US20150147570A1 - Fibers with improving anti-microbial performance - Google Patents
Fibers with improving anti-microbial performance Download PDFInfo
- Publication number
- US20150147570A1 US20150147570A1 US14/551,385 US201414551385A US2015147570A1 US 20150147570 A1 US20150147570 A1 US 20150147570A1 US 201414551385 A US201414551385 A US 201414551385A US 2015147570 A1 US2015147570 A1 US 2015147570A1
- Authority
- US
- United States
- Prior art keywords
- fiber
- microbial
- synthetic fiber
- fibers
- dispersion liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
- D01F1/103—Agents inhibiting growth of microorganisms
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D1/00—Treatment of filament-forming or like material
- D01D1/02—Preparation of spinning solutions
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D1/00—Treatment of filament-forming or like material
- D01D1/04—Melting filament-forming substances
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/082—Melt spinning methods of mixed yarn
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
- D01D5/0985—Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/09—Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/60—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/83—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M16/00—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/32—Polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/34—Polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/13—Physical properties anti-allergenic or anti-bacterial
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2503/00—Domestic or personal
- D10B2503/02—Curtains
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2503/00—Domestic or personal
- D10B2503/06—Bed linen
- D10B2503/062—Fitted bedsheets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
- Y10T428/2958—Metal or metal compound in coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/298—Physical dimension
Definitions
- the present invention relates fibers and fabrics designed for the effective destruction of pathogens such as bacteria, mold, mildew, fungus, spores, and viruses.
- Anti-microbial additives containing copper, silver, gold, and zinc, either individually or combined, are known to be effective against pathogens such as bacteria, mold, mildew, virus, spores, and fungus. Accordingly, fibers and fabrics have been produced with anti-microbial alloys in various synthetic polymers such as polyester, polypropylene, nylon, rayon, and polylactic acid (PLA).
- PHA polylactic acid
- high count woven fabrics such as sheets, uniforms, doctor's coats, and scrubs require high tenacity fibers (typically greater than 6 grams per denier) to weave without problems.
- fibers with a significant amount of additives are unable to reach that level of tenacity.
- starch PVA
- the starch is typically organic and provides a food source for bacteria, stiffens the fabric, and is not desirable for softness and touch.
- the starch must be removed and it is desirable to be able to add a topical treatment that is compatible with the additive in the fiber.
- Additives of copper, silver, gold, zinc and other metals are difficult to disperse into molten polymers such as PET, especially with a particle size of 0.3 to 0.6 microns.
- these alloys are used as a master-batch, pre-dispersed in a carrier such as polyethylene, polypropylene, polyester, or PBT.
- a carrier such as polyethylene, polypropylene, polyester, or PBT.
- the additional heat of the process adds a second heat cycle to the additive, which can reduce effectiveness, and the process can cause agglomerates, which may be filter out in the filter screen and either clog the screen or reduce the concentration of the master batch.
- the structure of the weave can affect the porosity of the fabric and thus the ability of the bacteria to come in contact with the fibers and the active ingredients.
- Most synthetic fibers maintain an impermeable skin on the outside of the fiber, preventing exposure of the anti-microbial alloys.
- U.S. Pat. Nos. 6,723,428; 6,841,244; and 6,946,196 by Stephen W. Foss, et al teach that by putting the silver additive only in the sheath of a Bi-component fiber, the efficacy can be improved by forcing the active ingredient to the surface.
- the present invention comprises a method for generating a synthetic fiber, the method comprising creating a mixture, the mixture comprising a polymer, an anti-microbial agent, and a dispersion liquid, and forming a synthetic fiber from the mixture.
- forming the synthetic fiber may include an extrusion process or a continuous polymerization process.
- the method may further include treating the fiber with an anti-microbial metallic solution and/or blending the fiber with a cellulosic fiber.
- the method may further generating a fabric using the fiber and then heat setting the fabric to impart permanent press characteristics to prevent wrinkling.
- the invention may comprise a synthetic fiber comprising a polymer, an anti-microbial agent, and a dispersion liquid, wherein the dispersion liquid is embedded in the fiber.
- the anti-microbial agent may be comprised of silver and/or copper and/or zinc and/or gold in metallic form, salt form or ionic form and the dispersion liquid may be selected from the group consisting of an anti-stat, an anionic anti-stat oil, a phosphate ester, a wax, and a vegetable oil.
- the fiber may range from 0.5 to 20 denier, or preferably from 1.0 to 3.0 denier.
- the synthetic fiber can be a portion of an air jet spun yarn, and/or can be used in a sheet, pillow case, privacy curtain, isolation gown, medical scrubs, doctor coat, or blanket.
- the synthetic fiber may further comprise cellulosic fibers and/or a metallic anti-microbial coating.
- the present invention is a synthetic fiber comprising a polymer, an anti-microbial agent, and a dispersion additive, wherein the fiber was infused with the dispersion additive prior to formation.
- FIG. 1 includes a flow chart for an exemplary method of producing fibers consistent with an embodiment of the present invention.
- FIGS. 2A and 2B are illustrations of an anti-microbial fiber consistent with embodiments of the present invention.
- the present invention provides methods for generating fibers and fabrics with improved anti-microbial properties and characteristics.
- the present invention further relates to the fibers themselves.
- the present invention includes fibers that have been infused with an anti-microbial agent and a dispersion liquid, and which exhibit improved performance with repeated launderings.
- a mixture is created, the mixture including a polymer, an anti-microbial alloy powder, and a dispersion liquid.
- a polymer refers to a compound suitable for fiber and fabric generation including, but not limited to, a thermoplastic polymer, polyester, nylon, rayon, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyethylene terephthalate glycol (PETG), co-PET, polylactic acid (PLA), and polytrimethylene terephthalate (PTT).
- the polymer may be PET, for its strength, longevity during washing, ability to be made permanent press, and ability to be blended with other fibers.
- the polymer may be Nylon 6,6. Nylon is known to be a stronger fiber than PET and exhibits a non-drip burning characteristic that is beneficial in military applications, and is more hydrophilic than PET.
- An anti-microbial agent may be any suitable anti-microbial, such as silver, copper, zinc and/or gold in metallic forms (e.g., particulates, alloys and oxides), salts (e.g., sulfates, nitrates, acetates, citrates, and chlorides) and/or in ionic forms.
- the anti-microbial agent is an anti-microbial alloy powder with a particle size of less than 1 micron, and preferably 0.3 to 0.6 micron.
- the anti-microbial agent may be comprised of an anti-microbial powder formed from alloys of one or more metals that exhibit anti-microbial properties.
- Anti-microbial alloys made of two or more element alloys can have superior anti-microbial properties compared to one element particles.
- Embodiments of the present invention can include an anti-microbial alloy which includes a combination of: transition metals of the periodical table such as chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, and/or gold; rare earth metals from the lanthanides such as cerium, neodymium, samarium, gadolinium, terbium, dysprosium, holmium, and/or erbium; and/or alkali metals such as lithium, sodium, potassium, magnesium, and/or calcium.
- the combination may comprise a binary combination, ternary combination, quaternary combination, or even higher order combination.
- the selected alloys, and the relative percentages of each alloy may be selected depending on the intended use of the fiber or other selection criteria. Different combinations will result in different anti-microbial classes that may be used with the present invention.
- anti-microbial alloys have been produced by QuarTek Corporation as described in various patent applications (U.S. Provisional Application Ser. Nos. 60/888,343, filed on Feb. 6, 2007, and 60/821,497, filed on Aug. 4, 2006; and U.S. patent application Ser. Nos. 11/868,475, filed on Oct. 6, 2007, 11/858,157, filed on Sep. 20, 2007, and 11/671,675, filed on Feb. 6, 2007).
- These anti-microbial alloys have been produced by varying the elemental composition of the alloys, the elemental ratios within the same alloy, or by changing parameters in the synthesis process. As needed, these anti-microbial alloys may be synthesized in various size ranges from 5 nm to 2000 nm, preferably less than 1000 nm, or even within the range of 100-500 nm.
- a dispersion liquid is a liquid additive used to disperse the anti-microbial agent and assist with the combination of the anti-microbial agent and the polymer. This allows for more uniform dispersion of the anti-microbial agent throughout the eventual fiber. Further, this combination “welds” the anti-microbial within the polymer to help prevent or limit the active anti-microbial ingredients from being washed from the fiber.
- the dispersion liquid itself is embedded in the fiber during manufacture but at least a portion of the dispersion liquid dissolves from the fiber during treatments, or launderings, creating cracks and/or striations in the fiber and further exposing the anti-microbial agent in the fiber to any pathogens. For example, FIGS.
- FIG. 2A and 2B show illustrations of an anti-microbial fiber consistent with embodiments of the present invention.
- FIG. 2A illustrates a fiber just after manufacture
- FIG. 2B illustrates cracks and/or striations in the fiber after treatments, or launderings, that dissolve or otherwise remove some of the dispersion liquid. These cracks or striations in the fiber further expose the anti-microbial agent embedded in the fiber to any surrounding pathogens.
- Exemplary dispersion liquids include anti-stats, anionic anti-stat oils, phosphate esters, vegetable oils, and other liquids.
- the dispersion liquid may be comprised of predominately a phosphate ester with 10-30% water.
- the dispersion liquid may be comprised of certain waxes, such as Montan Wax that operates to carry powders into fiber. The selection of the dispersion liquid may also relate to other desired characteristics of the fiber, including the desired tenacity, color, feel, etc.
- creating the mixture may comprise first adding the dispersion liquid to polymer pellets in a tumbling mixer (similar to a concrete mixer) and then adding the anti-microbial agent.
- the anti-microbial agent may be first mixed with the dispersion liquid and then added to the polymer.
- the dispersion liquid may be sprayed on the polymer and an anti-microbial alloy powder mixed in as the dispersion liquid makes the polymer chips tacky and the powder adheres uniformly. Further variations and methods of combining the dispersion liquid, polymer and anti-microbial will be understood by those of skill in the art in view of the present disclosure.
- the mixture may be extruded in order to create a fiber.
- the extrusion process itself depends on the temperature of the mixture being sufficiently high to melt the mixture.
- a melting step may be a separate step in FIG. 1 or it may be part of either the mixing process or the extruding process.
- the mixture When the mixture is at a sufficiently high temperature, the mixture may be extruded using conventional mechanisms such as a spinneret. The fiber may then be drawn, crimped, cut and spun into a yarn or other fabric depending on the intended end use.
- fibers consistent with the present invention will be between 0.5 to 20 denier, and preferably between 0.5 and 4.5 denier.
- the length of the fiber may vary depending on the intended use of the fiber, but a preferred range of lengths for the fibers may be 10 to 180 mm in length.
- the present invention further allows for a range of tenacities. In one preferred embodiment the tenacity is greater than four (4) grams per denier, while other embodiments will be greater than 6.2 grams per denier. Due to the advantages of the present invention, higher tenacity fibers (greater than 6.2, or even greater than 6.8 grams per denier) may be manufactured.
- the anti-microbial powder and the dispersion liquid are mixed together and injected into the continuous polymerization of the polymer and then directly spun into fiber without the extrusion step.
- Step 300 There are numerous post-fiber-creation techniques (Step 300 ) that may be used in order to further enhance the characteristics of the fiber.
- an air jet spinning method may be used on the anti-microbial fibers in order to increase the bulkiness of the yarn and to make the yarn fuzzier. These air jet spun yarns expose more surface area of the fiber to bacteria in order to improve the anti-microbial characteristics of the fiber.
- the anti-microbial fiber may be blended with cellulosic fibers such as cotton, rayon, TENCEL®, etc. to enhance the moisture available near the anti-microbial fiber, improving the efficacy of the fibers at killing pathogens.
- a topical finish (or coating) containing additional copper, silver, and/or zinc with a latex binder, such as Ethylene Vinyl Acetate (EVA) or Acrylic, may be applied to create a chemical bond with the active additives in the fiber.
- EVA Ethylene Vinyl Acetate
- the effect of creating striations on the fiber after initial washing to remove starch provides a unique chemical and mechanical bond of the binder with the fiber, connecting the antimicrobial additives.
- the present invention permits fibers that are infused with anti-microbial compounds to be heat set at 180° C. to make the fabrics permanent press without degradation of the anti-microbial properties. Being able to permanent press a fabric according the present invention offers numerous advantages beyond just improving appearance or reducing laundering time. For example, permanent press sheets are less likely to wrinkle, which can improve patient comfort and potentially reduce bed sores.
- Fibers consistent with the present invention are able to meet the Clorox 5X test, and can even exhibit improved bacteria killing performance after repeated washing with Clorox bleach and tide.
- the Clorox-5X test uses the common bleaching agent and the bleaching agent found in CLOROX® bleach, sodium hypochlorite, in a series of bleaching cycles to determine whether the fabric will withstand chlorine bleaching.
- the Clorox-5X test refers to bleaching of the fabric through five (5) cycles.
- the Clorox-1X test refers to bleaching of the fabric through one (1) cycle.
- a cycle includes bleach washing a test sample with the bleaching chemical known by the trade name Clorox, in water with Clorox and detergent at 40° C., for 20 minutes.
- the laundering process can increase the anti-microbial effectiveness of the fiber.
- fibers consistent with the present invention may be further treated with an anti-microbial post fabrication.
- an anti-microbial post fabrication In this manner, although the effectiveness of the post-fabrication anti-microbial treatment may decrease over time, the effectiveness of the fibers will remain constant or increase over time due to the increased exposed surface area of the fiber as the dispersion liquid disintegrates away.
- An exemplary fiber consistent with embodiments of the present invention was made using 99.3% Polyester (PET) resin of 0.64 IV blended with 0.4% QuarTek Alloy QSM-ACL73, 0.1% Phosphate Ester Anti Stat, and 0.2% pthalo blue pigment.
- PET Polyester
- the alloy was a powder with particle sizes of 0.4-0.6 microns.
- the alloy powder was dried in a convection oven at 150° C. for 24 hours.
- the hot PET resin was removed from the desiccant drier at 125° C.
- FibroChem Anti-Stat 101A an anionic anti-stat oil
- the compounds were extruded at a melt temperature of 290° C. and pumped through a spinneret to produce a fiber of 5.5 denier.
- the fiber was then drawn to 1.3 denier, crimped, and cut to 1.5′′ (38 mm).
- a draw ratio was increased from a typical 3.3:1 to 3.7:1, which produced a fiber with a tenacity of 6.2 grams/denier.
- the fibers were then spun into a yarn and knitted in a tube.
- the knitted tubes were tested for bacteria using AATCC test #100. Unwashed the knitted tubes showed a 99.9% kill rate.
- the knitted tubes were then washed twenty-five (25) times using hot water, chlorine bleach, and detergent. After being washed, the knitted tubes were again tested, this time showing a 99.999% kill rate.
- similar fibers were generated in a production run of 5,000 pounds.
- the fibers were spun using air-jet yarn spinning to produce yarns which were bulky and allowed fibers to be available on the surface.
- the yarns were woven in different constructions using starch (PVA) to aid in the weaving.
- PVA starch
- the woven fabrics were scoured in a finishing mill at 85° C. to remove the starch, dried at 150° C. and then heat set at 180° C. to make the fabric “permanent press.”
- the fabric was then post-finished with a solution containing copper, silver & zinc with an acrylic latex binder that attached to the fibers providing dual protection inside and outside the fibers. Because the anti-stat oil started to dissolve in the hot water, there were small cracks formed in the surface of the fiber that provided a chemical and mechanical bond.
- Fabrics consistent with this embodiment were made into sheets, pillow cases, privacy curtains, isolation gowns, scrubs, doctor's coats, and blankets. Once again, these fabrics were tested using the AATCC 100 test. All fabrics provided results better than 99.99% kill rates and most were 99.999% after 25 launderings with Clorox, detergent, and hot water. The fibers are also suitable for use in nonwovens.
- the present invention provides, among other things, a system and method for making fibers which improve anti-microbial activity after repeated launderings.
- Those skilled in the art can readily recognize that numerous variations and substitutions may be made in the invention, its use and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Accordingly, there is no intention to limit the invention to the disclosed exemplary forms. Many variations, modifications and alternative constructions fall within the scope and spirit of the disclosed invention as expressed in the claims.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Artificial Filaments (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Woven Fabrics (AREA)
- Bedding Items (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Fibers and fabrics with improved anti-microbial activity in after laundering, and a method of producing the same, are described. One embodiment includes a method for generating a synthetic fiber, the method comprising creating a mixture, the mixture comprising a polymer, an anti-microbial agent, and a dispersion liquid, and extruding the mixture to form a synthetic fiber.
Description
- The present application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. §120 to, U.S. non-provisional patent application Ser. No. 13/335,349, filed Dec. 22, 2011, entitled “FIBERS WITH IMPROVING ANTI-MICROBIAL PERFORMANCE,” and published on Jun. 28, 2012 as U.S. Patent Application Publication No. US 2012/0164449 A1, which '349 application is a U.S. non-provisional patent application of, and claims priority under 35 U.S.C. §119(e) to, U.S. provisional patent application Ser. No. 61/426,618, filed Dec. 23, 2010, and entitled “FIBERS WITH IMPROVING ANTI-MICROBIAL PERFORMANCE.” Each of the foregoing U.S. patent applications and U.S. patent application publications is incorporated by reference herein in its entirety.
- 1. Field of the Present Invention
- The present invention relates fibers and fabrics designed for the effective destruction of pathogens such as bacteria, mold, mildew, fungus, spores, and viruses.
- 2. Background
- Anti-microbial additives containing copper, silver, gold, and zinc, either individually or combined, are known to be effective against pathogens such as bacteria, mold, mildew, virus, spores, and fungus. Accordingly, fibers and fabrics have been produced with anti-microbial alloys in various synthetic polymers such as polyester, polypropylene, nylon, rayon, and polylactic acid (PLA). There are many uses and applications for these types of anti-microbial fibers and fabrics, including the healthcare industry, hospitality industry, military, and infant care, among others. However, current anti-microbial fibers and fabrics have shortcomings in meeting the requirements of these uses and applications.
- For example, in the healthcare and hospitality industry—such as in a hospital, nursing homes, extended care facilities, hotels, spas or the like—it is required that privacy curtains, isolation gowns, sheets, towels, scrubs, doctor's coats, bath robes, pajamas, and uniforms for medical personnel, both be sanitary and be perceived as sanitary. Therefore, the healthcare and hospitality industries require that these fabrics and garments conform to certain sanitation criteria. As there has been a rise in the possibility of contracting various contagious diseases such as Methicillin-resistant Staphylococcus aureus (MRSA) over the past few years, most in the healthcare industry now require bleaching of the towels, garments and other fabrics used in hospitals and various places where repeated use of the towels, garments and fabrics will, or is likely to, occur. This, of course, eliminates many of the types and colors of towels, garments and fabrics that can be used in the healthcare industry and is one reason why most of the fabrics are white. Moreover, because fibers and fabrics produced with known methods lose their effectiveness during repeated launderings with chlorine bleach, the laundering process required in these industries causes issues with known anti-microbial fibers and fabrics.
- In addition, high count woven fabrics, such as sheets, uniforms, doctor's coats, and scrubs require high tenacity fibers (typically greater than 6 grams per denier) to weave without problems. Generally, fibers with a significant amount of additives are unable to reach that level of tenacity.
- During weaving, it is necessary to apply a starch (PVA) to the yarns to give them better abrasion resistance during weaving. However, the starch is typically organic and provides a food source for bacteria, stiffens the fabric, and is not desirable for softness and touch. The starch must be removed and it is desirable to be able to add a topical treatment that is compatible with the additive in the fiber.
- Additives of copper, silver, gold, zinc and other metals are difficult to disperse into molten polymers such as PET, especially with a particle size of 0.3 to 0.6 microns. Generally, these alloys are used as a master-batch, pre-dispersed in a carrier such as polyethylene, polypropylene, polyester, or PBT. Often, when a master batch is made in an extruder there are two detrimental effects: the additional heat of the process adds a second heat cycle to the additive, which can reduce effectiveness, and the process can cause agglomerates, which may be filter out in the filter screen and either clog the screen or reduce the concentration of the master batch.
- Moreover, the structure of the weave can affect the porosity of the fabric and thus the ability of the bacteria to come in contact with the fibers and the active ingredients. Most synthetic fibers maintain an impermeable skin on the outside of the fiber, preventing exposure of the anti-microbial alloys. U.S. Pat. Nos. 6,723,428; 6,841,244; and 6,946,196 by Stephen W. Foss, et al, teach that by putting the silver additive only in the sheath of a Bi-component fiber, the efficacy can be improved by forcing the active ingredient to the surface. However, there is a need to be able to add the alloy powder directly to the fiber polymer during fiber manufacture.
- In addition, there is a need to create a mechanism to open pores or striations on the surface of fibers to increase the surface area and expose more active ingredients to the microbes. Thus, the need exists for an anti-microbial fabric that will resist the destructiveness of washing in chlorine bleach and maintain its color and efficacy against pathogens such as: gram-negative bacteria, gram-positive bacteria, mold, mildew, fungus, spores, and viruses, and not be degraded during repeated launderings and uses.
- Although present devices and methods are functional, they are not sufficiently effective or otherwise satisfactory. Accordingly, a system and method are needed to address the shortfalls of present technology and to provide other new and innovative features.
- Exemplary embodiments of the present invention that are shown in the drawings are summarized below. These and other embodiments are more fully described in the Detailed Description section. It is to be understood, however, that there is no intention to limit the invention to the forms described in this Summary of the Invention or in the Detailed Description. One skilled in the art can recognize that there are numerous modifications, equivalents and alternative constructions that fall within the spirit and scope of the invention as expressed in the claims.
- In one embodiment, the present invention comprises a method for generating a synthetic fiber, the method comprising creating a mixture, the mixture comprising a polymer, an anti-microbial agent, and a dispersion liquid, and forming a synthetic fiber from the mixture. In some methods, forming the synthetic fiber may include an extrusion process or a continuous polymerization process. In some embodiments, the method may further include treating the fiber with an anti-microbial metallic solution and/or blending the fiber with a cellulosic fiber. The method may further generating a fabric using the fiber and then heat setting the fabric to impart permanent press characteristics to prevent wrinkling.
- In another embodiment, the invention may comprise a synthetic fiber comprising a polymer, an anti-microbial agent, and a dispersion liquid, wherein the dispersion liquid is embedded in the fiber. The anti-microbial agent may be comprised of silver and/or copper and/or zinc and/or gold in metallic form, salt form or ionic form and the dispersion liquid may be selected from the group consisting of an anti-stat, an anionic anti-stat oil, a phosphate ester, a wax, and a vegetable oil. The fiber may range from 0.5 to 20 denier, or preferably from 1.0 to 3.0 denier. The synthetic fiber can be a portion of an air jet spun yarn, and/or can be used in a sheet, pillow case, privacy curtain, isolation gown, medical scrubs, doctor coat, or blanket. In some embodiments, the synthetic fiber may further comprise cellulosic fibers and/or a metallic anti-microbial coating.
- In yet another embodiment, the present invention is a synthetic fiber comprising a polymer, an anti-microbial agent, and a dispersion additive, wherein the fiber was infused with the dispersion additive prior to formation.
- As previously stated, the above-described embodiments and implementations are for illustration purposes only. Numerous other embodiments, implementations, and details of the invention are easily recognized by those of skill in the art from the following descriptions and claims.
- Various objects and advantages and a more complete understanding of the present invention are apparent and more readily appreciated by reference to the following Detailed Description and to the appended claims when taken in conjunction with the accompanying Drawings wherein:
-
FIG. 1 includes a flow chart for an exemplary method of producing fibers consistent with an embodiment of the present invention; and -
FIGS. 2A and 2B are illustrations of an anti-microbial fiber consistent with embodiments of the present invention. - The present invention provides methods for generating fibers and fabrics with improved anti-microbial properties and characteristics. The present invention further relates to the fibers themselves. In a preferred embodiment, the present invention includes fibers that have been infused with an anti-microbial agent and a dispersion liquid, and which exhibit improved performance with repeated launderings.
- Referring first to
FIG. 1 , there is an illustration of a method for generating fibers with improved anti-microbial properties and characteristics. At Step 100 a mixture is created, the mixture including a polymer, an anti-microbial alloy powder, and a dispersion liquid. As used herein, a polymer refers to a compound suitable for fiber and fabric generation including, but not limited to, a thermoplastic polymer, polyester, nylon, rayon, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyethylene terephthalate glycol (PETG), co-PET, polylactic acid (PLA), and polytrimethylene terephthalate (PTT). In a preferred embodiment, the polymer may be PET, for its strength, longevity during washing, ability to be made permanent press, and ability to be blended with other fibers. In another embodiment, the polymer may be Nylon 6,6. Nylon is known to be a stronger fiber than PET and exhibits a non-drip burning characteristic that is beneficial in military applications, and is more hydrophilic than PET. - An anti-microbial agent may be any suitable anti-microbial, such as silver, copper, zinc and/or gold in metallic forms (e.g., particulates, alloys and oxides), salts (e.g., sulfates, nitrates, acetates, citrates, and chlorides) and/or in ionic forms. In some embodiments, the anti-microbial agent is an anti-microbial alloy powder with a particle size of less than 1 micron, and preferably 0.3 to 0.6 micron.
- The anti-microbial agent may be comprised of an anti-microbial powder formed from alloys of one or more metals that exhibit anti-microbial properties. Anti-microbial alloys made of two or more element alloys can have superior anti-microbial properties compared to one element particles. Embodiments of the present invention can include an anti-microbial alloy which includes a combination of: transition metals of the periodical table such as chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, and/or gold; rare earth metals from the lanthanides such as cerium, neodymium, samarium, gadolinium, terbium, dysprosium, holmium, and/or erbium; and/or alkali metals such as lithium, sodium, potassium, magnesium, and/or calcium. The combination may comprise a binary combination, ternary combination, quaternary combination, or even higher order combination. The selected alloys, and the relative percentages of each alloy, may be selected depending on the intended use of the fiber or other selection criteria. Different combinations will result in different anti-microbial classes that may be used with the present invention.
- For example, different classes of anti-microbial alloys have been produced by QuarTek Corporation as described in various patent applications (U.S. Provisional Application Ser. Nos. 60/888,343, filed on Feb. 6, 2007, and 60/821,497, filed on Aug. 4, 2006; and U.S. patent application Ser. Nos. 11/868,475, filed on Oct. 6, 2007, 11/858,157, filed on Sep. 20, 2007, and 11/671,675, filed on Feb. 6, 2007). These anti-microbial alloys have been produced by varying the elemental composition of the alloys, the elemental ratios within the same alloy, or by changing parameters in the synthesis process. As needed, these anti-microbial alloys may be synthesized in various size ranges from 5 nm to 2000 nm, preferably less than 1000 nm, or even within the range of 100-500 nm.
- A dispersion liquid, as introduced above, is a liquid additive used to disperse the anti-microbial agent and assist with the combination of the anti-microbial agent and the polymer. This allows for more uniform dispersion of the anti-microbial agent throughout the eventual fiber. Further, this combination “welds” the anti-microbial within the polymer to help prevent or limit the active anti-microbial ingredients from being washed from the fiber. The dispersion liquid itself is embedded in the fiber during manufacture but at least a portion of the dispersion liquid dissolves from the fiber during treatments, or launderings, creating cracks and/or striations in the fiber and further exposing the anti-microbial agent in the fiber to any pathogens. For example,
FIGS. 2A and 2B show illustrations of an anti-microbial fiber consistent with embodiments of the present invention.FIG. 2A illustrates a fiber just after manufacture, whileFIG. 2B illustrates cracks and/or striations in the fiber after treatments, or launderings, that dissolve or otherwise remove some of the dispersion liquid. These cracks or striations in the fiber further expose the anti-microbial agent embedded in the fiber to any surrounding pathogens. - Exemplary dispersion liquids include anti-stats, anionic anti-stat oils, phosphate esters, vegetable oils, and other liquids. In one embodiment, the dispersion liquid may be comprised of predominately a phosphate ester with 10-30% water. In another embodiment, the dispersion liquid may be comprised of certain waxes, such as Montan Wax that operates to carry powders into fiber. The selection of the dispersion liquid may also relate to other desired characteristics of the fiber, including the desired tenacity, color, feel, etc.
- Referring again to Step 100 in
FIG. 1 , in one embodiment creating the mixture may comprise first adding the dispersion liquid to polymer pellets in a tumbling mixer (similar to a concrete mixer) and then adding the anti-microbial agent. In another embodiment, the anti-microbial agent may be first mixed with the dispersion liquid and then added to the polymer. In another embodiment, the dispersion liquid may be sprayed on the polymer and an anti-microbial alloy powder mixed in as the dispersion liquid makes the polymer chips tacky and the powder adheres uniformly. Further variations and methods of combining the dispersion liquid, polymer and anti-microbial will be understood by those of skill in the art in view of the present disclosure. - As indicated by
Step 200 inFIG. 1 , once the mixture is created, the mixture may be extruded in order to create a fiber. The extrusion process itself depends on the temperature of the mixture being sufficiently high to melt the mixture. A melting step may be a separate step inFIG. 1 or it may be part of either the mixing process or the extruding process. When the mixture is at a sufficiently high temperature, the mixture may be extruded using conventional mechanisms such as a spinneret. The fiber may then be drawn, crimped, cut and spun into a yarn or other fabric depending on the intended end use. - In one embodiment, fibers consistent with the present invention will be between 0.5 to 20 denier, and preferably between 0.5 and 4.5 denier. The length of the fiber may vary depending on the intended use of the fiber, but a preferred range of lengths for the fibers may be 10 to 180 mm in length. The present invention further allows for a range of tenacities. In one preferred embodiment the tenacity is greater than four (4) grams per denier, while other embodiments will be greater than 6.2 grams per denier. Due to the advantages of the present invention, higher tenacity fibers (greater than 6.2, or even greater than 6.8 grams per denier) may be manufactured.
- In another embodiment, the anti-microbial powder and the dispersion liquid are mixed together and injected into the continuous polymerization of the polymer and then directly spun into fiber without the extrusion step.
- There are numerous post-fiber-creation techniques (Step 300) that may be used in order to further enhance the characteristics of the fiber. In one embodiment, an air jet spinning method may be used on the anti-microbial fibers in order to increase the bulkiness of the yarn and to make the yarn fuzzier. These air jet spun yarns expose more surface area of the fiber to bacteria in order to improve the anti-microbial characteristics of the fiber. In another embodiment, the anti-microbial fiber may be blended with cellulosic fibers such as cotton, rayon, TENCEL®, etc. to enhance the moisture available near the anti-microbial fiber, improving the efficacy of the fibers at killing pathogens.
- After the fibers have been converted to yarns and then to fabrics, post finishing in hot water (85° C. or greater) is possible to remove the weaving starch and start the emulsion of the dispersion liquid. A topical finish (or coating) containing additional copper, silver, and/or zinc with a latex binder, such as Ethylene Vinyl Acetate (EVA) or Acrylic, may be applied to create a chemical bond with the active additives in the fiber. The effect of creating striations on the fiber after initial washing to remove starch provides a unique chemical and mechanical bond of the binder with the fiber, connecting the antimicrobial additives.
- The present invention permits fibers that are infused with anti-microbial compounds to be heat set at 180° C. to make the fabrics permanent press without degradation of the anti-microbial properties. Being able to permanent press a fabric according the present invention offers numerous advantages beyond just improving appearance or reducing laundering time. For example, permanent press sheets are less likely to wrinkle, which can improve patient comfort and potentially reduce bed sores.
- Fibers consistent with the present invention are able to meet the Clorox 5X test, and can even exhibit improved bacteria killing performance after repeated washing with Clorox bleach and tide. The Clorox-5X test uses the common bleaching agent and the bleaching agent found in CLOROX® bleach, sodium hypochlorite, in a series of bleaching cycles to determine whether the fabric will withstand chlorine bleaching. The Clorox-5X test refers to bleaching of the fabric through five (5) cycles. The Clorox-1X test refers to bleaching of the fabric through one (1) cycle. A cycle includes bleach washing a test sample with the bleaching chemical known by the trade name Clorox, in water with Clorox and detergent at 40° C., for 20 minutes.
- During a laundering process, such as the Clorox-5X test, some of the dispersion liquid within the fiber may be dissolved and removed, leaving cracks in the fiber that further expose the anti-microbial imbedded within the fiber to any pathogens. Accordingly, the laundering process can increase the anti-microbial effectiveness of the fiber.
- In some embodiments, fibers consistent with the present invention may be further treated with an anti-microbial post fabrication. In this manner, although the effectiveness of the post-fabrication anti-microbial treatment may decrease over time, the effectiveness of the fibers will remain constant or increase over time due to the increased exposed surface area of the fiber as the dispersion liquid disintegrates away.
- An exemplary fiber consistent with embodiments of the present invention was made using 99.3% Polyester (PET) resin of 0.64 IV blended with 0.4% QuarTek Alloy QSM-ACL73, 0.1% Phosphate Ester Anti Stat, and 0.2% pthalo blue pigment. The alloy was a powder with particle sizes of 0.4-0.6 microns. The alloy powder was dried in a convection oven at 150° C. for 24 hours. The hot PET resin was removed from the desiccant drier at 125° C. FibroChem Anti-Stat 101A (an anionic anti-stat oil) was added to the PET pellets at a rate of 0.5 liter per 1,000 pounds by carefully drizzling the oil with a brush. The powder alloy was then added slowly to the mixture of PET pellets and anti-stat oil in a tumbling mixer (similar to a concrete mixer) and mixed for 5 minutes.
- The compounds were extruded at a melt temperature of 290° C. and pumped through a spinneret to produce a fiber of 5.5 denier. The fiber was then drawn to 1.3 denier, crimped, and cut to 1.5″ (38 mm). During the drawing, a draw ratio was increased from a typical 3.3:1 to 3.7:1, which produced a fiber with a tenacity of 6.2 grams/denier.
- In this exemplary embodiment, the fibers were then spun into a yarn and knitted in a tube. The knitted tubes were tested for bacteria using
AATCC test # 100. Unwashed the knitted tubes showed a 99.9% kill rate. The knitted tubes were then washed twenty-five (25) times using hot water, chlorine bleach, and detergent. After being washed, the knitted tubes were again tested, this time showing a 99.999% kill rate. - In another exemplary embodiment, similar fibers were generated in a production run of 5,000 pounds. The fibers were spun using air-jet yarn spinning to produce yarns which were bulky and allowed fibers to be available on the surface. The yarns were woven in different constructions using starch (PVA) to aid in the weaving.
- The woven fabrics were scoured in a finishing mill at 85° C. to remove the starch, dried at 150° C. and then heat set at 180° C. to make the fabric “permanent press.” The fabric was then post-finished with a solution containing copper, silver & zinc with an acrylic latex binder that attached to the fibers providing dual protection inside and outside the fibers. Because the anti-stat oil started to dissolve in the hot water, there were small cracks formed in the surface of the fiber that provided a chemical and mechanical bond.
- Fabrics consistent with this embodiment were made into sheets, pillow cases, privacy curtains, isolation gowns, scrubs, doctor's coats, and blankets. Once again, these fabrics were tested using the
AATCC 100 test. All fabrics provided results better than 99.99% kill rates and most were 99.999% after 25 launderings with Clorox, detergent, and hot water. The fibers are also suitable for use in nonwovens. - In conclusion, the present invention provides, among other things, a system and method for making fibers which improve anti-microbial activity after repeated launderings. Those skilled in the art can readily recognize that numerous variations and substitutions may be made in the invention, its use and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Accordingly, there is no intention to limit the invention to the disclosed exemplary forms. Many variations, modifications and alternative constructions fall within the scope and spirit of the disclosed invention as expressed in the claims.
Claims (13)
1.-46. (canceled)
17. A synthetic fiber comprising:
a polymer;
an anti-microbial agent; and
a dispersion liquid, wherein the dispersion liquid is embedded in the fiber.
18. The synthetic fiber of claim 17 , wherein the anti-microbial agent comprises silver and/or copper and/or zinc and/or gold in metallic form, salt form or ionic form.
19. The synthetic fiber of claim 17 , wherein the dispersion liquid is selected from the group consisting of an anti-stat, an anionic anti-stat oil, a phosphate ester, a wax, and a vegetable oil.
20. The synthetic fiber of claim 17 , wherein the fiber is from 0.5 to 20 denier.
21. The synthetic fiber of claim 17 wherein the fiber is 1.0 to 3.0 denier.
22. The synthetic fiber of claim 17 , wherein a tenacity of the fiber is greater than 4 grams per denier.
23. The synthetic fiber of claim 17 , wherein the fiber is at least a portion of an air jet spun yarn.
24. The synthetic fiber of claim 17 , wherein the fiber is at least a portion of a sheet, pillow case, privacy curtain, isolation gown, medical scrubs, doctor coat, or blanket.
25. The synthetic fiber of claim 17 further comprising cellulosic fibers.
26. The synthetic fiber of claim 17 further comprising a metallic anti-microbial coating.
27. The synthetic fiber of claim 26 wherein the metallic anti-microbial coating comprises:
a solution containing copper, silver, gold or zinc; and
a binder.
28. A synthetic fiber comprising:
a polymer;
an anti-microbial agent; and
a dispersion additive, wherein the fiber was infused with the dispersion additive prior to formation of the fiber.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/551,385 US20150147570A1 (en) | 2010-12-23 | 2014-11-24 | Fibers with improving anti-microbial performance |
US15/240,617 US20170044691A1 (en) | 2010-12-23 | 2016-08-18 | Fibers with improving anti-microbial performance |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201061426618P | 2010-12-23 | 2010-12-23 | |
US13/335,349 US20120164449A1 (en) | 2010-12-23 | 2011-12-22 | Fibers with improving anti-microbial performance |
US14/551,385 US20150147570A1 (en) | 2010-12-23 | 2014-11-24 | Fibers with improving anti-microbial performance |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/335,349 Continuation US20120164449A1 (en) | 2010-12-23 | 2011-12-22 | Fibers with improving anti-microbial performance |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/240,617 Continuation US20170044691A1 (en) | 2010-12-23 | 2016-08-18 | Fibers with improving anti-microbial performance |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150147570A1 true US20150147570A1 (en) | 2015-05-28 |
Family
ID=46314970
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/335,349 Abandoned US20120164449A1 (en) | 2010-12-23 | 2011-12-22 | Fibers with improving anti-microbial performance |
US14/551,385 Abandoned US20150147570A1 (en) | 2010-12-23 | 2014-11-24 | Fibers with improving anti-microbial performance |
US15/240,617 Abandoned US20170044691A1 (en) | 2010-12-23 | 2016-08-18 | Fibers with improving anti-microbial performance |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/335,349 Abandoned US20120164449A1 (en) | 2010-12-23 | 2011-12-22 | Fibers with improving anti-microbial performance |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/240,617 Abandoned US20170044691A1 (en) | 2010-12-23 | 2016-08-18 | Fibers with improving anti-microbial performance |
Country Status (5)
Country | Link |
---|---|
US (3) | US20120164449A1 (en) |
EP (1) | EP2655709A4 (en) |
JP (1) | JP2014505801A (en) |
CA (1) | CA2819170A1 (en) |
WO (1) | WO2012088507A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9878480B1 (en) | 2014-06-24 | 2018-01-30 | PurThread Technologies, Inc. | Method for making polymer feedstock usable for generation of fiber having anti-microbial properties |
US9908987B2 (en) | 2013-08-12 | 2018-03-06 | PurThread Technologies, Inc. | Antimicrobial and antifungal polymer fibers, fabrics, and methods of manufacture thereof |
US10080363B2 (en) | 2010-10-18 | 2018-09-25 | PurThread Technologies, Inc. | Method for generating a halogen-stable anti-microbial synthetic fiber |
CN109072485A (en) * | 2016-04-06 | 2018-12-21 | 诺韦尔技术控股有限公司 | silver-containing antimicrobial material |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014130940A1 (en) | 2013-02-22 | 2014-08-28 | Eastern Maine Healthcare Services | Antimicrobial blood pressure cuff cover |
GB2511528A (en) | 2013-03-06 | 2014-09-10 | Speciality Fibres And Materials Ltd | Absorbent materials |
WO2015057780A1 (en) | 2013-10-17 | 2015-04-23 | Rudinger Richard F | Post-extruded polymeric man-made synthetic fiber with copper |
WO2015057783A1 (en) | 2013-10-17 | 2015-04-23 | Rudinger Richard F | Post-extruded polymeric man-made synthetic fiber with polytetrafluoroethylene (ptfe) |
CN103806188A (en) * | 2014-03-05 | 2014-05-21 | 太仓四新纺织有限公司 | Blended crease resistant fiber fabric |
CN104757836B (en) * | 2015-03-10 | 2016-07-13 | 浙江真爱毯业科技有限公司 | A kind of WARMWINTER heat generating fiber Rachael blanket production technology |
CN104757837B (en) * | 2015-03-10 | 2016-07-06 | 浙江真爱毯业科技有限公司 | A kind of luminous fiber Rachael blanket production technology |
CN105256386A (en) * | 2015-08-31 | 2016-01-20 | 安徽星星轻纺(集团)有限公司 | Velvet fibers with deodorization and flame retardant functions and manufacture method thereof |
CN105326279B (en) * | 2015-10-30 | 2016-09-28 | 浙江真爱毯业科技有限公司 | A kind of production method of mint fibers Rachael blanket |
CN105310378B (en) * | 2015-10-30 | 2017-01-11 | 浙江真爱毯业科技有限公司 | Production process of fiber velvet Raschel blanket |
CN105326280B (en) * | 2015-10-30 | 2017-01-11 | 浙江真爱毯业科技有限公司 | Production process of Viloft fiber Raschel blanket |
CN105326281B (en) * | 2015-10-30 | 2017-01-11 | 浙江真爱毯业科技有限公司 | Production method of aloe fiber Raschel blanket |
JP6840328B2 (en) * | 2016-03-14 | 2021-03-10 | 有限会社漢方歯科医学研究所 | Antibacterial toothbrush |
CN106377126B (en) * | 2016-08-28 | 2017-10-17 | 浙江真爱毯业科技有限公司 | A kind of production technology of good fortune titanium health fiber raschel blanket |
JP6795837B2 (en) * | 2016-11-22 | 2020-12-02 | 国立大学法人室蘭工業大学 | Antibacterial fiber, its manufacturing method and products using antibacterial fiber |
CN107447269A (en) * | 2017-09-29 | 2017-12-08 | 太仓市明烨化纤有限公司 | The preparation method of melt composite spinning fiber |
US11124901B2 (en) | 2017-11-27 | 2021-09-21 | First Step Holdings, Llc | Composite fabric, method for forming composite fabric, and use of a composite matter fabric |
US20210205357A1 (en) * | 2018-08-27 | 2021-07-08 | Fine Cotton Factory Inc. | Materials containing copper and their use in beneficial body health |
CN114108319B (en) * | 2021-12-03 | 2023-09-22 | 山西大学 | Preparation method and application of gel fiber embedded with Shewanella |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040096654A1 (en) * | 2002-11-16 | 2004-05-20 | Morin Brian G. | Polypropylene monofilament and tape fibers exhibiting certain creep-strain characteristics and corresponding crystalline configurations |
US20050028563A1 (en) * | 2003-08-08 | 2005-02-10 | Milliken & Company | Garment for use with sensitive skin, and method and fabric for us in making same |
US20090269379A1 (en) * | 2005-10-12 | 2009-10-29 | Heinz Herbst | Material Having Antibacterial and Antifungal Properties |
US20100136073A1 (en) * | 2007-04-18 | 2010-06-03 | Ciba Corporation | Antimicrobial plastics and coatings |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61616A (en) * | 1984-06-08 | 1986-01-06 | Asahi Chem Ind Co Ltd | Antimicrobial yarn having good feeling and its preparation |
US4891391A (en) * | 1985-01-03 | 1990-01-02 | Morton Thiokol, Inc. | Compositions containing antimicrobial agents in combination with stabilizers |
JP2593890B2 (en) * | 1987-10-08 | 1997-03-26 | 株式会社クラレ | Antibacterial molded article and method for producing the same |
JPH01139805A (en) * | 1987-11-24 | 1989-06-01 | Yasuo Sato | Powdery surface-aged copper or copper alloy and synthetic fiber containing said powder incorporated therein |
JPH0287004U (en) * | 1988-12-16 | 1990-07-10 | ||
JPH1053922A (en) * | 1996-08-05 | 1998-02-24 | Teijin Ltd | Inorganic functional agent-containing polyester fiber and its production |
JPH10310935A (en) * | 1997-04-30 | 1998-11-24 | Chisso Corp | Antimicrobial fiber |
JP4074032B2 (en) * | 1999-06-30 | 2008-04-09 | 中粉ハイテック株式会社 | Antibacterial polyamide fiber |
US6946433B2 (en) * | 2000-06-02 | 2005-09-20 | Milliken & Company | Textiles having a wash-durable silver-ion based antimicrobial topical treatment |
WO2003060099A2 (en) * | 2002-01-11 | 2003-07-24 | Nexia Biotechnologies, Inc. | Methods and apparatus for spinning spider silk protein |
EP1487492A4 (en) * | 2002-03-04 | 2008-10-01 | Medimmune Inc | The prevention or treatment of cancer using integrin alphavbeta3 antagonists in combination with other agents |
US20040009665A1 (en) * | 2002-06-04 | 2004-01-15 | Applied Materials, Inc. | Deposition of copper films |
EP1531923B8 (en) * | 2002-06-12 | 2010-09-22 | Cocona, Inc. | Encapsulated active particles and methods for making and using the same |
CA2389939A1 (en) * | 2002-06-25 | 2003-12-25 | Alicja Zaluska | New type of catalytic materials based on active metal-hydrogen-electronegative element complexes for reactions involving hydrogen transfer |
JP4329001B2 (en) * | 2002-12-16 | 2009-09-09 | 東洋紡績株式会社 | Air entangled spun yarn and flexible woven or knitted fabric using the same |
CA2602369C (en) * | 2005-03-21 | 2015-06-02 | The Cupron Corporation | Antimicrobial and antiviral polymeric master batch, processes for producing polymeric material therefrom and products produced therefrom |
EP1878346B1 (en) * | 2005-04-28 | 2012-12-26 | Toagosei Co., Ltd. | Silver-based inorganic antibacterial agent and antibacterial product |
KR20070071763A (en) * | 2005-12-30 | 2007-07-04 | 주식회사 효성 | Method for preparing splittable compositefibers having antimicrobial and deodorant properties |
KR100766418B1 (en) * | 2006-06-27 | 2007-10-11 | 엔티베이스 주식회사 | Antimicrobial chip for spinnig synthetic fiber, producing thereof, and antimicrobial string and fabric produced from the said antimicrobial chip |
US8785531B2 (en) * | 2006-07-06 | 2014-07-22 | Dow Global Technologies Llc | Dispersions of olefin block copolymers |
US20080063679A1 (en) * | 2006-08-04 | 2008-03-13 | Quartek Corporation | Nanocomposites with residual biocidal and biostatic properties |
JP5160552B2 (en) * | 2006-11-09 | 2013-03-13 | イェール ユニバ−シティ− | Osmotic heat engine |
DE102007019768A1 (en) * | 2007-04-25 | 2008-11-13 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | A process for producing a high whiteness bioactive cellulosic fiber |
JP2009108448A (en) * | 2007-10-31 | 2009-05-21 | Jgc Catalysts & Chemicals Ltd | Deodorizing and antimicrobial fiber |
US20090246258A1 (en) * | 2008-03-28 | 2009-10-01 | Piyush Shukla | Antimicrobial and odor adsorbing textile |
CN101705527B (en) * | 2009-08-25 | 2014-04-02 | 东华大学 | Antibiosis antistatic multifunctional nylon 6 fiber, preparation and application thereof |
-
2011
- 2011-12-22 US US13/335,349 patent/US20120164449A1/en not_active Abandoned
- 2011-12-23 WO PCT/US2011/067184 patent/WO2012088507A2/en active Application Filing
- 2011-12-23 JP JP2013546452A patent/JP2014505801A/en active Pending
- 2011-12-23 EP EP11850293.9A patent/EP2655709A4/en not_active Withdrawn
- 2011-12-23 CA CA2819170A patent/CA2819170A1/en not_active Abandoned
-
2014
- 2014-11-24 US US14/551,385 patent/US20150147570A1/en not_active Abandoned
-
2016
- 2016-08-18 US US15/240,617 patent/US20170044691A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040096654A1 (en) * | 2002-11-16 | 2004-05-20 | Morin Brian G. | Polypropylene monofilament and tape fibers exhibiting certain creep-strain characteristics and corresponding crystalline configurations |
US20050028563A1 (en) * | 2003-08-08 | 2005-02-10 | Milliken & Company | Garment for use with sensitive skin, and method and fabric for us in making same |
US20090269379A1 (en) * | 2005-10-12 | 2009-10-29 | Heinz Herbst | Material Having Antibacterial and Antifungal Properties |
US20100136073A1 (en) * | 2007-04-18 | 2010-06-03 | Ciba Corporation | Antimicrobial plastics and coatings |
Non-Patent Citations (1)
Title |
---|
WO 2010/024423 A1. Ohta et al. Ultrafine fibers containing deodorizing agent and manufacturing method therefor. March 4, 2010. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10080363B2 (en) | 2010-10-18 | 2018-09-25 | PurThread Technologies, Inc. | Method for generating a halogen-stable anti-microbial synthetic fiber |
US10506805B2 (en) | 2010-10-18 | 2019-12-17 | PurThread Technologies, Inc. | Method for generating a halogen-stable anti-microbial synthetic fiber |
US9908987B2 (en) | 2013-08-12 | 2018-03-06 | PurThread Technologies, Inc. | Antimicrobial and antifungal polymer fibers, fabrics, and methods of manufacture thereof |
US10508188B2 (en) | 2013-08-12 | 2019-12-17 | PurThread Technologies, Inc. | Antimicrobial and antifungal polymer fibers, fabrics, and methods of manufacture thereof |
US9878480B1 (en) | 2014-06-24 | 2018-01-30 | PurThread Technologies, Inc. | Method for making polymer feedstock usable for generation of fiber having anti-microbial properties |
CN109072485A (en) * | 2016-04-06 | 2018-12-21 | 诺韦尔技术控股有限公司 | silver-containing antimicrobial material |
US10870741B2 (en) | 2016-04-06 | 2020-12-22 | Novel Technologies Holdings Limited | Silver containing antimicrobial materials |
Also Published As
Publication number | Publication date |
---|---|
EP2655709A4 (en) | 2014-05-14 |
WO2012088507A3 (en) | 2012-10-26 |
US20120164449A1 (en) | 2012-06-28 |
WO2012088507A2 (en) | 2012-06-28 |
EP2655709A2 (en) | 2013-10-30 |
CA2819170A1 (en) | 2012-06-28 |
US20170044691A1 (en) | 2017-02-16 |
JP2014505801A (en) | 2014-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170044691A1 (en) | Fibers with improving anti-microbial performance | |
US20120222826A1 (en) | Replaceable curtains | |
US6841244B2 (en) | Anti-microbial fiber and fibrous products | |
KR102136900B1 (en) | Antimicrobial Fabrics | |
CN1891869B (en) | Fiber containing an antimicrobial composition | |
US10506805B2 (en) | Method for generating a halogen-stable anti-microbial synthetic fiber | |
WO2018205330A1 (en) | Methods for preparing masterbatch and fiber with compound antibacterial and deodorizing function | |
CN101184397B (en) | Antimicrobial and antiviral polymeric master batch, processes for producing polymeric material therefrom and products produced therefrom | |
US20200102673A1 (en) | Antibacterial Fibers and Materials | |
JP5666450B2 (en) | Functional cellulosic moldings | |
JP2004513246A (en) | Yarns and fabrics having a wash-resistant and non-conductive topically applied metal-based finish | |
EP3003030B1 (en) | Antimicrobial and antiviral polymeric materials | |
WO2014193875A1 (en) | Antimicrobial and antiviral polymeric materials | |
JP2004530055A (en) | Bioactive fiber products | |
CN1285795C (en) | Preparation method for antibacterial and stinking-proof fabric | |
JP2009084758A (en) | Resin for deodorant and antibacterial fiber and deodorant and antibacterial fiber | |
US6528162B1 (en) | Acrylic synthetic fiber, use thereof, and process for producing acrylic synthetic fiber | |
KR20070038939A (en) | Anti-microbial yarn, antifungal yarn, anti-microbial(anti-bacterial) perfume yarn, antifungal perfume yarn and their manufacturing method | |
JP3392554B2 (en) | Antibacterial fibrous material | |
WO2018051308A1 (en) | Antibacterial regenerated cellulosic fibers and process of preparation thereof | |
JP3247293B2 (en) | Antibacterial cellulose acetate fiber and antibacterial fiber product | |
JP2945264B2 (en) | Antimicrobial fiber and method for producing the same | |
JP2006241627A (en) | Antibacterial fiber, method for producing the same and antibacterial textile product | |
JP2008007912A (en) | Polylactic acid fiber, fabric and textile product using the same | |
KR20100115066A (en) | Antimicrobial polyester split-type fiber and preparation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |