2001-08-28 | World Medical Manufacturing Corporation | Delivery system for deployment and endovascular assembly of a multi-stage stented graft |
US6099559A (en) | 1998-05-28 | 2000-08-08 | Medtronic Ave, Inc. | Endoluminal support assembly with capped ends |
US6740113B2 (en) | 1998-05-29 | 2004-05-25 | Scimed Life Systems, Inc. | Balloon expandable stent with a self-expanding portion |
US6168621B1 (en) | 1998-05-29 | 2001-01-02 | Scimed Life Systems, Inc. | Balloon expandable stent with a self-expanding portion |
US6036725A (en) | 1998-06-10 | 2000-03-14 | General Science And Technology | Expandable endovascular support device |
US20010049554A1 (en) | 1998-11-18 | 2001-12-06 | Carlos E. Ruiz | Endovascular prosthesis and method of making |
DE69927055T2 (en) | 1998-12-11 | 2006-06-29 | Endologix, Inc., Irvine | ENDOLUMINAL VASCULAR PROSTHESIS |
US6730116B1 (en) | 1999-04-16 | 2004-05-04 | Medtronic, Inc. | Medical device for intraluminal endovascular stenting |
US6325823B1 (en) | 1999-10-29 | 2001-12-04 | Revasc Corporation | Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use |
US6585758B1 (en) | 1999-11-16 | 2003-07-01 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US6673107B1 (en) | 1999-12-06 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Bifurcated stent and method of making |
US6280465B1 (en) | 1999-12-30 | 2001-08-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for delivering a self-expanding stent on a guide wire |
GB0003387D0 (en) | 2000-02-14 | 2000-04-05 | Angiomed Ag | Stent matrix |
US6319278B1 (en) | 2000-03-03 | 2001-11-20 | Stephen F. Quinn | Low profile device for the treatment of vascular abnormalities |
US6929658B1 (en) | 2000-03-09 | 2005-08-16 | Design & Performance-Cyprus Limited | Stent with cover connectors |
US6264683B1 (en) | 2000-03-17 | 2001-07-24 | Advanced Cardiovascular Systems, Inc. | Stent delivery catheter with bumpers for improved retention of balloon expandable stents |
IL137326A0 (en) | 2000-07-17 | 2001-07-24 | Mind Guard Ltd | Implantable braided stroke preventing device and method of manufacturing |
WO2003061502A1 (en) | 2000-10-26 | 2003-07-31 | Scimed Life Systems, Inc. | Stent having radiopaque markers and method of fabricating the same |
US7267685B2 (en) | 2000-11-16 | 2007-09-11 | Cordis Corporation | Bilateral extension prosthesis and method of delivery |
DE10064596A1 (en) | 2000-12-18 | 2002-06-20 | Biotronik Mess & Therapieg | Application of a marker element to an implant, especially a stent, comprises introducing a solidifiable material into a recess and solidifying the material in the recess |
US6565599B1 (en) | 2000-12-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Hybrid stent |
US20020095205A1 (en) | 2001-01-12 | 2002-07-18 | Edwin Tarun J. | Encapsulated radiopaque markers |
US6540777B2 (en) | 2001-02-15 | 2003-04-01 | Scimed Life Systems, Inc. | Locking stent |
EP1372534B1 (en) | 2001-03-28 | 2006-11-29 | Cook Incorporated | Set of sections for a modular stent graft assembly |
US6761733B2 (en) | 2001-04-11 | 2004-07-13 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
US6733521B2 (en) | 2001-04-11 | 2004-05-11 | Trivascular, Inc. | Delivery system and method for endovascular graft |
US6821291B2 (en) | 2001-06-01 | 2004-11-23 | Ams Research Corporation | Retrievable stent and method of use thereof |
US6612012B2 (en) | 2001-06-11 | 2003-09-02 | Cordis Neurovascular, Inc. | Method of manufacturing small profile medical devices |
US6673106B2 (en) | 2001-06-14 | 2004-01-06 | Cordis Neurovascular, Inc. | Intravascular stent device |
US6818013B2 (en) | 2001-06-14 | 2004-11-16 | Cordis Corporation | Intravascular stent device |
US6994722B2 (en) | 2001-07-03 | 2006-02-07 | Scimed Life Systems, Inc. | Implant having improved fixation to a body lumen and method for implanting the same |
US20030100945A1 (en) | 2001-11-23 | 2003-05-29 | Mindguard Ltd. | Implantable intraluminal device and method of using same in treating aneurysms |
US8715312B2 (en) | 2001-07-20 | 2014-05-06 | Microvention, Inc. | Aneurysm treatment device and method of use |
US8252040B2 (en) | 2001-07-20 | 2012-08-28 | Microvention, Inc. | Aneurysm treatment device and method of use |
US20030055493A1 (en) | 2001-09-19 | 2003-03-20 | Erin Carpenter | Enhancement of stent radiopacity using anchors and tags |
JP4043216B2 (en) | 2001-10-30 | 2008-02-06 | オリンパス株式会社 | Stent |
US6945994B2 (en) | 2001-12-05 | 2005-09-20 | Boston Scientific Scimed, Inc. | Combined balloon-expanding and self-expanding stent |
US7147661B2 (en) | 2001-12-20 | 2006-12-12 | Boston Scientific Santa Rosa Corp. | Radially expandable stent |
US6911040B2 (en) | 2002-01-24 | 2005-06-28 | Cordis Corporation | Covered segmented stent |
US7708771B2 (en) | 2002-02-26 | 2010-05-04 | Endovascular Technologies, Inc. | Endovascular graft device and methods for attaching components thereof |
US6989024B2 (en) | 2002-02-28 | 2006-01-24 | Counter Clockwise, Inc. | Guidewire loaded stent for delivery through a catheter |
US7288111B1 (en) | 2002-03-26 | 2007-10-30 | Thoratec Corporation | Flexible stent and method of making the same |
US20030225448A1 (en) | 2002-05-28 | 2003-12-04 | Scimed Life Systems, Inc. | Polar radiopaque marker for stent |
US6833003B2 (en) | 2002-06-24 | 2004-12-21 | Cordis Neurovascular | Expandable stent and delivery system |
US20040015229A1 (en) | 2002-07-22 | 2004-01-22 | Syntheon, Llc | Vascular stent with radiopaque markers |
US20040044399A1 (en) | 2002-09-04 | 2004-03-04 | Ventura Joseph A. | Radiopaque links for self-expanding stents |
US7001422B2 (en) | 2002-09-23 | 2006-02-21 | Cordis Neurovascular, Inc | Expandable stent and delivery system |
US7331986B2 (en) | 2002-10-09 | 2008-02-19 | Boston Scientific Scimed, Inc. | Intraluminal medical device having improved visibility |
US6970734B2 (en) | 2002-12-02 | 2005-11-29 | Boston Scientific Scimed, Inc. | Flexible marker bands |
WO2004075789A2 (en) | 2003-02-26 | 2004-09-10 | Cook Incorporated | PROTHESIS ADAPTED FOR PLACEDd UNDER EXTERNAL IMAGING |
CA2507649C (en) | 2003-04-02 | 2011-10-11 | Mehran Bashiri | Detachable and retrievable stent assembly |
EP1620158B1 (en) | 2003-04-25 | 2008-09-03 | Cook Incorporated | Delivery catheter |
US7625401B2 (en) | 2003-05-06 | 2009-12-01 | Abbott Laboratories | Endoprosthesis having foot extensions |
US7235093B2 (en) | 2003-05-20 | 2007-06-26 | Boston Scientific Scimed, Inc. | Mechanism to improve stent securement |
US20040254637A1 (en) | 2003-06-16 | 2004-12-16 | Endotex Interventional Systems, Inc. | Sleeve stent marker |
US8021418B2 (en) | 2003-06-19 | 2011-09-20 | Boston Scientific Scimed, Inc. | Sandwiched radiopaque marker on covered stent |
US20050033406A1 (en) | 2003-07-15 | 2005-02-10 | Barnhart William H. | Branch vessel stent and graft |
US7628806B2 (en) | 2003-08-20 | 2009-12-08 | Boston Scientific Scimed, Inc. | Stent with improved resistance to migration |
US20050049689A1 (en) | 2003-08-25 | 2005-03-03 | Biophan Technologies, Inc. | Electromagnetic radiation transparent device and method of making thereof |
US20050049669A1 (en) | 2003-08-29 | 2005-03-03 | Jones Donald K. | Self-expanding stent and stent delivery system with distal protection |
US20050049668A1 (en) | 2003-08-29 | 2005-03-03 | Jones Donald K. | Self-expanding stent and stent delivery system for treatment of vascular stenosis |
US20050049670A1 (en) | 2003-08-29 | 2005-03-03 | Jones Donald K. | Self-expanding stent and stent delivery system for treatment of vascular disease |
US7371228B2 (en) | 2003-09-19 | 2008-05-13 | Medtronic Vascular, Inc. | Delivery of therapeutics to treat aneurysms |
US7122052B2 (en) | 2003-09-29 | 2006-10-17 | Stout Medical Group Lp | Integral support stent graft assembly |
US7208008B2 (en) | 2003-10-02 | 2007-04-24 | Medtronic Vascular, Inc. | Balloonless direct stenting device |
US20070219613A1 (en) | 2003-10-06 | 2007-09-20 | Xtent, Inc. | Apparatus and methods for interlocking stent segments |
US8043357B2 (en) | 2003-10-10 | 2011-10-25 | Cook Medical Technologies Llc | Ring stent |
WO2005034807A1 (en) | 2003-10-10 | 2005-04-21 | William A. Cook Australia Pty. Ltd | Composite stent graft |
US8157855B2 (en) | 2003-12-05 | 2012-04-17 | Boston Scientific Scimed, Inc. | Detachable segment stent |
US7275471B2 (en) | 2003-12-29 | 2007-10-02 | Surpass Medical Ltd. | Mixed wire braided device with structural integrity |
US7641647B2 (en) | 2003-12-29 | 2010-01-05 | Boston Scientific Scimed, Inc. | Medical device with modified marker band |
FR2865926B1 (en) | 2004-02-11 | 2006-05-12 | Perouse Laboratoires | TUBULAR PROSTHESIS. |
US7480973B2 (en) | 2004-03-01 | 2009-01-27 | Boston Scientific Scimed, Inc. | Automated marker band nest placement crimper |
JP4852033B2 (en) | 2004-03-11 | 2012-01-11 | トリバスキュラー インコーポレイテッド | Modular endovascular graft |
US7761138B2 (en) | 2004-03-12 | 2010-07-20 | Boston Scientific Scimed, Inc. | MRI and X-ray visualization |
US8267985B2 (en) | 2005-05-25 | 2012-09-18 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US9308382B2 (en) | 2004-06-10 | 2016-04-12 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US20050283220A1 (en) | 2004-06-22 | 2005-12-22 | Gobran Riad H | Blood flow diverters for the treatment of intracranial aneurysms |
US20050288775A1 (en) | 2004-06-24 | 2005-12-29 | Scimed Life Systems, Inc. | Metallic fibers reinforced textile prosthesis |
US9655633B2 (en) | 2004-09-10 | 2017-05-23 | Penumbra, Inc. | System and method for treating ischemic stroke |
AU2005286730B2 (en) | 2004-09-21 | 2010-08-12 | Cook Incorporated | Stent graft connection arrangement |
US7695506B2 (en) | 2004-09-21 | 2010-04-13 | Boston Scientific Scimed, Inc. | Atraumatic connections for multi-component stents |
US20060069424A1 (en) | 2004-09-27 | 2006-03-30 | Xtent, Inc. | Self-constrained segmented stents and methods for their deployment |
US20060089637A1 (en) | 2004-10-14 | 2006-04-27 | Werneth Randell L | Ablation catheter |
US8562672B2 (en) | 2004-11-19 | 2013-10-22 | Medtronic, Inc. | Apparatus for treatment of cardiac valves and method of its manufacture |
US20090297582A1 (en) | 2004-11-26 | 2009-12-03 | Biomerix Corporation | Vascular occlusion devices and methods |
US20080140172A1 (en) | 2004-12-13 | 2008-06-12 | Robert Hunt Carpenter | Multi-Wall Expandable Device Capable Of Drug Delivery Related Applications |
US8128680B2 (en) | 2005-01-10 | 2012-03-06 | Taheri Laduca Llc | Apparatus and method for deploying an implantable device within the body |
WO2006079006A2 (en) | 2005-01-21 | 2006-07-27 | Gen 4, Llc | Modular stent graft employing bifurcated graft and leg locking stent elements |
US20060212113A1 (en) | 2005-02-24 | 2006-09-21 | Shaolian Samuel M | Externally adjustable endovascular graft implant |
US8002818B2 (en) | 2005-02-25 | 2011-08-23 | Abbott Laboratories Vascular Enterprises Limited | Modular vascular prosthesis having axially variable properties and improved flexibility and methods of use |
US8025694B2 (en) | 2005-02-25 | 2011-09-27 | Abbott Laboratories Vascular Enterprises Limited | Modular vascular prosthesis and methods of use |
US20070213810A1 (en) | 2005-03-14 | 2007-09-13 | Richard Newhauser | Segmented endoprosthesis |
DE102005020785A1 (en) | 2005-05-04 | 2006-11-09 | Jotec Gmbh | Delivery system with a self-expanding braid stent |
ES2649548T3 (en) | 2005-05-12 | 2018-01-12 | Covidien Lp | Implant delivery system with mutually locked RX port orientation |
CA2607744C (en) | 2005-05-24 | 2015-11-24 | Edwards Lifesciences Corporation | Rapid deployment prosthetic heart valve |
US9089423B2 (en) | 2010-05-10 | 2015-07-28 | Hlt, Inc. | Stentless support structure |
US9636115B2 (en) | 2005-06-14 | 2017-05-02 | Stryker Corporation | Vaso-occlusive delivery device with kink resistant, flexible distal end |
US20070005127A1 (en) | 2005-06-17 | 2007-01-04 | Peter Boekstegers | Hinged tissue implant and related methods and devices for delivering such an implant |
EP2759276A1 (en) | 2005-06-20 | 2014-07-30 | Medtronic Ablation Frontiers LLC | Ablation catheter |
US9149378B2 (en) | 2005-08-02 | 2015-10-06 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US20070060994A1 (en) | 2005-09-12 | 2007-03-15 | Gobran Riad H | Blood flow diverters for the treatment of intracranial aneurysms |
US8562666B2 (en) | 2005-09-28 | 2013-10-22 | Nitinol Development Corporation | Intraluminal medical device with nested interlocking segments |
EP1954224B1 (en) | 2005-11-14 | 2013-05-29 | Covidien LP | Stent delivery system for ostial locations in a conduit |
AU2006330786B2 (en) | 2005-11-17 | 2012-02-02 | Microvention, Inc. | Three-dimensional complex coil |
FR2894131B1 (en) | 2005-12-02 | 2008-12-05 | Perouse Soc Par Actions Simpli | DEVICE FOR TREATING A BLOOD VESSEL, AND ASSOCIATED TREATMENT NECESSARY. |
US20070156230A1 (en) | 2006-01-04 | 2007-07-05 | Dugan Stephen R | Stents with radiopaque markers |
US8778008B2 (en) | 2006-01-13 | 2014-07-15 | Aga Medical Corporation | Intravascular deliverable stent for reinforcement of vascular abnormalities |
US8840657B2 (en) | 2006-01-18 | 2014-09-23 | Cook Medical Technologies Llc | Self expanding stent |
WO2007097983A2 (en) | 2006-02-14 | 2007-08-30 | Sadra Medical, Inc. | Systems and methods for delivering a medical implant |
US8152833B2 (en) | 2006-02-22 | 2012-04-10 | Tyco Healthcare Group Lp | Embolic protection systems having radiopaque filter mesh |
US20100010622A1 (en) | 2006-03-13 | 2010-01-14 | Abbott Laboratories | Hybrid segmented endoprosthesis |
US20090076594A1 (en) | 2006-03-14 | 2009-03-19 | Patrick Sabaria | Method of monitoring positioning of polymer stents |
US8357194B2 (en) | 2006-03-15 | 2013-01-22 | Cordis Corporation | Stent graft device |
AU2007227000A1 (en) | 2006-03-20 | 2007-09-27 | Xtent, Inc. | Apparatus and methods for deployment of linked prosthetic segments |
US20070238979A1 (en) | 2006-03-23 | 2007-10-11 | Medtronic Vascular, Inc. | Reference Devices for Placement in Heart Structures for Visualization During Heart Valve Procedures |
US8092508B2 (en) | 2006-03-30 | 2012-01-10 | Stryker Corporation | Implantable medical endoprosthesis delivery system |
US9757260B2 (en) | 2006-03-30 | 2017-09-12 | Medtronic Vascular, Inc. | Prosthesis with guide lumen |
FR2899096B1 (en) | 2006-04-04 | 2008-12-05 | Perouse Soc Par Actions Simpli | DEVICE FOR TREATING A CIRCULATION CIRCULATION OF THE BLOOD AND METHOD OF PREPARING SAID DEVICE |
US9615832B2 (en) | 2006-04-07 | 2017-04-11 | Penumbra, Inc. | Aneurysm occlusion system and method |
EP1849440A1 (en) | 2006-04-28 | 2007-10-31 | Younes Boudjemline | Vascular stents with varying diameter |
US7655031B2 (en) | 2006-04-28 | 2010-02-02 | Codman & Shurtleff, Inc. | Stent delivery system with improved retraction member |
US8377091B2 (en) | 2006-06-15 | 2013-02-19 | Microvention, Inc. | Embolization device constructed from expansile polymer |
WO2008005666A1 (en) | 2006-07-07 | 2008-01-10 | Boston Scientific Limited | Endoprosthesis delivery system with stent holder |
US20080009938A1 (en) | 2006-07-07 | 2008-01-10 | Bin Huang | Stent with a radiopaque marker and method for making the same |
EP1882465B1 (en) | 2006-07-24 | 2009-01-07 | Cardiatis Société Anonyme | Reversible-action endoprosthesis delivery device |
US8021412B2 (en) | 2006-08-18 | 2011-09-20 | William A. Cook Australia Pty. Ltd. | Iliac extension with flared cuff |
US20080071307A1 (en) | 2006-09-19 | 2008-03-20 | Cook Incorporated | Apparatus and methods for in situ embolic protection |
US10137015B2 (en) | 2006-10-18 | 2018-11-27 | Inspiremd Ltd. | Knitted stent jackets |
US7655034B2 (en) | 2006-11-14 | 2010-02-02 | Medtronic Vascular, Inc. | Stent-graft with anchoring pins |
EP2088962B1 (en) | 2006-11-22 | 2017-10-11 | Inspiremd Ltd. | Optimized stent jacket |
JP5201631B2 (en) | 2007-02-01 | 2013-06-05 | 株式会社カネカ | Body cavity medical device |
EP2117463B1 (en) | 2007-03-07 | 2018-11-14 | Boston Scientific Limited | Radiopaque polymeric stent |
US8623070B2 (en) | 2007-03-08 | 2014-01-07 | Thomas O. Bales | Tapered helical stent and method for manufacturing the stent |
US8545548B2 (en) | 2007-03-30 | 2013-10-01 | DePuy Synthes Products, LLC | Radiopaque markers for implantable stents and methods for manufacturing the same |
US7810223B2 (en) | 2007-05-16 | 2010-10-12 | Boston Scientific Scimed, Inc. | Method of attaching radiopaque markers to intraluminal medical devices, and devices formed using the same |
EP2166983A4 (en) | 2007-06-22 | 2012-08-22 | Bard Inc C R | Locked segments pushable stent-graft |
DE102007034041A1 (en) | 2007-07-20 | 2009-01-22 | Biotronik Vi Patent Ag | Medication depots for medical implants |
US8092510B2 (en) | 2007-07-25 | 2012-01-10 | Cook Medical Technologies Llc | Retention wire for self-expanding stent |
US20090082845A1 (en) | 2007-09-26 | 2009-03-26 | Boston Scientific Corporation | Alignment stent apparatus and method |
US8066755B2 (en) | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
US20090082847A1 (en) | 2007-09-26 | 2009-03-26 | Boston Scientific Corporation | System and method of securing stent barbs |
DE102007058256A1 (en) | 2007-11-26 | 2009-05-28 | Aesculap Ag | Surgical thread mesh |
US20090143815A1 (en) | 2007-11-30 | 2009-06-04 | Boston Scientific Scimed, Inc. | Apparatus and Method for Sealing a Vessel Puncture Opening |
US8128677B2 (en) | 2007-12-12 | 2012-03-06 | Intact Vascular LLC | Device and method for tacking plaque to a blood vessel wall |
US20090163951A1 (en) | 2007-12-19 | 2009-06-25 | Sara Simmons | Medical devices including sutures with filaments comprising naturally derived collagenous material |
AU2008345590B2 (en) | 2007-12-21 | 2014-10-30 | Microvention, Inc. | Hydrogel filaments for biomedical uses |
US8187316B2 (en) | 2007-12-27 | 2012-05-29 | Cook Medical Technologies Llc | Implantable graft device having treated yarn and method for making same |
US20090192588A1 (en) | 2008-01-29 | 2009-07-30 | Taeoong Medical Co., Ltd | Biodegradable double stent |
US20090234429A1 (en) | 2008-02-07 | 2009-09-17 | Lilip Lau | Self-restraining endoluminal prosthesis |
US8974518B2 (en) | 2008-03-25 | 2015-03-10 | Medtronic Vascular, Inc. | Eversible branch stent-graft and deployment method |
US7815673B2 (en) | 2008-04-01 | 2010-10-19 | Medtronic Vascular, Inc. | Double-walled stent system |
US7806923B2 (en) | 2008-04-11 | 2010-10-05 | Medtronic Vascular, Inc. | Side branch stent having a proximal split ring |
DK2265193T3 (en) | 2008-04-21 | 2012-01-23 | Nfocus Neuromedical Inc | Embolic devices with braided ball and delivery systems |
EP2310077A1 (en) | 2008-04-30 | 2011-04-20 | Medtronic, Inc. | Techniques for placing medical leads for electrical stimulation of nerve tissue |
US20090287145A1 (en) | 2008-05-15 | 2009-11-19 | Altura Interventional, Inc. | Devices and methods for treatment of abdominal aortic aneurysms |
US8876876B2 (en) | 2008-06-06 | 2014-11-04 | Back Bay Medical Inc. | Prosthesis and delivery system |
US8414639B2 (en) | 2008-07-08 | 2013-04-09 | Boston Scientific Scimed, Inc. | Closed-cell flexible stent hybrid |
US8070694B2 (en) | 2008-07-14 | 2011-12-06 | Medtronic Vascular, Inc. | Fiber based medical devices and aspiration catheters |
US8333796B2 (en) | 2008-07-15 | 2012-12-18 | Penumbra, Inc. | Embolic coil implant system and implantation method |
AU2009292193B2 (en) | 2008-09-12 | 2013-06-20 | Cook Incorporated | Radiopaque reinforcing member |
US20100069948A1 (en) | 2008-09-12 | 2010-03-18 | Micrus Endovascular Corporation | Self-expandable aneurysm filling device, system and method of placement |
US8721714B2 (en) | 2008-09-17 | 2014-05-13 | Medtronic Corevalve Llc | Delivery system for deployment of medical devices |
JP5653931B2 (en) | 2008-12-15 | 2015-01-14 | アラーガン、インコーポレイテッドAllergan,Incorporated | Prosthetic device and manufacturing method thereof |
EP2358302B1 (en) | 2008-12-18 | 2012-12-05 | Cook Medical Technologies LLC | Stents and stent grafts |
US8308798B2 (en) | 2008-12-19 | 2012-11-13 | Edwards Lifesciences Corporation | Quick-connect prosthetic heart valve and methods |
US9717500B2 (en) | 2009-04-15 | 2017-08-01 | Microvention, Inc. | Implant delivery system |
US8632566B2 (en) | 2009-04-27 | 2014-01-21 | Teleflex Medical Incorporated | Colored suture construction |
US20100292777A1 (en) | 2009-05-13 | 2010-11-18 | Boston Scientific Scimed, Inc. | Stent |
US8348998B2 (en) | 2009-06-26 | 2013-01-08 | Edwards Lifesciences Corporation | Unitary quick connect prosthetic heart valve and deployment system and methods |
DE102009041025A1 (en) | 2009-09-14 | 2011-03-24 | Acandis Gmbh & Co. Kg | Medical implant |
WO2011038017A1 (en) | 2009-09-22 | 2011-03-31 | Penumbra, Inc. | Manual actuation system for deployment of implant |
US8372133B2 (en) | 2009-10-05 | 2013-02-12 | 480 Biomedical, Inc. | Polymeric implant delivery system |
CA2788111C (en) | 2010-01-29 | 2016-04-05 | Cook Medical Technologies Llc | Collapsing structure for reducing the diameter of a stent |
EP2558000B1 (en) | 2010-04-14 | 2019-09-04 | MicroVention, Inc. | Implant delivery device |
US8764811B2 (en) | 2010-04-20 | 2014-07-01 | Medtronic Vascular, Inc. | Controlled tip release stent graft delivery system and method |
US9326870B2 (en) * | 2010-04-23 | 2016-05-03 | Medtronic Vascular, Inc. | Biodegradable stent having non-biodegradable end portions and mechanisms for increased stent hoop strength |
US9301864B2 (en) | 2010-06-08 | 2016-04-05 | Veniti, Inc. | Bi-directional stent delivery system |
US8864811B2 (en) | 2010-06-08 | 2014-10-21 | Veniti, Inc. | Bi-directional stent delivery system |
US8876878B2 (en) | 2010-07-23 | 2014-11-04 | Medtronic, Inc. | Attachment mechanism for stent release |
AU2010210022B1 (en) | 2010-08-05 | 2011-09-08 | Cook Incorporated | Stent graft having a marker and a reinforcing and marker ring |
DE102010044746A1 (en) | 2010-09-08 | 2012-03-08 | Phenox Gmbh | Implant for influencing the blood flow in arteriovenous malformations |
US8616040B2 (en) | 2010-09-17 | 2013-12-31 | Medtronic Vascular, Inc. | Method of forming a drug-eluting medical device |
CA2822429A1 (en) | 2010-12-20 | 2012-06-28 | Microvention, Inc. | Polymer stents and methods of manufacture |
US8833402B2 (en) | 2010-12-30 | 2014-09-16 | Cook Medical Technologies Llc | Woven fabric having composite yarns for endoluminal devices |
US20120197377A1 (en) | 2011-02-01 | 2012-08-02 | Micrus Endovascular Corporation | Wire with compliant sheath |
US20130041454A1 (en) | 2011-02-09 | 2013-02-14 | Business Expectations Llc | Sensor Actuated Stent |
EP2683309B1 (en) | 2011-03-09 | 2021-04-21 | Neuravi Limited | A clot retrieval device for removing occlusive clot from a blood vessel |
US8511214B2 (en) | 2011-04-21 | 2013-08-20 | Aga Medical Corporation | Tubular structure and method for making the same |
US9486604B2 (en) | 2011-05-12 | 2016-11-08 | Medtronic, Inc. | Packaging and preparation tray for a delivery system |
WO2012158668A1 (en) | 2011-05-17 | 2012-11-22 | Stryker Corporation | Method of fabricating an implantable medical device that includes one or more thin film polymer support layers |
WO2012166467A1 (en) | 2011-05-27 | 2012-12-06 | Stryker Corporation | Assembly for percutaneously inserting an implantable medical device, steering the device to a target location and deploying the device |
WO2013032994A2 (en) | 2011-09-01 | 2013-03-07 | Cook Medical Technologies Llc | Braided helical wire stent |
US9750565B2 (en) | 2011-09-30 | 2017-09-05 | Medtronic Advanced Energy Llc | Electrosurgical balloons |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US20130123901A1 (en) | 2011-11-14 | 2013-05-16 | Robert A. Connor | Stent with in situ determination of wall areas with differences in porosity |
CN107157632B (en) | 2012-01-25 | 2021-05-25 | 因特脉管有限公司 | Endoluminal device and method |
BR112014022741B1 (en) | 2012-03-16 | 2021-11-16 | Terumo Corporation | DEVICE FOR SUPPLY OF STENT |
US9687245B2 (en) | 2012-03-23 | 2017-06-27 | Covidien Lp | Occlusive devices and methods of use |
US9833625B2 (en) | 2012-03-26 | 2017-12-05 | Medtronic, Inc. | Implantable medical device delivery with inner and outer sheaths |
US9717421B2 (en) | 2012-03-26 | 2017-08-01 | Medtronic, Inc. | Implantable medical device delivery catheter with tether |
US9242290B2 (en) | 2012-04-03 | 2016-01-26 | Medtronic Vascular, Inc. | Method and apparatus for creating formed elements used to make wound stents |
US9192462B2 (en) | 2012-04-06 | 2015-11-24 | Trivascular, Inc. | Low profile stent graft and delivery system |
US9700399B2 (en) | 2012-04-26 | 2017-07-11 | Medtronic Vascular, Inc. | Stopper to prevent graft material slippage in a closed web stent-graft |
US9549832B2 (en) | 2012-04-26 | 2017-01-24 | Medtronic Vascular, Inc. | Apparatus and methods for filling a drug eluting medical device via capillary action |
US9149190B2 (en) | 2012-07-17 | 2015-10-06 | Stryker Corporation | Notification system of deviation from predefined conditions |
US8968387B2 (en) | 2012-07-23 | 2015-03-03 | Abbott Cardiovascular Systems Inc. | Shape memory bioresorbable polymer peripheral scaffolds |
EP2882350B1 (en) | 2012-08-13 | 2019-09-25 | MicroVention, Inc. | Shaped removal device |
US9504476B2 (en) | 2012-10-01 | 2016-11-29 | Microvention, Inc. | Catheter markers |
US9078950B2 (en) | 2012-10-15 | 2015-07-14 | Microvention, Inc. | Polymeric treatment compositions |
US9539022B2 (en) | 2012-11-28 | 2017-01-10 | Microvention, Inc. | Matter conveyance system |
CN104812438B (en) | 2012-12-07 | 2016-09-28 | 美敦力公司 | The implantable neural stimulation system of Wicresoft |
US9295571B2 (en) | 2013-01-17 | 2016-03-29 | Covidien Lp | Methods and apparatus for luminal stenting |
US9539382B2 (en) | 2013-03-12 | 2017-01-10 | Medtronic, Inc. | Stepped catheters with flow restrictors and infusion systems using the same |
US9034028B2 (en) | 2013-03-13 | 2015-05-19 | DePuy Synthes Products, Inc. | Braid expansion ring with markers |
US20140277360A1 (en) | 2013-03-13 | 2014-09-18 | DePuy Synthes Products, LLC | Delivery system for expandable stents |
US10561509B2 (en) | 2013-03-13 | 2020-02-18 | DePuy Synthes Products, Inc. | Braided stent with expansion ring and method of delivery |
ES2650870T3 (en) | 2013-03-14 | 2018-01-22 | Stryker Corporation | Vaso-occlusive device administration system |
US9539011B2 (en) | 2013-03-14 | 2017-01-10 | Stryker Corporation | Vaso-occlusive device delivery system |
WO2014159746A1 (en) | 2013-03-14 | 2014-10-02 | Inceptus Medical LLC | Aneurysm graft with stabilization |
US9451964B2 (en) | 2013-03-14 | 2016-09-27 | Stryker Corporation | Vaso-occlusive device delivery system |
US9320592B2 (en) | 2013-03-15 | 2016-04-26 | Covidien Lp | Coated medical devices and methods of making and using same |
US9398966B2 (en) | 2013-03-15 | 2016-07-26 | Medtronic Vascular, Inc. | Welded stent and stent delivery system |
EP2967605B1 (en) | 2013-03-15 | 2019-12-18 | Microvention, Inc. | Multi-component obstruction removal system |
CN109730806B (en) | 2013-03-15 | 2023-01-24 | 伊瑟拉医疗公司 | Vascular treatment device and method |
US8715314B1 (en) | 2013-03-15 | 2014-05-06 | Insera Therapeutics, Inc. | Vascular treatment measurement methods |
EP2967806B1 (en) | 2013-03-15 | 2017-12-06 | Microvention, Inc. | Embolic protection device |
US10378131B2 (en) | 2013-08-08 | 2019-08-13 | EverestMedica LLC | Surgical braids |
ES2717678T3 (en) | 2013-04-22 | 2019-06-24 | Stryker European Holdings I Llc | Procedure for loading drugs onto implant surfaces coated with hydroxyapatite |
US9907684B2 (en) | 2013-05-08 | 2018-03-06 | Aneuclose Llc | Method of radially-asymmetric stent expansion |
US9445928B2 (en) | 2013-05-30 | 2016-09-20 | Medtronic Vascular, Inc. | Delivery system having a single handed deployment handle for a retractable outer sheath |
US9861474B2 (en) * | 2013-07-18 | 2018-01-09 | The Trustees Of The University Of Pennsylvania | Cardiac repair prosthesis sets and methods |
US9675782B2 (en) | 2013-10-10 | 2017-06-13 | Medtronic Vascular, Inc. | Catheter pull wire actuation mechanism |
US10646333B2 (en) | 2013-10-24 | 2020-05-12 | Medtronic, Inc. | Two-piece valve prosthesis with anchor stent and valve component |
US9795391B2 (en) | 2013-10-25 | 2017-10-24 | Medtronic Vascular, Inc. | Tissue compression device with tension limiting strap retainer |
US9668890B2 (en) | 2013-11-22 | 2017-06-06 | Covidien Lp | Anti-thrombogenic medical devices and methods |
KR102211335B1 (en) | 2013-12-20 | 2021-02-03 | 마이크로벤션, 인코포레이티드 | Device delivery system |
CN106029157B (en) | 2013-12-20 | 2019-09-17 | 微仙美国有限公司 | Convey the adaptation method and suppository transportation system of adapter, syringe and conduit |
EP2921140A1 (en) | 2014-03-18 | 2015-09-23 | St. Jude Medical, Cardiology Division, Inc. | Percutaneous valve anchoring for a prosthetic aortic valve |
WO2015157181A1 (en) | 2014-04-08 | 2015-10-15 | Stryker Corporation | Implant delivery system |
WO2015167997A1 (en) | 2014-04-30 | 2015-11-05 | Stryker Corporation | Implant delivery system and method of use |
US10195025B2 (en) | 2014-05-12 | 2019-02-05 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US9060777B1 (en) | 2014-05-28 | 2015-06-23 | Tw Medical Technologies, Llc | Vaso-occlusive devices and methods of use |
US9668898B2 (en) | 2014-07-24 | 2017-06-06 | Medtronic Vascular, Inc. | Stent delivery system having dynamic deployment and methods of manufacturing same |
US10206796B2 (en) | 2014-08-27 | 2019-02-19 | DePuy Synthes Products, Inc. | Multi-strand implant with enhanced radiopacity |
US9770577B2 (en) | 2014-09-15 | 2017-09-26 | Medtronic Xomed, Inc. | Pressure relief for a catheter balloon device |
US9579484B2 (en) | 2014-09-19 | 2017-02-28 | Medtronic Vascular, Inc. | Sterile molded dispenser |
US9692557B2 (en) | 2015-02-04 | 2017-06-27 | Stryker European Holdings I, Llc | Apparatus and methods for administering treatment within a bodily duct of a patient |
US10449064B2 (en) | 2015-02-12 | 2019-10-22 | Boston Scientific Scimed, Inc. | Stent with anti-migration feature |
KR102579277B1 (en) | 2015-02-15 | 2023-09-14 | 스카이워크스 솔루션즈, 인코포레이티드 | Power amplifier with staggered cascode layout for enhanced thermal robustness |
EP4285872A1 (en) | 2015-07-02 | 2023-12-06 | Monarch Biosciences, Inc. | Thin-film micromesh medical devices and related methods |
US10307168B2 (en) | 2015-08-07 | 2019-06-04 | Terumo Corporation | Complex coil and manufacturing techniques |
US10154905B2 (en) | 2015-08-07 | 2018-12-18 | Medtronic Vascular, Inc. | System and method for deflecting a delivery catheter |
CN107847243B (en) | 2015-08-11 | 2021-06-01 | 泰尔茂株式会社 | Systems and methods for implant delivery |
EP3349689B1 (en) | 2015-09-18 | 2023-12-27 | Microvention, Inc. | Implant retention, detachment, and delivery system |
EP3349670B1 (en) | 2015-09-18 | 2020-09-09 | Microvention, Inc. | Releasable delivery system |
US10335299B2 (en) | 2015-09-18 | 2019-07-02 | Terumo Corporation | Vessel prosthesis |
US10322020B2 (en) | 2015-09-18 | 2019-06-18 | Terumo Corporation | Pushable implant delivery system |
ES2716926T3 (en) | 2015-09-21 | 2019-06-18 | Stryker Corp | Embolectomy devices |
US10292804B2 (en) | 2015-09-21 | 2019-05-21 | Stryker Corporation | Embolectomy devices |
US10172632B2 (en) | 2015-09-22 | 2019-01-08 | Medtronic Vascular, Inc. | Occlusion bypassing apparatus with a re-entry needle and a stabilization tube |
WO2017062383A1 (en) | 2015-10-07 | 2017-04-13 | Stryker Corporation | Multiple barrel clot removal devices |
US10327791B2 (en) | 2015-10-07 | 2019-06-25 | Medtronic Vascular, Inc. | Occlusion bypassing apparatus with a re-entry needle and a distal stabilization balloon |
US10786302B2 (en) | 2015-10-09 | 2020-09-29 | Medtronic, Inc. | Method for closure and ablation of atrial appendage |
US10271873B2 (en) | 2015-10-26 | 2019-04-30 | Medtronic Vascular, Inc. | Sheathless guide catheter assembly |
US20170147765A1 (en) | 2015-11-19 | 2017-05-25 | Penumbra, Inc. | Systems and methods for treatment of stroke |
US10631946B2 (en) | 2015-11-30 | 2020-04-28 | Penumbra, Inc. | System for endoscopic intracranial procedures |
WO2017097862A2 (en) | 2015-12-07 | 2017-06-15 | Cerus Endovascular Limited | Occlusion device |
US10369326B2 (en) | 2015-12-09 | 2019-08-06 | Medtronic Vascular, Inc. | Catheter with a lumen shaped as an identification symbol |
US10159568B2 (en) | 2015-12-14 | 2018-12-25 | Medtronic, Inc. | Delivery system having retractable wires as a coupling mechanism and a deployment mechanism for a self-expanding prosthesis |
US10500046B2 (en) | 2015-12-14 | 2019-12-10 | Medtronic, Inc. | Delivery system having retractable wires as a coupling mechanism and a deployment mechanism for a self-expanding prosthesis |
CN108472043B (en) | 2015-12-30 | 2022-05-31 | 斯瑞克公司 | Embolization device and method of making same |
US20170189033A1 (en) | 2016-01-06 | 2017-07-06 | Microvention, Inc. | Occlusive Embolic Coil |
US10744010B2 (en) | 2016-01-19 | 2020-08-18 | Jms Co., Ltd. | Synthetic resin stent |
US10070950B2 (en) | 2016-02-09 | 2018-09-11 | Medtronic Vascular, Inc. | Endoluminal prosthetic assemblies, and associated systems and methods for percutaneous repair of a vascular tissue defect |
EP3413963A4 (en) | 2016-02-10 | 2019-09-18 | Microvention, Inc. | Intravascular treatment site access |
US10980545B2 (en) | 2016-02-10 | 2021-04-20 | Microvention, Inc. | Devices for vascular occlusion |
US10188500B2 (en) | 2016-02-12 | 2019-01-29 | Medtronic Vascular, Inc. | Stent graft with external scaffolding and method |
US10631980B2 (en) | 2016-03-31 | 2020-04-28 | Medtronic Vascular, Inc. | Expandable introducer sheath having a steering mechanism |
CN108601647B (en) | 2016-03-31 | 2020-10-02 | 美敦力瓦斯科尔勒公司 | Endoluminal prosthetic device with fluid-absorbent component for repairing vascular tissue defects |
CA3018182A1 (en) | 2016-03-31 | 2017-10-05 | Vesper Medical, Inc. | Intravascular implants |
US10695542B2 (en) | 2016-04-04 | 2020-06-30 | Medtronic Vascular, Inc. | Drug coated balloon |
US10252024B2 (en) | 2016-04-05 | 2019-04-09 | Stryker Corporation | Medical devices and methods of manufacturing same |
US10426592B2 (en) * | 2016-04-11 | 2019-10-01 | Boston Scientific Scimed, Inc. | Implantable medical device with reduced migration capabilities |
US10441407B2 (en) | 2016-04-12 | 2019-10-15 | Medtronic Vascular, Inc. | Gutter filling stent-graft and method |
US9987122B2 (en) | 2016-04-13 | 2018-06-05 | Medtronic Vascular, Inc. | Iliac branch device and method |
US10010403B2 (en) | 2016-04-18 | 2018-07-03 | Medtronic Vascular, Inc. | Stent-graft prosthesis and method of manufacture |
US20170304097A1 (en) | 2016-04-21 | 2017-10-26 | Medtronic Vascular, Inc. | Stent-graft delivery system having an inner shaft component with a loading pad or covering on a distal segment thereof for stent retention |
US10940294B2 (en) | 2016-04-25 | 2021-03-09 | Medtronic Vascular, Inc. | Balloon catheter including a drug delivery sheath |
ES2859656T3 (en) | 2016-04-25 | 2021-10-04 | Stryker Corp | Anti-jam and macerant thrombectomy appliances |
EP3448276B1 (en) | 2016-04-25 | 2020-03-04 | Stryker Corporation | Clot-engulfing mechanical thrombectomy apparatuses |
ES2809160T3 (en) | 2016-04-25 | 2021-03-03 | Stryker Corp | Inversion mechanical thrombectomy appliance |
US10517711B2 (en) | 2016-04-25 | 2019-12-31 | Medtronic Vascular, Inc. | Dissection prosthesis system and method |
US11147952B2 (en) | 2016-04-28 | 2021-10-19 | Medtronic Vascular, Inc. | Drug coated inflatable balloon having a thermal dependent release layer |
US10406011B2 (en) | 2016-04-28 | 2019-09-10 | Medtronic Vascular, Inc. | Implantable medical device delivery system |
US10191615B2 (en) | 2016-04-28 | 2019-01-29 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
EP3457985B1 (en) | 2016-05-16 | 2021-02-17 | Elixir Medical Corporation | Uncaging stent |
US10292844B2 (en) | 2016-05-17 | 2019-05-21 | Medtronic Vascular, Inc. | Method for compressing a stented prosthesis |
CN113648518B (en) | 2016-06-01 | 2023-10-20 | 微仙美国有限公司 | Improved reinforced balloon catheter |
CN113440223B (en) | 2016-06-03 | 2024-08-06 | 斯瑞克公司 | Turnover thrombectomy device |
US10076428B2 (en) | 2016-08-25 | 2018-09-18 | DePuy Synthes Products, Inc. | Expansion ring for a braided stent |
US10292851B2 (en) | 2016-09-30 | 2019-05-21 | DePuy Synthes Products, Inc. | Self-expanding device delivery apparatus with dual function bump |
GB201616777D0 (en) | 2016-10-03 | 2016-11-16 | Univ Southampton | A frame for an implantable medical device and a method of manufacturing a frame for an implantable medical device |
US10182927B2 (en) | 2016-10-21 | 2019-01-22 | DePuy Synthes Products, Inc. | Expansion ring for a braided stent |
US10722353B2 (en) | 2017-08-21 | 2020-07-28 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
-
2018
- 2018-12-27 US US16/234,226 patent/US11039944B2/en active Active
-
2019
- 2019-12-20 KR KR1020190171465A patent/KR20200081260A/en active Search and Examination
- 2019-12-23 EP EP19219438.9A patent/EP3673875A1/en not_active Withdrawn
- 2019-12-24 JP JP2019232414A patent/JP2020103895A/en not_active Abandoned
- 2019-12-27 CN CN201911381285.7A patent/CN111388157A/en not_active Withdrawn
-
2021
- 2021-05-14 US US17/320,313 patent/US20210282946A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
KR20200081260A (en) | 2020-07-07 |
CN111388157A (en) | 2020-07-10 |
EP3673875A1 (en) | 2020-07-01 |
US20200206003A1 (en) | 2020-07-02 |
US11039944B2 (en) | 2021-06-22 |
JP2020103895A (en) | 2020-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10821008B2 (en) | Expansion ring for a braided stent | |
US20210038412A1 (en) | Expansion ring for a braided stent | |
CN107427377B (en) | Bracket | |
JP6513859B2 (en) | Braided expansion ring with marker | |
US20210282946A1 (en) | Braided stent system with one or more expansion rings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DEPUY SYNTHES PRODUCTS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LORENZO, JUAN;FORSYTHE, PETER;SIGNING DATES FROM 20181205 TO 20181222;REEL/FRAME:056238/0698 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |