US20150205384A1 - External user interface for head worn computing - Google Patents
External user interface for head worn computing Download PDFInfo
- Publication number
- US20150205384A1 US20150205384A1 US14/185,968 US201414185968A US2015205384A1 US 20150205384 A1 US20150205384 A1 US 20150205384A1 US 201414185968 A US201414185968 A US 201414185968A US 2015205384 A1 US2015205384 A1 US 2015205384A1
- Authority
- US
- United States
- Prior art keywords
- user interface
- application
- pen
- hwc
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims description 75
- 230000033001 locomotion Effects 0.000 claims description 33
- 230000006854 communication Effects 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 23
- 230000003287 optical effect Effects 0.000 claims description 20
- 230000004913 activation Effects 0.000 claims description 6
- 230000006855 networking Effects 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 abstract description 19
- 238000005516 engineering process Methods 0.000 abstract description 9
- 238000003384 imaging method Methods 0.000 abstract description 5
- ORMNNUPLFAPCFD-DVLYDCSHSA-M phenethicillin potassium Chemical compound [K+].N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C([O-])=O)=O)C(=O)C(C)OC1=CC=CC=C1 ORMNNUPLFAPCFD-DVLYDCSHSA-M 0.000 description 64
- 230000008569 process Effects 0.000 description 38
- 230000008859 change Effects 0.000 description 31
- 239000011521 glass Substances 0.000 description 17
- 230000006870 function Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000007175 bidirectional communication Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000005336 safety glass Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/038—Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
- G06F3/0386—Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry for light pen
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G17/00—Structural details; Housings
- G04G17/08—Housings
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G17/00—Structural details; Housings
- G04G17/08—Housings
- G04G17/083—Watches distributed over several housings
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G21/00—Input or output devices integrated in time-pieces
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G21/00—Input or output devices integrated in time-pieces
- G04G21/02—Detectors of external physical values, e.g. temperature
- G04G21/025—Detectors of external physical values, e.g. temperature for measuring physiological data
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G21/00—Input or output devices integrated in time-pieces
- G04G21/08—Touch switches specially adapted for time-pieces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/163—Wearable computers, e.g. on a belt
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/002—Specific input/output arrangements not covered by G06F3/01 - G06F3/16
- G06F3/005—Input arrangements through a video camera
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0346—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03542—Light pens for emitting or receiving light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03545—Pens or stylus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/038—Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/0482—Interaction with lists of selectable items, e.g. menus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/04842—Selection of displayed objects or displayed text elements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/04847—Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
- G06F3/04883—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
- G06F3/1454—Digital output to display device ; Cooperation and interconnection of the display device with other functional units involving copying of the display data of a local workstation or window to a remote workstation or window so that an actual copy of the data is displayed simultaneously on two or more displays, e.g. teledisplay
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/12—Synchronisation between the display unit and other units, e.g. other display units, video-disc players
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0138—Head-up displays characterised by optical features comprising image capture systems, e.g. camera
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/014—Head-up displays characterised by optical features comprising information/image processing systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0179—Display position adjusting means not related to the information to be displayed
- G02B2027/0187—Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2354/00—Aspects of interface with display user
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2370/00—Aspects of data communication
- G09G2370/06—Consumer Electronics Control, i.e. control of another device by a display or vice versa
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2370/00—Aspects of data communication
- G09G2370/22—Detection of presence or absence of input display information or of connection or disconnection of a corresponding information source
Definitions
- This invention relates to head worn computing. More particularly, this invention relates to external user interfaces related to head worn computing.
- Embodiments relate to an external user interface that has a physical form intended to be hand held.
- the hand held user interface may be in the form similar to that of a writing instrument, such as a pen.
- the hand held user interface includes technologies relating to writing surface tip pressure monitoring, lens configurations setting a predetermined imaging distance, user interface software mode selection, quick software application launching, and other interface technologies.
- systems, methods and computer processes comprise monitoring forces exerted on a writing surface end of a hand-held device over a period of time; identifying a discrete force event during the period of time based on the monitored forces, the discrete force event including a sudden and substantial increase in force; and causing a user interface process to be executed in the event the discrete force event exceeds a predetermined threshold.
- the hand-held device includes an IMU to determine motion of the hand-held device.
- the motion may be used to in coordination with an image of a writing surface to determine a stroke pattern.
- the motion is used to predict a gesture, wherein the gesture is used to control an aspect of a graphical user interface.
- the motion may cause a selection of a user interface mode.
- the force is identified using a piezo-electric device.
- the hand-held device may be in communication with a HWC.
- the user interface process may include a selection of an item.
- the user interface process may produces a menu associated with a right-side click.
- the user interface process may produces a result associated with a double click.
- systems, methods and computer processes comprise monitoring forces exerted on a writing surface end of a hand-held device over a period of time; identifying a discrete force event during the period of time based on the monitored pressures, the discrete pressure event including a sudden and substantial increase in force; and causing a user interface process to be executed in the event the discrete force event substantially matches a predetermined force signature.
- systems, methods and computer processes comprise monitoring forces exerted on a writing surface end of a hand-held device over a period of time; identifying a change in a force trend during the period of time based on the monitored forces; and causing an instrument stroke parameter to be changed in the event the change in the force trend exceeds a predetermined threshold.
- the instrument stroke parameter may be a line width.
- the instrument stroke parameter may be a graphical user interface tip type.
- the event change may occur in the event that the force trend exceeds the predetermined threshold for a predetermined period of time.
- the event change may occur in the event that the force trend exceeds the predetermined threshold and remains within a predetermined range of the predetermined threshold for a period of time.
- systems, methods and computer processes comprise monitoring forces exerted on a writing surface end of a hand-held device over a period of time; identifying a change in a force trend during the period of time based on the monitored forces; and causing an instrument stroke parameter to be changed in the event the change in the force trend substantially matches a predetermined force trend signature.
- systems, methods and computer processes comprise an outer housing adapted to be hand-held in a writing position, wherein the outer housing includes a writing surface end; the writing surface end including a camera, a ball lens and a positioning system adapted to maintain a predetermined distance between the ball lens and a writing surface substantially independent of a writing angle of the outer housing, wherein the camera images the writing surface through the ball lens; an integrated IMU adapted to monitor the outer housing's motion and to predict, from the outer housing's motion, a movement of the ball lens across the writing surface; and a microprocessor adapted to intake data from the camera and the IMU and determine a written pattern.
- the outer housing is in the shape of a pen.
- the microprocessor communicates the data to a HWC.
- the microprocessor communicates the written pattern to a HWC.
- the microprocessor is further adapted to, following a determination that the outer housing is not in a writing position, capture outer housing motions as gesture control motions for a software application operating on a HWC.
- the outer housing further containing a positioning system force monitor and wherein the force monitor sends to the microprocessor data indicative of the force being applied on the positioning system.
- the microprocessor further determines a UI mode of operation for the user interface.
- the outer housing further comprises a quick launch interface, wherein the quick launch interface, when activated, launches a predetermined software application in a HWC.
- systems, methods and computer processes comprise an outer housing adapted to be hand-held in a writing position, wherein the outer housing includes a writing surface end; the writing surface end including a positioning system adapted to maintain a predetermined distance between an internal lens adapted to view a writing surface and a writing surface, substantially independent of a writing angle of the outer housing; and an IMU adapted to monitor motion of the outer housing, wherein the motion is interpreted as a gesture control for a software application operating on a HWC.
- systems, methods and computer processes comprise an outer housing adapted to be hand-held in a writing position, wherein the outer housing includes a writing surface end; the writing surface end including a positioning system adapted to maintain a predetermined distance between an internal lens adapted to view a writing surface and a writing surface, substantially independent of a writing angle of the outer housing; and a force monitoring system adapted to monitor a force applied at the writing surface end, wherein the monitored force applied will cause a graphical user interface operation change.
- systems, methods and computer processes comprise a hand-held housing including a surface-interaction end and an IMU, wherein the IMU monitors a position of the hand-held housing; and causing the user interface to change its interface mode based on a comparison of the position with a predetermined position threshold.
- the surface-interaction end includes an optical system adapted to capture images from a writing surface. In embodiments, the images are processed to determine a writing pattern. In embodiments, the surface-interaction end includes a force monitor adapted to monitor force applied to the surface-interaction end. In embodiments, the change in interface mode is from a mouse to a wand. In embodiments, the change in interface mode is from a pen to a wand. In embodiments, the predetermined position threshold is one of a plurality of predetermined position thresholds. In embodiments, the comparison predicts that the hand-held housing is in a writing position. In embodiments, the comparison predicts that the hand-held housing is in a wand position.
- systems, methods and computer processes comprise automatically collecting contextual information relating to a pen position; comparing the contextual information to a predetermined indication of user intent; and in response to a substantial match between the contextual information and the predetermined indication, changing a user interface function associated with the pen.
- systems, methods and computer processes comprise a hand-held housing including a surface-interaction end including and an optical system adapted to image a writing surface; and causing the optical pen to change its interface mode to a writing interface mode when the optical system detects a writing surface within close proximity to the surface-interaction end.
- systems, methods and computer processes comprise a hand-held housing including a user interface mode selection interface; and causing the system, upon activation of the user interface mode selection interface, to cause a HWC to launch a software application and to select a user interface mode for the optical pen that is adapted to interoperate with the software application.
- the systems, methods and computer processes may be embodied as an optical pen.
- the software application is a communication application and the selected user interface mode is a writing mode.
- the communication application is an email application.
- the communication application is a messaging application.
- the communication application is a texting application.
- the software application is a note application and the selected user interface mode is a writing mode.
- the software application is a social networking application and the selected user interface mode is a writing mode.
- the software application is a social networking application and the selected user interface mode is a wand mode.
- systems, methods and computer processes comprise receiving, at a hand-held user interface, an indication that a quick application launch button has been activated; launching a predetermined application that correlates with the launch button settings; and causing the hand-held user interface to activate a predetermined user interface mode in accordance with the predetermined application.
- systems, methods and computer processes comprise receiving, at a hand-held user interface, an indication that a quick application launch button has been activated; presenting, in a display of a head-worn computer, a plurality of applications; and causing, upon receipt of a selection command at the hand-held user interface, the head-worn computer to launch an application from the plurality of applications.
- the selection command is based on a force monitor at a writing surface end of the hand-held user interface.
- the hand-held user interface operates in a wand mode following the activation of the application launch button.
- systems, methods and computer processes comprise the hand-held user interface operates in a mouse mode following the activation of the application launch button, wherein the hand-held user interface images a writing surface to provide an indication of desired cursor movement.
- systems, methods and computer processes comprise a housing supporting a quick application launch interface and a capacitive touch interface, wherein both the quick application launch interface and the capacitive touch interface are in communication with a head-worn computer; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- the device further comprises an IMU to monitor movement of the device, and wherein the movement of the device is used to generate gesture control for a software application operating on the head-worn computer.
- the device further comprises a display, wherein the display provides information relating to a software application operating on the head-worn computer.
- the device further comprises a display, wherein the display provides information relating to the head-worn computer.
- the device further comprises a fitness monitor wherein fitness information is collected and communicated to the head-worn computer for display to the user.
- the capacitive touch interface is adapted to communicate control signals to a software application operating on the head-worn computer.
- the device further comprises a quick launch interface adapted to launch, when activated, a predetermined software application on the head-worn computer.
- systems, methods and computer processes comprise a housing supporting a quick application launch interface and a capacitive touch interface, wherein both the quick application launch interface and the capacitive touch interface are in communication with a head-worn computer; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband, the watchband clip being further adapted to rotate with respect to the watchband.
- systems, methods and computer processes comprise a strap supporting a quick application launch interface and a capacitive touch interface, wherein both the quick application launch interface and the capacitive touch interface are in communication with a head-worn computer; and the strap being mechanically configured to attach to a watch body and function as a watchband.
- systems, methods and computer processes comprise a housing supporting an IMU wherein motion measurements from the IMU are communicated to a head-worn computer and interpreted for gesture control of a GUI of the head-worn computer; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- the system further comprises a display, wherein the display provides information relating to a software application operating on the head-worn computer. In embodiments, the system further comprises a display, wherein the display provides information relating to the head-worn computer. In embodiments, the system further comprises a fitness monitor wherein fitness information is collected and communicated to the head-worn computer for display to the user. In embodiments, the system further comprise a capacitive touch interface, wherein the capacitive touch interface is adapted to communicate control signals to a software application operating on the head-worn computer. In embodiments, the system further comprises a quick launch interface adapted to launch, when activated, a predetermined software application on the head-worn computer.
- systems, methods and computer processes comprise a strap supporting an IMU wherein rotational measurements from the IMU are communicated to a head-worn computer and interpreted for gesture control of a graphical user interface operating on the head-worn computer; and the strap being mechanically configured to attach to a watch body and function as a watchband.
- systems, methods and computer processes comprise a housing supporting visual display wherein the visual display communicates with a head-worn computer and the visual display provides an indication of a current application executing on the head-worn computer; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- the system further comprises an IMU to monitor movement of the device, and wherein the movement of the device is used to generate gesture control for a software application operating on the head-worn computer.
- the system further comprises a fitness monitor wherein fitness information is collected and communicated to the head-worn computer for display to the user.
- the system further comprises a quick launch interface adapted to launch, when activated, a predetermined software application on the head-worn computer.
- the capacitive touch interface is adapted to communicate control signals to a software application operating on the head-worn computer.
- systems, methods and computer processes comprise a strap supporting visual display wherein the visual display communicates with a head-worn computer and the visual display provides an indication of a current application executing on the head-worn computer; and the strap being mechanically configured to attach to a watch body and function as a watchband.
- systems, methods and computer processes comprise a housing supporting a personal performance monitoring sensor the sensor adapted to communicate performance data to an HWC; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- the system further comprises a HWC user interface for controlling an aspect of a software application operating on the HWC.
- the system further comprises an IMU for monitoring motion of the device, wherein the motion is interpreted a gesture control command for controlling an aspect of a software application operating on a HWC.
- the system further comprises a display that displays information relating to a software application operating on a HWC.
- the system further comprises a display that displays information relating to the performance data.
- the system further comprises a quick launch interface adapted to launch a predetermined software application on the HWC.
- systems, methods and computer processes comprise a strap supporting a personal performance monitoring sensor the sensor adapted to communicate performance data to a head-worn computer; and the strap being mechanically configured to attach to a watch body and function as a watchband.
- systems, methods and computer processes comprise a housing supporting a personal performance monitoring sensor the sensor adapted to monitor a human performance condition of a wearer of the device; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- FIG. 1 illustrates a head worn computing system in accordance with the principles of the present invention.
- FIG. 2 illustrates an external user interface in accordance with the principles of the present invention.
- FIGS. 3 a to 3 c illustrate distance control systems in accordance with the principles of the present invention.
- FIGS. 4 a to 4 c illustrate force interpretation systems in accordance with the principles of the present invention.
- FIGS. 5 a to 5 c illustrate user interface mode selection systems in accordance with the principles of the present invention.
- FIG. 6 illustrates interaction systems in accordance with the principles of the present invention.
- FIG. 7 illustrates external user interfaces in accordance with the principles of the present invention.
- HWC head-worn computing
- the glasses may be a fully developed computing platform, such as including computer displays presented in each of the lenses of the glasses to the eyes of the user.
- the lenses and displays may be configured to allow a person wearing the glasses to see the environment through the lenses while also seeing, simultaneously, digital imagery, which forms an overlaid image that is perceived by the person as a digitally augmented image of the environment, or augmented reality (“AR”).
- AR augmented reality
- HWC involves more than just placing a computing system on a person's head.
- the system may need to be designed as a lightweight, compact and fully functional computer display, such as wherein the computer display includes a high resolution digital display that provides a high level of emersion comprised of the displayed digital content and the see-through view of the environmental surroundings.
- User interfaces and control systems suited to the HWC device may be required that are unlike those used for a more conventional computer such as a laptop.
- the glasses may be equipped with sensors to determine environmental conditions, geographic location, relative positioning to other points of interest, objects identified by imaging and movement by the user or other users in a connected group, and the like.
- the HWC may then change the mode of operation to match the conditions, location, positioning, movements, and the like, in a method generally referred to as a contextually aware HWC.
- the glasses also may need to be connected, wirelessly or otherwise, to other systems either locally or through a network. Controlling the glasses may be achieved through the use of an external device, automatically through contextually gathered information, through user gestures captured by the glasses sensors, and the like. Each technique may be further refined depending on the software application being used in the glasses.
- the glasses may further be used to control or coordinate with external devices that are associated with the glasses.
- the HWC system 100 comprises a HWC 102 , which in this instance is configured as glasses to be worn on the head with sensors such that the HWC 102 is aware of the objects and conditions in the environment 114 .
- the HWC 102 also receives and interprets control inputs such as gestures and movements 116 .
- the HWC 102 may communicate with external user interfaces 104 .
- the external user interfaces 104 may provide a physical user interface to take control instructions from a user of the HWC 102 and the external user interfaces 104 and the HWC 102 may communicate bi-directionally to affect the user's command and provide feedback to the external device 108 .
- the HWC 102 may also communicate bi-directionally with externally controlled or coordinated local devices 108 .
- an external user interface 104 may be used in connection with the HWC 102 to control an externally controlled or coordinated local device 108 .
- the externally controlled or coordinated local device 108 may provide feedback to the HWC 102 and a customized GUI may be presented in the HWC 102 based on the type of device or specifically identified device 108 .
- the HWC 102 may also interact with remote devices and information sources 112 through a network connection 110 .
- the external user interface 104 may be used in connection with the HWC 102 to control or otherwise interact with any of the remote devices 108 and information sources 112 in a similar way as when the external user interfaces 104 are used to control or otherwise interact with the externally controlled or coordinated local devices 108 .
- HWC 102 may interpret gestures 116 (e.g captured from forward, downward, upward, rearward facing sensors such as camera(s), range finders, IR sensors, etc.) or environmental conditions sensed in the environment 114 to control either local or remote devices 108 or 112 .
- the HWC 102 is a computing platform intended to be worn on a person's head.
- the HWC 102 may take many different forms to fit many different functional requirements.
- the HWC 102 will be designed in the form of conventional glasses.
- the glasses may or may not have active computer graphics displays.
- the displays may be configured as see-through displays such that the digital imagery can be overlaid with respect to the user's view of the environment 114 .
- see-through optical designs including ones that have a reflective display (e.g. LCoS, DLP), emissive displays (e.g. OLED, LED), hologram, TIR waveguides, and the like.
- the optical configuration may be monocular or binocular. It may also include vision corrective optical components.
- the optics may be packaged as contact lenses.
- the HWC 102 may be in the form of a helmet with a see-through shield, sunglasses, safety glasses, goggles, a mask, fire helmet with see-through shield, police helmet with see through shield, military helmet with see-through shield, utility form customized to a certain work task (e.g. inventory control, logistics, repair, maintenance, etc.), and the like.
- the HWC 102 may also have a number of integrated computing facilities, such as an integrated processor, integrated power management, communication structures (e.g. cell net, WiFi, Bluetooth, local area connections, mesh connections, remote connections (e.g. client server, etc.)), and the like.
- the HWC 102 may also have a number of positional awareness sensors, such as GPS, electronic compass, altimeter, tilt sensor, IMU, and the like. It may also have other sensors such as a camera, rangefinder, hyper-spectral camera, Geiger counter, microphone, spectral illumination detector, temperature sensor, chemical sensor, biologic sensor, moisture sensor, ultrasonic sensor, and the like.
- the HWC 102 may also have integrated control technologies.
- the integrated control technologies may be contextual based control, passive control, active control, user control, and the like.
- the HWC 102 may have an integrated sensor (e.g. camera) that captures user hand or body gestures 116 such that the integrated processing system can interpret the gestures and generate control commands for the HWC 102 .
- the HWC 102 may have sensors that detect movement (e.g. a nod, head shake, and the like) including accelerometers, gyros and other inertial measurements, where the integrated processor may interpret the movement and generate a control command in response.
- the HWC 102 may also automatically control itself based on measured or perceived environmental conditions.
- the HWC 102 may increase the brightness or contrast of the displayed image.
- the integrated control technologies may be mounted on the HWC 102 such that a user can interact with it directly.
- the HWC 102 may have a button(s), touch capacitive interface, and the like.
- the HWC 102 may be in communication with external user interfaces 104 .
- the external user interfaces may come in many different forms.
- a cell phone screen may be adapted to take user input for control of an aspect of the HWC 102 .
- the external user interface may be a dedicated UI, such as a keyboard, touch surface, button(s), joy stick, and the like.
- the external controller may be integrated into another device such as a ring, watch, bike, car, and the like.
- the external user interface 104 may include sensors (e.g. IMU, accelerometers, compass, altimeter, and the like) to provide additional input for controlling the HWD 104 .
- sensors e.g. IMU, accelerometers, compass, altimeter, and the like
- the HWC 102 may control or coordinate with other local devices 108 .
- the external devices 108 may be an audio device, visual device, vehicle, cell phone, computer, and the like.
- the local external device 108 may be another HWC 102 , where information may then be exchanged between the separate HWCs 108 .
- the HWC 102 may control or coordinate with remote devices 112 , such as the HWC 102 communicating with the remote devices 112 through a network 110 .
- the form of the remote device 112 may have many forms. Included in these forms is another HWC 102 .
- each HWC 102 may communicate its GPS position such that all the HWCs 102 know where all of HWC 102 are located.
- the pen 200 is a specially designed external user interface 104 and can operate as a user interface, such as to many different styles of HWC 102 .
- the pen 200 generally follows the form of a conventional pen, which is a familiar user handled device and creates an intuitive physical interface for many of the operations to be carried out in the HWC system 100 .
- the pen 200 may be one of several user interfaces 104 used in connection with controlling operations within the HWC system 100 .
- the HWC 102 may watch for and interpret hand gestures 116 as control signals, where the pen 200 may also be used as a user interface with the same HWC 102 .
- a remote keyboard may be used as an external user interface 104 in concert with the pen 200 .
- the combination of user interfaces or the use of just one control system generally depends on the operation(s) being executed in the HWC's system 100 .
- the pen 200 may follow the general form of a conventional pen, it contains numerous technologies that enable it to function as an external user interface 104 .
- FIG. 2 illustrate technologies comprised in the pen 200 .
- the pen 200 may include a camera 208 , which is arranged to view through lens 202 . The camera may then be focused, such as through lens 202 , to image a surface upon which a user is writing or making other movements to interact with the HWC 102 .
- the pen 200 will also have an ink, graphite, or other system such that what is being written can be seen on the writing surface.
- the pen 200 may include a sensor, such as an IMU 212 .
- the IMU could be included in the pen 200 in its separate parts (e.g. gyro, accelerometer, etc.) or an IMU could be included as a single unit.
- the IMU 212 is used to measure and predict the motion of the pen 200 .
- the integrated microprocessor 210 would take the IMU information and camera information as inputs and process the information to form a prediction of the pen tip movement.
- the pen 200 may also include a pressure monitoring system 204 , such as to measure the pressure exerted on the lens 202 .
- the pressure measurement can be used to predict the user's intention for changing the weight of a line, type of a line, type of brush, click, double click, and the like.
- the pressure sensor may be constructed using any force or pressure measurement sensor located behind the lens 202 , including for example, a resistive sensor, a current sensor, a capacitive sensor, a voltage sensor such as a piezoelectric sensor, and the like.
- the pen 200 may also include a communications module 218 , such as for bi-directional communication with the HWC 102 .
- the communications module 218 may be a short distance communication module (e.g. Bluetooth).
- the communications module 218 may be security matched to the HWC 102 .
- the communications module 218 may be arranged to communicate data and commands to and from the microprocessor 210 of the pen 200 .
- the microprocessor 210 may be programmed to interpret data generated from the camera 208 , IMU 212 , and pressure sensor 204 , and the like, and then pass a command onto the HWC 102 through the communications module 218 , for example.
- the data collected from any of the input sources e.g.
- the microprocessor may be communicated by the communication module 218 to the HWC 102 , and the HWC 102 may perform data processing and prediction of the user's intention when using the pen 200 .
- the data may be further passed on through a network 110 to a remote device 112 , such as a server, for the data processing and prediction.
- the commands may then be communicated back to the HWC 102 for execution (e.g. display writing in the glasses display, make a selection within the UI of the glasses display, control a remote external device 112 , control a local external device 108 ), and the like.
- the pen may also include memory 214 for long or short term uses.
- the pen 200 may also include a number of physical user interfaces, such as quick launch buttons 222 , a touch sensor 220 , and the like.
- the quick launch buttons 222 may be adapted to provide the user with a fast way of jumping to a software application in the HWC system 100 .
- the user may be a frequent user of communication software packages (e.g. email, text, Twitter, Instagram, Facebook, Google+, and the like), and the user may program a quick launch button 222 to command the HWC 102 to launch an application.
- the pen 200 may be provided with several quick launch buttons 222 , which may be user programmable or factory programmable.
- the quick launch button 222 may be programmed to perform an operation.
- buttons may be programmed to clear the digital display of the HWC 102 . This would create a fast way for the user to clear the screens on the HWC 102 for any reason, such as for example to better view the environment.
- the quick launch button functionality will be discussed in further detail below.
- the touch sensor 220 may be used to take gesture style input from the user. For example, the user may be able to take a single finger and run it across the touch sensor 220 to affect a page scroll.
- the pen 200 may also include a laser pointer 224 .
- the laser pointer 224 may be coordinated with the IMU 212 to coordinate gestures and laser pointing. For example, a user may use the laser 224 in a presentation to help with guiding the audience with the interpretation of graphics and the IMU 212 may, either simultaneously or when the laser 224 is off, interpret the user's gestures as commands or data input.
- FIGS. 3A-C illustrate several embodiments of lens and camera arrangements 300 for the pen 200 .
- One aspect relates to maintaining a constant distance between the camera and the writing surface to enable the writing surface to be kept in focus for better tracking of movements of the pen 200 over the writing surface.
- Another aspect relates to maintaining an angled surface following the circumference of the writing tip of the pen 200 such that the pen 200 can be rolled or partially rolled in the user's hand to create the feel and freedom of a conventional writing instrument.
- FIG. 3A illustrates an embodiment of the writing lens end of the pen 200 .
- the configuration includes a ball lens 304 , a camera or image capture surface 302 , and a domed cover lens 308 .
- the camera views the writing surface through the ball lens 304 and dome cover lens 308 .
- the ball lens 304 causes the camera to focus such that the camera views the writing surface when the pen 200 is held in the hand in a natural writing position, such as with the pen 200 in contact with a writing surface.
- the ball lens 304 should be separated from the writing surface to obtain the highest resolution of the writing surface at the camera 302 .
- the ball lens 304 is separated by approximately 1 to 3 mm.
- the domed cover lens 308 provides a surface that can keep the ball lens 304 separated from the writing surface at a constant distance, such as substantially independent of the angle used to write on the writing surface. For instance, in embodiments the field of view of the camera in this arrangement would be approximately 60 degrees.
- the domed cover lens, or other lens 308 used to physically interact with the writing surface will be transparent or transmissive within the active bandwidth of the camera 302 .
- the domed cover lens 308 may be spherical or other shape and comprised of glass, plastic, sapphire, diamond, and the like. In other embodiments where low resolution imaging of the surface is acceptable.
- the pen 200 can omit the domed cover lens 308 and the ball lens 304 can be in direct contact with the surface.
- FIG. 3B illustrates another structure where the construction is somewhat similar to that described in connection with FIG. 3A ; however this embodiment does not use a dome cover lens 308 , but instead uses a spacer 310 to maintain a predictable distance between the ball lens 304 and the writing surface, wherein the spacer may be spherical, cylindrical, tubular or other shape that provides spacing while allowing for an image to be obtained by the camera 302 through the lens 304 .
- the spacer 310 is transparent.
- the spacer 310 is shown as spherical, other shapes such a an oval, doughnut shape, half sphere, cone, cylinder or other form may be used.
- FIG. 3C illustrates yet another embodiment, where the structure includes a post 314 , such as running through the center of the lensed end of the pen 200 .
- the post 314 may be an ink deposition system (e.g. ink cartridge), graphite deposition system (e.g. graphite holder), or a dummy post whose purpose is mainly only that of alignment.
- the selection of the post type is dependent on the pen's use. For instance, in the event the user wants to use the pen 200 as a conventional ink depositing pen as well as a fully functional external user interface 104 , the ink system post would be the best selection. If there is no need for the ‘writing’ to be visible on the writing surface, the selection would be the dummy post.
- the pen 200 includes camera(s) 302 and an associated lens 312 , where the camera 302 and lens 312 are positioned to capture the writing surface without substantial interference from the post 314 .
- the pen 200 may include multiple cameras 302 and lenses 312 such that more or all of the circumference of the tip 314 can be used as an input system.
- the pen 200 includes a contoured grip that keeps the pen aligned in the user's hand so that the camera 302 and lens 312 remains pointed at the surface.
- the force measurement may be used in a number of ways.
- the force measurement may be used as a discrete value, or discontinuous event tracking, and compared against a threshold in a process to determine a user's intent.
- the user may want the force interpreted as a ‘click’ in the selection of an object, for instance.
- the user may intend multiple force exertions interpreted as multiple clicks. There may be times when the user holds the pen 200 in a certain position or holds a certain portion of the pen 200 (e.g. a button or touch pad) while clicking to affect a certain operation (e.g. a ‘right click’).
- the force measurement may be used to track force and force trends.
- the force trends may be tracked and compared to threshold limits, for example. There may be one such threshold limit, multiple limits, groups of related limits, and the like.
- threshold limits There may be one such threshold limit, multiple limits, groups of related limits, and the like.
- the microprocessor 210 may interpret the force trend as an indication that the user desires to maintain the current writing style, writing tip type, line weight, brush type, and the like.
- the microprocessor may interpret the action as an indication that the user wants to change the current writing style, writing tip type, line weight, brush type, and the like.
- a change in the current writing style, writing tip type, line weight, brush type, and the like. may be executed.
- the change may be noted to the user (e.g. in a display of the HWC 102 ), and the user may be presented with an opportunity to accept the change.
- FIG. 4A illustrates an embodiment of a force sensing surface tip 400 of a pen 200 .
- the force sensing surface tip 400 comprises a surface connection tip 402 (e.g. a lens as described herein elsewhere) in connection with a force or pressure monitoring system 204 .
- a force monitoring system 204 measures the force or pressure the user applies to the writing surface and the force monitoring system communicates data to the microprocessor 210 for processing.
- the microprocessor 210 receives force data from the force monitoring system 204 and processes the data to make predictions of the user's intent in applying the particular force that is currently being applied.
- the processing may be provided at a location other than on the pen (e.g.
- the microprocessor 210 may be programmed with force threshold(s), force signature(s), force signature library and/or other characteristics intended to guide an inference program in determining the user's intentions based on the measured force or pressure.
- the microprocessor 210 may be further programmed to make inferences from the force measurements as to whether the user has attempted to initiate a discrete action (e.g. a user interface selection ‘click’) or is performing a constant action (e.g. writing within a particular writing style).
- the inferencing process is important as it causes the pen 200 to act as an intuitive external user interface 104 .
- FIG. 4B illustrates a force 408 versus time 410 trend chart with a single threshold 418 .
- the threshold 418 may be set at a level that indicates a discrete force exertion indicative of a user's desire to cause an action (e.g. select an object in a GUI).
- Event 412 may be interpreted as a click or selection command because the force quickly increased from below the threshold 418 to above the threshold 418 .
- the event 414 may be interpreted as a double click because the force quickly increased above the threshold 418 , decreased below the threshold 418 and then essentially repeated quickly.
- the user may also cause the force to go above the threshold 418 and hold for a period indicating that the user is intending to select an object in the GUI (e.g. a GUI presented in the display of the HWC 102 ) and ‘hold’ for a further operation (e.g. moving the object).
- a threshold value may be used to assist in the interpretation of the user's intention
- a signature force event trend may also be used.
- the threshold and signature may be used in combination or either method may be used alone.
- a single-click signature may be represented by a certain force trend signature or set of signatures.
- the single-click signature(s) may require that the trend meet a criteria of a rise time between x any y values, a hold time of between a and b values and a fall time of between c and d values, for example.
- Signatures may be stored for a variety of functions such as click, double click, right click, hold, move, etc.
- the microprocessor 210 may compare the real-time force or pressure tracking against the signatures from a signature library to make a decision and issue a command to the software application executing in the GUI.
- FIG. 4C illustrates a force 408 versus time 410 trend chart with multiple thresholds 418 .
- the force trend is plotted on the chart with several pen force or pressure events.
- the two thresholds 418 of FIG. 4C create three zones of force: a lower, middle and higher range.
- the beginning of the trend indicates that the user is placing a lower zone amount of force. This may mean that the user is writing with a given line weight and does not intend to change the weight, the user is writing.
- the trend shows a significant increase 420 in force into the middle force range. This force change appears, from the trend to have been sudden and thereafter it is sustained.
- the microprocessor 210 may interpret this as an intentional change and as a result change the operation in accordance with preset rules (e.g. change line width, increase line weight, etc.).
- preset rules e.g. change line width, increase line weight, etc.
- the trend then continues with a second apparently intentional event 420 into the higher-force range.
- the force dips below the upper threshold 418 . This may indicate an unintentional force change and the microprocessor may detect the change in range however not affect a change in the operations being coordinated by the pen 200 .
- the trend analysis may be done with thresholds and/or signatures.
- instrument stroke parameter changes may be referred to as a change in line type, line weight, tip type, brush type, brush width, brush pressure, color, and other forms of writing, coloring, painting, and the like.
- the pen 200 may have several operating modes. For instance, the pen 200 may have a writing mode where the user interface(s) of the pen 200 (e.g. the writing surface end, quick launch buttons 222 , touch sensor 220 , motion based gesture, and the like) is optimized or selected for tasks associated with writing. As another example, the pen 200 may have a wand mode where the user interface(s) of the pen is optimized or selected for tasks associated with software or device control (e.g. the HWC 102 , external local device, remote device 112 , and the like).
- software or device control e.g. the HWC 102 , external local device, remote device 112 , and the like.
- the pen 200 may have a presentation mode where the user interface(s) is optimized or selected to assist a user with giving a presentation (e.g. pointing with the laser pointer 224 while using the button(s) 222 and/or gestures to control the presentation or applications relating to the presentation).
- the pen may, for example, have a mode that is optimized or selected for a particular device that a user is attempting to control.
- the pen 200 may have a number of other modes and an aspect of the present invention relates to selecting such modes.
- FIG. 5A illustrates an automatic user interface(s) mode selection based on contextual information.
- the microprocessor 210 may be programmed with IMU thresholds 514 and 512 .
- the thresholds 514 and 512 may be used as indications of upper and lower bounds of an angle 504 and 502 of the pen 200 for certain expected positions during certain predicted modes.
- the microprocessor 210 may then institute a writing mode for the pen's user interfaces. Similarly, if the microprocessor 210 determines (e.g.
- the microprocessor may institute a wand mode for the pen's user interface.
- a wand mode for the pen's user interface Both of these examples may be referred to as context based user interface mode selection as the mode selection is based on contextual information (e.g. position) collected automatically and then used through an automatic evaluation process to automatically select the pen's user interface(s) mode.
- the microprocessor 210 may monitor the contextual trend (e.g. the angle of the pen over time) in an effort to decide whether to stay in a mode or change modes. For example, through signatures, thresholds, trend analysis, and the like, the microprocessor may determine that a change is an unintentional change and therefore no user interface mode change is desired.
- the contextual trend e.g. the angle of the pen over time
- the microprocessor may determine that a change is an unintentional change and therefore no user interface mode change is desired.
- FIG. 5B illustrates an automatic user interface(s) mode selection based on contextual information.
- the pen 200 is monitoring (e.g. through its microprocessor) whether or not the camera at the writing surface end 208 is imaging a writing surface in close proximity to the writing surface end of the pen 200 . If the pen 200 determines that a writing surface is within a predetermined relatively short distance, the pen 200 may decide that a writing surface is present 502 and the pen may go into a writing mode user inteface(s) mode. In the event that the pen 200 does not detect a relatively close writing surface 504 , the pen may predict that the pen is not currently being used to as a writing instrument and the pen may go into a non-writing user interface(s) mode.
- FIG. 5C illustrates a manual user interface(s) mode selection.
- the user interface(s) mode may be selected based on a twist of a section 508 of the pen 200 housing, clicking an end button 510 , pressing a quick launch button 222 , interacting with touch sensor 220 , detecting a predetermined action at the pressure monitoring system (e.g. a click), detecting a gesture (e.g. detected by the IMU), etc.
- the manual mode selection may involve selecting an item in a GUI associated with the pen 200 (e.g. an image presented in the display of HWC 102 ).
- a confirmation selection may be presented to the user in the event a mode is going to change.
- the presentation may be physical (e.g. a vibration in the pen 200 ), through a GUI, through a light indicator, etc.
- FIG. 6 illustrates a couple pen use-scenarios 600 and 601 .
- FIG. 6 illustrates a couple pen use-scenarios 600 and 601 .
- the use-scenarios should be considered illustrative and non-limiting.
- Use scenario 600 is a writing scenario where the pen 200 is used as a writing instrument.
- quick launch button 122 A is pressed to launch a note application 610 in the GUI 608 of the HWC 102 display 604 .
- the HWC 102 launches the note program 610 and puts the pen into a writing mode.
- the user uses the pen 200 to scribe symbols 602 on a writing surface, the pen records the scribing and transmits the scribing to the HWC 102 where symbols representing the scribing are displayed 612 within the note application 610 .
- Use scenario 601 is a gesture scenario where the pen 200 is used as a gesture capture and command device.
- the quick launch button 122 B is activated and the pen 200 activates a wand mode such that an application launched on the HWC 102 can be controlled.
- the user sees an application chooser 618 in the display(s) of the HWC 102 where different software applications can be chosen by the user.
- the user gestures e.g. swipes, spins, turns, etc.
- the user may gesture or click or otherwise interact with the pen 200 such that the identified application is selected and launched.
- the wand mode may be used to scroll, rotate, change applications, select items, initiate processes, and the like, for example.
- the quick launch button 122 A may be activated and the HWC 102 may launch an application chooser presenting to the user a set of applications.
- the quick launch button may launch a chooser to show all communication programs (e.g. SMS, Twitter, Instagram, Facebook, email, etc.) available for selection such that the user can select the program the user wants and then go into a writing mode.
- the launcher may bring up selections for various other groups that are related or categorized as generally being selected at a given time (e.g. Microsoft Office products, communication products, productivity products, note products, organizational products, and the like)
- FIG. 7 illustrates yet another embodiment of the present invention.
- FIG. 700 illustrates a watchband clip on controller 700 .
- the watchband clip on controller may be a controller used to control the HWC 102 or devices in the HWC system 100 .
- the watchband clip on controller 700 has a fastener 718 (e.g. rotatable clip) that is mechanically adapted to attach to a watchband, as illustrated at 704 .
- the watchband controller 700 may have quick launch interfaces 708 (e.g. to launch applications and choosers as described herein), a touch pad 714 (e.g. to be used as a touch style mouse for GUI control in a HWC 102 display) and a display 712 .
- the clip 718 may be adapted to fit a wide range of watchbands so it can be used in connection with a watch that is independently selected for its function.
- the clip in embodiments, is rotatable such that a user can position it in a desirable manner.
- the clip may be a flexible strap.
- the flexible strap may be adapted to be stretched to attach to a hand, wrist, finger, device, weapon, and the like.
- the watchband controller may be configured as a removable and replacable watchband.
- the controller may be incorporated into a band with a certain width, segment spacing's, etc. such that the watchband, with its incorporated controller, can be attached to a watch body.
- the attachment in embodiments, may be mechanically adapted to attach with a pin upon which the watchband rotates.
- the watchband controller may be electrically connected to the watch and/or watch body such that the watch, watch body and/or the watchband controller can communicate data between them.
- the watchband controller may have 3-axis motion monitoring (e.g. through an IMU, accelerometers, magnetometers, gyroscopes, etc.) to capture user motion. The user motion may then be interpreted for gesture control.
- 3-axis motion monitoring e.g. through an IMU, accelerometers, magnetometers, gyroscopes, etc.
- the watchband controller may comprise fitness sensors and a fitness computer.
- the sensors may track heart rate, calories burned, strides, distance covered, and the like. The data may then be compared against performance goals and/or standards for user feedback.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Computer Hardware Design (AREA)
- Multimedia (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
- This application claims the benefit of priority to and is a continuation of the following U.S. patent applications, each of which is hereby incorporated by reference in its entirety:
- U.S. non-provisional application Ser. No. 14/158,198, entitled External User Interface for Head Worn Computing, filed Jan. 17, 2014.
- 1. Field of the Invention
- This invention relates to head worn computing. More particularly, this invention relates to external user interfaces related to head worn computing.
- 2. Description of Related Art
- Wearable computing systems have been developed and are beginning to be commercialized. Many problems persist in the wearable computing field that need to be resolved to make them meet the demands of the market.
- This Summary introduces certain concepts of head worn computing, and the concepts are further described below in the Detailed Description and/or shown in the Figures. This Summary should not be considered to describe essential features of the claimed subject matter, nor used to determine or limit the scope of the claimed subject matter.
- Aspects of the present invention relate to external user interfaces used in connection with head worn computers (HWC). Embodiments relate to an external user interface that has a physical form intended to be hand held. The hand held user interface may be in the form similar to that of a writing instrument, such as a pen. In embodiments, the hand held user interface includes technologies relating to writing surface tip pressure monitoring, lens configurations setting a predetermined imaging distance, user interface software mode selection, quick software application launching, and other interface technologies.
- In embodiments, systems, methods and computer processes comprise monitoring forces exerted on a writing surface end of a hand-held device over a period of time; identifying a discrete force event during the period of time based on the monitored forces, the discrete force event including a sudden and substantial increase in force; and causing a user interface process to be executed in the event the discrete force event exceeds a predetermined threshold.
- In embodiments, the hand-held device includes an IMU to determine motion of the hand-held device. The motion may be used to in coordination with an image of a writing surface to determine a stroke pattern. The motion is used to predict a gesture, wherein the gesture is used to control an aspect of a graphical user interface. The motion may cause a selection of a user interface mode.
- In embodiments, the force is identified using a piezo-electric device. The hand-held device may be in communication with a HWC. The user interface process may include a selection of an item. The user interface process may produces a menu associated with a right-side click. The user interface process may produces a result associated with a double click.
- In embodiments, systems, methods and computer processes comprise monitoring forces exerted on a writing surface end of a hand-held device over a period of time; identifying a discrete force event during the period of time based on the monitored pressures, the discrete pressure event including a sudden and substantial increase in force; and causing a user interface process to be executed in the event the discrete force event substantially matches a predetermined force signature.
- In embodiments, systems, methods and computer processes comprise monitoring forces exerted on a writing surface end of a hand-held device over a period of time; identifying a change in a force trend during the period of time based on the monitored forces; and causing an instrument stroke parameter to be changed in the event the change in the force trend exceeds a predetermined threshold.
- The instrument stroke parameter may be a line width. The instrument stroke parameter may be a graphical user interface tip type. The event change may occur in the event that the force trend exceeds the predetermined threshold for a predetermined period of time. The event change may occur in the event that the force trend exceeds the predetermined threshold and remains within a predetermined range of the predetermined threshold for a period of time.
- In embodiments, systems, methods and computer processes comprise monitoring forces exerted on a writing surface end of a hand-held device over a period of time; identifying a change in a force trend during the period of time based on the monitored forces; and causing an instrument stroke parameter to be changed in the event the change in the force trend substantially matches a predetermined force trend signature.
- In embodiments, systems, methods and computer processes comprise an outer housing adapted to be hand-held in a writing position, wherein the outer housing includes a writing surface end; the writing surface end including a camera, a ball lens and a positioning system adapted to maintain a predetermined distance between the ball lens and a writing surface substantially independent of a writing angle of the outer housing, wherein the camera images the writing surface through the ball lens; an integrated IMU adapted to monitor the outer housing's motion and to predict, from the outer housing's motion, a movement of the ball lens across the writing surface; and a microprocessor adapted to intake data from the camera and the IMU and determine a written pattern.
- In embodiments the outer housing is in the shape of a pen. In embodiments, the microprocessor communicates the data to a HWC. In embodiments, the microprocessor communicates the written pattern to a HWC. In embodiments, the microprocessor is further adapted to, following a determination that the outer housing is not in a writing position, capture outer housing motions as gesture control motions for a software application operating on a HWC. In embodiments, the outer housing further containing a positioning system force monitor and wherein the force monitor sends to the microprocessor data indicative of the force being applied on the positioning system. In embodiments, the microprocessor further determines a UI mode of operation for the user interface. In embodiments, the outer housing further comprises a quick launch interface, wherein the quick launch interface, when activated, launches a predetermined software application in a HWC.
- In embodiments, systems, methods and computer processes comprise an outer housing adapted to be hand-held in a writing position, wherein the outer housing includes a writing surface end; the writing surface end including a positioning system adapted to maintain a predetermined distance between an internal lens adapted to view a writing surface and a writing surface, substantially independent of a writing angle of the outer housing; and an IMU adapted to monitor motion of the outer housing, wherein the motion is interpreted as a gesture control for a software application operating on a HWC.
- In embodiments, systems, methods and computer processes comprise an outer housing adapted to be hand-held in a writing position, wherein the outer housing includes a writing surface end; the writing surface end including a positioning system adapted to maintain a predetermined distance between an internal lens adapted to view a writing surface and a writing surface, substantially independent of a writing angle of the outer housing; and a force monitoring system adapted to monitor a force applied at the writing surface end, wherein the monitored force applied will cause a graphical user interface operation change.
- In embodiments, systems, methods and computer processes comprise a hand-held housing including a surface-interaction end and an IMU, wherein the IMU monitors a position of the hand-held housing; and causing the user interface to change its interface mode based on a comparison of the position with a predetermined position threshold.
- In embodiments, the surface-interaction end includes an optical system adapted to capture images from a writing surface. In embodiments, the images are processed to determine a writing pattern. In embodiments, the surface-interaction end includes a force monitor adapted to monitor force applied to the surface-interaction end. In embodiments, the change in interface mode is from a mouse to a wand. In embodiments, the change in interface mode is from a pen to a wand. In embodiments, the predetermined position threshold is one of a plurality of predetermined position thresholds. In embodiments, the comparison predicts that the hand-held housing is in a writing position. In embodiments, the comparison predicts that the hand-held housing is in a wand position.
- In embodiments, systems, methods and computer processes comprise automatically collecting contextual information relating to a pen position; comparing the contextual information to a predetermined indication of user intent; and in response to a substantial match between the contextual information and the predetermined indication, changing a user interface function associated with the pen.
- In embodiments, systems, methods and computer processes comprise a hand-held housing including a surface-interaction end including and an optical system adapted to image a writing surface; and causing the optical pen to change its interface mode to a writing interface mode when the optical system detects a writing surface within close proximity to the surface-interaction end.
- In embodiments, systems, methods and computer processes comprise a hand-held housing including a user interface mode selection interface; and causing the system, upon activation of the user interface mode selection interface, to cause a HWC to launch a software application and to select a user interface mode for the optical pen that is adapted to interoperate with the software application. The systems, methods and computer processes may be embodied as an optical pen.
- In embodiments, the software application is a communication application and the selected user interface mode is a writing mode. In embodiments, the communication application is an email application. In embodiments, the communication application is a messaging application. In embodiments, the communication application is a texting application. In embodiments, the software application is a note application and the selected user interface mode is a writing mode. In embodiments, the software application is a social networking application and the selected user interface mode is a writing mode. In embodiments, the software application is a social networking application and the selected user interface mode is a wand mode.
- In embodiments, systems, methods and computer processes comprise receiving, at a hand-held user interface, an indication that a quick application launch button has been activated; launching a predetermined application that correlates with the launch button settings; and causing the hand-held user interface to activate a predetermined user interface mode in accordance with the predetermined application.
- In embodiments, systems, methods and computer processes comprise receiving, at a hand-held user interface, an indication that a quick application launch button has been activated; presenting, in a display of a head-worn computer, a plurality of applications; and causing, upon receipt of a selection command at the hand-held user interface, the head-worn computer to launch an application from the plurality of applications.
- In embodiments, the selection command is based on a force monitor at a writing surface end of the hand-held user interface. In embodiments, the hand-held user interface operates in a wand mode following the activation of the application launch button. In embodiments, systems, methods and computer processes comprise the hand-held user interface operates in a mouse mode following the activation of the application launch button, wherein the hand-held user interface images a writing surface to provide an indication of desired cursor movement.
- In embodiments, systems, methods and computer processes comprise a housing supporting a quick application launch interface and a capacitive touch interface, wherein both the quick application launch interface and the capacitive touch interface are in communication with a head-worn computer; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- In embodiments, the device further comprises an IMU to monitor movement of the device, and wherein the movement of the device is used to generate gesture control for a software application operating on the head-worn computer. In embodiments, the device further comprises a display, wherein the display provides information relating to a software application operating on the head-worn computer. In embodiments, the device further comprises a display, wherein the display provides information relating to the head-worn computer. In embodiments, the device further comprises a fitness monitor wherein fitness information is collected and communicated to the head-worn computer for display to the user. In embodiments, the capacitive touch interface is adapted to communicate control signals to a software application operating on the head-worn computer. In embodiments, the device further comprises a quick launch interface adapted to launch, when activated, a predetermined software application on the head-worn computer.
- In embodiments, systems, methods and computer processes comprise a housing supporting a quick application launch interface and a capacitive touch interface, wherein both the quick application launch interface and the capacitive touch interface are in communication with a head-worn computer; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband, the watchband clip being further adapted to rotate with respect to the watchband.
- In embodiments, systems, methods and computer processes comprise a strap supporting a quick application launch interface and a capacitive touch interface, wherein both the quick application launch interface and the capacitive touch interface are in communication with a head-worn computer; and the strap being mechanically configured to attach to a watch body and function as a watchband.
- In embodiments, systems, methods and computer processes comprise a housing supporting an IMU wherein motion measurements from the IMU are communicated to a head-worn computer and interpreted for gesture control of a GUI of the head-worn computer; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- In embodiments, the system further comprises a display, wherein the display provides information relating to a software application operating on the head-worn computer. In embodiments, the system further comprises a display, wherein the display provides information relating to the head-worn computer. In embodiments, the system further comprises a fitness monitor wherein fitness information is collected and communicated to the head-worn computer for display to the user. In embodiments, the system further comprise a capacitive touch interface, wherein the capacitive touch interface is adapted to communicate control signals to a software application operating on the head-worn computer. In embodiments, the system further comprises a quick launch interface adapted to launch, when activated, a predetermined software application on the head-worn computer.
- In embodiments, systems, methods and computer processes comprise a strap supporting an IMU wherein rotational measurements from the IMU are communicated to a head-worn computer and interpreted for gesture control of a graphical user interface operating on the head-worn computer; and the strap being mechanically configured to attach to a watch body and function as a watchband.
- In embodiments, systems, methods and computer processes comprise a housing supporting visual display wherein the visual display communicates with a head-worn computer and the visual display provides an indication of a current application executing on the head-worn computer; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- In embodiments, the system further comprises an IMU to monitor movement of the device, and wherein the movement of the device is used to generate gesture control for a software application operating on the head-worn computer. In embodiments, the system further comprises a fitness monitor wherein fitness information is collected and communicated to the head-worn computer for display to the user. In embodiments, the system further comprises a quick launch interface adapted to launch, when activated, a predetermined software application on the head-worn computer. In embodiments, the capacitive touch interface is adapted to communicate control signals to a software application operating on the head-worn computer.
- In embodiments, systems, methods and computer processes comprise a strap supporting visual display wherein the visual display communicates with a head-worn computer and the visual display provides an indication of a current application executing on the head-worn computer; and the strap being mechanically configured to attach to a watch body and function as a watchband.
- In embodiments, systems, methods and computer processes comprise a housing supporting a personal performance monitoring sensor the sensor adapted to communicate performance data to an HWC; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- In embodiments, the system further comprises a HWC user interface for controlling an aspect of a software application operating on the HWC. In embodiments, the system further comprises an IMU for monitoring motion of the device, wherein the motion is interpreted a gesture control command for controlling an aspect of a software application operating on a HWC. In embodiments, the system further comprises a display that displays information relating to a software application operating on a HWC. In embodiments, the system further comprises a display that displays information relating to the performance data. In embodiments, the system further comprises a quick launch interface adapted to launch a predetermined software application on the HWC.
- In embodiments, systems, methods and computer processes comprise a strap supporting a personal performance monitoring sensor the sensor adapted to communicate performance data to a head-worn computer; and the strap being mechanically configured to attach to a watch body and function as a watchband.
- In embodiments, systems, methods and computer processes comprise a housing supporting a personal performance monitoring sensor the sensor adapted to monitor a human performance condition of a wearer of the device; and the housing being mechanically connected to a watchband clip, the watchband clip adapted to be removably and replaceably attached to a watchband.
- These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.
- Embodiments are described with reference to the following Figures. The same numbers may be used throughout to reference like features and components that are shown in the Figures:
-
FIG. 1 illustrates a head worn computing system in accordance with the principles of the present invention. -
FIG. 2 illustrates an external user interface in accordance with the principles of the present invention. -
FIGS. 3 a to 3 c illustrate distance control systems in accordance with the principles of the present invention. -
FIGS. 4 a to 4 c illustrate force interpretation systems in accordance with the principles of the present invention. -
FIGS. 5 a to 5 c illustrate user interface mode selection systems in accordance with the principles of the present invention. -
FIG. 6 illustrates interaction systems in accordance with the principles of the present invention. -
FIG. 7 illustrates external user interfaces in accordance with the principles of the present invention. - While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
- Aspects of the present invention relate to head-worn computing (“HWC”) systems. HWC involves, in some instances, a system that mimics the appearance of head-worn glasses or sunglasses. The glasses may be a fully developed computing platform, such as including computer displays presented in each of the lenses of the glasses to the eyes of the user. In embodiments, the lenses and displays may be configured to allow a person wearing the glasses to see the environment through the lenses while also seeing, simultaneously, digital imagery, which forms an overlaid image that is perceived by the person as a digitally augmented image of the environment, or augmented reality (“AR”).
- HWC involves more than just placing a computing system on a person's head. The system may need to be designed as a lightweight, compact and fully functional computer display, such as wherein the computer display includes a high resolution digital display that provides a high level of emersion comprised of the displayed digital content and the see-through view of the environmental surroundings. User interfaces and control systems suited to the HWC device may be required that are unlike those used for a more conventional computer such as a laptop. For the HWC and associated systems to be most effective, the glasses may be equipped with sensors to determine environmental conditions, geographic location, relative positioning to other points of interest, objects identified by imaging and movement by the user or other users in a connected group, and the like. The HWC may then change the mode of operation to match the conditions, location, positioning, movements, and the like, in a method generally referred to as a contextually aware HWC. The glasses also may need to be connected, wirelessly or otherwise, to other systems either locally or through a network. Controlling the glasses may be achieved through the use of an external device, automatically through contextually gathered information, through user gestures captured by the glasses sensors, and the like. Each technique may be further refined depending on the software application being used in the glasses. The glasses may further be used to control or coordinate with external devices that are associated with the glasses.
- Referring to
FIG. 1 , an overview of theHWC system 100 is presented. As shown, theHWC system 100 comprises aHWC 102, which in this instance is configured as glasses to be worn on the head with sensors such that theHWC 102 is aware of the objects and conditions in theenvironment 114. In this instance, theHWC 102 also receives and interprets control inputs such as gestures andmovements 116. TheHWC 102 may communicate withexternal user interfaces 104. Theexternal user interfaces 104 may provide a physical user interface to take control instructions from a user of theHWC 102 and theexternal user interfaces 104 and theHWC 102 may communicate bi-directionally to affect the user's command and provide feedback to theexternal device 108. TheHWC 102 may also communicate bi-directionally with externally controlled or coordinatedlocal devices 108. For example, anexternal user interface 104 may be used in connection with theHWC 102 to control an externally controlled or coordinatedlocal device 108. The externally controlled or coordinatedlocal device 108 may provide feedback to theHWC 102 and a customized GUI may be presented in theHWC 102 based on the type of device or specifically identifieddevice 108. TheHWC 102 may also interact with remote devices andinformation sources 112 through anetwork connection 110. Again, theexternal user interface 104 may be used in connection with theHWC 102 to control or otherwise interact with any of theremote devices 108 andinformation sources 112 in a similar way as when theexternal user interfaces 104 are used to control or otherwise interact with the externally controlled or coordinatedlocal devices 108. Similarly,HWC 102 may interpret gestures 116 (e.g captured from forward, downward, upward, rearward facing sensors such as camera(s), range finders, IR sensors, etc.) or environmental conditions sensed in theenvironment 114 to control either local orremote devices - We will now describe each of the main elements depicted on
FIG. 1 in more detail; however, these descriptions are intended to provide general guidance and should not be construed as limiting. Additional description of each element may also be further described herein. - The
HWC 102 is a computing platform intended to be worn on a person's head. TheHWC 102 may take many different forms to fit many different functional requirements. In some situations, theHWC 102 will be designed in the form of conventional glasses. The glasses may or may not have active computer graphics displays. In situations where theHWC 102 has integrated computer displays the displays may be configured as see-through displays such that the digital imagery can be overlaid with respect to the user's view of theenvironment 114. There are a number of see-through optical designs that may be used, including ones that have a reflective display (e.g. LCoS, DLP), emissive displays (e.g. OLED, LED), hologram, TIR waveguides, and the like. In addition, the optical configuration may be monocular or binocular. It may also include vision corrective optical components. In embodiments, the optics may be packaged as contact lenses. In other embodiments, theHWC 102 may be in the form of a helmet with a see-through shield, sunglasses, safety glasses, goggles, a mask, fire helmet with see-through shield, police helmet with see through shield, military helmet with see-through shield, utility form customized to a certain work task (e.g. inventory control, logistics, repair, maintenance, etc.), and the like. - The
HWC 102 may also have a number of integrated computing facilities, such as an integrated processor, integrated power management, communication structures (e.g. cell net, WiFi, Bluetooth, local area connections, mesh connections, remote connections (e.g. client server, etc.)), and the like. TheHWC 102 may also have a number of positional awareness sensors, such as GPS, electronic compass, altimeter, tilt sensor, IMU, and the like. It may also have other sensors such as a camera, rangefinder, hyper-spectral camera, Geiger counter, microphone, spectral illumination detector, temperature sensor, chemical sensor, biologic sensor, moisture sensor, ultrasonic sensor, and the like. - The
HWC 102 may also have integrated control technologies. The integrated control technologies may be contextual based control, passive control, active control, user control, and the like. For example, theHWC 102 may have an integrated sensor (e.g. camera) that captures user hand or body gestures 116 such that the integrated processing system can interpret the gestures and generate control commands for theHWC 102. In another example, theHWC 102 may have sensors that detect movement (e.g. a nod, head shake, and the like) including accelerometers, gyros and other inertial measurements, where the integrated processor may interpret the movement and generate a control command in response. TheHWC 102 may also automatically control itself based on measured or perceived environmental conditions. For example, if it is bright in the environment theHWC 102 may increase the brightness or contrast of the displayed image. In embodiments, the integrated control technologies may be mounted on theHWC 102 such that a user can interact with it directly. For example, theHWC 102 may have a button(s), touch capacitive interface, and the like. - As described herein, the
HWC 102 may be in communication withexternal user interfaces 104. The external user interfaces may come in many different forms. For example, a cell phone screen may be adapted to take user input for control of an aspect of theHWC 102. The external user interface may be a dedicated UI, such as a keyboard, touch surface, button(s), joy stick, and the like. In embodiments, the external controller may be integrated into another device such as a ring, watch, bike, car, and the like. In each case, theexternal user interface 104 may include sensors (e.g. IMU, accelerometers, compass, altimeter, and the like) to provide additional input for controlling theHWD 104. - As described herein, the
HWC 102 may control or coordinate with otherlocal devices 108. Theexternal devices 108 may be an audio device, visual device, vehicle, cell phone, computer, and the like. For instance, the localexternal device 108 may be anotherHWC 102, where information may then be exchanged between theseparate HWCs 108. - Similar to the way the
HWC 102 may control or coordinate with local devices 106, theHWC 102 may control or coordinate withremote devices 112, such as theHWC 102 communicating with theremote devices 112 through anetwork 110. Again, the form of theremote device 112 may have many forms. Included in these forms is anotherHWC 102. For example, eachHWC 102 may communicate its GPS position such that all theHWCs 102 know where all ofHWC 102 are located. - Referring to
FIG. 2 , we now turn to describe a particularexternal user interface 104, referred to generally as apen 200. Thepen 200 is a specially designedexternal user interface 104 and can operate as a user interface, such as to many different styles ofHWC 102. Thepen 200 generally follows the form of a conventional pen, which is a familiar user handled device and creates an intuitive physical interface for many of the operations to be carried out in theHWC system 100. Thepen 200 may be one ofseveral user interfaces 104 used in connection with controlling operations within theHWC system 100. For example, theHWC 102 may watch for and interprethand gestures 116 as control signals, where thepen 200 may also be used as a user interface with thesame HWC 102. Similarly, a remote keyboard may be used as anexternal user interface 104 in concert with thepen 200. The combination of user interfaces or the use of just one control system generally depends on the operation(s) being executed in the HWC'ssystem 100. - While the
pen 200 may follow the general form of a conventional pen, it contains numerous technologies that enable it to function as anexternal user interface 104.FIG. 2 illustrate technologies comprised in thepen 200. As can be seen, thepen 200 may include acamera 208, which is arranged to view throughlens 202. The camera may then be focused, such as throughlens 202, to image a surface upon which a user is writing or making other movements to interact with theHWC 102. There are situations where thepen 200 will also have an ink, graphite, or other system such that what is being written can be seen on the writing surface. There are other situations where thepen 200 does not have such a physical writing system so there is no deposit on the writing surface, where the pen would only be communicating data or commands to theHWC 102. The lens configuration is described in greater detail herein. The function of the camera is to capture information from an unstructured writing surface such that pen strokes can be interpreted as intended by the user. To assist in the predication of the intended stroke path, thepen 200 may include a sensor, such as anIMU 212. Of course, the IMU could be included in thepen 200 in its separate parts (e.g. gyro, accelerometer, etc.) or an IMU could be included as a single unit. In this instance, theIMU 212 is used to measure and predict the motion of thepen 200. In turn, theintegrated microprocessor 210 would take the IMU information and camera information as inputs and process the information to form a prediction of the pen tip movement. - The
pen 200 may also include apressure monitoring system 204, such as to measure the pressure exerted on thelens 202. As will be described in greater herein, the pressure measurement can be used to predict the user's intention for changing the weight of a line, type of a line, type of brush, click, double click, and the like. In embodiments, the pressure sensor may be constructed using any force or pressure measurement sensor located behind thelens 202, including for example, a resistive sensor, a current sensor, a capacitive sensor, a voltage sensor such as a piezoelectric sensor, and the like. - The
pen 200 may also include acommunications module 218, such as for bi-directional communication with theHWC 102. In embodiments, thecommunications module 218 may be a short distance communication module (e.g. Bluetooth). Thecommunications module 218 may be security matched to theHWC 102. Thecommunications module 218 may be arranged to communicate data and commands to and from themicroprocessor 210 of thepen 200. Themicroprocessor 210 may be programmed to interpret data generated from thecamera 208,IMU 212, andpressure sensor 204, and the like, and then pass a command onto theHWC 102 through thecommunications module 218, for example. In another embodiment, the data collected from any of the input sources (e.g. camera 108,IMU 212, pressure sensor 104) by the microprocessor may be communicated by thecommunication module 218 to theHWC 102, and theHWC 102 may perform data processing and prediction of the user's intention when using thepen 200. In yet another embodiment, the data may be further passed on through anetwork 110 to aremote device 112, such as a server, for the data processing and prediction. The commands may then be communicated back to theHWC 102 for execution (e.g. display writing in the glasses display, make a selection within the UI of the glasses display, control a remoteexternal device 112, control a local external device 108), and the like. The pen may also includememory 214 for long or short term uses. - The
pen 200 may also include a number of physical user interfaces, such asquick launch buttons 222, atouch sensor 220, and the like. Thequick launch buttons 222 may be adapted to provide the user with a fast way of jumping to a software application in theHWC system 100. For example, the user may be a frequent user of communication software packages (e.g. email, text, Twitter, Instagram, Facebook, Google+, and the like), and the user may program aquick launch button 222 to command theHWC 102 to launch an application. Thepen 200 may be provided with severalquick launch buttons 222, which may be user programmable or factory programmable. Thequick launch button 222 may be programmed to perform an operation. For example, one of the buttons may be programmed to clear the digital display of theHWC 102. This would create a fast way for the user to clear the screens on theHWC 102 for any reason, such as for example to better view the environment. The quick launch button functionality will be discussed in further detail below. Thetouch sensor 220 may be used to take gesture style input from the user. For example, the user may be able to take a single finger and run it across thetouch sensor 220 to affect a page scroll. - The
pen 200 may also include alaser pointer 224. Thelaser pointer 224 may be coordinated with theIMU 212 to coordinate gestures and laser pointing. For example, a user may use thelaser 224 in a presentation to help with guiding the audience with the interpretation of graphics and theIMU 212 may, either simultaneously or when thelaser 224 is off, interpret the user's gestures as commands or data input. -
FIGS. 3A-C illustrate several embodiments of lens andcamera arrangements 300 for thepen 200. One aspect relates to maintaining a constant distance between the camera and the writing surface to enable the writing surface to be kept in focus for better tracking of movements of thepen 200 over the writing surface. Another aspect relates to maintaining an angled surface following the circumference of the writing tip of thepen 200 such that thepen 200 can be rolled or partially rolled in the user's hand to create the feel and freedom of a conventional writing instrument. -
FIG. 3A illustrates an embodiment of the writing lens end of thepen 200. The configuration includes aball lens 304, a camera orimage capture surface 302, and adomed cover lens 308. In this arrangement, the camera views the writing surface through theball lens 304 anddome cover lens 308. Theball lens 304 causes the camera to focus such that the camera views the writing surface when thepen 200 is held in the hand in a natural writing position, such as with thepen 200 in contact with a writing surface. In embodiments, theball lens 304 should be separated from the writing surface to obtain the highest resolution of the writing surface at thecamera 302. In embodiments, theball lens 304 is separated by approximately 1 to 3 mm. In this configuration, thedomed cover lens 308 provides a surface that can keep theball lens 304 separated from the writing surface at a constant distance, such as substantially independent of the angle used to write on the writing surface. For instance, in embodiments the field of view of the camera in this arrangement would be approximately 60 degrees. - The domed cover lens, or
other lens 308 used to physically interact with the writing surface, will be transparent or transmissive within the active bandwidth of thecamera 302. In embodiments, thedomed cover lens 308 may be spherical or other shape and comprised of glass, plastic, sapphire, diamond, and the like. In other embodiments where low resolution imaging of the surface is acceptable. Thepen 200 can omit thedomed cover lens 308 and theball lens 304 can be in direct contact with the surface. -
FIG. 3B illustrates another structure where the construction is somewhat similar to that described in connection withFIG. 3A ; however this embodiment does not use adome cover lens 308, but instead uses aspacer 310 to maintain a predictable distance between theball lens 304 and the writing surface, wherein the spacer may be spherical, cylindrical, tubular or other shape that provides spacing while allowing for an image to be obtained by thecamera 302 through thelens 304. In a preferred embodiment, thespacer 310 is transparent. In addition, while thespacer 310 is shown as spherical, other shapes such a an oval, doughnut shape, half sphere, cone, cylinder or other form may be used. -
FIG. 3C illustrates yet another embodiment, where the structure includes apost 314, such as running through the center of the lensed end of thepen 200. Thepost 314 may be an ink deposition system (e.g. ink cartridge), graphite deposition system (e.g. graphite holder), or a dummy post whose purpose is mainly only that of alignment. The selection of the post type is dependent on the pen's use. For instance, in the event the user wants to use thepen 200 as a conventional ink depositing pen as well as a fully functionalexternal user interface 104, the ink system post would be the best selection. If there is no need for the ‘writing’ to be visible on the writing surface, the selection would be the dummy post. The embodiment ofFIG. 3C includes camera(s) 302 and an associatedlens 312, where thecamera 302 andlens 312 are positioned to capture the writing surface without substantial interference from thepost 314. In embodiments, thepen 200 may includemultiple cameras 302 andlenses 312 such that more or all of the circumference of thetip 314 can be used as an input system. In an embodiment, thepen 200 includes a contoured grip that keeps the pen aligned in the user's hand so that thecamera 302 andlens 312 remains pointed at the surface. - Another aspect of the
pen 200 relates to sensing the force applied by the user to the writing surface with thepen 200. The force measurement may be used in a number of ways. For example, the force measurement may be used as a discrete value, or discontinuous event tracking, and compared against a threshold in a process to determine a user's intent. The user may want the force interpreted as a ‘click’ in the selection of an object, for instance. The user may intend multiple force exertions interpreted as multiple clicks. There may be times when the user holds thepen 200 in a certain position or holds a certain portion of the pen 200 (e.g. a button or touch pad) while clicking to affect a certain operation (e.g. a ‘right click’). In embodiments, the force measurement may be used to track force and force trends. The force trends may be tracked and compared to threshold limits, for example. There may be one such threshold limit, multiple limits, groups of related limits, and the like. For example, when the force measurement indicates a fairly constant force that generally falls within a range of related threshold values, themicroprocessor 210 may interpret the force trend as an indication that the user desires to maintain the current writing style, writing tip type, line weight, brush type, and the like. In the event that the force trend appears to have gone outside of a set of threshold values intentionally, the microprocessor may interpret the action as an indication that the user wants to change the current writing style, writing tip type, line weight, brush type, and the like. Once the microprocessor has made a determination of the user's intent, a change in the current writing style, writing tip type, line weight, brush type, and the like. may be executed. In embodiments, the change may be noted to the user (e.g. in a display of the HWC 102), and the user may be presented with an opportunity to accept the change. -
FIG. 4A illustrates an embodiment of a forcesensing surface tip 400 of apen 200. The forcesensing surface tip 400 comprises a surface connection tip 402 (e.g. a lens as described herein elsewhere) in connection with a force orpressure monitoring system 204. As a user uses thepen 200 to write on a surface or simulate writing on a surface theforce monitoring system 204 measures the force or pressure the user applies to the writing surface and the force monitoring system communicates data to themicroprocessor 210 for processing. In this configuration, themicroprocessor 210 receives force data from theforce monitoring system 204 and processes the data to make predictions of the user's intent in applying the particular force that is currently being applied. In embodiments, the processing may be provided at a location other than on the pen (e.g. at a server in theHWC system 100, on the HWC 102). For clarity, when reference is made herein to processing information on themicroprocessor 210, the processing of information contemplates processing the information at a location other than on the pen. Themicroprocessor 210 may be programmed with force threshold(s), force signature(s), force signature library and/or other characteristics intended to guide an inference program in determining the user's intentions based on the measured force or pressure. Themicroprocessor 210 may be further programmed to make inferences from the force measurements as to whether the user has attempted to initiate a discrete action (e.g. a user interface selection ‘click’) or is performing a constant action (e.g. writing within a particular writing style). The inferencing process is important as it causes thepen 200 to act as an intuitiveexternal user interface 104. -
FIG. 4B illustrates aforce 408 versustime 410 trend chart with asingle threshold 418. Thethreshold 418 may be set at a level that indicates a discrete force exertion indicative of a user's desire to cause an action (e.g. select an object in a GUI).Event 412, for example, may be interpreted as a click or selection command because the force quickly increased from below thethreshold 418 to above thethreshold 418. Theevent 414 may be interpreted as a double click because the force quickly increased above thethreshold 418, decreased below thethreshold 418 and then essentially repeated quickly. The user may also cause the force to go above thethreshold 418 and hold for a period indicating that the user is intending to select an object in the GUI (e.g. a GUI presented in the display of the HWC 102) and ‘hold’ for a further operation (e.g. moving the object). - While a threshold value may be used to assist in the interpretation of the user's intention, a signature force event trend may also be used. The threshold and signature may be used in combination or either method may be used alone. For example, a single-click signature may be represented by a certain force trend signature or set of signatures. The single-click signature(s) may require that the trend meet a criteria of a rise time between x any y values, a hold time of between a and b values and a fall time of between c and d values, for example. Signatures may be stored for a variety of functions such as click, double click, right click, hold, move, etc. The
microprocessor 210 may compare the real-time force or pressure tracking against the signatures from a signature library to make a decision and issue a command to the software application executing in the GUI. -
FIG. 4C illustrates aforce 408 versustime 410 trend chart withmultiple thresholds 418. By way of example, the force trend is plotted on the chart with several pen force or pressure events. As noted, there are both presumablyintentional events 420 and presumablynon-intentional events 422. The twothresholds 418 ofFIG. 4C create three zones of force: a lower, middle and higher range. The beginning of the trend indicates that the user is placing a lower zone amount of force. This may mean that the user is writing with a given line weight and does not intend to change the weight, the user is writing. Then the trend shows asignificant increase 420 in force into the middle force range. This force change appears, from the trend to have been sudden and thereafter it is sustained. Themicroprocessor 210 may interpret this as an intentional change and as a result change the operation in accordance with preset rules (e.g. change line width, increase line weight, etc.). The trend then continues with a second apparentlyintentional event 420 into the higher-force range. During the performance in the higher-force range, the force dips below theupper threshold 418. This may indicate an unintentional force change and the microprocessor may detect the change in range however not affect a change in the operations being coordinated by thepen 200. As indicated above, the trend analysis may be done with thresholds and/or signatures. - Generally, in the present disclosure, instrument stroke parameter changes may be referred to as a change in line type, line weight, tip type, brush type, brush width, brush pressure, color, and other forms of writing, coloring, painting, and the like.
- Another aspect of the
pen 200 relates to selecting an operating mode for thepen 200 dependent on contextual information and/or selection interface(s). Thepen 200 may have several operating modes. For instance, thepen 200 may have a writing mode where the user interface(s) of the pen 200 (e.g. the writing surface end,quick launch buttons 222,touch sensor 220, motion based gesture, and the like) is optimized or selected for tasks associated with writing. As another example, thepen 200 may have a wand mode where the user interface(s) of the pen is optimized or selected for tasks associated with software or device control (e.g. theHWC 102, external local device,remote device 112, and the like). Thepen 200, by way of another example, may have a presentation mode where the user interface(s) is optimized or selected to assist a user with giving a presentation (e.g. pointing with thelaser pointer 224 while using the button(s) 222 and/or gestures to control the presentation or applications relating to the presentation). The pen may, for example, have a mode that is optimized or selected for a particular device that a user is attempting to control. Thepen 200 may have a number of other modes and an aspect of the present invention relates to selecting such modes. -
FIG. 5A illustrates an automatic user interface(s) mode selection based on contextual information. Themicroprocessor 210 may be programmed withIMU thresholds thresholds angle pen 200 for certain expected positions during certain predicted modes. When themicroprocessor 210 determines that thepen 200 is being held or otherwise positioned withinangles 502 corresponding to writingthresholds 514, for example, themicroprocessor 210 may then institute a writing mode for the pen's user interfaces. Similarly, if themicroprocessor 210 determines (e.g. through the IMU 212) that the pen is being held at anangle 504 that falls between thepredetermined wand thresholds 512, the microprocessor may institute a wand mode for the pen's user interface. Both of these examples may be referred to as context based user interface mode selection as the mode selection is based on contextual information (e.g. position) collected automatically and then used through an automatic evaluation process to automatically select the pen's user interface(s) mode. - As with other examples presented herein, the
microprocessor 210 may monitor the contextual trend (e.g. the angle of the pen over time) in an effort to decide whether to stay in a mode or change modes. For example, through signatures, thresholds, trend analysis, and the like, the microprocessor may determine that a change is an unintentional change and therefore no user interface mode change is desired. -
FIG. 5B illustrates an automatic user interface(s) mode selection based on contextual information. In this example, thepen 200 is monitoring (e.g. through its microprocessor) whether or not the camera at the writingsurface end 208 is imaging a writing surface in close proximity to the writing surface end of thepen 200. If thepen 200 determines that a writing surface is within a predetermined relatively short distance, thepen 200 may decide that a writing surface is present 502 and the pen may go into a writing mode user inteface(s) mode. In the event that thepen 200 does not detect a relativelyclose writing surface 504, the pen may predict that the pen is not currently being used to as a writing instrument and the pen may go into a non-writing user interface(s) mode. -
FIG. 5C illustrates a manual user interface(s) mode selection. The user interface(s) mode may be selected based on a twist of asection 508 of thepen 200 housing, clicking anend button 510, pressing aquick launch button 222, interacting withtouch sensor 220, detecting a predetermined action at the pressure monitoring system (e.g. a click), detecting a gesture (e.g. detected by the IMU), etc. The manual mode selection may involve selecting an item in a GUI associated with the pen 200 (e.g. an image presented in the display of HWC 102). - In embodiments, a confirmation selection may be presented to the user in the event a mode is going to change. The presentation may be physical (e.g. a vibration in the pen 200), through a GUI, through a light indicator, etc.
-
FIG. 6 illustrates a couple pen use-scenarios FIG. 6 as a way of illustrating use scenarios to further the understanding of the reader. As such, the use-scenarios should be considered illustrative and non-limiting. - Use
scenario 600 is a writing scenario where thepen 200 is used as a writing instrument. In this example,quick launch button 122A is pressed to launch anote application 610 in theGUI 608 of theHWC 102display 604. Once thequick launch button 122A is pressed, theHWC 102 launches thenote program 610 and puts the pen into a writing mode. The user uses thepen 200 toscribe symbols 602 on a writing surface, the pen records the scribing and transmits the scribing to theHWC 102 where symbols representing the scribing are displayed 612 within thenote application 610. - Use
scenario 601 is a gesture scenario where thepen 200 is used as a gesture capture and command device. In this example, thequick launch button 122B is activated and thepen 200 activates a wand mode such that an application launched on theHWC 102 can be controlled. Here, the user sees anapplication chooser 618 in the display(s) of theHWC 102 where different software applications can be chosen by the user. The user gestures (e.g. swipes, spins, turns, etc.) with the pen to cause theapplication chooser 618 to move from application to application. Once the correct application is identified (e.g. highlighted) in thechooser 618, the user may gesture or click or otherwise interact with thepen 200 such that the identified application is selected and launched. Once an application is launched, the wand mode may be used to scroll, rotate, change applications, select items, initiate processes, and the like, for example. - In an embodiment, the
quick launch button 122A may be activated and theHWC 102 may launch an application chooser presenting to the user a set of applications. For example, the quick launch button may launch a chooser to show all communication programs (e.g. SMS, Twitter, Instagram, Facebook, email, etc.) available for selection such that the user can select the program the user wants and then go into a writing mode. By way of further example, the launcher may bring up selections for various other groups that are related or categorized as generally being selected at a given time (e.g. Microsoft Office products, communication products, productivity products, note products, organizational products, and the like) -
FIG. 7 illustrates yet another embodiment of the present invention.FIG. 700 illustrates a watchband clip oncontroller 700. The watchband clip on controller may be a controller used to control theHWC 102 or devices in theHWC system 100. The watchband clip oncontroller 700 has a fastener 718 (e.g. rotatable clip) that is mechanically adapted to attach to a watchband, as illustrated at 704. - The
watchband controller 700 may have quick launch interfaces 708 (e.g. to launch applications and choosers as described herein), a touch pad 714 (e.g. to be used as a touch style mouse for GUI control in aHWC 102 display) and adisplay 712. Theclip 718 may be adapted to fit a wide range of watchbands so it can be used in connection with a watch that is independently selected for its function. The clip, in embodiments, is rotatable such that a user can position it in a desirable manner. In embodiments the clip may be a flexible strap. In embodiments, the flexible strap may be adapted to be stretched to attach to a hand, wrist, finger, device, weapon, and the like. - In embodiments, the watchband controller may be configured as a removable and replacable watchband. For example, the controller may be incorporated into a band with a certain width, segment spacing's, etc. such that the watchband, with its incorporated controller, can be attached to a watch body. The attachment, in embodiments, may be mechanically adapted to attach with a pin upon which the watchband rotates. In embodiments, the watchband controller may be electrically connected to the watch and/or watch body such that the watch, watch body and/or the watchband controller can communicate data between them.
- The watchband controller may have 3-axis motion monitoring (e.g. through an IMU, accelerometers, magnetometers, gyroscopes, etc.) to capture user motion. The user motion may then be interpreted for gesture control.
- In embodiments, the watchband controller may comprise fitness sensors and a fitness computer. The sensors may track heart rate, calories burned, strides, distance covered, and the like. The data may then be compared against performance goals and/or standards for user feedback.
- Although embodiments of HWC have been described in language specific to features, systems, computer processes and/or methods, the appended claims are not necessarily limited to the specific features, systems, computer processes and/or methods described. Rather, the specific features, systems, computer processes and/or and methods are disclosed as non-limited example implementations of HWC. All documents referenced herein are hereby incorporated by reference.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/185,968 US20150205384A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/158,198 US9939934B2 (en) | 2014-01-17 | 2014-01-17 | External user interface for head worn computing |
US14/185,968 US20150205384A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/158,198 Continuation US9939934B2 (en) | 2014-01-17 | 2014-01-17 | External user interface for head worn computing |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150205384A1 true US20150205384A1 (en) | 2015-07-23 |
Family
ID=53544751
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/158,198 Active 2034-02-23 US9939934B2 (en) | 2014-01-17 | 2014-01-17 | External user interface for head worn computing |
US14/185,984 Abandoned US20150205378A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,979 Abandoned US20150205566A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,968 Abandoned US20150205384A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,970 Abandoned US20150205401A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,958 Abandoned US20150205387A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,972 Abandoned US20150205402A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,959 Active US11231817B2 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/158,198 Active 2034-02-23 US9939934B2 (en) | 2014-01-17 | 2014-01-17 | External user interface for head worn computing |
US14/185,984 Abandoned US20150205378A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,979 Abandoned US20150205566A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/185,970 Abandoned US20150205401A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,958 Abandoned US20150205387A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,972 Abandoned US20150205402A1 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
US14/185,959 Active US11231817B2 (en) | 2014-01-17 | 2014-02-21 | External user interface for head worn computing |
Country Status (1)
Country | Link |
---|---|
US (8) | US9939934B2 (en) |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD743963S1 (en) | 2014-12-22 | 2015-11-24 | Osterhout Group, Inc. | Air mouse |
USD751552S1 (en) | 2014-12-31 | 2016-03-15 | Osterhout Group, Inc. | Computer glasses |
USD753114S1 (en) | 2015-01-05 | 2016-04-05 | Osterhout Group, Inc. | Air mouse |
US9377625B2 (en) | 2014-01-21 | 2016-06-28 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9401540B2 (en) | 2014-02-11 | 2016-07-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9423612B2 (en) | 2014-03-28 | 2016-08-23 | Osterhout Group, Inc. | Sensor dependent content position in head worn computing |
US9423842B2 (en) | 2014-09-18 | 2016-08-23 | Osterhout Group, Inc. | Thermal management for head-worn computer |
US9436006B2 (en) | 2014-01-21 | 2016-09-06 | Osterhout Group, Inc. | See-through computer display systems |
US9448409B2 (en) | 2014-11-26 | 2016-09-20 | Osterhout Group, Inc. | See-through computer display systems |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
US9523856B2 (en) | 2014-01-21 | 2016-12-20 | Osterhout Group, Inc. | See-through computer display systems |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9529192B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9532715B2 (en) | 2014-01-21 | 2017-01-03 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9547465B2 (en) | 2014-02-14 | 2017-01-17 | Osterhout Group, Inc. | Object shadowing in head worn computing |
US20170017323A1 (en) * | 2015-07-17 | 2017-01-19 | Osterhout Group, Inc. | External user interface for head worn computing |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US9720234B2 (en) | 2014-01-21 | 2017-08-01 | Osterhout Group, Inc. | See-through computer display systems |
US9740280B2 (en) | 2014-01-21 | 2017-08-22 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US9753288B2 (en) | 2014-01-21 | 2017-09-05 | Osterhout Group, Inc. | See-through computer display systems |
US9766463B2 (en) | 2014-01-21 | 2017-09-19 | Osterhout Group, Inc. | See-through computer display systems |
US9784973B2 (en) | 2014-02-11 | 2017-10-10 | Osterhout Group, Inc. | Micro doppler presentations in head worn computing |
US9811152B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US9910524B1 (en) | 2016-09-06 | 2018-03-06 | Apple Inc. | Devices and methods for processing and disambiguating touch inputs using intensity thresholds based on prior input intensity |
US9939646B2 (en) | 2014-01-24 | 2018-04-10 | Osterhout Group, Inc. | Stray light suppression for head worn computing |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10062182B2 (en) | 2015-02-17 | 2018-08-28 | Osterhout Group, Inc. | See-through computer display systems |
US10139966B2 (en) | 2015-07-22 | 2018-11-27 | Osterhout Group, Inc. | External user interface for head worn computing |
US10152141B1 (en) | 2017-08-18 | 2018-12-11 | Osterhout Group, Inc. | Controller movement tracking with light emitters |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US10281994B2 (en) * | 2017-06-16 | 2019-05-07 | Anousheh Sayah | Smart wand device |
US10466491B2 (en) | 2016-06-01 | 2019-11-05 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US10558050B2 (en) | 2014-01-24 | 2020-02-11 | Mentor Acquisition One, Llc | Haptic systems for head-worn computers |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10663740B2 (en) | 2014-06-09 | 2020-05-26 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10667981B2 (en) | 2016-02-29 | 2020-06-02 | Mentor Acquisition One, Llc | Reading assistance system for visually impaired |
US10684478B2 (en) | 2016-05-09 | 2020-06-16 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US10824253B2 (en) | 2016-05-09 | 2020-11-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10853589B2 (en) | 2014-04-25 | 2020-12-01 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US10878775B2 (en) | 2015-02-17 | 2020-12-29 | Mentor Acquisition One, Llc | See-through computer display systems |
US11003246B2 (en) | 2015-07-22 | 2021-05-11 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11104272B2 (en) | 2014-03-28 | 2021-08-31 | Mentor Acquisition One, Llc | System for assisted operator safety using an HMD |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US11269182B2 (en) | 2014-07-15 | 2022-03-08 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11487110B2 (en) | 2014-01-21 | 2022-11-01 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US11669163B2 (en) | 2014-01-21 | 2023-06-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US11737666B2 (en) | 2014-01-21 | 2023-08-29 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US11892644B2 (en) | 2014-01-21 | 2024-02-06 | Mentor Acquisition One, Llc | See-through computer display systems |
US12093453B2 (en) | 2014-01-21 | 2024-09-17 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10725550B2 (en) * | 2014-01-07 | 2020-07-28 | Nod, Inc. | Methods and apparatus for recognition of a plurality of gestures using roll pitch yaw data |
US10338678B2 (en) | 2014-01-07 | 2019-07-02 | Nod, Inc. | Methods and apparatus for recognition of start and/or stop portions of a gesture using an auxiliary sensor |
US10423236B2 (en) | 2017-05-25 | 2019-09-24 | International Business Machines Corporation | Using a wearable device to control characteristics of a digital pen |
CN108983999B (en) * | 2017-06-05 | 2021-10-22 | 奇象光学有限公司 | Digital pen |
US10788892B2 (en) * | 2018-05-23 | 2020-09-29 | Facebook Technologies, Llc | In-field illumination and imaging for eye tracking |
WO2020095710A1 (en) * | 2018-11-09 | 2020-05-14 | 株式会社ワコム | Electronic erasing tool and written information processing system |
JP7482706B2 (en) * | 2020-07-08 | 2024-05-14 | 株式会社ワコム | Method performed by a stylus and sensor controller, stylus and sensor controller |
US11822736B1 (en) * | 2022-05-18 | 2023-11-21 | Google Llc | Passive-accessory mediated gesture interaction with a head-mounted device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070132662A1 (en) * | 2004-05-27 | 2007-06-14 | Canon Kabushiki Kaisha | Information processing method, information processing apparatus, and image sensing apparatus |
US20080005702A1 (en) * | 2006-05-31 | 2008-01-03 | Abb Technology Ltd. | Virtual work place |
US20080186255A1 (en) * | 2006-12-07 | 2008-08-07 | Cohen Philip R | Systems and methods for data annotation, recordation, and communication |
US20090251441A1 (en) * | 2008-04-03 | 2009-10-08 | Livescribe, Inc. | Multi-Modal Controller |
US20110006982A1 (en) * | 2009-07-07 | 2011-01-13 | Samsung Electronics Co., Ltd. | Pen type input device and input method using the same |
US20130009907A1 (en) * | 2009-07-31 | 2013-01-10 | Rosenberg Ilya D | Magnetic Stylus |
Family Cites Families (800)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1897833A (en) | 1931-01-26 | 1933-02-14 | William G G Benway | Audiphone |
US2064604A (en) | 1934-04-04 | 1936-12-15 | Hempel Paul | Spectacle frame |
US3305294A (en) | 1964-12-03 | 1967-02-21 | Optical Res & Dev Corp | Two-element variable-power spherical lens |
US3531190A (en) | 1969-06-18 | 1970-09-29 | Foster Grant Co Inc | Spectacle frame assembly |
US3671111A (en) | 1970-10-12 | 1972-06-20 | Standard Optical Mfg Co | Biased hinge for spectacle frames |
GB1540992A (en) | 1975-04-22 | 1979-02-21 | Smiths Industries Ltd | Display or other systems and equipment for use in such systems |
US4145125A (en) | 1977-07-20 | 1979-03-20 | Hani Chika | Eyeglass lens with indicia and method of making same |
US7030925B1 (en) | 1978-04-23 | 2006-04-18 | Canon, Inc. | Camera system having converting means, recording means, reproduction means, plate-shaped display and protection means |
FR2441219A1 (en) * | 1978-11-10 | 1980-06-06 | Thomson Csf | OPTICAL PROBE COORDINOMETER |
US4811739A (en) | 1982-09-03 | 1989-03-14 | Silver Robert H | Method and apparatus for the determination of substances in human fluids |
US4788535A (en) | 1983-11-10 | 1988-11-29 | Matsushita Electric Industrial Co., Ltd. | Display apparatus |
SE454250B (en) | 1984-09-24 | 1988-04-18 | Asea Ab | INDUSTRIAL ROBOT WITH LINEAR DRIVE DEVICES |
US4842389A (en) | 1987-06-12 | 1989-06-27 | Flight Dynamics, Inc. | Vehicle display system using a holographic windshield prepared to withstand lamination process |
US4852988A (en) | 1988-09-12 | 1989-08-01 | Applied Science Laboratories | Visor and camera providing a parallax-free field-of-view image for a head-mounted eye movement measurement system |
US4928301A (en) | 1988-12-30 | 1990-05-22 | Bell Communications Research, Inc. | Teleconferencing terminal with camera behind display screen |
USD327674S (en) | 1990-02-21 | 1992-07-07 | Primax Electronics Ltd. | Video display control or similar article |
US5151722A (en) | 1990-11-05 | 1992-09-29 | The Johns Hopkins University | Video display on spectacle-like frame |
US8730129B2 (en) | 1990-12-07 | 2014-05-20 | Dennis J Solomon | Advanced immersive visual display system |
US5281819A (en) * | 1991-06-06 | 1994-01-25 | Aluminum Company Of America | Apparatus for nondestructively determining coating thickness on a metal object and associated method |
US5257094A (en) | 1991-07-30 | 1993-10-26 | Larussa Joseph | Helmet mounted display system |
US5303085A (en) | 1992-02-07 | 1994-04-12 | Rallison Richard D | Optically corrected helmet mounted display |
US5621424A (en) | 1992-08-24 | 1997-04-15 | Olympus Optical Co., Ltd. | Head mount display apparatus allowing easy switching operation from electronic image to external field image |
US5490647A (en) | 1993-08-09 | 1996-02-13 | Rice; Gregory H. | Palm rest for use with computer data entry devices |
EP1326122B1 (en) | 1993-08-12 | 2006-09-06 | Seiko Epson Corporation | Head-mounted image display device and data processing apparatus including the same |
JPH07110735A (en) | 1993-10-14 | 1995-04-25 | Nippon Telegr & Teleph Corp <Ntt> | Fitting type pen input device |
US7310072B2 (en) | 1993-10-22 | 2007-12-18 | Kopin Corporation | Portable communication display device |
USD352930S (en) | 1993-10-29 | 1994-11-29 | Hunter Fan Company | Remote control for a ceiling fan |
US5717422A (en) | 1994-01-25 | 1998-02-10 | Fergason; James L. | Variable intensity high contrast passive display |
US6160666A (en) | 1994-02-07 | 2000-12-12 | I-O Display Systems Llc | Personal visual display system |
US5606458A (en) | 1994-08-24 | 1997-02-25 | Fergason; James L. | Head mounted display and viewing system using a remote retro-reflector and method of displaying and viewing an image |
US5808589A (en) | 1994-08-24 | 1998-09-15 | Fergason; James L. | Optical system for a head mounted display combining high and low resolution images |
US6147805A (en) | 1994-08-24 | 2000-11-14 | Fergason; James L. | Head mounted display and viewing system using a remote retro-reflector and method of displaying and viewing an image |
US5483307A (en) | 1994-09-29 | 1996-01-09 | Texas Instruments, Inc. | Wide field of view head-mounted display |
US5808800A (en) | 1994-12-22 | 1998-09-15 | Displaytech, Inc. | Optics arrangements including light source arrangements for an active matrix liquid crystal image generator |
US5596451A (en) | 1995-01-30 | 1997-01-21 | Displaytech, Inc. | Miniature image generator including optics arrangement |
JP3390289B2 (en) | 1995-06-16 | 2003-03-24 | 富士重工業株式会社 | Alarm device |
US6369952B1 (en) | 1995-07-14 | 2002-04-09 | I-O Display Systems Llc | Head-mounted personal visual display apparatus with image generator and holder |
USD375748S (en) | 1995-11-03 | 1996-11-19 | Hartman William M | Hand held remote |
US5767841A (en) | 1995-11-03 | 1998-06-16 | Hartman; William M. | Two-sided trackball |
USD376790S (en) | 1995-12-21 | 1996-12-24 | Goulet Matthew G | Computer hand controller |
JPH09219832A (en) | 1996-02-13 | 1997-08-19 | Olympus Optical Co Ltd | Image display |
US6379009B1 (en) | 1996-04-24 | 2002-04-30 | James L. Fergason | Conjugate optics projection display with image enhancement |
US5729242A (en) | 1996-05-08 | 1998-03-17 | Hughes Electronics | Dual PDLC-projection head-up display |
US6046712A (en) | 1996-07-23 | 2000-04-04 | Telxon Corporation | Head mounted communication system for providing interactive visual communications with a remote system |
US6310733B1 (en) | 1996-08-16 | 2001-10-30 | Eugene Dolgoff | Optical elements and methods for their manufacture |
US6847336B1 (en) | 1996-10-02 | 2005-01-25 | Jerome H. Lemelson | Selectively controllable heads-up display system |
US6204974B1 (en) | 1996-10-08 | 2001-03-20 | The Microoptical Corporation | Compact image display system for eyeglasses or other head-borne frames |
US5808802A (en) | 1996-11-15 | 1998-09-15 | Daewoo Electronics Co. Ltd. | Head-mounted display apparatus with a single image display device |
US6956558B1 (en) | 1998-03-26 | 2005-10-18 | Immersion Corporation | Rotary force feedback wheels for remote control devices |
US5914818A (en) | 1996-11-29 | 1999-06-22 | Texas Instruments Incorporated | Offset projection lens for use with reflective spatial light modulators |
US6160552A (en) | 1997-01-09 | 2000-12-12 | Sun Microsystems, Inc. | Method and apparatus for managing multiple hierarchical lists within a browser |
USD392959S (en) | 1997-02-26 | 1998-03-31 | Kensington Microware Limited | Computer pointing device |
US6650357B1 (en) | 1997-04-09 | 2003-11-18 | Richardson Technologies, Inc. | Color translating UV microscope |
US6028608A (en) | 1997-05-09 | 2000-02-22 | Jenkins; Barry | System and method of perception-based image generation and encoding |
US6034653A (en) | 1997-08-01 | 2000-03-07 | Colorado Microdisplay, Inc. | Head-set display device |
US6720949B1 (en) | 1997-08-22 | 2004-04-13 | Timothy R. Pryor | Man machine interfaces and applications |
US5991084A (en) | 1998-02-04 | 1999-11-23 | Inviso | Compact compound magnified virtual image display with a reflective/transmissive optic |
US6456749B1 (en) | 1998-02-27 | 2002-09-24 | Carnegie Mellon University | Handheld apparatus for recognition of writing, for remote communication, and for user defined input templates |
US20040080541A1 (en) | 1998-03-20 | 2004-04-29 | Hisashi Saiga | Data displaying device |
USD410638S (en) | 1998-05-08 | 1999-06-08 | Logitech Incorporated | Optical trackball |
US6610917B2 (en) | 1998-05-15 | 2003-08-26 | Lester F. Ludwig | Activity indication, external source, and processing loop provisions for driven vibrating-element environments |
US6734838B1 (en) | 1998-05-18 | 2004-05-11 | Dimension Technologies Inc. | Enhanced resolution for image generation |
JPH11327492A (en) | 1998-05-20 | 1999-11-26 | Mitsubishi Electric Corp | Plane sequential color image display device and plane sequential color image display method |
JP2000102036A (en) | 1998-09-22 | 2000-04-07 | Mr System Kenkyusho:Kk | Composite actual feeling presentation system, composite actual feeling presentation method, man-machine interface device and man-machine interface method |
JP2000194726A (en) * | 1998-10-19 | 2000-07-14 | Sony Corp | Device, method and system for processing information and providing medium |
JP2000199883A (en) | 1998-10-29 | 2000-07-18 | Fujitsu Ltd | Reflection type projector device |
US20020007510A1 (en) | 1998-10-29 | 2002-01-24 | Mann W. Stephen G. | Smart bathroom fixtures and systems |
US6297749B1 (en) | 1998-11-06 | 2001-10-02 | Eric S. Smith | Emergency operating system for piloting an aircraft in a smoke filled cockpit |
US6535182B2 (en) | 1998-12-07 | 2003-03-18 | Koninklijke Philips Electronics N.V. | Head-mounted projection display system |
US6433760B1 (en) | 1999-01-14 | 2002-08-13 | University Of Central Florida | Head mounted display with eyetracking capability |
US6563626B1 (en) | 1999-02-25 | 2003-05-13 | Brother Kogyo Kabushiki Kaisha | Display device |
US6222677B1 (en) | 1999-04-12 | 2001-04-24 | International Business Machines Corporation | Compact optical system for use in virtual display applications |
EP1196819A4 (en) | 1999-06-29 | 2006-10-11 | 3M Innovative Properties Co | Optical systems for projection displays |
US6456438B1 (en) | 1999-08-12 | 2002-09-24 | Honeywell Inc. | Variable immersion vignetting display |
US6480174B1 (en) | 1999-10-09 | 2002-11-12 | Optimize Incorporated | Eyeglass-mount display having personalized fit module |
US20020149545A1 (en) | 1999-11-15 | 2002-10-17 | Ryotaro Hanayama | Head mounted display system |
USD451892S1 (en) | 1999-11-19 | 2001-12-11 | Tefal S.A. | Switch with a light |
US6717348B2 (en) | 1999-12-09 | 2004-04-06 | Fuji Photo Film Co., Ltd. | Display apparatus |
US6771294B1 (en) | 1999-12-29 | 2004-08-03 | Petri Pulli | User interface |
WO2001056007A1 (en) | 2000-01-28 | 2001-08-02 | Intersense, Inc. | Self-referenced tracking |
JP3909994B2 (en) | 2000-02-29 | 2007-04-25 | アルプス電気株式会社 | Input device |
JP3957468B2 (en) | 2000-03-31 | 2007-08-15 | 日立造船株式会社 | Mixed reality realization system |
JP2001311904A (en) | 2000-04-28 | 2001-11-09 | Canon Inc | Device and system for image display |
US6642945B1 (en) | 2000-05-04 | 2003-11-04 | Microsoft Corporation | Method and system for optimizing a visual display for handheld computer systems |
US6995753B2 (en) | 2000-06-06 | 2006-02-07 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of manufacturing the same |
US6417970B1 (en) | 2000-06-08 | 2002-07-09 | Interactive Imaging Systems | Two stage optical system for head mounted display |
JP4626019B2 (en) | 2000-07-05 | 2011-02-02 | 株式会社ニコン | Glasses frame |
US6747611B1 (en) | 2000-07-27 | 2004-06-08 | International Business Machines Corporation | Compact optical system and packaging for head mounted display |
US7003308B1 (en) | 2000-09-12 | 2006-02-21 | At&T Corp. | Method and system for handwritten electronic messaging |
US7737933B2 (en) | 2000-09-26 | 2010-06-15 | Toshiba Matsushita Display Technology Co., Ltd. | Display unit and drive system thereof and an information display unit |
US6563648B2 (en) | 2000-10-20 | 2003-05-13 | Three-Five Systems, Inc. | Compact wide field of view imaging system |
US6542307B2 (en) | 2000-10-20 | 2003-04-01 | Three-Five Systems, Inc. | Compact near-eye illumination system |
US6347764B1 (en) | 2000-11-13 | 2002-02-19 | The United States Of America As Represented By The Secretary Of The Army | Gun hardened, rotary winged, glide and descent device |
JP4560958B2 (en) | 2000-12-21 | 2010-10-13 | 日本テキサス・インスツルメンツ株式会社 | Micro electro mechanical system |
USD460071S1 (en) | 2001-03-01 | 2002-07-09 | Logitech Europe S.A. | Mouse with side gap |
KR100408518B1 (en) | 2001-04-12 | 2003-12-06 | 삼성전자주식회사 | Pen input device and Measuring method of coordinate |
US6957089B2 (en) | 2001-05-31 | 2005-10-18 | Coby Electronics Corporation | Compact hands-free adapter for use with a cellular telephone |
US7452098B2 (en) | 2001-06-15 | 2008-11-18 | Apple Inc. | Active enclosure for computing device |
US6562466B2 (en) | 2001-07-02 | 2003-05-13 | Essilor International Compagnie Generale D'optique | Process for transferring a coating onto a surface of a lens blank |
US20030030597A1 (en) | 2001-08-13 | 2003-02-13 | Geist Richard Edwin | Virtual display apparatus for mobile activities |
US20050010091A1 (en) | 2003-06-10 | 2005-01-13 | Woods Joe W. | Non-invasive measurement of blood glucose using retinal imaging |
US7088234B2 (en) | 2001-11-27 | 2006-08-08 | Matsushita Electric Industrial Co., Ltd. | Wearing information notifying unit |
US6959990B2 (en) | 2001-12-31 | 2005-11-01 | Texas Instruments Incorporated | Prism for high contrast projection |
US20030142065A1 (en) | 2002-01-28 | 2003-07-31 | Kourosh Pahlavan | Ring pointer device with inertial sensors |
IL148804A (en) | 2002-03-21 | 2007-02-11 | Yaacov Amitai | Optical device |
JP2003279881A (en) | 2002-03-27 | 2003-10-02 | Hitachi Ltd | Portable information device |
USD470144S1 (en) | 2002-04-18 | 2003-02-11 | Huixia Li | Computer mouse |
US20040030448A1 (en) | 2002-04-22 | 2004-02-12 | Neal Solomon | System, methods and apparatus for managing external computation and sensor resources applied to mobile robotic network |
US6870303B2 (en) | 2002-05-08 | 2005-03-22 | Pohang University Of Science And Technology Foundation | Multi-mode vibration damping device and method using negative capacitance shunt circuits |
JP2003337963A (en) | 2002-05-17 | 2003-11-28 | Seiko Epson Corp | Device and method for image processing, and image processing program and recording medium therefor |
TW594658B (en) | 2002-07-01 | 2004-06-21 | Leadtek Research Inc | Helmet-mounted display |
JP3833150B2 (en) | 2002-07-02 | 2006-10-11 | キヤノン株式会社 | Mounting device, head-mounted device, and head-mounted image display device |
USD473871S1 (en) | 2002-07-08 | 2003-04-29 | Mar Santos | Desktop/hand-held trackball |
USD478052S1 (en) | 2002-07-12 | 2003-08-05 | Hunter Fan Company | Ceiling fan remote control |
US6896655B2 (en) | 2002-08-05 | 2005-05-24 | Eastman Kodak Company | System and method for conditioning the psychological state of a subject using an adaptive autostereoscopic display |
US20040032392A1 (en) | 2002-08-19 | 2004-02-19 | Topseed Technology Corp. | Mouse pen device having remote-control function |
TWI234105B (en) * | 2002-08-30 | 2005-06-11 | Ren-Guang King | Pointing device, and scanner, robot, mobile communication device and electronic dictionary using the same |
US6906836B2 (en) | 2002-10-04 | 2005-06-14 | William Parker | Full color holographic image combiner system |
US6717075B1 (en) | 2003-01-08 | 2004-04-06 | Hewlett-Packard Development Company, L.P. | Method and apparatus for a multi-sided input device |
US20040130522A1 (en) | 2003-01-08 | 2004-07-08 | Wen-Po Lin | System and method for presenting real handwriting trace |
US7685538B2 (en) * | 2003-01-31 | 2010-03-23 | Wacom Co., Ltd. | Method of triggering functions in a computer application using a digitizer having a stylus and a digitizer system |
US7409234B2 (en) | 2003-03-07 | 2008-08-05 | Cardo Systems, Inc. | Wireless communication headset with exchangeable attachments |
US8106911B2 (en) | 2003-03-13 | 2012-01-31 | Sony Corporation | Mobile motion capture cameras |
US7333113B2 (en) | 2003-03-13 | 2008-02-19 | Sony Corporation | Mobile motion capture cameras |
US7894177B2 (en) | 2005-12-29 | 2011-02-22 | Apple Inc. | Light activated hold switch |
JP2004298461A (en) | 2003-03-31 | 2004-10-28 | Topcon Corp | Refraction measuring apparatus |
US7922321B2 (en) | 2003-10-09 | 2011-04-12 | Ipventure, Inc. | Eyewear supporting after-market electrical components |
US7500747B2 (en) | 2003-10-09 | 2009-03-10 | Ipventure, Inc. | Eyeglasses with electrical components |
US7500746B1 (en) | 2004-04-15 | 2009-03-10 | Ip Venture, Inc. | Eyewear with radiation detection system |
US8109629B2 (en) | 2003-10-09 | 2012-02-07 | Ipventure, Inc. | Eyewear supporting electrical components and apparatus therefor |
US8465151B2 (en) | 2003-04-15 | 2013-06-18 | Ipventure, Inc. | Eyewear with multi-part temple for supporting one or more electrical components |
US7792552B2 (en) | 2003-04-15 | 2010-09-07 | Ipventure, Inc. | Eyeglasses for wireless communications |
US7806525B2 (en) | 2003-10-09 | 2010-10-05 | Ipventure, Inc. | Eyeglasses having a camera |
US7380936B2 (en) | 2003-10-09 | 2008-06-03 | Ipventure, Inc. | Eyeglasses with a clock or other electrical component |
US7255437B2 (en) | 2003-10-09 | 2007-08-14 | Howell Thomas A | Eyeglasses with activity monitoring |
US7283125B2 (en) | 2003-05-09 | 2007-10-16 | Microsoft Corporation | Text input device and adapter mechanism |
US20050010563A1 (en) | 2003-05-15 | 2005-01-13 | William Gross | Internet search application |
US20040227994A1 (en) | 2003-05-16 | 2004-11-18 | Jiaying Ma | Polarizing beam splitter and projection systems using the polarizing beam splitter |
US20050041289A1 (en) | 2003-08-22 | 2005-02-24 | Arthur Berman | Advanced prism assemblies and prism assemblies using cholesteric reflectors |
US20130258111A1 (en) | 2009-03-02 | 2013-10-03 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US20050157949A1 (en) | 2003-09-30 | 2005-07-21 | Seiji Aiso | Generation of still image |
US7677723B2 (en) | 2003-10-09 | 2010-03-16 | Ipventure, Inc. | Eyeglasses with a heart rate monitor |
GB0325849D0 (en) | 2003-11-05 | 2003-12-10 | Microsharp Corp Ltd | Rear projection screen,and rear projection system using the screen |
JP2005138755A (en) | 2003-11-07 | 2005-06-02 | Denso Corp | Device and program for displaying virtual images |
CN101770073B (en) | 2003-12-03 | 2013-03-27 | 株式会社尼康 | Information displaying apparatus |
US7528825B2 (en) | 2003-12-08 | 2009-05-05 | Fujitsu Component Limited | Input pen and input device |
US20050129286A1 (en) | 2003-12-16 | 2005-06-16 | Hekimian Christopher D. | Technique using eye position and state of closure for increasing the effectiveness of iris recognition authentication systems |
US7561966B2 (en) | 2003-12-17 | 2009-07-14 | Denso Corporation | Vehicle information display system |
US7348969B2 (en) * | 2003-12-30 | 2008-03-25 | 3M Innovative Properties Company | Passive light stylus and user input device using same |
US20050156915A1 (en) | 2004-01-16 | 2005-07-21 | Fisher Edward N. | Handwritten character recording and recognition device |
US7206134B2 (en) | 2004-02-04 | 2007-04-17 | Displaytech, Inc. | Compact electronic viewfinder |
USD514525S1 (en) | 2004-02-28 | 2006-02-07 | Hunter Fan Company | Ceiling fan wall controller |
USD513233S1 (en) | 2004-02-28 | 2005-12-27 | Hunter Fan Company | Ceiling fan remote |
USD520993S1 (en) | 2004-03-15 | 2006-05-16 | Nokia Corporation | Digital image album |
JP2005274656A (en) | 2004-03-23 | 2005-10-06 | Fuji Photo Film Co Ltd | Display device and display method |
CA2561287C (en) | 2004-04-01 | 2017-07-11 | William C. Torch | Biosensors, communicators, and controllers monitoring eye movement and methods for using them |
US9460346B2 (en) * | 2004-04-19 | 2016-10-04 | Google Inc. | Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device |
JP4373286B2 (en) | 2004-05-06 | 2009-11-25 | オリンパス株式会社 | Head-mounted display device |
WO2005111669A1 (en) | 2004-05-17 | 2005-11-24 | Nikon Corporation | Optical element, combiner optical system, and image display unit |
IL162572A (en) | 2004-06-17 | 2013-02-28 | Lumus Ltd | High brightness optical device |
US6987787B1 (en) | 2004-06-28 | 2006-01-17 | Rockwell Collins | LED brightness control system for a wide-range of luminance control |
US7307793B2 (en) | 2004-07-02 | 2007-12-11 | Insight Technology, Inc. | Fusion night vision system |
US20060017654A1 (en) | 2004-07-23 | 2006-01-26 | Romo Justin R | Virtual reality interactivity system and method |
US8337013B2 (en) | 2004-07-28 | 2012-12-25 | Ipventure, Inc. | Eyeglasses with RFID tags or with a strap |
US7806929B2 (en) | 2004-08-27 | 2010-10-05 | Brown David C | Intracapsular pseudophakic device |
US7295904B2 (en) | 2004-08-31 | 2007-11-13 | International Business Machines Corporation | Touch gesture based interface for motor vehicle |
US7450310B2 (en) | 2005-05-03 | 2008-11-11 | Optical Research Associates | Head mounted display devices |
US7545571B2 (en) | 2004-09-08 | 2009-06-09 | Concurrent Technologies Corporation | Wearable display system |
US20060061542A1 (en) | 2004-09-23 | 2006-03-23 | Stokic Dragan Z | Dynamic character display input device |
JP4560368B2 (en) | 2004-10-08 | 2010-10-13 | キヤノン株式会社 | Eye detection device and image display device |
JP4533087B2 (en) | 2004-10-28 | 2010-08-25 | キヤノン株式会社 | Image processing method and image processing apparatus |
US7350919B2 (en) | 2004-12-03 | 2008-04-01 | Searete Llc | Vision modification with reflected image |
US20060152686A1 (en) | 2004-12-09 | 2006-07-13 | Serdar Yeralan | Short arc lamp light engine for video projection |
US7053866B1 (en) | 2004-12-18 | 2006-05-30 | Emile Mimran | Portable adaptor and software for use with a heads-up display unit |
USD541226S1 (en) | 2004-12-21 | 2007-04-24 | Kabushiki Kaisha Toshiba | Controller for forceps for medical robot |
US7619616B2 (en) * | 2004-12-21 | 2009-11-17 | Microsoft Corporation | Pressure sensitive controls |
US20060173351A1 (en) | 2005-01-03 | 2006-08-03 | Ronald Marcotte | System and method for inserting a needle into a blood vessel |
USD521493S1 (en) | 2005-01-21 | 2006-05-23 | Koninklikjke Philips Electronics, N.V. | Gaming headphone |
US7843470B2 (en) | 2005-01-31 | 2010-11-30 | Canon Kabushiki Kaisha | System, image processing apparatus, and information processing method |
JP4642497B2 (en) | 2005-02-10 | 2011-03-02 | クラリオン株式会社 | Navigation device |
US20060238550A1 (en) | 2005-03-17 | 2006-10-26 | Symagery Microsystems Inc. | Hands-free data acquisition system |
US8290313B2 (en) | 2005-03-18 | 2012-10-16 | The Invention Science Fund I, Llc | Electronic acquisition of a hand formed expression and a context of the expression |
US7457434B2 (en) | 2005-04-04 | 2008-11-25 | Massachusetts Eye & Ear Infirmary | Adaptively focusing extra-ocular vision prostheses |
US7430358B2 (en) | 2005-04-20 | 2008-09-30 | Wavefront Technology, Inc. | Elliptical diffusers used in displays |
US20060288233A1 (en) | 2005-04-25 | 2006-12-21 | Douglas Kozlay | Attachable biometric authentication apparatus for watchbands and other personal items |
US8187481B1 (en) | 2005-05-05 | 2012-05-29 | Coho Holdings, Llc | Random texture anti-reflection optical surface treatment |
US20060250322A1 (en) | 2005-05-09 | 2006-11-09 | Optics 1, Inc. | Dynamic vergence and focus control for head-mounted displays |
USD529467S1 (en) | 2005-06-01 | 2006-10-03 | Research In Motion Limited | Handset |
US20090183929A1 (en) | 2005-06-08 | 2009-07-23 | Guanglie Zhang | Writing system with camera |
US7508384B2 (en) | 2005-06-08 | 2009-03-24 | Daka Research Inc. | Writing system |
US20060285315A1 (en) | 2005-06-20 | 2006-12-21 | Welch Allyn, Inc. | Hybrid surgical headlight |
US20070003168A1 (en) | 2005-06-29 | 2007-01-04 | Microsoft Corporation | Computer input device |
US20070004451A1 (en) | 2005-06-30 | 2007-01-04 | C Anderson Eric | Controlling functions of a handheld multifunction device |
US8089567B2 (en) | 2005-07-29 | 2012-01-03 | Optoma Technology, Inc. | Methods and systems for displaying video on an adjustable screen |
US7434937B2 (en) | 2005-07-29 | 2008-10-14 | Optoma Technology, Inc. | Methods and systems for calibrating rear projection video |
US7529029B2 (en) | 2005-07-29 | 2009-05-05 | 3M Innovative Properties Company | Polarizing beam splitter |
US7701518B2 (en) | 2005-07-29 | 2010-04-20 | Optoma Technology, Inc. | Methods and systems for displaying video in multiple aspect ratios |
US20070025273A1 (en) | 2005-07-29 | 2007-02-01 | Chung Yau W | Methods and systems for detecting video signals and sources |
US20070024823A1 (en) | 2005-07-29 | 2007-02-01 | Optoma Technology, Inc. | Methods and systems for improving operation of a video projector |
US20070024764A1 (en) | 2005-07-29 | 2007-02-01 | Optoma Technology, Inc. | Methods and systems that compensate for distortion introduced by anamorphic lenses in a video projector |
JP2007041385A (en) | 2005-08-04 | 2007-02-15 | Seiko Epson Corp | Display device and method for controlling the same |
US20070035563A1 (en) | 2005-08-12 | 2007-02-15 | The Board Of Trustees Of Michigan State University | Augmented reality spatial interaction and navigational system |
US20070109284A1 (en) | 2005-08-12 | 2007-05-17 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
IL173361A (en) | 2005-09-12 | 2012-03-29 | Elbit Systems Ltd | Near eye display system |
JP2007079943A (en) * | 2005-09-14 | 2007-03-29 | Toshiba Corp | Character reading program, character reading method and character reader |
US20070069976A1 (en) | 2005-09-26 | 2007-03-29 | Willins Bruce A | Method and system for interface between head mounted display and handheld device |
US7707035B2 (en) | 2005-10-13 | 2010-04-27 | Integrated Wave Technologies, Inc. | Autonomous integrated headset and sound processing system for tactical applications |
US8018579B1 (en) | 2005-10-21 | 2011-09-13 | Apple Inc. | Three-dimensional imaging and display system |
US7543943B1 (en) | 2005-10-28 | 2009-06-09 | Hewlett-Packard Development Company, L.P. | Color permuting light projector |
WO2007054738A1 (en) | 2005-11-10 | 2007-05-18 | Bae Systems Plc | A display source |
JP4341661B2 (en) | 2005-11-22 | 2009-10-07 | ソニー株式会社 | Input device, input method, and input device manufacturing method |
US9093041B2 (en) | 2005-11-28 | 2015-07-28 | Honeywell International Inc. | Backlight variation compensated display |
US20070153639A1 (en) | 2005-12-02 | 2007-07-05 | Ronald Lafever | Flexible band with clip-on watch |
US7810750B2 (en) | 2006-12-13 | 2010-10-12 | Marcio Marc Abreu | Biologically fit wearable electronics apparatus and methods |
US7522344B1 (en) | 2005-12-14 | 2009-04-21 | University Of Central Florida Research Foundation, Inc. | Projection-based head-mounted display with eye-tracking capabilities |
WO2007084311A2 (en) | 2006-01-13 | 2007-07-26 | Liberty Sport, Inc. | Eyewear frames with magnetic lens attachments |
US8092007B2 (en) | 2006-01-13 | 2012-01-10 | Switch Vision, Llc | Eyewear frames with magnetic lens attachments |
US20070178950A1 (en) | 2006-01-19 | 2007-08-02 | International Business Machines Corporation | Wearable multimodal computing device with hands-free push to talk |
US7942526B2 (en) | 2006-01-23 | 2011-05-17 | Zeavision, Llc. | Diagnostic, prescriptive, and data-gathering system and method for macular pigment deficits and other eye disorders |
US7637609B1 (en) | 2006-02-24 | 2009-12-29 | Chic Optic, Inc. | Resilient hinge for eyeglasses |
WO2007111909A2 (en) | 2006-03-24 | 2007-10-04 | Northwestern University | Haptic device with indirect haptic feedback |
USD631881S1 (en) | 2006-03-28 | 2011-02-01 | Quinn Bryan C | Computer mouse |
KR100755973B1 (en) | 2006-03-31 | 2007-09-06 | 삼성전자주식회사 | Wheel input apparatus and method for four-way key stroke in portable terminal |
US7734414B2 (en) | 2006-04-04 | 2010-06-08 | Yariv Gershony | Device, system and method for displaying a cell phone control signal in front of a driver |
AU2007247827A1 (en) | 2006-05-01 | 2007-11-15 | Eye Diagnostics Pty Ltd | Portable eye monitoring device and methods for using the same |
TWI292052B (en) | 2006-05-09 | 2008-01-01 | Young Optics Inc | Optical projection and image detection apparatus |
US20080121441A1 (en) | 2006-05-12 | 2008-05-29 | Velosum, Inc. | Systems and methods for mutually exclusive options on a paper form for use with a digital pen |
US20070282682A1 (en) | 2006-06-02 | 2007-12-06 | Paul Dietz | Method for metered advertising based on face time |
USD571816S1 (en) | 2006-06-19 | 2008-06-24 | Logitech Europe S.A. | Computer mouse topcase |
US7605795B2 (en) | 2006-06-21 | 2009-10-20 | Intel Corporation | Power efficient screens through display size reduction |
US7928926B2 (en) | 2006-06-27 | 2011-04-19 | Panasonic Corporation | Display apparatus and method for hands free operation that selects a function when window is within field of view |
JP3125129U (en) | 2006-06-28 | 2006-09-07 | 敏貴 並木 | mouse |
US8368034B2 (en) | 2006-06-29 | 2013-02-05 | Cdex, Inc. | Substance detection, inspection and classification system using enhanced photoemission spectroscopy |
US7542210B2 (en) | 2006-06-29 | 2009-06-02 | Chirieleison Sr Anthony | Eye tracking head mounted display |
US7813743B1 (en) | 2006-07-10 | 2010-10-12 | Loeb Enterprises Llc | Location dependent non-commercial messaging |
US7855743B2 (en) | 2006-09-08 | 2010-12-21 | Sony Corporation | Image capturing and displaying apparatus and image capturing and displaying method |
JP4375377B2 (en) | 2006-09-19 | 2009-12-02 | 富士ゼロックス株式会社 | WRITING INFORMATION PROCESSING SYSTEM, WRITING INFORMATION GENERATION DEVICE, AND PROGRAM |
JP5017989B2 (en) | 2006-09-27 | 2012-09-05 | ソニー株式会社 | Imaging apparatus and imaging method |
US8212859B2 (en) | 2006-10-13 | 2012-07-03 | Apple Inc. | Peripheral treatment for head-mounted displays |
USD559793S1 (en) | 2006-10-25 | 2008-01-15 | Hannspree, Inc. | Remote control |
SG142292A1 (en) | 2006-11-07 | 2008-05-28 | Agency Science Tech & Res | Device and method to realize a light processor |
WO2008056762A1 (en) | 2006-11-10 | 2008-05-15 | Okamura Corporation | Backrest device for chair |
US20100073376A1 (en) | 2006-11-30 | 2010-03-25 | Koninklijke Philips Electronics N.V. | Electronic imaging device and method of electronically rendering a wavefront |
CN101632033B (en) | 2007-01-12 | 2013-07-31 | 寇平公司 | Helmet type monocular display device |
US9217868B2 (en) | 2007-01-12 | 2015-12-22 | Kopin Corporation | Monocular display device |
US20080191965A1 (en) | 2007-02-09 | 2008-08-14 | Raffaele Martini Pandozy | Apparatus and method for eye exercises |
KR101341494B1 (en) | 2007-02-13 | 2013-12-16 | 엘지전자 주식회사 | Apparatus for providing location information of hand-held devices and method thereof |
US20080219025A1 (en) | 2007-03-07 | 2008-09-11 | Spitzer Mark B | Bi-directional backlight assembly |
US8416463B2 (en) * | 2007-03-23 | 2013-04-09 | Anoto Ab | Printing of a position-coding pattern |
JP5009361B2 (en) | 2007-03-29 | 2012-08-22 | 京セラ株式会社 | Portable radio |
US8515728B2 (en) | 2007-03-29 | 2013-08-20 | Microsoft Corporation | Language translation of visual and audio input |
US7777690B2 (en) | 2007-03-30 | 2010-08-17 | Itt Manufacturing Enterprises, Inc. | Radio frequency lens and method of suppressing side-lobes |
US8832557B2 (en) | 2007-05-04 | 2014-09-09 | Apple Inc. | Adjusting media display in a personal display system based on perspective |
US8068700B2 (en) | 2007-05-28 | 2011-11-29 | Sanyo Electric Co., Ltd. | Image processing apparatus, image processing method, and electronic appliance |
US7934291B2 (en) | 2007-06-07 | 2011-05-03 | Apple Inc. | Multi-position magnetic detents |
US8156363B2 (en) | 2007-07-02 | 2012-04-10 | Panasonic Corporation | Information processing device and mobile phone including comparison of power consumption information and remaining power |
US7733571B1 (en) | 2007-07-24 | 2010-06-08 | Rockwell Collins, Inc. | Phosphor screen and displays systems |
EP3435373B1 (en) | 2007-07-31 | 2024-04-24 | Kopin Corporation | Mobile wireless display providing speech to speech translation and avatar simulating human attributes |
US7954047B2 (en) | 2007-08-06 | 2011-05-31 | Apple Inc. | Cutting and copying discontiguous selections of cells |
US20090040296A1 (en) | 2007-08-06 | 2009-02-12 | Moscato Jonathan D | Head mounted display assembly |
CN101772725B (en) | 2007-08-08 | 2012-11-28 | 夏普株式会社 | Liquid crystal display and method for manufacturing the same |
US7904485B2 (en) | 2007-09-06 | 2011-03-08 | Apple Inc. | Graphical representation of assets stored on a portable media device |
US7777960B2 (en) | 2007-09-10 | 2010-08-17 | Microvision, Inc. | Wide field of view head-up display system |
US7656585B1 (en) | 2008-08-19 | 2010-02-02 | Microvision, Inc. | Embedded relay lens for head-up displays or the like |
EP2044884B1 (en) | 2007-10-02 | 2015-12-09 | Brainlab AG | Detection and determination of changes in position of structural parts of a body |
US8286734B2 (en) | 2007-10-23 | 2012-10-16 | Weatherford/Lamb, Inc. | Low profile rotating control device |
JP4956375B2 (en) | 2007-10-30 | 2012-06-20 | キヤノン株式会社 | Image processing apparatus and image processing method |
US7800360B2 (en) | 2007-10-31 | 2010-09-21 | Sony Ericsson Mobile Communications Ab | Connector system with magnetic audio volume control and method |
CN101589329B (en) | 2007-11-21 | 2011-10-12 | 松下电器产业株式会社 | Display |
US9158116B1 (en) | 2014-04-25 | 2015-10-13 | Osterhout Group, Inc. | Temple and ear horn assembly for headworn computer |
FR2926373B1 (en) | 2008-01-11 | 2010-07-30 | Essilor Int | TRANSPARENT COMPONENT WITH SWITCHABLE REFLECTING ELEMENTS, AND DEVICES COMPRISING SUCH A COMPONENT |
US8166421B2 (en) | 2008-01-14 | 2012-04-24 | Primesense Ltd. | Three-dimensional user interface |
JP2009171505A (en) | 2008-01-21 | 2009-07-30 | Nikon Corp | Head-mounted display |
US8384997B2 (en) | 2008-01-21 | 2013-02-26 | Primesense Ltd | Optical pattern projection |
US8786675B2 (en) | 2008-01-23 | 2014-07-22 | Michael F. Deering | Systems using eye mounted displays |
US9665686B2 (en) | 2008-02-20 | 2017-05-30 | Mako Surgical Corp. | Implant planning using corrected captured joint motion information |
US20100149073A1 (en) | 2008-11-02 | 2010-06-17 | David Chaum | Near to Eye Display System and Appliance |
CN101720445B (en) | 2008-04-30 | 2013-02-27 | 松下电器产业株式会社 | Scanning image display device, eyeglasses-style head-mount display, and automobile |
US8423288B2 (en) | 2009-11-30 | 2013-04-16 | Apple Inc. | Dynamic alerts for calendar events |
US7926951B2 (en) | 2008-07-11 | 2011-04-19 | Eastman Kodak Company | Laser illuminated micro-mirror projector |
USD680112S1 (en) | 2008-07-25 | 2013-04-16 | Michael J. Monahan | Movement filtered mouse |
US7690799B2 (en) | 2008-08-26 | 2010-04-06 | Microvision, Inc. | Optical relay for compact head up display |
US7850306B2 (en) | 2008-08-28 | 2010-12-14 | Nokia Corporation | Visual cognition aware display and visual data transmission architecture |
US8520309B2 (en) | 2008-09-04 | 2013-08-27 | Innovega Inc. | Method and apparatus to process display and non-display information |
US20100060713A1 (en) | 2008-09-10 | 2010-03-11 | Eastman Kodak Company | System and Method for Enhancing Noverbal Aspects of Communication |
US7738190B2 (en) | 2008-09-27 | 2010-06-15 | Meistream International Optical Ltd. | Optical engine and wide angle projection lens module thereof |
US20100082368A1 (en) | 2008-09-29 | 2010-04-01 | Corquality Systems, Inc. | Wrong site surgery prevention system |
US20100079508A1 (en) | 2008-09-30 | 2010-04-01 | Andrew Hodge | Electronic devices with gaze detection capabilities |
US8957835B2 (en) | 2008-09-30 | 2015-02-17 | Apple Inc. | Head-mounted display apparatus for retaining a portable electronic device with display |
US8482545B2 (en) * | 2008-10-02 | 2013-07-09 | Wacom Co., Ltd. | Combination touch and transducer input system and method |
US8585609B2 (en) | 2008-10-09 | 2013-11-19 | Neuro Kinetics, Inc. | Quantitative, non-invasive, clinical diagnosis of traumatic brain injury using simulated distance visual stimulus device for neurologic testing |
US9480919B2 (en) | 2008-10-24 | 2016-11-01 | Excalibur Ip, Llc | Reconfiguring reality using a reality overlay device |
WO2010062479A1 (en) | 2008-11-02 | 2010-06-03 | David Chaum | System and apparatus for eyeglass appliance platform |
KR100920252B1 (en) | 2008-11-07 | 2009-10-05 | 서창수 | The mouse controlled by movements of finger |
US9229233B2 (en) | 2014-02-11 | 2016-01-05 | Osterhout Group, Inc. | Micro Doppler presentations in head worn computing |
US20150277120A1 (en) | 2014-01-21 | 2015-10-01 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US20150205111A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9400390B2 (en) | 2014-01-24 | 2016-07-26 | Osterhout Group, Inc. | Peripheral lighting for head worn computing |
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US9298007B2 (en) | 2014-01-21 | 2016-03-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9366867B2 (en) | 2014-07-08 | 2016-06-14 | Osterhout Group, Inc. | Optical systems for see-through displays |
US8594467B2 (en) | 2008-12-19 | 2013-11-26 | Microsoft Corporation | Interactive virtual display system for ubiquitous devices |
GB2466497B (en) | 2008-12-24 | 2011-09-14 | Light Blue Optics Ltd | Touch sensitive holographic displays |
CN101774179B (en) | 2009-01-10 | 2012-09-19 | 鸿富锦精密工业(深圳)有限公司 | Robot connecting shaft |
US8482520B2 (en) * | 2009-01-30 | 2013-07-09 | Research In Motion Limited | Method for tap detection and for interacting with and a handheld electronic device, and a handheld electronic device configured therefor |
US8494215B2 (en) | 2009-03-05 | 2013-07-23 | Microsoft Corporation | Augmenting a field of view in connection with vision-tracking |
US20100240988A1 (en) | 2009-03-19 | 2010-09-23 | Kenneth Varga | Computer-aided system for 360 degree heads up display of safety/mission critical data |
US20140240313A1 (en) | 2009-03-19 | 2014-08-28 | Real Time Companies | Computer-aided system for 360° heads up display of safety/mission critical data |
US8629784B2 (en) | 2009-04-02 | 2014-01-14 | GM Global Technology Operations LLC | Peripheral salient feature enhancement on full-windshield head-up display |
US8159751B2 (en) | 2009-04-05 | 2012-04-17 | Miguel Marques Martins | Apparatus for head mounted image display |
US8570656B1 (en) | 2009-04-06 | 2013-10-29 | Paul Weissman | See-through optical system |
US20120081800A1 (en) | 2009-04-20 | 2012-04-05 | Dewen Cheng | Optical see-through free-form head-mounted display |
WO2010123521A1 (en) | 2009-04-21 | 2010-10-28 | The Trustees Of Columbia University In The City Of New York | Sensors for long-term and continuous monitoring of biochemicals |
US20100280904A1 (en) | 2009-05-01 | 2010-11-04 | Sumit Pradeep Ahuja | Social marketing and networking tool with user matching and content broadcasting / receiving capabilities |
US8094377B2 (en) | 2009-05-13 | 2012-01-10 | Nvis, Inc. | Head-mounted optical apparatus using an OLED display |
JP2012527149A (en) | 2009-05-13 | 2012-11-01 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | User interface with circular light guide ring with adaptive appearance according to function |
US20100309097A1 (en) | 2009-06-04 | 2010-12-09 | Roni Raviv | Head mounted 3d display |
US8282274B2 (en) | 2009-06-30 | 2012-10-09 | Autovision Technology Limited | Remote temperature sensing device |
US9728006B2 (en) | 2009-07-20 | 2017-08-08 | Real Time Companies, LLC | Computer-aided system for 360° heads up display of safety/mission critical data |
US8473241B2 (en) | 2009-08-03 | 2013-06-25 | Thales Visionix, Inc. | Navigation trajectory matching |
WO2011066030A2 (en) | 2009-09-09 | 2011-06-03 | Aerovironment, Inc. | Systems and devices for remotely operated unmanned aerial vehicle report-suppressing launcher with portable rf transparent launch tube |
US9460601B2 (en) | 2009-09-20 | 2016-10-04 | Tibet MIMAR | Driver distraction and drowsiness warning and sleepiness reduction for accident avoidance |
DE102009049849B4 (en) | 2009-10-19 | 2020-09-24 | Apple Inc. | Method for determining the pose of a camera, method for recognizing an object in a real environment and method for creating a data model |
WO2011056730A2 (en) | 2009-11-03 | 2011-05-12 | Vawd Applied Science & Technology Corporation | Standoff range sense through obstruction radar system |
US8638306B2 (en) | 2009-11-06 | 2014-01-28 | Bose Corporation | Touch-based user interface corner conductive pad |
CA3043204C (en) | 2009-11-19 | 2021-08-31 | Esight Corp. | Apparatus and method for a dynamic "region of interest" in a display system |
KR20120088754A (en) | 2009-11-21 | 2012-08-08 | 더글라스 피터 마기아리 | Head mounted display device |
US20120242251A1 (en) | 2009-12-18 | 2012-09-27 | Koninklijke Philips Electronics N.V. | Ambience lighting system using global content characteristics |
JP5146845B2 (en) | 2009-12-24 | 2013-02-20 | ブラザー工業株式会社 | Head mounted display |
US8244311B2 (en) | 2009-12-29 | 2012-08-14 | International Business Machines Corporation | Time-related power systems |
US8905547B2 (en) | 2010-01-04 | 2014-12-09 | Elbit Systems Of America, Llc | System and method for efficiently delivering rays from a light source to create an image |
US8400548B2 (en) | 2010-01-05 | 2013-03-19 | Apple Inc. | Synchronized, interactive augmented reality displays for multifunction devices |
US8922530B2 (en) | 2010-01-06 | 2014-12-30 | Apple Inc. | Communicating stylus |
US8890771B2 (en) | 2010-01-06 | 2014-11-18 | Apple Inc. | Transparent electronic device |
USD631882S1 (en) | 2010-01-31 | 2011-02-01 | Swiftpoint Limited | Computer interface device |
US8463543B2 (en) | 2010-02-05 | 2013-06-11 | Apple Inc. | Schematic maps |
US8489326B1 (en) | 2010-02-09 | 2013-07-16 | Google Inc. | Placemarked based navigation and ad auction based on placemarks |
US8353729B2 (en) | 2010-02-18 | 2013-01-15 | Apple Inc. | Low profile connector system |
CN102812421B (en) | 2010-02-19 | 2016-05-18 | 株式会社半导体能源研究所 | Display device and driving method thereof |
US9097890B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | Grating in a light transmissive illumination system for see-through near-eye display glasses |
US8482859B2 (en) | 2010-02-28 | 2013-07-09 | Osterhout Group, Inc. | See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film |
US20120194553A1 (en) | 2010-02-28 | 2012-08-02 | Osterhout Group, Inc. | Ar glasses with sensor and user action based control of external devices with feedback |
US9129295B2 (en) | 2010-02-28 | 2015-09-08 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear |
US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
US20120242698A1 (en) | 2010-02-28 | 2012-09-27 | Osterhout Group, Inc. | See-through near-eye display glasses with a multi-segment processor-controlled optical layer |
US20120212484A1 (en) | 2010-02-28 | 2012-08-23 | Osterhout Group, Inc. | System and method for display content placement using distance and location information |
US9128281B2 (en) | 2010-09-14 | 2015-09-08 | Microsoft Technology Licensing, Llc | Eyepiece with uniformly illuminated reflective display |
US20120212499A1 (en) | 2010-02-28 | 2012-08-23 | Osterhout Group, Inc. | System and method for display content control during glasses movement |
US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
US8964298B2 (en) | 2010-02-28 | 2015-02-24 | Microsoft Corporation | Video display modification based on sensor input for a see-through near-to-eye display |
US20140063055A1 (en) | 2010-02-28 | 2014-03-06 | Osterhout Group, Inc. | Ar glasses specific user interface and control interface based on a connected external device type |
US20120120103A1 (en) | 2010-02-28 | 2012-05-17 | Osterhout Group, Inc. | Alignment control in an augmented reality headpiece |
US9091851B2 (en) | 2010-02-28 | 2015-07-28 | Microsoft Technology Licensing, Llc | Light control in head mounted displays |
US20130278631A1 (en) | 2010-02-28 | 2013-10-24 | Osterhout Group, Inc. | 3d positioning of augmented reality information |
CN102906623A (en) | 2010-02-28 | 2013-01-30 | 奥斯特豪特集团有限公司 | Local advertising content on an interactive head-mounted eyepiece |
US20140063054A1 (en) | 2010-02-28 | 2014-03-06 | Osterhout Group, Inc. | Ar glasses specific control interface based on a connected external device type |
US8472120B2 (en) | 2010-02-28 | 2013-06-25 | Osterhout Group, Inc. | See-through near-eye display glasses with a small scale image source |
US20110213664A1 (en) | 2010-02-28 | 2011-09-01 | Osterhout Group, Inc. | Local advertising content on an interactive head-mounted eyepiece |
US20120194550A1 (en) | 2010-02-28 | 2012-08-02 | Osterhout Group, Inc. | Sensor-based command and control of external devices with feedback from the external device to the ar glasses |
US8477425B2 (en) | 2010-02-28 | 2013-07-02 | Osterhout Group, Inc. | See-through near-eye display glasses including a partially reflective, partially transmitting optical element |
US9182596B2 (en) | 2010-02-28 | 2015-11-10 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light |
US8488246B2 (en) | 2010-02-28 | 2013-07-16 | Osterhout Group, Inc. | See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film |
KR20110101944A (en) | 2010-03-10 | 2011-09-16 | 삼성전자주식회사 | 3-dimension glasses, method for driving 3-dimension glass and system for providing 3d image |
US20110234631A1 (en) | 2010-03-25 | 2011-09-29 | Bizmodeline Co., Ltd. | Augmented reality systems |
US8678581B2 (en) | 2010-04-13 | 2014-03-25 | Pixeloptics, Inc. | Attachable electro-active lens systems |
US9124692B2 (en) | 2010-04-14 | 2015-09-01 | Adesh Bhargava | System and method for optimizing communication |
WO2011130752A1 (en) | 2010-04-16 | 2011-10-20 | Mastandrea Nicholas J | Wearable motion sensing computing interface |
WO2011136784A1 (en) | 2010-04-29 | 2011-11-03 | Hewlett-Packard Development Company, L.P. | Participant collaboration on a displayed version of an object |
US8690750B2 (en) | 2010-05-14 | 2014-04-08 | Wesley W. O. Krueger | System and method for measuring and minimizing the effects of vertigo, motion sickness, motion intolerance, and/or spatial disorientation |
JP2011242685A (en) | 2010-05-20 | 2011-12-01 | Hitachi Consumer Electronics Co Ltd | Image display device |
US8570273B1 (en) | 2010-05-20 | 2013-10-29 | Lockheed Martin Corporation | Input device configured to control a computing device |
US8791900B2 (en) | 2010-05-21 | 2014-07-29 | Microsoft Corporation | Computing device notes |
US8594425B2 (en) | 2010-05-31 | 2013-11-26 | Primesense Ltd. | Analysis of three-dimensional scenes |
WO2011155118A1 (en) | 2010-06-07 | 2011-12-15 | パナソニック株式会社 | Object selection apparatus, object selection program, and object selection method |
US9329767B1 (en) | 2010-06-08 | 2016-05-03 | Google Inc. | User-specific customization based on characteristics of user-interaction |
US8531394B2 (en) | 2010-07-23 | 2013-09-10 | Gregory A. Maltz | Unitized, vision-controlled, wireless eyeglasses transceiver |
EP2410083B1 (en) | 2010-07-23 | 2013-03-27 | Philippe Pierret | Improvements in or relating to cutting machines |
WO2012016047A1 (en) | 2010-07-28 | 2012-02-02 | Flex Lighting Ii, Llc | Light emitting device with optical redundancy |
USD630213S1 (en) | 2010-07-28 | 2011-01-04 | Senduzy Corp. | Computer mouse |
US20120026088A1 (en) | 2010-08-01 | 2012-02-02 | T-Mobile Usa, Inc. | Handheld device with projected user interface and interactive image |
US9760123B2 (en) | 2010-08-06 | 2017-09-12 | Dynavox Systems Llc | Speech generation device with a projected display and optical inputs |
JP5499985B2 (en) | 2010-08-09 | 2014-05-21 | ソニー株式会社 | Display assembly |
US8957948B2 (en) | 2010-08-24 | 2015-02-17 | Siemens Corporation | Geometric calibration of head-worn multi-camera eye tracking system |
US20120050140A1 (en) | 2010-08-25 | 2012-03-01 | Border John N | Head-mounted display control |
JP5459150B2 (en) | 2010-09-03 | 2014-04-02 | セイコーエプソン株式会社 | Light guide plate and virtual image display device including the same |
US8619005B2 (en) | 2010-09-09 | 2013-12-31 | Eastman Kodak Company | Switchable head-mounted display transition |
US8649099B2 (en) | 2010-09-13 | 2014-02-11 | Vuzix Corporation | Prismatic multiple waveguide for near-eye display |
US8773464B2 (en) | 2010-09-15 | 2014-07-08 | Sharp Laboratories Of America, Inc. | Methods and systems for collaborative-writing-surface image formation |
WO2012040030A2 (en) | 2010-09-20 | 2012-03-29 | Kopin Corporation | Bluetooth or other wireless interface with power management for head mounted display |
US8941559B2 (en) | 2010-09-21 | 2015-01-27 | Microsoft Corporation | Opacity filter for display device |
US8376548B2 (en) | 2010-09-22 | 2013-02-19 | Vuzix Corporation | Near-eye display with on-axis symmetry |
US20120078628A1 (en) | 2010-09-28 | 2012-03-29 | Ghulman Mahmoud M | Head-mounted text display system and method for the hearing impaired |
EP2624217A4 (en) | 2010-09-30 | 2017-07-26 | FUJIFILM Corporation | Information presentation device, digital camera, head mount display, projector, information presentation method, and information presentation program |
US9202233B1 (en) | 2010-09-30 | 2015-12-01 | Imdb.Com, Inc. | Event attendance determinations |
WO2012054231A2 (en) | 2010-10-04 | 2012-04-26 | Gerard Dirk Smits | System and method for 3-d projection and enhancements for interactivity |
US8837880B2 (en) | 2010-10-08 | 2014-09-16 | Seiko Epson Corporation | Virtual image display device |
US20120092329A1 (en) | 2010-10-13 | 2012-04-19 | Qualcomm Incorporated | Text-based 3d augmented reality |
US8884984B2 (en) | 2010-10-15 | 2014-11-11 | Microsoft Corporation | Fusing virtual content into real content |
US9632315B2 (en) | 2010-10-21 | 2017-04-25 | Lockheed Martin Corporation | Head-mounted display apparatus employing one or more fresnel lenses |
US20140043682A1 (en) | 2010-10-21 | 2014-02-13 | Patrick Hussey | Flip Up Interchangeable System |
US8692845B2 (en) | 2010-10-28 | 2014-04-08 | Eastman Kodak Company | Head-mounted display control with image-content analysis |
US9292973B2 (en) | 2010-11-08 | 2016-03-22 | Microsoft Technology Licensing, Llc | Automatic variable virtual focus for augmented reality displays |
US20120113514A1 (en) | 2010-11-08 | 2012-05-10 | Polycom, Inc. | Picoprojector with Image Stabilization [Image-Stabilized Projector] |
US8576276B2 (en) | 2010-11-18 | 2013-11-05 | Microsoft Corporation | Head-mounted display device which provides surround video |
US9304319B2 (en) | 2010-11-18 | 2016-04-05 | Microsoft Technology Licensing, Llc | Automatic focus improvement for augmented reality displays |
BR112013014975A2 (en) | 2010-12-16 | 2020-08-11 | Lockheed Martin Corporation | collimation display with pixel lenses |
US20130154913A1 (en) | 2010-12-16 | 2013-06-20 | Siemens Corporation | Systems and methods for a gaze and gesture interface |
US9690099B2 (en) | 2010-12-17 | 2017-06-27 | Microsoft Technology Licensing, Llc | Optimized focal area for augmented reality displays |
WO2012088454A1 (en) | 2010-12-22 | 2012-06-28 | Energy Focus, Inc. | An elongated led lighting arrangement |
US9280938B2 (en) | 2010-12-23 | 2016-03-08 | Microsoft Technology Licensing, Llc | Timed sequence mixed color display |
US8665214B2 (en) | 2010-12-29 | 2014-03-04 | Qualcomm Incorporated | Extending battery life of a portable electronic device |
PT105469A (en) | 2011-01-04 | 2012-11-19 | Marta Isabel Santos Paiva Ferraz Da Conceicao | INTERACTIVE FACT FOR VIDEO GAMES IN WHICH ELECTRONIC SENSORS AND PHYSICAL OBJECTS ARE USED |
US8531773B2 (en) | 2011-01-10 | 2013-09-10 | Microvision, Inc. | Substrate guided relay having a homogenizing layer |
US20120188245A1 (en) | 2011-01-20 | 2012-07-26 | Apple Inc. | Display resolution increase with mechanical actuation |
US8366273B2 (en) | 2011-01-31 | 2013-02-05 | National Chiao Tung University | Iris image definition estimation system using the astigmatism of the corneal reflection of a non-coaxial light source |
US8787006B2 (en) | 2011-01-31 | 2014-07-22 | Apple Inc. | Wrist-worn electronic device and methods therefor |
JP5742263B2 (en) | 2011-02-04 | 2015-07-01 | セイコーエプソン株式会社 | Virtual image display device |
JP5760465B2 (en) | 2011-02-04 | 2015-08-12 | セイコーエプソン株式会社 | Virtual image display device |
JP2012163656A (en) | 2011-02-04 | 2012-08-30 | Seiko Epson Corp | Virtual image display device |
JP5633406B2 (en) | 2011-02-04 | 2014-12-03 | セイコーエプソン株式会社 | Virtual image display device |
EP3527121B1 (en) | 2011-02-09 | 2023-08-23 | Apple Inc. | Gesture detection in a 3d mapping environment |
US20120224060A1 (en) | 2011-02-10 | 2012-09-06 | Integrated Night Vision Systems Inc. | Reducing Driver Distraction Using a Heads-Up Display |
WO2012108668A2 (en) | 2011-02-10 | 2012-08-16 | 삼성전자 주식회사 | Portable device comprising a touch-screen display, and method for controlling same |
JP5720290B2 (en) | 2011-02-16 | 2015-05-20 | セイコーエプソン株式会社 | Virtual image display device |
US20120212593A1 (en) | 2011-02-17 | 2012-08-23 | Orcam Technologies Ltd. | User wearable visual assistance system |
EP2490130B1 (en) | 2011-02-18 | 2019-11-06 | BlackBerry Limited | Quick text entry on a portable electronic device |
WO2012118573A1 (en) | 2011-02-28 | 2012-09-07 | Osterhout Group, Inc. | Light control in head mounted displays |
US20120223885A1 (en) | 2011-03-02 | 2012-09-06 | Microsoft Corporation | Immersive display experience |
US8670183B2 (en) | 2011-03-07 | 2014-03-11 | Microsoft Corporation | Augmented view of advertisements |
KR101383238B1 (en) | 2011-03-07 | 2014-04-08 | 케이비에이2, 인코포레이티드 | Systems and methods for analytic data gathering from image providers at an event or geographic location |
US9013264B2 (en) | 2011-03-12 | 2015-04-21 | Perceptive Devices, Llc | Multipurpose controller for electronic devices, facial expressions management and drowsiness detection |
US9033502B2 (en) | 2011-03-18 | 2015-05-19 | Sensomotoric Instruments Gesellschaft Fur Innovative Sensorik Mbh | Optical measuring device and method for capturing at least one parameter of at least one eye wherein an illumination characteristic is adjustable |
EP2499964B1 (en) | 2011-03-18 | 2015-04-15 | SensoMotoric Instruments Gesellschaft für innovative Sensorik mbH | Optical measuring device and system |
US9895058B2 (en) | 2011-03-25 | 2018-02-20 | Carl Zeiss Meditec Ag | Heads-up vision analyzer |
US9142062B2 (en) | 2011-03-29 | 2015-09-22 | Qualcomm Incorporated | Selective hand occlusion over virtual projections onto physical surfaces using skeletal tracking |
JP2012212990A (en) | 2011-03-30 | 2012-11-01 | Brother Ind Ltd | Head-mounted display |
US8953242B2 (en) | 2011-03-31 | 2015-02-10 | Honeywell International Inc. | Varible focus stereoscopic display system and method |
US10061997B2 (en) | 2011-04-11 | 2018-08-28 | Apple Inc. | Handwriting capture techniques |
US20120264510A1 (en) | 2011-04-12 | 2012-10-18 | Microsoft Corporation | Integrated virtual environment |
US8885877B2 (en) | 2011-05-20 | 2014-11-11 | Eyefluence, Inc. | Systems and methods for identifying gaze tracking scene reference locations |
US9330499B2 (en) | 2011-05-20 | 2016-05-03 | Microsoft Technology Licensing, Llc | Event augmentation with real-time information |
US8882597B2 (en) | 2011-05-25 | 2014-11-11 | Sony Computer Entertainment America Llc | Hybrid separable motion controller |
US20120306850A1 (en) | 2011-06-02 | 2012-12-06 | Microsoft Corporation | Distributed asynchronous localization and mapping for augmented reality |
US8766819B2 (en) | 2011-06-17 | 2014-07-01 | The Boeing Company | Crew allertness monitoring of biowaves |
US20120326948A1 (en) | 2011-06-22 | 2012-12-27 | Microsoft Corporation | Environmental-light filter for see-through head-mounted display device |
US20120327040A1 (en) * | 2011-06-22 | 2012-12-27 | Simon David I | Identifiable stylus |
US20120327116A1 (en) | 2011-06-23 | 2012-12-27 | Microsoft Corporation | Total field of view classification for head-mounted display |
US20130002724A1 (en) | 2011-06-30 | 2013-01-03 | Google Inc. | Wearable computer with curved display and navigation tool |
US9024843B2 (en) | 2011-06-30 | 2015-05-05 | Google Inc. | Wearable computer with curved display and navigation tool |
US8558759B1 (en) | 2011-07-08 | 2013-10-15 | Google Inc. | Hand gestures to signify what is important |
US8228315B1 (en) | 2011-07-12 | 2012-07-24 | Google Inc. | Methods and systems for a virtual input device |
US8963068B2 (en) | 2011-07-28 | 2015-02-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics Space Administration | System and method for nanostructure apodization mask for transmitter signal suppression in a duplex telescope |
US8593795B1 (en) | 2011-08-09 | 2013-11-26 | Google Inc. | Weight distribution for wearable computing device |
CA2750287C (en) | 2011-08-29 | 2012-07-03 | Microsoft Corporation | Gaze detection in a see-through, near-eye, mixed reality display |
EP2565865A1 (en) | 2011-09-01 | 2013-03-06 | Research In Motion Limited | Data display adapted for bright ambient light |
TW201312200A (en) | 2011-09-14 | 2013-03-16 | Hon Hai Prec Ind Co Ltd | Glass adjust structure |
JP6127359B2 (en) | 2011-09-15 | 2017-05-17 | セイコーエプソン株式会社 | Virtual image display device and method of manufacturing virtual image display device |
US8786686B1 (en) | 2011-09-16 | 2014-07-22 | Google Inc. | Head mounted display eyepiece with integrated depth sensing |
US9354445B1 (en) | 2011-09-16 | 2016-05-31 | Google Inc. | Information processing on a head-mountable device |
US8223024B1 (en) | 2011-09-21 | 2012-07-17 | Google Inc. | Locking mechanism based on unnatural movement of head-mounted display |
US8941560B2 (en) | 2011-09-21 | 2015-01-27 | Google Inc. | Wearable computer with superimposed controls and instructions for external device |
US8767306B1 (en) | 2011-09-22 | 2014-07-01 | Google Inc. | Display system |
US8998414B2 (en) | 2011-09-26 | 2015-04-07 | Microsoft Technology Licensing, Llc | Integrated eye tracking and display system |
EP2761362A4 (en) | 2011-09-26 | 2014-08-06 | Microsoft Corp | Video display modification based on sensor input for a see-through near-to-eye display |
JP5786601B2 (en) | 2011-09-28 | 2015-09-30 | セイコーエプソン株式会社 | Electro-optical device and electronic apparatus |
JP5834705B2 (en) | 2011-09-28 | 2015-12-24 | セイコーエプソン株式会社 | Electro-optical device and electronic apparatus |
US8847988B2 (en) | 2011-09-30 | 2014-09-30 | Microsoft Corporation | Exercising applications for personal audio/visual system |
US9121724B2 (en) | 2011-09-30 | 2015-09-01 | Apple Inc. | 3D position tracking for panoramic imagery navigation |
US20130083003A1 (en) | 2011-09-30 | 2013-04-04 | Kathryn Stone Perez | Personal audio/visual system |
JP2013080040A (en) | 2011-10-03 | 2013-05-02 | Seiko Epson Corp | Electrooptical device, method for manufacturing electrooptical device, and electronic equipment |
US20150153572A1 (en) | 2011-10-05 | 2015-06-04 | Google Inc. | Adjustment of Location of Superimposed Image |
US20130088413A1 (en) | 2011-10-05 | 2013-04-11 | Google Inc. | Method to Autofocus on Near-Eye Display |
US20130088507A1 (en) | 2011-10-06 | 2013-04-11 | Nokia Corporation | Method and apparatus for controlling the visual representation of information upon a see-through display |
US9081177B2 (en) | 2011-10-07 | 2015-07-14 | Google Inc. | Wearable computer with nearby object response |
US8813109B2 (en) | 2011-10-21 | 2014-08-19 | The Nielsen Company (Us), Llc | Methods and apparatus to identify exposure to 3D media presentations |
USD666237S1 (en) | 2011-10-24 | 2012-08-28 | Google Inc. | Wearable display device |
US8970452B2 (en) | 2011-11-02 | 2015-03-03 | Google Inc. | Imaging method |
US8752963B2 (en) | 2011-11-04 | 2014-06-17 | Microsoft Corporation | See-through display brightness control |
US9292082B1 (en) | 2011-11-08 | 2016-03-22 | Google Inc. | Text-entry for a computing device |
JP5783885B2 (en) | 2011-11-11 | 2015-09-24 | 株式会社東芝 | Information presentation apparatus, method and program thereof |
US9311883B2 (en) | 2011-11-11 | 2016-04-12 | Microsoft Technology Licensing, Llc | Recalibration of a flexible mixed reality device |
US8553910B1 (en) | 2011-11-17 | 2013-10-08 | Jianchun Dong | Wearable computing device with behind-ear bone-conduction speaker |
US20150143297A1 (en) | 2011-11-22 | 2015-05-21 | Google Inc. | Input detection for a head mounted device |
US8611015B2 (en) | 2011-11-22 | 2013-12-17 | Google Inc. | User interface |
US8922523B2 (en) | 2011-11-29 | 2014-12-30 | Apple Inc. | Embedded force measurement |
US8235529B1 (en) | 2011-11-30 | 2012-08-07 | Google Inc. | Unlocking a screen using eye tracking information |
US8872853B2 (en) | 2011-12-01 | 2014-10-28 | Microsoft Corporation | Virtual light in augmented reality |
US9068845B2 (en) * | 2011-12-16 | 2015-06-30 | 3M Innovative Properties Company | Optical digitizer system with position-unique photoluminescent indicia |
JP2013125247A (en) | 2011-12-16 | 2013-06-24 | Sony Corp | Head-mounted display and information display apparatus |
US8824779B1 (en) | 2011-12-20 | 2014-09-02 | Christopher Charles Smyth | Apparatus and method for determining eye gaze from stereo-optic views |
US9075453B2 (en) | 2011-12-29 | 2015-07-07 | Khalifa University of Science, Technology & Research (KUSTAR) | Human eye controlled computer mouse interface |
US9292195B2 (en) | 2011-12-29 | 2016-03-22 | Apple Inc. | Device, method, and graphical user interface for configuring and implementing restricted interactions for applications |
US9141194B1 (en) | 2012-01-04 | 2015-09-22 | Google Inc. | Magnetometer-based gesture sensing with a wearable device |
US10013053B2 (en) | 2012-01-04 | 2018-07-03 | Tobii Ab | System for gaze interaction |
US8982471B1 (en) | 2012-01-04 | 2015-03-17 | Google Inc. | HMD image source as dual-purpose projector/near-eye display |
US20130176626A1 (en) | 2012-01-05 | 2013-07-11 | Google Inc. | Wearable device assembly with input and output structures |
US8955973B2 (en) | 2012-01-06 | 2015-02-17 | Google Inc. | Method and system for input detection using structured light projection |
US8878749B1 (en) | 2012-01-06 | 2014-11-04 | Google Inc. | Systems and methods for position estimation |
US9064436B1 (en) | 2012-01-06 | 2015-06-23 | Google Inc. | Text input on touch sensitive interface |
US8384999B1 (en) | 2012-01-09 | 2013-02-26 | Cerr Limited | Optical modules |
US8638989B2 (en) | 2012-01-17 | 2014-01-28 | Leap Motion, Inc. | Systems and methods for capturing motion in three-dimensional space |
US8971023B2 (en) | 2012-03-21 | 2015-03-03 | Google Inc. | Wearable computing device frame |
BR112014018154A8 (en) | 2012-01-24 | 2017-07-11 | Univ Arizona | HEAD MOUNTED EYE MONITORING VISOR |
WO2013110846A1 (en) | 2012-01-26 | 2013-08-01 | Nokia Corporation | Capacitive eye tracking sensor |
US8894484B2 (en) | 2012-01-30 | 2014-11-25 | Microsoft Corporation | Multiplayer game invitation system |
US20130194389A1 (en) | 2012-01-31 | 2013-08-01 | Ben Vaught | Head-mounted display device to measure attentiveness |
US8854433B1 (en) | 2012-02-03 | 2014-10-07 | Aquifi, Inc. | Method and system enabling natural user interface gestures with an electronic system |
US9076368B2 (en) | 2012-02-06 | 2015-07-07 | Battelle Memorial Institute | Image generation systems and image generation methods |
US8982014B2 (en) | 2012-02-06 | 2015-03-17 | Battelle Memorial Institute | Image generation systems and image generation methods |
US9651417B2 (en) | 2012-02-15 | 2017-05-16 | Apple Inc. | Scanning depth engine |
US9001030B2 (en) | 2012-02-15 | 2015-04-07 | Google Inc. | Heads up display |
US20140247286A1 (en) | 2012-02-20 | 2014-09-04 | Google Inc. | Active Stabilization for Heads-Up Displays |
US8745058B1 (en) | 2012-02-21 | 2014-06-03 | Google Inc. | Dynamic data item searching |
US20130214909A1 (en) | 2012-02-22 | 2013-08-22 | Qualcomm Incorporated | Airplane mode for wireless transmitter device and system using short-range wireless broadcasts |
US9977238B2 (en) | 2012-02-24 | 2018-05-22 | Seiko Epson Corporation | Virtual image display apparatus |
US9569986B2 (en) | 2012-02-27 | 2017-02-14 | The Nielsen Company (Us), Llc | System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications |
US8947382B2 (en) | 2012-02-28 | 2015-02-03 | Motorola Mobility Llc | Wearable display device, corresponding systems, and method for presenting output on the same |
JP5970872B2 (en) | 2012-03-07 | 2016-08-17 | セイコーエプソン株式会社 | Head-mounted display device and method for controlling head-mounted display device |
US9075249B2 (en) | 2012-03-07 | 2015-07-07 | Google Inc. | Eyeglass frame with input and output functionality |
US8970495B1 (en) | 2012-03-09 | 2015-03-03 | Google Inc. | Image stabilization for color-sequential displays |
US8866702B1 (en) | 2012-03-13 | 2014-10-21 | Google Inc. | Use of optical display system as a visual indicator for a wearable computing device |
US9142072B2 (en) | 2012-03-14 | 2015-09-22 | Flextronics Ap, Llc | Information shared between a vehicle and user devices |
US20130241805A1 (en) | 2012-03-15 | 2013-09-19 | Google Inc. | Using Convergence Angle to Select Among Different UI Elements |
JP5884576B2 (en) | 2012-03-16 | 2016-03-15 | セイコーエプソン株式会社 | Head-mounted display device and method for controlling head-mounted display device |
US8760765B2 (en) | 2012-03-19 | 2014-06-24 | Google Inc. | Optical beam tilt for offset head mounted display |
US8947323B1 (en) | 2012-03-20 | 2015-02-03 | Hayes Solos Raffle | Content display methods |
US8907867B2 (en) | 2012-03-21 | 2014-12-09 | Google Inc. | Don and doff sensing using capacitive sensors |
US8985803B2 (en) | 2012-03-21 | 2015-03-24 | Microsoft Technology Licensing, Llc | Freeform-prism eyepiece with illumination waveguide |
US9274338B2 (en) | 2012-03-21 | 2016-03-01 | Microsoft Technology Licensing, Llc | Increasing field of view of reflective waveguide |
US9116337B1 (en) | 2012-03-21 | 2015-08-25 | Google Inc. | Increasing effective eyebox size of an HMD |
JP5958689B2 (en) | 2012-03-22 | 2016-08-02 | セイコーエプソン株式会社 | Head-mounted display device |
US9096920B1 (en) | 2012-03-22 | 2015-08-04 | Google Inc. | User interface method |
JP5987387B2 (en) | 2012-03-22 | 2016-09-07 | ソニー株式会社 | Head mounted display and surgical system |
USD718305S1 (en) | 2012-03-22 | 2014-11-25 | Google Inc. | Wearable display device |
US20130248691A1 (en) | 2012-03-23 | 2013-09-26 | Google Inc. | Methods and Systems for Sensing Ambient Light |
JP5938977B2 (en) | 2012-03-23 | 2016-06-22 | ソニー株式会社 | Head mounted display and surgical system |
US20150316766A1 (en) | 2012-03-23 | 2015-11-05 | Google Inc. | Enhancing Readability on Head-Mounted Display |
US9207468B2 (en) | 2012-03-30 | 2015-12-08 | Honeywell International Inc. | Personal protection equipment verification |
US9128522B2 (en) | 2012-04-02 | 2015-09-08 | Google Inc. | Wink gesture input for a head-mountable device |
JP6060512B2 (en) | 2012-04-02 | 2017-01-18 | セイコーエプソン株式会社 | Head-mounted display device |
TWI506481B (en) * | 2012-04-02 | 2015-11-01 | Hon Hai Prec Ind Co Ltd | Photoelectric blackboard pen |
US9851563B2 (en) | 2012-04-05 | 2017-12-26 | Magic Leap, Inc. | Wide-field of view (FOV) imaging devices with active foveation capability |
US8937591B2 (en) | 2012-04-06 | 2015-01-20 | Apple Inc. | Systems and methods for counteracting a perceptual fading of a movable indicator |
US9417660B2 (en) | 2012-04-25 | 2016-08-16 | Kopin Corporation | Collapsible head set computer |
US20130297460A1 (en) | 2012-05-01 | 2013-11-07 | Zambala Lllp | System and method for facilitating transactions of a physical product or real life service via an augmented reality environment |
US20130293530A1 (en) | 2012-05-04 | 2013-11-07 | Kathryn Stone Perez | Product augmentation and advertising in see through displays |
US20130300634A1 (en) | 2012-05-09 | 2013-11-14 | Nokia Corporation | Method and apparatus for determining representations of displayed information based on focus distance |
USD718309S1 (en) | 2012-05-10 | 2014-11-25 | Stealth International, Llc | Stealth 3D mouse |
US8893164B1 (en) | 2012-05-16 | 2014-11-18 | Google Inc. | Audio system |
CN104285438B (en) | 2012-05-21 | 2018-09-07 | 奥林巴斯株式会社 | Glasses type wearable device, the front part of glasses type wearable device and temple portion |
US9747306B2 (en) | 2012-05-25 | 2017-08-29 | Atheer, Inc. | Method and apparatus for identifying input features for later recognition |
USD690684S1 (en) | 2012-05-30 | 2013-10-01 | Samsung Electronics Co., Ltd. | Remote controller |
TWI474069B (en) | 2012-06-05 | 2015-02-21 | Largan Precision Co Ltd | Image capturing optical lens assembly |
US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
JP2013257492A (en) | 2012-06-14 | 2013-12-26 | Sony Corp | Control device, display device, control method, illumination control method, and program |
EP2675173A1 (en) | 2012-06-15 | 2013-12-18 | Thomson Licensing | Method and apparatus for fusion of images |
US9374655B1 (en) | 2012-06-18 | 2016-06-21 | Amazon Technologies, Inc. | Managing a transmission power level |
US9398844B2 (en) | 2012-06-18 | 2016-07-26 | Microsoft Technology Licensing, Llc | Color vision deficit correction |
US9219901B2 (en) | 2012-06-19 | 2015-12-22 | Qualcomm Incorporated | Reactive user interface for head-mounted display |
US9874936B2 (en) | 2012-06-22 | 2018-01-23 | Cape Evolution Limited | Wearable electronic device |
US9696547B2 (en) | 2012-06-25 | 2017-07-04 | Microsoft Technology Licensing, Llc | Mixed reality system learned input and functions |
US9645394B2 (en) | 2012-06-25 | 2017-05-09 | Microsoft Technology Licensing, Llc | Configured virtual environments |
US20130346245A1 (en) | 2012-06-26 | 2013-12-26 | Ebay, Inc. | System and Method for Conducting Delegated Payments |
JP2014013320A (en) | 2012-07-04 | 2014-01-23 | Sony Corp | Head-mounted type display device and optical unit |
KR101861380B1 (en) | 2012-07-16 | 2018-05-28 | 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 | A Method of Providing Contents Using Head Mounted Display and a Head Mounted Display Thereof |
CN103576315B (en) | 2012-07-30 | 2017-03-01 | 联想(北京)有限公司 | Display device |
TWD152714S (en) | 2012-08-15 | 2013-04-01 | 昆盈企業股份有限公司 | Ring mouse |
US9692875B2 (en) | 2012-08-31 | 2017-06-27 | Analog Devices, Inc. | Grip detection and capacitive gesture system for mobile devices |
KR101958778B1 (en) | 2012-08-31 | 2019-03-15 | 엘지전자 주식회사 | A Head Mounted Display and a Method for Controlling a Digital Device Using the Same |
ITTO20120756A1 (en) | 2012-08-31 | 2014-03-01 | St Microelectronics Srl | PICO-PROJECTOR DEVICE STABILIZED AND RELATIVE TO IMAGE STABILIZATION METHOD |
JP2014049934A (en) | 2012-08-31 | 2014-03-17 | Sony Corp | Head-mounted display |
US8836768B1 (en) | 2012-09-04 | 2014-09-16 | Aquifi, Inc. | Method and system enabling natural user interface gestures with user wearable glasses |
US9122966B2 (en) | 2012-09-07 | 2015-09-01 | Lawrence F. Glaser | Communication device |
US9798144B2 (en) | 2012-09-12 | 2017-10-24 | Sony Corporation | Wearable image display device to control display of image |
JP6036065B2 (en) | 2012-09-14 | 2016-11-30 | 富士通株式会社 | Gaze position detection device and gaze position detection method |
US8482527B1 (en) | 2012-09-14 | 2013-07-09 | Lg Electronics Inc. | Apparatus and method of providing user interface on head mounted display and head mounted display thereof |
USD711456S1 (en) | 2012-09-25 | 2014-08-19 | Google Inc. | Wearable display device |
USD710928S1 (en) | 2012-09-25 | 2014-08-12 | Google Inc. | Wearable display device |
US9063563B1 (en) | 2012-09-25 | 2015-06-23 | Amazon Technologies, Inc. | Gesture actions for interface elements |
US10573037B2 (en) | 2012-12-20 | 2020-02-25 | Sri International | Method and apparatus for mentoring via an augmented reality assistant |
US10620902B2 (en) | 2012-09-28 | 2020-04-14 | Nokia Technologies Oy | Method and apparatus for providing an indication regarding content presented to another user |
US20140101608A1 (en) | 2012-10-05 | 2014-04-10 | Google Inc. | User Interfaces for Head-Mountable Devices |
USD697914S1 (en) | 2012-10-09 | 2014-01-21 | Logitech Europe S.A. | Wireless input device |
US20150212647A1 (en) | 2012-10-10 | 2015-07-30 | Samsung Electronics Co., Ltd. | Head mounted display apparatus and method for displaying a content |
US20140104692A1 (en) | 2012-10-11 | 2014-04-17 | Sony Computer Entertainment Europe Limited | Head mountable display |
US8994614B2 (en) | 2012-10-11 | 2015-03-31 | Sony Computer Entertainment Europe Limited | Head mountable display |
US10013138B2 (en) | 2012-10-22 | 2018-07-03 | Atheer, Inc. | Method and apparatus for secure data entry using a virtual interface |
KR20140052294A (en) | 2012-10-24 | 2014-05-07 | 삼성전자주식회사 | Method for providing user with virtual image in head-mounted display device, machine-readable storage medium and head-mounted display device |
US8750541B1 (en) | 2012-10-31 | 2014-06-10 | Google Inc. | Parametric array for a head-mountable device |
US9524585B2 (en) | 2012-11-05 | 2016-12-20 | Microsoft Technology Licensing, Llc | Constructing augmented reality environment with pre-computed lighting |
US20140129328A1 (en) | 2012-11-07 | 2014-05-08 | Microsoft Corporation | Providing augmented purchase schemes |
KR101385681B1 (en) | 2012-11-08 | 2014-04-15 | 삼성전자 주식회사 | Head-mount type display apparatus and control method thereof |
US8743052B1 (en) | 2012-11-24 | 2014-06-03 | Eric Jeffrey Keller | Computing interface system |
US20140146394A1 (en) | 2012-11-28 | 2014-05-29 | Nigel David Tout | Peripheral display for a near-eye display device |
US9189021B2 (en) | 2012-11-29 | 2015-11-17 | Microsoft Technology Licensing, Llc | Wearable food nutrition feedback system |
US20140152676A1 (en) | 2012-11-30 | 2014-06-05 | Dave Rohn | Low latency image display on multi-display device |
US8867139B2 (en) | 2012-11-30 | 2014-10-21 | Google Inc. | Dual axis internal optical beam tilt for eyepiece of an HMD |
US20140152558A1 (en) | 2012-11-30 | 2014-06-05 | Tom Salter | Direct hologram manipulation using imu |
US20140152530A1 (en) | 2012-12-03 | 2014-06-05 | Honeywell International Inc. | Multimedia near to eye display system |
US20140160170A1 (en) | 2012-12-06 | 2014-06-12 | Nokia Corporation | Provision of an Image Element on a Display Worn by a User |
US20140160157A1 (en) | 2012-12-11 | 2014-06-12 | Adam G. Poulos | People-triggered holographic reminders |
USD685019S1 (en) | 2012-12-11 | 2013-06-25 | Weihua Li | Sunglasses camera |
US9081210B2 (en) | 2012-12-12 | 2015-07-14 | Microsoft Technology Licensing, Llc | Head worn device having temple arms to provide long axis compression |
US20160140766A1 (en) | 2012-12-12 | 2016-05-19 | Sulon Technologies Inc. | Surface projection system and method for augmented reality |
US20140160137A1 (en) | 2012-12-12 | 2014-06-12 | Qualcomm Mems Technologies, Inc. | Field-sequential color mode transitions |
US20140160055A1 (en) | 2012-12-12 | 2014-06-12 | Jeffrey Margolis | Wearable multi-modal input device for augmented reality |
US9448407B2 (en) | 2012-12-13 | 2016-09-20 | Seiko Epson Corporation | Head-mounted display device, control method for head-mounted display device, and work supporting system |
US10146053B2 (en) | 2012-12-19 | 2018-12-04 | Microsoft Technology Licensing, Llc | Multiplexed hologram tiling in a waveguide display |
US9996150B2 (en) | 2012-12-19 | 2018-06-12 | Qualcomm Incorporated | Enabling augmented reality using eye gaze tracking |
US20140176591A1 (en) | 2012-12-26 | 2014-06-26 | Georg Klein | Low-latency fusing of color image data |
KR102004265B1 (en) | 2012-12-28 | 2019-07-26 | 엘지전자 주식회사 | Head mounted display and the method of video communication |
US8948935B1 (en) | 2013-01-02 | 2015-02-03 | Google Inc. | Providing a medical support device via an unmanned aerial vehicle |
JP6149403B2 (en) | 2013-01-07 | 2017-06-21 | セイコーエプソン株式会社 | Display device and control method of display device |
US20140204759A1 (en) | 2013-01-21 | 2014-07-24 | Mitsubishi Electric Research Laboratories, Inc. | Load Balanced Routing for Low Power and Lossy Networks |
JP5915552B2 (en) | 2013-01-23 | 2016-05-11 | ソニー株式会社 | Head mounted display, display device and input device |
US9370302B2 (en) | 2014-07-08 | 2016-06-21 | Wesley W. O. Krueger | System and method for the measurement of vestibulo-ocular reflex to improve human performance in an occupational environment |
US8989773B2 (en) | 2013-01-29 | 2015-03-24 | Apple Inc. | Sharing location information among devices |
US9223136B1 (en) | 2013-02-04 | 2015-12-29 | Google Inc. | Preparation of image capture device in response to pre-image-capture signal |
US20140222929A1 (en) | 2013-02-06 | 2014-08-07 | Brent Grossman | System, Method And Device For Creation And Notification Of Contextual Messages |
WO2014127249A1 (en) | 2013-02-14 | 2014-08-21 | Apx Labs, Llc | Representing and interacting with geo-located markers |
US9223139B2 (en) | 2013-02-15 | 2015-12-29 | Google Inc. | Cascading optics in optical combiners of head mounted displays |
WO2014130396A1 (en) | 2013-02-19 | 2014-08-28 | Rubeyes Intangible Holdings, Llc | Continuous proximity and relational analysis of user devices in a network |
EP2959394B1 (en) | 2013-02-22 | 2021-05-12 | Facebook Technologies, LLC. | Methods and devices that combine muscle activity sensor signals and inertial sensor signals for gesture-based control |
US20140253605A1 (en) | 2013-03-05 | 2014-09-11 | John N. Border | Controlling brightness of a displayed image |
US10685487B2 (en) | 2013-03-06 | 2020-06-16 | Qualcomm Incorporated | Disabling augmented reality (AR) devices at speed |
IL313175A (en) | 2013-03-11 | 2024-07-01 | Magic Leap Inc | System and method for augmented and virtual reality |
KR20140112207A (en) | 2013-03-13 | 2014-09-23 | 삼성전자주식회사 | Augmented reality imaging display system and surgical robot system comprising the same |
WO2014160342A1 (en) | 2013-03-13 | 2014-10-02 | The University Of North Carolina At Chapel Hill | Low latency stabilization for head-worn displays |
US20140279528A1 (en) | 2013-03-15 | 2014-09-18 | Motorola Mobility Llc | Wearable Authentication Device |
US9685001B2 (en) | 2013-03-15 | 2017-06-20 | Blackberry Limited | System and method for indicating a presence of supplemental information in augmented reality |
WO2014145166A2 (en) | 2013-03-15 | 2014-09-18 | Eyecam, LLC | Autonomous computing and telecommunications head-up displays glasses |
US20140362195A1 (en) | 2013-03-15 | 2014-12-11 | Honda Motor, Co., Ltd. | Enhanced 3-dimensional (3-d) navigation |
US9889367B2 (en) | 2013-03-18 | 2018-02-13 | Zvi Minkovitch | Sports match refereeing system |
USD696668S1 (en) | 2013-03-18 | 2013-12-31 | Asustek Computer Inc. | Input device |
US10165255B2 (en) | 2013-03-20 | 2018-12-25 | Trimble Inc. | Indoor navigation via multi-beam laser projection |
JP6498660B2 (en) | 2013-03-26 | 2019-04-10 | ルソスペース, プロジェクトス エンゲンハリア エリデーアー | Display device |
EP3920148A1 (en) | 2013-04-04 | 2021-12-08 | Sony Group Corporation | Information processing device, information processing method, and program |
US9176582B1 (en) | 2013-04-10 | 2015-11-03 | Google Inc. | Input system |
US9069115B2 (en) | 2013-04-25 | 2015-06-30 | Google Inc. | Edge configurations for reducing artifacts in eyepieces |
US9443354B2 (en) | 2013-04-29 | 2016-09-13 | Microsoft Technology Licensing, Llc | Mixed reality interactions |
US9129157B2 (en) | 2013-04-30 | 2015-09-08 | Qualcomm Incorporated | Method for image-based status determination |
US20140341441A1 (en) | 2013-05-20 | 2014-11-20 | Motorola Mobility Llc | Wearable device user authentication |
US9529385B2 (en) | 2013-05-23 | 2016-12-27 | Medibotics Llc | Smart watch and human-to-computer interface for monitoring food consumption |
US20140363797A1 (en) | 2013-05-28 | 2014-12-11 | Lark Technologies, Inc. | Method for providing wellness-related directives to a user |
US10019057B2 (en) | 2013-06-07 | 2018-07-10 | Sony Interactive Entertainment Inc. | Switching mode of operation in a head mounted display |
US9329682B2 (en) | 2013-06-18 | 2016-05-03 | Microsoft Technology Licensing, Llc | Multi-step virtual object selection |
US9235051B2 (en) | 2013-06-18 | 2016-01-12 | Microsoft Technology Licensing, Llc | Multi-space connected virtual data objects |
US9256987B2 (en) | 2013-06-24 | 2016-02-09 | Microsoft Technology Licensing, Llc | Tracking head movement when wearing mobile device |
US20140375542A1 (en) | 2013-06-25 | 2014-12-25 | Steve Robbins | Adjusting a near-eye display device |
US8988345B2 (en) | 2013-06-25 | 2015-03-24 | Microsoft Technology Licensing, Llc | Adaptive event recognition |
US9129430B2 (en) | 2013-06-25 | 2015-09-08 | Microsoft Technology Licensing, Llc | Indicating out-of-view augmented reality images |
US9058763B2 (en) | 2013-07-01 | 2015-06-16 | Symbol Technologies, Llc | System and method for automatic aggregation of multiple physical display devices into a single logical display surface |
KR102090755B1 (en) | 2013-07-02 | 2020-03-19 | 삼성전자주식회사 | Method for controlling function and an electronic device thereof |
JP6364715B2 (en) | 2013-07-18 | 2018-08-01 | セイコーエプソン株式会社 | Transmission display device and control method of transmission display device |
KR102086511B1 (en) | 2013-07-25 | 2020-03-09 | 엘지전자 주식회사 | Head Mounted Display and controlling method thereof |
US10345903B2 (en) | 2013-07-30 | 2019-07-09 | Microsoft Technology Licensing, Llc | Feedback for optic positioning in display devices |
USD746288S1 (en) | 2013-08-02 | 2015-12-29 | Sanofi-Aventis Deutschland Gmbh | Display for use with pen-type injection device |
US9529513B2 (en) | 2013-08-05 | 2016-12-27 | Microsoft Technology Licensing, Llc | Two-hand interaction with natural user interface |
USD738373S1 (en) | 2013-08-09 | 2015-09-08 | Kopin Corporation | Eyewear viewing device |
KR102138511B1 (en) | 2013-08-28 | 2020-07-28 | 엘지전자 주식회사 | Apparatus and Method for Portable Device transmitting marker information for videotelephony of Head Mounted Display |
US9158115B1 (en) | 2013-09-16 | 2015-10-13 | Amazon Technologies, Inc. | Touch control for immersion in a tablet goggles accessory |
USD728573S1 (en) | 2013-09-20 | 2015-05-05 | Jianbo Deng | Computer input device |
US9851568B2 (en) | 2013-09-25 | 2017-12-26 | Logitech Europe S.A. | Retinal display projection device |
US9324189B2 (en) | 2013-09-27 | 2016-04-26 | Intel Corporation | Ambulatory system to communicate visual projections |
US20150097719A1 (en) | 2013-10-03 | 2015-04-09 | Sulon Technologies Inc. | System and method for active reference positioning in an augmented reality environment |
US20150134143A1 (en) | 2013-10-04 | 2015-05-14 | Jim Willenborg | Novel tracking system using unmanned aerial vehicles |
US20150106623A1 (en) | 2013-10-10 | 2015-04-16 | Elwha Llc | Methods, systems, and devices for handling image data from captured images |
US9619195B2 (en) | 2013-11-01 | 2017-04-11 | Apple Inc. | Invisible light transmission via a display assembly |
KR102091519B1 (en) | 2013-11-05 | 2020-03-20 | 엘지전자 주식회사 | Mobile terminal and control method thereof |
US9569669B2 (en) | 2013-11-27 | 2017-02-14 | International Business Machines Corporation | Centralized video surveillance data in head mounted device |
KR102268462B1 (en) | 2013-11-27 | 2021-06-22 | 매직 립, 인코포레이티드 | Virtual and augmented reality systems and methods |
US9390649B2 (en) | 2013-11-27 | 2016-07-12 | Universal Display Corporation | Ruggedized wearable display |
US8958158B1 (en) | 2013-12-03 | 2015-02-17 | Google Inc. | On-head detection for head-mounted display |
US20150161913A1 (en) | 2013-12-10 | 2015-06-11 | At&T Mobility Ii Llc | Method, computer-readable storage device and apparatus for providing a recommendation in a vehicle |
US9690763B1 (en) | 2013-12-17 | 2017-06-27 | Bryant Christopher Lee | Display of webpage elements on a connected computer |
US20150181383A1 (en) | 2013-12-20 | 2015-06-25 | Egan Schulz | Location-based messages |
US20150175068A1 (en) | 2013-12-20 | 2015-06-25 | Dalila Szostak | Systems and methods for augmented reality in a head-up display |
US9870375B2 (en) | 2013-12-20 | 2018-01-16 | Nvidia Corporation | Image analysis of display content for dynamic adjustment of a continuous scan display |
US9684778B2 (en) | 2013-12-28 | 2017-06-20 | Intel Corporation | Extending user authentication across a trust group of smart devices |
KR102191151B1 (en) | 2013-12-30 | 2020-12-16 | 삼성디스플레이 주식회사 | Electronic device and method of operating electronic device |
USD716808S1 (en) | 2014-01-06 | 2014-11-04 | Lg Electronics Inc. | Head mounted display device |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US20150277118A1 (en) | 2014-03-28 | 2015-10-01 | Osterhout Group, Inc. | Sensor dependent content position in head worn computing |
EP3095026A4 (en) | 2014-01-17 | 2017-11-08 | Osterhout Group, Inc. | See-through computer display systems |
US9448409B2 (en) | 2014-11-26 | 2016-09-20 | Osterhout Group, Inc. | See-through computer display systems |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US20160048019A1 (en) | 2014-08-12 | 2016-02-18 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
US20150205351A1 (en) | 2014-01-17 | 2015-07-23 | Osterhout Group, Inc. | External user interface for head worn computing |
US20150309562A1 (en) | 2014-04-25 | 2015-10-29 | Osterhout Group, Inc. | In-vehicle use in head worn computing |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US20160085071A1 (en) | 2014-09-18 | 2016-03-24 | Osterhout Group, Inc. | See-through computer display systems |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US20160147063A1 (en) | 2014-11-26 | 2016-05-26 | Osterhout Group, Inc. | See-through computer display systems |
US20150294156A1 (en) | 2014-04-14 | 2015-10-15 | Osterhout Group, Inc. | Sight information collection in head worn computing |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9366868B2 (en) | 2014-09-26 | 2016-06-14 | Osterhout Group, Inc. | See-through computer display systems |
US20150228119A1 (en) | 2014-02-11 | 2015-08-13 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9299194B2 (en) | 2014-02-14 | 2016-03-29 | Osterhout Group, Inc. | Secure sharing in head worn computing |
WO2015109145A1 (en) | 2014-01-17 | 2015-07-23 | Osterhout Group, Inc. | See-through computer display systems |
US9594246B2 (en) | 2014-01-21 | 2017-03-14 | Osterhout Group, Inc. | See-through computer display systems |
US20160019715A1 (en) | 2014-07-15 | 2016-01-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US9532714B2 (en) | 2014-01-21 | 2017-01-03 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20150206173A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20150205135A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | See-through computer display systems |
US9811153B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20160018645A1 (en) | 2014-01-24 | 2016-01-21 | Osterhout Group, Inc. | See-through computer display systems |
US9550419B2 (en) | 2014-01-21 | 2017-01-24 | Honda Motor Co., Ltd. | System and method for providing an augmented reality vehicle interface |
US9766463B2 (en) | 2014-01-21 | 2017-09-19 | Osterhout Group, Inc. | See-through computer display systems |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9651788B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9310610B2 (en) | 2014-01-21 | 2016-04-12 | Osterhout Group, Inc. | See-through computer display systems |
US9753288B2 (en) | 2014-01-21 | 2017-09-05 | Osterhout Group, Inc. | See-through computer display systems |
US9201578B2 (en) | 2014-01-23 | 2015-12-01 | Microsoft Technology Licensing, Llc | Gaze swipe selection |
US9524588B2 (en) | 2014-01-24 | 2016-12-20 | Avaya Inc. | Enhanced communication between remote participants using augmented and virtual reality |
US9846308B2 (en) | 2014-01-24 | 2017-12-19 | Osterhout Group, Inc. | Haptic systems for head-worn computers |
JP6421445B2 (en) | 2014-01-24 | 2018-11-14 | 株式会社リコー | Projection system, image processing apparatus, calibration method, system, and program |
US20150213754A1 (en) | 2014-01-27 | 2015-07-30 | Emagin Corporation | High efficiency beam combiner coating |
US20150228120A1 (en) | 2014-02-11 | 2015-08-13 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9852545B2 (en) | 2014-02-11 | 2017-12-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9401540B2 (en) | 2014-02-11 | 2016-07-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
KR102292192B1 (en) | 2014-02-17 | 2021-08-23 | 엘지전자 주식회사 | The Apparatus and Method for Display System displaying Augmented Reality image |
KR102182161B1 (en) | 2014-02-20 | 2020-11-24 | 엘지전자 주식회사 | Head mounted display and method for controlling the same |
US10146057B2 (en) | 2014-02-20 | 2018-12-04 | Sony Corporation | Display control device, display control method, and computer program |
US9544675B2 (en) | 2014-02-21 | 2017-01-10 | Earlens Corporation | Contact hearing system with wearable communication apparatus |
GB2524068B (en) | 2014-03-13 | 2018-09-05 | Thermoteknix Systems Ltd | Improvements in or relating to optical data insertion devices |
EP2927735B1 (en) | 2014-03-14 | 2017-10-25 | LG Electronics Inc. | Head Mounted Display clipped on spectacles frame |
US10490167B2 (en) | 2014-03-25 | 2019-11-26 | Intel Corporation | Techniques for image enhancement using a tactile display |
US20160187651A1 (en) | 2014-03-28 | 2016-06-30 | Osterhout Group, Inc. | Safety for a vehicle operator with an hmd |
US9465215B2 (en) | 2014-03-28 | 2016-10-11 | Google Inc. | Lightguide with multiple in-coupling holograms for head wearable display |
US10444834B2 (en) | 2014-04-01 | 2019-10-15 | Apple Inc. | Devices, methods, and user interfaces for a wearable electronic ring computing device |
US9342147B2 (en) | 2014-04-10 | 2016-05-17 | Microsoft Technology Licensing, Llc | Non-visual feedback of visual change |
KR102278507B1 (en) | 2014-04-15 | 2021-07-16 | 삼성디스플레이 주식회사 | Wearable device |
KR102353766B1 (en) | 2014-04-15 | 2022-01-20 | 삼성전자 주식회사 | Apparatus and method for controlling display |
US20150304368A1 (en) | 2014-04-16 | 2015-10-22 | Facebook, Inc. | Sharing Locations with Friends on Online Social Networks |
US20150309534A1 (en) | 2014-04-25 | 2015-10-29 | Osterhout Group, Inc. | Ear horn assembly for headworn computer |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US9423842B2 (en) | 2014-09-18 | 2016-08-23 | Osterhout Group, Inc. | Thermal management for head-worn computer |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US20160137312A1 (en) | 2014-05-06 | 2016-05-19 | Osterhout Group, Inc. | Unmanned aerial vehicle launch system |
US10564714B2 (en) | 2014-05-09 | 2020-02-18 | Google Llc | Systems and methods for biomechanically-based eye signals for interacting with real and virtual objects |
US9710629B2 (en) | 2014-05-13 | 2017-07-18 | Google Technology Holdings LLC | Electronic device with method for controlling access to same |
KR101659027B1 (en) | 2014-05-15 | 2016-09-23 | 엘지전자 주식회사 | Mobile terminal and apparatus for controlling a vehicle |
US20160025979A1 (en) | 2014-08-28 | 2016-01-28 | Osterhout Group, Inc. | External user interface for head worn computing |
US20160027414A1 (en) | 2014-07-22 | 2016-01-28 | Osterhout Group, Inc. | External user interface for head worn computing |
WO2015179877A2 (en) | 2014-05-19 | 2015-11-26 | Osterhout Group, Inc. | External user interface for head worn computing |
US20160025977A1 (en) | 2014-07-22 | 2016-01-28 | Osterhout Group, Inc. | External user interface for head worn computing |
US20160062118A1 (en) | 2014-07-22 | 2016-03-03 | Osterhout Group, Inc. | External user interface for head worn computing |
JP1511166S (en) | 2014-05-21 | 2014-11-10 | ||
US9323983B2 (en) | 2014-05-29 | 2016-04-26 | Comcast Cable Communications, Llc | Real-time image and audio replacement for visual acquisition devices |
USD751551S1 (en) | 2014-06-06 | 2016-03-15 | Alpha Primitus, Inc. | Pair of temple arms for an eyeglass frame with mount |
US9143693B1 (en) | 2014-06-10 | 2015-09-22 | Google Inc. | Systems and methods for push-button slow motion |
EP3180676A4 (en) | 2014-06-17 | 2018-01-10 | Osterhout Group, Inc. | External user interface for head worn computing |
TWD183012S (en) | 2014-06-24 | 2017-05-11 | 谷歌公司 | Wearable hinged display device |
US20150382305A1 (en) | 2014-06-27 | 2015-12-31 | Sony Corporation | Silent mode for submerged devices |
USD716813S1 (en) | 2014-07-28 | 2014-11-04 | Jianbo Deng | Computer mouse |
KR102232279B1 (en) | 2014-08-25 | 2021-03-26 | 삼성전자주식회사 | Cradle for electronic device |
US10024678B2 (en) | 2014-09-17 | 2018-07-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable clip for providing social and environmental awareness |
US9922236B2 (en) | 2014-09-17 | 2018-03-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable eyeglasses for providing social and environmental awareness |
US9582076B2 (en) | 2014-09-17 | 2017-02-28 | Microsoft Technology Licensing, Llc | Smart ring |
US20160098086A1 (en) | 2014-10-06 | 2016-04-07 | Chien-Wen Li | Wearable smart type input and control device |
US20160131904A1 (en) | 2014-11-07 | 2016-05-12 | Osterhout Group, Inc. | Power management for head worn computing |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
USD743963S1 (en) | 2014-12-22 | 2015-11-24 | Osterhout Group, Inc. | Air mouse |
USD751552S1 (en) | 2014-12-31 | 2016-03-15 | Osterhout Group, Inc. | Computer glasses |
USD753114S1 (en) | 2015-01-05 | 2016-04-05 | Osterhout Group, Inc. | Air mouse |
US20160239985A1 (en) | 2015-02-17 | 2016-08-18 | Osterhout Group, Inc. | See-through computer display systems |
WO2016133886A1 (en) | 2015-02-17 | 2016-08-25 | Osterhout Group, Inc. | See-through computer display systems |
US20160274365A1 (en) | 2015-03-17 | 2016-09-22 | Thalmic Labs Inc. | Systems, devices, and methods for wearable heads-up displays with heterogeneous display quality |
US20160286210A1 (en) | 2015-03-27 | 2016-09-29 | Osterhout Group, Inc. | See-through computer display systems |
US10025119B2 (en) | 2015-06-18 | 2018-07-17 | Osterhout Group, Inc. | Mechanical arrangement for head-worn computer |
KR102335011B1 (en) | 2015-06-26 | 2021-12-06 | 삼성전자주식회사 | Method and Apparatus for Providing Workout Guide Information |
US20170017323A1 (en) | 2015-07-17 | 2017-01-19 | Osterhout Group, Inc. | External user interface for head worn computing |
US10139966B2 (en) | 2015-07-22 | 2018-11-27 | Osterhout Group, Inc. | External user interface for head worn computing |
US11003246B2 (en) | 2015-07-22 | 2021-05-11 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US20170100664A1 (en) | 2015-10-12 | 2017-04-13 | Osterhout Group, Inc. | External user interface for head worn computing |
KR20170031620A (en) | 2015-09-11 | 2017-03-21 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Display device and manufacturing method of the same |
KR20170062876A (en) | 2015-11-30 | 2017-06-08 | 삼성전자주식회사 | Head-mounted display device with a detachable device |
KR20170067058A (en) | 2015-12-07 | 2017-06-15 | 엘지전자 주식회사 | Mobile terminal and method for controlling the same |
US10133407B2 (en) | 2015-12-28 | 2018-11-20 | Seiko Epson Corporation | Display apparatus, display system, method for controlling display apparatus, and program |
US20170293351A1 (en) | 2016-04-07 | 2017-10-12 | Ariadne's Thread (Usa), Inc. (Dba Immerex) | Head mounted display linked to a touch sensitive input device |
US10824253B2 (en) | 2016-05-09 | 2020-11-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US20180113590A1 (en) | 2016-10-26 | 2018-04-26 | Osterhout Group, Inc. | User interface systems for head-worn computers |
US10684478B2 (en) | 2016-05-09 | 2020-06-16 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
KR20170135267A (en) | 2016-05-31 | 2017-12-08 | 엘지전자 주식회사 | Glass type mobile terminal |
US10249090B2 (en) | 2016-06-09 | 2019-04-02 | Microsoft Technology Licensing, Llc | Robust optical disambiguation and tracking of two or more hand-held controllers with passive optical and inertial tracking |
US10134192B2 (en) | 2016-10-17 | 2018-11-20 | Microsoft Technology Licensing, Llc | Generating and displaying a computer generated image on a future pose of a real world object |
US20180253159A1 (en) | 2017-03-01 | 2018-09-06 | Osterhout Group, Inc. | User interface systems for head-worn computers |
-
2014
- 2014-01-17 US US14/158,198 patent/US9939934B2/en active Active
- 2014-02-21 US US14/185,984 patent/US20150205378A1/en not_active Abandoned
- 2014-02-21 US US14/185,979 patent/US20150205566A1/en not_active Abandoned
- 2014-02-21 US US14/185,968 patent/US20150205384A1/en not_active Abandoned
- 2014-02-21 US US14/185,970 patent/US20150205401A1/en not_active Abandoned
- 2014-02-21 US US14/185,958 patent/US20150205387A1/en not_active Abandoned
- 2014-02-21 US US14/185,972 patent/US20150205402A1/en not_active Abandoned
- 2014-02-21 US US14/185,959 patent/US11231817B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070132662A1 (en) * | 2004-05-27 | 2007-06-14 | Canon Kabushiki Kaisha | Information processing method, information processing apparatus, and image sensing apparatus |
US20080005702A1 (en) * | 2006-05-31 | 2008-01-03 | Abb Technology Ltd. | Virtual work place |
US20080186255A1 (en) * | 2006-12-07 | 2008-08-07 | Cohen Philip R | Systems and methods for data annotation, recordation, and communication |
US20090251441A1 (en) * | 2008-04-03 | 2009-10-08 | Livescribe, Inc. | Multi-Modal Controller |
US20110006982A1 (en) * | 2009-07-07 | 2011-01-13 | Samsung Electronics Co., Ltd. | Pen type input device and input method using the same |
US20130009907A1 (en) * | 2009-07-31 | 2013-01-10 | Rosenberg Ilya D | Magnetic Stylus |
Cited By (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11782529B2 (en) | 2014-01-17 | 2023-10-10 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
US11169623B2 (en) | 2014-01-17 | 2021-11-09 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11231817B2 (en) | 2014-01-17 | 2022-01-25 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US12045401B2 (en) | 2014-01-17 | 2024-07-23 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11507208B2 (en) | 2014-01-17 | 2022-11-22 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11622426B2 (en) | 2014-01-21 | 2023-04-04 | Mentor Acquisition One, Llc | See-through computer display systems |
US9529192B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9523856B2 (en) | 2014-01-21 | 2016-12-20 | Osterhout Group, Inc. | See-through computer display systems |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9740012B2 (en) | 2014-01-21 | 2017-08-22 | Osterhout Group, Inc. | See-through computer display systems |
US11487110B2 (en) | 2014-01-21 | 2022-11-01 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9532715B2 (en) | 2014-01-21 | 2017-01-03 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9532714B2 (en) | 2014-01-21 | 2017-01-03 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9538915B2 (en) | 2014-01-21 | 2017-01-10 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10579140B2 (en) | 2014-01-21 | 2020-03-03 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US11892644B2 (en) | 2014-01-21 | 2024-02-06 | Mentor Acquisition One, Llc | See-through computer display systems |
US10698223B2 (en) | 2014-01-21 | 2020-06-30 | Mentor Acquisition One, Llc | See-through computer display systems |
US9594246B2 (en) | 2014-01-21 | 2017-03-14 | Osterhout Group, Inc. | See-through computer display systems |
US9615742B2 (en) | 2014-01-21 | 2017-04-11 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9651789B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-Through computer display systems |
US11796805B2 (en) | 2014-01-21 | 2023-10-24 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9651783B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9651788B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9658457B2 (en) | 2014-01-21 | 2017-05-23 | Osterhout Group, Inc. | See-through computer display systems |
US9658458B2 (en) | 2014-01-21 | 2017-05-23 | Osterhout Group, Inc. | See-through computer display systems |
US11947126B2 (en) | 2014-01-21 | 2024-04-02 | Mentor Acquisition One, Llc | See-through computer display systems |
US11737666B2 (en) | 2014-01-21 | 2023-08-29 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9684165B2 (en) | 2014-01-21 | 2017-06-20 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9684171B2 (en) | 2014-01-21 | 2017-06-20 | Osterhout Group, Inc. | See-through computer display systems |
US11669163B2 (en) | 2014-01-21 | 2023-06-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US11619820B2 (en) | 2014-01-21 | 2023-04-04 | Mentor Acquisition One, Llc | See-through computer display systems |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US9720234B2 (en) | 2014-01-21 | 2017-08-01 | Osterhout Group, Inc. | See-through computer display systems |
US9720235B2 (en) | 2014-01-21 | 2017-08-01 | Osterhout Group, Inc. | See-through computer display systems |
US9720227B2 (en) | 2014-01-21 | 2017-08-01 | Osterhout Group, Inc. | See-through computer display systems |
US12108989B2 (en) | 2014-01-21 | 2024-10-08 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9436006B2 (en) | 2014-01-21 | 2016-09-06 | Osterhout Group, Inc. | See-through computer display systems |
US9740280B2 (en) | 2014-01-21 | 2017-08-22 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9746676B2 (en) | 2014-01-21 | 2017-08-29 | Osterhout Group, Inc. | See-through computer display systems |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
US9529199B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9753288B2 (en) | 2014-01-21 | 2017-09-05 | Osterhout Group, Inc. | See-through computer display systems |
US9766463B2 (en) | 2014-01-21 | 2017-09-19 | Osterhout Group, Inc. | See-through computer display systems |
US9772492B2 (en) | 2014-01-21 | 2017-09-26 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10866420B2 (en) | 2014-01-21 | 2020-12-15 | Mentor Acquisition One, Llc | See-through computer display systems |
US9811159B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9811152B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11353957B2 (en) | 2014-01-21 | 2022-06-07 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US11054902B2 (en) | 2014-01-21 | 2021-07-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9829703B2 (en) | 2014-01-21 | 2017-11-28 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US10139632B2 (en) | 2014-01-21 | 2018-11-27 | Osterhout Group, Inc. | See-through computer display systems |
US11099380B2 (en) | 2014-01-21 | 2021-08-24 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US10001644B2 (en) | 2014-01-21 | 2018-06-19 | Osterhout Group, Inc. | See-through computer display systems |
US9885868B2 (en) | 2014-01-21 | 2018-02-06 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11103132B2 (en) | 2014-01-21 | 2021-08-31 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US11126003B2 (en) | 2014-01-21 | 2021-09-21 | Mentor Acquisition One, Llc | See-through computer display systems |
US12093453B2 (en) | 2014-01-21 | 2024-09-17 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9927612B2 (en) | 2014-01-21 | 2018-03-27 | Osterhout Group, Inc. | See-through computer display systems |
US9933622B2 (en) | 2014-01-21 | 2018-04-03 | Osterhout Group, Inc. | See-through computer display systems |
US9958674B2 (en) | 2014-01-21 | 2018-05-01 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9377625B2 (en) | 2014-01-21 | 2016-06-28 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10558050B2 (en) | 2014-01-24 | 2020-02-11 | Mentor Acquisition One, Llc | Haptic systems for head-worn computers |
US11822090B2 (en) | 2014-01-24 | 2023-11-21 | Mentor Acquisition One, Llc | Haptic systems for head-worn computers |
US9939646B2 (en) | 2014-01-24 | 2018-04-10 | Osterhout Group, Inc. | Stray light suppression for head worn computing |
US9401540B2 (en) | 2014-02-11 | 2016-07-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9841602B2 (en) | 2014-02-11 | 2017-12-12 | Osterhout Group, Inc. | Location indicating avatar in head worn computing |
US9784973B2 (en) | 2014-02-11 | 2017-10-10 | Osterhout Group, Inc. | Micro doppler presentations in head worn computing |
US9843093B2 (en) | 2014-02-11 | 2017-12-12 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9928019B2 (en) | 2014-02-14 | 2018-03-27 | Osterhout Group, Inc. | Object shadowing in head worn computing |
US9547465B2 (en) | 2014-02-14 | 2017-01-17 | Osterhout Group, Inc. | Object shadowing in head worn computing |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9423612B2 (en) | 2014-03-28 | 2016-08-23 | Osterhout Group, Inc. | Sensor dependent content position in head worn computing |
US11104272B2 (en) | 2014-03-28 | 2021-08-31 | Mentor Acquisition One, Llc | System for assisted operator safety using an HMD |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US10634922B2 (en) | 2014-04-25 | 2020-04-28 | Mentor Acquisition One, Llc | Speaker assembly for headworn computer |
US10853589B2 (en) | 2014-04-25 | 2020-12-01 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US12050884B2 (en) | 2014-04-25 | 2024-07-30 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US11474360B2 (en) | 2014-04-25 | 2022-10-18 | Mentor Acquisition One, Llc | Speaker assembly for headworn computer |
US11727223B2 (en) | 2014-04-25 | 2023-08-15 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US11880041B2 (en) | 2014-04-25 | 2024-01-23 | Mentor Acquisition One, Llc | Speaker assembly for headworn computer |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US11402639B2 (en) | 2014-06-05 | 2022-08-02 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US10877270B2 (en) | 2014-06-05 | 2020-12-29 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US11960089B2 (en) | 2014-06-05 | 2024-04-16 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US9720241B2 (en) | 2014-06-09 | 2017-08-01 | Osterhout Group, Inc. | Content presentation in head worn computing |
US11663794B2 (en) | 2014-06-09 | 2023-05-30 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11790617B2 (en) | 2014-06-09 | 2023-10-17 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11887265B2 (en) | 2014-06-09 | 2024-01-30 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10139635B2 (en) | 2014-06-09 | 2018-11-27 | Osterhout Group, Inc. | Content presentation in head worn computing |
US10976559B2 (en) | 2014-06-09 | 2021-04-13 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US11022810B2 (en) | 2014-06-09 | 2021-06-01 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11360318B2 (en) | 2014-06-09 | 2022-06-14 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11327323B2 (en) | 2014-06-09 | 2022-05-10 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10663740B2 (en) | 2014-06-09 | 2020-05-26 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US10698212B2 (en) | 2014-06-17 | 2020-06-30 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11054645B2 (en) | 2014-06-17 | 2021-07-06 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11789267B2 (en) | 2014-06-17 | 2023-10-17 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11294180B2 (en) | 2014-06-17 | 2022-04-05 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11786105B2 (en) | 2014-07-15 | 2023-10-17 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11269182B2 (en) | 2014-07-15 | 2022-03-08 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10908422B2 (en) | 2014-08-12 | 2021-02-02 | Mentor Acquisition One, Llc | Measuring content brightness in head worn computing |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US11630315B2 (en) | 2014-08-12 | 2023-04-18 | Mentor Acquisition One, Llc | Measuring content brightness in head worn computing |
US11360314B2 (en) | 2014-08-12 | 2022-06-14 | Mentor Acquisition One, Llc | Measuring content brightness in head worn computing |
US9423842B2 (en) | 2014-09-18 | 2016-08-23 | Osterhout Group, Inc. | Thermal management for head-worn computer |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US9448409B2 (en) | 2014-11-26 | 2016-09-20 | Osterhout Group, Inc. | See-through computer display systems |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US11262846B2 (en) | 2014-12-03 | 2022-03-01 | Mentor Acquisition One, Llc | See-through computer display systems |
US11809628B2 (en) | 2014-12-03 | 2023-11-07 | Mentor Acquisition One, Llc | See-through computer display systems |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
USD743963S1 (en) | 2014-12-22 | 2015-11-24 | Osterhout Group, Inc. | Air mouse |
USD792400S1 (en) | 2014-12-31 | 2017-07-18 | Osterhout Group, Inc. | Computer glasses |
USD751552S1 (en) | 2014-12-31 | 2016-03-15 | Osterhout Group, Inc. | Computer glasses |
USD753114S1 (en) | 2015-01-05 | 2016-04-05 | Osterhout Group, Inc. | Air mouse |
USD794637S1 (en) | 2015-01-05 | 2017-08-15 | Osterhout Group, Inc. | Air mouse |
US10878775B2 (en) | 2015-02-17 | 2020-12-29 | Mentor Acquisition One, Llc | See-through computer display systems |
US11721303B2 (en) | 2015-02-17 | 2023-08-08 | Mentor Acquisition One, Llc | See-through computer display systems |
US10062182B2 (en) | 2015-02-17 | 2018-08-28 | Osterhout Group, Inc. | See-through computer display systems |
US20170017323A1 (en) * | 2015-07-17 | 2017-01-19 | Osterhout Group, Inc. | External user interface for head worn computing |
US11886638B2 (en) | 2015-07-22 | 2024-01-30 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11816296B2 (en) | 2015-07-22 | 2023-11-14 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US10139966B2 (en) | 2015-07-22 | 2018-11-27 | Osterhout Group, Inc. | External user interface for head worn computing |
US11003246B2 (en) | 2015-07-22 | 2021-05-11 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11209939B2 (en) | 2015-07-22 | 2021-12-28 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US10667981B2 (en) | 2016-02-29 | 2020-06-02 | Mentor Acquisition One, Llc | Reading assistance system for visually impaired |
US11298288B2 (en) | 2016-02-29 | 2022-04-12 | Mentor Acquisition One, Llc | Providing enhanced images for navigation |
US11654074B2 (en) | 2016-02-29 | 2023-05-23 | Mentor Acquisition One, Llc | Providing enhanced images for navigation |
US10849817B2 (en) | 2016-02-29 | 2020-12-01 | Mentor Acquisition One, Llc | Providing enhanced images for navigation |
US10684478B2 (en) | 2016-05-09 | 2020-06-16 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US11320656B2 (en) | 2016-05-09 | 2022-05-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US11500212B2 (en) | 2016-05-09 | 2022-11-15 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US12050321B2 (en) | 2016-05-09 | 2024-07-30 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US11226691B2 (en) | 2016-05-09 | 2022-01-18 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10824253B2 (en) | 2016-05-09 | 2020-11-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US11460708B2 (en) | 2016-06-01 | 2022-10-04 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US11977238B2 (en) | 2016-06-01 | 2024-05-07 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US11022808B2 (en) | 2016-06-01 | 2021-06-01 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US11754845B2 (en) | 2016-06-01 | 2023-09-12 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US10466491B2 (en) | 2016-06-01 | 2019-11-05 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US11586048B2 (en) | 2016-06-01 | 2023-02-21 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US11086368B2 (en) | 2016-09-06 | 2021-08-10 | Apple Inc. | Devices and methods for processing and disambiguating touch inputs using intensity thresholds based on prior input intensity |
DK201670722A1 (en) * | 2016-09-06 | 2018-03-19 | Apple Inc | Devices and Methods for Processing and Disambiguating Touch Inputs Using Intensity Thresholds Based on Prior Input Intensity |
DK179411B1 (en) * | 2016-09-06 | 2018-06-06 | Apple Inc | Devices and methods for processing and rendering touch inputs unambiguous using intensity thresholds based on a prior input intensity |
US10775915B2 (en) | 2016-09-06 | 2020-09-15 | Apple Inc. | Devices and methods for processing and disambiguating touch inputs using intensity thresholds based on prior input intensity |
US9910524B1 (en) | 2016-09-06 | 2018-03-06 | Apple Inc. | Devices and methods for processing and disambiguating touch inputs using intensity thresholds based on prior input intensity |
US10281994B2 (en) * | 2017-06-16 | 2019-05-07 | Anousheh Sayah | Smart wand device |
US11947735B2 (en) | 2017-08-18 | 2024-04-02 | Mentor Acquisition One, Llc | Controller movement tracking with light emitters |
US11079858B2 (en) | 2017-08-18 | 2021-08-03 | Mentor Acquisition One, Llc | Controller movement tracking with light emitters |
US10152141B1 (en) | 2017-08-18 | 2018-12-11 | Osterhout Group, Inc. | Controller movement tracking with light emitters |
US11474619B2 (en) | 2017-08-18 | 2022-10-18 | Mentor Acquisition One, Llc | Controller movement tracking with light emitters |
Also Published As
Publication number | Publication date |
---|---|
US20150205378A1 (en) | 2015-07-23 |
US20150205401A1 (en) | 2015-07-23 |
US11231817B2 (en) | 2022-01-25 |
US20150205373A1 (en) | 2015-07-23 |
US20150205387A1 (en) | 2015-07-23 |
US20150205402A1 (en) | 2015-07-23 |
US9939934B2 (en) | 2018-04-10 |
US20150205566A1 (en) | 2015-07-23 |
US20150205385A1 (en) | 2015-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12045401B2 (en) | External user interface for head worn computing | |
US11294180B2 (en) | External user interface for head worn computing | |
US11231817B2 (en) | External user interface for head worn computing | |
US11886638B2 (en) | External user interface for head worn computing | |
US20220075466A1 (en) | External user interface for head worn computing | |
US20160025977A1 (en) | External user interface for head worn computing | |
US20170336872A1 (en) | External user interface for head worn computing | |
US20160025974A1 (en) | External user interface for head worn computing | |
US20160026239A1 (en) | External user interface for head worn computing | |
US20150205351A1 (en) | External user interface for head worn computing | |
US20170017323A1 (en) | External user interface for head worn computing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OSTERHOUT GROUP, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OSTERHOUT, RALPH F.;BORDER, JOHN N.;NORTRUP, EDWARD H.;SIGNING DATES FROM 20140617 TO 20140618;REEL/FRAME:033133/0677 |
|
AS | Assignment |
Owner name: 21ST CENTURY FOX AMERICA, INC., NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:OSTERHOUT GROUP, INC.;REEL/FRAME:044052/0367 Effective date: 20170928 |
|
AS | Assignment |
Owner name: O-FILM GLOBAL (HK) TRADING LIMITED, CHINA Free format text: SECURITY INTEREST;ASSIGNOR:OSTERHOUT GROUP, INC.;REEL/FRAME:044127/0501 Effective date: 20170929 |
|
AS | Assignment |
Owner name: JGB COLLATERAL, LLC, CONNECTICUT Free format text: SECURITY INTEREST;ASSIGNOR:OSTERHOUT GROUP, INC.;REEL/FRAME:045606/0295 Effective date: 20180313 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |