US20150243853A1 - Method of manufacturing light emitting diode package - Google Patents
Method of manufacturing light emitting diode package Download PDFInfo
- Publication number
- US20150243853A1 US20150243853A1 US14/516,548 US201414516548A US2015243853A1 US 20150243853 A1 US20150243853 A1 US 20150243853A1 US 201414516548 A US201414516548 A US 201414516548A US 2015243853 A1 US2015243853 A1 US 2015243853A1
- Authority
- US
- United States
- Prior art keywords
- light emitting
- light transmissive
- transmissive substrate
- emitting structure
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 161
- 239000004065 semiconductor Substances 0.000 claims abstract description 70
- 239000004020 conductor Substances 0.000 claims abstract description 8
- 238000011049 filling Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000005538 encapsulation Methods 0.000 claims description 12
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 239000011810 insulating material Substances 0.000 claims description 11
- 239000000853 adhesive Substances 0.000 claims description 9
- 229910052681 coesite Inorganic materials 0.000 claims description 8
- 229910052906 cristobalite Inorganic materials 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 229910052682 stishovite Inorganic materials 0.000 claims description 8
- 229910052905 tridymite Inorganic materials 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 5
- 238000005498 polishing Methods 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 230000004927 fusion Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 235000019353 potassium silicate Nutrition 0.000 claims description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 3
- 238000007517 polishing process Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 107
- 239000000463 material Substances 0.000 description 23
- 230000008569 process Effects 0.000 description 20
- 229910002601 GaN Inorganic materials 0.000 description 17
- 239000011347 resin Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 229910052709 silver Inorganic materials 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 239000002086 nanomaterial Substances 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 11
- 239000012535 impurity Substances 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 10
- 150000004767 nitrides Chemical class 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 229910052763 palladium Inorganic materials 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- 229910052712 strontium Inorganic materials 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 229910052741 iridium Inorganic materials 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 229910003564 SiAlON Inorganic materials 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 229910020440 K2SiF6 Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000002096 quantum dot Substances 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 229910010092 LiAlO2 Inorganic materials 0.000 description 2
- 229910010936 LiGaO2 Inorganic materials 0.000 description 2
- 229910026161 MgAl2O4 Inorganic materials 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052909 inorganic silicate Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical group [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical group [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical group [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/483—Containers
- H01L33/486—Containers adapted for surface mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/94—Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/005—Processes relating to semiconductor body packages relating to encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Definitions
- the present disclosure relates to a light emitting diode (LED) package and a method of manufacturing the LED package.
- LED light emitting diode
- a light emitting diode is a device including a material that emits light using electric energy. The energy generated through an electron-hole recombination in semiconductor junction parts is converted into light that is to be emitted therefrom. LEDs are commonly used as light sources in illumination devices, display devices, and the like.
- An exemplary embodiment in the present disclosure may provide a novel method of manufacturing alight emitting diode (LED) package in order to reduce manufacturing costs.
- LED light emitting diode
- a method of manufacturing the light emitting diode (LED) package may include forming a light emitting structure having a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer on a growth substrate, and forming first and second electrodes connected to the first and second conductivity-type semiconductor layers, respectively.
- the method also includes bonding a first surface of a light transmissive substrate opposite to a second surface thereof to the light emitting structure, identifying positions of the first and second electrodes that are seen through the second surface of the light transmissive substrate, forming one or more through holes in regions of the light transmissive substrate that correspond to the first and second electrodes, and forming first and second via electrodes by filling the through holes with a conductive material.
- the light transmissive substrate may be formed of an insulating material.
- the insulating material may include SiO 2 .
- the method may further include polishing the second surface of the light transmissive substrate through a chemical and mechanical polishing process after the bonding of the light transmissive substrate.
- the bonding of the light transmissive substrate to the light emitting structure may be performed by applying a light transmissive adhesive to a surface of the light emitting structure and bonding the light transmissive substrate to the light transmissive adhesive.
- the light transmissive adhesive may include water glass or silicone.
- the light transmissive substrate may be bonded to the light emitting structure at a temperature of approximately 400° C. or below.
- the bonding of the light transmissive substrate to the light emitting structure may be performed through anodic bonding.
- the bonding of the light transmissive substrate to the light emitting structure may also be performed through fusion bonding.
- the light transmissive substrate may be formed to have a thickness of approximately 10 ⁇ m to 500 ⁇ m.
- the growth substrate may be formed of Si.
- a method of manufacturing a light emitting diode (LED) package may include forming a light emitting structure including a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer on the growth substrate, and forming first and second electrodes connected to the first and second conductivity-type semiconductor layers, respectively.
- the method also includes disposing a first alignment key on an upper surface of the light emitting structure, preparing a light transmissive substrate having a first surface and a second surface opposite to the first surface, forming first and second via electrodes penetrating through the first and second surfaces in regions of the light transmissive substrate that correspond to the first and second electrodes, disposing a second alignment key on at least one of the first and second surfaces, and bonding the first surface of the light transmissive substrate to the upper surface of the light emitting structure.
- the light transmissive substrate is arranged to allow the second alignment key on the light transmissive substrate to correspond to the first alignment key on the light emitting structure which is seen through the second surface of the light transmissive substrate.
- the light transmissive substrate may be formed of an insulating material.
- the insulating material may include SiO 2 .
- FIG. 1 is a cross-sectional view of a light emitting diode (LED) package according to an exemplary embodiment of the present disclosure
- FIGS. 2 through 10 are views illustrating major processes in a method of manufacturing the LED package according to the exemplary embodiment of the present disclosure
- FIG. 11 is a side cross-sectional view of a light emitting structure applicable to the LED package according to the exemplary embodiment of the present disclosure
- FIGS. 12 and 13 are views illustrating major processes in a method of manufacturing the LED package according to another exemplary embodiment of the present disclosure
- FIGS. 14 and 15 illustrate examples of a backlight unit to which the LED package according to the exemplary embodiment of the present disclosure is applied;
- FIG. 16 illustrates an example of a lighting device to which the LED package according to the exemplary embodiment of the present disclosure is applied.
- FIG. 17 illustrates an example of a headlamp to which the LED package according to the exemplary embodiment of the present disclosure is applied.
- a light emitting diode (LED) package 100 may include a mounting substrate 140 ′ having first and second via electrodes 142 a and 142 b , a light emitting structure 120 mounted on the mounting substrate 140 ′, a wavelength conversion layer 170 disposed on an upper surface of the light emitting structure 120 , an encapsulation body 160 disposed to enclose the light emitting structure 120 and the wavelength conversion layer 170 .
- the first and second via electrodes 142 a and 142 b may be formed in the mounting substrate 140 ′, and the light emitting structure 120 may be mounted on the first and second via electrodes 142 a and 142 b , such that first and second electrodes 130 a and 130 b of the light emitting structure 120 are electrically connected to the first and second via electrodes 142 a and 142 b.
- first and second via electrodes 142 a and 142 b may be formed to penetrate through a first surface of the mounting substrate 140 ′ on which the light emitting structure 120 is mounted and a second surface of the mounting substrate 140 ′ opposite to the first surface.
- First and second bonding pads 143 a and 143 b may be formed on the second surface of the mounting substrate 140 ′ to which ends of the first and second via electrodes 142 a and 142 b are exposed, so that both surfaces of the mounting substrate 140 ′ are electrically connected to each other.
- the mounting substrate 140 ′ may be a substrate used for manufacturing a package in a wafer state, which is a so-called wafer level package (WLP). Since both surfaces of the mounting substrate 140 ′ are flat, the size of the package, in which the light emitting structure 120 is mounted on the mounting substrate 140 ′, may be reduced to the size of the light emitting structure 120 .
- WLP wafer level package
- the mounting substrate 140 ′ may be formed of a light transmissive material.
- the light transmissive material may be light transmissive resin or glass that may have insulating properties and may be resistant to heat.
- the light transmissive resin may include at least one of polymethylmethacrylate (PMMA) and polycarbonate (PC), and the glass may include SiO 2 . Since such transparent glass has light transmission properties, an object disposed on one surface of the glass substrate may be identified from a direction of another surface of the glass substrate. Accordingly, when the mounting substrate 140 ′ is formed of the light transmissive material, the positions of the via electrodes may be easily identified in a process of manufacturing an LED package. Details thereof will be provided in the manufacturing process to be described below.
- the light emitting structure 120 may be mounted on the mounting substrate 140 ′ and may include a first conductivity-type semiconductor layer 121 , an active layer 122 and a second conductivity-type semiconductor layer 123 sequentially disposed from an upper portion of the light emitting structure 120 .
- the first and second conductivity-type semiconductor layers 121 and 123 may be n-type and p-type semiconductor layers formed of nitride semiconductors, respectively.
- the present disclosure is not limited thereto.
- the first and second conductivity type semiconductor layers 121 and 123 may be understood as referring to the n-type and the p-type semiconductor layers, respectively.
- the first and second conductivity type semiconductor layers 121 and 123 may be formed of a material having a composition of Al x In y Ga (1-x-y) N, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and 0 ⁇ x+y ⁇ 1.
- a material having a composition of Al x In y Ga (1-x-y) N where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and 0 ⁇ x+y ⁇ 1.
- GaN, AlGaN, InGaN, or the like, may be used therefor.
- the active layer 122 may be a layer for emitting visible light having a wavelength of approximately 350 nm to 680 nm.
- the active layer 122 may be formed of undoped nitride semiconductor layers having a single-quantum-well (SQW) structure or a multi-quantum-well (MQW) structure.
- the active layer 122 may have the MQW structure in which quantum barrier layers and quantum well layers having a composition of Al x In y Ga (1-x-y) N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x+y ⁇ 1) are alternately stacked, such that the active layer 122 may have a predetermined energy bandgap and emit light through the recombination of electrons and holes in quantum wells.
- the first and second conductivity type semiconductor layers 121 and 123 and the active layer 122 may be formed using crystal growth processes such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), and the like.
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- HVPE hydride vapor phase epitaxy
- the light emitting structure 120 may be used as an LED chip having a flip-chip structure after the removal of a growth substrate, and a buffer layer may be further included in order to reduce crystal defects during the growth of the semiconductor layers.
- the first and second electrodes 130 a and 130 b are provided to allow the first and second conductivity-type semiconductor layers 121 and 123 to be electrically connected to a power source.
- the first and second electrodes 130 a and 130 b may be disposed to ohmic-contact the first and second conductivity type semiconductor layers 121 and 123 , respectively.
- the first and second electrodes 130 a and 130 b may be formed of a single layer or multilayer structure made of a conductive material having an ohmic contact with the respective first and second conductivity type semiconductor layers 121 and 123 .
- the first and second electrodes 130 a and 130 b may be formed by depositing or sputtering at least one of gold (Au), silver (Ag), copper (Cu), zinc (Zn), aluminum (Al), indium (In), titanium (Ti), silicon (Si), germanium (Ge), tin (Sn) magnesium (Mg), tantalum (Ta), chromium (Cr), tungsten (W), ruthenium (Ru), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), and a transparent conductive oxide (TCO).
- the first and second electrodes 130 a and 130 b may be disposed on the surface of the mounting substrate 140 ′ on which the light emitting structure
- FIG. 11 is a side cross-sectional view of an LED chip applicable to the LED package according to an exemplary embodiment of the present disclosure.
- An LED chip 300 illustrated in FIG. 11 may include a substrate 310 , a base layer B disposed on the substrate 310 , and a plurality of light emitting nanostructures L disposed on the base layer B.
- the substrate 310 may be an insulating substrate, a conductive substrate or a semiconductor substrate.
- the substrate 310 may be formed of sapphire, SiC, Si, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , GaN or the like.
- the base layer B may be formed of a nitride semiconductor containing Al x In y Ga 1-x-y N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x+y ⁇ 1), and may be doped with an n-type impurity such as Si to be converted to have a particular conductivity-type.
- An insulating layer M having a plurality of openings may be disposed on the base layer B for growth of the light emitting nanostructures L (especially, nanocores 321 ). Portions of the base layer B may be exposed through the openings, and the nanocores 321 may be formed on the exposed portions of the base layer B. That is, the insulating layer M may be used as a mask for growth of the nanocores 321 .
- the insulating layer M may be formed of an insulating material such as SiO 2 or SiN x that may be used in a semiconductor growth process.
- the light emitting nanostructures L may include the first conductivity-type semiconductor nanocore 321 .
- the light emitting nanostructures L may also include an active layer 322 and a second conductivity-type semiconductor layer 323 sequentially disposed on the surface of the nanocore 321 .
- the nanocore 321 may be doped with the n-type impurity and be formed of the nitride semiconductor containing Al x In y Ga 1-x-y N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x+y ⁇ 1).
- the nanocore 321 may be formed of n-type GaN.
- the active layer 322 may have the MQW structure in which quantum well layers and quantum barrier layers are alternately stacked.
- a GaN/InGaN structure may be used therefor.
- the active layer 322 may have the SQW structure.
- the second conductivity-type semiconductor layer 323 may be a crystal doped with a p-type impurity and containing Al x In y Ga 1-x-y N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x+y ⁇ 1).
- the LED chip 300 may include a contact electrode 335 in the ohmic contact with the second conductivity-type semiconductor layer 323 .
- the contact electrode 335 used in the present exemplary embodiment may be formed of a transparent electrode material in order to allow light to be emitted in a direction toward the light emitting nanostructures L.
- the contact electrode 335 may be formed of the transparent electrode material such as ITO.
- graphene may be used therefor.
- the contact electrode 335 is not limited thereto, and may include Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au or the like.
- the contact electrode 335 may have two or more layers formed of Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag, Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt, or the like.
- a reflective electrode structure may be used to allow the LED chip 300 to have a flip-chip structure.
- An insulating filler 336 may be formed in space between the light emitting nanostructures L.
- An insulating material such as SiO 2 or SiN x may be used for the insulating filler 336 .
- TEOS TetraEthylOrthoSilane
- BPSG BoroPhospho Silicate Glass
- CVD-SiO 2 SOG
- SOG Spin-on Glass
- SOD Spin-on Delectric
- the contact electrode 335 may be formed to fill all or some of the space between the light emitting nanostructures L.
- the LED chip 300 may include first and second electrodes 330 a and 330 b .
- the first electrode 330 a may be disposed on an exposed region of the base layer B, and the second electrode 330 b may be disposed on an extended and exposed region of the contact electrode 335 .
- the LED chip 300 may further include a passivation layer 337 .
- the passivation layer 337 may be used to protect the light emitting nanostructures L together with the insulating filler 336 .
- the passivation layer 337 may cover and protect the entirety of the semiconductor region and may firmly fix the first and second electrodes 330 a and 330 b in place.
- the passivation layer 337 may be formed of a material identical or similar to the material of the insulating filler 336 .
- a tip portion of the nanocore 321 may have inclined crystal planes (e.g. planes) different from side crystal planes (e.g. m planes) of the nanocore 321 .
- a current blocking intermediate layer 334 may be formed in the tip portion of the nanocore 321 .
- the current blocking intermediate layer 334 may be disposed between the active layer 322 and the nanocore 321 .
- the current blocking intermediate layer 334 may be formed of a material having high electrical resistance in order to block a leakage current that may be caused at the tip portion of the nanocore 321 .
- the current blocking intermediate layer 334 may be a semiconductor layer not doped intentionally, or may be a semiconductor layer doped with a second conductivity-type impurity different from that of the nanocore 321 .
- the current blocking intermediate layer 334 may be an undoped GaN layer or a GaN layer doped with a p-type impurity such as magnesium (Mg).
- Mg magnesium
- Such a current blocking intermediate layer 334 may be a high resistance region formed of the same material (for example, GaN) but obtained with various doping concentrations or doping materials, without being particularly distinguished from an adjacent layer.
- GaN may be grown, while an n-type impurity is supplied thereto, to form the nanocore 321 .
- GaN may continue to be grown, while the supply of the n-type impurity is blocked or the p-type impurity such as magnesium (Mg) is supplied thereto, to form the desired current blocking intermediate layer 334 .
- a source of aluminum (Al) and/or indium (In) may be additionally supplied to form the current blocking intermediate layer 334 having a different composition of Al x In y Ga 1-x-y N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x+y ⁇ 1).
- the wavelength conversion layer 170 may be disposed on the upper surface of the light emitting structure 120 .
- the wavelength conversion layer 170 may be formed as a sheet having a substantially uniform thickness.
- the wavelength conversion layer 170 may be a film in which a B-stage material semi-cured at a room temperature and converted to a liquid phase when heated is dispersed together with a phosphor.
- the semi-cured material may be B-stage silicone.
- the wavelength conversion layer 170 may be formed of a single layer or multiple layers. In a case in which the wavelength conversion layer 170 is formed of the multiple layers, different types of phosphor may be provided in respective layers.
- the wavelength conversion layer 170 may be formed by mixing the B-stage resin with the phosphor. For example, a polymer binder including a resin, a hardener, a hardening catalyst and the like is mixed with a phosphor to form a B-stage composite.
- the phosphor may be used to convert a wavelength of light to a wavelength of yellow, red, or green light. Types of phosphor may be determined based on the wavelength of light emitted from the active layer 122 of the light emitting structure 120 . Specifically, the phosphor may have the following compositions and colors:
- Oxide-based phosphors Yellow and Green Y 3 Al 5 O 12 :Ce, Tb 3 Al 5 O 12 :Ce, Lu 3 Al 5 O 12 :Ce;
- Silicate-based phosphors Yellow and Green (Ba,Sr) 2 SiO 4 :Eu, Yellow and Orange (Ba,Sr) 3 SiO 5 :Ce;
- Nitride-based phosphors Green ⁇ -SiAlON:Eu, Yellow La 3 Si 6 O 11 :Ce, Orange ⁇ -SiAlON:Eu, Red CaAlSiN 3 :Eu, Sr 2 Si 5 N 8 :Eu, SrSiAl 4 N 7 :Eu;
- Fluoride-based phosphors KSF-based Red K 2 SiF 6 :Mn 4+ .
- Phosphor compositions should basically conform to Stoichiometry, and respective elements may be substituted with different elements of respective groups of the periodic table.
- strontium Sr
- barium Ba
- calcium Ca
- magnesium Mg
- alkaline earths II group
- Yttrium Y
- Tb terbium
- Lu lutetium
- Sc scandium
- Gd gadolinium
- europium (Eu), an activator may be substituted with cerium (Ce), terbium (Tb), praseodymium (Pr), erbium (Er), ytterbium (Yb), or the like, according to a desired energy level.
- the activator may be used alone, or a subactivator, or the like, may be additionally used to change light emitting characteristics.
- materials such as quantum dots (QDs), or the like, may be used as materials in place of phosphors. Phosphors and quantum dots may be used in combination.
- a quantum dot may have a structure including a core (3 nm to 10 nm) such as CdSe, InP, or the like, a shell (0.5 nm to 2 nm) such as ZnS, ZnSe, or the like, and a ligand for stabilizing the core and the shell.
- the quantum dot may create various colors according to sizes.
- Table 1 below shows types of phosphor in application fields of white light emitting devices using blue LEDs (wavelength: 440 nm to 460 nm).
- the resin used in the wavelength conversion layer 170 may be a resin having high adhesive properties, high light transmittance, high resistance to heat and moisture, high photorefraction, and the like.
- Epoxy resin or silicone resin which is an inorganic polymer may be used therefor.
- a silane material or the like may be used as an additive for improving adhesive strength.
- the LED package 100 emitting white light may be provided.
- the LED package 100 may include active layers that emit light having different wavelengths, so that the LED package 100 can emit white light without using the phosphor.
- the active layers that emit light having different wavelengths under the same growth conditions may be formed by changing the sizes of nanocores and/or distances between the nanocores, whereby desired white light may be produced.
- the encapsulation body 160 may be disposed to enclose the light emitting structure 120 and the wavelength conversion layer 170 . Accordingly, the encapsulation body 160 may protect the light emitting structure 120 and the wavelength conversion layer 170 from moisture and heat, and the distribution of light emitted from the light emitting structure 120 may be adjusted by changing a shape of a surface of the encapsulation body 160 .
- the encapsulation body 160 may be formed of a light transmissive material.
- the encapsulation body 160 may be formed of an insulating resin having light transmissive properties such as a composition selected among a silicon resin, a modified silicon resin, an epoxy resin, a urethane resin, an oxetane resin, an acrylic resin, a polycarbonate resin, a polyimide resin, and a combination thereof.
- the material of the encapsulation body 160 is not limited thereto, and an inorganic material having high light resistance such as glass, silica gel or the like may be used.
- a lens unit 180 may be further formed on the encapsulation body 160 .
- a shape of the lens unit 180 may be adjusted to control the distribution of light emitted from the light emitting structure 120 .
- the lens unit 180 may be formed of a light transmissive material, like the encapsulation body 160 .
- the lens unit 180 may be formed of the insulating resin having the light transmissive properties such as the composition selected among the silicon resin, the modified silicon resin, the epoxy resin, the urethane resin, the oxetane resin, the acrylic resin, the polycarbonate resin, the polyimide resin, and the combination thereof.
- the material of the lens unit 180 is not limited thereto, and the inorganic material having the high light resistance such as glass, silica gel or the like may be used.
- the light emitting structure 120 including the first conductivity-type semiconductor layer 121 , the active layer 122 and the second conductivity-type semiconductor layer 123 may be formed on a growth substrate 110 .
- the growth substrate 110 may be provided as a semiconductor growth substrate, and may be formed of an insulating material, a conductive material or a semiconductor material, such as sapphire, SiC, Si, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , GaN or the like.
- a sapphire substrate has a lattice constant of 13.001 ⁇ along a C-axis and a lattice constant of 4.758 ⁇ along an A-axis, and includes a C (0001) plane, an A (11-20) plane, an R (1-102) plane, and the like.
- the C plane is mainly used as a substrate for nitride semiconductor growth because the C plane facilitates growth of a nitride film and is stable at high temperatures.
- the growth substrate 110 is formed of Si
- a Si substrate may be easily formed to have a large diameter and may be relatively cheap, whereby manufacturing yields may be improved.
- a buffer layer may be further formed on one surface of the growth substrate 110 on which the first conductivity-type semiconductor layer 121 is to be formed.
- the light emitting structure 120 may be formed by sequentially stacking the first conductivity-type semiconductor layer 121 , the active layer 122 and the second conductivity-type semiconductor layer 123 .
- the first and second conductivity-type semiconductor layers 121 and 123 may be formed of a nitride semiconductor material having a composition expressed by Al x In y Ga (1-x-y) N, (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x+y ⁇ 1), and doped with n-type and p-type impurities, respectively, of which GaN, AlGaN, and InGaN are representative semiconductor materials.
- Si, Ge, Se, Te, C or the like may be used as the n-type impurities
- Mg, Zn, Be or the like may be used as the p-type impurities.
- the first and second conductivity-type semiconductor layers 121 and 123 may be formed by using a semiconductor growth method such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), or the like. Specifically, according to the present exemplary embodiment, the first and second conductivity-type semiconductor layers 121 and 123 may be formed by growing GaN on the above-described Si growth substrate 110 .
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- HVPE hydride vapor phase epitaxy
- a mesa-etched surface M may be formed in a region of the light emitting structure 120 .
- the region of the first conductivity-type semiconductor layer 121 exposed through a mesa-etching process may be used as a device separation region.
- the mesa-etched surface M may be formed by an appropriate etching process such as inductive coupled plasma reactive ion etching (ICP-RIE).
- the first and second electrodes 130 a and 130 b may be formed on the first and second conductivity-type semiconductor layers 121 and 123 , respectively.
- the first and second electrodes 130 a and 130 b may include Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au or the like, and may have two or more layer structure formed of Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt or the like.
- This manufacturing process may be performed on a wafer scale as illustrated in FIG. 4 .
- the first and second electrodes 130 a and 130 b may have different shapes and may be spaced apart from each other, and the shapes and arrangements thereof are not limited to those illustrated in FIG. 4 .
- the other surface of the growth substrate 110 opposite to one surface thereof on which the light emitting structure 120 is grown may be processed through micromachining using a chemical mechanical polishing (CMP) method, thereby forming a thin growth substrate 110 ′.
- CMP chemical mechanical polishing
- the CMP method is performed for planarization of a surface of an object through a combination of chemical and mechanical actions.
- the present disclosure is not limited thereto.
- a portion of the other surface of the growth substrate 110 may be chemically etched, or the process of making the growth substrate 110 thin may be omitted if the growth substrate is sufficiently thin.
- an oxide film may be formed on the light emitting structure 120 to cover the first and second electrodes 130 a and 130 b , and a surface of the oxide film may be flattened, such that bonding of a light transmissive substrate 140 may be further facilitated in a follow-up process.
- the light transmissive substrate 140 may be bonded to the light emitting structure 120 .
- the light transmissive substrate 140 may have a first surface and a second surface opposite to the first surface.
- the light transmissive substrate 140 may be provided as a wafer.
- the light transmissive substrate 140 may be formed of an insulating material, and light transmissive resin or glass may be used therefor.
- the light transmissive resin may include at least one of polymethylmethacrylate (PMMA) and polycarbonate (PC), and the glass may include SiO 2 .
- the light transmissive substrate 140 may have a thickness of approximately 10 ⁇ m to 500 ⁇ m.
- the light transmissive substrate 140 may be bonded to the light emitting structure 120 by applying a light transmissive adhesive such as water glass or silicone to an upper surface of the light emitting structure 120 and heating the same at a temperature of approximately 400° C. or below.
- a light transmissive adhesive such as water glass or silicone
- the light transmissive substrate 140 and the light emitting structure 120 may be bonded to each other through anodic bonding or fusion bonding at a temperature of approximately 400° C. or below.
- damage to the light emitting structure 120 from the heat may be reduced as compared with a case in which the bonding process is performed at a relatively high temperature.
- indium (In) contained within the active layers may be dispersed due to the heat, resulting in a change in concentration of indium (In) within the active layers.
- concentration of indium (In) within the active layers may cause a change in wavelength of light emitted from the LED package, resulting in deterioration of reliability of the LED package. Therefore, when the light transmissive substrate 140 is bonded at the relatively low temperature as in the present exemplary embodiment, such a change in the wavelength of the light emitted from the LED package may be prevented.
- the light transmissive substrate 140 Due to the light transmissive properties of the light transmissive substrate 140 , a contact surface between the light transmissive substrate 140 and the light emitting structure 120 may be seen through the transparent light transmissive substrate, and the positions of the first and second electrodes 130 a and 130 b of the light emitting structure 120 may be easily identified. Therefore, it is easy to determine the positions of the via electrodes 142 a and 142 b to be connected to the first and second electrodes 130 a and 130 b in a follow-up process.
- the positions of the first and second electrodes 130 a and 130 b of the light emitting structure 120 may be identified using an optical instrument C of a general exposure system.
- an optical instrument C of a general exposure system since a Si substrate or the like used as the mounting substrate 140 ′ is opaque, the positions of the electrodes of the light emitting structure 120 are not identified using such an optical instrument C of a general exposure system.
- a relatively expensive instrument such as an infrared camera is generally used to identify the positions of the first and second electrodes 130 a and 130 b .
- such an existing opaque substrate is replaced with the transparent, light transmissive substrate, and thus the positions of the electrodes may be easily identified using the optical instrument C of a general exposure system. Accordingly, manufacturing costs and time of the LED package may be reduced.
- the other surface of the light transmissive substrate 140 opposite to one surface thereof in contact with the light emitting structure 120 may be processed through micromachining using a chemical mechanical polishing (CMP) method, thereby allowing the light transmissive substrate 140 to have a reduced thickness.
- CMP chemical mechanical polishing
- the present disclosure is not limited thereto.
- a portion of the other surface of the light transmissive substrate 140 may be chemically etched, or the process of making the light transmissive substrate 140 thin may be omitted if the light transmissive substrate 140 is sufficiently thin.
- first and second through holes 141 a and 141 b may be formed in the light transmissive substrate 140 .
- the first and second through holes 141 a and 141 b may be formed in regions corresponding to the first and second electrodes 130 a and 130 b of the light emitting structure 120 .
- the first and second through holes 141 a and 141 b may be provided as at least one pair of holes in a first direction perpendicular to one surface of the light transmissive substrate 140 which is in contact with the light emitting structure 120 .
- the first and second through holes 141 a and 141 b may be provided as tube-like space penetrating through the light transmissive substrate 140 in the first direction.
- the spaces may have various shapes such as a cylindrical shape, a polyprism shape, or the like. In the present exemplary embodiment, the space may be formed to have a cylindrical shape.
- the first and second through holes 141 a and 141 b may be formed by dry-etching the light transmissive substrate 140 through oxide-deep reactive ion etching (oxide-DRIE) or the like. However, this process is not limited thereto, and various types of dry or wet etching may be used. Alternatively, the first and second through holes 141 a and 141 b may be formed by laser-drilling.
- oxide-DRIE oxide-deep reactive ion etching
- the first and second through holes 141 a and 141 b may be filled with a conductive material such as a metal or the like, thereby forming the first and second via electrodes 142 a and 142 b.
- the first and second via electrodes 142 a and 142 b may be formed by preparing a paste using a conductive material including Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au or the like and filling the first and second through holes 141 a and 141 b with the paste, or may be formed through plating.
- first and second via electrodes 142 a and 142 b may be formed in the light transmissive substrate 140 that is formed of an insulating material such as glass, it is not necessary to form an oxide film on inner surfaces of the via electrodes for electrical insulation, unlike a substrate formed of a semiconductor material such as Si. Therefore, the process of forming the via electrodes may be simplified.
- a support substrate 150 may be bonded to the bottom of the light transmissive substrate 140 , and the thin growth substrate 110 ′ may be removed.
- the thin growth substrate may not be removed.
- An adhesive 151 may be further applied to the bottom of the light transmissive substrate 140 .
- the support substrate 150 is a support body for preventing damage to the light emitting structure 120 in a follow-up process, and various types of substrate may be used therefor.
- a Si substrate may be used.
- the wavelength conversion layer 170 may be disposed on the light emitting structure 120 , and the encapsulation body 160 may be formed to enclose the light emitting structure 120 and the wavelength conversion layer 170 .
- the lens unit 180 may be bonded to the top of the encapsulation body 160 .
- a breaking process for separating individual LED packages 100 may be performed using a blade B.
- the LED package 100 of FIG. 1 may be manufactured.
- FIGS. 12 and 13 are views illustrating major processes in a method of manufacturing the LED package according to another exemplary embodiment of the present disclosure.
- the manufacturing method according to the present exemplary embodiment is different from that the method according to the previous exemplary embodiment.
- a light transmissive substrate 240 may be bonded to a light emitting structure 220 after via electrodes are formed in the light transmissive substrate 240 . Since details of the other processes are identical to those described in the previous exemplary embodiment, different processes will mainly be described hereinafter.
- the light emitting structure 220 is similar to the light emitting structure 120 of FIG. 3 , except that a first alignment key 233 is formed on an exposed surface of the light emitting structure 220 .
- first and second via electrodes 242 a and 242 b and bonding pads 243 a and 243 b may be formed in a light transmissive substrate 240 before the light transmissive substrate 240 is bonded to the light emitting structure 220 .
- a second alignment key 244 may be formed to correspond to the first alignment key 233 on a surface of the light transmissive substrate 240 which is bonded to the light emitting structure 220 .
- the light emitting structure 220 and the light transmissive substrate 240 may be bonded to each other after the first alignment key 233 and the second alignment key 244 are arranged using an optical instrument C of a general exposure system.
- a Si substrate or the like used as the mounting substrate is opaque, causing difficulties in identifying the positions of the alignment keys disposed on the mounting substrate and the light emitting structure using such the optical instrument C of the general exposure system. Therefore, the positions of the mounting substrate and the light emitting structure have been determined by capturing images of the alignment keys disposed on the mounting substrate and the light emitting structure, and analyzing the positions of the alignment keys prior to the bonding thereof.
- This process has required an expensive imaging device capable of capturing the images of the alignment keys disposed on the mounting substrate and the light emitting structure at the same time.
- an existing opaque substrate is replaced with the transparent, light transmissive substrate, and thus the first alignment key 233 disposed on the light emitting structure 220 which is seen through the transparent, light transmissive substrate 240 and the second alignment key 244 disposed on the light transmissive substrate 240 may be easily arranged using the optical instrument C of the general exposure system. Accordingly, manufacturing costs and time of the LED package may be reduced.
- the LED package according to the above-described exemplary embodiments may be advantageously applied to various products.
- FIGS. 14 and 15 illustrate examples of a backlight unit to which the LED package according to the exemplary embodiment of the present disclosure is applied.
- the backlight unit 1000 includes at least one light source 1001 mounted on a substrate 1002 and at least one optical sheet 1003 disposed above the light source 1001 .
- the aforementioned semiconductor light emitting device or the aforementioned package having the semiconductor light emitting device may be used as the light source 1001 .
- the light source 1001 in the backlight unit 1000 of FIG. 14 emits light toward a liquid crystal display (LCD) device disposed thereabove.
- LCD liquid crystal display
- a light source 2001 mounted on a substrate 2002 in a backlight unit 2000 as another example illustrated in FIG. 15 emits light laterally, and the light is incident to a light guide plate 2003 such that the backlight unit 2000 may serve as a surface light source.
- the light travelling to the light guide plate 2003 may be emitted upwardly, and a reflective layer 2004 may be disposed below a lower surface of the light guide plate 2003 in order to improve a light extraction efficiency.
- FIG. 16 is an exploded perspective view illustrating an example of a lighting device to which the semiconductor light emitting device according to the exemplary embodiment of the present disclosure is applied.
- a lighting device 3000 is illustrated, for example, as a bulb-type lamp in FIG. 16 , and includes a light emitting module 3003 , a driver 3008 , and an external connector 3010 .
- the lighting device 3000 may further include exterior structures such as external and internal housings 3006 and 3009 , a cover 3007 , and the like.
- the light emitting module 3003 may include a light source 3001 having the aforementioned semiconductor light emitting device package structure or a structure similar thereto, and a circuit board 3002 on which the light source 3001 is mounted.
- first and second electrodes of the semiconductor light emitting device may be electrically connected to an electrode pattern of the circuit board 3002 .
- a single light source 3001 is mounted on the circuit board 3002 .
- a plurality of light sources may be mounted thereon as necessary.
- the external housing 3006 may serve as a heat radiator.
- the external housing 3006 may include a heat sink plate 3004 directly contacting the light emitting module 3003 to thereby improve heat dissipation, and heat radiating fins 3005 surrounding a lateral surface of the lighting device 3000 .
- the cover 3007 may be disposed above the light emitting module 3003 and may have a convex lens shape.
- the driver 3008 may be disposed inside the internal housing 3009 and be connected to the external connector 3010 such as a socket structure to receive power from an external power source.
- the driver 3008 may convert the received power into power appropriate for driving the light source 3001 of the light emitting module 3003 and supply the converted power thereto.
- the driver 3008 may be configured as an AC-DC converter, a rectifying circuit part, or the like.
- FIG. 17 illustrates an example of a headlamp to which the semiconductor light emitting device according to the exemplary embodiment of the present disclosure is applied.
- a headlamp 4000 used in a vehicle or the like may include a light source 4001 , a reflector 4005 and a lens cover 4004 .
- the lens cover 4004 may include a hollow guide part 4003 and a lens 4002 .
- the light source 4001 may include the aforementioned semiconductor light emitting device or the aforementioned package having the same.
- the headlamp 4000 may further include a heat radiator 4012 externally dissipating heat generated in the light source 4001 .
- the heat radiator 4012 may include a heat sink 4010 and a cooling fan 4011 in order to effectively dissipate heat.
- the headlamp 4000 may further include a housing 4009 allowing the heat radiator 4012 and the reflector 4005 to be fixed thereto and supporting them.
- the housing 4009 may include a body 4006 and a central hole 4008 formed in one surface thereof, to which the heat radiator 4012 is coupled.
- the housing 4009 may include a forwardly open hole 4007 formed in another surface thereof integrally connected to one surface thereof and bent in a direction perpendicular thereto.
- the reflector 4005 may be fixed to the housing 4009 , such that light generated in the light source 4001 may be reflected by the reflector 4005 , pass through the forwardly open hole 4007 , and be emitted outwardly.
- the light transmissive substrate is used to effectively simplify the arrangement of electrodes, whereby manufacturing costs of the LED package may be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
- This application claims the benefit of Korean Patent Application No. 10-2014-0020167 filed on Feb. 21, 2014, with the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
- The present disclosure relates to a light emitting diode (LED) package and a method of manufacturing the LED package.
- A light emitting diode (LED) is a device including a material that emits light using electric energy. The energy generated through an electron-hole recombination in semiconductor junction parts is converted into light that is to be emitted therefrom. LEDs are commonly used as light sources in illumination devices, display devices, and the like.
- In particular, a recent increase in development and employment of gallium nitride-based LEDs, and the commercialization of mobile device keypads, turn signal lamps, camera flashes, and the like, using the gallium nitride-based LEDs, have led to an acceleration of the development of general lighting devices using the LEDs. The LEDs have been used for small portable products, and recently the LEDs are also used for large-sized products having a high output and a high efficiency, such as backlight units of large TVs, headlamps of vehicles, general lighting devices, and the like.
- Accordingly, a method of reducing manufacturing costs for the mass production of LED packages is provided.
- An exemplary embodiment in the present disclosure may provide a novel method of manufacturing alight emitting diode (LED) package in order to reduce manufacturing costs.
- According to an exemplary embodiment in the present disclosure, a method of manufacturing the light emitting diode (LED) package may include forming a light emitting structure having a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer on a growth substrate, and forming first and second electrodes connected to the first and second conductivity-type semiconductor layers, respectively. The method also includes bonding a first surface of a light transmissive substrate opposite to a second surface thereof to the light emitting structure, identifying positions of the first and second electrodes that are seen through the second surface of the light transmissive substrate, forming one or more through holes in regions of the light transmissive substrate that correspond to the first and second electrodes, and forming first and second via electrodes by filling the through holes with a conductive material.
- The light transmissive substrate may be formed of an insulating material.
- The insulating material may include SiO2.
- The method may further include polishing the second surface of the light transmissive substrate through a chemical and mechanical polishing process after the bonding of the light transmissive substrate.
- The bonding of the light transmissive substrate to the light emitting structure may be performed by applying a light transmissive adhesive to a surface of the light emitting structure and bonding the light transmissive substrate to the light transmissive adhesive.
- The light transmissive adhesive may include water glass or silicone.
- The light transmissive substrate may be bonded to the light emitting structure at a temperature of approximately 400° C. or below.
- The bonding of the light transmissive substrate to the light emitting structure may be performed through anodic bonding.
- The bonding of the light transmissive substrate to the light emitting structure may also be performed through fusion bonding.
- The light transmissive substrate may be formed to have a thickness of approximately 10 μm to 500 μm.
- The growth substrate may be formed of Si.
- According to still another exemplary embodiment in the present disclosure, a method of manufacturing a light emitting diode (LED) package may include forming a light emitting structure including a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer on the growth substrate, and forming first and second electrodes connected to the first and second conductivity-type semiconductor layers, respectively. The method also includes disposing a first alignment key on an upper surface of the light emitting structure, preparing a light transmissive substrate having a first surface and a second surface opposite to the first surface, forming first and second via electrodes penetrating through the first and second surfaces in regions of the light transmissive substrate that correspond to the first and second electrodes, disposing a second alignment key on at least one of the first and second surfaces, and bonding the first surface of the light transmissive substrate to the upper surface of the light emitting structure. The light transmissive substrate is arranged to allow the second alignment key on the light transmissive substrate to correspond to the first alignment key on the light emitting structure which is seen through the second surface of the light transmissive substrate.
- The light transmissive substrate may be formed of an insulating material.
- The insulating material may include SiO2.
- The above and other aspects, features and advantages of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
-
FIG. 1 is a cross-sectional view of a light emitting diode (LED) package according to an exemplary embodiment of the present disclosure; -
FIGS. 2 through 10 are views illustrating major processes in a method of manufacturing the LED package according to the exemplary embodiment of the present disclosure; -
FIG. 11 is a side cross-sectional view of a light emitting structure applicable to the LED package according to the exemplary embodiment of the present disclosure; -
FIGS. 12 and 13 are views illustrating major processes in a method of manufacturing the LED package according to another exemplary embodiment of the present disclosure; -
FIGS. 14 and 15 illustrate examples of a backlight unit to which the LED package according to the exemplary embodiment of the present disclosure is applied; -
FIG. 16 illustrates an example of a lighting device to which the LED package according to the exemplary embodiment of the present disclosure is applied; and -
FIG. 17 illustrates an example of a headlamp to which the LED package according to the exemplary embodiment of the present disclosure is applied. - Exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings.
- The disclosure may, however, be exemplified in many different forms and should not be construed as being limited to the specific embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.
- In the drawings, the shapes and dimensions of elements may be exaggerated for clarity, and the same reference numerals will be used throughout to designate the same or like elements.
- With reference to
FIG. 1 , a light emitting diode (LED)package 100 according to an exemplary embodiment of the present disclosure may include amounting substrate 140′ having first and second viaelectrodes light emitting structure 120 mounted on themounting substrate 140′, awavelength conversion layer 170 disposed on an upper surface of thelight emitting structure 120, anencapsulation body 160 disposed to enclose thelight emitting structure 120 and thewavelength conversion layer 170. - The first and second via
electrodes mounting substrate 140′, and thelight emitting structure 120 may be mounted on the first and second viaelectrodes second electrodes light emitting structure 120 are electrically connected to the first and second viaelectrodes - Specifically, the first and second via
electrodes mounting substrate 140′ on which thelight emitting structure 120 is mounted and a second surface of themounting substrate 140′ opposite to the first surface. First andsecond bonding pads mounting substrate 140′ to which ends of the first and second viaelectrodes mounting substrate 140′ are electrically connected to each other. Themounting substrate 140′ may be a substrate used for manufacturing a package in a wafer state, which is a so-called wafer level package (WLP). Since both surfaces of themounting substrate 140′ are flat, the size of the package, in which thelight emitting structure 120 is mounted on themounting substrate 140′, may be reduced to the size of thelight emitting structure 120. - Here, the
mounting substrate 140′ may be formed of a light transmissive material. Specifically, the light transmissive material may be light transmissive resin or glass that may have insulating properties and may be resistant to heat. The light transmissive resin may include at least one of polymethylmethacrylate (PMMA) and polycarbonate (PC), and the glass may include SiO2. Since such transparent glass has light transmission properties, an object disposed on one surface of the glass substrate may be identified from a direction of another surface of the glass substrate. Accordingly, when themounting substrate 140′ is formed of the light transmissive material, the positions of the via electrodes may be easily identified in a process of manufacturing an LED package. Details thereof will be provided in the manufacturing process to be described below. - The
light emitting structure 120 may be mounted on themounting substrate 140′ and may include a first conductivity-type semiconductor layer 121, anactive layer 122 and a second conductivity-type semiconductor layer 123 sequentially disposed from an upper portion of thelight emitting structure 120. The first and second conductivity-type semiconductor layers type semiconductor layers type semiconductor layers - The
active layer 122 may be a layer for emitting visible light having a wavelength of approximately 350 nm to 680 nm. Theactive layer 122 may be formed of undoped nitride semiconductor layers having a single-quantum-well (SQW) structure or a multi-quantum-well (MQW) structure. For example, theactive layer 122 may have the MQW structure in which quantum barrier layers and quantum well layers having a composition of AlxInyGa(1-x-y)N (where 0≦x<1, 0≦y<1, and 0≦x+y<1) are alternately stacked, such that theactive layer 122 may have a predetermined energy bandgap and emit light through the recombination of electrons and holes in quantum wells. In the case of the MQW structure, an InGaN/GaN structure may be used, for example. The first and second conductivity type semiconductor layers 121 and 123 and theactive layer 122 may be formed using crystal growth processes such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), and the like. - The
light emitting structure 120 may be used as an LED chip having a flip-chip structure after the removal of a growth substrate, and a buffer layer may be further included in order to reduce crystal defects during the growth of the semiconductor layers. - The first and
second electrodes second electrodes - The first and
second electrodes second electrodes second electrodes substrate 140′ on which thelight emitting structure 120 is mounted. - Various types of LED chips may be employed in the present exemplary embodiment.
FIG. 11 is a side cross-sectional view of an LED chip applicable to the LED package according to an exemplary embodiment of the present disclosure. - An
LED chip 300 illustrated inFIG. 11 may include asubstrate 310, a base layer B disposed on thesubstrate 310, and a plurality of light emitting nanostructures L disposed on the base layer B. - The
substrate 310 may be an insulating substrate, a conductive substrate or a semiconductor substrate. For example, thesubstrate 310 may be formed of sapphire, SiC, Si, MgAl2O4, MgO, LiAlO2, LiGaO2, GaN or the like. The base layer B may be formed of a nitride semiconductor containing AlxInyGa1-x-yN (where 0≦x<1, 0≦y<1, and 0≦x+y<1), and may be doped with an n-type impurity such as Si to be converted to have a particular conductivity-type. - An insulating layer M having a plurality of openings may be disposed on the base layer B for growth of the light emitting nanostructures L (especially, nanocores 321). Portions of the base layer B may be exposed through the openings, and the
nanocores 321 may be formed on the exposed portions of the base layer B. That is, the insulating layer M may be used as a mask for growth of thenanocores 321. The insulating layer M may be formed of an insulating material such as SiO2 or SiNx that may be used in a semiconductor growth process. - The light emitting nanostructures L may include the first conductivity-
type semiconductor nanocore 321. The light emitting nanostructures L may also include anactive layer 322 and a second conductivity-type semiconductor layer 323 sequentially disposed on the surface of thenanocore 321. - Similar to the base layer B, the
nanocore 321 may be doped with the n-type impurity and be formed of the nitride semiconductor containing AlxInyGa1-x-yN (where 0≦x<1, 0≦y<1, and 0≦x+y<1). For example, thenanocore 321 may be formed of n-type GaN. Theactive layer 322 may have the MQW structure in which quantum well layers and quantum barrier layers are alternately stacked. For example, in a case in which theactive layer 322 is formed of the nitride semiconductor, a GaN/InGaN structure may be used therefor. Alternatively, theactive layer 322 may have the SQW structure. The second conductivity-type semiconductor layer 323 may be a crystal doped with a p-type impurity and containing AlxInyGa1-x-yN (where 0≦x<1, 0≦y<1, and 0≦x+y<1). - The
LED chip 300 may include acontact electrode 335 in the ohmic contact with the second conductivity-type semiconductor layer 323. Thecontact electrode 335 used in the present exemplary embodiment may be formed of a transparent electrode material in order to allow light to be emitted in a direction toward the light emitting nanostructures L. For example, thecontact electrode 335 may be formed of the transparent electrode material such as ITO. As necessary, graphene may be used therefor. - The
contact electrode 335 is not limited thereto, and may include Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au or the like. In addition, thecontact electrode 335 may have two or more layers formed of Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag, Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt, or the like. As necessary, a reflective electrode structure may be used to allow theLED chip 300 to have a flip-chip structure. - An insulating
filler 336 may be formed in space between the light emitting nanostructures L. An insulating material such as SiO2 or SiNx may be used for the insulatingfiller 336. Specifically, in order to facilitate the filling of the space between the light emitting nanostructures L, TEOS (TetraEthylOrthoSilane), BPSG (BoroPhospho Silicate Glass), CVD-SiO2, SOG (Spin-on Glass), or SOD (Spin-on Delectric) may be used for the insulatingfiller 336. According to exemplary embodiments, thecontact electrode 335 may be formed to fill all or some of the space between the light emitting nanostructures L. - In addition, the
LED chip 300 may include first andsecond electrodes first electrode 330 a may be disposed on an exposed region of the base layer B, and thesecond electrode 330 b may be disposed on an extended and exposed region of thecontact electrode 335. - The
LED chip 300 may further include apassivation layer 337. Thepassivation layer 337 may be used to protect the light emitting nanostructures L together with the insulatingfiller 336. Thepassivation layer 337 may cover and protect the entirety of the semiconductor region and may firmly fix the first andsecond electrodes passivation layer 337 may be formed of a material identical or similar to the material of the insulatingfiller 336. - In the present exemplary embodiment, a tip portion of the
nanocore 321 may have inclined crystal planes (e.g. planes) different from side crystal planes (e.g. m planes) of thenanocore 321. A current blockingintermediate layer 334 may be formed in the tip portion of thenanocore 321. The current blockingintermediate layer 334 may be disposed between theactive layer 322 and thenanocore 321. The current blockingintermediate layer 334 may be formed of a material having high electrical resistance in order to block a leakage current that may be caused at the tip portion of thenanocore 321. For example, the current blockingintermediate layer 334 may be a semiconductor layer not doped intentionally, or may be a semiconductor layer doped with a second conductivity-type impurity different from that of thenanocore 321. For example, in a case in which thenanocore 321 is formed of n-type GaN, the current blockingintermediate layer 334 may be an undoped GaN layer or a GaN layer doped with a p-type impurity such as magnesium (Mg). Such a current blockingintermediate layer 334 may be a high resistance region formed of the same material (for example, GaN) but obtained with various doping concentrations or doping materials, without being particularly distinguished from an adjacent layer. For example, GaN may be grown, while an n-type impurity is supplied thereto, to form thenanocore 321. GaN may continue to be grown, while the supply of the n-type impurity is blocked or the p-type impurity such as magnesium (Mg) is supplied thereto, to form the desired current blockingintermediate layer 334. Alternatively, while GaN for thenanocore 321 is being grown, a source of aluminum (Al) and/or indium (In) may be additionally supplied to form the current blockingintermediate layer 334 having a different composition of AlxInyGa1-x-yN (where 0≦x<1, 0≦y<1, and 0≦x+y<1). - Referring to
FIG. 1 , thewavelength conversion layer 170 may be disposed on the upper surface of thelight emitting structure 120. Thewavelength conversion layer 170 may be formed as a sheet having a substantially uniform thickness. Thewavelength conversion layer 170 may be a film in which a B-stage material semi-cured at a room temperature and converted to a liquid phase when heated is dispersed together with a phosphor. - Specifically, the semi-cured material may be B-stage silicone. Here, the
wavelength conversion layer 170 may be formed of a single layer or multiple layers. In a case in which thewavelength conversion layer 170 is formed of the multiple layers, different types of phosphor may be provided in respective layers. Thewavelength conversion layer 170 may be formed by mixing the B-stage resin with the phosphor. For example, a polymer binder including a resin, a hardener, a hardening catalyst and the like is mixed with a phosphor to form a B-stage composite. - The phosphor may be used to convert a wavelength of light to a wavelength of yellow, red, or green light. Types of phosphor may be determined based on the wavelength of light emitted from the
active layer 122 of thelight emitting structure 120. Specifically, the phosphor may have the following compositions and colors: - Oxide-based phosphors: Yellow and Green Y3Al5O12:Ce, Tb3Al5O12:Ce, Lu3Al5O12:Ce;
- Silicate-based phosphors: Yellow and Green (Ba,Sr)2SiO4:Eu, Yellow and Orange (Ba,Sr)3SiO5:Ce;
- Nitride-based phosphors: Green β-SiAlON:Eu, Yellow La3Si6O11:Ce, Orange α-SiAlON:Eu, Red CaAlSiN3:Eu, Sr2Si5N8:Eu, SrSiAl4N7:Eu;
- Fluoride-based phosphors: KSF-based Red K2SiF6:Mn4+.
- Phosphor compositions should basically conform to Stoichiometry, and respective elements may be substituted with different elements of respective groups of the periodic table. For example, strontium (Sr) may be substituted with barium (Ba), calcium (Ca), magnesium (Mg), or the like, of alkaline earths (II group). Yttrium (Y) may be substituted with terbium (Tb), lutetium (Lu), scandium (Sc), gadolinium (Gd), or the like, of lanthanoids. Also, europium (Eu), an activator, may be substituted with cerium (Ce), terbium (Tb), praseodymium (Pr), erbium (Er), ytterbium (Yb), or the like, according to a desired energy level. The activator may be used alone, or a subactivator, or the like, may be additionally used to change light emitting characteristics.
- In addition, materials such as quantum dots (QDs), or the like, may be used as materials in place of phosphors. Phosphors and quantum dots may be used in combination.
- A quantum dot may have a structure including a core (3 nm to 10 nm) such as CdSe, InP, or the like, a shell (0.5 nm to 2 nm) such as ZnS, ZnSe, or the like, and a ligand for stabilizing the core and the shell. The quantum dot may create various colors according to sizes.
- Table 1 below shows types of phosphor in application fields of white light emitting devices using blue LEDs (wavelength: 440 nm to 460 nm).
-
TABLE 1 Purpose Phosphors LED TV BLU β-SiAlON:Eu2+ (Ca, Sr) AlSiN3:Eu2+ La3Si6O11:Ce3+ K2SiF6:Mn4+ Lighting Devices Lu3Al5O12:Ce3+ Ca-α-SiAlON:Eu2+ La3Si6N11:Ce3+ (Ca, Sr) AlSiN3:Eu2+ Y3Al5O12:Ce3+ K2SiF6:Mn4+ Side Viewing Lu3Al5O12:Ce3+ (Mobile, Notebook PC) Ca-α-SiAlON:Eu2+ La3Si6N11:Ce3+ (Ca, Sr) AlSiN3:Eu2+ Y3Al5O12:Ce3+ (Sr, Ba, Ca, Mg)2SiO4:Eu2+ K2SiF6:Mn4+ Electrical Components Lu3Al5O12:Ce3+ (Vehicle Head Lamp, etc.) Ca-α-SiAlON:Eu2+ La3Si6N11:Ce3+ (Ca, Sr) AlSiN3:Eu2+ Y3Al5O12:Ce3+ K2SiF6:Mn4+ - The resin used in the
wavelength conversion layer 170 may be a resin having high adhesive properties, high light transmittance, high resistance to heat and moisture, high photorefraction, and the like. Epoxy resin or silicone resin which is an inorganic polymer may be used therefor. In order to secure high adhesive properties, a silane material or the like may be used as an additive for improving adhesive strength. - By using such a
wavelength conversion layer 170, theLED package 100 emitting white light may be provided. TheLED package 100 may include active layers that emit light having different wavelengths, so that theLED package 100 can emit white light without using the phosphor. For example, in theLED package 100 having the light emitting nanostructures L (seeFIG. 11 ), the active layers that emit light having different wavelengths under the same growth conditions may be formed by changing the sizes of nanocores and/or distances between the nanocores, whereby desired white light may be produced. - The
encapsulation body 160 may be disposed to enclose thelight emitting structure 120 and thewavelength conversion layer 170. Accordingly, theencapsulation body 160 may protect thelight emitting structure 120 and thewavelength conversion layer 170 from moisture and heat, and the distribution of light emitted from thelight emitting structure 120 may be adjusted by changing a shape of a surface of theencapsulation body 160. - The
encapsulation body 160 may be formed of a light transmissive material. Specifically, theencapsulation body 160 may be formed of an insulating resin having light transmissive properties such as a composition selected among a silicon resin, a modified silicon resin, an epoxy resin, a urethane resin, an oxetane resin, an acrylic resin, a polycarbonate resin, a polyimide resin, and a combination thereof. However, the material of theencapsulation body 160 is not limited thereto, and an inorganic material having high light resistance such as glass, silica gel or the like may be used. - A
lens unit 180 may be further formed on theencapsulation body 160. A shape of thelens unit 180 may be adjusted to control the distribution of light emitted from thelight emitting structure 120. Thelens unit 180 may be formed of a light transmissive material, like theencapsulation body 160. Specifically, thelens unit 180 may be formed of the insulating resin having the light transmissive properties such as the composition selected among the silicon resin, the modified silicon resin, the epoxy resin, the urethane resin, the oxetane resin, the acrylic resin, the polycarbonate resin, the polyimide resin, and the combination thereof. However, the material of thelens unit 180 is not limited thereto, and the inorganic material having the high light resistance such as glass, silica gel or the like may be used. - With reference to
FIGS. 2 through 10 , a method of manufacturing the LED package according to the exemplary embodiment of the present disclosure will be described below. - First of all, the
light emitting structure 120 including the first conductivity-type semiconductor layer 121, theactive layer 122 and the second conductivity-type semiconductor layer 123 may be formed on agrowth substrate 110. - The
growth substrate 110 may be provided as a semiconductor growth substrate, and may be formed of an insulating material, a conductive material or a semiconductor material, such as sapphire, SiC, Si, MgAl2O4, MgO, LiAlO2, LiGaO2, GaN or the like. In a case of thegrowth substrate 110 formed of sapphire, a crystal having Hexa-Rhombo R3C symmetry, a sapphire substrate has a lattice constant of 13.001 Å along a C-axis and a lattice constant of 4.758 Å along an A-axis, and includes a C (0001) plane, an A (11-20) plane, an R (1-102) plane, and the like. Here, the C plane is mainly used as a substrate for nitride semiconductor growth because the C plane facilitates growth of a nitride film and is stable at high temperatures. Meanwhile, in a case in which thegrowth substrate 110 is formed of Si, a Si substrate may be easily formed to have a large diameter and may be relatively cheap, whereby manufacturing yields may be improved. Although not shown, prior to the forming of thelight emitting structure 120, a buffer layer may be further formed on one surface of thegrowth substrate 110 on which the first conductivity-type semiconductor layer 121 is to be formed. - The
light emitting structure 120 may be formed by sequentially stacking the first conductivity-type semiconductor layer 121, theactive layer 122 and the second conductivity-type semiconductor layer 123. - The first and second conductivity-type semiconductor layers 121 and 123 may be formed of a nitride semiconductor material having a composition expressed by AlxInyGa(1-x-y)N, (where 0≦x<1, 0≦y<1, and 0≦x+y<1), and doped with n-type and p-type impurities, respectively, of which GaN, AlGaN, and InGaN are representative semiconductor materials. In addition, Si, Ge, Se, Te, C or the like may be used as the n-type impurities, and Mg, Zn, Be or the like may be used as the p-type impurities. The first and second conductivity-type semiconductor layers 121 and 123 may be formed by using a semiconductor growth method such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), or the like. Specifically, according to the present exemplary embodiment, the first and second conductivity-type semiconductor layers 121 and 123 may be formed by growing GaN on the above-described
Si growth substrate 110. - A mesa-etched surface M may be formed in a region of the
light emitting structure 120. The region of the first conductivity-type semiconductor layer 121 exposed through a mesa-etching process may be used as a device separation region. The mesa-etched surface M may be formed by an appropriate etching process such as inductive coupled plasma reactive ion etching (ICP-RIE). - Next, as illustrated in
FIGS. 3 and 4 , the first andsecond electrodes second electrodes FIG. 4 . The first andsecond electrodes FIG. 4 . - In addition, the other surface of the
growth substrate 110 opposite to one surface thereof on which thelight emitting structure 120 is grown may be processed through micromachining using a chemical mechanical polishing (CMP) method, thereby forming athin growth substrate 110′. Here, the CMP method is performed for planarization of a surface of an object through a combination of chemical and mechanical actions. However, the present disclosure is not limited thereto. Thus, a portion of the other surface of thegrowth substrate 110 may be chemically etched, or the process of making thegrowth substrate 110 thin may be omitted if the growth substrate is sufficiently thin. - Meanwhile, an oxide film may be formed on the
light emitting structure 120 to cover the first andsecond electrodes light transmissive substrate 140 may be further facilitated in a follow-up process. - Thereafter, as illustrated in
FIGS. 5 and 6 , thelight transmissive substrate 140 may be bonded to thelight emitting structure 120. Thelight transmissive substrate 140 may have a first surface and a second surface opposite to the first surface. As illustrated inFIG. 6 , thelight transmissive substrate 140 may be provided as a wafer. As described above, thelight transmissive substrate 140 may be formed of an insulating material, and light transmissive resin or glass may be used therefor. Here, the light transmissive resin may include at least one of polymethylmethacrylate (PMMA) and polycarbonate (PC), and the glass may include SiO2. In addition, thelight transmissive substrate 140 may have a thickness of approximately 10 μm to 500 μm. - The
light transmissive substrate 140 may be bonded to thelight emitting structure 120 by applying a light transmissive adhesive such as water glass or silicone to an upper surface of thelight emitting structure 120 and heating the same at a temperature of approximately 400° C. or below. In addition, thelight transmissive substrate 140 and thelight emitting structure 120 may be bonded to each other through anodic bonding or fusion bonding at a temperature of approximately 400° C. or below. In a case in which thelight transmissive substrate 140 is bonded to thelight emitting structure 120 at a relatively low temperature of approximately 400° C. or below, damage to thelight emitting structure 120 from the heat may be reduced as compared with a case in which the bonding process is performed at a relatively high temperature. In particular, in the case of the LED package to which light emitting nanostructures Las illustrated inFIG. 11 are applied, it is necessary to precisely adjust the concentration of indium (In) in order to obtain active layers that emit light having different wavelengths. In the case in which thelight transmissive substrate 140 is bonded to the light emitting nanostructures L at a relatively high temperature, indium (In) contained within the active layers may be dispersed due to the heat, resulting in a change in concentration of indium (In) within the active layers. Such a change in concentration of indium (In) within the active layers may cause a change in wavelength of light emitted from the LED package, resulting in deterioration of reliability of the LED package. Therefore, when thelight transmissive substrate 140 is bonded at the relatively low temperature as in the present exemplary embodiment, such a change in the wavelength of the light emitted from the LED package may be prevented. - Due to the light transmissive properties of the
light transmissive substrate 140, a contact surface between thelight transmissive substrate 140 and thelight emitting structure 120 may be seen through the transparent light transmissive substrate, and the positions of the first andsecond electrodes light emitting structure 120 may be easily identified. Therefore, it is easy to determine the positions of the viaelectrodes second electrodes - The positions of the first and
second electrodes light emitting structure 120 may be identified using an optical instrument C of a general exposure system. In general, since a Si substrate or the like used as the mountingsubstrate 140′ is opaque, the positions of the electrodes of thelight emitting structure 120 are not identified using such an optical instrument C of a general exposure system. In this case, a relatively expensive instrument such as an infrared camera is generally used to identify the positions of the first andsecond electrodes - Meanwhile, the other surface of the
light transmissive substrate 140 opposite to one surface thereof in contact with thelight emitting structure 120 may be processed through micromachining using a chemical mechanical polishing (CMP) method, thereby allowing thelight transmissive substrate 140 to have a reduced thickness. However, the present disclosure is not limited thereto. Thus, a portion of the other surface of thelight transmissive substrate 140 may be chemically etched, or the process of making thelight transmissive substrate 140 thin may be omitted if thelight transmissive substrate 140 is sufficiently thin. - Next, as illustrated in
FIG. 7 , first and second throughholes light transmissive substrate 140. The first and second throughholes second electrodes light emitting structure 120. - The first and second through
holes light transmissive substrate 140 which is in contact with thelight emitting structure 120. The first and second throughholes light transmissive substrate 140 in the first direction. The spaces may have various shapes such as a cylindrical shape, a polyprism shape, or the like. In the present exemplary embodiment, the space may be formed to have a cylindrical shape. - The first and second through
holes light transmissive substrate 140 through oxide-deep reactive ion etching (oxide-DRIE) or the like. However, this process is not limited thereto, and various types of dry or wet etching may be used. Alternatively, the first and second throughholes - Then, as illustrated in
FIG. 8 , the first and second throughholes electrodes - The first and second via
electrodes holes - In the present exemplary embodiment, since the first and second via
electrodes light transmissive substrate 140 that is formed of an insulating material such as glass, it is not necessary to form an oxide film on inner surfaces of the via electrodes for electrical insulation, unlike a substrate formed of a semiconductor material such as Si. Therefore, the process of forming the via electrodes may be simplified. - Thereafter, as illustrated in
FIG. 9 , asupport substrate 150 may be bonded to the bottom of thelight transmissive substrate 140, and thethin growth substrate 110′ may be removed. In a case in which thelight transmissive substrate 140 is used as the growth substrate, the thin growth substrate may not be removed. An adhesive 151 may be further applied to the bottom of thelight transmissive substrate 140. Thesupport substrate 150 is a support body for preventing damage to thelight emitting structure 120 in a follow-up process, and various types of substrate may be used therefor. In the present exemplary embodiment, a Si substrate may be used. - Then, as illustrated in
FIG. 10 , thewavelength conversion layer 170 may be disposed on thelight emitting structure 120, and theencapsulation body 160 may be formed to enclose thelight emitting structure 120 and thewavelength conversion layer 170. In addition, thelens unit 180 may be bonded to the top of theencapsulation body 160. A breaking process for separatingindividual LED packages 100 may be performed using a blade B. Finally, theLED package 100 ofFIG. 1 may be manufactured. - Hereinafter, a method of manufacturing an LED package according to another exemplary embodiment of the present disclosure will be described.
FIGS. 12 and 13 are views illustrating major processes in a method of manufacturing the LED package according to another exemplary embodiment of the present disclosure. - The manufacturing method according to the present exemplary embodiment is different from that the method according to the previous exemplary embodiment. In the method shown in
FIGS. 12 and 13 , alight transmissive substrate 240 may be bonded to alight emitting structure 220 after via electrodes are formed in thelight transmissive substrate 240. Since details of the other processes are identical to those described in the previous exemplary embodiment, different processes will mainly be described hereinafter. - As illustrated in
FIG. 12 , thelight emitting structure 220 is similar to thelight emitting structure 120 ofFIG. 3 , except that afirst alignment key 233 is formed on an exposed surface of thelight emitting structure 220. In addition, first and second viaelectrodes bonding pads light transmissive substrate 240 before thelight transmissive substrate 240 is bonded to thelight emitting structure 220. Furthermore, asecond alignment key 244 may be formed to correspond to thefirst alignment key 233 on a surface of thelight transmissive substrate 240 which is bonded to thelight emitting structure 220. - As illustrated in
FIG. 13 , thelight emitting structure 220 and thelight transmissive substrate 240 may be bonded to each other after thefirst alignment key 233 and thesecond alignment key 244 are arranged using an optical instrument C of a general exposure system. In general, a Si substrate or the like used as the mounting substrate is opaque, causing difficulties in identifying the positions of the alignment keys disposed on the mounting substrate and the light emitting structure using such the optical instrument C of the general exposure system. Therefore, the positions of the mounting substrate and the light emitting structure have been determined by capturing images of the alignment keys disposed on the mounting substrate and the light emitting structure, and analyzing the positions of the alignment keys prior to the bonding thereof. This process has required an expensive imaging device capable of capturing the images of the alignment keys disposed on the mounting substrate and the light emitting structure at the same time. In the present exemplary embodiment, such an existing opaque substrate is replaced with the transparent, light transmissive substrate, and thus thefirst alignment key 233 disposed on thelight emitting structure 220 which is seen through the transparent,light transmissive substrate 240 and thesecond alignment key 244 disposed on thelight transmissive substrate 240 may be easily arranged using the optical instrument C of the general exposure system. Accordingly, manufacturing costs and time of the LED package may be reduced. - The LED package according to the above-described exemplary embodiments may be advantageously applied to various products.
-
FIGS. 14 and 15 illustrate examples of a backlight unit to which the LED package according to the exemplary embodiment of the present disclosure is applied. - Referring to
FIG. 14 , thebacklight unit 1000 includes at least onelight source 1001 mounted on asubstrate 1002 and at least oneoptical sheet 1003 disposed above thelight source 1001. The aforementioned semiconductor light emitting device or the aforementioned package having the semiconductor light emitting device may be used as thelight source 1001. Thelight source 1001 in thebacklight unit 1000 ofFIG. 14 emits light toward a liquid crystal display (LCD) device disposed thereabove. - A
light source 2001 mounted on asubstrate 2002 in abacklight unit 2000 as another example illustrated inFIG. 15 emits light laterally, and the light is incident to alight guide plate 2003 such that thebacklight unit 2000 may serve as a surface light source. The light travelling to thelight guide plate 2003 may be emitted upwardly, and areflective layer 2004 may be disposed below a lower surface of thelight guide plate 2003 in order to improve a light extraction efficiency. -
FIG. 16 is an exploded perspective view illustrating an example of a lighting device to which the semiconductor light emitting device according to the exemplary embodiment of the present disclosure is applied. - A
lighting device 3000 is illustrated, for example, as a bulb-type lamp inFIG. 16 , and includes alight emitting module 3003, adriver 3008, and anexternal connector 3010. - In addition, the
lighting device 3000 may further include exterior structures such as external andinternal housings cover 3007, and the like. Thelight emitting module 3003 may include alight source 3001 having the aforementioned semiconductor light emitting device package structure or a structure similar thereto, and acircuit board 3002 on which thelight source 3001 is mounted. For example, first and second electrodes of the semiconductor light emitting device may be electrically connected to an electrode pattern of thecircuit board 3002. In the present exemplary embodiment, asingle light source 3001 is mounted on thecircuit board 3002. However, a plurality of light sources may be mounted thereon as necessary. - The
external housing 3006 may serve as a heat radiator. Theexternal housing 3006 may include aheat sink plate 3004 directly contacting thelight emitting module 3003 to thereby improve heat dissipation, andheat radiating fins 3005 surrounding a lateral surface of thelighting device 3000. Thecover 3007 may be disposed above thelight emitting module 3003 and may have a convex lens shape. Thedriver 3008 may be disposed inside theinternal housing 3009 and be connected to theexternal connector 3010 such as a socket structure to receive power from an external power source. In addition, thedriver 3008 may convert the received power into power appropriate for driving thelight source 3001 of thelight emitting module 3003 and supply the converted power thereto. For example, thedriver 3008 may be configured as an AC-DC converter, a rectifying circuit part, or the like. -
FIG. 17 illustrates an example of a headlamp to which the semiconductor light emitting device according to the exemplary embodiment of the present disclosure is applied. - With reference to
FIG. 17 , aheadlamp 4000 used in a vehicle or the like may include alight source 4001, areflector 4005 and alens cover 4004. Thelens cover 4004 may include ahollow guide part 4003 and alens 4002. Thelight source 4001 may include the aforementioned semiconductor light emitting device or the aforementioned package having the same. - The
headlamp 4000 may further include aheat radiator 4012 externally dissipating heat generated in thelight source 4001. Theheat radiator 4012 may include aheat sink 4010 and acooling fan 4011 in order to effectively dissipate heat. In addition, theheadlamp 4000 may further include ahousing 4009 allowing theheat radiator 4012 and thereflector 4005 to be fixed thereto and supporting them. Thehousing 4009 may include abody 4006 and acentral hole 4008 formed in one surface thereof, to which theheat radiator 4012 is coupled. - The
housing 4009 may include a forwardlyopen hole 4007 formed in another surface thereof integrally connected to one surface thereof and bent in a direction perpendicular thereto. Thereflector 4005 may be fixed to thehousing 4009, such that light generated in thelight source 4001 may be reflected by thereflector 4005, pass through the forwardlyopen hole 4007, and be emitted outwardly. - As set forth above, in the method of manufacturing the LED package according to exemplary embodiments of the present disclosure, the light transmissive substrate is used to effectively simplify the arrangement of electrodes, whereby manufacturing costs of the LED package may be reduced.
- While exemplary embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the spirit and scope of the present disclosure as defined by the appended claims.
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140020167A KR102075981B1 (en) | 2014-02-21 | 2014-02-21 | Method for manufacturing light emitting diode package |
KR10-2014-0020167 | 2014-02-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150243853A1 true US20150243853A1 (en) | 2015-08-27 |
US9123871B1 US9123871B1 (en) | 2015-09-01 |
Family
ID=53883060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/516,548 Active US9123871B1 (en) | 2014-02-21 | 2014-10-16 | Method of manufacturing light emitting diode package |
Country Status (2)
Country | Link |
---|---|
US (1) | US9123871B1 (en) |
KR (1) | KR102075981B1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160141446A1 (en) * | 2014-11-18 | 2016-05-19 | PlayNitride Inc. | Method for manufacturing light emitting device |
US20160141474A1 (en) * | 2014-11-18 | 2016-05-19 | PlayNitride Inc. | Light emitting device |
US20160276560A1 (en) * | 2015-03-16 | 2016-09-22 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
US20160322486A1 (en) * | 2015-04-30 | 2016-11-03 | Samsung Electronics Co., Ltd. | Flexible device including two-dimensional material and method of manufacturing the same |
FR3047941A1 (en) * | 2016-02-24 | 2017-08-25 | Valeo Vision | LIGHTING SYSTEM FOR THE CABIN OF A MOTOR VEHICLE |
US20180198037A1 (en) * | 2015-06-12 | 2018-07-12 | Osram Opto Semiconductors Gmbh | Method for Producing Optoelectronic Conversion Semiconductor Chips and Composite of Conversion Semiconductor Chips |
WO2018157973A1 (en) * | 2017-02-28 | 2018-09-07 | Valeo Vision | Lighting device for motor vehicle comprising a light source having a plurality of emitting elements |
US10090449B2 (en) | 2014-11-18 | 2018-10-02 | PlayNitride Inc. | Light emitting device |
US10193041B1 (en) * | 2017-10-20 | 2019-01-29 | Advanced Optoelectronic Technology, Inc | Light emitting diode and method for manufacturing the same |
US10217914B2 (en) | 2015-05-27 | 2019-02-26 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
WO2019132776A1 (en) * | 2017-12-27 | 2019-07-04 | Ams Sensors Singapore Pte. Ltd. | Optoelectronic modules having transparent substrates and method for manufacturing the same |
US20220115557A1 (en) * | 2020-10-13 | 2022-04-14 | Lumens Co., Ltd. | Chip scale light-emitting diode package and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102171024B1 (en) * | 2014-06-16 | 2020-10-29 | 삼성전자주식회사 | Method for manufacturing semiconductor light emitting device package |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1758169A3 (en) | 1996-08-27 | 2007-05-23 | Seiko Epson Corporation | Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same |
USRE38466E1 (en) | 1996-11-12 | 2004-03-16 | Seiko Epson Corporation | Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device |
US7208725B2 (en) | 1998-11-25 | 2007-04-24 | Rohm And Haas Electronic Materials Llc | Optoelectronic component with encapsulant |
JP3906654B2 (en) | 2000-07-18 | 2007-04-18 | ソニー株式会社 | Semiconductor light emitting device and semiconductor light emitting device |
US6818465B2 (en) | 2001-08-22 | 2004-11-16 | Sony Corporation | Nitride semiconductor element and production method for nitride semiconductor element |
JP2003218034A (en) | 2002-01-17 | 2003-07-31 | Sony Corp | Method for selective growth, semiconductor light- emitting element, and its manufacturing method |
JP3815335B2 (en) | 2002-01-18 | 2006-08-30 | ソニー株式会社 | Semiconductor light emitting device and manufacturing method thereof |
KR100499129B1 (en) | 2002-09-02 | 2005-07-04 | 삼성전기주식회사 | Light emitting laser diode and fabricatin method thereof |
US7002182B2 (en) | 2002-09-06 | 2006-02-21 | Sony Corporation | Semiconductor light emitting device integral type semiconductor light emitting unit image display unit and illuminating unit |
KR100714639B1 (en) | 2003-10-21 | 2007-05-07 | 삼성전기주식회사 | light emitting device |
KR100506740B1 (en) | 2003-12-23 | 2005-08-08 | 삼성전기주식회사 | Nitride semiconductor light emitting device and method of manufacturing the same |
KR100664985B1 (en) | 2004-10-26 | 2007-01-09 | 삼성전기주식회사 | Nitride based semiconductor device |
DE112005002889B4 (en) | 2004-12-14 | 2015-07-23 | Seoul Viosys Co., Ltd. | Light emitting device with a plurality of light emitting cells and assembly assembly thereof |
KR100665222B1 (en) | 2005-07-26 | 2007-01-09 | 삼성전기주식회사 | Led package with diffusing material and method of manufacturing the same |
KR100661614B1 (en) | 2005-10-07 | 2006-12-26 | 삼성전기주식회사 | Nitride semiconductor light emitting device and method of manufacturing the same |
KR100723247B1 (en) | 2006-01-10 | 2007-05-29 | 삼성전기주식회사 | Chip coating type light emitting diode package and fabrication method thereof |
KR100735325B1 (en) | 2006-04-17 | 2007-07-04 | 삼성전기주식회사 | Light emitting diode package and fabrication method thereof |
KR101115535B1 (en) | 2006-06-30 | 2012-03-08 | 서울옵토디바이스주식회사 | Light emitting diode with a metal reflection layer expanded and method for manufacturing the same |
KR100930171B1 (en) | 2006-12-05 | 2009-12-07 | 삼성전기주식회사 | White light emitting device and white light source module using same |
KR100865114B1 (en) | 2007-02-24 | 2008-10-23 | 비에스엔텍(주) | Vertical type light emitting device and the manufacturing method thereof |
KR100855065B1 (en) | 2007-04-24 | 2008-08-29 | 삼성전기주식회사 | Light emitting diode package |
KR100982980B1 (en) | 2007-05-15 | 2010-09-17 | 삼성엘이디 주식회사 | Plane light source and lcd backlight unit comprising the same |
KR101164026B1 (en) | 2007-07-12 | 2012-07-18 | 삼성전자주식회사 | Nitride semiconductor light emitting device and fabrication method thereof |
KR100891761B1 (en) | 2007-10-19 | 2009-04-07 | 삼성전기주식회사 | Semiconductor light emitting device, manufacturing method thereof and semiconductor light emitting device package using the same |
KR101332794B1 (en) | 2008-08-05 | 2013-11-25 | 삼성전자주식회사 | Light emitting device, light emitting system comprising the same, and fabricating method of the light emitting device and the light emitting system |
KR20100030470A (en) | 2008-09-10 | 2010-03-18 | 삼성전자주식회사 | Light emitting device and system providing white light with various color temperatures |
KR101530876B1 (en) | 2008-09-16 | 2015-06-23 | 삼성전자 주식회사 | Light emitting element with increased light emitting amount, light emitting device comprising the same, and fabricating method of the light emitting element and the light emitting device |
US8008683B2 (en) | 2008-10-22 | 2011-08-30 | Samsung Led Co., Ltd. | Semiconductor light emitting device |
DE102009032486A1 (en) | 2009-07-09 | 2011-01-13 | Osram Opto Semiconductors Gmbh | Optoelectronic component |
KR101020995B1 (en) | 2010-02-18 | 2011-03-09 | 엘지이노텍 주식회사 | Light emitting device, method of fabricating the light emitting device and light emitting device package |
KR101020974B1 (en) | 2010-03-17 | 2011-03-09 | 엘지이노텍 주식회사 | Light emitting device, method for manufacturing the light emitting device and light emitting device package |
US8901586B2 (en) | 2010-07-12 | 2014-12-02 | Samsung Electronics Co., Ltd. | Light emitting device and method of manufacturing the same |
KR101722623B1 (en) * | 2010-08-02 | 2017-04-03 | 엘지이노텍 주식회사 | Light-emitting element and Light-emitting element package |
KR20120029276A (en) | 2010-09-16 | 2012-03-26 | 삼성엘이디 주식회사 | Manufacturing method of nitride single crystal, semiconductor light emitting devide using the same, and manufacturing method of the same |
KR20120029275A (en) | 2010-09-16 | 2012-03-26 | 삼성엘이디 주식회사 | Nitride light emitting device |
JP4778107B1 (en) | 2010-10-19 | 2011-09-21 | 有限会社ナプラ | Light emitting device and manufacturing method thereof |
KR101707532B1 (en) | 2010-10-29 | 2017-02-16 | 엘지이노텍 주식회사 | Light Emitting Device |
KR20120052651A (en) | 2010-11-16 | 2012-05-24 | 삼성엘이디 주식회사 | Nano rod light emitting device |
KR20120055391A (en) | 2010-11-23 | 2012-05-31 | 삼성엘이디 주식회사 | Nano rod light emitting device |
KR20120055390A (en) | 2010-11-23 | 2012-05-31 | 삼성엘이디 주식회사 | Light emitting device and method of manufacturing the same |
KR101762175B1 (en) | 2010-11-29 | 2017-07-27 | 삼성전자 주식회사 | Nano rod light emitting device and method of manufacturing the same |
KR20120065610A (en) | 2010-12-13 | 2012-06-21 | 삼성엘이디 주식회사 | Semiconductor light emitting device |
KR101717669B1 (en) | 2010-12-13 | 2017-03-17 | 삼성전자주식회사 | Semiconductor light emitting device, manufacturing method of the same and light emitting apparataus |
KR20120065608A (en) | 2010-12-13 | 2012-06-21 | 삼성엘이디 주식회사 | Semiconductor light emitting device, manufacturing method of the same and light emitting apparataus |
KR20120065606A (en) | 2010-12-13 | 2012-06-21 | 삼성엘이디 주식회사 | Method of fabricating nitride semiconductor device using silicon wafer |
KR20120065607A (en) | 2010-12-13 | 2012-06-21 | 삼성엘이디 주식회사 | Semiconductor light emitting device and manufacturing method of the same |
KR20120065605A (en) | 2010-12-13 | 2012-06-21 | 삼성엘이디 주식회사 | Semiconductor light emitting device, manufacturing method of the same and light emitting apparataus |
KR20120065609A (en) | 2010-12-13 | 2012-06-21 | 삼성엘이디 주식회사 | Semiconductor light emitting device, manufacturing method of the same and light emitting apparataus |
KR101718067B1 (en) | 2010-12-15 | 2017-03-20 | 삼성전자 주식회사 | Light emitting device and method of manufacturing the same |
KR101109321B1 (en) | 2010-12-24 | 2012-01-31 | 서울반도체 주식회사 | Vertical light emitting device package and method of manufacturing thereof |
KR20120079670A (en) | 2011-01-05 | 2012-07-13 | 삼성엘이디 주식회사 | Fabrication method of nitride semiconductor light emitting device |
KR101784815B1 (en) | 2011-01-05 | 2017-10-12 | 삼성전자 주식회사 | Light emitting device and method for manufacturing the same |
KR101192816B1 (en) | 2011-01-07 | 2012-10-18 | 유버 주식회사 | Led package and its manufacturing method |
KR101761638B1 (en) | 2011-01-19 | 2017-07-27 | 삼성전자주식회사 | Nitride semiconductor light emitting device |
JP5887638B2 (en) | 2011-05-30 | 2016-03-16 | 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. | Light emitting diode |
KR101330176B1 (en) | 2011-08-24 | 2013-11-15 | 삼성전자주식회사 | Light emitting device and method for manufacturing the same |
KR101285164B1 (en) | 2011-10-14 | 2013-07-11 | 삼성전자주식회사 | Semiconductor light emitting device and method for manufacturing the same |
KR101258583B1 (en) | 2011-10-21 | 2013-05-02 | 삼성전자주식회사 | Nano lod light emitting device and method of manufacturing the same |
KR101873503B1 (en) | 2011-10-24 | 2018-07-02 | 서울바이오시스 주식회사 | Wafer level led package and method of fabricating the same |
KR101356701B1 (en) | 2012-03-22 | 2014-02-04 | 삼성전자주식회사 | Light emitting device and method of manufacturing the same |
KR101309112B1 (en) | 2012-03-22 | 2013-09-17 | 삼성전자주식회사 | Manufacturing method of light emitting device |
KR101901320B1 (en) | 2012-05-22 | 2018-09-21 | 삼성전자주식회사 | Light emitting device and method of manufacturing the same |
US20130313514A1 (en) | 2012-05-23 | 2013-11-28 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
KR20130131217A (en) | 2012-05-23 | 2013-12-03 | 삼성전자주식회사 | Semiconductor light emitting device |
KR20130139113A (en) | 2012-06-12 | 2013-12-20 | 삼성전자주식회사 | Semiconductor light emitting device and method for manufacturing the same |
KR101891777B1 (en) | 2012-06-25 | 2018-08-24 | 삼성전자주식회사 | Light emitting device having dielectric reflector and method of manufacturing the same |
KR102018615B1 (en) | 2013-01-18 | 2019-09-05 | 삼성전자주식회사 | Semiconductor light emitting device and manufacturing method of the same |
-
2014
- 2014-02-21 KR KR1020140020167A patent/KR102075981B1/en active IP Right Grant
- 2014-10-16 US US14/516,548 patent/US9123871B1/en active Active
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160141474A1 (en) * | 2014-11-18 | 2016-05-19 | PlayNitride Inc. | Light emitting device |
US20160141446A1 (en) * | 2014-11-18 | 2016-05-19 | PlayNitride Inc. | Method for manufacturing light emitting device |
US9793438B2 (en) * | 2014-11-18 | 2017-10-17 | PlayNitride Inc. | Light emitting device |
US10090449B2 (en) | 2014-11-18 | 2018-10-02 | PlayNitride Inc. | Light emitting device |
US20160276560A1 (en) * | 2015-03-16 | 2016-09-22 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
US9705039B2 (en) * | 2015-03-16 | 2017-07-11 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
US10505075B2 (en) | 2015-03-16 | 2019-12-10 | Alpad Corporation | Semiconductor light emitting device |
US20170250307A1 (en) * | 2015-03-16 | 2017-08-31 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
US9960320B2 (en) * | 2015-03-16 | 2018-05-01 | Alpad Corporation | Semiconductor light emitting device |
US10074737B2 (en) * | 2015-04-30 | 2018-09-11 | Samsung Electronics Co., Ltd. | Flexible device including two-dimensional material and method of manufacturing the same |
US20160322486A1 (en) * | 2015-04-30 | 2016-11-03 | Samsung Electronics Co., Ltd. | Flexible device including two-dimensional material and method of manufacturing the same |
US10217914B2 (en) | 2015-05-27 | 2019-02-26 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
US10424698B2 (en) * | 2015-06-12 | 2019-09-24 | Osram Opto Semiconductors Gmbh | Method for producing optoelectronic conversion semiconductor chips and composite of conversion semiconductor chips |
US20180198037A1 (en) * | 2015-06-12 | 2018-07-12 | Osram Opto Semiconductors Gmbh | Method for Producing Optoelectronic Conversion Semiconductor Chips and Composite of Conversion Semiconductor Chips |
US10399487B2 (en) | 2016-02-24 | 2019-09-03 | Valeo Vision | Lighting system for motor vehicle passenger compartment |
EP3210828A1 (en) * | 2016-02-24 | 2017-08-30 | Valeo Vision | Lighting system for the passenger compartment of a motor vehicle |
FR3047941A1 (en) * | 2016-02-24 | 2017-08-25 | Valeo Vision | LIGHTING SYSTEM FOR THE CABIN OF A MOTOR VEHICLE |
WO2018157973A1 (en) * | 2017-02-28 | 2018-09-07 | Valeo Vision | Lighting device for motor vehicle comprising a light source having a plurality of emitting elements |
US11060690B2 (en) | 2017-02-28 | 2021-07-13 | Valeo Vision | Luminous motor-vehicle device comprising a light source comprising a plurality of emitting elements |
US10193041B1 (en) * | 2017-10-20 | 2019-01-29 | Advanced Optoelectronic Technology, Inc | Light emitting diode and method for manufacturing the same |
WO2019132776A1 (en) * | 2017-12-27 | 2019-07-04 | Ams Sensors Singapore Pte. Ltd. | Optoelectronic modules having transparent substrates and method for manufacturing the same |
US11296270B2 (en) | 2017-12-27 | 2022-04-05 | Ams Sensors Singapore Pte. Ltd. | Optoelectronic modules having transparent substrates and method for manufacturing the same |
US20220115557A1 (en) * | 2020-10-13 | 2022-04-14 | Lumens Co., Ltd. | Chip scale light-emitting diode package and manufacturing method thereof |
US12015101B2 (en) * | 2020-10-13 | 2024-06-18 | Lumens Co., Ltd. | Chip scale light-emitting diode package and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102075981B1 (en) | 2020-02-11 |
US9123871B1 (en) | 2015-09-01 |
KR20150098834A (en) | 2015-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9123871B1 (en) | Method of manufacturing light emitting diode package | |
US10734559B2 (en) | Light-emitting diode (LED), LED package and apparatus including the same | |
US9705041B2 (en) | Light emitting device packages and methods of forming the same | |
US9450151B2 (en) | Semiconductor light-emitting device | |
KR102171024B1 (en) | Method for manufacturing semiconductor light emitting device package | |
KR102037865B1 (en) | Semiconductor light emitting device and method thereof | |
US9172019B2 (en) | Light emitting device package and method of manufacturing the same | |
US9548426B2 (en) | Semiconductor light-emitting device | |
US20190165226A1 (en) | Semiconductor element package | |
US20140160754A1 (en) | Light emitting module and surface lighting device having the same | |
KR102188500B1 (en) | Light emitting diode package and lighting device using the same | |
US20150348906A1 (en) | Electronic device package | |
KR20150042362A (en) | Light emitting diode package and method of manufacturing the same | |
US20160099387A1 (en) | Semiconductor light emitting device | |
US20160126432A1 (en) | Method of manufacturing semiconductor light emitting device package | |
US9391250B2 (en) | Electronic device package and package substrate for the same | |
KR20160000513A (en) | Semiconductor light emitting device package | |
US20150233551A1 (en) | Method of manufacturing light source module and method of manufacturing lighting device | |
US10121934B2 (en) | Method for manufacturing semiconductor light emitting device package | |
JP5845013B2 (en) | Light emitting device | |
US8173469B2 (en) | Fabrication method of light emitting device | |
US20240105757A1 (en) | Pixel device and display apparatus having the same | |
KR102065375B1 (en) | Light emitting device | |
KR102019497B1 (en) | Light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHA, NAM GOO;KWON, YONG MIN;KIM, KYOUNG JUN;SIGNING DATES FROM 20140707 TO 20140920;REEL/FRAME:033967/0329 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |