US20120081800A1 - Optical see-through free-form head-mounted display - Google Patents
Optical see-through free-form head-mounted display Download PDFInfo
- Publication number
- US20120081800A1 US20120081800A1 US13/318,864 US201013318864A US2012081800A1 US 20120081800 A1 US20120081800 A1 US 20120081800A1 US 201013318864 A US201013318864 A US 201013318864A US 2012081800 A1 US2012081800 A1 US 2012081800A1
- Authority
- US
- United States
- Prior art keywords
- free
- prism
- lens
- form surface
- lens according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/006—Systems in which light light is reflected on a plurality of parallel surfaces, e.g. louvre mirrors, total internal reflection [TIR] lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0856—Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
- G02B17/086—Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/08—Anamorphotic objectives
- G02B13/10—Anamorphotic objectives involving prisms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0118—Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/013—Head-up displays characterised by optical features comprising a combiner of particular shape, e.g. curvature
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
Definitions
- the present invention relates generally to a see-through free-form head-mounted display, and more particularly, but not exclusively to a wedge-shaped prism-lens having free-form surfaces configured to provide a low F-number heretofore unachieved.
- OST-HMD Optical see-through head-mounted displays
- OST-HMDs find myriads of applications from scientific visualization to defense applications, from medical visualization to engineering processes, and from training to entertainment.
- OST-HMDs have been one of the basic vehicles for combining computer-generated virtual scene with the views of a real-world scene.
- an OST-HMD maintains a direct view of the physical world and optically superimposes computer-generated images onto the real scene.
- the present invention provides a free-form prism-lens for use in an optical see-through head-mounted display.
- the prism-lens may include a first free-form surface configured to receive light from a micro-display and configured to transmit the received light into the body of the prism-lens, and a second free-form surface configured to receive the light transmitted into the body of the prism-lens from the first free-form surface and configured to totally internally reflect the received light at the second surface.
- prism-lens may also include a third free-form surface configured to receive the light reflected by the second free-form surface and configured to reflect the light out of the prism-lens and may have an f-number less than 3.5.
- the prism-lens may optionally include an auxiliary lens disposed proximate the third free-form surface.
- the auxiliary lens may be configured to minimize the shift and distortion of rays from a real-world scene by the second and third surfaces of the prism-lens.
- FIG. 1 schematically illustrates a layout of an exemplary optical see-through head-mounted display system in accordance with the present invention
- FIG. 2 schematically illustrates the layout of FIG. 1 showing the local coordinate system at each optical surface
- FIG. 3 schematically illustrates the optical paths of the rays of different object fields and different pupil positions in an exemplary free-form-surface prism-lens see-through head-mounted display, with the incident angles of the rays on surfaces 1 and 1 ′ depending on their field and pupil positions and controlled to satisfy TIR conditions and avoid stray light;
- FIGS. 4A-4D schematically illustrate a starting point for an exemplary design of the present invention, with FIG. 4A showing the optical layout in the YZ plane, FIG. 4B showing MTF plots, FIG. 4C showing ray fan plots of center fields, and FIG. 4D showing ray fan plots of marginal fields;
- FIG. 5 schematically illustrates the system layout and sampled fields definition during different design stages of an exemplary optical see-through head-mounted display
- FIG. 6 schematically illustrates the layout of an exemplary free-form surface prism-lens system of the present invention having three free-form surfaces;
- FIG. 7 illustrates a distortion plot of the free-form surface prism-lens system of FIG. 6 ;
- FIGS. 8A-8D illustrate the performance of the free-form surface prism-lens system of FIG. 6 , with FIG. 8A showing the polychromatic MTF plot of the center field of the virtual imaging system, FIG. 8B showing the polychromatic MTF plot of marginal fields of the virtual imaging system, FIG. 8C showing the ray fan plots of the center fields, and FIG. 8D showing the ray fan plots of the marginal fields;
- FIGS. 9A-9D illustrate the incident angle on the TIR surface, with FIG. 9A showing the incident angle on surface 1 ′ as the ray pupil position varies from the bottom to the top, FIG. 9B showing the incident angle on surface 1 ′ as the field of the ray changes from the lowermost to the uppermost in the meridian plane, FIG. 9C showing the incident angle on surface 1 as the ray pupil position varies from the bottom to the top, and FIG. 9D showing the incident angle on surface 1 as the field of the ray changes from the lowermost to the uppermost position in the tangential plane;
- FIGS. 10A-10D schematically illustrates the design of an auxiliary lens to be used with the free-form surface prism-lens system of FIG. 6 , with FIG. 10A showing see-through by the FFS prism-lens, FIG. 10B showing distortion caused by the FFS prism-lens, and FIG. 10C showing the design layout of the see-through system;
- FIG. 11 illustrates a distortion plot of the optical see-through system of FIG. 10 ;
- FIGS. 12A-12B illustrate polychromatic MTF plots of the optical see-through system of FIG. 10 with an ideal lens
- FIG. 13 schematically illustrates the layout of the see-through HMD by coupling the FFS prism-lens system and auxiliary FFS lens of FIG. 10 ;
- FIG. 14A illustrates a photo without pre-warping the input image
- FIG. 14B a photo after pre-warping the input image taken through a fabricated prototype of the FFS prism-lens of FIG. 6 .
- exemplary designs of the present invention provide a single-element prism-lens 110 , 710 which has sufficient optical power on its own to deliver light from a micro-display 130 to a user, FIGS. 1 , 6 .
- providing a single optical element, such as the prism-lens 710 in which all the optical power resides can lead to greatly increased aberrations with accompanying loss in resolution and image quality, especially for low F/# systems.
- the present invention provides a single-element prism-lens 710 based on a 0.61′′ microdisplay 130, which offers a diagonal FOV of 53.5°, an F/# of 1.875, an exit pupil diameter of 8 mm, and an eye relief of 18.25 mm.
- a cemented auxiliary lens 120 , 720 may be provided for use in conjunction with the prism-lens 110 , 710 .
- An optical see-through HMD 100 typically consists of an optical path for viewing a displayed virtual image and a path for viewing a real-world scene directly.
- the optical system 100 of our OST-HMD design may include a wedge-shaped free-form prism-lens 110 cemented to an auxiliary free-form lens 120 .
- the prism-lens 110 serves as the near-eye viewing optics that magnifies the image displayed through a microdisplay 130 while the auxiliary free-form lens 120 is an auxiliary element attached to the prism-lens 110 in order to maintain a non-distorted see-through view of a real-world scene.
- the wedge shaped free-form prism-lens 110 may include three surfaces labeled as 1 , 2 , and 3 , respectively.
- the surface adjacent to the exit pupil is labeled as 1 in the refraction path and as 1 ′ in the reflection path.
- the overall system was set to be symmetric about the YOZ plane, but not the XOZ plane.
- a ray emitted from a point on the microdisplay 130 is first refracted by the surface 3 next to the microdisplay 130 . After two consecutive reflections by the surfaces 1 ′ and 2 , the ray is transmitted through the surface 1 and reaches the exit pupil of the system 100 .
- the first surface (i.e., 1 and 1 ′) of the prism-lens 110 is required to satisfy the condition of total internal reflection for rays reflected by this surface 1 ′.
- the rear surface 2 of the prism-lens 110 is coated as a half mirror in order to facilitate the optical see-through capability.
- An auxiliary lens 120 may be cemented to the wedge-shaped prism-lens 110 in order to counteract the ray shift and distortion caused by the prism-lens 110 .
- the front surface of the auxiliary free-form lens 120 may match the shape of the rear surface 2 of the prism-lens 110 .
- the back surface 4 of the auxiliary free-form lens 120 may be optimized to minimize the shift and distortion introduced to the rays from a real-world scene when the auxiliary free-form lens 120 is combined with the prism-lens 110 .
- a large exit pupil is typically preferred to account for the swiveling of the eyes in their sockets without causing vignetting or loss of image.
- a large pupil offers better tolerance of the interpupilary distances (IPD) among different users without the need to mechanically adjust the IPD of the binocular optics.
- IPD interpupilary distances
- a large pupil often not only compromises the compactness and weight of the optical system 100 , but also imposes limitations on the FOV due to the dramatically increased challenge of designing low F/# systems. Taking into account these factors, we set the exit pupil diameter to be 8 mm, which leads to a system 100 with a F/# of 1.875.
- a large eye relief is desired to accommodate users wearing eyeglasses, but it affects the compactness of the viewing optics.
- a minimum of a 18 mm eye relief was set to accommodate users wearing low-profile eyeglasses. Balancing between image uniformity and system compactness, we set the limit of the vignetting to be less than 15% at the top and bottom of the visual fields.
- distortion causes the warping of the displayed image without reducing image sharpness, which allows computational or electronic correction.
- conventional HMDs it is common to optimize the system 100 to minimize the optical aberrations that reduce image quality and cannot be compensated electronically or computationally.
- the distortion can be very large and irregular if it is left without any constraints.
- the modulation transfer function (MTF) was selected to evaluate the overall image sharpness and was set to be no less than 10% across the entire visual field at a spatial frequency of 30 lps/mm.
- Free-form optical surfaces offer more degrees of freedom to optical designers than conventional rotationally symmetric optical surfaces, such as a spherical or aspherical surface, and achieve usually lower wavefront errors and distortion than that achievable with the same number of rotationally symmetric surfaces.
- a significant benefit in our OST-HMD design lies in its ability to yield display optics with an eyeglass-like form factor.
- An optical design using free-form surfaces may cause a dramatic increase in the complexity of the design and optimization process.
- An inadequate method of representing and optimizing a free-form surface may lead to discouraging and unpredictable results.
- Key issues in the process of designing a FFS HMD include 1) a free-form surface representation and design strategy; 2) total internal reflection condition; and 3) structure constraints to form a valid prism-lens 110 .
- a suitable representation method shall 1) provide adequate degrees of freedom; 2) require a reasonable amount of ray tracing time; and 3) offer reliable convergence in the optimization process.
- Ray tracing speed is a particular concern in designing a free-form prism-lens 110 , as a larger number of fields need to be sampled when optimizing a free-form optical system than need to be sampled in a rotationally symmetrical optical system. Speed becomes a more serious problem when a global optimization is necessary.
- the following design strategy was adopted in our design process.
- the spherical surface was then converted to an aspheric type by adding a conic constant and a 4 th order or higher aspheric coefficients.
- the ASP-type surface was then converted to an AAS-type surface for better correction by directly adding asymmetric coefficients up to the 10 th order.
- the incident angles of all the rays striking the first surface 1 ′ from the microdisplay 130 should be larger than the critical angle, ⁇ c , set by the TIR condition
- n is the refractive index of the material for the FFS prism-lens 110 .
- the index of the material is equal to 1.5
- all the incident angles should be larger than 41.82°. Rays incident on the first surface 1 ′ of the prism-lens 110 at a smaller angle may be transmitted through the prism-lens 110 without the benefit of reflection off the rear surface 2 (and subsequent refraction at the first surface 1 ) and may directly enter the eye, which leads to stray light and a reduction in the image contrast observed by the user.
- the TIR condition is met, however, after two consecutive reflections by the front and rear surfaces 1 ′ and 2 , respectively, the same ray is returned back and to be transmitted through the front surface 1 .
- the incident angle of the ray should be smaller than the critical angle set by Eqn. (1) to avoid the TIR effect.
- the top marginal ray, R 1u which corresponds to the ray from the maximum object field in the positive Y-direction (i.e. P 1 ) passing through the top edge of the pupil, had the smallest incident angle among all the rays striking the surface 1 ′ from the microdisplay 130 side.
- the incident angle on surface 1 ′ increased gradually as the ray from the same object field shifted from the top to the bottom of the pupil (e.g. from R 1u to R 1b ); the angle also increased as the ray intersecting the same pupil position shifted from the top to the bottom of the object fields (e.g., from R 1u to R 2u ). Therefore, the constraint on the incident angle was written as
- ⁇ 1b1′ is the incident angle of the top marginal ray, R 1u , on surface 1 ′ from the maximum object field in tangential plane of the microdisplay 130 .
- ⁇ 1 ⁇ b ⁇ ⁇ 1 ⁇ b ⁇ ⁇ 1 ⁇ arcsin ⁇ ( 1 / n ) , ⁇ 1 ⁇ 0 ⁇ 2 ⁇ u ⁇ ⁇ 1 ⁇ arcsin ⁇ ( 1 / n ) , ⁇ 1 ⁇ 0 ( 3 )
- ⁇ 1b1 is the incident angle of the bottom marginal ray, R 1b , striking the surface 1 ; and ⁇ 2u1 is the incident angle of the top marginal ray, R 2u , on surface 1 , and ⁇ 1 is the tilt angle of surface 1 about the X-axis.
- FIG. 3 illustrates the structure control method we employed. During each step of the optimization, we traced two rays: the top marginal ray, R 1u , of the maximum field in the positive Y-direction and the bottom marginal ray, R 2b , of the maximum field in the negative Y-direction.
- P a , P a ′, P a ′′ and P b ′ denote the intersection points of the ray R 2b with surfaces 1 , 2 , 1 ′ and 3 , respectively; and P b , P c and P c′ label the intersection points of the ray R 1u with surfaces 2 , 1 ′ and 3 , respectively.
- the coordinates of these ray-surface intersections were then used to define the constraints for optimizing the FFS HMD prism-lens 110 . Based on the requirements of the physical structure, the constraints were defined as
- Equation 4 further set the upper and lower limits (e.g. 2 and 0.5 mm, respectively) on the edge thickness of the prism-lens 110 by constraining the Z coordinates of the points P a and P a ′.
- Eqn. (5) avoided the escape of the top marginal ray after reflection by the surface 1 and helped to control the thickness of the prism-lens 110 .
- Eqn. (6) ensured that the surfaces 1 and 3 intersected properly so that the top marginal ray could be traced through the prism-lens 110 without obstruction or escaping from the prism-lens 110 . It further helped control the height of the prism-lens 110 . Eqns. 4 through 6 together ensured the three surfaces formed a valid prism-lens shape. These relationships further set limits on the tilt angles of the surfaces 1 and 2 , which helped to limit the off axis aberrations. By limiting the Z coordinates of the points P a and P c , Eqn. (7) set the minimal value for the eye clearance distance.
- Takahashi U.S. Pat. No. 5,959,780
- the original prism design of Takahashi included two free-form surfaces 501 , 502 and one planar surface 503 .
- the Takahashi design offered a full FOV of the system 500 of 57.8° ⁇ 34.6°, with an exit pupil diameter of 4 mm and effective focal length of about 27.4 mm.
- the F/# of the system 500 was only 6.85.
- FIGS. 4A and 4B show the layout and the polychromatic MTF plots of the scaled starting system 500 , respectively.
- the MTF of the starting design was evaluated at an exit pupil diameter of 8 mm with vignetting, was no higher than 0.1 at a spatial frequency of 10 lps/mm across the entire visual field.
- the rayfan plots were evaluated at a 3 mm pupil, shown in FIGS. 4C and 4D . We thus needed a better starting point that met our first-order specifications before performing a comprehensive optimization.
- FIGS. 4A-4D The system of FIGS. 4A-4D was optimized with rays traced from the eye position to the microdisplay 530 in CODE V®. During the optimization process, four representative wavelengths, 486.1, 546.1, 587.6, and 656.3 nm, were set with the weights of 1, 1, 2, and 1, respectively.
- the effective focal lengths in both tangential and sagittal planes were constrained to be 15 mm.
- FIG. 5 illustrates the field sampling strategy during the different stages of optimization. In the initial stage, as illustrated in FIG.
- FIG. 5( a ) shows the layout of the system on the XZ plane. It is worth pointing out that this optimization strategy can reduce the dependence on the performance of the initial starting point.
- the distance from the bottom 712 to the top 714 of the left edge of the prism-lens 710 was 22 mm, the width along X-direction was 25 mm, the thickness along Z-axis was 12 mm, and the weight was 5 grams.
- the optical material of the prism-lens 710 was PMMA having a refractive index of 1.492 and Abbe number of 57.2.
- the locations, and effective areas, of the surfaces 701 , 702 , 703 relative to the global coordinate system having its origin at the exit pupil are given in Tables 2 and 3, respectively, below.
- the SPS XYP surfaces 701 , 702 , 703 were 10 th -order polynomial surfaces added to a base conic. The polynomial was expanded into monomials of x m y n , where m+n ⁇ 10. The equation used was:
- FIG. 2 illustrates the local, right-handed coordinate system at each surface 701 , 702 , 703 to show the local x-, y-, and z-axes and tilt, ⁇ (the x-axis is perpendicular to the plane of the figure).
- the FFS polynomial coefficients are provided in Table 8 at the end of the Detailed Description.
- FIGS. 7 through 8 demonstrate the optical performance of the microdisplay viewing path. As shown in FIG. 7 , the distortion in the microdisplay path was up to 12% at the top left/right corners. Such large distortion was mainly due to the trapezoidal shape distortion caused by surface 702 , which is very difficult to correct, as well as a small amount of barrel distortion.
- the polychromatic MTF plots shown in FIGS. 8A-8B were evaluated for a centered 3-mm pupil, at the spatial frequency of 30 cycles/mm, which corresponds to the threshold spatial frequency of the OLED microdisplay 730 .
- the MTF was 0.7 for the central (0°, 0°) field, 0.2 for the (0°, ⁇ 16°) field, and above 0.1 for the (22.5°, ⁇ 16°) field.
- the rayfan plots of the system 100 were evaluated at a 3 mm pupil, shown in FIGS. 8C and 8D ; the maximum error is the half of the starting system.
- FIGS. 9A and 9B plot the incident angle of rays on the surface 701 ′ as a function of the pupil position and field position of the rays, respectively.
- the incident angle on surface 701 ′ decreased from 59.13° to 42.98° for the top field, from 61.66° to 42.2° for the center field and from 65.02° to 46.70° for the bottom field.
- the refractive index of the material in our final design was 1.492, all these angles were well controlled to satisfy the Eqn. (2).
- 9C and 9D plot the incident angle of rays on the surface 701 as a function of the pupil position and field position of the rays, respectively.
- the incident angle on surface 701 decreased from 7.8° to 7.0° for the top field, from 3.15° to 2.84° for the center field and from 13.7° to 13.6° for the bottom field. All these angles were far smaller than the critical angle, so they were well controlled to satisfy the Eqn. (3).
- FIGS. 10A and 10B demonstrate the optical path and distortion grid of the real-world view through the free-form prism-lens 710 .
- An auxiliary lens 720 was desired, to not only cancel the optical power in the see-through path, but also to correct the deviation of the optical axis and the off-axis aberrations introduced by the FFS prism-lens 710 .
- auxiliary lens 720 to the left of the prism-lens 710 , and the lens surface adjacent to the prism-lens 710 was matched to the concave surface 702 of the prism-lens 710 , which ensured that the auxiliary lens 720 and prism-lens 710 could be cemented accurately which simplified the design of the auxiliary free-form lens 720 .
- the front surface 722 of the auxiliary lens 720 only needed to compensate for the optical power introduced by surface 701 of the prism-lens 710 of the FFS prism-lens 710 .
- a good approximation is to initialize the front surface 722 with the same shape as surface 701 of the prism-lens 710 .
- the combination of the auxiliary lens and the prism-lens 710 should ideally form an afocal system 700 for a real-world scene at optical infinity as the object distance is considerably larger than the EFL of the system 700 . Therefore, we inserted an ideal lens at the eye position with an effective focal length equivalent to the human eye to focus the collimated rays.
- the specification for the front surface 722 of the auxiliary lens 720 is provided as “Surface 4 ” in Table 8 below.
- FIGS. 11 through 12 demonstrate the optical performance of the optical see-through path.
- the polychromatic MTF plots were evaluated at a 3 mm pupil, shown in FIGS. 12A-12B .
- the MTF was 0.6 for the central (0°, 0°) field, 0.4 for the (0°, ⁇ 8°) field, and 0.2 for the marginal (22.5°, ⁇ 16°) field, which suggested that the image quality of a real-world is well-balanced across the fields and well preserved.
- the distortion in the see-through path is below 1.4% across the field, which is negligible.
- the distortion caused by the FFS prism-lens 710 is as high as 10%, as shown in FIG. 10B .
- the auxiliary free-form lens 720 effectively corrected the viewing axis deviation and the distortion.
- the final design of the auxiliary lens 720 combined with the FFS prism-lens 710 is shown in FIG. 13 , which demonstrates excellent correction to the deviation of the see-through optical path.
- the overall thickness of the combined prism-lens system 700 is approximately the same as the prism-lens 710 alone.
- the optical material of the auxiliary lens 720 was PMMA having a refractive index of 1.492 and Abbe number of 57.2.
- the locations, and effective areas, of the surfaces relative to the global coordinate system having its origin at the exit pupil are give in Tables 4 and 5, respectively, below.
- FIG. 14A shows a photo taken at the exit pupil of the system 700 to demonstrate the image quality of the microdisplay viewing optics.
- the distortion was noticeable and irregular.
- the upper portion of the displayed image seems nearer than the lower portion of the image.
- the distortion correction method of a free-form surface system 700 is different from rotationally symmetric systems where distortion can be corrected with sufficient accuracy by 3 radial and 2 tangential coefficients.
- a more complex model with more coefficients would be required.
- FIG. 15A is a photo taken at the exit pupil position without pre-warping the input image
- FIG. 15B is a photo after pre-warping the input image.
- the optical material of the prism-lens was PMMA having a refractive index of 1.492 and Abbe number of 57.2.
- the locations, and effective areas, of the surfaces relative to the global coordinate system having its origin at the exit pupil are give in Tables 6 and 7, respectively, below.
- the FFS polynomial coefficients are provided in Table 9 below.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
A see-through free-form head-mounted display including a wedge-shaped prism-lens having free-form surfaces and low F-number is provided.
Description
- This application claims the benefit of priority of U.S. Provisional Application No. 61/214,117, filed on Apr. 20, 2009, the entire contents of which application are incorporated herein by reference.
- This invention was made with government supports under contract numbers 0644446 awarded by the U.S. National Science Foundation, 60827003 awarded by the National Natural Science Foundation of China, and 2009AA01Z308 awarded by the Hi-Tech Research and Development Program of China. The U.S. and Chinese governments have certain rights in the invention.
- The present invention relates generally to a see-through free-form head-mounted display, and more particularly, but not exclusively to a wedge-shaped prism-lens having free-form surfaces configured to provide a low F-number heretofore unachieved.
- Optical see-through head-mounted displays (OST-HMD) find myriads of applications from scientific visualization to defense applications, from medical visualization to engineering processes, and from training to entertainment. In mixed or augmented reality systems, OST-HMDs have been one of the basic vehicles for combining computer-generated virtual scene with the views of a real-world scene. Typically through an optical combiner, an OST-HMD maintains a direct view of the physical world and optically superimposes computer-generated images onto the real scene. Compared with a video see-though approach where the real-world views are captured through cameras, it has the advantage of introducing minimal degradation to the real world scene. Therefore an OST-HMD is preferred for applications where a non-blocked real-world view is critical.
- On the other hand, designing a wide field of view (FOV), low F-number, compact, and nonintrusive OST-HMD has been a great challenge, especially difficult for a non-pupil forming system. The typical eyepiece structure using rotationally symmetric components has limitations in achieving low F-number, large eye relief, and wide FOV. Many methods have been explored to achieve an HMD optical system which fulfills the above mentioned requirements. These methods include applying catadioptric techniques, introducing new elements such as aspherical surfaces, holographic and diffractive optical components, exploring new design principles such as using projection optics to replace an eyepiece or microscope type lens system in a conventional HMD design, and introducing tilt and decenter or even free-form surfaces. (H. Hoshi, et .al, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE Vol. 2653, 234 (1996). S. Yamazaki, et al., “Thin wide-field-of-view HMD with free-form-surface prism and applications,” Proc. SPIE, Vol. 3639, 453 (1999).)
- Among the different methods mentioned above, free-form surfaces demonstrate great promise in designing compact HMD systems. In particular, a wedge-shaped free-form prism, introduced by Morishima et al. (Morishima et al., “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” 20th Optical Symposium, Extended Abstracts, 21, pp. 53-56 (1995)), takes the advantage of total internal reflection (TIR), which helps minimize light loss and improve the brightness and contrast of the displayed images when compared with designs using half mirrors. It is challenging, however, to design a free-form prism based OST-HMD offering a wide FOV, low F-number, and sufficient eye relief.
- The concept of free-form HMD designs with a wedge-shaped prism was first presented by Morishima et al. in 1995, and the fabrication and evaluation method were explored by Inoguchi et al. (“Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” Japan Optics '95, Extended Abstracts, 20pB06, pp. 19-20, 1995). Following these pioneering efforts, many attempts have been made to design HMDs using free-form surfaces, particularly designs based on a wedge-shaped prism (U.S. Pat. Nos. 5,699,194, 5,701,202, 5,706,136. D. Cheng, et al., “Design of a lightweight and wide field-of-view HMD system with free form surface prism,” Infrared and Laser Engineering, Vol. 36, 3 (2007).). For instance, Hoshi et al. presented an FFS prism offering an FOV of 34° and a thickness of 15 mm; Yamazaki et al. described a 51° OST-HMD design consisting of a FFS prism and an auxiliary lens attached to the FFS prism; and more recently Cakmakci et al. designed a 20° HMD system with one free-form reflecting surface which was based on rational radial basis function and a diffractive lens. (“Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express 16, 1583-1589 (2008)). There are also several commercially available HMD products based on the FFS prism concept. For instance, Olympus released their Eye-Trek series of HMDs based on free-form prisms. Emagin carried Z800 with the optical module WFO5, Daeyang carried i-Visor FX series (GEOMC module, A3 prism) products; Rockwell Collins announced the ProView SL40 using the prism technology of OEM display optics.
- Existing FFS-based designs have an exit pupil diameter that is typically from 4 to 8 mm with a FOV typically around 40 degrees or less. In most of the existing designs, the size of the microdisplays is in the range of 1 to 1.3 inches, which affords a focal length of 35˜45 mm for a typical 40-degree FOV. Even with an exit pupil up to 8 mm, the F/# remains fairly high (greater than 4) and eases the optical design challenge. A large size microdisplay, however, offsets the advantage of compactness using a free-form prism. In the more recent designs, smaller microdisplays, typically around 0.6″, were adopted, which requires a focal length of ˜21 mm to achieve a 40-degree FOV. The reduced focal length makes it very challenging to design a system with a large exit pupil. As a result, most of the designs compromise the exit pupil diameter. Thus, commercially available products on average reduce the pupil diameter to about 3˜5 mm to maintain an F/# greater than 4. There are a few designs that achieve a larger pupil by introducing additional free-form elements or diffractive optical elements. For instance, Droessler and Fritz described the design of a high brightness see-through head-mounted system with an F/# as low as 1.7 by using two extra decentered lenses and applying one diffractive surface. (U.S. Pat. No. 6,147,807). The existing work shows that it is extremely difficult to achieve a very fast (low F/#) and wide field of view HMD design with a single wedge-shaped free-form surface prism.
- Accordingly, it would be an advance in the field of optical see-through head-mounted displays to provide a head-mounted display which has a wide field of view and low F/#, while also providing a compact, light-weight, and nonintrusive form factor.
- In one of its aspects, the present invention provides a free-form prism-lens for use in an optical see-through head-mounted display. The prism-lens may include a first free-form surface configured to receive light from a micro-display and configured to transmit the received light into the body of the prism-lens, and a second free-form surface configured to receive the light transmitted into the body of the prism-lens from the first free-form surface and configured to totally internally reflect the received light at the second surface. In addition, prism-lens may also include a third free-form surface configured to receive the light reflected by the second free-form surface and configured to reflect the light out of the prism-lens and may have an f-number less than 3.5. The prism-lens may optionally include an auxiliary lens disposed proximate the third free-form surface. The auxiliary lens may be configured to minimize the shift and distortion of rays from a real-world scene by the second and third surfaces of the prism-lens.
- The foregoing summary and the following detailed description of the preferred embodiments of the present invention will be best understood when read in conjunction with the appended drawings, in which:
-
FIG. 1 schematically illustrates a layout of an exemplary optical see-through head-mounted display system in accordance with the present invention; -
FIG. 2 schematically illustrates the layout ofFIG. 1 showing the local coordinate system at each optical surface; -
FIG. 3 schematically illustrates the optical paths of the rays of different object fields and different pupil positions in an exemplary free-form-surface prism-lens see-through head-mounted display, with the incident angles of the rays onsurfaces -
FIGS. 4A-4D schematically illustrate a starting point for an exemplary design of the present invention, withFIG. 4A showing the optical layout in the YZ plane,FIG. 4B showing MTF plots,FIG. 4C showing ray fan plots of center fields, andFIG. 4D showing ray fan plots of marginal fields; -
FIG. 5 schematically illustrates the system layout and sampled fields definition during different design stages of an exemplary optical see-through head-mounted display; -
FIG. 6 schematically illustrates the layout of an exemplary free-form surface prism-lens system of the present invention having three free-form surfaces; -
FIG. 7 illustrates a distortion plot of the free-form surface prism-lens system ofFIG. 6 ; -
FIGS. 8A-8D illustrate the performance of the free-form surface prism-lens system ofFIG. 6 , withFIG. 8A showing the polychromatic MTF plot of the center field of the virtual imaging system,FIG. 8B showing the polychromatic MTF plot of marginal fields of the virtual imaging system,FIG. 8C showing the ray fan plots of the center fields, andFIG. 8D showing the ray fan plots of the marginal fields; -
FIGS. 9A-9D illustrate the incident angle on the TIR surface, withFIG. 9A showing the incident angle onsurface 1′ as the ray pupil position varies from the bottom to the top,FIG. 9B showing the incident angle onsurface 1′ as the field of the ray changes from the lowermost to the uppermost in the meridian plane,FIG. 9C showing the incident angle onsurface 1 as the ray pupil position varies from the bottom to the top, andFIG. 9D showing the incident angle onsurface 1 as the field of the ray changes from the lowermost to the uppermost position in the tangential plane; -
FIGS. 10A-10D schematically illustrates the design of an auxiliary lens to be used with the free-form surface prism-lens system ofFIG. 6 , withFIG. 10A showing see-through by the FFS prism-lens,FIG. 10B showing distortion caused by the FFS prism-lens, andFIG. 10C showing the design layout of the see-through system; -
FIG. 11 illustrates a distortion plot of the optical see-through system ofFIG. 10 ; -
FIGS. 12A-12B illustrate polychromatic MTF plots of the optical see-through system ofFIG. 10 with an ideal lens; -
FIG. 13 schematically illustrates the layout of the see-through HMD by coupling the FFS prism-lens system and auxiliary FFS lens ofFIG. 10 ; and -
FIG. 14A illustrates a photo without pre-warping the input image, andFIG. 14B a photo after pre-warping the input image taken through a fabricated prototype of the FFS prism-lens ofFIG. 6 . - The desire to achieve an optical see-through head-mounted display having a compact, light-weight, and nonintrusive form factor argues for a design having as few optical elements as possible. Accordingly, exemplary designs of the present invention provide a single-element prism-
lens FIGS. 1 , 6. However, providing a single optical element, such as the prism-lens 710, in which all the optical power resides can lead to greatly increased aberrations with accompanying loss in resolution and image quality, especially for low F/# systems. Despite these challenges, as a result of the lens design procedures and work described below, the present invention provides a single-element prism-lens 710 based on a 0.61″microdisplay 130, which offers a diagonal FOV of 53.5°, an F/# of 1.875, an exit pupil diameter of 8 mm, and an eye relief of 18.25 mm. In addition, in order to maintain a non-distorted see-through view of a real-world scene, a cementedauxiliary lens lens - Turning first to the design of the wedge-shaped free-form prism-
lens 110, design began with development of the display system specifications. An optical see-throughHMD 100 typically consists of an optical path for viewing a displayed virtual image and a path for viewing a real-world scene directly. As shown inFIG. 1 , theoptical system 100 of our OST-HMD design may include a wedge-shaped free-form prism-lens 110 cemented to an auxiliary free-form lens 120. The prism-lens 110 serves as the near-eye viewing optics that magnifies the image displayed through amicrodisplay 130 while the auxiliary free-form lens 120 is an auxiliary element attached to the prism-lens 110 in order to maintain a non-distorted see-through view of a real-world scene. - As shown in
FIG. 1 , the wedge shaped free-form prism-lens 110 may include three surfaces labeled as 1, 2, and 3, respectively. For the sake of convenience, the surface adjacent to the exit pupil is labeled as 1 in the refraction path and as 1′ in the reflection path. We set the center of the exit pupil as the origin of the global coordinate system and the rest of the surfaces were specified with respect to this global reference. We further adopted the convention of tracing the system backward, namely from the eye position to themicrodisplay 130. - The overall system was set to be symmetric about the YOZ plane, but not the XOZ plane. A ray emitted from a point on the
microdisplay 130 is first refracted by thesurface 3 next to themicrodisplay 130. After two consecutive reflections by thesurfaces 1′ and 2, the ray is transmitted through thesurface 1 and reaches the exit pupil of thesystem 100. The first surface (i.e., 1 and 1′) of the prism-lens 110 is required to satisfy the condition of total internal reflection for rays reflected by thissurface 1′. Therear surface 2 of the prism-lens 110 is coated as a half mirror in order to facilitate the optical see-through capability. The rays from themicrodisplay 130 will be reflected by therear surface 2 while the rays from a real-world scene will be transmitted. Anauxiliary lens 120 may be cemented to the wedge-shaped prism-lens 110 in order to counteract the ray shift and distortion caused by the prism-lens 110. The front surface of the auxiliary free-form lens 120 may match the shape of therear surface 2 of the prism-lens 110. Theback surface 4 of the auxiliary free-form lens 120 may be optimized to minimize the shift and distortion introduced to the rays from a real-world scene when the auxiliary free-form lens 120 is combined with the prism-lens 110. -
TABLE 1 Specifications of FFS Prism-lens HMD System Parameter Specification LCD Size 0.61 in (15.5 mm) diagonally Active display area 12.7 mm × 9.0 mm Resolution 800 × 600 pixels Virtual imaging system Type folded FFS prism-lens Effective focal length 15 mm Exit pupil diameter 8 mm Eye relief >17 (18.25) mm F/# 1.875 Number of free- form surfaces 3 Augmented viewing system Type Free-form lens Number of free- form surfaces 2 Other parameters Wavelength 656.3-486.1 nm Field of view 45° H × 32° V Vignetting 0.15 for top and bottom fields Distortion <12% at the maximum field Image quality MTF > 10% at 30 lps/mm - The overall specifications of the system are summarized in Table 1. Our goal was to achieve a very compact, lightweight, and wide FOV design using a wedge-shaped free-form prism-
lens 110. Asmall size microdisplay 130 with high resolution was thus preferred. Based on the size, resolution, availability and cost, a pair of 0.61-inch Emagin OLED displays were selected, with a resolution of 800×600 pixels and a 15 μm pixel size. We further targeted anHMD system 100 with a diagonal full FOV of at least 50°, which corresponds to a focal length no more than 16.6 mm. A 15 mm focal length was selected, which offers a reasonable balance between FOV (53.5° diagonally) and angular resolution (3.2 arc minutes per pixel). In the design of visual instruments, especially binocular HMDs, a large exit pupil is typically preferred to account for the swiveling of the eyes in their sockets without causing vignetting or loss of image. A large pupil offers better tolerance of the interpupilary distances (IPD) among different users without the need to mechanically adjust the IPD of the binocular optics. A large pupil, however, often not only compromises the compactness and weight of theoptical system 100, but also imposes limitations on the FOV due to the dramatically increased challenge of designing low F/# systems. Taking into account these factors, we set the exit pupil diameter to be 8 mm, which leads to asystem 100 with a F/# of 1.875. In designing HMD systems, a large eye relief is desired to accommodate users wearing eyeglasses, but it affects the compactness of the viewing optics. A minimum of a 18 mm eye relief was set to accommodate users wearing low-profile eyeglasses. Balancing between image uniformity and system compactness, we set the limit of the vignetting to be less than 15% at the top and bottom of the visual fields. - Among the aberrations of an optical system, distortion causes the warping of the displayed image without reducing image sharpness, which allows computational or electronic correction. In designing conventional HMDs it is common to optimize the
system 100 to minimize the optical aberrations that reduce image quality and cannot be compensated electronically or computationally. In a free-formoptical system 100, however, the distortion can be very large and irregular if it is left without any constraints. We thus set a distortion limit of 12% at the maximum field angle and planned to correct the residual distortion using computational methods. In terms of other types of aberrations, the modulation transfer function (MTF) was selected to evaluate the overall image sharpness and was set to be no less than 10% across the entire visual field at a spatial frequency of 30 lps/mm. With the specifications established, development continued with design of the free-form elements - Free-form optical surfaces offer more degrees of freedom to optical designers than conventional rotationally symmetric optical surfaces, such as a spherical or aspherical surface, and achieve usually lower wavefront errors and distortion than that achievable with the same number of rotationally symmetric surfaces. A significant benefit in our OST-HMD design lies in its ability to yield display optics with an eyeglass-like form factor. An optical design using free-form surfaces, however, may cause a dramatic increase in the complexity of the design and optimization process. An inadequate method of representing and optimizing a free-form surface may lead to discouraging and unpredictable results. Key issues in the process of designing a FFS HMD include 1) a free-form surface representation and design strategy; 2) total internal reflection condition; and 3) structure constraints to form a valid prism-
lens 110. - Free-Form Surface Representation and Design Strategy
- Selecting a suitable method for a free-form surface representation is very important. Different representation methods not only have different impacts on the ray tracing speed and the convergence of optimization, but also offer different degrees of design freedom. A suitable representation method shall 1) provide adequate degrees of freedom; 2) require a reasonable amount of ray tracing time; and 3) offer reliable convergence in the optimization process. Ray tracing speed is a particular concern in designing a free-form prism-
lens 110, as a larger number of fields need to be sampled when optimizing a free-form optical system than need to be sampled in a rotationally symmetrical optical system. Speed becomes a more serious problem when a global optimization is necessary. Although most of the commercially available optical design software, such as CODE V® (Optical Research Associates, Pasadena, Calif.), offers the ability to model free-form surfaces in user-defined methods, the ray tracing speed of user-defined representations typically is much slower than the standard methods available in the software packages. - By taking into account the speed and convergence factors, the following design strategy was adopted in our design process. In the case when we lacked a starting point for an FFS surface, we started to optimize the surface with a spherical type to obtain the correct first-order parameters. The spherical surface was then converted to an aspheric type by adding a conic constant and a 4th order or higher aspheric coefficients. Following an intermediate state of optimization, the ASP-type surface was then converted to an AAS-type surface for better correction by directly adding asymmetric coefficients up to the 10th order. To avoid loss of information, use of aspheric terms higher than the 10th order was not pursued, because the AAS surface has only up to the 10th order of rotationally symmetric coefficients in CODE V®. Optimization with the AAS type surface helped to create a good starting point. The AAS surface was then converted to the XYP-type through a fitting algorithm (e.g., a least square fitting method) for final stage of optimization. High precision was required for the fitting algorithm to avoid a significant deviation from the starting design produced by the AAS surface type.
- Total Internal Reflection Constraint
- As mentioned above, all the rays striking the
first surface 1′ of the prism-lens 110 from inside should be totally reflected off. Thefirst surface 1′ cannot be coated with a reflective film, because it is shared by both a refractive and reflective path of the same rays. Therefore, the incident angles of all the rays striking thefirst surface 1′ from themicrodisplay 130 should be larger than the critical angle, θc, set by the TIR condition -
θc=arcsin(1/n) (1) - where n is the refractive index of the material for the FFS prism-
lens 110. For example, if the index of the material is equal to 1.5, all the incident angles should be larger than 41.82°. Rays incident on thefirst surface 1′ of the prism-lens 110 at a smaller angle may be transmitted through the prism-lens 110 without the benefit of reflection off the rear surface 2 (and subsequent refraction at the first surface 1) and may directly enter the eye, which leads to stray light and a reduction in the image contrast observed by the user. If the TIR condition is met, however, after two consecutive reflections by the front andrear surfaces 1′ and 2, respectively, the same ray is returned back and to be transmitted through thefront surface 1. To ensure transmission of the ray after the two consecutive reflections, the incident angle of the ray should be smaller than the critical angle set by Eqn. (1) to avoid the TIR effect. - It was impractical to constrain the incident angle of every ray incident on the surface of interest during the optimization process. An adequate and practical control method was required. Without loss of generality, we made two assumptions: (1) the local departure of the
surface 1′ from a spherical surface was sufficiently small compared to the primary radius of curvature of the surface so that the surface normal of every point onsurface 1′ could be adequately approximated by a line passing through to the center of the primary curvature of the surface (as shown inFIGS. 3 ); and (2) the primary curvature of thesurface 1 is concave, as shown inFIG. 3 . Under these assumptions, we could prove that the top marginal ray, R1u, which corresponds to the ray from the maximum object field in the positive Y-direction (i.e. P1) passing through the top edge of the pupil, had the smallest incident angle among all the rays striking thesurface 1′ from themicrodisplay 130 side. As shown inFIG. 3 , the incident angle onsurface 1′ increased gradually as the ray from the same object field shifted from the top to the bottom of the pupil (e.g. from R1u to R1b); the angle also increased as the ray intersecting the same pupil position shifted from the top to the bottom of the object fields (e.g., from R1u to R2u). Therefore, the constraint on the incident angle was written as -
θ1b1′>arcsin(1/n) (2) - where θ1b1′ is the incident angle of the top marginal ray, R1u, on
surface 1′ from the maximum object field in tangential plane of themicrodisplay 130. - We could further prove that after the two consecutive reflections the top marginal ray, R2u, of the maximum object field in the negative Y-direction (i.e. P2) had the largest incident angle on the
surface 1 when thesurface 1 was tilted counterclockwise about the X-axis (i.e., the tilt angle, θ1>0); otherwise the bottom marginal ray R1b, of the maximum object field in the positive Y-direction (P1) has the largest incident angle when thesurface 1 was tilted clockwise. Therefore, the constraint used to avoid TIR condition onsurface 1 was written as: -
- where θ1b1 is the incident angle of the bottom marginal ray, R1b, striking the
surface 1; and θ2u1 is the incident angle of the top marginal ray, R2u, onsurface 1, and θ1 is the tilt angle ofsurface 1 about the X-axis. - The simplified constraints in Eqns. (2) and (3) were important in making the optimization practical in designing the FFS prism-
lens 110. Increasing the refractive index of the material could help to relax the ray angle constraints and ease the design task. However, high refractive index materials can increase the color aberrations (due to lower Abbe number) and fabrication cost. Furthermore, our goal in this design was to achieve light weight by using plastic materials, which usually have a moderately low range of refractive indices. - Structure Constraints
- Designing the wedge-shaped free-form prism-
lens 110 required optimizing the shapes of individual surfaces to minimize wavefront errors under the ray angle constraints set by Eqns. 2 and 3. It further required additional structure constraints in order to ensure that the three surfaces together formed a valid prism-lens shape, that all the rays across the fields could be traced without obstruction or early escaping from a surface, and that the prism-lens 110 maintained desirable center and edge thickness.FIG. 3 illustrates the structure control method we employed. During each step of the optimization, we traced two rays: the top marginal ray, R1u, of the maximum field in the positive Y-direction and the bottom marginal ray, R2b, of the maximum field in the negative Y-direction. As shown inFIG. 3 , Pa, Pa′, Pa″ and Pb′ denote the intersection points of the ray R2b withsurfaces surfaces lens 110. Based on the requirements of the physical structure, the constraints were defined as -
- where all the Y, Z coordinates in the equations are referenced to the global coordinate system with the origin located at the center of the exit pupil.
- Here by constraining the Y coordinates of the points Pa, Pa′, and Pa″, Eqn. (4) ensured that the
surfaces lens 110 without obstruction.Equation 4 further set the upper and lower limits (e.g. 2 and 0.5 mm, respectively) on the edge thickness of the prism-lens 110 by constraining the Z coordinates of the points Pa and Pa′. By constraining the Y and Z coordinates of the points Pb and Pb′, Eqn. (5) avoided the escape of the top marginal ray after reflection by thesurface 1 and helped to control the thickness of the prism-lens 110. By controlling the Y and Z coordinates of the points Pc and Pc′, Eqn. (6) ensured that thesurfaces lens 110 without obstruction or escaping from the prism-lens 110. It further helped control the height of the prism-lens 110. Eqns. 4 through 6 together ensured the three surfaces formed a valid prism-lens shape. These relationships further set limits on the tilt angles of thesurfaces - We selected a patented design by Takahashi (U.S. Pat. No. 5,959,780) as a starting point. The original prism design of Takahashi included two free-form surfaces 501, 502 and one
planar surface 503. Based on a 1.3inch microdisplay 530, the Takahashi design offered a full FOV of thesystem 500 of 57.8°×34.6°, with an exit pupil diameter of 4 mm and effective focal length of about 27.4 mm. The F/# of thesystem 500 was only 6.85. To meet our specifications, we scaled the effective focal length to 15 mm, reduced the horizontal FOV to 45°, and increased the exit pupil diameter from 4 mm to 8 mm, yielding asystem 500 with an F/# of 1.875. In the scaledsystem 500, the eye relief was reduced to 15.5 mm. The significantly reduced F/# imposed a critical challenge on system performance and invalidated several critical conditions of the prism-lens structure. - For instance, the incident angles of the rays on the
TIR surface 501 were far smaller than the critical angle and a part of the rays from the top and bottom fields escaped from theprism 510 before completing their paths. We thus had to set considerably large vignetting for the top and bottom fields to obtain a valid starting design.FIGS. 4A and 4B show the layout and the polychromatic MTF plots of the scaledstarting system 500, respectively. The MTF of the starting design was evaluated at an exit pupil diameter of 8 mm with vignetting, was no higher than 0.1 at a spatial frequency of 10 lps/mm across the entire visual field. The rayfan plots were evaluated at a 3 mm pupil, shown inFIGS. 4C and 4D . We thus needed a better starting point that met our first-order specifications before performing a comprehensive optimization. - The system of
FIGS. 4A-4D was optimized with rays traced from the eye position to themicrodisplay 530 in CODE V®. During the optimization process, four representative wavelengths, 486.1, 546.1, 587.6, and 656.3 nm, were set with the weights of 1, 1, 2, and 1, respectively. The TIR constraints and structural constraints as well as the basic optical definitions, such as the effective focal length, were always applied. The effective focal lengths in both tangential and sagittal planes were constrained to be 15 mm. We further set the following parameters as variables: all the primary curvatures of allsurfaces - Due to its single-plane symmetry, the free-form prism-lens design had to be optimized over half of the full FOV sampled in a rectangular grid, as opposed to a linear sample in the radial direction in a rotationally symmetric system. It was difficult, however, to start the optimization across the entire FOV in a densely-sampled grid given the low performance of the starting point. Instead, we adopted a progressive optimization strategy by gradually increasing field samples as the system performance improved during the optimization process. The weighting factors of the sampled fields were inversely proportional to their distance from the center of the field. The decenter and tilt parameters were set as variables during the entire optimization process.
FIG. 5 illustrates the field sampling strategy during the different stages of optimization. In the initial stage, as illustrated inFIG. 5( a), we sampled five fields along the vertical direction with the sagittal field angle being zero. It was important to optimize the system to meet the physical requirements such as eye clearance and TIR condition in this stage. During the optimization, we set the curvatures ofsurfaces rear surface 602 of the prism-lens 610 as variables. We also added curvature to surface 603 (which was aflat surface 503 in the starting Takahashi system 500) as a variable, and thissurface 603 was later turned into a free-form surface to help limit the ray heights of the marginal fields with respect to the center field and improve the overall optical performance. The surface layout of the optimizedsystem 600 on the XZ plane is shown inFIG. 5( a). After the first stage of optimization, we expanded the field samples by adding a fraction of the field angles along the sagittal direction. This stage of optimization was done by converting the surface type to AAS-type from ASP-type, and then the curvatures of the three surfaces in XZ plane were set as variables. The layout of the optimized system on the XZ plane is shown inFIG. 5( b). We continued to expand the field horizontally until the maximum field met our specification, and optimized the system repetitively by gradually adding the asymmetric coefficients as variables. A good starting point was finally achieved after the re-optimization.FIG. 5( c) shows the layout of the system on the XZ plane. It is worth pointing out that this optimization strategy can reduce the dependence on the performance of the initial starting point. - Following the design strategy above, we optimized the free-form surfaces using aspherical-type representations during the above steps for obtaining a good starting point. We then furthered the optimization by converting the ASP-type surfaces to AAS-type of surfaces and adding asymmetric coefficients up to the 10th order as variables. To further optimize the
system 600, we converted the AAS-type surfaces to XYP representations through a least-square fitting algorithm and carried out a global optimization. We found that this step of optimization was very effective in optimizing the FFS prism-lens system 700. The layout of the final FFS prism-lens design 700 is shown inFIG. 6 . The distance from the bottom 712 to the top 714 of the left edge of the prism-lens 710 was 22 mm, the width along X-direction was 25 mm, the thickness along Z-axis was 12 mm, and the weight was 5 grams. The optical material of the prism-lens 710 was PMMA having a refractive index of 1.492 and Abbe number of 57.2. The locations, and effective areas, of thesurfaces -
- where z is the sag of the surface along the local z-axis, x and y are the coordinates in the local coordinate system, c is the vertex curvature (CUY), k is the conic constant, and C, is the coefficient for xmyn.
FIG. 2 illustrates the local, right-handed coordinate system at eachsurface -
TABLE 2 Definition of the local surface references in the global coordinate system Orientation of the Origin of surface reference surface Rotation X (mm) Y (mm) Z (mm) about X-axis θ (°) Surface 10 0.305 18.25 1.7942 Origin: O1(x1, y1, z1) Orientation: θ1 Surface 20 0 24.34 −23.08 Origin: O2 (x2, y2, z2) Orientation: θ2 Surface 30 15.534 19.403 53.4547 Origin: O3 (x3, y3, z3) Orientation: θ3 Microdisplay 0 17.101 24.272 54.1888 Origin: OIm (xIm, yIm, zIm) Orientation: θIm -
TABLE 3 Effective area of each surface (mm) surface 1 X −13 13 Y −8.3 15.9 surface 2 X −13 13 Y −9.25 12.25 surface 3 X −10 10 Y −8.55 2.75 - The optical performance of the optimized
system 700 was assessed at the following representative field angles for the four design wavelengths: (0°, 0°), (0°, ±8°), (7°, 0°), (14°, 0°), (0°±16°), (22.5°, 0°), (22.5°, ±16°).FIGS. 7 through 8 demonstrate the optical performance of the microdisplay viewing path. As shown inFIG. 7 , the distortion in the microdisplay path was up to 12% at the top left/right corners. Such large distortion was mainly due to the trapezoidal shape distortion caused bysurface 702, which is very difficult to correct, as well as a small amount of barrel distortion. By fitting with the distortion grid, we chose to pre-warp the image displayed on themicrodisplay 730 to balance the distortion of the virtual image. The polychromatic MTF plots shown inFIGS. 8A-8B were evaluated for a centered 3-mm pupil, at the spatial frequency of 30 cycles/mm, which corresponds to the threshold spatial frequency of theOLED microdisplay 730. The MTF was 0.7 for the central (0°, 0°) field, 0.2 for the (0°, ±16°) field, and above 0.1 for the (22.5°, ±16°) field. The rayfan plots of thesystem 100 were evaluated at a 3 mm pupil, shown inFIGS. 8C and 8D ; the maximum error is the half of the starting system. - To demonstrate the effectiveness of the TIR constraints,
FIGS. 9A and 9B plot the incident angle of rays on thesurface 701′ as a function of the pupil position and field position of the rays, respectively. As the pupil position of the rays is shifted from bottom to top, the incident angle onsurface 701′ decreased from 59.13° to 42.98° for the top field, from 61.66° to 42.2° for the center field and from 65.02° to 46.70° for the bottom field. Given the refractive index of the material in our final design was 1.492, all these angles were well controlled to satisfy the Eqn. (2).FIGS. 9C and 9D plot the incident angle of rays on thesurface 701 as a function of the pupil position and field position of the rays, respectively. As the pupil position of the rays was shifted from bottom to top, the incident angle onsurface 701 decreased from 7.8° to 7.0° for the top field, from 3.15° to 2.84° for the center field and from 13.7° to 13.6° for the bottom field. All these angles were far smaller than the critical angle, so they were well controlled to satisfy the Eqn. (3). - The free-form prism-
lens 710 with curved surfaces produced optical power in the optical see-through path, causing a significant viewing axis deviation and undesirable distortion as well as other off-axis aberrations to the view of the real world scene.FIGS. 10A and 10B demonstrate the optical path and distortion grid of the real-world view through the free-form prism-lens 710. Anauxiliary lens 720 was desired, to not only cancel the optical power in the see-through path, but also to correct the deviation of the optical axis and the off-axis aberrations introduced by the FFS prism-lens 710. - We chose to trace rays from the real-world scene to the eye space, as shown in
FIG. 10C . We flipped the optimized FFS prism-lens 710 (FIG. 6 ) along the X-axis so that the pupil was to the right of the prism-lens 710. The reflective mode of theconcave mirror surface 702 was changed to refractive mode. We then inserted a plasticauxiliary lens 720 to the left of the prism-lens 710, and the lens surface adjacent to the prism-lens 710 was matched to theconcave surface 702 of the prism-lens 710, which ensured that theauxiliary lens 720 and prism-lens 710 could be cemented accurately which simplified the design of the auxiliary free-form lens 720. As a result, thefront surface 722 of theauxiliary lens 720 only needed to compensate for the optical power introduced bysurface 701 of the prism-lens 710 of the FFS prism-lens 710. Although we could start the optimization of the lens with a planarfront surface 722, a good approximation is to initialize thefront surface 722 with the same shape assurface 701 of the prism-lens 710. The combination of the auxiliary lens and the prism-lens 710 should ideally form anafocal system 700 for a real-world scene at optical infinity as the object distance is considerably larger than the EFL of thesystem 700. Therefore, we inserted an ideal lens at the eye position with an effective focal length equivalent to the human eye to focus the collimated rays. During the optimization process, we only set the curvature and polynomial coefficients of thefront surface 722 of theauxiliary lens 720 as variables. We set constraints on the distortion and aberrations. The specification for thefront surface 722 of theauxiliary lens 720 is provided as “Surface 4” in Table 8 below. -
FIGS. 11 through 12 demonstrate the optical performance of the optical see-through path. The polychromatic MTF plots were evaluated at a 3 mm pupil, shown inFIGS. 12A-12B . At the spatial frequency of 50 cycles/mm, the MTF was 0.6 for the central (0°, 0°) field, 0.4 for the (0°, ±8°) field, and 0.2 for the marginal (22.5°, ±16°) field, which suggested that the image quality of a real-world is well-balanced across the fields and well preserved. As shown inFIG. 11 , the distortion in the see-through path is below 1.4% across the field, which is negligible. The distortion caused by the FFS prism-lens 710 is as high as 10%, as shown inFIG. 10B . The auxiliary free-form lens 720 effectively corrected the viewing axis deviation and the distortion. - The final design of the
auxiliary lens 720 combined with the FFS prism-lens 710 is shown inFIG. 13 , which demonstrates excellent correction to the deviation of the see-through optical path. The overall thickness of the combined prism-lens system 700 is approximately the same as the prism-lens 710 alone. The optical material of theauxiliary lens 720 was PMMA having a refractive index of 1.492 and Abbe number of 57.2. The locations, and effective areas, of the surfaces relative to the global coordinate system having its origin at the exit pupil are give in Tables 4 and 5, respectively, below. -
TABLE 4 Definition of the local surface references in the global coordinate system OXYZ. Orientation of the Origin of surface reference surface Rotation X (mm) Y (mm) Z (mm) about X-axis θ (°) Surface 10 0.305 18.25 1.7942 Origin: O1(x1, y1, z1) Orientation: θ1 Surface 20 0 24.34 −23.08 Origin: O2 (x2, y2, z2) Orientation: θ2 Surface 30 15.534 19.403 53.4547 Origin: O3 (x3, y3, z3) Orientation: θ3 Surface 40 0 29 0 Origin: O4 (x4, y4, z4) Orientation: θ4 Microdisplay 0 17.101 24.272 54.1888 Origin: OIm (xIm, yIm, zIm) Orientation: θIm -
TABLE 5 Effective area of each surface (mm) Surface 1 X −13 13 Y −8.3 15.9 Surface 2 X −13 13 Y −9.25 12.25 Surface 3 X −10 10 Y −8.55 2.75 Surface 4 X −13 13 Y −10 12 - The FFS prism-
lens 710 was fabricated through a molding approach.FIG. 14A shows a photo taken at the exit pupil of thesystem 700 to demonstrate the image quality of the microdisplay viewing optics. The distortion was noticeable and irregular. The upper portion of the displayed image seems nearer than the lower portion of the image. The distortion correction method of a free-form surface system 700 is different from rotationally symmetric systems where distortion can be corrected with sufficient accuracy by 3 radial and 2 tangential coefficients. To correct the distortion in the free-form system 700, a more complex model with more coefficients would be required. Alternatively, we calculated the mapping from the undistorted image to a distorted image using the distortion plot inFIG. 7 and then applied the mapping matrix on the undistorted image to pre-warp the image. As shown inFIG. 7 , 11 by 11 grids were sampled to calculate the distortion mapping. Similarly, we divided the effective image plane into 800×600 grids, then calculated the corresponding fields on the eye side from the height of the grid corners and implemented ray tracing in CODE V® to find the chief rays' intersection points with the image plane of all the fields. The one to one mapping matrix from the undistorted image to the distorted image was calculated between ideal points (grid corners) and the ray traced points on the image plane. We could then generate the pre-warped image by applying the one to one mapping matrix on the undistorted image and displayed the pre-warped image on themicrodisplay 730.FIG. 15A is a photo taken at the exit pupil position without pre-warping the input image, whileFIG. 15B is a photo after pre-warping the input image. - The techniques described above where employed to provide a second exemplary design. Again, the optical material of the prism-lens was PMMA having a refractive index of 1.492 and Abbe number of 57.2. The locations, and effective areas, of the surfaces relative to the global coordinate system having its origin at the exit pupil are give in Tables 6 and 7, respectively, below. The FFS polynomial coefficients are provided in Table 9 below.
-
TABLE 6 the local surface references in the global coordinate system OXYZ. Orientation of the Origin of surface reference surface Rotation X (mm) Y (mm) Z (mm) about X-axis θ (°) Surface 10 −4 19.18 6.04937 Origin: O1(x1, y1, z1) Orientation: θ1 Surface 20 −3.2 23.65 −26.4722 Origin: O2 (x2, y2, z2) Orientation: θ2 Surface 30 16.044 23.35 53.2281 Origin: O3 (x3, y3, z3) Orientation: θ3 Surface 40 0.514 29.968 6 Origin: O4 (x4, y4, z4) Orientation: θ4 Microdisplay 0 17.978 25.011 49.247 Origin: OIm (xIm, yIm, zIm) Orientation: θIm -
TABLE 7 Effective area of each surface (mm) Surface 1 X −15 15 Y −6 22 Surface 2 X −15 15 Y −8 16 Surface 3 X −10 10 Y −6.5 6.5 Surface 4 X −15 15 Y −11.5 12.5 - These and other advantages of the present invention will be apparent to those skilled in the art from the foregoing specification. Accordingly, it will be recognized by those skilled in the art that changes or modifications may be made to the above-described embodiments without departing from the broad inventive concepts of the invention. For instance, other shapes of free-form surfaces may be utilized in the designs of the present invention. By way of example, if one wanted to vary the surface curvature independently in the x and y directions, the surface could be represented by
-
- where z is the sag along the local z-axis, x and y are the coordinates in the local coordinate system, k is the conic constant, cx is radius of curvature of surface in sagittal direction, cy is radius of curvature of surface in tangential direction, and Cj is the coefficient for x2myn. It should therefore be understood that this invention is not limited to the particular embodiments described herein, but is intended to include all changes and modifications that are within the scope and spirit of the invention as set forth in the claims.
-
TABLE 8 Coeffi- com- cients ment Surface 1 Surface 2 cuy c −0.000285105 −0.039092523 c67 normal- 1 1 ized radius c1 k 0 0 c2 x 0 0 c3 y −4.554727019060E−02 0.000000000000E+00 c4 x2 −9.529768572360E−03 3.799883836350E−03 c5 xy 0.000000000000E+00 0.000000000000E+00 c6 y2 8.880680850880E−04 8.811637430275E−03 c7 x3 0.000000000000E+00 0.000000000000E+00 c8 x2y −2.274693243620E−04 −4.120156490413E−05 c9 xy2 0.000000000000E+00 0.000000000000E+00 c10 y3 −2.250128361500E−05 −1.162523138271E−04 c11 x4 1.363374558440E−05 8.274939784188E−06 c12 x3y 0.000000000000E+00 0.000000000000E+00 c13 x2y2 −3.835587301810E−05 1.217474597638E−05 c14 xy3 0.000000000000E+00 0.000000000000E+00 c15 y4 −8.630487450540E−06 1.240101301250E−05 c16 x5 0.000000000000E+00 0.000000000000E+00 c17 x4y −1.985502857350E−07 −3.848552333625E−08 c18 x3y2 0.000000000000E+00 0.000000000000E+00 c19 x2y3 1.202547290150E−06 4.252351660938E−07 c20 xy4 0.000000000000E+00 0.000000000000E+00 c21 y5 −2.259740420160E−07 −1.854520775606E−08 c22 x6 −2.190859953400E−08 −7.328932049703E−10 c23 x5y 0.000000000000E+00 0.000000000000E+00 c24 x4y2 −1.532516744660E−09 3.774337431125E−08 c25 x3y3 0.000000000000E+00 0.000000000000E+00 c26 x2y4 2.361733529370E−08 −9.746364392781E−08 c27 xy5 0.000000000000E+00 0.000000000000E+00 c28 y6 1.116521684700E−08 −2.777925130281E−08 c29 x7 0.000000000000E+00 0.000000000000E+00 c30 x6y 6.000609985730E−20 −9.790340156094E−10 c31 x5y2 0.000000000000E+00 0.000000000000E+00 c32 x4y3 −5.043712711540E−20 1.456155907344E−10 c33 x3y4 0.000000000000E+00 0.000000000000E+00 c34 x2y5 −5.117716418980E−20 6.072571241477E−09 c35 xy6 0.000000000000E+00 0.000000000000E+00 c36 y7 −8.492659970480E−18 9.635155206406E−10 c37 x8 7.666995972280E−11 1.071711944156E−10 c38 x7y 0.000000000000E+00 0.000000000000E+00 c39 x6y2 −7.767376892480E−11 0.000000000000E+00 c40 x5y3 0.000000000000E+00 0.000000000000E+00 c41 x4y4 2.950846077350E−11 0.000000000000E+00 c42 x3y5 0.000000000000E+00 0.000000000000E+00 c43 x2y6 −4.982363079300E−12 0.000000000000E+00 c44 xy7 0.000000000000E+00 0.000000000000E+00 c45 y8 3.154691021580E−13 0.000000000000E+00 c46 x9 0.000000000000E+00 0.000000000000E+00 c47 x8y −1.654239598390E−22 0.000000000000E+00 c48 x7y2 0.000000000000E+00 0.000000000000E+00 c49 x6y3 1.373514352470E−22 0.000000000000E+00 c50 x5y4 0.000000000000E+00 0.000000000000E+00 c51 x4y5 3.089957605530E−22 0.000000000000E+00 c52 x3y6 0.000000000000E+00 0.000000000000E+00 c53 x2y7 7.625247748780E−22 0.000000000000E+00 c54 xy8 0.000000000000E+00 0.000000000000E+00 c55 y9 −3.658104101010E−20 0.000000000000E+00 c56 x10 −5.304042934200E−14 0.000000000000E+00 c57 x9y 0.000000000000E+00 0.000000000000E+00 c58 x8y2 −2.253404112780E−13 0.000000000000E+00 c59 x7y3 0.000000000000E+00 0.000000000000E+00 c60 x6y4 −3.829417935900E−13 0.000000000000E+00 c61 x5y5 0.000000000000E+00 0.000000000000E+00 c62 x4y6 −3.253841807830E−13 0.000000000000E+00 c63 x3y7 0.000000000000E+00 0.000000000000E+00 c64 x2y8 −1.382388481590E−13 0.000000000000E+00 c65 xy9 0.000000000000E+00 0.000000000000E+00 c66 y10 −2.349220379980E−14 0.000000000000E+00 Coeffi- com- cients ment Surface 3 Surface 4 cuy c −0.047502239 4.62503916636415E−03 c67 normal- 1 1 ized radius c1 k 0 0 c2 x 0 0 c3 y −3.713820097050E−01 −7.889190949566E−02 c4 x2 −7.602734138830E−03 9.061467713679E−03 c5 xy 0.000000000000E+00 0.000000000000E+00 c6 y2 −1.328060538820E−02 −7.440925962039E−04 c7 x3 0.000000000000E+00 0.000000000000E+00 c8 x2y −6.162600900670E−04 −1.334980089604E−04 c9 xy2 0.000000000000E+00 0.000000000000E+00 c10 y3 2.698297276700E−03 −1.082388324657E−05 c11 x4 −1.036808360720E−05 −6.869154882657E−06 c12 x3y 0.000000000000E+00 0.000000000000E+00 c13 x2y2 6.395534320820E−04 2.537076127696E−05 c14 xy3 0.000000000000E+00 0.000000000000E+00 c15 y4 5.348289994560E−04 2.872950078172E−06 c16 x5 0.000000000000E+00 0.000000000000E+00 c17 x4y −7.243323994940E−06 3.579225277335E−07 c18 x3y2 0.000000000000E+00 0.000000000000E+00 c19 x2y3 −2.631914617550E−05 7.674060114164E−07 c20 xy4 0.000000000000E+00 0.000000000000E+00 c21 y5 −1.207571795570E−04 2.343303575169E−07 c22 x6 6.925182707110E−08 3.531736575015E−08 c23 x5y 0.000000000000E+00 0.000000000000E+00 c24 x4y2 −4.354972387950E−06 −1.047604139930E−07 c25 x3y3 0.000000000000E+00 0.000000000000E+00 c26 x2y4 −5.469927852330E−06 −7.816094559917E−08 c27 xy5 0.000000000000E+00 0.000000000000E+00 c28 y6 −1.348379393160E−05 5.437264126834E−08 c29 x7 0.000000000000E+00 0.000000000000E+00 c30 x6y 0.000000000000E+00 −2.345712968586E−09 c31 x5y2 0.000000000000E+00 0.000000000000E+00 c32 x4y3 0.000000000000E+00 −9.776159457326E−10 c33 x3y4 0.000000000000E+00 0.000000000000E+00 c34 x2y5 0.000000000000E+00 −3.747602576420E−09 c35 xy6 0.000000000000E+00 0.000000000000E+00 c36 y7 0.000000000000E+00 −3.134464841907E−09 c37 x8 0.000000000000E+00 −1.684012356810E−10 c38 x7y 0.000000000000E+00 0.000000000000E+00 c39 x6y2 0.000000000000E+00 4.535953132119E−10 c40 x5y3 0.000000000000E+00 0.000000000000E+00 c41 x4y4 0.000000000000E+00 7.837817283276E−10 c42 x3y5 0.000000000000E+00 0.000000000000E+00 c43 x2y6 0.000000000000E+00 2.755761921660E−10 c44 xy7 0.000000000000E+00 0.000000000000E+00 c45 y8 0.000000000000E+00 −5.916877897125E−10 c46 x9 0.000000000000E+00 0.000000000000E+00 c47 x8y 0.000000000000E+00 4.770943033528E−12 c48 x7y2 0.000000000000E+00 0.000000000000E+00 c49 x6y3 0.000000000000E+00 −2.951188218903E−13 c50 x5y4 0.000000000000E+00 0.000000000000E+00 c51 x4y5 0.000000000000E+00 3.371749455954E−12 c52 x3y6 0.000000000000E+00 0.000000000000E+00 c53 x2y7 0.000000000000E+00 1.747159621915E−11 c54 xy8 0.000000000000E+00 0.000000000000E+00 c55 y9 0.000000000000E+00 8.129325561197E−12 c56 x10 0.000000000000E+00 2.312868445063E−13 c57 x9y 0.000000000000E+00 0.000000000000E+00 c58 x8y2 0.000000000000E+00 −7.302980007283E−13 c59 x7y3 0.000000000000E+00 0.000000000000E+00 c60 x6y4 0.000000000000E+00 −8.710198057552E−13 c61 x5y5 0.000000000000E+00 0.000000000000E+00 c62 x4y6 0.000000000000E+00 −2.578655721303E−12 c63 x3y7 0.000000000000E+00 0.000000000000E+00 c64 x2y8 0.000000000000E+00 1.049427758427E−13 c65 xy9 0.000000000000E+00 0.000000000000E+00 c66 y10 0.000000000000E+00 1.997616885026E−12 -
TABLE 9 Coeffi- com- cients ment Surface 1 Surface 2 cuy c 5.05744188235277E−03 1.01290420358428E−02 c67 normal- 1 1 ized radius c1 k −1.00000000000000E+00 −1.00000000000000E+00 c2 x 0.00000000000000E+00 0.00000000000000E+00 c3 y 0.00000000000000E+00 0.00000000000000E+00 c4 x2 −1.06569604270328E−02 −1.98880360585134E−02 c5 xy 0.00000000000000E+00 0.00000000000000E+00 c6 y2 −1.68658939805653E−03 −1.19385116890299E−02 c7 x3 0.00000000000000E+00 0.00000000000000E+00 c8 x2y 6.91090618400814E−05 9.33625592200568E−06 c9 xy2 0.00000000000000E+00 0.00000000000000E+00 c10 y3 2.20768710346282E−04 −2.29081872204714E−04 c11 x4 −6.83962391749639E−06 −2.78401802376246E−06 c12 x3y 0.00000000000000E+00 0.00000000000000E+00 c13 x2y2 −3.05668325239866E−05 −1.72926734056902E−05 c14 xy3 0.00000000000000E+00 0.00000000000000E+00 c15 y4 −1.36336411152319E−05 −1.96766859030307E−05 c16 x5 0.00000000000000E+00 0.00000000000000E+00 c17 x4y 8.58870602989718E−07 −3.48208722714691E−07 c18 x3y2 0.00000000000000E+00 0.00000000000000E+00 c19 x2y3 2.59849465399784E−07 2.19795381577235E−06 c20 xy4 0.00000000000000E+00 0.00000000000000E+00 c21 y5 1.30586738289348E−06 2.43633240996974E−06 c22 x6 2.43871462953907E−07 3.17005397026433E−08 c23 x5y 0.00000000000000E+00 0.00000000000000E+00 c24 x4y2 −2.17171575262769E−07 −8.43008544990865E−09 c25 x3y3 0.00000000000000E+00 0.00000000000000E+00 c26 x2y4 −1.09469718343971E−07 −3.80934245038872E−08 c27 xy5 0.00000000000000E+00 0.00000000000000E+00 c28 y6 −1.27848463353098E−07 6.91418873061873E−08 c29 x7 0.00000000000000E+00 0.00000000000000E+00 c30 x6y −2.17215958916219E−10 −5.29841934213626E−09 c31 x5y2 0.00000000000000E+00 0.00000000000000E+00 c32 x4y3 1.17052458860851E−08 8.21084328918049E−09 c33 x3y4 0.00000000000000E+00 0.00000000000000E+00 c34 x2y5 9.68888754082781E−09 −7.97369765852189E−09 c35 xy6 0.00000000000000E+00 0.00000000000000E+00 c36 y7 3.27432053769373E−09 −1.04667540576694E−08 c37 x8 −7.15087135594710E−10 1.58107927123443E−10 c38 x7y 0.00000000000000E+00 0.00000000000000E+00 c39 x6y2 8.37241810688380E−11 2.50870549731047E−10 c40 x5y3 0.00000000000000E+00 0.00000000000000E+00 c41 x4y4 3.08448109642484E−10 −7.25055775891319E−10 c42 x3y5 0.00000000000000E+00 0.00000000000000E+00 c43 x2y6 4.69822713757874E−10 −3.40656761505412E−10 c44 xy7 0.00000000000000E+00 0.00000000000000E+00 c45 y8 3.74205140407221E−11 −9.66678413418157E−10 c46 x9 0.00000000000000E+00 0.00000000000000E+00 c47 x8y −6.76193659551364E−11 1.12952194048511E−11 c48 x7y2 0.00000000000000E+00 0.00000000000000E+00 c49 x6y3 2.52161603900163E−11 −7.04825907294106E−11 c50 x5y4 0.00000000000000E+00 0.00000000000000E+00 c51 x4y5 −1.74613643937042E−10 6.33946672763876E−11 c52 x3y6 0.00000000000000E+00 0.00000000000000E+00 c53 x2y7 −4.02373533060283E−11 6.52431095363973E−11 c54 xy8 0.00000000000000E+00 0.00000000000000E+00 c55 y9 −1.51494734534747E−12 1.16444692674563E−10 c56 x10 −2.04692546379699E−13 −9.55272275007493E−13 c57 x9y 0.00000000000000E+00 0.00000000000000E+00 c58 x8y2 1.27850873405047E−12 1.26785440782157E−12 c59 x7y3 0.00000000000000E+00 0.00000000000000E+00 c60 x6y4 3.62506934749027E−12 2.65220449427970E−12 c61 x5y5 0.00000000000000E+00 0.00000000000000E+00 c62 x4y6 6.19013257835136E−12 −2.60617377673244E−12 c63 x3y7 0.00000000000000E+00 0.00000000000000E+00 c64 x2y8 5.47840265443679E−13 −1.51560477272646E−12 c65 xy9 0.00000000000000E+00 0.00000000000000E+00 c66 y10 −8.21677804323237E−15 −3.02669599955700E−12 Coeffi- com- cients ment Surface 3 Surface 4 cuy c −1.36040070302022E−01 −3.57225273631067E−03 c67 normal- 1 1 ized radius c1 k −1.00000000000000E+00 −3.05442384082650E+02 c2 x 0.00000000000000E+00 0.00000000000000E+00 c3 y 0.00000000000000E+00 1.50268084206787E−02 c4 x2 4.02243465863783E−02 −6.19425352271504E−03 c5 xy 0.00000000000000E+00 0.00000000000000E+00 c6 y2 −2.13980634999507E−02 4.47303500982809E−03 c7 x3 0.00000000000000E+00 0.00000000000000E+00 c8 x2y −3.01138835536447E−03 −1.20873088719341E−04 c9 xy2 0.00000000000000E+00 0.00000000000000E+00 c10 y3 −2.02440549644019E−02 4.88846955792256E−05 c11 x4 −4.47796835910435E−04 −3.55281378009418E−07 c12 x3y 0.00000000000000E+00 0.00000000000000E+00 c13 x2y2 3.77675855322595E−03 −1.85583369659820E−05 c14 xy3 0.00000000000000E+00 0.00000000000000E+00 c15 y4 4.80144970995529E−03 −9.25174463073967E−06 c16 x5 0.00000000000000E+00 0.00000000000000E+00 c17 x4y 4.02927533244600E−05 −3.50332571416944E−07 c18 x3y2 0.00000000000000E+00 0.00000000000000E+00 c19 x2y3 5.39169467243012E−05 2.04967612461798E−07 c20 xy4 0.00000000000000E+00 0.00000000000000E+00 c21 y5 5.53544127253446E−04 −4.65892543560338E−08 c22 x6 1.11280354729252E−05 −5.29354102911361E−09 c23 x5y 0.00000000000000E+00 0.00000000000000E+00 c24 x4y2 −4.80012193062278E−05 4.02601860330999E−09 c25 x3y3 0.00000000000000E+00 0.00000000000000E+00 c26 x2y4 −1.26051539656191E−04 2.49939246096273E−08 c27 xy5 0.00000000000000E+00 0.00000000000000E+00 c28 y6 −1.73588932255855E−04 3.61819538534118E−08 c29 x7 0.00000000000000E+00 0.00000000000000E+00 c30 x6y −8.79779758365947E−07 2.01195864259020E−09 c31 x5y2 0.00000000000000E+00 0.00000000000000E+00 c32 x4y3 3.02147026981469E−06 −4.57346927308613E−10 c33 x3y4 0.00000000000000E+00 0.00000000000000E+00 c34 x2y5 −3.77643718632961E−06 1.24553105773878E−09 c35 xy6 0.00000000000000E+00 0.00000000000000E+00 c36 y7 −3.76456044984959E−06 −1.79376358056304E−09 c37 x8 −1.15675211759524E−07 2.21527691875407E−10 c38 x7y 0.00000000000000E+00 0.00000000000000E+00 c39 x6y2 2.78655613640253E−07 −2.53421606734412E−10 c40 x5y3 0.00000000000000E+00 0.00000000000000E+00 c41 x4y4 9.84349649743337E−07 −5.74780760494471E−11 c42 x3y5 0.00000000000000E+00 0.00000000000000E+00 c43 x2y6 2.49702108607953E−06 −1.17433001848088E−11 c44 xy7 0.00000000000000E+00 0.00000000000000E+00 c45 y8 2.58861741885522E−06 −3.74142357461756E−10 c46 x9 0.00000000000000E+00 0.00000000000000E+00 c47 x8y 6.03461822581042E−09 −9.50023944707191E−12 c48 x7y2 0.00000000000000E+00 0.00000000000000E+00 c49 x6y3 −1.70606513975964E−08 7.11512617425205E−12 c50 x5y4 0.00000000000000E+00 0.00000000000000E+00 c51 x4y5 −1.33127271883197E−08 −1.18995002675616E−12 c52 x3y6 0.00000000000000E+00 0.00000000000000E+00 c53 x2y7 4.80199259903842E−08 −3.34840697581670E−13 c54 xy8 0.00000000000000E+00 0.00000000000000E+00 c55 y9 −2.98879732404454E−08 1.00015126063979E−11 c56 x10 4.69852812284116E−10 −6.12912070190102E−13 c57 x9y 0.00000000000000E+00 0.00000000000000E+00 c58 x8y2 −5.85068948593321E−10 1.03108702382589E−12 c59 x7y3 0.00000000000000E+00 0.00000000000000E+00 c60 x6y4 −3.00944950467783E−09 −2.49697011108537E−13 c61 x5y5 0.00000000000000E+00 0.00000000000000E+00 c62 x4y6 −5.78412894302924E−09 −5.08864307560358E−14 c63 x3y7 0.00000000000000E+00 0.00000000000000E+00 c64 x2y8 −2.34559082177138E−08 2.18880110409132E−13 c65 xy9 0.00000000000000E+00 0.00000000000000E+00 c66 y10 −1.17892981297852E−08 9.10176395465433E−13
Claims (14)
1. A free-form prism-lens for use in an optical see-through head-mounted display, comprising:
a first free-form surface configured to receive light from a micro-display and configured to transmit the received light into the body of the prism-lens;
a second free-form surface configured to receive the light transmitted into the body of the prism-lens from the first free-form surface and configured to totally internally reflect the received light at the second surface; and
a third free-form surface configured to receive the light reflected by the second free-form surface and configured to reflect the light out of the prism-lens,
wherein the prism-lens has an f-number less than 3.5.
2. The free-form prism-lens according to claim 1 , wherein the first free-form surface is described by
where the z is the sag of the first free-form surface measured along the z-axis of a local x, y, z coordinate system, c is the vertex curvature (CUY), k is the conic constant, and Cj is the coefficient for xmyn.
3. The free-form prism-lens according to any one of the preceding claims, wherein the second free-form surface is described by
where the z is the sag of the first free-form surface measured along the z-axis of a local x, y, z coordinate system, c is the vertex curvature (CUY), k is the conic constant, and Cj is the coefficient for xmyn.
4. The free-form prism-lens according to claim 3 , wherein the third free-form surface is described by
where the z is the sag of the first free-form surface measured along the z-axis of a local x, y, z coordinate system, c is the vertex curvature (CUY), k is the conic constant, and Cj is the coefficient for xmyn.
5. The free-form prism-lens according to claim 1 , wherein the third free-form surface is partially mirrored to permit the internally reflected light to be reflected by the second free-form surface and to permit light from a real-world view to be transmitted through the third free-form surface to the exit pupil.
6. The free-form prism-lens according to claim 1 , wherein second and third free-form surfaces are configured to provide a wedge-shaped prism lens.
7. The free-form prism-lens according to claim 1 , wherein the z-axis is parallel to the optical axis at the exit pupil, and the prism lens is symmetric about the y-z plane and asymmetric about the x-z plane.
8. The free-form prism-lens according to claim 1 , wherein the diagonal field of view is at least 40 degrees.
9. The free-form prism-lens according to claim 1 , wherein the exit pupil diameter is at least 6 mm.
10. The free-form prism-lens according to claim 1 , wherein the modulation transfer function is at least 10%×30 lps/mm.
11. The free-form prism-lens according to claim 1 , wherein the eye clearance is at least 16 mm.
12. The free-form prism-lens according to claim 1 , comprising an auxiliary lens disposed proximate the third free-form surface, the auxiliary lens configured to minimize the shift and distortion of rays from a real-world scene by the second and third surfaces of the prism-lens.
13. The free-form prism-lens according to claim 12 , wherein the auxiliary lens has a surface with the same shape as the third free-form surface of the prism-lens and is disposed in optical contact with the third free-form surface of the prism-lens.
14. The free-form prism-lens according to claim 12 or 13 , wherein at least one surface of the auxiliary lens is described by
where the z is the sag of the first free-form surface measured along the z-axis of a local x, y, z coordinate system, c is the vertex curvature (CUY), k is the conic constant, and Cj is the coefficient for xmyn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/318,864 US20120081800A1 (en) | 2009-04-20 | 2010-04-20 | Optical see-through free-form head-mounted display |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21411709P | 2009-04-20 | 2009-04-20 | |
PCT/US2010/031799 WO2010123934A1 (en) | 2009-04-20 | 2010-04-20 | Optical see-through free-form head-mounted display |
US13/318,864 US20120081800A1 (en) | 2009-04-20 | 2010-04-20 | Optical see-through free-form head-mounted display |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/031799 A-371-Of-International WO2010123934A1 (en) | 2009-04-20 | 2010-04-20 | Optical see-through free-form head-mounted display |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/010,956 Continuation US9239453B2 (en) | 2009-04-20 | 2013-08-27 | Optical see-through free-form head-mounted display |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120081800A1 true US20120081800A1 (en) | 2012-04-05 |
Family
ID=43011447
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/318,864 Abandoned US20120081800A1 (en) | 2009-04-20 | 2010-04-20 | Optical see-through free-form head-mounted display |
US14/010,956 Active US9239453B2 (en) | 2009-04-20 | 2013-08-27 | Optical see-through free-form head-mounted display |
US14/956,632 Active US10416452B2 (en) | 2009-04-20 | 2015-12-02 | Optical see-through free-form head-mounted display |
US16/541,929 Active 2030-12-05 US11300790B2 (en) | 2009-04-20 | 2019-08-15 | Optical see-through free-form head-mounted display |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/010,956 Active US9239453B2 (en) | 2009-04-20 | 2013-08-27 | Optical see-through free-form head-mounted display |
US14/956,632 Active US10416452B2 (en) | 2009-04-20 | 2015-12-02 | Optical see-through free-form head-mounted display |
US16/541,929 Active 2030-12-05 US11300790B2 (en) | 2009-04-20 | 2019-08-15 | Optical see-through free-form head-mounted display |
Country Status (2)
Country | Link |
---|---|
US (4) | US20120081800A1 (en) |
WO (1) | WO2010123934A1 (en) |
Cited By (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110227813A1 (en) * | 2010-02-28 | 2011-09-22 | Osterhout Group, Inc. | Augmented reality eyepiece with secondary attached optic for surroundings environment vision correction |
US20120162549A1 (en) * | 2010-12-24 | 2012-06-28 | Chunyu Gao | Ergonomic Head Mounted Display Device And Optical System |
US20140071539A1 (en) * | 2012-09-11 | 2014-03-13 | Magic Leap, Inc. | Ergonomic head mounted display device and optical system |
US8937771B2 (en) | 2012-12-12 | 2015-01-20 | Microsoft Corporation | Three piece prism eye-piece |
WO2014189692A3 (en) * | 2013-05-24 | 2015-02-26 | University Of Rochester | Optical display apparatus, method, and applications |
JP2015106012A (en) * | 2013-11-29 | 2015-06-08 | セイコーエプソン株式会社 | Virtual image display device |
CN104730854A (en) * | 2013-12-20 | 2015-06-24 | 汤姆逊许可公司 | Optical see-through glass type display device and corresponding optical unit |
KR20150070195A (en) * | 2012-10-18 | 2015-06-24 | 더 아리조나 보드 오브 리전츠 온 비핼프 오브 더 유니버시티 오브 아리조나 | Stereoscopic displays with addressable focus cues |
US20150301797A1 (en) * | 2014-04-18 | 2015-10-22 | Magic Leap, Inc. | Systems and methods for rendering user interfaces for augmented or virtual reality |
US20150316771A1 (en) * | 2014-01-21 | 2015-11-05 | Osterhout Group, Inc. | See-through computer display systems |
US20150362725A1 (en) * | 2014-06-13 | 2015-12-17 | Tsinghua University | Design method of led freeform surface illumination system based on xy-polynomial |
US20150363973A1 (en) * | 2014-06-13 | 2015-12-17 | Tsinghua University | Construction method of freeform surface shape based on xy-polynomial |
US20150379697A1 (en) * | 2014-06-26 | 2015-12-31 | Daniel Pohl | Distortion meshes against chromatic aberrations |
US9239453B2 (en) | 2009-04-20 | 2016-01-19 | Beijing Institute Of Technology | Optical see-through free-form head-mounted display |
US9244277B2 (en) | 2010-04-30 | 2016-01-26 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Wide angle and high resolution tiled head-mounted display device |
WO2016033317A1 (en) * | 2014-08-29 | 2016-03-03 | Arizona Board Of Regent On Behalf Of The University Of Arizona | Ultra-compact head-up displays based on freeform waveguide |
US9310591B2 (en) | 2008-01-22 | 2016-04-12 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
US20160131909A1 (en) * | 2014-11-10 | 2016-05-12 | Hitachi-Lg Data Storage, Inc. | Image display apparatus and head mounted display |
US9345402B2 (en) | 2012-09-11 | 2016-05-24 | Augmented Vision, Inc. | Compact eye imaging and eye tracking apparatus |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
KR20160134714A (en) * | 2014-03-05 | 2016-11-23 | 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 | Wearable 3d augmented reality display with variable focus and/or object recognition |
US9523856B2 (en) | 2014-01-21 | 2016-12-20 | Osterhout Group, Inc. | See-through computer display systems |
US9529192B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9547465B2 (en) | 2014-02-14 | 2017-01-17 | Osterhout Group, Inc. | Object shadowing in head worn computing |
US9551872B1 (en) | 2013-12-30 | 2017-01-24 | Google Inc. | Spatially multiplexed lens for head mounted display |
US20170023791A1 (en) * | 2015-07-23 | 2017-01-26 | Canon Kabushiki Kaisha | Image display apparatus |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9594246B2 (en) | 2014-01-21 | 2017-03-14 | Osterhout Group, Inc. | See-through computer display systems |
US9615742B2 (en) | 2014-01-21 | 2017-04-11 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US9671612B2 (en) | 2014-01-29 | 2017-06-06 | Google Inc. | Dynamic lens for head mounted display |
CN106842794A (en) * | 2017-03-28 | 2017-06-13 | 广景视睿科技(深圳)有限公司 | A kind of non-telecentricity DLP micro projection modules |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
JP2017111442A (en) * | 2015-12-14 | 2017-06-22 | ▲し▼創電子股▲ふん▼有限公司 | Optical imaging device |
USD792400S1 (en) | 2014-12-31 | 2017-07-18 | Osterhout Group, Inc. | Computer glasses |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US9720232B2 (en) | 2012-01-24 | 2017-08-01 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Compact eye-tracked head-mounted display |
USD794637S1 (en) | 2015-01-05 | 2017-08-15 | Osterhout Group, Inc. | Air mouse |
US9740280B2 (en) | 2014-01-21 | 2017-08-22 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US9753288B2 (en) | 2014-01-21 | 2017-09-05 | Osterhout Group, Inc. | See-through computer display systems |
JP2017173573A (en) * | 2016-03-24 | 2017-09-28 | セイコーエプソン株式会社 | Image display apparatus |
US9784973B2 (en) | 2014-02-11 | 2017-10-10 | Osterhout Group, Inc. | Micro doppler presentations in head worn computing |
US9798148B2 (en) | 2014-07-08 | 2017-10-24 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
JP2017198728A (en) * | 2016-04-25 | 2017-11-02 | キヤノン株式会社 | Image display device |
US9811152B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US20170343816A1 (en) * | 2016-05-24 | 2017-11-30 | Osterhout Group, Inc. | Solid optical assembly with increased efficiency |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US9843093B2 (en) | 2014-02-11 | 2017-12-12 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US20180045949A1 (en) * | 2016-08-12 | 2018-02-15 | Arizona Board Of Regents On Behalf Of The University Of Arizona | High-resolution freeform eyepiece design with a large exit pupil |
US9910284B1 (en) | 2016-09-08 | 2018-03-06 | Osterhout Group, Inc. | Optical systems for head-worn computers |
US9939646B2 (en) | 2014-01-24 | 2018-04-10 | Osterhout Group, Inc. | Stray light suppression for head worn computing |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
JP2018060208A (en) * | 2013-11-27 | 2018-04-12 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Systems and methods for virtual and augmented reality |
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10007118B2 (en) | 2014-01-21 | 2018-06-26 | Osterhout Group, Inc. | Compact optical system with improved illumination |
US20180209608A1 (en) * | 2017-01-24 | 2018-07-26 | Tsinghua University | Illumination system with freeform surface |
US10062182B2 (en) | 2015-02-17 | 2018-08-28 | Osterhout Group, Inc. | See-through computer display systems |
US20180252849A1 (en) * | 2017-03-02 | 2018-09-06 | Intevac, Inc. | See through axial high order prism |
US10078224B2 (en) | 2014-09-26 | 2018-09-18 | Osterhout Group, Inc. | See-through computer display systems |
US10176961B2 (en) | 2015-02-09 | 2019-01-08 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Small portable night vision system |
US10180572B2 (en) | 2010-02-28 | 2019-01-15 | Microsoft Technology Licensing, Llc | AR glasses with event and user action control of external applications |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US10261328B2 (en) | 2016-09-02 | 2019-04-16 | Microsoft Technology Licensing, Llc | Enhanced illumination system |
US10276091B2 (en) * | 2016-07-15 | 2019-04-30 | Samsung Display Co., Ltd. | Organic light emitting display device and head mounted display system having the same |
CN109782441A (en) * | 2017-11-14 | 2019-05-21 | 塔普翊海(上海)智能科技有限公司 | A kind of aobvious optical system of the see-through head of nearly eye |
US10422995B2 (en) | 2017-07-24 | 2019-09-24 | Mentor Acquisition One, Llc | See-through computer display systems with stray light management |
US10466491B2 (en) | 2016-06-01 | 2019-11-05 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US10539787B2 (en) | 2010-02-28 | 2020-01-21 | Microsoft Technology Licensing, Llc | Head-worn adaptive display |
US10558050B2 (en) | 2014-01-24 | 2020-02-11 | Mentor Acquisition One, Llc | Haptic systems for head-worn computers |
US10578869B2 (en) | 2017-07-24 | 2020-03-03 | Mentor Acquisition One, Llc | See-through computer display systems with adjustable zoom cameras |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10663740B2 (en) | 2014-06-09 | 2020-05-26 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US10684478B2 (en) | 2016-05-09 | 2020-06-16 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10782453B2 (en) | 2015-01-21 | 2020-09-22 | Tesseland, Llc | Display devices with reflectors |
WO2020204925A1 (en) | 2019-04-03 | 2020-10-08 | Futurewei Technologies, Inc. | Freeform optical lens construction for near-eye displays |
WO2020214158A1 (en) | 2019-04-17 | 2020-10-22 | Futurewei Technologies, Inc. | Freeform optical lens integration with visors for near-eye displays |
US10824253B2 (en) | 2016-05-09 | 2020-11-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10853589B2 (en) | 2014-04-25 | 2020-12-01 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US10860100B2 (en) | 2010-02-28 | 2020-12-08 | Microsoft Technology Licensing, Llc | AR glasses with predictive control of external device based on event input |
US10969584B2 (en) | 2017-08-04 | 2021-04-06 | Mentor Acquisition One, Llc | Image expansion optic for head-worn computer |
US11009710B2 (en) | 2015-01-26 | 2021-05-18 | Magic Leap, Inc. | Virtual and augmented reality systems and methods having improved diffractive grating structures |
US11079596B2 (en) | 2009-09-14 | 2021-08-03 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | 3-dimensional electro-optical see-through displays |
US11104272B2 (en) | 2014-03-28 | 2021-08-31 | Mentor Acquisition One, Llc | System for assisted operator safety using an HMD |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11150489B2 (en) | 2014-01-31 | 2021-10-19 | Magic Leap, Inc. | Multi-focal display system and method |
US11209651B2 (en) | 2014-01-31 | 2021-12-28 | Magic Leap, Inc. | Multi-focal display system and method |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US11252399B2 (en) * | 2015-05-28 | 2022-02-15 | Microsoft Technology Licensing, Llc | Determining inter-pupillary distance |
US11269182B2 (en) | 2014-07-15 | 2022-03-08 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11314105B2 (en) | 2018-07-26 | 2022-04-26 | Oakley, Inc. | Lens for eyewear and other headworn supports having improved optics |
US11402630B2 (en) | 2017-12-11 | 2022-08-02 | Panasonic Intellectual Property Management Co., Ltd. | Head-up display and moving body with head-up display mounted thereon |
US11409105B2 (en) | 2017-07-24 | 2022-08-09 | Mentor Acquisition One, Llc | See-through computer display systems |
US11422374B2 (en) | 2014-05-30 | 2022-08-23 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
US20220317464A1 (en) * | 2021-06-07 | 2022-10-06 | Panamorph, Inc. | Near-eye display system |
US11474355B2 (en) * | 2014-05-30 | 2022-10-18 | Magic Leap, Inc. | Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality |
US11487110B2 (en) | 2014-01-21 | 2022-11-01 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US11546575B2 (en) | 2018-03-22 | 2023-01-03 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Methods of rendering light field images for integral-imaging-based light field display |
US11579445B2 (en) * | 2017-12-11 | 2023-02-14 | Panasonic Intrllectual Property Management Co., Ltd. | Head-up display and moving body with head-up display mounted thereon |
CN116088086A (en) * | 2023-03-02 | 2023-05-09 | 福州京东方光电科技有限公司 | Optical waveguide and near-to-eye display device |
US11669163B2 (en) | 2014-01-21 | 2023-06-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US20230213762A1 (en) * | 2021-12-31 | 2023-07-06 | Beijing Ned+Ar Display Technology Co., Ltd. | Ultra-thin lens, virtual image display device using same, and near-eye display |
US11737666B2 (en) | 2014-01-21 | 2023-08-29 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US11892644B2 (en) | 2014-01-21 | 2024-02-06 | Mentor Acquisition One, Llc | See-through computer display systems |
US12044850B2 (en) | 2017-03-09 | 2024-07-23 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted light field display with integral imaging and waveguide prism |
US12078802B2 (en) | 2017-03-09 | 2024-09-03 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted light field display with integral imaging and relay optics |
US12092817B2 (en) | 2016-04-07 | 2024-09-17 | Magic Leap, Inc. | Systems and methods for augmented reality |
US12093453B2 (en) | 2014-01-21 | 2024-09-17 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US12105281B2 (en) | 2014-01-21 | 2024-10-01 | Mentor Acquisition One, Llc | See-through computer display systems |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9182596B2 (en) | 2010-02-28 | 2015-11-10 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light |
US9759917B2 (en) | 2010-02-28 | 2017-09-12 | Microsoft Technology Licensing, Llc | AR glasses with event and sensor triggered AR eyepiece interface to external devices |
US9341843B2 (en) | 2010-02-28 | 2016-05-17 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a small scale image source |
US8488246B2 (en) | 2010-02-28 | 2013-07-16 | Osterhout Group, Inc. | See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film |
US8477425B2 (en) | 2010-02-28 | 2013-07-02 | Osterhout Group, Inc. | See-through near-eye display glasses including a partially reflective, partially transmitting optical element |
US9128281B2 (en) | 2010-09-14 | 2015-09-08 | Microsoft Technology Licensing, Llc | Eyepiece with uniformly illuminated reflective display |
US9285589B2 (en) | 2010-02-28 | 2016-03-15 | Microsoft Technology Licensing, Llc | AR glasses with event and sensor triggered control of AR eyepiece applications |
US8482859B2 (en) | 2010-02-28 | 2013-07-09 | Osterhout Group, Inc. | See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film |
US9134534B2 (en) | 2010-02-28 | 2015-09-15 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses including a modular image source |
US8472120B2 (en) | 2010-02-28 | 2013-06-25 | Osterhout Group, Inc. | See-through near-eye display glasses with a small scale image source |
US9097890B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | Grating in a light transmissive illumination system for see-through near-eye display glasses |
US9129295B2 (en) | 2010-02-28 | 2015-09-08 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear |
US9366862B2 (en) | 2010-02-28 | 2016-06-14 | Microsoft Technology Licensing, Llc | System and method for delivering content to a group of see-through near eye display eyepieces |
US9097891B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment |
US9229227B2 (en) | 2010-02-28 | 2016-01-05 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a light transmissive wedge shaped illumination system |
US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
US9223134B2 (en) | 2010-02-28 | 2015-12-29 | Microsoft Technology Licensing, Llc | Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses |
US9091851B2 (en) | 2010-02-28 | 2015-07-28 | Microsoft Technology Licensing, Llc | Light control in head mounted displays |
US9632315B2 (en) | 2010-10-21 | 2017-04-25 | Lockheed Martin Corporation | Head-mounted display apparatus employing one or more fresnel lenses |
US8625200B2 (en) | 2010-10-21 | 2014-01-07 | Lockheed Martin Corporation | Head-mounted display apparatus employing one or more reflective optical surfaces |
US8781794B2 (en) | 2010-10-21 | 2014-07-15 | Lockheed Martin Corporation | Methods and systems for creating free space reflective optical surfaces |
US10359545B2 (en) | 2010-10-21 | 2019-07-23 | Lockheed Martin Corporation | Fresnel lens with reduced draft facet visibility |
BR112013014975A2 (en) | 2010-12-16 | 2020-08-11 | Lockheed Martin Corporation | collimation display with pixel lenses |
US9690099B2 (en) | 2010-12-17 | 2017-06-27 | Microsoft Technology Licensing, Llc | Optimized focal area for augmented reality displays |
US10156722B2 (en) | 2010-12-24 | 2018-12-18 | Magic Leap, Inc. | Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality |
CN102788315B (en) * | 2011-05-20 | 2016-09-07 | 欧司朗股份有限公司 | Lens, the light emitting module with these lens and indoor wall washer lamp |
JP2012242794A (en) * | 2011-05-24 | 2012-12-10 | Olympus Corp | Twin lens image display device |
CN103439793B (en) * | 2013-07-18 | 2016-05-25 | 成都理想境界科技有限公司 | A kind of head-wearing display device HMD |
US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
US9915826B2 (en) | 2013-11-27 | 2018-03-13 | Magic Leap, Inc. | Virtual and augmented reality systems and methods having improved diffractive grating structures |
US9841598B2 (en) * | 2013-12-31 | 2017-12-12 | 3M Innovative Properties Company | Lens with embedded multilayer optical film for near-eye display systems |
CN203811978U (en) * | 2014-05-15 | 2014-09-03 | 广景科技有限公司 | DLP mini-sized projector |
WO2016061447A1 (en) | 2014-10-17 | 2016-04-21 | Lockheed Martin Corporation | Head-wearable ultra-wide field of view display device |
US9939650B2 (en) | 2015-03-02 | 2018-04-10 | Lockheed Martin Corporation | Wearable display system |
GB2536650A (en) | 2015-03-24 | 2016-09-28 | Augmedics Ltd | Method and system for combining video-based and optic-based augmented reality in a near eye display |
CN104932105A (en) * | 2015-06-24 | 2015-09-23 | 北京理工大学 | Splicing type head-mounted display device |
US10007115B2 (en) | 2015-08-12 | 2018-06-26 | Daqri, Llc | Placement of a computer generated display with focal plane at finite distance using optical devices and a see-through head-mounted display incorporating the same |
US11609427B2 (en) | 2015-10-16 | 2023-03-21 | Ostendo Technologies, Inc. | Dual-mode augmented/virtual reality (AR/VR) near-eye wearable displays |
US10754156B2 (en) | 2015-10-20 | 2020-08-25 | Lockheed Martin Corporation | Multiple-eye, single-display, ultrawide-field-of-view optical see-through augmented reality system |
US11106273B2 (en) | 2015-10-30 | 2021-08-31 | Ostendo Technologies, Inc. | System and methods for on-body gestural interfaces and projection displays |
CN105334608B (en) * | 2015-12-05 | 2018-06-26 | 中国航空工业集团公司洛阳电光设备研究所 | A kind of prism optical system |
US10345594B2 (en) | 2015-12-18 | 2019-07-09 | Ostendo Technologies, Inc. | Systems and methods for augmented near-eye wearable displays |
US10578882B2 (en) | 2015-12-28 | 2020-03-03 | Ostendo Technologies, Inc. | Non-telecentric emissive micro-pixel array light modulators and methods of fabrication thereof |
TWM521179U (en) * | 2016-01-21 | 2016-05-01 | 中強光電股份有限公司 | Head-mounted display apparatus |
KR20180104056A (en) | 2016-01-22 | 2018-09-19 | 코닝 인코포레이티드 | Wide Field Private Display |
US10353203B2 (en) | 2016-04-05 | 2019-07-16 | Ostendo Technologies, Inc. | Augmented/virtual reality near-eye displays with edge imaging lens comprising a plurality of display devices |
US10453431B2 (en) | 2016-04-28 | 2019-10-22 | Ostendo Technologies, Inc. | Integrated near-far light field display systems |
US9995936B1 (en) | 2016-04-29 | 2018-06-12 | Lockheed Martin Corporation | Augmented reality systems having a virtual image overlaying an infrared portion of a live scene |
US10522106B2 (en) | 2016-05-05 | 2019-12-31 | Ostendo Technologies, Inc. | Methods and apparatus for active transparency modulation |
US10649209B2 (en) | 2016-07-08 | 2020-05-12 | Daqri Llc | Optical combiner apparatus |
EP3497503A4 (en) * | 2016-08-12 | 2020-04-01 | Frank Jones | Large exit pupil wearable near-to-eye vision systems exploiting freeform eyepieces |
WO2018122859A1 (en) | 2016-12-31 | 2018-07-05 | Lumus Ltd. | Eye tracker based on retinal imaging via light-guide optical element |
US10481678B2 (en) | 2017-01-11 | 2019-11-19 | Daqri Llc | Interface-based modeling and design of three dimensional spaces using two dimensional representations |
US11500143B2 (en) * | 2017-01-28 | 2022-11-15 | Lumus Ltd. | Augmented reality imaging system |
CN110914741A (en) * | 2017-03-09 | 2020-03-24 | 亚利桑那大学评议会 | Free form prism and head mounted display with increased field of view |
TWI633337B (en) * | 2017-05-04 | 2018-08-21 | 宏碁股份有限公司 | Virtual reality display apparatus |
US10810773B2 (en) * | 2017-06-14 | 2020-10-20 | Dell Products, L.P. | Headset display control based upon a user's pupil state |
US10976551B2 (en) | 2017-08-30 | 2021-04-13 | Corning Incorporated | Wide field personal display device |
JP6516806B2 (en) * | 2017-08-31 | 2019-05-22 | キヤノン株式会社 | Image display device |
JP2019061198A (en) * | 2017-09-28 | 2019-04-18 | セイコーエプソン株式会社 | Virtual image display unit |
CN107942416A (en) * | 2017-11-15 | 2018-04-20 | 中国科学院长春光学精密机械与物理研究所 | A kind of annulus freeform optics element and single-panel optical system |
CN107884927B (en) * | 2017-11-22 | 2019-09-27 | 苏州亮宇模具科技有限公司 | The design method of non-uniform thickness optical mirror slip |
CN110031957B (en) * | 2018-01-12 | 2021-01-05 | 清华大学 | Free-form surface off-axis three-mirror imaging system |
CN110133859B (en) | 2018-02-09 | 2021-09-03 | 中强光电股份有限公司 | Display device |
CN110133860B (en) | 2018-02-09 | 2022-01-25 | 中强光电股份有限公司 | Display device |
CN110133861B (en) | 2018-02-09 | 2021-11-02 | 中强光电股份有限公司 | Three-dimensional display device |
US10488666B2 (en) | 2018-02-10 | 2019-11-26 | Daqri, Llc | Optical waveguide devices, methods and systems incorporating same |
WO2019211741A1 (en) | 2018-05-02 | 2019-11-07 | Augmedics Ltd. | Registration of a fiducial marker for an augmented reality system |
IL259518B2 (en) | 2018-05-22 | 2023-04-01 | Lumus Ltd | Optical system and method for improvement of light field uniformity |
US10989923B2 (en) * | 2018-06-13 | 2021-04-27 | Futurewei Technologies, Inc. | Achromatic freeform prism for near eye displays |
US11493768B2 (en) * | 2018-07-17 | 2022-11-08 | Ostendo Technologies, Inc. | Augmented/virtual reality near eye display with edge imaging spectacle lens |
KR20200015278A (en) | 2018-08-03 | 2020-02-12 | 삼성전자주식회사 | Optical lens assembly and electronic apparatus having the same |
TWM642752U (en) | 2018-11-08 | 2023-06-21 | 以色列商魯姆斯有限公司 | Light-guide display with reflector |
US11766296B2 (en) | 2018-11-26 | 2023-09-26 | Augmedics Ltd. | Tracking system for image-guided surgery |
CN111273442A (en) * | 2018-12-05 | 2020-06-12 | 北京耐德佳显示技术有限公司 | Ultrathin optical assembly, virtual image imaging method of optical assembly and display device using same |
US11125993B2 (en) | 2018-12-10 | 2021-09-21 | Facebook Technologies, Llc | Optical hyperfocal reflective systems and methods, and augmented reality and/or virtual reality displays incorporating same |
JP2022514489A (en) | 2018-12-10 | 2022-02-14 | フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニー | Adaptive viewport for hypervocal viewport (HVP) displays |
TWI687745B (en) | 2018-12-27 | 2020-03-11 | 國立交通大學 | Near-eye augmented reality device |
JP2022516730A (en) | 2019-01-09 | 2022-03-02 | フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニー | Non-uniform accessory pupil reflectors and methods in optical waveguides for AR, HMD, and HUD applications |
US11237389B1 (en) * | 2019-02-11 | 2022-02-01 | Facebook Technologies, Llc | Wedge combiner for eye-tracking |
WO2020232170A1 (en) * | 2019-05-14 | 2020-11-19 | Arizona Board Of Regents On Behalf Of The University Of Arizona | A light combiner employing a curved waveguide system |
US11980506B2 (en) | 2019-07-29 | 2024-05-14 | Augmedics Ltd. | Fiducial marker |
US11860455B2 (en) * | 2019-12-11 | 2024-01-02 | Nvidia Corporation | Modular prescription augmented reality display |
US11382712B2 (en) | 2019-12-22 | 2022-07-12 | Augmedics Ltd. | Mirroring in image guided surgery |
CN113467078B (en) * | 2020-03-31 | 2022-12-30 | 京东方科技集团股份有限公司 | Near-eye display device and method for manufacturing same |
WO2021217277A1 (en) * | 2020-05-01 | 2021-11-04 | Esight Corp. | Wearable near-to-eye vision systems |
CN114077045A (en) * | 2020-08-14 | 2022-02-22 | 清华大学 | Off-axis two-mirror infrared imaging system |
IL305555B1 (en) | 2021-03-01 | 2024-08-01 | Lumus Ltd | Optical system with compact coupling from a projector into a waveguide |
CN113204119A (en) * | 2021-04-30 | 2021-08-03 | 歌尔股份有限公司 | Cemented lens group and head-mounted display device |
IL308019B2 (en) | 2021-05-19 | 2024-06-01 | Lumus Ltd | Active optical engine |
CN115480401A (en) | 2021-06-16 | 2022-12-16 | 中强光电股份有限公司 | Illumination system and projection device |
US11896445B2 (en) | 2021-07-07 | 2024-02-13 | Augmedics Ltd. | Iliac pin and adapter |
US11886008B2 (en) | 2021-08-23 | 2024-01-30 | Lumus Ltd. | Methods of fabrication of compound light-guide optical elements having embedded coupling-in reflectors |
JP2023043250A (en) * | 2021-09-16 | 2023-03-29 | 株式会社リコー | Propagation optical system, virtual image display device and head-mounted display |
US11863730B2 (en) | 2021-12-07 | 2024-01-02 | Snap Inc. | Optical waveguide combiner systems and methods |
WO2024057210A1 (en) | 2022-09-13 | 2024-03-21 | Augmedics Ltd. | Augmented reality eyewear for image-guided medical intervention |
Family Cites Families (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3632184A (en) | 1970-03-02 | 1972-01-04 | Bell Telephone Labor Inc | Three-dimensional display |
JPS503354A (en) | 1973-05-11 | 1975-01-14 | ||
US4669810A (en) | 1984-02-03 | 1987-06-02 | Flight Dynamics, Inc. | Head up display system |
US4753522A (en) | 1985-06-03 | 1988-06-28 | Ricoh Company, Ltd. | Plastic lens assembly for use in copying machines |
US4863251A (en) | 1987-03-13 | 1989-09-05 | Xerox Corporation | Double gauss lens for a raster input scanner |
US5880888A (en) | 1989-01-23 | 1999-03-09 | Hughes Aircraft Company | Helmet mounted display system |
GB8916206D0 (en) | 1989-07-14 | 1989-11-08 | Marconi Gec Ltd | Helmet systems |
JP2692996B2 (en) | 1989-12-25 | 1997-12-17 | オリンパス光学工業株式会社 | Imaging lens |
US5109469A (en) | 1990-11-01 | 1992-04-28 | Itt Corporation | Phosphor screen for correcting luminous non-uniformity and method for making same |
US5172275A (en) | 1990-12-14 | 1992-12-15 | Eastman Kodak Company | Apochromatic relay lens systems suitable for use in a high definition telecine apparatus |
WO1992018971A1 (en) | 1991-04-22 | 1992-10-29 | Evans & Sutherland Computer Corp. | Head-mounted projection display system featuring beam splitter |
DE69325607T2 (en) | 1992-04-07 | 2000-04-06 | Raytheon Co | Wide spectral band virtual image display optical system |
US6008781A (en) | 1992-10-22 | 1999-12-28 | Board Of Regents Of The University Of Washington | Virtual retinal display |
US5526183A (en) | 1993-11-29 | 1996-06-11 | Hughes Electronics | Helmet visor display employing reflective, refractive and diffractive optical elements |
US7262919B1 (en) | 1994-06-13 | 2007-08-28 | Canon Kabushiki Kaisha | Head-up display device with curved optical surface having total reflection |
US5621572A (en) | 1994-08-24 | 1997-04-15 | Fergason; James L. | Optical system for a head mounted display using a retro-reflector and method of displaying an image |
US5625495A (en) | 1994-12-07 | 1997-04-29 | U.S. Precision Lens Inc. | Telecentric lens systems for forming an image of an object composed of pixels |
JP3658034B2 (en) | 1995-02-28 | 2005-06-08 | キヤノン株式会社 | Image observation optical system and imaging optical system |
US5818632A (en) | 1995-04-13 | 1998-10-06 | Melles Griot, Inc | Multi-element lens system |
JP3599828B2 (en) | 1995-05-18 | 2004-12-08 | オリンパス株式会社 | Optical device |
EP1798592A3 (en) | 1996-01-17 | 2007-09-19 | Nippon Telegraph And Telephone Corporation | Optical device and three-dimensional display device |
JP3556389B2 (en) | 1996-05-01 | 2004-08-18 | 日本電信電話株式会社 | Head mounted display device |
JPH09218375A (en) | 1996-02-08 | 1997-08-19 | Canon Inc | Fatigue deciding method and observing device using same |
JPH09219832A (en) | 1996-02-13 | 1997-08-19 | Olympus Optical Co Ltd | Image display |
US5959780A (en) * | 1996-04-15 | 1999-09-28 | Olympus Optical Co., Ltd. | Head-mounted display apparatus comprising a rotationally asymmetric surface |
JP3758265B2 (en) | 1996-04-24 | 2006-03-22 | ソニー株式会社 | 3D image display method and display device thereof |
US5880711A (en) | 1996-04-24 | 1999-03-09 | Sony Corporation | Three-dimensional image display method and its display apparatus |
US6028606A (en) | 1996-08-02 | 2000-02-22 | The Board Of Trustees Of The Leland Stanford Junior University | Camera simulation system |
JP3924348B2 (en) | 1996-11-05 | 2007-06-06 | オリンパス株式会社 | Image display device |
US6034823A (en) | 1997-02-07 | 2000-03-07 | Olympus Optical Co., Ltd. | Decentered prism optical system |
US6545810B1 (en) * | 1997-03-06 | 2003-04-08 | Olympus Optical Co., Ltd. | Image pickup optical system and image pickup apparatus using the same |
JPH10307263A (en) | 1997-05-07 | 1998-11-17 | Olympus Optical Co Ltd | Prism optical element and image observation device |
US6760169B2 (en) | 1997-05-07 | 2004-07-06 | Olympus Corporation | Prism optical element, image observation apparatus and image display apparatus |
EP1027701B1 (en) | 1997-11-05 | 2004-06-09 | OMD Devices LLC | Focus error correction apparatus |
JP2001511266A (en) | 1997-12-11 | 2001-08-07 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Image display device and head-mounted display including the image display device |
US6236521B1 (en) | 1998-02-09 | 2001-05-22 | Canon Kabushiki Kaisha | Objective lens and image pickup device using the same |
US6198577B1 (en) | 1998-03-10 | 2001-03-06 | Glaxo Wellcome, Inc. | Doubly telecentric lens and imaging system for multiwell plates |
JP3279265B2 (en) | 1998-03-26 | 2002-04-30 | 株式会社エム・アール・システム研究所 | Image display device |
US6704149B2 (en) | 1998-04-21 | 2004-03-09 | Minolta Co., Ltd. | Lens optical system |
JPH11326820A (en) | 1998-05-18 | 1999-11-26 | Olympus Optical Co Ltd | Observing optical system and observing device using it |
JP2000075240A (en) | 1998-08-26 | 2000-03-14 | Mr System Kenkyusho:Kk | Composite display device |
JP2000199853A (en) * | 1998-10-26 | 2000-07-18 | Olympus Optical Co Ltd | Image-formation optical system and observation optical system |
US6281862B1 (en) | 1998-11-09 | 2001-08-28 | University Of Washington | Scanned beam display with adjustable accommodation |
JP2000171714A (en) * | 1998-12-07 | 2000-06-23 | Olympus Optical Co Ltd | Image-formation optical system |
US6433760B1 (en) | 1999-01-14 | 2002-08-13 | University Of Central Florida | Head mounted display with eyetracking capability |
JP4550184B2 (en) | 1999-07-02 | 2010-09-22 | オリンパス株式会社 | Observation optical system |
JP2000231060A (en) * | 1999-02-12 | 2000-08-22 | Olympus Optical Co Ltd | Image-formation optical system |
JP2000241706A (en) * | 1999-02-23 | 2000-09-08 | Olympus Optical Co Ltd | Prism optical system |
JP2000249974A (en) | 1999-03-02 | 2000-09-14 | Canon Inc | Display device and stereoscopic display device |
EP1465003B1 (en) | 1999-04-02 | 2008-12-31 | Olympus Corporation | Viewing optical system and image display apparatus using the same |
EP1054280A3 (en) | 1999-05-20 | 2004-08-18 | Konica Corporation | Zoom lens |
JP2001066543A (en) | 1999-08-25 | 2001-03-16 | Canon Inc | Composite optical device |
US6243199B1 (en) | 1999-09-07 | 2001-06-05 | Moxtek | Broad band wire grid polarizing beam splitter for use in the visible wavelength region |
JP3391342B2 (en) | 1999-10-29 | 2003-03-31 | ミノルタ株式会社 | Imaging lens device |
JP2001145127A (en) | 1999-11-12 | 2001-05-25 | Shunichi Suda | Three-dimensional image display device |
JP3854763B2 (en) | 1999-11-19 | 2006-12-06 | キヤノン株式会社 | Image display device |
KR100360592B1 (en) | 1999-12-08 | 2002-11-13 | 동부전자 주식회사 | Semiconductor devic and method for fabricating it |
JP2001238229A (en) | 2000-02-21 | 2001-08-31 | Nippon Hoso Kyokai <Nhk> | Stereoscopic image photographing device and stereoscopic image display device, and stereoscopic image photographing and display system |
US20010048561A1 (en) * | 2000-08-24 | 2001-12-06 | Heacock Gregory L. | Virtual imaging system for small font text |
KR100386725B1 (en) * | 2000-07-31 | 2003-06-09 | 주식회사 대양이앤씨 | Optical System for Head Mount Display |
JP3658295B2 (en) | 2000-08-09 | 2005-06-08 | キヤノン株式会社 | Image display device |
JP4583569B2 (en) | 2000-09-22 | 2010-11-17 | オリンパス株式会社 | Observation optical system and imaging optical system |
JP4646374B2 (en) | 2000-09-29 | 2011-03-09 | オリンパス株式会社 | Image observation optical system |
US6563648B2 (en) | 2000-10-20 | 2003-05-13 | Three-Five Systems, Inc. | Compact wide field of view imaging system |
JP2002148559A (en) | 2000-11-15 | 2002-05-22 | Mixed Reality Systems Laboratory Inc | Image observing device and image observing system using the device |
JP4943580B2 (en) | 2000-12-25 | 2012-05-30 | オリンパス株式会社 | Imaging optics |
JP3658330B2 (en) | 2001-02-21 | 2005-06-08 | キヤノン株式会社 | Composite display device and head mounted display device using the same |
JP2002258208A (en) | 2001-03-01 | 2002-09-11 | Mixed Reality Systems Laboratory Inc | Optical element and composite display device utilizing it |
US6963454B1 (en) | 2002-03-01 | 2005-11-08 | Research Foundation Of The University Of Central Florida | Head-mounted display by integration of phase-conjugate material |
US6999239B1 (en) | 2001-05-23 | 2006-02-14 | Research Foundation Of The University Of Central Florida, Inc | Head-mounted display by integration of phase-conjugate material |
US6731434B1 (en) | 2001-05-23 | 2004-05-04 | University Of Central Florida | Compact lens assembly for the teleportal augmented reality system |
JP4751534B2 (en) * | 2001-07-24 | 2011-08-17 | 大日本印刷株式会社 | Optical system and apparatus using the same |
JP4129972B2 (en) | 2002-02-18 | 2008-08-06 | オリンパス株式会社 | Decentered optical system |
KR100509370B1 (en) | 2002-12-30 | 2005-08-19 | 삼성테크윈 주식회사 | Photographing lens |
DE10306578A1 (en) | 2003-02-17 | 2004-08-26 | Carl Zeiss | Display device for producing image, e.g. head-mounted display, has control unit which sets refractive index of lens so that object plane is coincident with image plane |
US6980365B2 (en) | 2003-03-05 | 2005-12-27 | 3M Innovative Properties Company | Diffractive lens optical design |
JP4035476B2 (en) | 2003-04-23 | 2008-01-23 | キヤノン株式会社 | Scanning optical system, scanning image display apparatus, and image display system |
US7152977B2 (en) | 2003-04-24 | 2006-12-26 | Qubic Light Corporation | Solid state light engine optical system |
US7077523B2 (en) | 2004-02-13 | 2006-07-18 | Angstorm Inc. | Three-dimensional display using variable focusing lens |
US7339737B2 (en) | 2004-04-23 | 2008-03-04 | Microvision, Inc. | Beam multiplier that can be used as an exit-pupil expander and related system and method |
US7114818B2 (en) * | 2004-05-06 | 2006-10-03 | Olympus Corporation | Optical system, and electronic equipment that incorporates the same |
WO2006041596A2 (en) | 2004-09-01 | 2006-04-20 | Optical Research Associates | Compact head mounted display devices with tilted/decentered lens element |
JP4639721B2 (en) | 2004-09-22 | 2011-02-23 | 株式会社ニコン | 3D image display device |
JP4560368B2 (en) | 2004-10-08 | 2010-10-13 | キヤノン株式会社 | Eye detection device and image display device |
US7249853B2 (en) | 2005-04-13 | 2007-07-31 | Eastman Kodak Company | Unpolished optical element with periodic surface roughness |
US7405881B2 (en) | 2005-05-30 | 2008-07-29 | Konica Minolta Holdings, Inc. | Image display apparatus and head mount display |
US7360905B2 (en) | 2005-06-24 | 2008-04-22 | Texas Instruments Incorporated | Compact optical engine for very small personal projectors using LED illumination |
JP2007101930A (en) | 2005-10-05 | 2007-04-19 | Matsushita Electric Ind Co Ltd | Method for forming and displaying element image of stereoscopic image and stereoscopic image display device |
US20070109505A1 (en) | 2005-10-05 | 2007-05-17 | Matsushita Electric Industrial Co., Ltd. | Projection three-dimensional display apparatus |
US7522344B1 (en) | 2005-12-14 | 2009-04-21 | University Of Central Florida Research Foundation, Inc. | Projection-based head-mounted display with eye-tracking capabilities |
CN101336089A (en) | 2006-01-26 | 2008-12-31 | 诺基亚公司 | Eye tracker equipment |
US20070273983A1 (en) | 2006-05-26 | 2007-11-29 | Hebert Raymond T | Devices, methods, and systems for image viewing |
JP2006276884A (en) | 2006-06-16 | 2006-10-12 | Olympus Corp | Eccentric prism optical system |
US7515345B2 (en) | 2006-10-09 | 2009-04-07 | Drs Sensors & Targeting Systems, Inc. | Compact objective lens assembly |
WO2008089417A2 (en) * | 2007-01-18 | 2008-07-24 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | A polarized head-mounted projection display |
JP4906680B2 (en) | 2007-11-02 | 2012-03-28 | キヤノン株式会社 | Image display device |
US20090168010A1 (en) | 2007-12-27 | 2009-07-02 | Igor Vinogradov | Adaptive focusing using liquid crystal lens in electro-optical readers |
WO2009094399A1 (en) | 2008-01-22 | 2009-07-30 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
JP5169253B2 (en) | 2008-01-29 | 2013-03-27 | ブラザー工業株式会社 | Image display device |
JP5329882B2 (en) | 2008-09-17 | 2013-10-30 | パイオニア株式会社 | Display device |
CN101359089B (en) | 2008-10-08 | 2010-08-11 | 北京理工大学 | Optical system of light and small-sized big angular field free curved surface prism helmet display |
JP5341462B2 (en) | 2008-10-14 | 2013-11-13 | キヤノン株式会社 | Aberration correction method, image processing apparatus, and image processing system |
JP5464839B2 (en) | 2008-10-31 | 2014-04-09 | キヤノン株式会社 | Image display device |
CN101424788A (en) | 2008-12-09 | 2009-05-06 | 中国科学院长春光学精密机械与物理研究所 | Glasses type climbing helmet display optical system |
US8331032B2 (en) | 2009-02-19 | 2012-12-11 | Drs Rsta, Inc. | Compact objective lens assembly for simultaneously imaging multiple spectral bands |
US20120081800A1 (en) | 2009-04-20 | 2012-04-05 | Dewen Cheng | Optical see-through free-form head-mounted display |
US8441733B2 (en) | 2009-04-24 | 2013-05-14 | David Kessler | Pupil-expanded volumetric display |
GB0909126D0 (en) | 2009-05-27 | 2009-07-01 | Qinetiq Ltd | Eye tracking apparatus |
US20110075257A1 (en) | 2009-09-14 | 2011-03-31 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | 3-Dimensional electro-optical see-through displays |
JP2011085769A (en) | 2009-10-15 | 2011-04-28 | Canon Inc | Imaging display device |
CA3043204C (en) | 2009-11-19 | 2021-08-31 | Esight Corp. | Apparatus and method for a dynamic "region of interest" in a display system |
US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
CN102906623A (en) | 2010-02-28 | 2013-01-30 | 奥斯特豪特集团有限公司 | Local advertising content on an interactive head-mounted eyepiece |
US9182596B2 (en) | 2010-02-28 | 2015-11-10 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light |
US9244277B2 (en) | 2010-04-30 | 2016-01-26 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Wide angle and high resolution tiled head-mounted display device |
US20120013988A1 (en) | 2010-07-16 | 2012-01-19 | Hutchin Richard A | Head mounted display having a panoramic field of view |
GB2496075A (en) | 2010-07-16 | 2013-05-01 | Mcgill Tech Ltd | Dispensing Apparatus |
US20120019557A1 (en) | 2010-07-22 | 2012-01-26 | Sony Ericsson Mobile Communications Ab | Displaying augmented reality information |
DE102010040030B4 (en) | 2010-08-31 | 2017-02-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Lens and imaging system |
JP5603716B2 (en) | 2010-09-06 | 2014-10-08 | オリンパス株式会社 | PRISM OPTICAL SYSTEM, IMAGE DISPLAY DEVICE AND IMAGING DEVICE USING PRISM OPTICAL SYSTEM |
US8503087B1 (en) | 2010-11-02 | 2013-08-06 | Google Inc. | Structured optical surface |
US9292973B2 (en) | 2010-11-08 | 2016-03-22 | Microsoft Technology Licensing, Llc | Automatic variable virtual focus for augmented reality displays |
NZ725592A (en) | 2010-12-24 | 2018-05-25 | Magic Leap Inc | An ergonomic head mounted display device and optical system |
US10156722B2 (en) | 2010-12-24 | 2018-12-18 | Magic Leap, Inc. | Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality |
US20120160302A1 (en) | 2010-12-27 | 2012-06-28 | Jeffrey Michael Citron | Trough shaped fresnel reflector solar concentrator |
WO2012118573A1 (en) | 2011-02-28 | 2012-09-07 | Osterhout Group, Inc. | Light control in head mounted displays |
US11640050B2 (en) | 2011-10-19 | 2023-05-02 | Epic Optix Inc. | Microdisplay-based head-up display system |
BR112014018154A8 (en) | 2012-01-24 | 2017-07-11 | Univ Arizona | HEAD MOUNTED EYE MONITORING VISOR |
JP6111635B2 (en) | 2012-02-24 | 2017-04-12 | セイコーエプソン株式会社 | Virtual image display device |
US8985803B2 (en) | 2012-03-21 | 2015-03-24 | Microsoft Technology Licensing, Llc | Freeform-prism eyepiece with illumination waveguide |
JP6056171B2 (en) | 2012-03-29 | 2017-01-11 | 富士通株式会社 | Stereoscopic image display apparatus and method |
US20130285885A1 (en) | 2012-04-25 | 2013-10-31 | Andreas G. Nowatzyk | Head-mounted light-field display |
US20130286053A1 (en) | 2012-04-25 | 2013-10-31 | Rod G. Fleck | Direct view augmented reality eyeglass-type display |
US20130300634A1 (en) | 2012-05-09 | 2013-11-14 | Nokia Corporation | Method and apparatus for determining representations of displayed information based on focus distance |
JP6019918B2 (en) | 2012-08-17 | 2016-11-02 | セイコーエプソン株式会社 | Virtual image display device |
AU2013315607A1 (en) | 2012-09-11 | 2015-04-02 | Magic Leap, Inc | Ergonomic head mounted display device and optical system |
CN104756494B (en) | 2012-10-18 | 2019-04-16 | 亚利桑那大学评议会 | Stereoscopic display with the prompt of addressable focus |
CN103605214A (en) | 2013-11-21 | 2014-02-26 | 深圳市华星光电技术有限公司 | Stereoscopic display device |
US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
JP6264878B2 (en) | 2013-12-24 | 2018-01-24 | セイコーエプソン株式会社 | Light guide device, virtual image display device, and light guide device manufacturing method |
US10244223B2 (en) | 2014-01-10 | 2019-03-26 | Ostendo Technologies, Inc. | Methods for full parallax compressed light field 3D imaging systems |
CN106029000A (en) | 2014-02-21 | 2016-10-12 | 阿克伦大学 | Imaging and display system for guiding medical interventions |
AU2015227092B2 (en) | 2014-03-05 | 2019-07-04 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Wearable 3D augmented reality display |
US20170276918A1 (en) | 2014-08-29 | 2017-09-28 | Arizona Board Of Regents Of Behalf Of The University Of Arizona | Ultra-compact head-up displays based on freeform waveguide |
US20160239985A1 (en) | 2015-02-17 | 2016-08-18 | Osterhout Group, Inc. | See-through computer display systems |
CA3033651C (en) | 2016-08-12 | 2023-09-05 | Arizona Board Of Regents On Behalf Of The University Of Arizona | High-resolution freeform eyepiece design with a large exit pupil |
-
2010
- 2010-04-20 US US13/318,864 patent/US20120081800A1/en not_active Abandoned
- 2010-04-20 WO PCT/US2010/031799 patent/WO2010123934A1/en active Application Filing
-
2013
- 2013-08-27 US US14/010,956 patent/US9239453B2/en active Active
-
2015
- 2015-12-02 US US14/956,632 patent/US10416452B2/en active Active
-
2019
- 2019-08-15 US US16/541,929 patent/US11300790B2/en active Active
Cited By (324)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9310591B2 (en) | 2008-01-22 | 2016-04-12 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
US10495859B2 (en) | 2008-01-22 | 2019-12-03 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
US11150449B2 (en) | 2008-01-22 | 2021-10-19 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
US11592650B2 (en) | 2008-01-22 | 2023-02-28 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11300790B2 (en) | 2009-04-20 | 2022-04-12 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Optical see-through free-form head-mounted display |
US9239453B2 (en) | 2009-04-20 | 2016-01-19 | Beijing Institute Of Technology | Optical see-through free-form head-mounted display |
US10416452B2 (en) | 2009-04-20 | 2019-09-17 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Optical see-through free-form head-mounted display |
US11803059B2 (en) | 2009-09-14 | 2023-10-31 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | 3-dimensional electro-optical see-through displays |
US11079596B2 (en) | 2009-09-14 | 2021-08-03 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | 3-dimensional electro-optical see-through displays |
US9875406B2 (en) | 2010-02-28 | 2018-01-23 | Microsoft Technology Licensing, Llc | Adjustable extension for temple arm |
US10180572B2 (en) | 2010-02-28 | 2019-01-15 | Microsoft Technology Licensing, Llc | AR glasses with event and user action control of external applications |
US10268888B2 (en) | 2010-02-28 | 2019-04-23 | Microsoft Technology Licensing, Llc | Method and apparatus for biometric data capture |
US20110227813A1 (en) * | 2010-02-28 | 2011-09-22 | Osterhout Group, Inc. | Augmented reality eyepiece with secondary attached optic for surroundings environment vision correction |
US10539787B2 (en) | 2010-02-28 | 2020-01-21 | Microsoft Technology Licensing, Llc | Head-worn adaptive display |
US10860100B2 (en) | 2010-02-28 | 2020-12-08 | Microsoft Technology Licensing, Llc | AR glasses with predictive control of external device based on event input |
US10281723B2 (en) | 2010-04-30 | 2019-05-07 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Wide angle and high resolution tiled head-mounted display device |
US11609430B2 (en) | 2010-04-30 | 2023-03-21 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Wide angle and high resolution tiled head-mounted display device |
US9244277B2 (en) | 2010-04-30 | 2016-01-26 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Wide angle and high resolution tiled head-mounted display device |
US10809533B2 (en) | 2010-04-30 | 2020-10-20 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Wide angle and high resolution tiled head-mounted display device |
US9348143B2 (en) * | 2010-12-24 | 2016-05-24 | Magic Leap, Inc. | Ergonomic head mounted display device and optical system |
US20120162549A1 (en) * | 2010-12-24 | 2012-06-28 | Chunyu Gao | Ergonomic Head Mounted Display Device And Optical System |
US9753286B2 (en) | 2010-12-24 | 2017-09-05 | Magic Leap, Inc. | Ergonomic head mounted display device and optical system |
US9720232B2 (en) | 2012-01-24 | 2017-08-01 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Compact eye-tracked head-mounted display |
US10598939B2 (en) | 2012-01-24 | 2020-03-24 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Compact eye-tracked head-mounted display |
US10606080B2 (en) | 2012-01-24 | 2020-03-31 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Compact eye-tracked head-mounted display |
US11181746B2 (en) | 2012-01-24 | 2021-11-23 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Compact eye-tracked head-mounted display |
US10969592B2 (en) | 2012-01-24 | 2021-04-06 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Compact eye-tracked head-mounted display |
US20180113316A1 (en) | 2012-01-24 | 2018-04-26 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Compact eye-tracked head-mounted display |
EP2895910A4 (en) * | 2012-09-11 | 2016-04-20 | Magic Leap Inc | Ergonomic head mounted display device and optical system |
JP2015534108A (en) * | 2012-09-11 | 2015-11-26 | マジック リープ, インコーポレイテッド | Ergonomic head mounted display device and optical system |
US9345402B2 (en) | 2012-09-11 | 2016-05-24 | Augmented Vision, Inc. | Compact eye imaging and eye tracking apparatus |
CN104813218A (en) * | 2012-09-11 | 2015-07-29 | 奇跃公司 | Ergonomic head mounted display device and optical system |
US9740006B2 (en) * | 2012-09-11 | 2017-08-22 | Magic Leap, Inc. | Ergonomic head mounted display device and optical system |
US9999348B2 (en) | 2012-09-11 | 2018-06-19 | Augmented Vision, Inc. | Compact eye imaging and eye tracking apparatus |
US20140071539A1 (en) * | 2012-09-11 | 2014-03-13 | Magic Leap, Inc. | Ergonomic head mounted display device and optical system |
US10394036B2 (en) | 2012-10-18 | 2019-08-27 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
KR102207298B1 (en) * | 2012-10-18 | 2021-01-26 | 더 아리조나 보드 오브 리전츠 온 비핼프 오브 더 유니버시티 오브 아리조나 | Stereoscopic displays with addressable focus cues |
US9874760B2 (en) * | 2012-10-18 | 2018-01-23 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
CN110022472A (en) * | 2012-10-18 | 2019-07-16 | 亚利桑那大学评议会 | Stereoscopic display with the prompt of addressable focus |
KR102344903B1 (en) | 2012-10-18 | 2021-12-28 | 더 아리조나 보드 오브 리전츠 온 비핼프 오브 더 유니버시티 오브 아리조나 | Stereoscopic displays with addressable focus cues |
US11347036B2 (en) | 2012-10-18 | 2022-05-31 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
AU2019204862B9 (en) * | 2012-10-18 | 2021-07-01 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
AU2019204862B2 (en) * | 2012-10-18 | 2021-05-27 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
EP2910022A1 (en) * | 2012-10-18 | 2015-08-26 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
JP2021047417A (en) * | 2012-10-18 | 2021-03-25 | アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ | Three-dimensional view display using addressable focus clue |
KR20210010649A (en) * | 2012-10-18 | 2021-01-27 | 더 아리조나 보드 오브 리전츠 온 비핼프 오브 더 유니버시티 오브 아리조나 | Stereoscopic displays with addressable focus cues |
AU2013331179B2 (en) * | 2012-10-18 | 2017-08-24 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
JP7213002B2 (en) | 2012-10-18 | 2023-01-26 | アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ | Stereoscopic display with addressable focal cues |
EP2910022A4 (en) * | 2012-10-18 | 2016-09-14 | Univ Arizona State | Stereoscopic displays with addressable focus cues |
KR20150070195A (en) * | 2012-10-18 | 2015-06-24 | 더 아리조나 보드 오브 리전츠 온 비핼프 오브 더 유니버시티 오브 아리조나 | Stereoscopic displays with addressable focus cues |
CN104756494A (en) * | 2012-10-18 | 2015-07-01 | 亚利桑那大学评议会 | Stereoscopic displays with addressable focus cues |
US10598946B2 (en) * | 2012-10-18 | 2020-03-24 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
JP2016502676A (en) * | 2012-10-18 | 2016-01-28 | アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ | Stereoscopic display using addressable focus cues |
IL276021B1 (en) * | 2012-10-18 | 2023-06-01 | Univ Arizona | Virtual display system with addressable focus cues |
JP2019174815A (en) * | 2012-10-18 | 2019-10-10 | アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ | Three-dimensional view display using focus clue in which address can be designated |
IL276021B2 (en) * | 2012-10-18 | 2023-10-01 | Univ Arizona | Virtual Display System with Addressable Focus Cues |
US20150277129A1 (en) * | 2012-10-18 | 2015-10-01 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
US8937771B2 (en) | 2012-12-12 | 2015-01-20 | Microsoft Corporation | Three piece prism eye-piece |
US20160091723A1 (en) * | 2013-05-24 | 2016-03-31 | University Of Rochester | Optical display apparatus, method, and applications |
JP2016520217A (en) * | 2013-05-24 | 2016-07-11 | ユニヴァーシティー オブ ロチェスター | Optical display device, method and application |
US10088681B2 (en) * | 2013-05-24 | 2018-10-02 | University Of Rochester | Optical display apparatus, method, and applications |
WO2014189692A3 (en) * | 2013-05-24 | 2015-02-26 | University Of Rochester | Optical display apparatus, method, and applications |
JP2018060208A (en) * | 2013-11-27 | 2018-04-12 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Systems and methods for virtual and augmented reality |
JP2015106012A (en) * | 2013-11-29 | 2015-06-08 | セイコーエプソン株式会社 | Virtual image display device |
US20150177517A1 (en) * | 2013-12-20 | 2015-06-25 | Thomson Licensing | Optical see-through glass type display device and corresponding optical unit |
US10025094B2 (en) * | 2013-12-20 | 2018-07-17 | Thomson Licensing | Optical see-through glass type display device and corresponding optical unit |
CN104730854A (en) * | 2013-12-20 | 2015-06-24 | 汤姆逊许可公司 | Optical see-through glass type display device and corresponding optical unit |
US10031339B2 (en) | 2013-12-30 | 2018-07-24 | Google Llc | Spatially multiplexed lens for head mounted display |
US9551872B1 (en) | 2013-12-30 | 2017-01-24 | Google Inc. | Spatially multiplexed lens for head mounted display |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US12045401B2 (en) | 2014-01-17 | 2024-07-23 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11782529B2 (en) | 2014-01-17 | 2023-10-10 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11507208B2 (en) | 2014-01-17 | 2022-11-22 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11231817B2 (en) | 2014-01-17 | 2022-01-25 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
US11169623B2 (en) | 2014-01-17 | 2021-11-09 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US9811152B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11796799B2 (en) | 2014-01-21 | 2023-10-24 | Mentor Acquisition One, Llc | See-through computer display systems |
US11619820B2 (en) | 2014-01-21 | 2023-04-04 | Mentor Acquisition One, Llc | See-through computer display systems |
US9811159B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20150316771A1 (en) * | 2014-01-21 | 2015-11-05 | Osterhout Group, Inc. | See-through computer display systems |
US9651783B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US11669163B2 (en) | 2014-01-21 | 2023-06-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
US9829703B2 (en) | 2014-01-21 | 2017-11-28 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9615742B2 (en) | 2014-01-21 | 2017-04-11 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US10890760B2 (en) | 2014-01-21 | 2021-01-12 | Mentor Acquisition One, Llc | See-through computer display systems |
US9651788B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9594246B2 (en) | 2014-01-21 | 2017-03-14 | Osterhout Group, Inc. | See-through computer display systems |
US9772492B2 (en) | 2014-01-21 | 2017-09-26 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9885868B2 (en) | 2014-01-21 | 2018-02-06 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US12108989B2 (en) | 2014-01-21 | 2024-10-08 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US12105281B2 (en) | 2014-01-21 | 2024-10-01 | Mentor Acquisition One, Llc | See-through computer display systems |
US9651789B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-Through computer display systems |
US9927612B2 (en) | 2014-01-21 | 2018-03-27 | Osterhout Group, Inc. | See-through computer display systems |
US11054902B2 (en) | 2014-01-21 | 2021-07-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9933622B2 (en) | 2014-01-21 | 2018-04-03 | Osterhout Group, Inc. | See-through computer display systems |
US11099380B2 (en) | 2014-01-21 | 2021-08-24 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9753288B2 (en) | 2014-01-21 | 2017-09-05 | Osterhout Group, Inc. | See-through computer display systems |
US10698223B2 (en) | 2014-01-21 | 2020-06-30 | Mentor Acquisition One, Llc | See-through computer display systems |
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9746676B2 (en) | 2014-01-21 | 2017-08-29 | Osterhout Group, Inc. | See-through computer display systems |
US9958674B2 (en) | 2014-01-21 | 2018-05-01 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9740012B2 (en) | 2014-01-21 | 2017-08-22 | Osterhout Group, Inc. | See-through computer display systems |
US9971156B2 (en) | 2014-01-21 | 2018-05-15 | Osterhout Group, Inc. | See-through computer display systems |
US9740280B2 (en) | 2014-01-21 | 2017-08-22 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US10001644B2 (en) | 2014-01-21 | 2018-06-19 | Osterhout Group, Inc. | See-through computer display systems |
US10007118B2 (en) | 2014-01-21 | 2018-06-26 | Osterhout Group, Inc. | Compact optical system with improved illumination |
US10012838B2 (en) | 2014-01-21 | 2018-07-03 | Osterhout Group, Inc. | Compact optical system with improved contrast uniformity |
US10012840B2 (en) | 2014-01-21 | 2018-07-03 | Osterhout Group, Inc. | See-through computer display systems |
US11103132B2 (en) | 2014-01-21 | 2021-08-31 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9720234B2 (en) | 2014-01-21 | 2017-08-01 | Osterhout Group, Inc. | See-through computer display systems |
US11737666B2 (en) | 2014-01-21 | 2023-08-29 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US11487110B2 (en) | 2014-01-21 | 2022-11-01 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US11126003B2 (en) | 2014-01-21 | 2021-09-21 | Mentor Acquisition One, Llc | See-through computer display systems |
US12093453B2 (en) | 2014-01-21 | 2024-09-17 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US11002961B2 (en) | 2014-01-21 | 2021-05-11 | Mentor Acquisition One, Llc | See-through computer display systems |
US9720235B2 (en) | 2014-01-21 | 2017-08-01 | Osterhout Group, Inc. | See-through computer display systems |
US9658457B2 (en) | 2014-01-21 | 2017-05-23 | Osterhout Group, Inc. | See-through computer display systems |
US9658458B2 (en) | 2014-01-21 | 2017-05-23 | Osterhout Group, Inc. | See-through computer display systems |
US10579140B2 (en) | 2014-01-21 | 2020-03-03 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9529199B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US11892644B2 (en) | 2014-01-21 | 2024-02-06 | Mentor Acquisition One, Llc | See-through computer display systems |
US11650416B2 (en) | 2014-01-21 | 2023-05-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9720227B2 (en) | 2014-01-21 | 2017-08-01 | Osterhout Group, Inc. | See-through computer display systems |
US10481393B2 (en) | 2014-01-21 | 2019-11-19 | Mentor Acquisition One, Llc | See-through computer display systems |
US11947126B2 (en) | 2014-01-21 | 2024-04-02 | Mentor Acquisition One, Llc | See-through computer display systems |
US10191284B2 (en) | 2014-01-21 | 2019-01-29 | Osterhout Group, Inc. | See-through computer display systems |
US11796805B2 (en) | 2014-01-21 | 2023-10-24 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US11353957B2 (en) | 2014-01-21 | 2022-06-07 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US10222618B2 (en) | 2014-01-21 | 2019-03-05 | Osterhout Group, Inc. | Compact optics with reduced chromatic aberrations |
US9684171B2 (en) | 2014-01-21 | 2017-06-20 | Osterhout Group, Inc. | See-through computer display systems |
US9529192B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9523856B2 (en) | 2014-01-21 | 2016-12-20 | Osterhout Group, Inc. | See-through computer display systems |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US10558050B2 (en) | 2014-01-24 | 2020-02-11 | Mentor Acquisition One, Llc | Haptic systems for head-worn computers |
US9939646B2 (en) | 2014-01-24 | 2018-04-10 | Osterhout Group, Inc. | Stray light suppression for head worn computing |
US11822090B2 (en) | 2014-01-24 | 2023-11-21 | Mentor Acquisition One, Llc | Haptic systems for head-worn computers |
US10247946B2 (en) | 2014-01-29 | 2019-04-02 | Google Llc | Dynamic lens for head mounted display |
US9671612B2 (en) | 2014-01-29 | 2017-06-06 | Google Inc. | Dynamic lens for head mounted display |
US11520164B2 (en) | 2014-01-31 | 2022-12-06 | Magic Leap, Inc. | Multi-focal display system and method |
US11150489B2 (en) | 2014-01-31 | 2021-10-19 | Magic Leap, Inc. | Multi-focal display system and method |
US11209651B2 (en) | 2014-01-31 | 2021-12-28 | Magic Leap, Inc. | Multi-focal display system and method |
US9843093B2 (en) | 2014-02-11 | 2017-12-12 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9841602B2 (en) | 2014-02-11 | 2017-12-12 | Osterhout Group, Inc. | Location indicating avatar in head worn computing |
US9784973B2 (en) | 2014-02-11 | 2017-10-10 | Osterhout Group, Inc. | Micro doppler presentations in head worn computing |
US9928019B2 (en) | 2014-02-14 | 2018-03-27 | Osterhout Group, Inc. | Object shadowing in head worn computing |
US9547465B2 (en) | 2014-02-14 | 2017-01-17 | Osterhout Group, Inc. | Object shadowing in head worn computing |
JP7369507B2 (en) | 2014-03-05 | 2023-10-26 | アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ | Wearable 3D augmented reality display with variable focus and/or object recognition |
KR102539365B1 (en) * | 2014-03-05 | 2023-06-01 | 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 | Wearable 3d augmented reality display with variable focus and/or object recognition |
KR102561425B1 (en) * | 2014-03-05 | 2023-07-28 | 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 | Wearable 3d augmented reality display |
US10805598B2 (en) * | 2014-03-05 | 2020-10-13 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Wearable 3D lightfield augmented reality display |
JP2020073988A (en) * | 2014-03-05 | 2020-05-14 | アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ | Three-dimensional augmented reality display comprising variable focus and/or object recognition |
JP2022020675A (en) * | 2014-03-05 | 2022-02-01 | アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ | Wearable 3d augmented reality display with focus variation and/or object recognition |
US11350079B2 (en) | 2014-03-05 | 2022-05-31 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Wearable 3D augmented reality display |
KR20160134714A (en) * | 2014-03-05 | 2016-11-23 | 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 | Wearable 3d augmented reality display with variable focus and/or object recognition |
KR20160135744A (en) * | 2014-03-05 | 2016-11-28 | 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 | Wearable 3d augmented reality display |
US10469833B2 (en) | 2014-03-05 | 2019-11-05 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Wearable 3D augmented reality display with variable focus and/or object recognition |
US20190260982A1 (en) * | 2014-03-05 | 2019-08-22 | Arizona Board Of Regents On Behalf Of The University Of Arizona | A wearable 3d augmented reality display |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11104272B2 (en) | 2014-03-28 | 2021-08-31 | Mentor Acquisition One, Llc | System for assisted operator safety using an HMD |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US10825248B2 (en) | 2014-04-18 | 2020-11-03 | Magic Leap, Inc. | Eye tracking systems and method for augmented or virtual reality |
US10198864B2 (en) | 2014-04-18 | 2019-02-05 | Magic Leap, Inc. | Running object recognizers in a passable world model for augmented or virtual reality |
US11205304B2 (en) * | 2014-04-18 | 2021-12-21 | Magic Leap, Inc. | Systems and methods for rendering user interfaces for augmented or virtual reality |
US10127723B2 (en) | 2014-04-18 | 2018-11-13 | Magic Leap, Inc. | Room based sensors in an augmented reality system |
US10909760B2 (en) | 2014-04-18 | 2021-02-02 | Magic Leap, Inc. | Creating a topological map for localization in augmented or virtual reality systems |
US20150301797A1 (en) * | 2014-04-18 | 2015-10-22 | Magic Leap, Inc. | Systems and methods for rendering user interfaces for augmented or virtual reality |
US10846930B2 (en) | 2014-04-18 | 2020-11-24 | Magic Leap, Inc. | Using passable world model for augmented or virtual reality |
US10115232B2 (en) | 2014-04-18 | 2018-10-30 | Magic Leap, Inc. | Using a map of the world for augmented or virtual reality systems |
US10109108B2 (en) | 2014-04-18 | 2018-10-23 | Magic Leap, Inc. | Finding new points by render rather than search in augmented or virtual reality systems |
US10115233B2 (en) | 2014-04-18 | 2018-10-30 | Magic Leap, Inc. | Methods and systems for mapping virtual objects in an augmented or virtual reality system |
US10262462B2 (en) | 2014-04-18 | 2019-04-16 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
US10665018B2 (en) | 2014-04-18 | 2020-05-26 | Magic Leap, Inc. | Reducing stresses in the passable world model in augmented or virtual reality systems |
US10186085B2 (en) | 2014-04-18 | 2019-01-22 | Magic Leap, Inc. | Generating a sound wavefront in augmented or virtual reality systems |
US10634922B2 (en) | 2014-04-25 | 2020-04-28 | Mentor Acquisition One, Llc | Speaker assembly for headworn computer |
US11880041B2 (en) | 2014-04-25 | 2024-01-23 | Mentor Acquisition One, Llc | Speaker assembly for headworn computer |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US12050884B2 (en) | 2014-04-25 | 2024-07-30 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US10853589B2 (en) | 2014-04-25 | 2020-12-01 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US11727223B2 (en) | 2014-04-25 | 2023-08-15 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US11474360B2 (en) | 2014-04-25 | 2022-10-18 | Mentor Acquisition One, Llc | Speaker assembly for headworn computer |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US11422374B2 (en) | 2014-05-30 | 2022-08-23 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
US11474355B2 (en) * | 2014-05-30 | 2022-10-18 | Magic Leap, Inc. | Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality |
US11960089B2 (en) | 2014-06-05 | 2024-04-16 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US10877270B2 (en) | 2014-06-05 | 2020-12-29 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US11402639B2 (en) | 2014-06-05 | 2022-08-02 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US10139635B2 (en) | 2014-06-09 | 2018-11-27 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10663740B2 (en) | 2014-06-09 | 2020-05-26 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11663794B2 (en) | 2014-06-09 | 2023-05-30 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11790617B2 (en) | 2014-06-09 | 2023-10-17 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11022810B2 (en) | 2014-06-09 | 2021-06-01 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11360318B2 (en) | 2014-06-09 | 2022-06-14 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9720241B2 (en) | 2014-06-09 | 2017-08-01 | Osterhout Group, Inc. | Content presentation in head worn computing |
US10976559B2 (en) | 2014-06-09 | 2021-04-13 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11327323B2 (en) | 2014-06-09 | 2022-05-10 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11887265B2 (en) | 2014-06-09 | 2024-01-30 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10133062B2 (en) * | 2014-06-13 | 2018-11-20 | Tsinghua University | Method of LED freeform surface illumination system based on XY-polynomial |
US9818223B2 (en) * | 2014-06-13 | 2017-11-14 | Tsinghua University | Method of forming a freeform surface shaped element for an illumination system |
US20150363973A1 (en) * | 2014-06-13 | 2015-12-17 | Tsinghua University | Construction method of freeform surface shape based on xy-polynomial |
US20150362725A1 (en) * | 2014-06-13 | 2015-12-17 | Tsinghua University | Design method of led freeform surface illumination system based on xy-polynomial |
US11054645B2 (en) | 2014-06-17 | 2021-07-06 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US10698212B2 (en) | 2014-06-17 | 2020-06-30 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11789267B2 (en) | 2014-06-17 | 2023-10-17 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US11294180B2 (en) | 2014-06-17 | 2022-04-05 | Mentor Acquisition One, Llc | External user interface for head worn computing |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US12106457B2 (en) | 2014-06-26 | 2024-10-01 | Intel Corporation | Distortion meshes against chromatic aberrations |
US10438331B2 (en) * | 2014-06-26 | 2019-10-08 | Intel Corporation | Distortion meshes against chromatic aberrations |
CN106575433A (en) * | 2014-06-26 | 2017-04-19 | 英特尔公司 | Distortion meshes against chromatic aberrations |
US20150379697A1 (en) * | 2014-06-26 | 2015-12-31 | Daniel Pohl | Distortion meshes against chromatic aberrations |
US11748857B2 (en) | 2014-06-26 | 2023-09-05 | Intel Corporation | Distortion meshes against chromatic aberrations |
US10564426B2 (en) | 2014-07-08 | 2020-02-18 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US11409110B2 (en) | 2014-07-08 | 2022-08-09 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US11940629B2 (en) | 2014-07-08 | 2024-03-26 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US9798148B2 (en) | 2014-07-08 | 2017-10-24 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US10775630B2 (en) | 2014-07-08 | 2020-09-15 | Mentor Acquisition One, Llc | Optical configurations for head-worn see-through displays |
US11786105B2 (en) | 2014-07-15 | 2023-10-17 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US11269182B2 (en) | 2014-07-15 | 2022-03-08 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US11630315B2 (en) | 2014-08-12 | 2023-04-18 | Mentor Acquisition One, Llc | Measuring content brightness in head worn computing |
US10908422B2 (en) | 2014-08-12 | 2021-02-02 | Mentor Acquisition One, Llc | Measuring content brightness in head worn computing |
US11360314B2 (en) | 2014-08-12 | 2022-06-14 | Mentor Acquisition One, Llc | Measuring content brightness in head worn computing |
WO2016033317A1 (en) * | 2014-08-29 | 2016-03-03 | Arizona Board Of Regent On Behalf Of The University Of Arizona | Ultra-compact head-up displays based on freeform waveguide |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US10078224B2 (en) | 2014-09-26 | 2018-09-18 | Osterhout Group, Inc. | See-through computer display systems |
US20160131909A1 (en) * | 2014-11-10 | 2016-05-12 | Hitachi-Lg Data Storage, Inc. | Image display apparatus and head mounted display |
US9927613B2 (en) * | 2014-11-10 | 2018-03-27 | Hitachi-Lg Data Storage, Inc. | Image display apparatus and head mounted display |
US11809628B2 (en) | 2014-12-03 | 2023-11-07 | Mentor Acquisition One, Llc | See-through computer display systems |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
US11262846B2 (en) | 2014-12-03 | 2022-03-01 | Mentor Acquisition One, Llc | See-through computer display systems |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
USD792400S1 (en) | 2014-12-31 | 2017-07-18 | Osterhout Group, Inc. | Computer glasses |
USD794637S1 (en) | 2015-01-05 | 2017-08-15 | Osterhout Group, Inc. | Air mouse |
US10782453B2 (en) | 2015-01-21 | 2020-09-22 | Tesseland, Llc | Display devices with reflectors |
US11487121B2 (en) | 2015-01-26 | 2022-11-01 | Magic Leap, Inc. | Virtual and augmented reality systems and methods having improved diffractive grating structures |
US11009710B2 (en) | 2015-01-26 | 2021-05-18 | Magic Leap, Inc. | Virtual and augmented reality systems and methods having improved diffractive grating structures |
US12099193B2 (en) | 2015-01-26 | 2024-09-24 | Magic Leap, Inc. | Virtual and augmented reality systems and methods having improved diffractive grating structures |
US10593507B2 (en) | 2015-02-09 | 2020-03-17 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Small portable night vision system |
US11205556B2 (en) | 2015-02-09 | 2021-12-21 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Small portable night vision system |
US10176961B2 (en) | 2015-02-09 | 2019-01-08 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Small portable night vision system |
US10062182B2 (en) | 2015-02-17 | 2018-08-28 | Osterhout Group, Inc. | See-through computer display systems |
US11683470B2 (en) * | 2015-05-28 | 2023-06-20 | Microsoft Technology Licensing, Llc | Determining inter-pupillary distance |
US20220132099A1 (en) * | 2015-05-28 | 2022-04-28 | Microsoft Technology Licensing, Llc | Determining inter-pupillary distance |
US11252399B2 (en) * | 2015-05-28 | 2022-02-15 | Microsoft Technology Licensing, Llc | Determining inter-pupillary distance |
US10203502B2 (en) * | 2015-07-23 | 2019-02-12 | Canon Kabushiki Kaisha | Image display apparatus |
US20170023791A1 (en) * | 2015-07-23 | 2017-01-26 | Canon Kabushiki Kaisha | Image display apparatus |
JP2017111442A (en) * | 2015-12-14 | 2017-06-22 | ▲し▼創電子股▲ふん▼有限公司 | Optical imaging device |
JP2017173573A (en) * | 2016-03-24 | 2017-09-28 | セイコーエプソン株式会社 | Image display apparatus |
US12092817B2 (en) | 2016-04-07 | 2024-09-17 | Magic Leap, Inc. | Systems and methods for augmented reality |
JP2017198728A (en) * | 2016-04-25 | 2017-11-02 | キヤノン株式会社 | Image display device |
US11226691B2 (en) | 2016-05-09 | 2022-01-18 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US12050321B2 (en) | 2016-05-09 | 2024-07-30 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US11500212B2 (en) | 2016-05-09 | 2022-11-15 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US11320656B2 (en) | 2016-05-09 | 2022-05-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10684478B2 (en) | 2016-05-09 | 2020-06-16 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10824253B2 (en) | 2016-05-09 | 2020-11-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US20170343816A1 (en) * | 2016-05-24 | 2017-11-30 | Osterhout Group, Inc. | Solid optical assembly with increased efficiency |
US11022808B2 (en) | 2016-06-01 | 2021-06-01 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US11977238B2 (en) | 2016-06-01 | 2024-05-07 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US11460708B2 (en) | 2016-06-01 | 2022-10-04 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US11754845B2 (en) | 2016-06-01 | 2023-09-12 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US11586048B2 (en) | 2016-06-01 | 2023-02-21 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US10466491B2 (en) | 2016-06-01 | 2019-11-05 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US10276091B2 (en) * | 2016-07-15 | 2019-04-30 | Samsung Display Co., Ltd. | Organic light emitting display device and head mounted display system having the same |
US20180045949A1 (en) * | 2016-08-12 | 2018-02-15 | Arizona Board Of Regents On Behalf Of The University Of Arizona | High-resolution freeform eyepiece design with a large exit pupil |
US10739578B2 (en) | 2016-08-12 | 2020-08-11 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | High-resolution freeform eyepiece design with a large exit pupil |
US10261328B2 (en) | 2016-09-02 | 2019-04-16 | Microsoft Technology Licensing, Llc | Enhanced illumination system |
US10534180B2 (en) | 2016-09-08 | 2020-01-14 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US9910284B1 (en) | 2016-09-08 | 2018-03-06 | Osterhout Group, Inc. | Optical systems for head-worn computers |
US12111473B2 (en) | 2016-09-08 | 2024-10-08 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US11366320B2 (en) | 2016-09-08 | 2022-06-21 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US11604358B2 (en) | 2016-09-08 | 2023-03-14 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US20180209608A1 (en) * | 2017-01-24 | 2018-07-26 | Tsinghua University | Illumination system with freeform surface |
US10527255B2 (en) * | 2017-01-24 | 2020-01-07 | Tsinghua University | Illumination system with freeform surface |
CN108343861A (en) * | 2017-01-24 | 2018-07-31 | 清华大学 | Free form surface lighting system |
US20180252849A1 (en) * | 2017-03-02 | 2018-09-06 | Intevac, Inc. | See through axial high order prism |
US12044850B2 (en) | 2017-03-09 | 2024-07-23 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted light field display with integral imaging and waveguide prism |
US12078802B2 (en) | 2017-03-09 | 2024-09-03 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted light field display with integral imaging and relay optics |
CN106842794A (en) * | 2017-03-28 | 2017-06-13 | 广景视睿科技(深圳)有限公司 | A kind of non-telecentricity DLP micro projection modules |
US10578869B2 (en) | 2017-07-24 | 2020-03-03 | Mentor Acquisition One, Llc | See-through computer display systems with adjustable zoom cameras |
US11567328B2 (en) | 2017-07-24 | 2023-01-31 | Mentor Acquisition One, Llc | See-through computer display systems with adjustable zoom cameras |
US11409105B2 (en) | 2017-07-24 | 2022-08-09 | Mentor Acquisition One, Llc | See-through computer display systems |
US11042035B2 (en) | 2017-07-24 | 2021-06-22 | Mentor Acquisition One, Llc | See-through computer display systems with adjustable zoom cameras |
US11668939B2 (en) | 2017-07-24 | 2023-06-06 | Mentor Acquisition One, Llc | See-through computer display systems with stray light management |
US10422995B2 (en) | 2017-07-24 | 2019-09-24 | Mentor Acquisition One, Llc | See-through computer display systems with stray light management |
US11960095B2 (en) | 2017-07-24 | 2024-04-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US11971554B2 (en) | 2017-07-24 | 2024-04-30 | Mentor Acquisition One, Llc | See-through computer display systems with stray light management |
US11550157B2 (en) | 2017-07-24 | 2023-01-10 | Mentor Acquisition One, Llc | See-through computer display systems |
US11789269B2 (en) | 2017-07-24 | 2023-10-17 | Mentor Acquisition One, Llc | See-through computer display systems |
US11226489B2 (en) | 2017-07-24 | 2022-01-18 | Mentor Acquisition One, Llc | See-through computer display systems with stray light management |
US11500207B2 (en) | 2017-08-04 | 2022-11-15 | Mentor Acquisition One, Llc | Image expansion optic for head-worn computer |
US11947120B2 (en) | 2017-08-04 | 2024-04-02 | Mentor Acquisition One, Llc | Image expansion optic for head-worn computer |
US10969584B2 (en) | 2017-08-04 | 2021-04-06 | Mentor Acquisition One, Llc | Image expansion optic for head-worn computer |
CN109782441A (en) * | 2017-11-14 | 2019-05-21 | 塔普翊海(上海)智能科技有限公司 | A kind of aobvious optical system of the see-through head of nearly eye |
US11852809B2 (en) | 2017-12-11 | 2023-12-26 | Panasonic Intellectual Property Management Co., Ltd. | Head-up display and moving body with head-up display mounted thereon |
US12085713B2 (en) | 2017-12-11 | 2024-09-10 | Panasonic Intellectual Property Management Co., Ltd. | Head-up display and moving body with head-up display mounted thereon |
US11579445B2 (en) * | 2017-12-11 | 2023-02-14 | Panasonic Intrllectual Property Management Co., Ltd. | Head-up display and moving body with head-up display mounted thereon |
US11402630B2 (en) | 2017-12-11 | 2022-08-02 | Panasonic Intellectual Property Management Co., Ltd. | Head-up display and moving body with head-up display mounted thereon |
US11546575B2 (en) | 2018-03-22 | 2023-01-03 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Methods of rendering light field images for integral-imaging-based light field display |
US11977277B2 (en) | 2018-07-26 | 2024-05-07 | Oakley, Inc. | Lens for eyewear and other headworn supports having improved optics |
US11314105B2 (en) | 2018-07-26 | 2022-04-26 | Oakley, Inc. | Lens for eyewear and other headworn supports having improved optics |
WO2020204925A1 (en) | 2019-04-03 | 2020-10-08 | Futurewei Technologies, Inc. | Freeform optical lens construction for near-eye displays |
CN113614608A (en) * | 2019-04-03 | 2021-11-05 | 华为技术有限公司 | Free-form optical lens structures for near-eye displays |
WO2020214158A1 (en) | 2019-04-17 | 2020-10-22 | Futurewei Technologies, Inc. | Freeform optical lens integration with visors for near-eye displays |
US12007575B2 (en) | 2021-06-07 | 2024-06-11 | Panamorph, Inc. | Near-eye display system |
US20220317464A1 (en) * | 2021-06-07 | 2022-10-06 | Panamorph, Inc. | Near-eye display system |
US11493773B2 (en) * | 2021-06-07 | 2022-11-08 | Panamorph, Inc. | Near-eye display system |
US11733532B2 (en) | 2021-06-07 | 2023-08-22 | Panamorph, Inc. | Near-eye display system |
US12099206B2 (en) | 2021-06-07 | 2024-09-24 | Panamorph, Inc. | Near-eye display system |
US11681150B2 (en) | 2021-06-07 | 2023-06-20 | Panamorph, Inc. | Near-eye display system |
US11663942B1 (en) | 2021-06-07 | 2023-05-30 | Panamorph, Inc. | Near-eye display system |
US11966058B2 (en) * | 2021-12-31 | 2024-04-23 | Beijing Ned+Ar Display Technology Co., Ltd. | Ultra-thin lens, virtual image display device using same, and near-eye display |
US20230213762A1 (en) * | 2021-12-31 | 2023-07-06 | Beijing Ned+Ar Display Technology Co., Ltd. | Ultra-thin lens, virtual image display device using same, and near-eye display |
CN116088086A (en) * | 2023-03-02 | 2023-05-09 | 福州京东方光电科技有限公司 | Optical waveguide and near-to-eye display device |
Also Published As
Publication number | Publication date |
---|---|
US11300790B2 (en) | 2022-04-12 |
US20160085075A1 (en) | 2016-03-24 |
WO2010123934A1 (en) | 2010-10-28 |
US20140009845A1 (en) | 2014-01-09 |
US9239453B2 (en) | 2016-01-19 |
US10416452B2 (en) | 2019-09-17 |
US20200103654A1 (en) | 2020-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11300790B2 (en) | Optical see-through free-form head-mounted display | |
US20230333387A1 (en) | Wide angle and high resolution tiled head-mounted display device | |
Cheng et al. | Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism | |
WO2019033748A1 (en) | Imaging system based on dual-free-form surface reflection and augmented reality device | |
JP6221731B2 (en) | Virtual image display device | |
JP2015534108A (en) | Ergonomic head mounted display device and optical system | |
JP6295640B2 (en) | Virtual image display device | |
JP2001147400A (en) | Image display device | |
WO2018121010A1 (en) | Projection objective and three-dimensional display device | |
WO2021139725A1 (en) | Near-to-eye display apparatus | |
JP2004341411A (en) | Optical system and picture display device | |
CN114450622A (en) | Near-to-eye optical system implementing a waveguide having an output viewer element with a refractive beam-splitting convex lens | |
JP2001142025A (en) | Picture display device | |
CN109656025A (en) | Projecting optical device of the augmented reality in conjunction with glasses | |
US20240201429A1 (en) | Curved waveguide-based augmented reality device, method for operation of said device, augmented reality glasses based on said device | |
Sang et al. | Design and fabrication of a wide-angle off-axis three-mirror head-mounted display system | |
CN113341558A (en) | Reflective eyepiece optical system and head-mounted near-to-eye display device | |
JP7406028B1 (en) | Optical system | |
JP3245472B2 (en) | Head mounted display | |
Zhuang et al. | A compact and lightweight off-axis lightguide prism in near to eye display | |
CN116125668A (en) | Optical system | |
CN210166569U (en) | Augmented reality optical system based on free-form surface and optical waveguide | |
JP2000019450A (en) | Display device | |
CN113625451A (en) | Near-eye perspective head display optical imaging system | |
JP2020076935A (en) | Observation optical system and image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |