US20130095610A1 - Package-on-package assembly with wire bond vias - Google Patents
Package-on-package assembly with wire bond vias Download PDFInfo
- Publication number
- US20130095610A1 US20130095610A1 US13/404,458 US201213404458A US2013095610A1 US 20130095610 A1 US20130095610 A1 US 20130095610A1 US 201213404458 A US201213404458 A US 201213404458A US 2013095610 A1 US2013095610 A1 US 2013095610A1
- Authority
- US
- United States
- Prior art keywords
- wire
- wire bonds
- substrate
- microelectronic
- encapsulation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004377 microelectronic Methods 0.000 claims abstract description 231
- 239000000758 substrate Substances 0.000 claims abstract description 126
- 238000005538 encapsulation Methods 0.000 claims abstract description 117
- 238000000034 method Methods 0.000 claims description 92
- 229910052751 metal Inorganic materials 0.000 claims description 64
- 239000002184 metal Substances 0.000 claims description 64
- 229910000679 solder Inorganic materials 0.000 claims description 40
- 239000004020 conductor Substances 0.000 claims description 10
- 238000005304 joining Methods 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 6
- 239000008393 encapsulating agent Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000005422 blasting Methods 0.000 claims description 5
- 238000007747 plating Methods 0.000 claims description 4
- 238000007650 screen-printing Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 24
- 230000008569 process Effects 0.000 description 19
- 238000005520 cutting process Methods 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 238000005530 etching Methods 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 9
- 239000010931 gold Substances 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 229910052763 palladium Inorganic materials 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006664 bond formation reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000608 laser ablation Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- XPPWAISRWKKERW-UHFFFAOYSA-N copper palladium Chemical compound [Cu].[Pd] XPPWAISRWKKERW-UHFFFAOYSA-N 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/4853—Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
- H01L23/3128—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3677—Wire-like or pin-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
- H01L23/4334—Auxiliary members in encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49517—Additional leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
- H01L23/49816—Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/43—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
- H01L24/78—Apparatus for connecting with wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/105—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/565—Moulds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16135—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/16145—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16227—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32135—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/32145—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45147—Copper (Cu) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/4554—Coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/4554—Coating
- H01L2224/45565—Single coating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48145—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/4824—Connecting between the body and an opposite side of the item with respect to the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4899—Auxiliary members for wire connectors, e.g. flow-barriers, reinforcing structures, spacers, alignment aids
- H01L2224/48996—Auxiliary members for wire connectors, e.g. flow-barriers, reinforcing structures, spacers, alignment aids being formed on an item to be connected not being a semiconductor or solid-state body
- H01L2224/48997—Reinforcing structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49171—Fan-out arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73207—Bump and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73257—Bump and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/7825—Means for applying energy, e.g. heating means
- H01L2224/783—Means for applying energy, e.g. heating means by means of pressure
- H01L2224/78301—Capillary
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/851—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector the connector being supplied to the parts to be connected in the bonding apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8512—Aligning
- H01L2224/85148—Aligning involving movement of a part of the bonding apparatus
- H01L2224/85169—Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
- H01L2224/8518—Translational movements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8538—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/85399—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85909—Post-treatment of the connector or wire bonding area
- H01L2224/85951—Forming additional members, e.g. for reinforcing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85986—Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06506—Wire or wire-like electrical connections between devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/0651—Wire or wire-like electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06517—Bump or bump-like direct electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06555—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
- H01L2225/06558—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices having passive surfaces facing each other, i.e. in a back-to-back arrangement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06555—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
- H01L2225/06562—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06555—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
- H01L2225/06565—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices having the same size and there being no auxiliary carrier between the devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06555—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
- H01L2225/06568—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1017—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
- H01L2225/1023—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1017—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
- H01L2225/1029—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being a lead frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/1052—Wire or wire-like electrical connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/1058—Bump or bump-like electrical connections, e.g. balls, pillars, posts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1076—Shape of the containers
- H01L2225/1088—Arrangements to limit the height of the assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1094—Thermal management, e.g. cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3114—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0655—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00012—Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01049—Indium [In]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1431—Logic devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1434—Memory
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1532—Connection portion the connection portion being formed on the die mounting surface of the substrate
- H01L2924/1533—Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
- H01L2924/15331—Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/171—Frame
- H01L2924/1715—Shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
- H01L2924/1815—Shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
- H01L2924/3511—Warping
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10431—Details of mounted components
- H05K2201/10507—Involving several components
- H05K2201/10515—Stacked components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10431—Details of mounted components
- H05K2201/10507—Involving several components
- H05K2201/1053—Mounted components directly electrically connected to each other, i.e. not via the PCB
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
- H05K3/3436—Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49147—Assembling terminal to base
- Y10T29/49149—Assembling terminal to base by metal fusion bonding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49147—Assembling terminal to base
- Y10T29/49151—Assembling terminal to base by deforming or shaping
Definitions
- Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components.
- the input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface.
- areas array commonly referred to as an “area array”
- devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.
- Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel.
- semiconductor chips are provided in packages suitable for surface mounting.
- Numerous packages of this general type have been proposed for various applications.
- Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces.
- the package In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads.
- the package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.
- solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package.
- a package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package.
- Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder.
- Packages of this type can be quite compact.
- Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.
- Packaged semiconductor chips are often provided in “stacked” arrangements, wherein one package is provided, for example, on a circuit board, and another package is mounted on top of the first package. These arrangements can allow a number of different chips to be mounted within a single footprint on a circuit board and can further facilitate high-speed operation by providing a short interconnection between packages. Often, this interconnect distance is only slightly larger than the thickness of the chip itself. For interconnection to be achieved within a stack of chip packages, it is necessary to provide structures for mechanical and electrical connection on both sides of each package (except for the topmost package). This has been done, for example, by providing contact pads or lands on both sides of the substrate to which the chip is mounted, the pads being connected through the substrate by conductive vias or the like.
- solder balls or the like have been used to bridge the gap between the contacts on the top of a lower substrate to the contacts on the bottom of the next higher substrate.
- the solder balls must be higher than the height of the chip in order to connect the contacts. Examples of stacked chip arrangements and interconnect structures are provided in U.S. Patent App. Pub. No. 2010/0232129 (“the '129 Publication”), the disclosure of which is incorporated by reference herein in its entirety.
- Microcontact elements in the form of elongated posts or pins may be used to connect microelectronic packages to circuit boards and for other connections in microelectronic packaging.
- microcontacts have been formed by etching a metallic structure including one or more metallic layers to form the microcontacts. The etching process limits the size of the microcontacts.
- Conventional etching processes typically cannot form microcontacts with a large ratio of height to maximum width, referred to herein as “aspect ratio”. It has been difficult or impossible to form arrays of microcontacts with appreciable height and very small pitch or spacing between adjacent microcontacts.
- the configurations of the microcontacts formed by conventional etching processes are limited.
- a method of making a microelectronic package according to an aspect of the invention can include feeding a metal wire segment having a predetermined length out of a capillary of a bonding tool.
- the face of the capillary can be moved over first and second surfaces of a forming unit to shape the metal wire segment to have a first portion projecting upwardly in a direction along an exterior wall of the capillary.
- the bonding tool can be used to bond a second portion of the metal wire to a conductive element exposed at a first surface of a substrate.
- the second portion of the metal wire can be positioned to extend along the conductive element, with the first portion positioned at an angle between 25° and 90° to the second portion, for example.
- Steps (a) through (c) can be repeated to bond a plurality of the metal wires to a plurality of the conductive elements of the substrate.
- a dielectric encapsulation layer can be formed to overlie the surface of the substrate.
- the encapsulation layer can be formed so as to at least partially cover the surface of the substrate and portions of the wire bonds.
- An unencapsulated portion of a wire bond can be defined by a portion of at least one of an end surface of a wire bond or of an edge surface thereof that is uncovered by the encapsulation layer.
- a first one of the wire bonds can be adapted for carrying a first signal electric potential and a second one of the wire bonds is adapted for simultaneously carrying a second signal electric potential different form the first signal electric potential.
- the method can include mounting and electrically interconnecting a microelectronic element with the substrate, the method electrically interconnecting the microelectronic element with at least some of the wire bonds.
- the substrate can be a circuit panel.
- the substrate can be a lead frame and the method may include mounting and electrically interconnecting a microelectronic element with the lead frame, the microelectronic element can be electrically interconnected therewith with at least some of the wire bonds.
- the substrate can be a first microelectronic element.
- the method can include mounting and electrically interconnecting a second microelectronic element with the first microelectronic element.
- the method may include electrically interconnecting the second microelectronic element with at least some of the wire bonds through the first microelectronic element.
- the metal wire segment can be a first metal wire segment.
- the method may include, after forming the upwardly projecting portion, (i) feeding out a second metal wire segment integral with the first metal wire segment, and (ii) moving the face of the capillary over a third surface of the forming unit to shape the second metal wire segment to have a second portion projecting upwardly along the exterior wall of the capillary.
- the second portion may be connected to the first upwardly projecting portion by a third portion of the metal wire.
- an initial encapsulation layer can be formed, and then at least a portion of the initial encapsulation layer can be recessed to form the encapsulation layer and to define the unencapsulated portions of the wire bonds.
- the step of recessing includes laser ablating the initial encapsulation layer.
- the step of recessing includes wet blasting the initial encapsulation layer.
- the method may include molding the encapsulation layer with a temporary film between the encapsulant and a plate of the mold.
- the wire bonds may extend into the temporary film.
- the temporary film can be removed to expose the unencapsulated portions of the wire bonds.
- the method may include applying a portion of a continuous sheet of the temporary film to the mold plate. The method may then form the encapsulation layer in a cavity at least partially defined by the mold plate. The current portion of the temporary film may then be replaced with another portion of the continuous sheet of the temporary film.
- the method may include forming second conductive elements contacting the unencapsulated portions of the wire bonds.
- the step of forming the second conductive elements may include depositing an electrically conductive material onto the unencapsulated portions of the wire bonds.
- the step of forming the second conductive elements may include plating a metal layer onto the unencapsulated portions of the wire bonds.
- the step of forming the second conductive elements may include depositing electrically conductive paste onto the unencapsulated portions of the wire bonds.
- the step of depositing the electrically conductive material may include at least one of dispensing, stenciling, screen printing, or spraying the conductive material onto the unencapsulated portions of the wire bonds.
- an exterior wall of the capillary may be substantially vertical.
- the step of moving the face of the capillary over the second surface of the forming unit can be performed such that the first portion of the metal wire segment is between about 80° and 90° with respect to the second portion.
- two or more wire bonds can be formed on at least one of the conductive elements.
- the capillary may define an opening through which the metal wire segment is fed and a front wall extending from around the opening to an edge defined with the exterior wall.
- the front face can define a raised portion adjacent the edge. During the step (b) the raised portion can be pressed into the metal wire at a location proximate to the first portion.
- the encapsulation layer can be formed to include a major surface and an alignment surface angled with respect to the major surface.
- the at least one unencapsulated portion of the wire bond can be positioned on the major surface and the alignment surface intersecting the major surface at a location in proximity to the unencapsulated portion.
- the alignment surface can be configured to guide an electrically conductive protrusion disposed above the alignment surface towards the unencapsulated portion of the wire bond.
- the encapsulation layer can be formed to define a corner region thereof and to further include at least one minor surface positioned within the corner region and being positioned farther from the substrate than the major surface, the alignment surface extending between the minor surface and the major surface.
- the major surface of the encapsulation layer can be a first major surface that overlies the first region of the substrate, the encapsulation layer being further formed to define a second major surface overlying the second region and being positioned closer to the substrate than the major surface.
- the alignment surface can extend between the minor surface and the major surface.
- a ball bond can be formed to extend over the second portion of the metal wire after bonding the second portion to the conductive element.
- a method according to an aspect of the invention can include aligning a second microelectronic package with a first microelectronic package made in accordance with the an aspect of the invention herein.
- the second microelectronic package may include a substrate defining a first surface with contact pads exposed thereon and conductive masses joined with the contact pads.
- the second microelectronic package can be aligned with the first microelectronic package by moving at least one of the solder balls into contact with both the alignment surface and at least the end surface of at least one wire bond.
- the conductive masses can be heated. reflowed or otherwise cured to join the conductive masses with respective ones of the unencapsulated portions of the wire bonds.
- a method according to an aspect of the invention can include positioning a first microelectronic package over a second microelectronic package, the first microelectronic package including a substrate having a first surface having terminals exposed thereon, the terminals including joining elements projecting away from the first surface.
- the second microelectronic package may include a substrate having a first region and a second region, the substrate having a first surface and a second surface remote from the first surface. At least one microelectronic element may overlie the first surface within the first region. Electrically conductive elements can be exposed at at least one of the first surface and the second surface of the substrate within the second region, at least some of the conductive elements being electrically connected to the at least one microelectronic element. Wire bonds defining edge surfaces can have bases bonded to respective ones of the conductive elements. The bases can include first portions of the edge surfaces that extend along the conductive elements with respective second portions of the edge surfaces being at an angle between 25° and 90° relative to the first portions.
- the wire bonds can further have ends remote from the substrate and remote from the bases.
- a dielectric encapsulation layer can extend from at least one of the first or second surfaces and cover portions of the wire bonds such that covered portions of the wire bonds are separated from one another by the encapsulation layer, the encapsulation layer overlying at least the second region of the substrate.
- the unencapsulated portions of the wire bonds can be defined by portions of the wire bonds that are uncovered by the encapsulation layer.
- the unencapsulated portions can include the ends.
- the joining elements can be heated, cured or reflowed, for example, to join with the unencapsulated wire bond portions of the second microelectronic package.
- the method can further include a step of forming an underfill filling a space defined between confronting surfaces of the first microelectronic package and the second microelectronic package and surrounding the conductive projections between the terminals of the first microelectronic package and the unencapsulated wire bond portions of the second microelectronic package.
- FIG. 1 is sectional view depicting a microelectronic package according to an embodiment of the invention.
- FIG. 2 shows a top plan view of the microelectronic package of FIG. 1 .
- FIG. 3 is a sectional view depicting a microelectronic package according to a variation of the embodiment shown in FIG. 1 .
- FIG. 4 is a sectional view depicting a microelectronic package according to a variation of the embodiment shown in FIG. 1 .
- FIG. 5A is a sectional view depicting a microelectronic package according to a variation of the embodiment shown in FIG. 1 .
- FIG. 5B is a fragmentary sectional view depicting a conductive element formed on an unencapsulated portion of a wire bond according to an embodiment of the invention.
- FIG. 5C is a fragmentary sectional view depicting a conductive element formed on an unencapsulated portion of a wire bond according to a variation of that shown in FIG. 5B .
- FIG. 5D is a fragmentary sectional view depicting a conductive element formed on an unencapsulated portion of a wire bond according to a variation of that shown in FIG. 5B .
- FIG. 6 is a sectional view illustrating a microelectronic assembly including a microelectronic package according to one or more of the foregoing embodiments and an additional microelectronic package and a circuit panel electrically connected thereto.
- FIG. 7 is a top elevation view illustrating a microelectronic package according to an embodiment of the invention.
- FIG. 8 is a fragmentary top elevation view further illustrating a microelectronic package according to an embodiment of the invention.
- FIG. 9 is a top elevation view illustrating a microelectronic package including a lead frame type substrate according to an embodiment of the invention.
- FIG. 10 is a corresponding sectional view of the microelectronic package shown in FIG. 9 .
- FIG. 11 is a sectional view of a microelectronic assembly including a plurality of microelectronic packages electrically connected together and reinforced with an underfill according to a variation of the embodiment shown in FIG. 6 .
- FIG. 12 is a photographic image representing an assembly having bonds between wire bonds of a first component and solder masses of a second component attached thereto.
- FIG. 13A is a fragmentary sectional view illustrating a wire bond via in a microelectronic package according to an embodiment of the invention.
- FIG. 13B is a fragmentary sectional view illustrating a wire bond via in a microelectronic package according to an embodiment of the invention.
- FIG. 13C is an enlarged fragmentary sectional view illustrating a wire bond via in a microelectronic package according to the embodiment shown in FIG. 13B .
- FIG. 13D is a fragmentary sectional view illustrating a wire bond via in a microelectronic package according to an embodiment of the invention.
- FIG. 13E is an enlarged fragmentary sectional view illustrating a wire bond via in a microelectronic package according to the embodiment shown in FIG. 13D .
- FIG. 13F is a fragmentary sectional view illustrating a wire bond via in a microelectronic package according to an embodiment of the invention.
- FIG. 14 illustrates stages in a method of forming a metal wire segment prior to bonding the wire segment to a conductive element according to an embodiment of the invention.
- FIG. 15 further illustrates a method as depicted in FIG. 14 and a forming unit suitable for use in such method.
- FIG. 16 is a top elevation view illustrating wire bonds formed according to an embodiment of the invention.
- FIG. 17 illustrates stages in a method of forming a metal wire segment prior to bonding the wire segment to a conductive element according to an embodiment of the invention.
- FIGS. 18 and 19 are sectional views illustrating one stage and another stage subsequent thereto in a method of forming an encapsulation layer of a microelectronic package according to an embodiment of the invention.
- FIG. 20 is an enlarged sectional view further illustrating the stage corresponding to FIG. 19 .
- FIG. 21 is a sectional view illustrating a stage of fabricating an encapsulation layer of a microelectronic package according to an embodiment of the invention.
- FIG. 22 is a sectional view illustrating a stage of fabricating an encapsulation layer of a microelectronic package subsequent to the stage shown in FIG. 21 .
- FIGS. 23A and 23B are fragmentary sectional views illustrating wire bonds according to another embodiment.
- FIGS. 24A and 24B are sectional views of a microelectronic package according to a further embodiment.
- FIGS. 25A and 25B are sectional views of a microelectronic package according to a further embodiment.
- FIG. 26 shows a sectional view of a microelectronic package according to another embodiment.
- FIGS. 27A-C are sectional views showing examples of embodiments of microelectronic packages according to further embodiments.
- FIGS. 28A-D show various embodiments of microelectronic packages during steps of forming a microelectronic assembly according to an embodiment of the disclosure.
- FIG. 29 shows another embodiment of microelectronic packages during steps of forming a microelectronic assembly according to an embodiment of the disclosure.
- FIGS. 30 A-C show embodiments of microelectronic packages during steps of forming a microelectronic assembly according to another embodiment of the disclosure.
- FIGS. 31 A-C show embodiments of microelectronic packages during steps of forming a microelectronic assembly according to another embodiment of the disclosure.
- FIGS. 32A and 32B show a portion of a machine that can be used in forming various wire bond vias in various stages of a method according to another embodiment of the present disclosure.
- FIG. 33 shows a portion of a machine that can be used in forming various wire bond vias according in a method according to another embodiment of the present disclosure.
- FIGS. 34A-C show various forms of an instrument that can be used in a method for making wire bonds according to an embodiment of the present disclosure.
- FIG. 35 shows a portion of a machine that can be used in forming various wire bond vias according in a method according to another embodiment of the present disclosure.
- FIG. 36 shows a portion of a machine that can be used in forming various wire bond vias according in a method according to another embodiment of the present disclosure.
- FIGS. 37 A-D show sectional views illustrating stages of fabricating a microelectronic package according to an embodiment of the present disclosure.
- FIGS. 38A and 38B show sectional views illustrating stages of fabricating a microelectronic package according to another embodiment of the present disclosure.
- FIGS. 39A-C show sectional views illustrating stages of fabricating a microelectronic package according to another embodiment of the present disclosure.
- FIG. 1 a microelectronic assembly 10 according to an embodiment of the present invention.
- the embodiment of FIG. 1 is a microelectronic assembly in the form of a packaged microelectronic element such as a semiconductor chip assembly that is used in computer or other electronic applications.
- the microelectronic assembly 10 of FIG. 1 includes a substrate 12 having a first surface 14 and a second surface 16 .
- the substrate 12 typically is in the form of a dielectric element, which is substantially flat.
- the dielectric element may be sheet-like and may be thin.
- the dielectric element can include one or more layers of organic dielectric material or composite dielectric materials, such as, without limitation: polyimide, polytetrafluoroethylene (“PTFE”), epoxy, epoxy-glass, FR-4, BT resin, thermoplastic, or thermoset plastic materials.
- the substrate may be a substrate of a package having terminals for further electrical interconnection with a circuit panel, e.g., a circuit board. Alternatively, the substrate can be a circuit panel or circuit board.
- the substrate can be a module board of a dual-inline memory module (“DIMM”).
- the substrate can be a microelectronic element such as may be or include a semiconductor chip embodying a plurality of active devices, e.g., in form of an integrated circuit or otherwise.
- the first surface 14 and second surface 16 are preferably substantially parallel to each other and are spaced apart at a distance perpendicular to the surfaces 14 , 16 defining the thickness of the substrate 12 .
- the thickness of substrate 12 is preferably within a range of generally acceptable thicknesses for the present application. In an embodiment, the distance between the first surface 14 and the second surface 16 is between about 25 and 500 ⁇ m.
- the first surface 14 may be described as being positioned opposite or remote from second surface 16 . Such a description, as well as any other description of the relative position of elements used herein that refers to a vertical or horizontal position of such elements is made for illustrative purposes only to correspond with the position of the elements within the Figures, and is not limiting.
- substrate 12 is considered as divided into a first region 18 and a second region 20 .
- the first region 18 lies within the second region 20 and includes a central portion of the substrate 12 and extends outwardly therefrom.
- the second region 20 substantially surrounds the first region 18 and extends outwardly therefrom to the outer edges of the substrate 12 .
- no specific characteristic of the substrate itself physically divides the two regions; however, the regions are demarked for purposes of discussion herein with respect to treatments or features applied thereto or contained therein.
- a microelectronic element 22 can be mounted to first surface 14 of substrate 12 within first region 18 .
- Microelectronic element 22 can be a semiconductor chip or another comparable device.
- microelectronic element 22 is mounted to first surface 14 in what is known as a conventional or “face-up” fashion.
- wire leads 24 can be used to electrically connect microelectronic element 22 to some of a plurality of conductive elements 28 exposed at first surface 14 .
- Wire leads 24 can also be joined to traces (not shown) or other conductive features within substrate 12 that are, in turn, connected to conductive elements 28 .
- Conductive elements 28 include respective “contacts” or pads 30 that are exposed at the first surface 14 of substrate 12 .
- an electrically conductive element when an electrically conductive element is described as being “exposed at” the surface of another element having dielectric structure, it indicates that the electrically conductive structure is available for contact with a theoretical point moving in a direction perpendicular to the surface of the dielectric structure toward the surface of the dielectric structure from outside the dielectric structure.
- a terminal or other conductive structure that is exposed at a surface of a dielectric structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the dielectric.
- the conductive elements 28 can be flat, thin elements in which pad 30 is exposed at first surface 14 of substrate 12 .
- conductive elements 28 can be substantially circular and can be interconnected between each other or to microelectronic element 22 by traces (not shown).
- Conductive elements 28 can be formed at least within second region 20 of substrate 12 . Additionally, in certain embodiments, conductive elements 28 can also be formed within first region 18 . Such an arrangement is particularly useful when mounting microelectronic element 122 ( FIG.
- conductive elements 28 are formed from a solid metal material such as copper, gold, nickel, or other materials that are acceptable for such an application, including various alloys including one or more of copper, gold, nickel or combinations thereof.
- conductive elements 28 can be interconnected to corresponding second conductive elements 40 , such as conductive pads, exposed at second surface 16 of substrate 12 .
- Such an interconnection can be completed using vias 41 formed in substrate 12 that can be lined or filled with conductive metal that can be of the same material as conductive elements 28 and 40 .
- conductive elements 40 can be further interconnected by traces on substrate 12 .
- Microelectronic assembly 10 further includes a plurality of wire bonds 32 joined to at least some of the conductive elements 28 , such as on the pads 30 thereof.
- Wire bonds 32 are bonded along a portion of the edge surface 37 thereof to the conductive elements 28 . Examples of such bonding include stitch bonding, wedge bonding and the like.
- a wire bonding tool can be used to stitch-bond a segment of wire extending from a capillary of the wire bonding tool to a conductive element 28 while severing the stitch-bonded end of the wire from a supply of wire in the capillary.
- the wire bonds are stitch-bonded to the conductive elements 28 at their respective “bases” 34 .
- the “base” 34 of such stitch-bonded wire bond 32 refers to the portion of the wire bond which forms a joint with the conductive element 28 .
- wire bonds can be joined to at least some of the conductive elements using ball bonds, examples of which are shown and described in co-pending, commonly assigned U.S. patent application, the entire disclosure of which is incorporated by reference herein.
- conductive elements 28 can be non-solder-mask-defined (“NSMD”) type conductive elements.
- NSMD non-solder-mask-defined
- the conductive elements are solder-mask defined. That is the conductive elements are exposed in openings formed in a solder mask material layer. In such an arrangement, the solder mask layer can partially overlie the conductive elements or can contact the conductive elements along an edge thereof.
- a NSMD conductive element is one that is not contacted by a solder mask layer.
- the conductive element can be exposed on a surface of a substrate that does not have a solder mask layer or, if present, a solder mask layer on the surface can have an opening with edges spaced away from the conductive element.
- NSMD conductive elements can also be formed in shapes that are not round. Solder-mask defined pads can often be round when intended to be used to bond to an element via a solder mass, which forms a generally round profile on such a surface. When using, for example, an edge bond to attach to a conductive element, the bond profile itself is not round, which can allow for a non-round conductive element.
- Such non-round conductive elements can be, for example oval, rectangular, or of a rectangular shape with rounded corners.
- the conductive elements can be between about 10% and 25% larger than the intended size of base 34 in both directions. This can allow for variations in the precision with which the bases 34 are located and for variations in the bonding process.
- an edge bonded wire bond as described above, which can be in the form of a stitch bond, can be combined with a ball bond.
- a ball bond 1333 can be formed on a conductive element 1328 and a wire bond 1332 can be formed with a base 1338 stitch bonded along a portion of the edge surface 1337 to ball bond 1372 .
- the general size and placement of the ball bond can be as shown at 1372 ′.
- a wire bond 1332 can be edge bonded along conductive element 1328 , such as by stitch bonding, as described above.
- a ball bond 1373 can then be formed on top of the base 1338 of wire bond 1334 .
- the size and placement of the ball bond can be as shown at 1373 ′.
- Each of the wire bonds 32 can extend to a free end 36 remote from the base 34 of such wire bond and remote from substrate 12 .
- the ends 36 of wire bonds 32 are characterized as being free in that they are not electrically connected or otherwise joined to microelectronic element 22 or any other conductive features within microelectronic assembly 10 that are, in turn, connected to microelectronic element 22 .
- free ends 36 are available for electronic connection, either directly or indirectly as through a solder ball or other features discussed herein, to a conductive feature external to assembly 10 .
- ends 36 are held in a predetermined position by, for example, encapsulation layer 42 or otherwise joined or electrically connected to another conductive feature does not mean that they are not “free” as described herein, so long as any such feature is not electrically connected to microelectronic element 22 .
- base 34 is not free as it is either directly or indirectly electrically connected to microelectronic element 22 , as described herein.
- the bases 34 of the wire bonds 32 typically are curved at their stitch-bond (or other edge-bonded) joints with the respective conductive elements 28 .
- Each wire bond has an edge surface 37 extending between the base 34 thereof and the end 36 of such wire bond.
- base 34 can vary according to the type of material used to form wire bond 32 , the desired strength of the connection between wire bond 32 and conductive element 28 , or the particular process used to form wire bond 32 .
- Alternative embodiments are possible where wire bonds 32 are additionally or alternatively joined to conductive elements 40 exposed on second surface 16 of substrate 12 , extending away therefrom.
- a first one of the wire bonds 32 may be adapted, i.e., constructed, arranged, or electrically coupled to other circuitry on the substrate for carrying a first signal electric potential, and a second one of the wire bonds 32 may be so adapted for simultaneously carrying a second signal electric potential different from the first signal electric potential.
- the first and second wire bonds can simultaneously carry first and second different signal electric potentials.
- Wire bond 32 can be made from a conductive material such as copper, copper alloy or gold. Additionally, wire bonds 32 can be made from combinations of materials, such as from a core of a conductive material, such as copper or aluminum, for example, with a coating applied over the core. The coating can be of a second conductive material, such as aluminum, nickel or the like. Alternatively, the coating can be of an insulating material, such as an insulating jacket.
- the wire bonds may have a core of primary metal and a metallic finish including a second metal different from the primary metal overlying the primary metal.
- the wire bonds may have a primary metal core of copper, copper alloy or gold and the metallic finish can include palladium. Palladium can avoid oxidation of a core metal such as copper, and may serve as a diffusion barrier to avoid diffusion a solder-soluble metal such as gold in solder joints between unencapsulated portions 39 of the wire bonds and another component as will be described further below.
- the wire bonds can be formed of palladium-coated copper wire or palladium-coated gold wire which can be fed through the capillary of the wire bonding tool.
- the wire used to form wire bonds 32 can have a thickness, i.e., in a dimension transverse to the wire's length, of between about 15 ⁇ m and 150 ⁇ m.
- a wire bond is formed on a conductive element, such as conductive element 28 , a pad, trace or the like, using specialized equipment that is known in the art.
- the free end 36 of wire bond 32 has an end surface 38 .
- End surface 38 can form at least a part of a contact in an array formed by respective end surfaces 38 of a plurality of wire bonds 32 .
- FIG. 2 shows an exemplary pattern for such an array of contacts formed by end surfaces 38 .
- Such an array can be formed in an area array configuration, variations of which could be implemented using the structures described herein.
- Such an array can be used to electrically and mechanically connect the microelectronic assembly 10 to another microelectronic structure, such as to a printed circuit board (“PCB”), or to other packaged microelectronic elements, an example of which is shown in FIG. 6 .
- PCB printed circuit board
- wire bonds 32 and conductive elements 28 and 40 can carry multiple electronic signals therethrough, each having a different signal potential to allow for different signals to be processed by different microelectronic elements in a single stack.
- Solder masses 52 can be used to interconnect the microelectronic assemblies in such a stack, such as by electronically and mechanically attaching end surfaces 38 to conductive elements 40 .
- Microelectronic assembly 10 further includes an encapsulation layer 42 formed from a dielectric material.
- encapsulation layer 42 is formed over the portions of first surface 14 of substrate 12 that are not otherwise covered by or occupied by microelectronic element 22 , or conductive elements 28 .
- encapsulation layer 42 is formed over the portions of conductive elements 28 , including pad 30 thereof, that are not otherwise covered by wire bonds 32 .
- Encapsulation layer 42 can also substantially cover microelectronic element 22 , wire bonds 32 , including the bases and at least a portion of edge surfaces 37 thereof.
- a portion of wire bonds 32 can remain uncovered by encapsulation layer 42 , which can also be referred to as unencapsulated portions 39 , thereby making the wire bond available for electrical connection to a feature or element located outside of encapsulation layer 42 .
- end surfaces 38 of wire bonds 32 remain uncovered by encapsulation layer 42 within major surface 44 of encapsulation layer 42 .
- Other embodiments are possible in which a portion of edge surface 37 is uncovered by encapsulation layer 42 in addition to or as an alternative to having end surface 38 remain uncovered by encapsulation layer 42 .
- encapsulation layer 42 can cover all of microelectronic assembly 10 from first surface 14 and above, with the exception of a portion of wire bonds 36 , such as end surfaces 38 , edge surfaces 37 or combinations of the two.
- a surface, such as major surface 44 of encapsulation layer 42 can be spaced apart from first surface 14 of substrate 12 at a distance great enough to cover microelectronic element 22 .
- embodiments of microelectronic assembly 10 in which ends 38 of wire bonds 32 are flush with surface 44 will include wire bonds 32 that are taller than the microelectronic element 22 , and any underlying solder bumps for flip chip connection.
- Other configurations for encapsulation layer 42 are possible.
- the encapsulation layer can have multiple surfaces with varying heights. In such a configuration, the surface 44 within which ends 38 are positioned can be higher or lower than an upwardly facing surface under which microelectronic element 22 is located.
- Encapsulation layer 42 serves to protect the other elements within microelectronic assembly 10 , particularly wire bonds 32 . This allows for a more robust structure that is less likely to be damaged by testing thereof or during transportation or assembly to other microelectronic structures.
- Encapsulation layer 42 can be formed from a dielectric material with insulating properties such as that described in U.S. Patent App. Pub. No. 2010/0232129, which is incorporated by reference herein.
- FIG. 3 shows an embodiment of microelectronic assembly 110 having wire bonds 132 with ends 136 that are not positioned directly above the respective bases 34 thereof. That is, considering first surface 114 of substrate 112 as extending in two lateral directions, so as to substantially define a plane, end 136 or at least one of the wire bonds 132 is displaced in at least one of these lateral directions from a corresponding lateral position of base 134 . As shown in FIG. 3 , wire bonds 132 can be substantially straight along the longitudinal axis thereof, as in the embodiment of FIG. 1 , with the longitudinal axis being angled at an angle 146 with respect to first surface 114 of substrate 112 . Although the cross-sectional view of FIG.
- wire bond 132 can also be angled with respect to first surface 114 in another plane perpendicular to both that first plane and to first surface 114 .
- Such an angle can be substantially equal to or different than angle 146 . That is the displacement of end 136 relative to base 134 can be in two lateral directions and can be by the same or a different distance in each of those directions.
- various ones of wire bonds 132 can be displaced in different directions and by different amounts throughout the assembly 110 .
- Such an arrangement allows for assembly 110 to have an array that is configured differently on the level of surface 144 compared to on the level of substrate 12 .
- an array can cover a smaller overall area or have a smaller pitch on surface 144 compared to that at first surface 114 of substrate 112 .
- some wire bonds 132 can have ends 138 that are positioned above microelectronic element 122 to accommodate a stacked arrangement of packaged microelectronic elements of different sizes.
- wire bonds 132 can be configured such that the end of one wire bond is positioned substantially above the base of a second wire bond, wherein the end of that second wire bond being positioned elsewhere.
- wire bonds 132 can be configured such that the end 136 A of one wire bond 132 A is positioned substantially above the base 134 B of another wire bond 134 B, the end 132 B of that wire bond 134 B being positioned elsewhere.
- Such an arrangement can be referred to as changing the relative position of a contact end surface 136 within an array of contacts, compared to the position of a corresponding contact array on second surface 116 .
- FIG. 4 shows a further embodiment of a microelectronic subassembly 210 having wire bonds 232 with ends 236 in displaced lateral positions with respect to bases 234 .
- the wire bonds 132 achieve this lateral displacement by including a curved portion 248 therein.
- Curved portion 248 can be formed in an additional step during the wire bond formation process and can occur, for example, while the wire portion is being drawn out to the desired length. This step can be carried out using available wire-bonding equipment, which can include the use of a single machine.
- Curved portion 248 can take on a variety of shapes, as needed, to achieve the desired positions of the ends 236 of the wire bonds 232 .
- curved portions 248 can be formed as S-curves of various shapes, such as that which is shown in FIG. 4 or of a smoother form (such as that which is shown in FIG. 5 ). Additionally, curved portion 248 can be positioned closer to base 234 than to end 236 or vice-versa. Curved portion 248 can also be in the form of a spiral or loop, or can be compound including curves in multiple directions or of different shapes or characters.
- the wire bonds 132 can be arranged such that the bases 134 are arranged in a first pattern having a pitch thereof.
- the wire bonds 132 can be configured such that the unencapsulated portions thereof 139 including end surfaces 138 , can be disposed at positions in a pattern having a minimum pitch between adjacent unencapsulated portions 38 of the wire bonds 32 exposed at the surface 44 of the encapsulation layer that is greater than the minimum pitch between adjacent bases of the plurality of bases 134 and, accordingly, the conductive elements 128 to which the bases are joined).
- the wire bonds can include portions which extend in one or more angles relative to a normal direction to the conductive elements, such as shown in FIG. 26 .
- the wire bonds can be curved as shown, for example in FIG. 4 , such that the ends 238 are displaced in one or more lateral directions from the bases 134 , as discussed above.
- the conductive elements 128 and the ends 138 can be arranged in respective rows or columns and the lateral displacement of end surfaces 138 at some locations, such as in one row of the ends, from the respective conductive elements on the substrate to which they are joined can be greater than the lateral displacement of the unencapsulated portions at other locations from the respective conductive elements to which they are connected.
- the wire bonds 132 can, for example be at different angles 146 A, 146 B with respect to the surface 116 of the substrate 112 .
- FIG. 5A shows a further exemplary embodiment of a microelectronic package 310 having a combination of wire bonds 332 having various shapes leading to various relative lateral displacements between bases 334 and ends 336 .
- Some of wire bonds 332 A are substantially straight with ends 336 A positioned above their respective bases 334 A, while other wire bonds 332 B include a subtle curved portion 348 B leading to a somewhat slight relative lateral displacement between end 336 B and base 334 B.
- some wire bonds 332 C include curved portions 348 C having a sweeping shape that result in ends 336 C that are laterally displaced from the relative bases 334 C at a greater distance than that of ends 334 B.
- the radius of bends in the wire bonds 332 Ci, 332 Cii can be large such that the curves in the wire bonds may appear continuous. In other cases, the radius of the bends may be relatively small, and the wire bonds may even have straight portions or relatively straight portions between bends in the wire bonds.
- the unencapsulated portions of the wire bonds can be displaced from their bases by at least one minimum pitch between the contacts 328 of the substrate. In other cases, the unencapsulated portions of the wire bonds can be displaced from their bases by at least 200 microns.
- a further variation of a wire bond 332 D is shown that is configured to be uncovered by encapsulation layer 342 on a side surface 47 thereof.
- free end 336 D is uncovered, however, a portion of edge surface 337 D can additionally or alternatively be uncovered by encapsulation layer 342 .
- Such a configuration can be used for grounding of microelectronic assembly 10 by electrical connection to an appropriate feature or for mechanical or electrical connection to other featured disposed laterally to microelectronic assembly 310 .
- FIG. 5 shows an area of encapsulation layer 342 that has been etched away, molded, or otherwise formed to define a recessed surface 345 that is positioned closer to substrate 12 than major surface 342 .
- wire bond 332 A can be uncovered within an area along recessed surface 345 .
- end surface 338 A and a portion of edge surface 337 A are uncovered by encapsulation layer 342 .
- Such a configuration can provide a connection, such as by a solder ball or the like, to another conductive element by allowing the solder to wick along edge surface 337 A and join thereto in addition to joining to end surface 338 .
- FIG. 5A further shows a microelectronic assembly 310 having two microelectronic elements 322 and 350 in an exemplary arrangement where microelectronic element 350 is stacked, face-up, on microelectronic element 322 .
- leads 324 are used to electrically connect microelectronic element 322 to conductive features on substrate 312 .
- Various leads are used to electronically connect microelectronic element 350 to various other features of microelectronic assembly 310 .
- lead 380 electrically connects microelectronic element 350 to conductive features of substrate 312
- lead 382 electrically connects microelectronic element 350 to microelectronic element 322 .
- wire bond 384 which can be similar in structure to various ones of wire bonds 332 , is used to form a contact surface 386 on the surface 344 of encapsulation layer 342 that electrically connected to microelectronic element 350 .
- This can be used to directly electrically connect a feature of another microelectronic assembly to microelectronic element 350 from above encapsulation layer 342 .
- Such a lead could also be included that is connected to microelectronic element 322 , including when such a microelectronic element is present without a second microelectronic element 350 affixed thereon.
- An opening can be formed in encapsulation layer 342 that extends from surface 344 thereof to a point along, for example, lead 380 , thereby providing access to lead 380 for electrical connection thereto by an element located outside surface 344 .
- a similar opening can be formed over any of the other leads or wire bonds 332 , such as over wire bonds 332 C at a point away from the ends 336 C thereof.
- ends 336 C can be positioned beneath surface 344 , with the opening providing the only access for electrical connection thereto.
- FIGS. 27A-C Additional arrangements for microelectronic packages having multiple microelectronic elements are shown in FIGS. 27A-C . These arrangements can be used in connection with the wire bond arrangements shown, for example in FIG. 5A and in the stacked package arrangement of FIG. 6 , discussed further below.
- FIG. 27A shows an arrangement in which a lower microelectronic element 1622 is flip-chip bonded to conductive elements 1628 on the surface 1614 of substrate 1612 .
- the second microelectronic element 1650 can overlie the first microelectronic element 1622 and be face-up connected to additional conductive elements 1628 on the substrate, such as through wire bonds 1688 .
- FIG. 27B shows an arrangement where a first microelectronic element 1722 is face-up mounted on surface 1714 and connected through wire bonds 1788 to conductive elements 1728 .
- Second microelectronic element 1750 can have contacts exposed at a face thereof which face and are joined to corresponding contacts at a face of the first microelectronic element 1722 which faces away from the substrate. through a set of contacts 1726 of the second microelectronic element 1750 which face and are joined to corresponding contacts on the front face of the first microelectronic element 1722 .
- These contacts of the first microelectronic element 1722 which are joined to corresponding contacts of the second microelectronic element can in turn be connected through circuit patterns of the first microelectronic element 1722 and be connected by ire bonds 1788 to the conductive elements 1728 on substrate 1712 .
- FIG. 27C shows an example in which first and second microelectronic elements 1822 , 1850 are spaced apart from one another in a direction along a surface 1814 of substrate 1812 .
- Either one or both of the microelectronic elements (and additional microelectronic elements) can be mounted in face-up or flip-chip configurations described herein.
- any of the microelectronic elements employed in such an arrangement can be connected to each other through circuit patterns on one or both such microelectronic elements or on the substrate or on both, which electrically connect respective conductive elements 1828 to which the microelectronic elements are electrically connected.
- FIG. 5B further illustrates a structure according to a variation of the above-described embodiments in which a second conductive element 43 can be formed in contact with an unencapsulated portion 39 of a wire bond exposed at or projecting above a surface 44 of the encapsulation layer 42 , the second conductive element not contacting the first conductive element 28 ( FIG. 1 ).
- the second conductive element can include a pad 45 extending onto a surface 44 of the encapsulation layer which can provide a surface for joining with a bonding metal or bonding material of a component thereto.
- the second conductive element 48 can be a metallic finish selectively formed on the unencapsulated portion 39 of a wire bond.
- the second conductive element 43 or can be formed, such as by plating, of a layer of nickel contacting the unencapsulated portion of the wire bond and overlying a core of the wire bond, and a layer of gold or silver overlying the layer of nickel.
- the second conductive element may be a monolithic metal layer consisting essentially of a single metal.
- the single metal layer can be nickel, gold, copper, palladium or silver.
- the second conductive element 43 or 48 can include or be formed of a conductive paste contacting the unencapsulated portion 39 of the wire bond.
- stenciling, dispensing, screen printing, controlled spraying, e.g., a process similar to inkjet printing, or transfer molding can be used to form second conductive elements 43 or 48 on the unencapsulated portions 39 of the wire bonds.
- FIG. 5D further illustrates a second conductive element 43 D which can be formed of a metal or other electrically conductive material as described for conductive elements 43 , 48 above, wherein the second conductive element 43 D is formed at least partly within an opening 49 extending into an exterior surface 44 of the encapsulation layer 42 .
- the opening 49 can be formed by removing a portion of the encapsulation layer after curing or partially curing the encapsulation layer so as to simultaneously expose a portion of the wire bond thereunder which then becomes the unencapsulated portion of the wire bond.
- the opening 49 can be formed by laser ablation, etching.
- a soluble material can be pre-placed at the location of the opening prior to forming the encapsulation layer and the pre-placed material then can be removed after forming the encapsulation layer to form the opening.
- multiple wire bonds 1432 can have bases joined with a single conductive element 1428 .
- Such a group of wire bonds 1432 can be used to make additional connection points over the encapsulation layer 1442 for electrical connection with conductive element 1428 .
- the exposed portions 1439 of the commonly-joined wire bonds 1432 can be grouped together on surface 1444 of encapsulation layer 1442 in an area, for example about the size of conductive element 1428 itself or another area approximating the intended size of a bonding mass for making an external connection with the wire bond 1432 group.
- such wire bonds 1432 can be either ball-bonded ( FIG. 24A ) or edge bonded ( FIG. 24B ) on conductive element 1428 , as described above, or can be bonded to the conductive element as described above with respect to FIGS. 23A or 23 B or both.
- ball-bonded wire bonds 1532 can be formed as stud bumps on at least some of the conductive elements 1528 .
- a stud bump is a ball-bonded wire bond where the segment of wire extending between the base 1534 and the end surface 1538 has a length of at most 300% of the diameter of the ball-bonded base 1534 .
- the end surface 1538 and optionally a portion of the edge surface 1537 of the stud bump can be unencapsulated by the encapsulation layer 1542 . As shown in FIG.
- such a stud bump 1532 A can be formed on top of another stud bump 1532 B to form, essentially, a base 1534 of a wire bond 1532 made up of the two ball bonds with a wire segment extending therefrom up to the surface 1544 of the encapsulation layer 1542 .
- wire bonds 1532 can have a height that is less than, for example, the wire bonds described elsewhere in the present disclosure.
- the encapsulation layer can include a major surface 1544 in an area, for example overlying the microelectronic element 1522 and a minor surface 1545 spaced above the surface 1514 of the substrate 1512 at a height less than that of the major surface 1544 .
- Such arrangements can also be used to form alignment features and to reduce the overall height of a package employing stud bump type wire bonds as well as other types of wire bonds disclosed herein, while accommodating conductive masses 1552 that can connect the unencapsulated portions 1539 of the wire bonds 1532 with contacts 1543 on another microelectronic package 1588 .
- FIG. 6 shows a stacked package of microelectronic assemblies 410 and 488 .
- solder masses 452 electrically and mechanically connect end surfaces 438 of assembly 410 to conductive elements 440 of assembly 488 .
- the stacked package can include additional assemblies and can be ultimately attached to contacts 492 on a PCB 490 or the like for use in an electronic device.
- wire bonds 432 and conductive elements 430 can carry multiple electronic signals therethrough, each having a different signal potential to allow for different signals to be processed by different microelectronic elements, such as microelectronic element 422 or microelectronic element 489 , in a single stack.
- wire bonds 432 are configured with a curved portion 448 such that at least some of the ends 436 of the wire bonds 432 extend into an area that overlies a major surface 424 of the microelectronic element 422 .
- Such an area can be defined by the outer periphery of microelectronic element 422 and extending upwardly therefrom.
- An example of such a configuration is shown from a view facing toward first surface 414 of substrate 412 in FIG. 18 , where wire bonds 432 overlie a rear major surface of the microelectronic element 422 , which is flip-chip bonded at a front face 425 thereof to substrate 412 .
- FIG. 18 In another configuration ( FIG.
- the microelectronic element 422 can be mounted face-up to the substrate 312 , with the front face 325 facing away from the substrate 312 and at least one wire bond 336 overlying the front face of microelectronic element 322 .
- wire bond 336 is not electrically connected with microelectronic element 322 .
- a wire bond 336 bonded to substrate 312 may also overlie the front or rear face of microelectronic element 350 .
- conductive elements 428 are arranged in a pattern forming a first array in which the conductive elements 428 are arranged in rows and columns surrounding microelectronic element 422 and may have a predetermined pitch between individual conductive elements 428 .
- Wire bonds 432 are joined to the conductive elements 428 such that the respective bases 434 thereof follow the pattern of the first array as set out by the conductive elements 428 .
- Wire bonds 432 are configured, however, such that the respective ends 436 thereof can be arranged in a different pattern according to a second array configuration. In the embodiment shown the pitch of the second array can be different from, and in some cases finer than that of the first array.
- conductive elements 428 can be configured in sets of arrays positioned throughout substrate 412 and wire bonds 432 can be configured such that ends 436 are in different sets of arrays or in a single array.
- FIG. 6 further shows an insulating layer 421 extending along a surface of microelectronic element 422 .
- Insulating layer 421 can be formed from a dielectric or other electrically insulating material prior to forming the wire bonds.
- the insulating layer 421 can protect microelectronic element from coming into contact with any of wire bonds 423 that extend thereover.
- insulating layer 421 can avoid electrical short-circuiting between wire bonds and short-circuiting between a wire bond and the microelectronic element 422 . In this way, the insulating layer 421 can help avoid malfunction or possible damage due to unintended electrical contact between a wire bond 432 and the microelectronic element 422 .
- microelectronic assembly 410 can connect to another microelectronic assembly, such as microelectronic assembly 488 , in certain instances where the relative sizes of, for example, microelectronic assembly 488 and microelectronic element 422 would not otherwise permit.
- microelectronic assembly 488 is sized such that some of the contact pads 440 are in an array within an area smaller than the area of the front or rear surface 424 or 426 of the microelectronic element 422 .
- substantially vertical conductive features, such as pillars in place of wire bonds 432 , direct connection between conductive elements 428 and pads 440 would not be possible.
- wire bonds 432 having appropriately-configured curved portions 448 can have ends 436 in the appropriate positions to make the necessary electronic connections between microelectronic assembly 410 and microelectronic assembly 488 .
- Such an arrangement can be used to make a stacked package where microelectronic assembly 418 is, for example, a DRAM chip or the like having a predetermined pad array, and wherein microelectronic element 422 is a logic chip configured to control the DRAM chip.
- microelectronic element 422 is a logic chip configured to control the DRAM chip.
- This can allow a single type of DRAM chip to be used with several different logic chips of varying sizes, including those which are larger than the DRAM chip because the wire bonds 432 can have ends 436 positioned wherever necessary to make the desired connections with the DRAM chip.
- microelectronic package 410 can be mounted on printed circuit board 490 in another configuration, where the unencapsulated surfaces 436 of wire bonds 432 are electrically connected to pads 492 of circuit board 490 .
- another microelectronic package such as a modified version of package 488 can be mounted on package 410 by solder balls 452 joined to pads 440 .
- FIGS. 9 and 10 show a further embodiment of a microelectronic assembly 510 in which wire bonds 532 are formed on a lead-frame structure.
- lead frame structures are shown and described in U.S. Pat. Nos. 7,176,506 and 6,765,287 the disclosures of which are hereby incorporated by reference herein.
- a lead frame is a structure formed from a sheet of conductive metal, such as copper, that is patterned into segments including a plurality of leads and can further include a paddle, and a frame. The frame is used to secure the leads and the paddle, if used, during fabrication of the assembly.
- a microelectronic element such as a die or chip
- the microelectronic element can be joined face-up to the paddle and electrically connected to the leads using wire bonds.
- the microelectronic element can be mounted directly onto the leads, which can extend under the microelectronic element.
- contacts on the microelectronic element can be electrically connected to respective leads by solder balls or the like.
- the leads can then be used to form electrical connections to various other conductive structures for carrying an electronic signal potential to and from the microelectronic element.
- temporary elements of the frame can be removed from the leads and paddle of the lead frame, so as to form individual leads.
- the individual leads 513 and the paddle 515 are considered to be segmented portions of what, collectively, forms a substrate 512 that includes conductive elements 528 in portions that are integrally formed therewith. Further, in this embodiment, paddle 515 is considered to be within first region 518 of substrate 512 , and leads 513 are considered to be within second region 520 .
- Wire bonds 524 which are also shown in the elevation view of FIG. 10 , connect microelectronic element 22 , which is carried on paddle 515 , to conductive elements 528 of leads 515 . Wire bonds 532 can be further joined at bases 534 thereof to additional conductive elements 528 on leads 515 .
- Encapsulation layer 542 is formed onto assembly 510 leaving ends 538 of wire bonds 532 uncovered at locations within surface 544 .
- Wire bonds 532 can have additional or alternative portions thereof uncovered by encapsulation layer 542 in structures that correspond to those described with respect to the other embodiments herein.
- FIG. 11 further illustrates use of an underfill 620 for mechanically reinforcing the joints between wire bonds 632 of one package 610 A and solder masses 652 of another package 610 B mounted thereon.
- the underfill 620 need only be disposed between confronting surfaces 642 , 644 of the packages 610 A, 610 B, the underfill 620 can contact edge surfaces of package 610 A and may contact a first surface 692 of the circuit panel 690 to which the package 610 is mounted.
- portions of the underfill 620 that extend along the edge surfaces of the packages 610 A, 610 B, if any, can be disposed at an angle between 0° and 90° relative to a major surface of the circuit panel over which the packages are disposed, and can be tapered from a greater thickness adjacent the circuit panel to a smaller thickness at a height above the circuit panel and adjacent one or more of the packages.
- a package arrangement shown in FIGS. 28A-D can be implemented in one technique for making an underfill layer, and in particular a portion thereof that is disposed between confronting faces of packages 1910 A and 1910 B, such as surface 1942 of package 1910 A and surface 1916 of package 1910 B.
- package 1910 A can extend beyond an edge surface 1947 of package 1910 B such that, for example, the surface 1944 of encapsulation layer 1942 has a portion thereof that is exposed outside of package 1910 B.
- Such an area can be used as a dispensing area 1949 whereby a device can deposit an underfill material in a flowable state on the dispensing area from a vertical position relative thereto.
- the dispensing area 1949 can be sized such that the underfill material can be deposited in a mass on the surface without spilling off of the edge of the surface while reaching a sufficient volume to flow under package 1910 B where it can be drawn by capillary into the area between the confronting surfaces of packages 1910 A and 1910 B, including around any joints therebetween, such as solder masses or the like.
- additional material can be deposited on the dispensing area such that a continuous flow is achieved that does not significantly spill over the edge of package 1910 A. As shown in FIG.
- the dispensing area 1949 can surround package 1910 B and have a dimension D in an orthogonal direction away from a peripheral edge of package 1910 B of about one millimeter (1 mm) on each side thereof. Such an arrangement can allow for dispensing on one side of package 1910 B or more than one side, either sequentially or simultaneously.
- Alternative arrangements are shown in FIG. 28C , wherein the dispensing area 1949 extends along only two adjacent sides of package 1910 B and have a dimension D′ of about 1 mm in a direction orthogonally away from a peripheral edge of the second package, and FIG. 28D , wherein the dispensing area 1949 extends along a single side of package 1910 B and may have a dimension D′′ in an orthogonal direction away from the peripheral edge of the package of, for example 1.5 mm to 2 mm.
- a compliant bezel 2099 can be used to secure the packages 2010 A and 2010 B together during attachment by, for example, joining of terminals of the second package with the elements comprising the unencapsulated portions 2039 of the wire bonds 2032 , e.g., by heating or curing of conductive masses 2052 , e.g., reflowing of solder masses, to join the packages 2010 A and 2010 B together.
- FIG. 29 Such an arrangement is shown in FIG. 29 in which package 2010 B is assembled over package 2010 A with conductive masses 2052 , e.g., solder masses, for example, joined to terminals 2043 on package 2010 B.
- the packages can be aligned so that the solder masses 2052 align with unencapsulated portions 2039 of the wire bonds 2032 of package 2010 A or with second conductive elements joined with the end surfaces 2038 of the wire bonds 2032 , as described above.
- the bezel 2099 can then be assembled around packages 2010 A and 2010 B to maintain such alignment during a heating process in which the terminals of the second package are joined with the wire bonds 2032 or second conductive elements of the first package.
- a heating process can be used to reflow solder masses 2052 to bond the terminals of the second package with the wire bonds 2032 or second conductive elements.
- Bezel 2099 can also extend inward along portions of surface 2044 of package 2010 B and along surface 2016 of package 2010 A to maintain the contact between the packages before and during reflow.
- the bezel 2099 can be of a resiliently compliant material such as rubber, TPE, PTFE (polytetrafluoroethylene), silicone or the like and can be undersized relative to the size of the assembled packages such that a compressive force is applied by the bezel when in place.
- the bezel 2099 can also be left in place during the application of an underfill material and can include an opening to accommodate such application therethrough.
- the compliant bezel 2099 can be removed after package assembly.
- a lower package 2110 A can include at least one alignment surface 2151 .
- alignment surfaces 2151 are included in encapsulation layer 2142 near the corners of the package 2110 B.
- the alignment surfaces are sloped relative to the major surface and define an angle of between about 0° and up to and including 90° relative to major surface 2144 at some location therefrom, the alignment surfaces extending locations proximate the major surface 2144 and respective minor surfaces 2145 that are spaced above substrate 2112 at a greater distance than major surface 2144 .
- the minor surfaces 2145 can be disposed adjacent the corners of package 2110 A and can extend partially between intersecting sides thereof. As shown in FIG. 30B , the alignment surfaces can also form inside corners opposite the intersecting sides of the package 2110 A and can be included in similar form along all corners, for example four corners, of package 2110 A. As illustrated in FIG.
- the alignment surfaces 2151 can be positioned at an appropriate distance from unencapsulated portions of corresponding wire bonds 2132 such that when a second package 2110 B having protrusions, e.g., electrically conductive protrusions such as conductive masses or solder balls joined thereto is stacked on top of package 2110 A, the alignment surfaces 2151 will guide the solder balls into the proper position overlying the unencapsulated portions of the wire bonds 2132 that correspond with the alignment surfaces 2151 . The solder balls can then be reflowed to join with the unencapsulated portions of the wire bonds 2132 of package 2110 A.
- protrusions e.g., electrically conductive protrusions such as conductive masses or solder balls joined thereto
- FIGS. 31A-C A further arrangement employing alignment surfaces 2251 is shown in FIGS. 31A-C , wherein the alignment surfaces 2251 extend between a raised inner surface 2244 to a lower outer surface 2245 .
- inner surface 2244 can overlie microelectronic element 2222 and can be spaced above substrate 2212 accordingly.
- Outer surface 2245 can be spaced closer to substrate 2212 in a direction of the thickness of the substrate and can be positioned vertically between surface 2214 of substrate 2212 and surface 2223 of microelectronic element 2222 .
- One or more unencapsulated portions of wire bonds 2232 can be positioned relative to the alignment surfaces 2251 to achieve alignment of solder balls 2252 or other conductive protrusion as described with respect to FIGS. 30A-C .
- such a stepped arrangement can be used with or without the described alignment functionality to achieve an overall lower assembly height given a certain bond mass size.
- the incorporation of a raised inner surface 2244 can lead to increased resistance of package 2210 A to warping.
- FIG. 12 is a photographic image showing exemplary joints between the wire bonds 632 of a first component 610 A and corresponding solder masses 652 of a second component such as a microelectronic package 610 B.
- reference 620 indicates where an underfill can be disposed.
- FIGS. 13A , 13 B, 13 C, 13 D, 13 E and 13 F illustrate some possible variations in the structure of the wire bonds 32 as described above relative to FIG. 1 .
- a wire bond 732 A may have an upwardly extending portion 736 which terminates in an end 738 A having the same radius as the radius of portion 736 .
- FIG. 13B illustrates a variation in which the ends 738 B are tips which are tapered relative to portion 736 .
- a tapered tip 738 B of a wire bond 732 A may have a centroid 740 which is offset in a radial direction 741 from an axis of a cylindrical portion of the wire bond integral therewith.
- Such shape may be a bonding tool mark resulting from a process of forming the wire bond as will be described further below.
- a bonding tool mark other than as shown at 738 B may be present on the unencapsulated portion of the wire bond.
- the unencapsulated portion 739 of a wire bond may project away from the substrate 712 at an angle 750 within 25 degrees of perpendicular to the surface 730 of the substrate on which the conductive elements 728 are disposed.
- FIG. 13D illustrates that an unencapsulated portion of a wire bond 732 D can include a ball-shaped portion 738 D.
- the ball-shaped portion 738 D can be integral with a cylindrical portion 736 of the wire bond 732 D, wherein the ball-shaped portion and at least a core of the cylindrical portion of the wire bond consist essentially of copper, copper alloy or gold.
- the ball-shaped portion can be formed by melting a portion of the wire exposed at an opening of the capillary of the bonding tool during a pre-shaping process before stitch-bonding the wire bond to a conductive element 728 of the substrate. As seen in FIG.
- the diameter 744 of the ball-shaped portion 738 D may be greater than the diameter 746 of the cylindrical wire bond portion 736 that is integral therewith.
- the cylindrical portion of a wire bond 732 D that is integral with the ball-shaped portion 738 D can project beyond a surface 752 of the encapsulant layer 751 of the package.
- the cylindrical portion of a wire bond 732 D may be fully covered by the encapsulant layer.
- the ball-shaped portion 738 D of the wire bond 732 D may in some cases be partly covered by the encapsulation layer 751 .
- FIG. 13F further illustrates a wire bond 732 F having a core 731 of a primary metal and a metallic finish 733 thereon which includes a second metal overlying the primary metal, such as the palladium-clad copper wire or palladium-clad gold wire as described above.
- a oxidation protection layer of a non-metallic material such as a commercially available “organic solderability preservative” (OSP) can be formed on the unencapsulated portion of a wire bond to avoid oxidation thereof until the unencapsulated portion of the wire bond is joined to a corresponding contact of another component.
- OSP organic solderability preservative
- FIG. 14 illustrates a method by which wire bonds 32 ( FIG. 1 ) as described herein can be shaped and then stitch-bonded to the conductive elements 28 on a substrate.
- a segment 800 i.e., an integral portion having a predetermined length 802 , of a metal wire such as a gold or copper wire or composite wire as described above described above relative to FIG. 1 is fed out of a capillary 804 of a bonding tool.
- the initial wire length can be zeroed or otherwise set to a known length by the bonding tool stitch-bonding the wire then extending from the capillary before beginning to feed the wire out for processing.
- the segment may extend in a straight direction 801 perpendicular to a face 806 of the capillary.
- the face 806 of the capillary 804 then is moved in at least a first direction 814 along, e.g., parallel to a first surface 812 of a forming unit 810 to bend the metal wire segment 800 away from the perpendicular direction.
- the forming unit 810 may be a specially designed tool having surfaces suitable to assist in the forming, i.e., shaping, of the metal wire segment prior to the metal wire segment being bonded to the conductive element of the substrate.
- a portion of the segment 800 may then extend in a direction parallel to the surface 812 .
- the capillary is moved over a second surface 816 which then causes at least a portion of the segment 800 to project upwardly in a direction 818 along an exterior wall 820 of the capillary.
- the capillary of the bonding tool is now moved away from the forming unit 810 and moved towards the conductive element 28 ( FIG. 1 ) of the substrate where it then stitch bonds a portion 822 of the metal wire segment adjacent to the capillary opening 808 and the capillary face 806 to the conductive element.
- an end 838 of the metal wire segment 800 remote from the capillary opening 808 becomes an end 38 ( FIG. 1 ) of the wire bond remote from the conductive element 28 .
- FIG. 15 further illustrates an example of movement of the capillary over surfaces of a forming unit 810 in a method according to an embodiment of the invention.
- the forming unit 810 may have a first depression 830 in which the capillary 804 is disposed when the segment 800 is fed out of the opening 808 of the capillary at stage A of the forming process.
- the depression may include a channel or groove 832 which can help guide the segment 800 onto a surface 812 at stage B.
- the forming unit may further include a channel 834 or groove for guiding the segment 800 in stage B of the process.
- FIG. 15 further illustrates an example of movement of the capillary over surfaces of a forming unit 810 in a method according to an embodiment of the invention.
- the forming unit 810 may have a first depression 830 in which the capillary 804 is disposed when the segment 800 is fed out of the opening 808 of the capillary at stage A of the forming process.
- the depression may include a channel or groove 832
- the forming unit may include a further depression 840 having an interior surface 816 against which the capillary moves in stage C of the process to cause the metal wire segment to be bent in direction 818 against the exterior wall 820 of the capillary.
- the depression 840 in one example may have a triangular shape as seen in FIG. 15 .
- a variation of the capillary shown in FIG. 14 can be used that incorporates a vertical or near-vertical side wall 2820 .
- the side wall 2820 of capillary 2804 can be substantially vertical or, in other words, parallel to the wire segment 2800 or perpendicular to the face 2806 of the capillary 2804 .
- This can allow for formation of a wire bond ( 32 in FIG. 1 ) that is closer to vertical, i.e., closer to an angle of 90° away from the surface of the first surface of the substrate, than achieved by a side wall at an exterior of the capillary that defines an angle having a measure substantially less than 90° , such as the capillary shown in FIG. 14 .
- a wire bond can be achieved that is disposed at an angle from the first portion which extends between 25° and 90°, or between about 45° and 90° or between about 80° and 90° with respect to the first wire portion 2822 .
- a capillary 3804 can include a surface 3808 that projects beyond the face 3806 thereof. This surface 3808 can be included, for example over the edge of the side wall 3820 .
- the capillary 3804 can be pressed against the first portion 3822 of the wire segment 3800 during forming of wire segment, e.g., when the capillary moves in a direction along a forming surface 3816 which extends in a direction away from surface 3812 .
- surface 3808 presses into the first portion 3822 at a location near the bend from which the remaining wire segment 3800 extends.
- the deformation from the surface 3808 can be such that a position of the wire segment 3800 can be substantially retained when the capillary 3804 is removed.
- FIG. 16 is a photographic image showing that wire bonds 932 formed according to one or more of the methods described herein can have ends 938 which are offset from their respective bases 934 .
- an end 938 of a wire bond can be displaced from its respective base such that the end 938 is displaced in a direction parallel to the surface of the substrate beyond a periphery of the conductive element to which it is connected.
- an end 938 of a wire bond can be displaced from its respective base 934 such that the end 938 is displaced in a direction parallel to the surface of the substrate beyond a periphery 933 of the conductive element to which it is connected.
- FIG. 17 illustrates a variation of the above-described pre-forming process which can be used to form wire bonds 332 Cii ( FIG. 5 ) having a bend and which have ends 1038 displaced in a lateral direction 1014 A from the portions 1022 which will be stitch-bonded to the conductive elements as bases 1034 of the wire bonds.
- the first three stages A, B, and C of the process can be the same as described above with reference to FIG. 14 .
- a portion 1022 A of the wire bond adjacent the face 806 of the capillary 804 is clamped by a tool which can be integrated with the forming unit.
- the clamping may be performed actively or passively as a result of the motion of the capillary over the forming unit.
- the clamping can be performed by pressing a plate having a non-slip surface thereon onto the metal wire segment 800 to preclude movement of the metal wire segment.
- the capillary tool moves in a direction 1016 along a third surface 1018 of the forming unit 1010 and feeds out a length of wire equivalent to the distance moved along surface 1018 .
- the capillary is moved downwardly along a third surface 1024 of the forming unit to cause a portion of the wire to be bent upwardly along an exterior surface 1020 of the capillary 804 .
- an upwardly projecting portion 1026 of the wire can be connected to another upwardly projecting portion 1036 by a third portion 1048 of the metal wire.
- the wire bond ( 32 in FIG. 1 , for example) is then separated from a remaining portion of the wire within the capillary (such as 804 in FIG. 14 ). This can be done at any location remote from the base 34 of the wire bond 32 and is preferably done at a location remote from the base 34 by a distance at least sufficient to define the desired height of the wire bond 32 . Such separation can be carried out by a mechanism disposed within the capillary 804 or disposed outside of the capillary 804 , between the face 806 and the base 34 of the wire bond 32 .
- the wire segment 800 can be separated by effectively burning through the wire 800 at the desired separation point, which can be done by application of a spark or flame thereto.
- different forms of cutting the wire segment 800 can be implemented. As described herein, cutting can be used to describe a partial cut that can weaken the wire at a desired location or cutting completely through the wire for total separation of the wire bond 32 from the remaining wire segment 800 .
- a cutting blade 805 can be integrated into the bond head assembly, such as within capillary 804 .
- an opening 807 can be included in the side wall 820 of the capillary 804 through which cutting blade 805 can extend.
- the cutting blade 805 can be moveable in and out of the interior of the capillary 804 so that it can alternately allow the wire 800 to freely pass therethrough or engage the wire 800 .
- the wire 800 can be drawn out and the wire bond 32 formed and bonded to a conductive element 28 with the cutting blade 805 in a position outside of the capillary interior.
- the wire segment 800 can be clamped using a clamp 803 integrated in the bond head assembly to secure the position of the wire.
- the cutting blade 803 can then be moved into the wire segment to either fully cut the wire or to partially cut or weaken the wire.
- a full cut can form end surface 38 of the wire bond 32 at which point the capillary 804 can be moved away from the wire bond 32 to, for example, form another wire bond.
- the wire segment 800 is weakened by the cutting blade 805 , movement of the bond head unit with the wire still held by the wire clamp 803 can cause separation by breaking the wire 800 at the area weakened by the partial cut.
- the movement of the cutting blade 805 can be actuated by pneumatics or by a servo motor using an offset cam. In other examples the cutting blade 805 movement can be actuated by a spring or a diaphragm.
- the triggering signal for the cutting blade 805 actuation can be based on a time delay that counts down from formation of the ball bond or can be actuated by movement of the capillary 804 to a predetermined height above the wire bond base 34 . Such a signal can be linked to other software that operates the bonding machine so that the cutting blade 805 position can be reset prior to any subsequent bond formation.
- the cutting mechanism can also include a second blade (not shown) at a location juxtaposed with blade 805 with the wire therebetween, so as to cut the wire by movement of one or more of the first and second blades relative to the other of the first and second blades, such as in one example, from opposite sides of the wire.
- a second blade (not shown) at a location juxtaposed with blade 805 with the wire therebetween, so as to cut the wire by movement of one or more of the first and second blades relative to the other of the first and second blades, such as in one example, from opposite sides of the wire.
- a laser 809 can be assembled with the bond head unit and positioned to cut the wire.
- a laser head 809 can be positioned outside of capillary 804 such as by mounting thereto or to another point on the bond head unit that includes capillary 804 .
- the laser can be actuated at a desired time, such as those discussed above with respect to the cutting blade 805 in FIG. 32 , to cut the wire 800 , forming end surface 38 of the wire bond 32 at a desired height above the base 34 .
- the laser 809 can be positioned to direct the cutting beam through or into the capillary 804 itself and can be internal to the bond head unit.
- a carbon dioxide laser can be used or, as an alternative, a Nd:YAG or a Cu vapor laser could be used.
- a stencil unit 824 as shown in FIGS. 34A-C can be used to separate the wire bonds 32 from the remaining wire segment 800 .
- the stencil 824 can be a structure having a body that defines an upper surface 826 at or near the desired height of the wire bonds 32 .
- the stencil 824 can be configured to contact the conductive elements 28 or any portions of the substrate 12 or package structure connected thereto between the conductive elements 28 .
- the stencil includes a plurality of holes 828 that can correspond to the desired locations for the wire bonds 32 , such as over conductive elements 28 .
- the holes 828 can be sized to accept the capillary 804 of the bond head unit therein so that the capillary can extend into the hole to a position relative to the conductive element 28 to bond the wire 800 to the conductive element, 28 to form the base 34 , such as by ball bonding or the like.
- the stencil can have holes through which individual ones of the conductive elements are exposed.
- a plurality of the conductive elements can be exposed by a single hole of the stencil.
- a hole can be a channel-shaped opening or recess in the stencil through which a row or column of the conductive elements are exposed at a top surface 826 of the stencil.
- the capillary 804 can then be moved vertically out of the hole 828 while drawing out the wire segment to a desired length. Once cleared from the hole 828 , the wire segment can be clamped within the bond head unit, such as by clamp 803 , and the capillary 804 can be moved in a lateral direction (such as parallel to the surface 826 of stencil 824 ) to move the wire segment 800 into contact with an edge 829 of the stencil 824 defined by the intersection of the surface of the hole 828 and the outside surface 826 of the stencil 824 . Such movement can cause separation of the wire bond 32 from a remaining portion of the wire segment 800 that is still held within the capillary 804 . This process can be repeated to form the desired number of wire bonds 32 in the desired locations.
- the capillary can be moved vertically prior to wire separation such that the remaining wire segment projects beyond the face 806 of the capillary 804 by a distance 802 sufficient to form a subsequent ball bond.
- FIG. 34B shows a variation of stencil 824 in which the holes 828 can be tapered such that they have a diameter that increases from a first diameter at surface 826 to a greater diameter away from surface 826 .
- the stencil can be formed having an outer frame 821 having a thickness sufficient to space apart surface 826 at the desired distance from substrate 12 .
- Frame 821 can at least partially surround a cavity 823 configured to be positioned adjacent substrate 12 with a thickness of the stencil 824 extending between the surface 826 and the open area 823 such that the portion of stencil 824 that includes the holes 828 is spaced apart from the substrate 12 when positioned thereon.
- FIGS. 18 , 19 and 20 illustrate one technique that can be used when forming the encapsulation layer by molding in order that unencapsulated portions 39 ( FIG. 1 ) of the wire bonds project beyond a surface 44 of the encapsulation layer 42 .
- a film-assisted molding technique can be used by which a temporary film 1102 is placed between a plate 1110 of a mold and a cavity 1112 in which a subassembly including the substrate, wire bonds 1132 joined thereto, and a component such as a microelectronic element may be joined.
- FIG. 18 further shows a second plate 1111 of the mold which can be disposed opposite the first plate 1110 .
- the film-assisted molding technique may be well adapted for mass production.
- a portion of a continuous sheet of the temporary film can be applied to the mold plate.
- the encapsulation layer can be formed in a cavity 1112 that is at least partially defined by the mold plate.
- a current portion of the temporary film 1102 on the mold plate 1110 can be replaced by automated means with another portion of the continuous sheet of the temporary film.
- a water-soluble film can be placed on an inner surface of the mold plate 1110 prior to forming the encapsulation layer.
- the water soluble film can be removed by washing it away so as to leave the ends of the wire bonds projecting beyond the surface 1144 of the encapsulation layer as described above.
- the heights of the wire bonds 1132 above the surface 1144 of encapsulation layer 1142 can vary among the wire bonds 1132 , as shown in FIG. 37A .
- a method for further processing the package 1110 such that the wire bonds 1132 project above surface 1142 by substantially uniform heights is shown in FIGS. 37B-D and utilizes a sacrificial material layer 1178 that can be formed to cover the unencapsulated portions of the wire bonds 1132 by application thereof over surface 1144 .
- the sacrificial layer 1178 can then be planarized to reduce the height thereof to the desired height for wire bonds 1132 , which can be done by lapping, grinding, or polishing or the like.
- the planarization of the sacrificial layer 1178 can begin by reducing the height thereof to a point where the wire bonds 1132 become exposed at the surface of the sacrificial layer 1178 .
- the planarization process can then also planarize the wire bonds 1132 simultaneously with the sacrificial layer 1178 such that, as the height of the sacrificial layer 1178 is continued to be reduced, the heights of the wire bonds 1132 are also reduced.
- the planarization can be stopped once the desired height for the wire bonds 1132 is reached. It is noted that in such a process the wire bonds 1132 can be initially formed such that their heights, while being non-uniform, are all greater than the targeted uniform height.
- the sacrificial layer 1178 can be removed such as by etching or the like.
- the sacrificial layer 1178 can be formed from a material that can allow for removal by etching using an etchant that will not significantly affect the encapsulant material.
- the sacrificial layer 1178 can be made from a water soluble plastic material.
- FIGS. 21 and 22 illustrate another method by which unencapsulated portions of the wire bonds can be formed which project beyond a surface of the encapsulation layer.
- initially wire bonds 1232 may be flush with or may not even be exposed at a surface 1244 of the encapsulation layer 1242 .
- a portion of the encapsulation layer e.g., a molded encapsulation layer, can be removed to cause the ends 1238 to project beyond the modified encapsulation layer surface 1246 .
- laser ablation can be used to recess the encapsulation layer uniformly to form a planar recessed surface 1246 .
- laser ablation can be performed selectively in areas of the encapsulation layer adjoining individual wire bonds.
- wet blasting a stream of abrasive particles carried by a liquid medium is directed towards a target to remove material from the surface of the target.
- the stream of particles may sometimes be combined with a chemical etchant which may facilitate or accelerate the removal of material selectively to other structure such as the wire bonds which are to remain after wet blasting.
- wire bond loops 1232 ′ can be formed that have bases 1234 a on conductive elements 1228 at one end and are attached to a surface of the microelectronic element 1222 at the other end 1234 b.
- the surface of the microelectronic element 1223 can be metalized such as by sputtering, chemical vapor deposition, plating or the like.
- the bases 1234 a can be ball bonded, as shown, or edge bonded, as can the ends 1232 b joined to the microelectronic element 1222 .
- the dielectric encapsulation layer 1242 can be formed over substrate 1212 to cover the wire bond loops 1232 ′.
- the encapsulation layer 1242 can then be planarized, such as by grinding, lapping, polishing, or the like, to reduce the height thereof and to separate the wire bond loops 1232 ′ into connection wire bonds 1232 A that are available for joining to at least the end surfaces 1238 thereof for electrical connection to the conductive elements 1228 and thermal dissipation bonds 1232 B that are joined to the microelectronic element 1222 .
- the thermal dissipation bonds can be such that they are not electrically connected to any of the circuitry of the microelectronic element 1222 but are positioned to thermally conduct heat away from the microelectronic element 1222 to the surface 1244 of the encapsulation layer 1242 . Additional processing methods can be applied to the resulting package 1210 ′, as described elsewhere herein.
- FIGS. 39A-C Another method for forming wire bonds 2632 to a predetermined height is shown in FIGS. 39A-C .
- a sacrificial encapsulation layer 2678 can be formed over the surface 2614 of substrate 2612 , at least in the second 2620 region thereof.
- the sacrificial layer 2678 can also be formed over the first region 2618 of the substrate 2612 to cover the microelectronic element 2622 in a similar manner to the encapsulation layers described with respect to FIG. 1 , above.
- the sacrificial layer 2678 includes at least one opening 2679 and in some embodiments a plurality of openings 2679 to expose the conductive elements 2628 .
- the openings 2679 can be formed during molding of the sacrificial layer 2678 or after molding by etching, drilling, or the like.
- a large opening 2679 can be formed to expose all of the conductive elements 2628 , while in other embodiments a plurality of large openings 2679 can be formed to expose respective groups of conductive elements 2628 .
- openings 2629 can be formed that correspond to individual conductive elements 2628 .
- the sacrificial layer 2678 is formed having a surface 2677 at a desired height for the wire bonds 2632 such that the wire bonds 2632 can be formed by bonding bases 2634 thereof to the conductive elements 2628 and then drawing out the wire to reach the surface 2677 of the sacrificial layer 2678 .
- the wire bonds can be drawn laterally of the opening to overlie portions of the surface 2677 of the sacrificial layer 2678 .
- the capillary of the bond forming instrument (such as capillary 804 as shown in FIG. 14 ) can be moved to press the wire segment into contact with the surface 2677 such that the pressure on the wire between the surface 2677 and the capillary causes the wire to sever on surface 2677 , as shown in FIG. 39A .
- the sacrificial layer 2678 can then be removed by etching or another similar process.
- the sacrificial layer 2678 can be formed from a water soluble plastic material such that it can be removed by exposure to water without affecting the other components of the in-process unit 2610 ′′.
- sacrificial layer 2678 can be made from a photoimageable material such as a photoresist such that it can be removed by exposure to a light source. A portion of sacrificial layer 2678 ′ can remain between microelectronic element 2622 and surface 2614 of substrate 2612 that can act as an underfill surrounding solder balls 2652 .
- an encapsulation layer 2642 is formed over the in-process unit to form package 2610 .
- the encapsulation layer 2642 can be similar to those described above and can substantially cover surface 2614 of substrate 2612 and microelectronic element 2622 .
- Encapsulation layer 2642 can further support and separate the wire bonds 2632 .
- the wire bonds include portions of the edge surfaces 2637 thereof that are exposed at surface 2644 of the encapsulant 2642 and extend substantially parallel thereto.
- the wire bonds 2632 and the encapsulation layer 2642 can be planarized to form a surface 2644 with wire bonds that have end surfaces exposed thereon and substantially flush therewith.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Wire Bonding (AREA)
- Micromachines (AREA)
Abstract
Description
- This application claims the benefit of the filing date of U.S. Provisional Application 61/547,930 filed Oct. 17, 2011, the disclosure of which is incorporated by reference herein.
- Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.
- Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.
- Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.
- Packaged semiconductor chips are often provided in “stacked” arrangements, wherein one package is provided, for example, on a circuit board, and another package is mounted on top of the first package. These arrangements can allow a number of different chips to be mounted within a single footprint on a circuit board and can further facilitate high-speed operation by providing a short interconnection between packages. Often, this interconnect distance is only slightly larger than the thickness of the chip itself. For interconnection to be achieved within a stack of chip packages, it is necessary to provide structures for mechanical and electrical connection on both sides of each package (except for the topmost package). This has been done, for example, by providing contact pads or lands on both sides of the substrate to which the chip is mounted, the pads being connected through the substrate by conductive vias or the like. Solder balls or the like have been used to bridge the gap between the contacts on the top of a lower substrate to the contacts on the bottom of the next higher substrate. The solder balls must be higher than the height of the chip in order to connect the contacts. Examples of stacked chip arrangements and interconnect structures are provided in U.S. Patent App. Pub. No. 2010/0232129 (“the '129 Publication”), the disclosure of which is incorporated by reference herein in its entirety.
- Microcontact elements in the form of elongated posts or pins may be used to connect microelectronic packages to circuit boards and for other connections in microelectronic packaging. In some instances, microcontacts have been formed by etching a metallic structure including one or more metallic layers to form the microcontacts. The etching process limits the size of the microcontacts. Conventional etching processes typically cannot form microcontacts with a large ratio of height to maximum width, referred to herein as “aspect ratio”. It has been difficult or impossible to form arrays of microcontacts with appreciable height and very small pitch or spacing between adjacent microcontacts. Moreover, the configurations of the microcontacts formed by conventional etching processes are limited.
- Despite all of the above-described advances in the art, still further improvements in making and testing microelectronic packages would be desirable.
- A method of making a microelectronic package according to an aspect of the invention can include feeding a metal wire segment having a predetermined length out of a capillary of a bonding tool. The face of the capillary can be moved over first and second surfaces of a forming unit to shape the metal wire segment to have a first portion projecting upwardly in a direction along an exterior wall of the capillary. The bonding tool can be used to bond a second portion of the metal wire to a conductive element exposed at a first surface of a substrate. The second portion of the metal wire can be positioned to extend along the conductive element, with the first portion positioned at an angle between 25° and 90° to the second portion, for example. Steps (a) through (c) can be repeated to bond a plurality of the metal wires to a plurality of the conductive elements of the substrate. A dielectric encapsulation layer can be formed to overlie the surface of the substrate. The encapsulation layer can be formed so as to at least partially cover the surface of the substrate and portions of the wire bonds. An unencapsulated portion of a wire bond can be defined by a portion of at least one of an end surface of a wire bond or of an edge surface thereof that is uncovered by the encapsulation layer.
- In one example, a first one of the wire bonds can be adapted for carrying a first signal electric potential and a second one of the wire bonds is adapted for simultaneously carrying a second signal electric potential different form the first signal electric potential.
- In one example, the method can include mounting and electrically interconnecting a microelectronic element with the substrate, the method electrically interconnecting the microelectronic element with at least some of the wire bonds.
- In one example, the substrate can be a circuit panel. In one example, the substrate can be a lead frame and the method may include mounting and electrically interconnecting a microelectronic element with the lead frame, the microelectronic element can be electrically interconnected therewith with at least some of the wire bonds.
- In one example, the substrate can be a first microelectronic element. The method can include mounting and electrically interconnecting a second microelectronic element with the first microelectronic element. The method may include electrically interconnecting the second microelectronic element with at least some of the wire bonds through the first microelectronic element.
- In one example, the metal wire segment can be a first metal wire segment. The method may include, after forming the upwardly projecting portion, (i) feeding out a second metal wire segment integral with the first metal wire segment, and (ii) moving the face of the capillary over a third surface of the forming unit to shape the second metal wire segment to have a second portion projecting upwardly along the exterior wall of the capillary. In one example, the second portion may be connected to the first upwardly projecting portion by a third portion of the metal wire.
- In such example, an initial encapsulation layer can be formed, and then at least a portion of the initial encapsulation layer can be recessed to form the encapsulation layer and to define the unencapsulated portions of the wire bonds. In one example, the step of recessing includes laser ablating the initial encapsulation layer. In one example, the step of recessing includes wet blasting the initial encapsulation layer.
- In one example, the method may include molding the encapsulation layer with a temporary film between the encapsulant and a plate of the mold. The wire bonds may extend into the temporary film. The temporary film can be removed to expose the unencapsulated portions of the wire bonds.
- In one example, the method may include applying a portion of a continuous sheet of the temporary film to the mold plate. The method may then form the encapsulation layer in a cavity at least partially defined by the mold plate. The current portion of the temporary film may then be replaced with another portion of the continuous sheet of the temporary film.
- In one example, after forming the encapsulation layer, the method may include forming second conductive elements contacting the unencapsulated portions of the wire bonds.
- In one example, the step of forming the second conductive elements may include depositing an electrically conductive material onto the unencapsulated portions of the wire bonds.
- In one example, the step of forming the second conductive elements may include plating a metal layer onto the unencapsulated portions of the wire bonds.
- In one example, the step of forming the second conductive elements may include depositing electrically conductive paste onto the unencapsulated portions of the wire bonds.
- In one example, the step of depositing the electrically conductive material may include at least one of dispensing, stenciling, screen printing, or spraying the conductive material onto the unencapsulated portions of the wire bonds.
- In one example, an exterior wall of the capillary may be substantially vertical. The step of moving the face of the capillary over the second surface of the forming unit can be performed such that the first portion of the metal wire segment is between about 80° and 90° with respect to the second portion.
- In one example, two or more wire bonds can be formed on at least one of the conductive elements.
- In one example, the capillary may define an opening through which the metal wire segment is fed and a front wall extending from around the opening to an edge defined with the exterior wall. The front face can define a raised portion adjacent the edge. During the step (b) the raised portion can be pressed into the metal wire at a location proximate to the first portion.
- In one example, the encapsulation layer can be formed to include a major surface and an alignment surface angled with respect to the major surface. The at least one unencapsulated portion of the wire bond can be positioned on the major surface and the alignment surface intersecting the major surface at a location in proximity to the unencapsulated portion. In such case, the alignment surface can be configured to guide an electrically conductive protrusion disposed above the alignment surface towards the unencapsulated portion of the wire bond.
- In one example, the encapsulation layer can be formed to define a corner region thereof and to further include at least one minor surface positioned within the corner region and being positioned farther from the substrate than the major surface, the alignment surface extending between the minor surface and the major surface.
- In one example, the major surface of the encapsulation layer can be a first major surface that overlies the first region of the substrate, the encapsulation layer being further formed to define a second major surface overlying the second region and being positioned closer to the substrate than the major surface. The alignment surface can extend between the minor surface and the major surface.
- In one example, a ball bond can be formed to extend over the second portion of the metal wire after bonding the second portion to the conductive element.
- A method according to an aspect of the invention can include aligning a second microelectronic package with a first microelectronic package made in accordance with the an aspect of the invention herein. The second microelectronic package may include a substrate defining a first surface with contact pads exposed thereon and conductive masses joined with the contact pads. The second microelectronic package can be aligned with the first microelectronic package by moving at least one of the solder balls into contact with both the alignment surface and at least the end surface of at least one wire bond. The conductive masses can be heated. reflowed or otherwise cured to join the conductive masses with respective ones of the unencapsulated portions of the wire bonds.
- A method according to an aspect of the invention can include positioning a first microelectronic package over a second microelectronic package, the first microelectronic package including a substrate having a first surface having terminals exposed thereon, the terminals including joining elements projecting away from the first surface.
- The second microelectronic package may include a substrate having a first region and a second region, the substrate having a first surface and a second surface remote from the first surface. At least one microelectronic element may overlie the first surface within the first region. Electrically conductive elements can be exposed at at least one of the first surface and the second surface of the substrate within the second region, at least some of the conductive elements being electrically connected to the at least one microelectronic element. Wire bonds defining edge surfaces can have bases bonded to respective ones of the conductive elements. The bases can include first portions of the edge surfaces that extend along the conductive elements with respective second portions of the edge surfaces being at an angle between 25° and 90° relative to the first portions. The wire bonds can further have ends remote from the substrate and remote from the bases. A dielectric encapsulation layer can extend from at least one of the first or second surfaces and cover portions of the wire bonds such that covered portions of the wire bonds are separated from one another by the encapsulation layer, the encapsulation layer overlying at least the second region of the substrate. The unencapsulated portions of the wire bonds can be defined by portions of the wire bonds that are uncovered by the encapsulation layer. The unencapsulated portions can include the ends. The joining elements can be heated, cured or reflowed, for example, to join with the unencapsulated wire bond portions of the second microelectronic package.
- In one example, the method can further include a step of forming an underfill filling a space defined between confronting surfaces of the first microelectronic package and the second microelectronic package and surrounding the conductive projections between the terminals of the first microelectronic package and the unencapsulated wire bond portions of the second microelectronic package.
-
FIG. 1 is sectional view depicting a microelectronic package according to an embodiment of the invention. -
FIG. 2 shows a top plan view of the microelectronic package ofFIG. 1 . -
FIG. 3 is a sectional view depicting a microelectronic package according to a variation of the embodiment shown inFIG. 1 . -
FIG. 4 is a sectional view depicting a microelectronic package according to a variation of the embodiment shown inFIG. 1 . -
FIG. 5A is a sectional view depicting a microelectronic package according to a variation of the embodiment shown inFIG. 1 . -
FIG. 5B is a fragmentary sectional view depicting a conductive element formed on an unencapsulated portion of a wire bond according to an embodiment of the invention. -
FIG. 5C is a fragmentary sectional view depicting a conductive element formed on an unencapsulated portion of a wire bond according to a variation of that shown inFIG. 5B . -
FIG. 5D is a fragmentary sectional view depicting a conductive element formed on an unencapsulated portion of a wire bond according to a variation of that shown inFIG. 5B . -
FIG. 6 is a sectional view illustrating a microelectronic assembly including a microelectronic package according to one or more of the foregoing embodiments and an additional microelectronic package and a circuit panel electrically connected thereto. -
FIG. 7 is a top elevation view illustrating a microelectronic package according to an embodiment of the invention. -
FIG. 8 is a fragmentary top elevation view further illustrating a microelectronic package according to an embodiment of the invention. -
FIG. 9 is a top elevation view illustrating a microelectronic package including a lead frame type substrate according to an embodiment of the invention. -
FIG. 10 is a corresponding sectional view of the microelectronic package shown inFIG. 9 . -
FIG. 11 is a sectional view of a microelectronic assembly including a plurality of microelectronic packages electrically connected together and reinforced with an underfill according to a variation of the embodiment shown inFIG. 6 . -
FIG. 12 is a photographic image representing an assembly having bonds between wire bonds of a first component and solder masses of a second component attached thereto. -
FIG. 13A is a fragmentary sectional view illustrating a wire bond via in a microelectronic package according to an embodiment of the invention. -
FIG. 13B is a fragmentary sectional view illustrating a wire bond via in a microelectronic package according to an embodiment of the invention. -
FIG. 13C is an enlarged fragmentary sectional view illustrating a wire bond via in a microelectronic package according to the embodiment shown inFIG. 13B . -
FIG. 13D is a fragmentary sectional view illustrating a wire bond via in a microelectronic package according to an embodiment of the invention. -
FIG. 13E is an enlarged fragmentary sectional view illustrating a wire bond via in a microelectronic package according to the embodiment shown inFIG. 13D . -
FIG. 13F is a fragmentary sectional view illustrating a wire bond via in a microelectronic package according to an embodiment of the invention. -
FIG. 14 illustrates stages in a method of forming a metal wire segment prior to bonding the wire segment to a conductive element according to an embodiment of the invention. -
FIG. 15 further illustrates a method as depicted inFIG. 14 and a forming unit suitable for use in such method. -
FIG. 16 is a top elevation view illustrating wire bonds formed according to an embodiment of the invention. -
FIG. 17 illustrates stages in a method of forming a metal wire segment prior to bonding the wire segment to a conductive element according to an embodiment of the invention. -
FIGS. 18 and 19 are sectional views illustrating one stage and another stage subsequent thereto in a method of forming an encapsulation layer of a microelectronic package according to an embodiment of the invention. -
FIG. 20 is an enlarged sectional view further illustrating the stage corresponding toFIG. 19 . -
FIG. 21 is a sectional view illustrating a stage of fabricating an encapsulation layer of a microelectronic package according to an embodiment of the invention. -
FIG. 22 is a sectional view illustrating a stage of fabricating an encapsulation layer of a microelectronic package subsequent to the stage shown inFIG. 21 . -
FIGS. 23A and 23B are fragmentary sectional views illustrating wire bonds according to another embodiment. -
FIGS. 24A and 24B are sectional views of a microelectronic package according to a further embodiment. -
FIGS. 25A and 25B are sectional views of a microelectronic package according to a further embodiment. -
FIG. 26 shows a sectional view of a microelectronic package according to another embodiment. -
FIGS. 27A-C are sectional views showing examples of embodiments of microelectronic packages according to further embodiments. -
FIGS. 28A-D show various embodiments of microelectronic packages during steps of forming a microelectronic assembly according to an embodiment of the disclosure. -
FIG. 29 shows another embodiment of microelectronic packages during steps of forming a microelectronic assembly according to an embodiment of the disclosure. -
FIGS. 30 A-C show embodiments of microelectronic packages during steps of forming a microelectronic assembly according to another embodiment of the disclosure. -
FIGS. 31 A-C show embodiments of microelectronic packages during steps of forming a microelectronic assembly according to another embodiment of the disclosure. -
FIGS. 32A and 32B show a portion of a machine that can be used in forming various wire bond vias in various stages of a method according to another embodiment of the present disclosure. -
FIG. 33 shows a portion of a machine that can be used in forming various wire bond vias according in a method according to another embodiment of the present disclosure. -
FIGS. 34A-C show various forms of an instrument that can be used in a method for making wire bonds according to an embodiment of the present disclosure. -
FIG. 35 shows a portion of a machine that can be used in forming various wire bond vias according in a method according to another embodiment of the present disclosure. -
FIG. 36 shows a portion of a machine that can be used in forming various wire bond vias according in a method according to another embodiment of the present disclosure. -
FIGS. 37 A-D show sectional views illustrating stages of fabricating a microelectronic package according to an embodiment of the present disclosure. -
FIGS. 38A and 38B show sectional views illustrating stages of fabricating a microelectronic package according to another embodiment of the present disclosure. -
FIGS. 39A-C show sectional views illustrating stages of fabricating a microelectronic package according to another embodiment of the present disclosure. - Turning now to the figures, where similar numeric references are used to indicate similar features, there is shown in
FIG. 1 amicroelectronic assembly 10 according to an embodiment of the present invention. The embodiment ofFIG. 1 is a microelectronic assembly in the form of a packaged microelectronic element such as a semiconductor chip assembly that is used in computer or other electronic applications. - The
microelectronic assembly 10 ofFIG. 1 includes asubstrate 12 having afirst surface 14 and asecond surface 16. Thesubstrate 12 typically is in the form of a dielectric element, which is substantially flat. The dielectric element may be sheet-like and may be thin. In particular embodiments, the dielectric element can include one or more layers of organic dielectric material or composite dielectric materials, such as, without limitation: polyimide, polytetrafluoroethylene (“PTFE”), epoxy, epoxy-glass, FR-4, BT resin, thermoplastic, or thermoset plastic materials. The substrate may be a substrate of a package having terminals for further electrical interconnection with a circuit panel, e.g., a circuit board. Alternatively, the substrate can be a circuit panel or circuit board. In one example thereof, the substrate can be a module board of a dual-inline memory module (“DIMM”). In yet another variation, the substrate can be a microelectronic element such as may be or include a semiconductor chip embodying a plurality of active devices, e.g., in form of an integrated circuit or otherwise. - The
first surface 14 andsecond surface 16 are preferably substantially parallel to each other and are spaced apart at a distance perpendicular to thesurfaces substrate 12. The thickness ofsubstrate 12 is preferably within a range of generally acceptable thicknesses for the present application. In an embodiment, the distance between thefirst surface 14 and thesecond surface 16 is between about 25 and 500 μm. For purposes of this discussion, thefirst surface 14 may be described as being positioned opposite or remote fromsecond surface 16. Such a description, as well as any other description of the relative position of elements used herein that refers to a vertical or horizontal position of such elements is made for illustrative purposes only to correspond with the position of the elements within the Figures, and is not limiting. - In a preferred embodiment,
substrate 12 is considered as divided into afirst region 18 and asecond region 20. Thefirst region 18 lies within thesecond region 20 and includes a central portion of thesubstrate 12 and extends outwardly therefrom. Thesecond region 20 substantially surrounds thefirst region 18 and extends outwardly therefrom to the outer edges of thesubstrate 12. In this embodiment, no specific characteristic of the substrate itself physically divides the two regions; however, the regions are demarked for purposes of discussion herein with respect to treatments or features applied thereto or contained therein. - A
microelectronic element 22 can be mounted tofirst surface 14 ofsubstrate 12 withinfirst region 18.Microelectronic element 22 can be a semiconductor chip or another comparable device. In the embodiment ofFIG. 1 ,microelectronic element 22 is mounted tofirst surface 14 in what is known as a conventional or “face-up” fashion. In such an embodiment, wire leads 24 can be used to electrically connectmicroelectronic element 22 to some of a plurality ofconductive elements 28 exposed atfirst surface 14. Wire leads 24 can also be joined to traces (not shown) or other conductive features withinsubstrate 12 that are, in turn, connected toconductive elements 28. -
Conductive elements 28 include respective “contacts” orpads 30 that are exposed at thefirst surface 14 ofsubstrate 12. As used in the present description, when an electrically conductive element is described as being “exposed at” the surface of another element having dielectric structure, it indicates that the electrically conductive structure is available for contact with a theoretical point moving in a direction perpendicular to the surface of the dielectric structure toward the surface of the dielectric structure from outside the dielectric structure. Thus, a terminal or other conductive structure that is exposed at a surface of a dielectric structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the dielectric. Theconductive elements 28 can be flat, thin elements in whichpad 30 is exposed atfirst surface 14 ofsubstrate 12. In one embodiment,conductive elements 28 can be substantially circular and can be interconnected between each other or tomicroelectronic element 22 by traces (not shown).Conductive elements 28 can be formed at least withinsecond region 20 ofsubstrate 12. Additionally, in certain embodiments,conductive elements 28 can also be formed withinfirst region 18. Such an arrangement is particularly useful when mounting microelectronic element 122 (FIG. 3 ) tosubstrate 112 in what is known as a “flip-chip” configuration, where contacts on themicroelectronic element 122 can be connected toconductive elements 128 withinfirst region 118 bysolder bumps 126 or the like that are positioned beneathmicroelectronic element 122. In an embodiment,conductive elements 28 are formed from a solid metal material such as copper, gold, nickel, or other materials that are acceptable for such an application, including various alloys including one or more of copper, gold, nickel or combinations thereof. - At least some of
conductive elements 28 can be interconnected to corresponding secondconductive elements 40, such as conductive pads, exposed atsecond surface 16 ofsubstrate 12. Such an interconnection can be completed usingvias 41 formed insubstrate 12 that can be lined or filled with conductive metal that can be of the same material asconductive elements conductive elements 40 can be further interconnected by traces onsubstrate 12. -
Microelectronic assembly 10 further includes a plurality ofwire bonds 32 joined to at least some of theconductive elements 28, such as on thepads 30 thereof.Wire bonds 32 are bonded along a portion of theedge surface 37 thereof to theconductive elements 28. Examples of such bonding include stitch bonding, wedge bonding and the like. As will be described in further detail below, a wire bonding tool can be used to stitch-bond a segment of wire extending from a capillary of the wire bonding tool to aconductive element 28 while severing the stitch-bonded end of the wire from a supply of wire in the capillary. The wire bonds are stitch-bonded to theconductive elements 28 at their respective “bases” 34. Hereinafter, the “base” 34 of such stitch-bondedwire bond 32 refers to the portion of the wire bond which forms a joint with theconductive element 28. Alternatively, wire bonds can be joined to at least some of the conductive elements using ball bonds, examples of which are shown and described in co-pending, commonly assigned U.S. patent application, the entire disclosure of which is incorporated by reference herein. - The incorporation of various forms of edge bonds, as described herein, can allow for
conductive elements 28 to be non-solder-mask-defined (“NSMD”) type conductive elements. In packages using other types of connections to conductive elements, for example solder balls or the like, the conductive elements are solder-mask defined. That is the conductive elements are exposed in openings formed in a solder mask material layer. In such an arrangement, the solder mask layer can partially overlie the conductive elements or can contact the conductive elements along an edge thereof. By contrast, a NSMD conductive element is one that is not contacted by a solder mask layer. For example, the conductive element can be exposed on a surface of a substrate that does not have a solder mask layer or, if present, a solder mask layer on the surface can have an opening with edges spaced away from the conductive element. Such NSMD conductive elements can also be formed in shapes that are not round. Solder-mask defined pads can often be round when intended to be used to bond to an element via a solder mass, which forms a generally round profile on such a surface. When using, for example, an edge bond to attach to a conductive element, the bond profile itself is not round, which can allow for a non-round conductive element. Such non-round conductive elements can be, for example oval, rectangular, or of a rectangular shape with rounded corners. They can further be configured to be longer in the direction of the edge bond to accommodate the bond, while being shorter in the direction of the wire bond's 32 width. This can allow for a finer pitch at thesubstrate 12 level. In one example, the conductive elements can be between about 10% and 25% larger than the intended size ofbase 34 in both directions. This can allow for variations in the precision with which thebases 34 are located and for variations in the bonding process. - In some embodiments, an edge bonded wire bond, as described above, which can be in the form of a stitch bond, can be combined with a ball bond. As shown in
FIG. 23A a ball bond 1333 can be formed on aconductive element 1328 and awire bond 1332 can be formed with abase 1338 stitch bonded along a portion of the edge surface 1337 toball bond 1372. In another example, the general size and placement of the ball bond can be as shown at 1372′. In another variation shown inFIG. 23B , awire bond 1332 can be edge bonded alongconductive element 1328, such as by stitch bonding, as described above. Aball bond 1373 can then be formed on top of thebase 1338 ofwire bond 1334. In one example, the size and placement of the ball bond can be as shown at 1373′. Each of thewire bonds 32 can extend to a free end 36 remote from thebase 34 of such wire bond and remote fromsubstrate 12. The ends 36 ofwire bonds 32 are characterized as being free in that they are not electrically connected or otherwise joined tomicroelectronic element 22 or any other conductive features withinmicroelectronic assembly 10 that are, in turn, connected tomicroelectronic element 22. In other words, free ends 36 are available for electronic connection, either directly or indirectly as through a solder ball or other features discussed herein, to a conductive feature external toassembly 10. The fact that ends 36 are held in a predetermined position by, for example,encapsulation layer 42 or otherwise joined or electrically connected to another conductive feature does not mean that they are not “free” as described herein, so long as any such feature is not electrically connected tomicroelectronic element 22. Conversely,base 34 is not free as it is either directly or indirectly electrically connected tomicroelectronic element 22, as described herein. As shown inFIG. 1 , thebases 34 of thewire bonds 32 typically are curved at their stitch-bond (or other edge-bonded) joints with the respectiveconductive elements 28. Each wire bond has anedge surface 37 extending between the base 34 thereof and the end 36 of such wire bond. The particular size and shape ofbase 34 can vary according to the type of material used to formwire bond 32, the desired strength of the connection betweenwire bond 32 andconductive element 28, or the particular process used to formwire bond 32. Alternative embodiments are possible wherewire bonds 32 are additionally or alternatively joined toconductive elements 40 exposed onsecond surface 16 ofsubstrate 12, extending away therefrom. - In a particular example, a first one of the
wire bonds 32 may be adapted, i.e., constructed, arranged, or electrically coupled to other circuitry on the substrate for carrying a first signal electric potential, and a second one of thewire bonds 32 may be so adapted for simultaneously carrying a second signal electric potential different from the first signal electric potential. Thus, when a microelectronic package as seen inFIGS. 1 and 2 is energized, the first and second wire bonds can simultaneously carry first and second different signal electric potentials. -
Wire bond 32 can be made from a conductive material such as copper, copper alloy or gold. Additionally,wire bonds 32 can be made from combinations of materials, such as from a core of a conductive material, such as copper or aluminum, for example, with a coating applied over the core. The coating can be of a second conductive material, such as aluminum, nickel or the like. Alternatively, the coating can be of an insulating material, such as an insulating jacket. - In particular embodiments, the wire bonds may have a core of primary metal and a metallic finish including a second metal different from the primary metal overlying the primary metal. For example, the wire bonds may have a primary metal core of copper, copper alloy or gold and the metallic finish can include palladium. Palladium can avoid oxidation of a core metal such as copper, and may serve as a diffusion barrier to avoid diffusion a solder-soluble metal such as gold in solder joints between
unencapsulated portions 39 of the wire bonds and another component as will be described further below. Thus, in one embodiment, the wire bonds can be formed of palladium-coated copper wire or palladium-coated gold wire which can be fed through the capillary of the wire bonding tool. - In an embodiment, the wire used to form
wire bonds 32 can have a thickness, i.e., in a dimension transverse to the wire's length, of between about 15 μm and 150 μm. In general, a wire bond is formed on a conductive element, such asconductive element 28, a pad, trace or the like, using specialized equipment that is known in the art. The free end 36 ofwire bond 32 has anend surface 38.End surface 38 can form at least a part of a contact in an array formed by respective end surfaces 38 of a plurality of wire bonds 32.FIG. 2 shows an exemplary pattern for such an array of contacts formed by end surfaces 38. Such an array can be formed in an area array configuration, variations of which could be implemented using the structures described herein. Such an array can be used to electrically and mechanically connect themicroelectronic assembly 10 to another microelectronic structure, such as to a printed circuit board (“PCB”), or to other packaged microelectronic elements, an example of which is shown inFIG. 6 . In such a stacked arrangement,wire bonds 32 andconductive elements conductive elements 40. -
Microelectronic assembly 10 further includes anencapsulation layer 42 formed from a dielectric material. In the embodiment ofFIG. 1 ,encapsulation layer 42 is formed over the portions offirst surface 14 ofsubstrate 12 that are not otherwise covered by or occupied bymicroelectronic element 22, orconductive elements 28. Similarly,encapsulation layer 42 is formed over the portions ofconductive elements 28, includingpad 30 thereof, that are not otherwise covered bywire bonds 32.Encapsulation layer 42 can also substantially covermicroelectronic element 22,wire bonds 32, including the bases and at least a portion of edge surfaces 37 thereof. A portion ofwire bonds 32 can remain uncovered byencapsulation layer 42, which can also be referred to asunencapsulated portions 39, thereby making the wire bond available for electrical connection to a feature or element located outside ofencapsulation layer 42. In an embodiment, end surfaces 38 ofwire bonds 32 remain uncovered byencapsulation layer 42 withinmajor surface 44 ofencapsulation layer 42. Other embodiments are possible in which a portion ofedge surface 37 is uncovered byencapsulation layer 42 in addition to or as an alternative to havingend surface 38 remain uncovered byencapsulation layer 42. In other words,encapsulation layer 42 can cover all ofmicroelectronic assembly 10 fromfirst surface 14 and above, with the exception of a portion of wire bonds 36, such as end surfaces 38, edge surfaces 37 or combinations of the two. In the embodiments shown in the Figures, a surface, such asmajor surface 44 ofencapsulation layer 42 can be spaced apart fromfirst surface 14 ofsubstrate 12 at a distance great enough to covermicroelectronic element 22. Accordingly, embodiments ofmicroelectronic assembly 10 in which ends 38 ofwire bonds 32 are flush withsurface 44, will includewire bonds 32 that are taller than themicroelectronic element 22, and any underlying solder bumps for flip chip connection. Other configurations forencapsulation layer 42, however, are possible. For example, the encapsulation layer can have multiple surfaces with varying heights. In such a configuration, thesurface 44 within which ends 38 are positioned can be higher or lower than an upwardly facing surface under whichmicroelectronic element 22 is located. -
Encapsulation layer 42 serves to protect the other elements withinmicroelectronic assembly 10, particularly wire bonds 32. This allows for a more robust structure that is less likely to be damaged by testing thereof or during transportation or assembly to other microelectronic structures.Encapsulation layer 42 can be formed from a dielectric material with insulating properties such as that described in U.S. Patent App. Pub. No. 2010/0232129, which is incorporated by reference herein. -
FIG. 3 shows an embodiment ofmicroelectronic assembly 110 havingwire bonds 132 withends 136 that are not positioned directly above therespective bases 34 thereof. That is, consideringfirst surface 114 ofsubstrate 112 as extending in two lateral directions, so as to substantially define a plane, end 136 or at least one of thewire bonds 132 is displaced in at least one of these lateral directions from a corresponding lateral position ofbase 134. As shown inFIG. 3 ,wire bonds 132 can be substantially straight along the longitudinal axis thereof, as in the embodiment ofFIG. 1 , with the longitudinal axis being angled at anangle 146 with respect tofirst surface 114 ofsubstrate 112. Although the cross-sectional view ofFIG. 3 only shows theangle 146 through a first plane perpendicular tofirst surface 114,wire bond 132 can also be angled with respect tofirst surface 114 in another plane perpendicular to both that first plane and tofirst surface 114. Such an angle can be substantially equal to or different thanangle 146. That is the displacement ofend 136 relative to base 134 can be in two lateral directions and can be by the same or a different distance in each of those directions. - In an embodiment, various ones of
wire bonds 132 can be displaced in different directions and by different amounts throughout theassembly 110. Such an arrangement allows forassembly 110 to have an array that is configured differently on the level ofsurface 144 compared to on the level ofsubstrate 12. For example, an array can cover a smaller overall area or have a smaller pitch onsurface 144 compared to that atfirst surface 114 ofsubstrate 112. Further, somewire bonds 132 can have ends 138 that are positioned abovemicroelectronic element 122 to accommodate a stacked arrangement of packaged microelectronic elements of different sizes. In another example,wire bonds 132 can be configured such that the end of one wire bond is positioned substantially above the base of a second wire bond, wherein the end of that second wire bond being positioned elsewhere. Such an arrangement can be referred to as changing the relative position of acontact end surface 136 within an array of contacts, compared to the position of a corresponding contact array onsecond surface 116. In another example, shown inFIG. 8 ,wire bonds 132 can be configured such that the end 136A of onewire bond 132A is positioned substantially above the base 134B of another wire bond 134B, the end 132B of that wire bond 134B being positioned elsewhere. Such an arrangement can be referred to as changing the relative position of acontact end surface 136 within an array of contacts, compared to the position of a corresponding contact array onsecond surface 116. Within such an array, the relative positions of the contact end surfaces can be changed or varied, as desired, depending on the microelectronic assembly's application or other requirements.FIG. 4 shows a further embodiment of amicroelectronic subassembly 210 havingwire bonds 232 withends 236 in displaced lateral positions with respect tobases 234. In the embodiment ofFIG. 4 , thewire bonds 132 achieve this lateral displacement by including acurved portion 248 therein.Curved portion 248 can be formed in an additional step during the wire bond formation process and can occur, for example, while the wire portion is being drawn out to the desired length. This step can be carried out using available wire-bonding equipment, which can include the use of a single machine. -
Curved portion 248 can take on a variety of shapes, as needed, to achieve the desired positions of theends 236 of the wire bonds 232. For example,curved portions 248 can be formed as S-curves of various shapes, such as that which is shown inFIG. 4 or of a smoother form (such as that which is shown inFIG. 5 ). Additionally,curved portion 248 can be positioned closer tobase 234 than to end 236 or vice-versa.Curved portion 248 can also be in the form of a spiral or loop, or can be compound including curves in multiple directions or of different shapes or characters. - In a further example shown in
FIG. 26 , thewire bonds 132 can be arranged such that thebases 134 are arranged in a first pattern having a pitch thereof. The wire bonds 132 can be configured such that the unencapsulated portions thereof 139 including end surfaces 138, can be disposed at positions in a pattern having a minimum pitch between adjacentunencapsulated portions 38 of thewire bonds 32 exposed at thesurface 44 of the encapsulation layer that is greater than the minimum pitch between adjacent bases of the plurality ofbases 134 and, accordingly, theconductive elements 128 to which the bases are joined). To achieve this, the wire bonds can include portions which extend in one or more angles relative to a normal direction to the conductive elements, such as shown inFIG. 26 . In another example, the wire bonds can be curved as shown, for example inFIG. 4 , such that the ends 238 are displaced in one or more lateral directions from thebases 134, as discussed above. As further shown inFIG. 26 , theconductive elements 128 and theends 138 can be arranged in respective rows or columns and the lateral displacement of end surfaces 138 at some locations, such as in one row of the ends, from the respective conductive elements on the substrate to which they are joined can be greater than the lateral displacement of the unencapsulated portions at other locations from the respective conductive elements to which they are connected. To achieve this, thewire bonds 132 can, for example be at different angles 146A, 146B with respect to thesurface 116 of thesubstrate 112. -
FIG. 5A shows a further exemplary embodiment of amicroelectronic package 310 having a combination of wire bonds 332 having various shapes leading to various relative lateral displacements between bases 334 and ends 336. Some ofwire bonds 332A are substantially straight with ends 336A positioned above theirrespective bases 334A, while other wire bonds 332B include a subtle curved portion 348B leading to a somewhat slight relative lateral displacement between end 336B and base 334B. Further, some wire bonds 332C includecurved portions 348C having a sweeping shape that result in ends 336C that are laterally displaced from the relative bases 334C at a greater distance than that of ends 334B.FIG. 5 also shows an exemplary pair of such wire bonds 332Ci and 332Cii that have bases 334Ci and 334Cii positioned in the same row of a substrate-level array and ends 336Ci and 336Cii that are positioned in different rows of a corresponding surface-level array. In some cases, the radius of bends in the wire bonds 332Ci, 332Cii can be large such that the curves in the wire bonds may appear continuous. In other cases, the radius of the bends may be relatively small, and the wire bonds may even have straight portions or relatively straight portions between bends in the wire bonds. Moreover, in some cases the unencapsulated portions of the wire bonds can be displaced from their bases by at least one minimum pitch between the contacts 328 of the substrate. In other cases, the unencapsulated portions of the wire bonds can be displaced from their bases by at least 200 microns. - A further variation of a
wire bond 332D is shown that is configured to be uncovered byencapsulation layer 342 on a side surface 47 thereof. In the embodiment shown free end 336D is uncovered, however, a portion ofedge surface 337D can additionally or alternatively be uncovered byencapsulation layer 342. Such a configuration can be used for grounding ofmicroelectronic assembly 10 by electrical connection to an appropriate feature or for mechanical or electrical connection to other featured disposed laterally tomicroelectronic assembly 310. Additionally,FIG. 5 shows an area ofencapsulation layer 342 that has been etched away, molded, or otherwise formed to define a recessedsurface 345 that is positioned closer tosubstrate 12 thanmajor surface 342. One or more wire bonds, such aswire bond 332A can be uncovered within an area along recessedsurface 345. In the exemplary embodiment shown inFIG. 5 , end surface 338A and a portion ofedge surface 337A are uncovered byencapsulation layer 342. Such a configuration can provide a connection, such as by a solder ball or the like, to another conductive element by allowing the solder to wick alongedge surface 337A and join thereto in addition to joining to end surface 338. Other configurations by which a portion of a wire bond can be uncovered byencapsulation layer 342 along recessedsurface 345 are possible, including ones in which the end surfaces are substantially flush with recessedsurface 345 or other configurations shown herein with respect to any other surfaces ofencapsulation layer 342. Similarly, other configurations by which a portion ofwire bond 332D is uncovered byencapsulation layer 342 alongside surface 347 can be similar to those discussed elsewhere herein with respect to the variations of the major surface of the encapsulation layer. -
FIG. 5A further shows amicroelectronic assembly 310 having twomicroelectronic elements microelectronic element 350 is stacked, face-up, onmicroelectronic element 322. In this arrangement, leads 324 are used to electrically connectmicroelectronic element 322 to conductive features onsubstrate 312. Various leads are used to electronically connectmicroelectronic element 350 to various other features ofmicroelectronic assembly 310. For example, lead 380 electrically connectsmicroelectronic element 350 to conductive features ofsubstrate 312, and lead 382 electrically connectsmicroelectronic element 350 tomicroelectronic element 322. Further,wire bond 384, which can be similar in structure to various ones of wire bonds 332, is used to form acontact surface 386 on thesurface 344 ofencapsulation layer 342 that electrically connected tomicroelectronic element 350. This can be used to directly electrically connect a feature of another microelectronic assembly tomicroelectronic element 350 fromabove encapsulation layer 342. Such a lead could also be included that is connected tomicroelectronic element 322, including when such a microelectronic element is present without a secondmicroelectronic element 350 affixed thereon. An opening (not shown) can be formed inencapsulation layer 342 that extends fromsurface 344 thereof to a point along, for example, lead 380, thereby providing access to lead 380 for electrical connection thereto by an element located outsidesurface 344. A similar opening can be formed over any of the other leads or wire bonds 332, such as over wire bonds 332C at a point away from the ends 336C thereof. In such an embodiment, ends 336C can be positioned beneathsurface 344, with the opening providing the only access for electrical connection thereto. - Additional arrangements for microelectronic packages having multiple microelectronic elements are shown in
FIGS. 27A-C . These arrangements can be used in connection with the wire bond arrangements shown, for example inFIG. 5A and in the stacked package arrangement ofFIG. 6 , discussed further below. Specifically,FIG. 27A shows an arrangement in which a lowermicroelectronic element 1622 is flip-chip bonded toconductive elements 1628 on the surface 1614 of substrate 1612. The secondmicroelectronic element 1650 can overlie the firstmicroelectronic element 1622 and be face-up connected to additionalconductive elements 1628 on the substrate, such as throughwire bonds 1688.FIG. 27B shows an arrangement where a firstmicroelectronic element 1722 is face-up mounted on surface 1714 and connected throughwire bonds 1788 toconductive elements 1728. Secondmicroelectronic element 1750 can have contacts exposed at a face thereof which face and are joined to corresponding contacts at a face of the firstmicroelectronic element 1722 which faces away from the substrate. through a set ofcontacts 1726 of the secondmicroelectronic element 1750 which face and are joined to corresponding contacts on the front face of the firstmicroelectronic element 1722. These contacts of the firstmicroelectronic element 1722 which are joined to corresponding contacts of the second microelectronic element can in turn be connected through circuit patterns of the firstmicroelectronic element 1722 and be connected byire bonds 1788 to theconductive elements 1728 on substrate 1712. -
FIG. 27C shows an example in which first and secondmicroelectronic elements conductive elements 1828 to which the microelectronic elements are electrically connected. -
FIG. 5B further illustrates a structure according to a variation of the above-described embodiments in which a secondconductive element 43 can be formed in contact with anunencapsulated portion 39 of a wire bond exposed at or projecting above asurface 44 of theencapsulation layer 42, the second conductive element not contacting the first conductive element 28 (FIG. 1 ). In one embodiment as seen inFIG. 5B , the second conductive element can include apad 45 extending onto asurface 44 of the encapsulation layer which can provide a surface for joining with a bonding metal or bonding material of a component thereto. - Alternatively, as seen in
FIG. 5C , the secondconductive element 48 can be a metallic finish selectively formed on theunencapsulated portion 39 of a wire bond. In either case, in one example, the secondconductive element 43 or can be formed, such as by plating, of a layer of nickel contacting the unencapsulated portion of the wire bond and overlying a core of the wire bond, and a layer of gold or silver overlying the layer of nickel. In another example, the second conductive element may be a monolithic metal layer consisting essentially of a single metal. In one example, the single metal layer can be nickel, gold, copper, palladium or silver. In another example, the secondconductive element unencapsulated portion 39 of the wire bond. For example, stenciling, dispensing, screen printing, controlled spraying, e.g., a process similar to inkjet printing, or transfer molding can be used to form secondconductive elements unencapsulated portions 39 of the wire bonds. -
FIG. 5D further illustrates a second conductive element 43D which can be formed of a metal or other electrically conductive material as described forconductive elements opening 49 extending into anexterior surface 44 of theencapsulation layer 42. In one example, theopening 49 can be formed by removing a portion of the encapsulation layer after curing or partially curing the encapsulation layer so as to simultaneously expose a portion of the wire bond thereunder which then becomes the unencapsulated portion of the wire bond. For example, theopening 49 can be formed by laser ablation, etching. In another example, a soluble material can be pre-placed at the location of the opening prior to forming the encapsulation layer and the pre-placed material then can be removed after forming the encapsulation layer to form the opening. - In a further example, as seen in
FIGS. 24A-24B ,multiple wire bonds 1432 can have bases joined with a singleconductive element 1428. Such a group ofwire bonds 1432 can be used to make additional connection points over the encapsulation layer 1442 for electrical connection withconductive element 1428. The exposedportions 1439 of the commonly-joinedwire bonds 1432 can be grouped together onsurface 1444 of encapsulation layer 1442 in an area, for example about the size ofconductive element 1428 itself or another area approximating the intended size of a bonding mass for making an external connection with thewire bond 1432 group. As shown,such wire bonds 1432 can be either ball-bonded (FIG. 24A ) or edge bonded (FIG. 24B ) onconductive element 1428, as described above, or can be bonded to the conductive element as described above with respect toFIGS. 23A or 23B or both. - As shown in
FIGS. 25A and 25B , ball-bondedwire bonds 1532 can be formed as stud bumps on at least some of the conductive elements 1528. As described herein a stud bump is a ball-bonded wire bond where the segment of wire extending between the base 1534 and theend surface 1538 has a length of at most 300% of the diameter of the ball-bondedbase 1534. As in other embodiments, theend surface 1538 and optionally a portion of the edge surface 1537 of the stud bump can be unencapsulated by the encapsulation layer 1542. As shown inFIG. 25B such a stud bump 1532A can be formed on top of another stud bump 1532B to form, essentially, abase 1534 of awire bond 1532 made up of the two ball bonds with a wire segment extending therefrom up to the surface 1544 of the encapsulation layer 1542.Such wire bonds 1532 can have a height that is less than, for example, the wire bonds described elsewhere in the present disclosure. Accordingly, the encapsulation layer can include a major surface 1544 in an area, for example overlying themicroelectronic element 1522 and a minor surface 1545 spaced above the surface 1514 of the substrate 1512 at a height less than that of the major surface 1544. Such arrangements can also be used to form alignment features and to reduce the overall height of a package employing stud bump type wire bonds as well as other types of wire bonds disclosed herein, while accommodatingconductive masses 1552 that can connect theunencapsulated portions 1539 of thewire bonds 1532 with contacts 1543 on another microelectronic package 1588. -
FIG. 6 shows a stacked package ofmicroelectronic assemblies arrangement solder masses 452 electrically and mechanically connectend surfaces 438 ofassembly 410 toconductive elements 440 ofassembly 488. The stacked package can include additional assemblies and can be ultimately attached tocontacts 492 on aPCB 490 or the like for use in an electronic device. In such a stacked arrangement,wire bonds 432 andconductive elements 430 can carry multiple electronic signals therethrough, each having a different signal potential to allow for different signals to be processed by different microelectronic elements, such asmicroelectronic element 422 ormicroelectronic element 489, in a single stack. - In the exemplary configuration in
FIG. 6 ,wire bonds 432 are configured with acurved portion 448 such that at least some of theends 436 of thewire bonds 432 extend into an area that overlies a major surface 424 of themicroelectronic element 422. Such an area can be defined by the outer periphery ofmicroelectronic element 422 and extending upwardly therefrom. An example of such a configuration is shown from a view facing toward first surface 414 ofsubstrate 412 inFIG. 18 , wherewire bonds 432 overlie a rear major surface of themicroelectronic element 422, which is flip-chip bonded at a front face 425 thereof tosubstrate 412. In another configuration (FIG. 5 ), themicroelectronic element 422 can be mounted face-up to thesubstrate 312, with the front face 325 facing away from thesubstrate 312 and at least onewire bond 336 overlying the front face ofmicroelectronic element 322. In one embodiment,such wire bond 336 is not electrically connected withmicroelectronic element 322. Awire bond 336 bonded tosubstrate 312 may also overlie the front or rear face ofmicroelectronic element 350. The embodiment ofmicroelectronic assembly 410 shown inFIG. 7 is such thatconductive elements 428 are arranged in a pattern forming a first array in which theconductive elements 428 are arranged in rows and columns surroundingmicroelectronic element 422 and may have a predetermined pitch between individualconductive elements 428.Wire bonds 432 are joined to theconductive elements 428 such that therespective bases 434 thereof follow the pattern of the first array as set out by theconductive elements 428.Wire bonds 432 are configured, however, such that the respective ends 436 thereof can be arranged in a different pattern according to a second array configuration. In the embodiment shown the pitch of the second array can be different from, and in some cases finer than that of the first array. However, other embodiments are possible in which the pitch of the second array is greater than the first array, or in which theconductive elements 428 are not positioned in a predetermined array but theends 436 of thewire bonds 432 are. Further still,conductive elements 428 can be configured in sets of arrays positioned throughoutsubstrate 412 andwire bonds 432 can be configured such that ends 436 are in different sets of arrays or in a single array. -
FIG. 6 further shows an insulatinglayer 421 extending along a surface ofmicroelectronic element 422. Insulatinglayer 421 can be formed from a dielectric or other electrically insulating material prior to forming the wire bonds. The insulatinglayer 421 can protect microelectronic element from coming into contact with any of wire bonds 423 that extend thereover. In particular, insulatinglayer 421 can avoid electrical short-circuiting between wire bonds and short-circuiting between a wire bond and themicroelectronic element 422. In this way, the insulatinglayer 421 can help avoid malfunction or possible damage due to unintended electrical contact between awire bond 432 and themicroelectronic element 422. - The wire bond configuration shown in
FIGS. 6 and 7 can allow formicroelectronic assembly 410 to connect to another microelectronic assembly, such asmicroelectronic assembly 488, in certain instances where the relative sizes of, for example,microelectronic assembly 488 andmicroelectronic element 422 would not otherwise permit. In the embodiment ofFIG. 6 microelectronic assembly 488 is sized such that some of thecontact pads 440 are in an array within an area smaller than the area of the front orrear surface 424 or 426 of themicroelectronic element 422. In a microelectronic assembly having substantially vertical conductive features, such as pillars, in place ofwire bonds 432, direct connection betweenconductive elements 428 andpads 440 would not be possible. However, as shown inFIG. 6 ,wire bonds 432 having appropriately-configuredcurved portions 448 can have ends 436 in the appropriate positions to make the necessary electronic connections betweenmicroelectronic assembly 410 andmicroelectronic assembly 488. Such an arrangement can be used to make a stacked package where microelectronic assembly 418 is, for example, a DRAM chip or the like having a predetermined pad array, and whereinmicroelectronic element 422 is a logic chip configured to control the DRAM chip. This can allow a single type of DRAM chip to be used with several different logic chips of varying sizes, including those which are larger than the DRAM chip because thewire bonds 432 can have ends 436 positioned wherever necessary to make the desired connections with the DRAM chip. In an alternative embodiment,microelectronic package 410 can be mounted on printedcircuit board 490 in another configuration, where theunencapsulated surfaces 436 ofwire bonds 432 are electrically connected topads 492 ofcircuit board 490. Further, in such an embodiment, another microelectronic package, such as a modified version ofpackage 488 can be mounted onpackage 410 bysolder balls 452 joined topads 440. -
FIGS. 9 and 10 show a further embodiment of a microelectronic assembly 510 in whichwire bonds 532 are formed on a lead-frame structure. Examples of lead frame structures are shown and described in U.S. Pat. Nos. 7,176,506 and 6,765,287 the disclosures of which are hereby incorporated by reference herein. In general, a lead frame is a structure formed from a sheet of conductive metal, such as copper, that is patterned into segments including a plurality of leads and can further include a paddle, and a frame. The frame is used to secure the leads and the paddle, if used, during fabrication of the assembly. In an embodiment, a microelectronic element, such as a die or chip, can be joined face-up to the paddle and electrically connected to the leads using wire bonds. Alternatively, the microelectronic element can be mounted directly onto the leads, which can extend under the microelectronic element. In such an embodiment, contacts on the microelectronic element can be electrically connected to respective leads by solder balls or the like. The leads can then be used to form electrical connections to various other conductive structures for carrying an electronic signal potential to and from the microelectronic element. When the assembly of the structure is complete, which can include forming an encapsulation layer thereover, temporary elements of the frame can be removed from the leads and paddle of the lead frame, so as to form individual leads. For purposes of this disclosure, the individual leads 513 and thepaddle 515 are considered to be segmented portions of what, collectively, forms asubstrate 512 that includesconductive elements 528 in portions that are integrally formed therewith. Further, in this embodiment,paddle 515 is considered to be withinfirst region 518 ofsubstrate 512, and leads 513 are considered to be withinsecond region 520.Wire bonds 524, which are also shown in the elevation view ofFIG. 10 , connectmicroelectronic element 22, which is carried onpaddle 515, toconductive elements 528 ofleads 515.Wire bonds 532 can be further joined atbases 534 thereof to additionalconductive elements 528 on leads 515. Encapsulation layer 542 is formed onto assembly 510 leaving ends 538 ofwire bonds 532 uncovered at locations within surface 544.Wire bonds 532 can have additional or alternative portions thereof uncovered by encapsulation layer 542 in structures that correspond to those described with respect to the other embodiments herein. -
FIG. 11 further illustrates use of anunderfill 620 for mechanically reinforcing the joints betweenwire bonds 632 of onepackage 610A andsolder masses 652 of another package 610B mounted thereon. As shown inFIG. 11 , although theunderfill 620 need only be disposed between confrontingsurfaces packages 610A, 610B, theunderfill 620 can contact edge surfaces ofpackage 610A and may contact afirst surface 692 of thecircuit panel 690 to which the package 610 is mounted. Further, portions of theunderfill 620 that extend along the edge surfaces of thepackages 610A, 610B, if any, can be disposed at an angle between 0° and 90° relative to a major surface of the circuit panel over which the packages are disposed, and can be tapered from a greater thickness adjacent the circuit panel to a smaller thickness at a height above the circuit panel and adjacent one or more of the packages. - A package arrangement shown in
FIGS. 28A-D can be implemented in one technique for making an underfill layer, and in particular a portion thereof that is disposed between confronting faces ofpackages surface 1942 ofpackage 1910A andsurface 1916 ofpackage 1910B. As shown inFIG. 28A ,package 1910A can extend beyond anedge surface 1947 ofpackage 1910B such that, for example, thesurface 1944 ofencapsulation layer 1942 has a portion thereof that is exposed outside ofpackage 1910B. Such an area can be used as adispensing area 1949 whereby a device can deposit an underfill material in a flowable state on the dispensing area from a vertical position relative thereto. In such an arrangement, thedispensing area 1949 can be sized such that the underfill material can be deposited in a mass on the surface without spilling off of the edge of the surface while reaching a sufficient volume to flow underpackage 1910B where it can be drawn by capillary into the area between the confronting surfaces ofpackages package 1910A. As shown inFIG. 28B , thedispensing area 1949 can surroundpackage 1910B and have a dimension D in an orthogonal direction away from a peripheral edge ofpackage 1910B of about one millimeter (1 mm) on each side thereof. Such an arrangement can allow for dispensing on one side ofpackage 1910B or more than one side, either sequentially or simultaneously. Alternative arrangements are shown inFIG. 28C , wherein thedispensing area 1949 extends along only two adjacent sides ofpackage 1910B and have a dimension D′ of about 1 mm in a direction orthogonally away from a peripheral edge of the second package, andFIG. 28D , wherein thedispensing area 1949 extends along a single side ofpackage 1910B and may have a dimension D″ in an orthogonal direction away from the peripheral edge of the package of, for example 1.5 mm to 2 mm. - In an arrangement where
microelectronic packages 2010A and 2010B are of similar sizes in a horizontal profile, acompliant bezel 2099 can be used to secure thepackages 2010A and 2010B together during attachment by, for example, joining of terminals of the second package with the elements comprising theunencapsulated portions 2039 of thewire bonds 2032, e.g., by heating or curing ofconductive masses 2052, e.g., reflowing of solder masses, to join thepackages 2010A and 2010B together. Such an arrangement is shown inFIG. 29 in which package 2010B is assembled overpackage 2010A withconductive masses 2052, e.g., solder masses, for example, joined toterminals 2043 on package 2010B. The packages can be aligned so that thesolder masses 2052 align withunencapsulated portions 2039 of thewire bonds 2032 ofpackage 2010A or with second conductive elements joined with the end surfaces 2038 of thewire bonds 2032, as described above. Thebezel 2099 can then be assembled aroundpackages 2010A and 2010B to maintain such alignment during a heating process in which the terminals of the second package are joined with thewire bonds 2032 or second conductive elements of the first package. For example, a heating process can be used to reflowsolder masses 2052 to bond the terminals of the second package with thewire bonds 2032 or second conductive elements.Bezel 2099 can also extend inward along portions ofsurface 2044 of package 2010B and alongsurface 2016 ofpackage 2010A to maintain the contact between the packages before and during reflow. Thebezel 2099 can be of a resiliently compliant material such as rubber, TPE, PTFE (polytetrafluoroethylene), silicone or the like and can be undersized relative to the size of the assembled packages such that a compressive force is applied by the bezel when in place. Thebezel 2099 can also be left in place during the application of an underfill material and can include an opening to accommodate such application therethrough. Thecompliant bezel 2099 can be removed after package assembly. - Additionally or alternatively, the assembly of
microelectronic packages 2110A and 2110B, as shown inFIGS. 30A-F , alower package 2110A can include at least onealignment surface 2151. One example of this is shown inFIG. 30A in which alignment surfaces 2151 are included inencapsulation layer 2142 near the corners of the package 2110B. The alignment surfaces are sloped relative to the major surface and define an angle of between about 0° and up to and including 90° relative tomajor surface 2144 at some location therefrom, the alignment surfaces extending locations proximate themajor surface 2144 and respectiveminor surfaces 2145 that are spaced abovesubstrate 2112 at a greater distance thanmajor surface 2144. Theminor surfaces 2145 can be disposed adjacent the corners ofpackage 2110A and can extend partially between intersecting sides thereof. As shown inFIG. 30B , the alignment surfaces can also form inside corners opposite the intersecting sides of thepackage 2110A and can be included in similar form along all corners, for example four corners, ofpackage 2110A. As illustrated inFIG. 30C , thealignment surfaces 2151 can be positioned at an appropriate distance from unencapsulated portions ofcorresponding wire bonds 2132 such that when a second package 2110B having protrusions, e.g., electrically conductive protrusions such as conductive masses or solder balls joined thereto is stacked on top ofpackage 2110A, thealignment surfaces 2151 will guide the solder balls into the proper position overlying the unencapsulated portions of thewire bonds 2132 that correspond with the alignment surfaces 2151. The solder balls can then be reflowed to join with the unencapsulated portions of thewire bonds 2132 ofpackage 2110A. - A further arrangement employing
alignment surfaces 2251 is shown inFIGS. 31A-C , wherein thealignment surfaces 2251 extend between a raisedinner surface 2244 to a lowerouter surface 2245. In such an arrangement,inner surface 2244 can overlie microelectronic element 2222 and can be spaced abovesubstrate 2212 accordingly.Outer surface 2245 can be spaced closer tosubstrate 2212 in a direction of the thickness of the substrate and can be positioned vertically between surface 2214 ofsubstrate 2212 and surface 2223 of microelectronic element 2222. One or more unencapsulated portions ofwire bonds 2232 can be positioned relative to thealignment surfaces 2251 to achieve alignment ofsolder balls 2252 or other conductive protrusion as described with respect toFIGS. 30A-C . As described above, such a stepped arrangement can be used with or without the described alignment functionality to achieve an overall lower assembly height given a certain bond mass size. Further, the incorporation of a raisedinner surface 2244 can lead to increased resistance ofpackage 2210A to warping. -
FIG. 12 is a photographic image showing exemplary joints between thewire bonds 632 of afirst component 610A andcorresponding solder masses 652 of a second component such as a microelectronic package 610B. InFIG. 12 ,reference 620 indicates where an underfill can be disposed. -
FIGS. 13A , 13B, 13C, 13D, 13E and 13F illustrate some possible variations in the structure of thewire bonds 32 as described above relative toFIG. 1 . For example, as seen inFIG. 13A , awire bond 732A may have an upwardly extendingportion 736 which terminates in anend 738A having the same radius as the radius ofportion 736. -
FIG. 13B illustrates a variation in which the ends 738B are tips which are tapered relative toportion 736. In addition, as seen inFIG. 13C , a tapered tip 738B of awire bond 732A may have acentroid 740 which is offset in aradial direction 741 from an axis of a cylindrical portion of the wire bond integral therewith. Such shape may be a bonding tool mark resulting from a process of forming the wire bond as will be described further below. Alternatively, a bonding tool mark other than as shown at 738B may be present on the unencapsulated portion of the wire bond. As further seen inFIG. 13A , theunencapsulated portion 739 of a wire bond may project away from thesubstrate 712 at anangle 750 within 25 degrees of perpendicular to thesurface 730 of the substrate on which theconductive elements 728 are disposed. -
FIG. 13D illustrates that an unencapsulated portion of a wire bond 732D can include a ball-shaped portion 738D. Some of all of the wire bonds on the package can have such structure. As seen inFIG. 13D , the ball-shaped portion 738D can be integral with acylindrical portion 736 of the wire bond 732D, wherein the ball-shaped portion and at least a core of the cylindrical portion of the wire bond consist essentially of copper, copper alloy or gold. As will be described further below, the ball-shaped portion can be formed by melting a portion of the wire exposed at an opening of the capillary of the bonding tool during a pre-shaping process before stitch-bonding the wire bond to aconductive element 728 of the substrate. As seen inFIG. 13D , thediameter 744 of the ball-shaped portion 738D may be greater than thediameter 746 of the cylindricalwire bond portion 736 that is integral therewith. In a particular embodiment such as shown inFIG. 13D , the cylindrical portion of a wire bond 732D that is integral with the ball-shaped portion 738D can project beyond asurface 752 of theencapsulant layer 751 of the package. Alternatively, as seen inFIG. 13E , the cylindrical portion of a wire bond 732D may be fully covered by the encapsulant layer. In such case, as seen inFIG. 13E , the ball-shaped portion 738D of the wire bond 732D may in some cases be partly covered by theencapsulation layer 751. -
FIG. 13F further illustrates a wire bond 732F having a core 731 of a primary metal and a metallic finish 733 thereon which includes a second metal overlying the primary metal, such as the palladium-clad copper wire or palladium-clad gold wire as described above. In another example, an oxidation protection layer of a non-metallic material such as a commercially available “organic solderability preservative” (OSP) can be formed on the unencapsulated portion of a wire bond to avoid oxidation thereof until the unencapsulated portion of the wire bond is joined to a corresponding contact of another component. -
FIG. 14 illustrates a method by which wire bonds 32 (FIG. 1 ) as described herein can be shaped and then stitch-bonded to theconductive elements 28 on a substrate. As seen therein at stage A, asegment 800, i.e., an integral portion having a predetermined length 802, of a metal wire such as a gold or copper wire or composite wire as described above described above relative toFIG. 1 is fed out of acapillary 804 of a bonding tool. In order to ensure that a predetermined length of the metal wire is fed out from the capillary, the initial wire length can be zeroed or otherwise set to a known length by the bonding tool stitch-bonding the wire then extending from the capillary before beginning to feed the wire out for processing. At that time, the segment may extend in a straight direction 801 perpendicular to aface 806 of the capillary. As seen at stage B, theface 806 of the capillary 804 then is moved in at least afirst direction 814 along, e.g., parallel to afirst surface 812 of a formingunit 810 to bend themetal wire segment 800 away from the perpendicular direction. The formingunit 810 may be a specially designed tool having surfaces suitable to assist in the forming, i.e., shaping, of the metal wire segment prior to the metal wire segment being bonded to the conductive element of the substrate. - As seen at stage B during the pre-forming process, a portion of the
segment 800 may then extend in a direction parallel to thesurface 812. Thereafter, as seen at stage C, the capillary is moved over asecond surface 816 which then causes at least a portion of thesegment 800 to project upwardly in adirection 818 along anexterior wall 820 of the capillary. After pre-forming themetal wire segment 800 in this manner, the capillary of the bonding tool is now moved away from the formingunit 810 and moved towards the conductive element 28 (FIG. 1 ) of the substrate where it then stitch bonds aportion 822 of the metal wire segment adjacent to thecapillary opening 808 and thecapillary face 806 to the conductive element. As a result, anend 838 of themetal wire segment 800 remote from thecapillary opening 808 becomes an end 38 (FIG. 1 ) of the wire bond remote from theconductive element 28. -
FIG. 15 further illustrates an example of movement of the capillary over surfaces of a formingunit 810 in a method according to an embodiment of the invention. As seen therein, the formingunit 810 may have afirst depression 830 in which the capillary 804 is disposed when thesegment 800 is fed out of theopening 808 of the capillary at stage A of the forming process. The depression may include a channel or groove 832 which can help guide thesegment 800 onto asurface 812 at stage B. The forming unit may further include achannel 834 or groove for guiding thesegment 800 in stage B of the process. As further shown inFIG. 15 , the forming unit may include afurther depression 840 having aninterior surface 816 against which the capillary moves in stage C of the process to cause the metal wire segment to be bent indirection 818 against theexterior wall 820 of the capillary. Thedepression 840 in one example may have a triangular shape as seen inFIG. 15 . - In an embodiment, a variation of the capillary shown in
FIG. 14 can be used that incorporates a vertical or near-vertical side wall 2820. As shown inFIG. 35 , theside wall 2820 of capillary 2804 can be substantially vertical or, in other words, parallel to thewire segment 2800 or perpendicular to theface 2806 of thecapillary 2804. This can allow for formation of a wire bond (32 inFIG. 1 ) that is closer to vertical, i.e., closer to an angle of 90° away from the surface of the first surface of the substrate, than achieved by a side wall at an exterior of the capillary that defines an angle having a measure substantially less than 90° , such as the capillary shown inFIG. 14 . For example, using a formingtool 2810, a wire bond can be achieved that is disposed at an angle from the first portion which extends between 25° and 90°, or between about 45° and 90° or between about 80° and 90° with respect to the first wire portion 2822. - In another variation, a capillary 3804 can include a
surface 3808 that projects beyond theface 3806 thereof. Thissurface 3808 can be included, for example over the edge of theside wall 3820. In the method for forming a wire bond (32 inFIG. 1 , for example), the capillary 3804 can be pressed against thefirst portion 3822 of thewire segment 3800 during forming of wire segment, e.g., when the capillary moves in a direction along a formingsurface 3816 which extends in a direction away from surface 3812. In this example,surface 3808 presses into thefirst portion 3822 at a location near the bend from which the remainingwire segment 3800 extends. This can cause deformation of thewire segment 3800 such that it may press against thewall 3820 of the capillary 3804 and move to a somewhat more vertical position once the capillary 3804 is removed. In other instances, the deformation from thesurface 3808 can be such that a position of thewire segment 3800 can be substantially retained when the capillary 3804 is removed. -
FIG. 16 is a photographic image showing thatwire bonds 932 formed according to one or more of the methods described herein can have ends 938 which are offset from theirrespective bases 934. In one example, anend 938 of a wire bond can be displaced from its respective base such that theend 938 is displaced in a direction parallel to the surface of the substrate beyond a periphery of the conductive element to which it is connected. In another example, anend 938 of a wire bond can be displaced from itsrespective base 934 such that theend 938 is displaced in a direction parallel to the surface of the substrate beyond aperiphery 933 of the conductive element to which it is connected. -
FIG. 17 illustrates a variation of the above-described pre-forming process which can be used to form wire bonds 332Cii (FIG. 5 ) having a bend and which have ends 1038 displaced in alateral direction 1014A from theportions 1022 which will be stitch-bonded to the conductive elements as bases 1034 of the wire bonds. - As seen in
FIG. 17 , the first three stages A, B, and C of the process can be the same as described above with reference toFIG. 14 . Then, referring to stages C and D therein, aportion 1022A of the wire bond adjacent theface 806 of the capillary 804 is clamped by a tool which can be integrated with the forming unit. The clamping may be performed actively or passively as a result of the motion of the capillary over the forming unit. In one example, the clamping can be performed by pressing a plate having a non-slip surface thereon onto themetal wire segment 800 to preclude movement of the metal wire segment. - While the
metal wire segment 800 is clamped in this manner, at stage D shown inFIG. 17 , the capillary tool moves in adirection 1016 along athird surface 1018 of the formingunit 1010 and feeds out a length of wire equivalent to the distance moved alongsurface 1018. Thereafter, at stage E, the capillary is moved downwardly along athird surface 1024 of the forming unit to cause a portion of the wire to be bent upwardly along anexterior surface 1020 of the capillary 804. In such way, an upwardly projectingportion 1026 of the wire can be connected to another upwardly projectingportion 1036 by a third portion 1048 of the metal wire. - After formation of the wire segment and bonding thereof to a conductive element to form a wire bond, particularly of the ball bond type discussed above, the wire bond (32 in
FIG. 1 , for example) is then separated from a remaining portion of the wire within the capillary (such as 804 inFIG. 14 ). This can be done at any location remote from thebase 34 of thewire bond 32 and is preferably done at a location remote from the base 34 by a distance at least sufficient to define the desired height of thewire bond 32. Such separation can be carried out by a mechanism disposed within the capillary 804 or disposed outside of the capillary 804, between theface 806 and thebase 34 of thewire bond 32. In one method, thewire segment 800 can be separated by effectively burning through thewire 800 at the desired separation point, which can be done by application of a spark or flame thereto. To achieve greater accuracy in wire bond height, different forms of cutting thewire segment 800 can be implemented. As described herein, cutting can be used to describe a partial cut that can weaken the wire at a desired location or cutting completely through the wire for total separation of thewire bond 32 from the remainingwire segment 800. - In one example shown in
FIG. 32 acutting blade 805 can be integrated into the bond head assembly, such as withincapillary 804. As shown, anopening 807 can be included in theside wall 820 of the capillary 804 through whichcutting blade 805 can extend. Thecutting blade 805 can be moveable in and out of the interior of the capillary 804 so that it can alternately allow thewire 800 to freely pass therethrough or engage thewire 800. Accordingly, thewire 800 can be drawn out and thewire bond 32 formed and bonded to aconductive element 28 with thecutting blade 805 in a position outside of the capillary interior. After bond formation, thewire segment 800 can be clamped using aclamp 803 integrated in the bond head assembly to secure the position of the wire. Thecutting blade 803 can then be moved into the wire segment to either fully cut the wire or to partially cut or weaken the wire. A full cut can form endsurface 38 of thewire bond 32 at which point the capillary 804 can be moved away from thewire bond 32 to, for example, form another wire bond. Similarly, if thewire segment 800 is weakened by thecutting blade 805, movement of the bond head unit with the wire still held by thewire clamp 803 can cause separation by breaking thewire 800 at the area weakened by the partial cut. - The movement of the
cutting blade 805 can be actuated by pneumatics or by a servo motor using an offset cam. In other examples thecutting blade 805 movement can be actuated by a spring or a diaphragm. The triggering signal for thecutting blade 805 actuation can be based on a time delay that counts down from formation of the ball bond or can be actuated by movement of the capillary 804 to a predetermined height above thewire bond base 34. Such a signal can be linked to other software that operates the bonding machine so that thecutting blade 805 position can be reset prior to any subsequent bond formation. The cutting mechanism can also include a second blade (not shown) at a location juxtaposed withblade 805 with the wire therebetween, so as to cut the wire by movement of one or more of the first and second blades relative to the other of the first and second blades, such as in one example, from opposite sides of the wire. - In another example, a
laser 809 can be assembled with the bond head unit and positioned to cut the wire. As shown inFIG. 33 , alaser head 809 can be positioned outside ofcapillary 804 such as by mounting thereto or to another point on the bond head unit that includescapillary 804. The laser can be actuated at a desired time, such as those discussed above with respect to thecutting blade 805 inFIG. 32 , to cut thewire 800, formingend surface 38 of thewire bond 32 at a desired height above thebase 34. In other implementations, thelaser 809 can be positioned to direct the cutting beam through or into the capillary 804 itself and can be internal to the bond head unit. In an example, a carbon dioxide laser can be used or, as an alternative, a Nd:YAG or a Cu vapor laser could be used. - In another embodiment a
stencil unit 824 as shown inFIGS. 34A-C can be used to separate thewire bonds 32 from the remainingwire segment 800. As shown inFIG. 34A , thestencil 824 can be a structure having a body that defines anupper surface 826 at or near the desired height of the wire bonds 32. Thestencil 824 can be configured to contact theconductive elements 28 or any portions of thesubstrate 12 or package structure connected thereto between theconductive elements 28. The stencil includes a plurality ofholes 828 that can correspond to the desired locations for thewire bonds 32, such as overconductive elements 28. Theholes 828 can be sized to accept thecapillary 804 of the bond head unit therein so that the capillary can extend into the hole to a position relative to theconductive element 28 to bond thewire 800 to the conductive element, 28 to form thebase 34, such as by ball bonding or the like. In one example, the stencil can have holes through which individual ones of the conductive elements are exposed. In another example, a plurality of the conductive elements can be exposed by a single hole of the stencil. For example, a hole can be a channel-shaped opening or recess in the stencil through which a row or column of the conductive elements are exposed at atop surface 826 of the stencil. - The capillary 804 can then be moved vertically out of the
hole 828 while drawing out the wire segment to a desired length. Once cleared from thehole 828, the wire segment can be clamped within the bond head unit, such as byclamp 803, and the capillary 804 can be moved in a lateral direction (such as parallel to thesurface 826 of stencil 824) to move thewire segment 800 into contact with anedge 829 of thestencil 824 defined by the intersection of the surface of thehole 828 and theoutside surface 826 of thestencil 824. Such movement can cause separation of thewire bond 32 from a remaining portion of thewire segment 800 that is still held within thecapillary 804. This process can be repeated to form the desired number ofwire bonds 32 in the desired locations. In an implementation, the capillary can be moved vertically prior to wire separation such that the remaining wire segment projects beyond theface 806 of the capillary 804 by a distance 802 sufficient to form a subsequent ball bond.FIG. 34B shows a variation ofstencil 824 in which theholes 828 can be tapered such that they have a diameter that increases from a first diameter atsurface 826 to a greater diameter away fromsurface 826. In another variation, as shown inFIG. 34C , the stencil can be formed having anouter frame 821 having a thickness sufficient to space apart surface 826 at the desired distance fromsubstrate 12.Frame 821 can at least partially surround acavity 823 configured to be positionedadjacent substrate 12 with a thickness of thestencil 824 extending between thesurface 826 and theopen area 823 such that the portion ofstencil 824 that includes theholes 828 is spaced apart from thesubstrate 12 when positioned thereon. -
FIGS. 18 , 19 and 20 illustrate one technique that can be used when forming the encapsulation layer by molding in order that unencapsulated portions 39 (FIG. 1 ) of the wire bonds project beyond asurface 44 of theencapsulation layer 42. Thus, as seen inFIG. 18 , a film-assisted molding technique can be used by which atemporary film 1102 is placed between aplate 1110 of a mold and acavity 1112 in which a subassembly including the substrate,wire bonds 1132 joined thereto, and a component such as a microelectronic element may be joined.FIG. 18 further shows asecond plate 1111 of the mold which can be disposed opposite thefirst plate 1110. - Then, as seen in
FIGS. 19-20 , when themold plates ends 1138 ofwire bonds 1132 can project into thetemporary film 1102. When a mold compound is flowed in thecavity 1112 to formencapsulation layer 1142, the mold compound does not contact theends 1138 of the wire bonds because they are covered by thetemporary film 1102. After this step, themold plates encapsulation layer 1142, thetemporary film 1102 can now be removed from themold surface 1144, which then leaves theends 1138 of thewire bonds 1132 projecting beyond thesurface 1144 of the encapsulation layer. - The film-assisted molding technique may be well adapted for mass production. For example, in one example of the process, a portion of a continuous sheet of the temporary film can be applied to the mold plate. Then the encapsulation layer can be formed in a
cavity 1112 that is at least partially defined by the mold plate. Then, a current portion of thetemporary film 1102 on themold plate 1110 can be replaced by automated means with another portion of the continuous sheet of the temporary film. - In a variation of the film-assisted molding technique, instead of using a removable film as described above, a water-soluble film can be placed on an inner surface of the
mold plate 1110 prior to forming the encapsulation layer. When the mold plates are removed, the water soluble film can be removed by washing it away so as to leave the ends of the wire bonds projecting beyond thesurface 1144 of the encapsulation layer as described above. - In an example of the method of
FIGS. 18 and 19 , the heights of thewire bonds 1132 above thesurface 1144 ofencapsulation layer 1142 can vary among thewire bonds 1132, as shown inFIG. 37A . A method for further processing thepackage 1110 such that thewire bonds 1132 project abovesurface 1142 by substantially uniform heights is shown inFIGS. 37B-D and utilizes asacrificial material layer 1178 that can be formed to cover the unencapsulated portions of thewire bonds 1132 by application thereof oversurface 1144. Thesacrificial layer 1178 can then be planarized to reduce the height thereof to the desired height forwire bonds 1132, which can be done by lapping, grinding, or polishing or the like. As also illustrated in the Figures, the planarization of thesacrificial layer 1178 can begin by reducing the height thereof to a point where thewire bonds 1132 become exposed at the surface of thesacrificial layer 1178. The planarization process can then also planarize thewire bonds 1132 simultaneously with thesacrificial layer 1178 such that, as the height of thesacrificial layer 1178 is continued to be reduced, the heights of thewire bonds 1132 are also reduced. The planarization can be stopped once the desired height for thewire bonds 1132 is reached. It is noted that in such a process thewire bonds 1132 can be initially formed such that their heights, while being non-uniform, are all greater than the targeted uniform height. After planarization reduces thewire bonds 1132 to the desired height, thesacrificial layer 1178 can be removed such as by etching or the like. Thesacrificial layer 1178 can be formed from a material that can allow for removal by etching using an etchant that will not significantly affect the encapsulant material. In one example, thesacrificial layer 1178 can be made from a water soluble plastic material. -
FIGS. 21 and 22 illustrate another method by which unencapsulated portions of the wire bonds can be formed which project beyond a surface of the encapsulation layer. Thus, in the example seen inFIG. 21 , initiallywire bonds 1232 may be flush with or may not even be exposed at asurface 1244 of theencapsulation layer 1242. Then, as shown inFIG. 22 , a portion of the encapsulation layer, e.g., a molded encapsulation layer, can be removed to cause the ends 1238 to project beyond the modifiedencapsulation layer surface 1246. Thus, in one example, laser ablation can be used to recess the encapsulation layer uniformly to form a planar recessedsurface 1246. Alternatively, laser ablation can be performed selectively in areas of the encapsulation layer adjoining individual wire bonds. - Among other techniques that can be used to remove at least portions of the encapsulation layer selectively to the wire bonds include “wet blasting” techniques. In wet blasting, a stream of abrasive particles carried by a liquid medium is directed towards a target to remove material from the surface of the target. The stream of particles may sometimes be combined with a chemical etchant which may facilitate or accelerate the removal of material selectively to other structure such as the wire bonds which are to remain after wet blasting.
- In the example shown in
FIGS. 38A and 38B , in a variation of the method shown inFIGS. 21 and 22 ,wire bond loops 1232′ can be formed that have bases 1234 a on conductive elements 1228 at one end and are attached to a surface of themicroelectronic element 1222 at the other end 1234 b. For attachment of thewire bond loops 1232′ to themicroelectronic element 1222, the surface of themicroelectronic element 1223 can be metalized such as by sputtering, chemical vapor deposition, plating or the like. The bases 1234 a can be ball bonded, as shown, or edge bonded, as can the ends 1232 b joined to themicroelectronic element 1222. As further shown inFIG. 38A , thedielectric encapsulation layer 1242 can be formed oversubstrate 1212 to cover thewire bond loops 1232′. Theencapsulation layer 1242 can then be planarized, such as by grinding, lapping, polishing, or the like, to reduce the height thereof and to separate thewire bond loops 1232′ into connection wire bonds 1232A that are available for joining to at least the end surfaces 1238 thereof for electrical connection to the conductive elements 1228 andthermal dissipation bonds 1232B that are joined to themicroelectronic element 1222. The thermal dissipation bonds can be such that they are not electrically connected to any of the circuitry of themicroelectronic element 1222 but are positioned to thermally conduct heat away from themicroelectronic element 1222 to thesurface 1244 of theencapsulation layer 1242. Additional processing methods can be applied to the resulting package 1210′, as described elsewhere herein. - Another method for forming
wire bonds 2632 to a predetermined height is shown inFIGS. 39A-C . In such a method asacrificial encapsulation layer 2678 can be formed over thesurface 2614 ofsubstrate 2612, at least in the second 2620 region thereof. Thesacrificial layer 2678 can also be formed over the first region 2618 of thesubstrate 2612 to cover themicroelectronic element 2622 in a similar manner to the encapsulation layers described with respect toFIG. 1 , above. Thesacrificial layer 2678 includes at least oneopening 2679 and in some embodiments a plurality ofopenings 2679 to expose theconductive elements 2628. Theopenings 2679 can be formed during molding of thesacrificial layer 2678 or after molding by etching, drilling, or the like. In one embodiment, alarge opening 2679 can be formed to expose all of theconductive elements 2628, while in other embodiments a plurality oflarge openings 2679 can be formed to expose respective groups ofconductive elements 2628. In further embodiments, openings 2629 can be formed that correspond to individualconductive elements 2628. Thesacrificial layer 2678 is formed having asurface 2677 at a desired height for thewire bonds 2632 such that thewire bonds 2632 can be formed bybonding bases 2634 thereof to theconductive elements 2628 and then drawing out the wire to reach thesurface 2677 of thesacrificial layer 2678. Then, the wire bonds can be drawn laterally of the opening to overlie portions of thesurface 2677 of thesacrificial layer 2678. The capillary of the bond forming instrument (such ascapillary 804 as shown inFIG. 14 ) can be moved to press the wire segment into contact with thesurface 2677 such that the pressure on the wire between thesurface 2677 and the capillary causes the wire to sever onsurface 2677, as shown inFIG. 39A . - The
sacrificial layer 2678 can then be removed by etching or another similar process. In an example, thesacrificial layer 2678 can be formed from a water soluble plastic material such that it can be removed by exposure to water without affecting the other components of the in-process unit 2610″. In another embodiment,sacrificial layer 2678 can be made from a photoimageable material such as a photoresist such that it can be removed by exposure to a light source. A portion ofsacrificial layer 2678′ can remain betweenmicroelectronic element 2622 andsurface 2614 ofsubstrate 2612 that can act as an underfill surroundingsolder balls 2652. After removal of thesacrificial layer 2678 anencapsulation layer 2642 is formed over the in-process unit to form package 2610. Theencapsulation layer 2642 can be similar to those described above and can substantially coversurface 2614 ofsubstrate 2612 andmicroelectronic element 2622.Encapsulation layer 2642 can further support and separate thewire bonds 2632. In the package 2610 shown inFIG. 29C , the wire bonds include portions of the edge surfaces 2637 thereof that are exposed atsurface 2644 of theencapsulant 2642 and extend substantially parallel thereto. In other embodiments, thewire bonds 2632 and theencapsulation layer 2642 can be planarized to form asurface 2644 with wire bonds that have end surfaces exposed thereon and substantially flush therewith. - The above-described embodiments and variations of the invention can be combined in ways other than as specifically described above. It is intended to cover all such variations which lie within the scope and spirit of the invention.
Claims (27)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/404,458 US8404520B1 (en) | 2011-10-17 | 2012-02-24 | Package-on-package assembly with wire bond vias |
KR1020147013295A KR101904410B1 (en) | 2011-10-17 | 2012-10-16 | Package-on-package assembly with wire bond vias |
JP2014537149A JP2014530511A (en) | 2011-10-17 | 2012-10-16 | Package on package assembly with wire bond vias |
EP12787211.7A EP2769411A1 (en) | 2011-10-17 | 2012-10-16 | Package-on-package assembly with wire bond vias |
CN201280062529.5A CN104011858B (en) | 2011-10-17 | 2012-10-16 | Piled-up packing assembly with line bonding through hole |
PCT/US2012/060402 WO2013059181A1 (en) | 2011-10-17 | 2012-10-16 | Package-on-package assembly with wire bond vias |
EP18183273.4A EP3416190B1 (en) | 2011-10-17 | 2012-10-16 | Package-on-package assembly with wire bond vias |
TW101138311A TWI599016B (en) | 2011-10-17 | 2012-10-17 | Package-on-package assembly with wire bond vias |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161547930P | 2011-10-17 | 2011-10-17 | |
US13/404,458 US8404520B1 (en) | 2011-10-17 | 2012-02-24 | Package-on-package assembly with wire bond vias |
Publications (2)
Publication Number | Publication Date |
---|---|
US8404520B1 US8404520B1 (en) | 2013-03-26 |
US20130095610A1 true US20130095610A1 (en) | 2013-04-18 |
Family
ID=47892283
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/405,108 Active US8836136B2 (en) | 2011-10-17 | 2012-02-24 | Package-on-package assembly with wire bond vias |
US13/404,408 Active US9105483B2 (en) | 2011-10-17 | 2012-02-24 | Package-on-package assembly with wire bond vias |
US13/404,458 Active US8404520B1 (en) | 2011-10-17 | 2012-02-24 | Package-on-package assembly with wire bond vias |
US13/795,811 Active US9041227B2 (en) | 2011-10-17 | 2013-03-12 | Package-on-package assembly with wire bond vias |
US13/966,636 Active US9252122B2 (en) | 2011-10-17 | 2013-08-14 | Package-on-package assembly with wire bond vias |
US14/718,719 Active US9761558B2 (en) | 2011-10-17 | 2015-05-21 | Package-on-package assembly with wire bond vias |
US15/699,288 Active US10756049B2 (en) | 2011-10-17 | 2017-09-08 | Package-on-package assembly with wire bond vias |
US16/999,601 Active US11189595B2 (en) | 2011-10-17 | 2020-08-21 | Package-on-package assembly with wire bond vias |
US17/512,123 Active 2032-06-25 US11735563B2 (en) | 2011-10-17 | 2021-10-27 | Package-on-package assembly with wire bond vias |
US18/221,171 Pending US20240055393A1 (en) | 2011-10-17 | 2023-07-12 | Package-on-package assembly with wire bond vias |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/405,108 Active US8836136B2 (en) | 2011-10-17 | 2012-02-24 | Package-on-package assembly with wire bond vias |
US13/404,408 Active US9105483B2 (en) | 2011-10-17 | 2012-02-24 | Package-on-package assembly with wire bond vias |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/795,811 Active US9041227B2 (en) | 2011-10-17 | 2013-03-12 | Package-on-package assembly with wire bond vias |
US13/966,636 Active US9252122B2 (en) | 2011-10-17 | 2013-08-14 | Package-on-package assembly with wire bond vias |
US14/718,719 Active US9761558B2 (en) | 2011-10-17 | 2015-05-21 | Package-on-package assembly with wire bond vias |
US15/699,288 Active US10756049B2 (en) | 2011-10-17 | 2017-09-08 | Package-on-package assembly with wire bond vias |
US16/999,601 Active US11189595B2 (en) | 2011-10-17 | 2020-08-21 | Package-on-package assembly with wire bond vias |
US17/512,123 Active 2032-06-25 US11735563B2 (en) | 2011-10-17 | 2021-10-27 | Package-on-package assembly with wire bond vias |
US18/221,171 Pending US20240055393A1 (en) | 2011-10-17 | 2023-07-12 | Package-on-package assembly with wire bond vias |
Country Status (7)
Country | Link |
---|---|
US (10) | US8836136B2 (en) |
EP (2) | EP3416190B1 (en) |
JP (1) | JP2014530511A (en) |
KR (1) | KR101904410B1 (en) |
CN (1) | CN104011858B (en) |
TW (1) | TWI599016B (en) |
WO (1) | WO2013059181A1 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130114235A1 (en) * | 2011-11-04 | 2013-05-09 | Invensas Corporation | Emi shield |
US20140315355A1 (en) * | 2012-08-31 | 2014-10-23 | Chipmos Technologies Inc. | Manufacturing method of wafer level package |
DE102013211405A1 (en) * | 2013-06-18 | 2014-12-18 | Infineon Technologies Ag | METHOD FOR PRODUCING A SEMICONDUCTOR MODULE |
CN105952749A (en) * | 2016-06-21 | 2016-09-21 | 深圳爱易瑞科技有限公司 | Adhesive dispensing method for fingerprint recognition module |
CN105972018A (en) * | 2016-06-21 | 2016-09-28 | 深圳爱易瑞科技有限公司 | Intelligent industrial dispensing control method |
US20170141020A1 (en) * | 2015-11-18 | 2017-05-18 | Invensas Corporation | Stiffened wires for offset bva |
US9685365B2 (en) | 2013-08-08 | 2017-06-20 | Invensas Corporation | Method of forming a wire bond having a free end |
US9691679B2 (en) | 2012-02-24 | 2017-06-27 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
US9761558B2 (en) | 2011-10-17 | 2017-09-12 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US20170301834A1 (en) * | 2013-05-20 | 2017-10-19 | Koninklijke Philips N.V. | Chip scale light emitting device package with dome |
US9837330B2 (en) | 2014-01-17 | 2017-12-05 | Invensas Corporation | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
US9888579B2 (en) | 2015-03-05 | 2018-02-06 | Invensas Corporation | Pressing of wire bond wire tips to provide bent-over tips |
US9917073B2 (en) | 2012-07-31 | 2018-03-13 | Invensas Corporation | Reconstituted wafer-level package dram with conductive interconnects formed in encapsulant at periphery of the package |
US10008477B2 (en) | 2013-09-16 | 2018-06-26 | Invensas Corporation | Microelectronic element with bond elements to encapsulation surface |
KR20180089457A (en) * | 2015-12-30 | 2018-08-08 | 인벤사스 코포레이션 | Embedded wire bond wires for separate surface mount and vertical integration with wire bond mounting surface |
CN108431952A (en) * | 2015-10-12 | 2018-08-21 | 英帆萨斯公司 | Embedded wire bonding line |
US10128216B2 (en) | 2010-07-19 | 2018-11-13 | Tessera, Inc. | Stackable molded microelectronic packages |
US10297582B2 (en) | 2012-08-03 | 2019-05-21 | Invensas Corporation | BVA interposer |
US10332854B2 (en) | 2015-10-23 | 2019-06-25 | Invensas Corporation | Anchoring structure of fine pitch bva |
US10424525B2 (en) | 2017-05-23 | 2019-09-24 | Stmicroelectronics S.R.L. | Method of manufacturing semiconductor devices |
US10460958B2 (en) | 2013-08-07 | 2019-10-29 | Invensas Corporation | Method of manufacturing embedded packaging with preformed vias |
US11424211B2 (en) | 2011-05-03 | 2022-08-23 | Tessera Llc | Package-on-package assembly with wire bonds to encapsulation surface |
US20230115846A1 (en) * | 2021-10-13 | 2023-04-13 | Skyworks Solutions, Inc. | Electronic Package and Method for Manufacturing an Electronic Package |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006052616A1 (en) | 2004-11-03 | 2006-05-18 | Tessera, Inc. | Stacked packaging improvements |
US8058101B2 (en) | 2005-12-23 | 2011-11-15 | Tessera, Inc. | Microelectronic packages and methods therefor |
US8389862B2 (en) | 2008-10-07 | 2013-03-05 | Mc10, Inc. | Extremely stretchable electronics |
US8097926B2 (en) | 2008-10-07 | 2012-01-17 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
US9123614B2 (en) | 2008-10-07 | 2015-09-01 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
US9941195B2 (en) * | 2009-11-10 | 2018-04-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Vertical metal insulator metal capacitor |
FR2959350B1 (en) * | 2010-04-26 | 2012-08-31 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING A MICROELECTRONIC DEVICE AND MICROELECTRONIC DEVICE SO MANUFACTURED |
US9159708B2 (en) | 2010-07-19 | 2015-10-13 | Tessera, Inc. | Stackable molded microelectronic packages with area array unit connectors |
US9721872B1 (en) * | 2011-02-18 | 2017-08-01 | Amkor Technology, Inc. | Methods and structures for increasing the allowable die size in TMV packages |
EP2745317A4 (en) | 2011-08-16 | 2015-08-12 | Intel Corp | Offset interposers for large-bottom packages and large-die package-on-package structures |
US8912651B2 (en) | 2011-11-30 | 2014-12-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package-on-package (PoP) structure including stud bulbs and method |
US8946757B2 (en) | 2012-02-17 | 2015-02-03 | Invensas Corporation | Heat spreading substrate with embedded interconnects |
US9349706B2 (en) * | 2012-02-24 | 2016-05-24 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
TWI471989B (en) * | 2012-05-18 | 2015-02-01 | 矽品精密工業股份有限公司 | Semiconductor package and method of forming same |
US8835228B2 (en) | 2012-05-22 | 2014-09-16 | Invensas Corporation | Substrate-less stackable package with wire-bond interconnect |
US8955388B2 (en) * | 2012-05-31 | 2015-02-17 | Freescale Semiconductor, Inc. | Mold compound compatibility test system and methods thereof |
US9226402B2 (en) | 2012-06-11 | 2015-12-29 | Mc10, Inc. | Strain isolation structures for stretchable electronics |
US9295842B2 (en) | 2012-07-05 | 2016-03-29 | Mc10, Inc. | Catheter or guidewire device including flow sensing and use thereof |
US9136213B2 (en) * | 2012-08-02 | 2015-09-15 | Infineon Technologies Ag | Integrated system and method of making the integrated system |
KR20140019535A (en) * | 2012-08-06 | 2014-02-17 | 엘지이노텍 주식회사 | Camera module and electronic device |
KR20150072415A (en) | 2012-10-09 | 2015-06-29 | 엠씨10, 인크 | Conformal electronics integrated with apparel |
US9171794B2 (en) | 2012-10-09 | 2015-10-27 | Mc10, Inc. | Embedding thin chips in polymer |
US8878353B2 (en) | 2012-12-20 | 2014-11-04 | Invensas Corporation | Structure for microelectronic packaging with bond elements to encapsulation surface |
US9136254B2 (en) | 2013-02-01 | 2015-09-15 | Invensas Corporation | Microelectronic package having wire bond vias and stiffening layer |
TWI570864B (en) * | 2013-02-01 | 2017-02-11 | 英帆薩斯公司 | Microelectronic package having wire bond vias, method of making and stiffening layer for same |
US8940630B2 (en) | 2013-02-01 | 2015-01-27 | Invensas Corporation | Method of making wire bond vias and microelectronic package having wire bond vias |
US9237648B2 (en) | 2013-02-25 | 2016-01-12 | Invensas Corporation | Carrier-less silicon interposer |
US9016552B2 (en) * | 2013-03-15 | 2015-04-28 | Sanmina Corporation | Method for forming interposers and stacked memory devices |
US9706647B2 (en) | 2013-05-14 | 2017-07-11 | Mc10, Inc. | Conformal electronics including nested serpentine interconnects |
US9508635B2 (en) | 2013-06-27 | 2016-11-29 | STATS ChipPAC Pte. Ltd. | Methods of forming conductive jumper traces |
US9406533B2 (en) | 2013-06-27 | 2016-08-02 | STATS ChipPAC Pte. Ltd. | Methods of forming conductive and insulating layers |
US8883563B1 (en) | 2013-07-15 | 2014-11-11 | Invensas Corporation | Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation |
JP2016527649A (en) | 2013-08-05 | 2016-09-08 | エムシー10 インコーポレイテッドMc10,Inc. | Flexible temperature sensor including compatible electronics |
DE102013217349B4 (en) | 2013-08-30 | 2024-06-13 | Robert Bosch Gmbh | Micromechanical sensor arrangement and corresponding manufacturing process |
US10467926B2 (en) | 2013-10-07 | 2019-11-05 | Mc10, Inc. | Conformal sensor systems for sensing and analysis |
DE102013220880B4 (en) * | 2013-10-15 | 2016-08-18 | Infineon Technologies Ag | An electronic semiconductor package having an electrically insulating, thermal interface structure on a discontinuity of an encapsulation structure, and a manufacturing method therefor, and an electronic device having the same |
JP6711750B2 (en) | 2013-11-22 | 2020-06-17 | エムシー10 インコーポレイテッドMc10,Inc. | Conformal sensor system for detection and analysis of cardiac activity |
US9379074B2 (en) | 2013-11-22 | 2016-06-28 | Invensas Corporation | Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects |
US9263394B2 (en) | 2013-11-22 | 2016-02-16 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
US9583456B2 (en) | 2013-11-22 | 2017-02-28 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
US9691693B2 (en) | 2013-12-04 | 2017-06-27 | Invensas Corporation | Carrier-less silicon interposer using photo patterned polymer as substrate |
US9693469B2 (en) | 2013-12-19 | 2017-06-27 | The Charles Stark Draper Laboratory, Inc. | Electronic module subassemblies |
WO2015103580A2 (en) | 2014-01-06 | 2015-07-09 | Mc10, Inc. | Encapsulated conformal electronic systems and devices, and methods of making and using the same |
US9653442B2 (en) * | 2014-01-17 | 2017-05-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit package and methods of forming same |
US10485118B2 (en) | 2014-03-04 | 2019-11-19 | Mc10, Inc. | Multi-part flexible encapsulation housing for electronic devices and methods of making the same |
US9735134B2 (en) * | 2014-03-12 | 2017-08-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Packages with through-vias having tapered ends |
US9214454B2 (en) * | 2014-03-31 | 2015-12-15 | Invensas Corporation | Batch process fabrication of package-on-package microelectronic assemblies |
US9209110B2 (en) | 2014-05-07 | 2015-12-08 | Qualcomm Incorporated | Integrated device comprising wires as vias in an encapsulation layer |
US10381326B2 (en) | 2014-05-28 | 2019-08-13 | Invensas Corporation | Structure and method for integrated circuits packaging with increased density |
US9412714B2 (en) | 2014-05-30 | 2016-08-09 | Invensas Corporation | Wire bond support structure and microelectronic package including wire bonds therefrom |
US9412806B2 (en) | 2014-06-13 | 2016-08-09 | Invensas Corporation | Making multilayer 3D capacitors using arrays of upstanding rods or ridges |
EP3198638A4 (en) * | 2014-09-22 | 2018-05-30 | Mc10, Inc. | Methods and apparatuses for shaping and looping bonding wires that serve as stretchable and bendable interconnects |
USD781270S1 (en) | 2014-10-15 | 2017-03-14 | Mc10, Inc. | Electronic device having antenna |
CN104326441B (en) * | 2014-11-05 | 2016-03-23 | 中国科学院电子学研究所 | The preparation method of metal pad in SOI sheet via hole |
US9735084B2 (en) * | 2014-12-11 | 2017-08-15 | Invensas Corporation | Bond via array for thermal conductivity |
CN104538377A (en) * | 2014-12-30 | 2015-04-22 | 华天科技(西安)有限公司 | Fan-out packaging structure based on carrier and preparation method of fan-out packaging structure |
CN104505384A (en) * | 2014-12-30 | 2015-04-08 | 华天科技(西安)有限公司 | Bonding wire embedding fan-in type packaging part and production method thereof |
KR101651905B1 (en) * | 2015-02-17 | 2016-09-09 | (주)파트론 | Assembling structure of chip package and bezel |
CN107530004A (en) | 2015-02-20 | 2018-01-02 | Mc10股份有限公司 | The automatic detection and construction of wearable device based on personal situation, position and/or orientation |
CN104835747A (en) * | 2015-04-02 | 2015-08-12 | 苏州晶方半导体科技股份有限公司 | Chip packaging method |
US9502372B1 (en) | 2015-04-30 | 2016-11-22 | Invensas Corporation | Wafer-level packaging using wire bond wires in place of a redistribution layer |
US9761554B2 (en) | 2015-05-07 | 2017-09-12 | Invensas Corporation | Ball bonding metal wire bond wires to metal pads |
US9437536B1 (en) * | 2015-05-08 | 2016-09-06 | Invensas Corporation | Reversed build-up substrate for 2.5D |
JP6392171B2 (en) * | 2015-05-28 | 2018-09-19 | 新光電気工業株式会社 | Semiconductor device and manufacturing method thereof |
US10653332B2 (en) | 2015-07-17 | 2020-05-19 | Mc10, Inc. | Conductive stiffener, method of making a conductive stiffener, and conductive adhesive and encapsulation layers |
TWI620296B (en) * | 2015-08-14 | 2018-04-01 | 矽品精密工業股份有限公司 | Electronic package and method of manufacture thereof |
US10709384B2 (en) | 2015-08-19 | 2020-07-14 | Mc10, Inc. | Wearable heat flux devices and methods of use |
KR102357937B1 (en) * | 2015-08-26 | 2022-02-04 | 삼성전자주식회사 | Semiconductor chip, method for fabricating the same, and semiconductor package comprising the same |
KR102372349B1 (en) | 2015-08-26 | 2022-03-11 | 삼성전자주식회사 | Semiconductor chip, method for fabricating the same, and semiconductor package comprising the same |
US10211160B2 (en) | 2015-09-08 | 2019-02-19 | Invensas Corporation | Microelectronic assembly with redistribution structure formed on carrier |
US10096958B2 (en) * | 2015-09-24 | 2018-10-09 | Spire Manufacturing Inc. | Interface apparatus for semiconductor testing and method of manufacturing same |
CN108290070A (en) | 2015-10-01 | 2018-07-17 | Mc10股份有限公司 | Method and system for interacting with virtual environment |
US10532211B2 (en) | 2015-10-05 | 2020-01-14 | Mc10, Inc. | Method and system for neuromodulation and stimulation |
US9490222B1 (en) * | 2015-10-12 | 2016-11-08 | Invensas Corporation | Wire bond wires for interference shielding |
KR101787832B1 (en) * | 2015-10-22 | 2017-10-19 | 앰코 테크놀로지 코리아 주식회사 | Method for fabricating semiconductor package and semiconductor package using the same |
US10181457B2 (en) | 2015-10-26 | 2019-01-15 | Invensas Corporation | Microelectronic package for wafer-level chip scale packaging with fan-out |
DE102015118664B4 (en) * | 2015-10-30 | 2024-06-27 | Infineon Technologies Ag | METHOD FOR PRODUCING A POWER SEMICONDUCTOR MODULE |
US9911718B2 (en) | 2015-11-17 | 2018-03-06 | Invensas Corporation | ‘RDL-First’ packaged microelectronic device for a package-on-package device |
US9666560B1 (en) | 2015-11-25 | 2017-05-30 | Invensas Corporation | Multi-chip microelectronic assembly with built-up fine-patterned circuit structure |
US10083894B2 (en) * | 2015-12-17 | 2018-09-25 | International Business Machines Corporation | Integrated die paddle structures for bottom terminated components |
CN105514057B (en) * | 2016-01-15 | 2017-03-29 | 气派科技股份有限公司 | High-density integrated circuit package structure and integrated circuit |
US20200066676A1 (en) * | 2016-02-05 | 2020-02-27 | Hewlett Packard Enterprise Development Lp | Dual in-line memory module |
CN108781314B (en) | 2016-02-22 | 2022-07-08 | 美谛达解决方案公司 | System, apparatus and method for on-body data and power transfer |
EP3420733A4 (en) | 2016-02-22 | 2019-06-26 | Mc10, Inc. | System, device, and method for coupled hub and sensor node on-body acquisition of sensor information |
WO2017184705A1 (en) | 2016-04-19 | 2017-10-26 | Mc10, Inc. | Method and system for measuring perspiration |
TWI590349B (en) * | 2016-04-27 | 2017-07-01 | 南茂科技股份有限公司 | Chip package and chip packaging process |
CN105972017B (en) * | 2016-06-21 | 2019-01-18 | 黄伟 | A kind of automatic control dispensing method |
US9991233B2 (en) * | 2016-07-22 | 2018-06-05 | Invensas Corporation | Package-on-package devices with same level WLP components and methods therefor |
US9935075B2 (en) | 2016-07-29 | 2018-04-03 | Invensas Corporation | Wire bonding method and apparatus for electromagnetic interference shielding |
US10447347B2 (en) | 2016-08-12 | 2019-10-15 | Mc10, Inc. | Wireless charger and high speed data off-loader |
US10631410B2 (en) | 2016-09-24 | 2020-04-21 | Apple Inc. | Stacked printed circuit board packages |
US20180114786A1 (en) * | 2016-10-21 | 2018-04-26 | Powertech Technology Inc. | Method of forming package-on-package structure |
US10299368B2 (en) | 2016-12-21 | 2019-05-21 | Invensas Corporation | Surface integrated waveguides and circuit structures therefor |
CN106876363A (en) * | 2017-03-13 | 2017-06-20 | 江苏长电科技股份有限公司 | The fan-out package structure and its process of 3D connections |
US10522505B2 (en) | 2017-04-06 | 2019-12-31 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package and method for manufacturing the same |
US10707635B2 (en) * | 2017-05-15 | 2020-07-07 | Current Lighting Solutions, Llc | Method for providing a wire connection to a printed circuit board |
US20190206827A1 (en) * | 2017-12-29 | 2019-07-04 | Intel Corporation | Semiconductor package with externally accessible wirebonds |
US10672693B2 (en) | 2018-04-03 | 2020-06-02 | Intel Corporation | Integrated circuit structures in package substrates |
CN108878382A (en) * | 2018-06-01 | 2018-11-23 | 江苏长电科技股份有限公司 | Packaging structure with electromagnetic shielding and process method thereof |
US10593647B2 (en) * | 2018-06-27 | 2020-03-17 | Powertech Technology Inc. | Package structure and manufacturing method thereof |
US10854476B2 (en) * | 2018-08-06 | 2020-12-01 | Sj Semiconductor (Jiangyin) Corporation | Semiconductor vertical wire bonding structure and method |
US20200083132A1 (en) | 2018-09-07 | 2020-03-12 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package |
US11437322B2 (en) | 2018-09-07 | 2022-09-06 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package |
US10872866B2 (en) * | 2018-10-08 | 2020-12-22 | Advanced Semiconductor Engineering, Inc. | Semiconductor package and method of manufacturing the same |
US11239400B1 (en) * | 2020-01-08 | 2022-02-01 | Facebook Technologies, Llc | Curved pillar interconnects |
TWI767243B (en) * | 2020-05-29 | 2022-06-11 | 矽品精密工業股份有限公司 | Electronic package |
KR20220000087A (en) * | 2020-06-25 | 2022-01-03 | 삼성전기주식회사 | Electronic device module |
JP2022033633A (en) | 2020-08-17 | 2022-03-02 | キオクシア株式会社 | Semiconductor device |
JP2022112923A (en) | 2021-01-22 | 2022-08-03 | キオクシア株式会社 | Semiconductor device and method for manufacturing the same |
CN113345860B (en) * | 2021-06-03 | 2022-09-09 | 长江存储科技有限责任公司 | Chip packaging structure and manufacturing method thereof |
US20230197585A1 (en) * | 2021-12-20 | 2023-06-22 | Infineon Technologies Ag | Semiconductor package interconnect and power connection by metallized structures on package body |
JP2023122330A (en) * | 2022-02-22 | 2023-09-01 | キオクシア株式会社 | Semiconductor device and method for manufacturing the same |
US12100655B2 (en) | 2022-05-17 | 2024-09-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuits having signal lines formed with double patterning |
TWI822634B (en) * | 2022-07-20 | 2023-11-11 | 強茂股份有限公司 | Wafer level chip size packaging method |
TWI830388B (en) * | 2022-09-19 | 2024-01-21 | 大陸商芯愛科技(南京)有限公司 | Manufacturing method of electronic package and carrier stucture thereof |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623649A (en) * | 1969-06-09 | 1971-11-30 | Gen Motors Corp | Wedge bonding tool for the attachment of semiconductor leads |
US3795037A (en) * | 1970-05-05 | 1974-03-05 | Int Computers Ltd | Electrical connector devices |
US4327860A (en) * | 1980-01-03 | 1982-05-04 | Kulicke And Soffa Ind. Inc. | Method of making slack free wire interconnections |
US4422568A (en) * | 1981-01-12 | 1983-12-27 | Kulicke And Soffa Industries, Inc. | Method of making constant bonding wire tail lengths |
US4437604A (en) * | 1982-03-15 | 1984-03-20 | Kulicke & Soffa Industries, Inc. | Method of making fine wire interconnections |
US4793814A (en) * | 1986-07-21 | 1988-12-27 | Rogers Corporation | Electrical circuit board interconnect |
US5455390A (en) * | 1994-02-01 | 1995-10-03 | Tessera, Inc. | Microelectronics unit mounting with multiple lead bonding |
US5495667A (en) * | 1994-11-07 | 1996-03-05 | Micron Technology, Inc. | Method for forming contact pins for semiconductor dice and interconnects |
US5518964A (en) * | 1994-07-07 | 1996-05-21 | Tessera, Inc. | Microelectronic mounting with multiple lead deformation and bonding |
US5688716A (en) * | 1994-07-07 | 1997-11-18 | Tessera, Inc. | Fan-out semiconductor chip assembly |
US5989936A (en) * | 1994-07-07 | 1999-11-23 | Tessera, Inc. | Microelectronic assembly fabrication with terminal formation from a conductive layer |
US6002168A (en) * | 1997-11-25 | 1999-12-14 | Tessera, Inc. | Microelectronic component with rigid interposer |
US6117694A (en) * | 1994-07-07 | 2000-09-12 | Tessera, Inc. | Flexible lead structures and methods of making same |
US6133072A (en) * | 1996-12-13 | 2000-10-17 | Tessera, Inc. | Microelectronic connector with planar elastomer sockets |
US6158647A (en) * | 1998-09-29 | 2000-12-12 | Micron Technology, Inc. | Concave face wire bond capillary |
US6208024B1 (en) * | 1996-12-12 | 2001-03-27 | Tessera, Inc. | Microelectronic mounting with multiple lead deformation using restraining straps |
US6215670B1 (en) * | 1993-11-16 | 2001-04-10 | Formfactor, Inc. | Method for manufacturing raised electrical contact pattern of controlled geometry |
US6262482B1 (en) * | 1998-02-03 | 2001-07-17 | Oki Electric Industry Co., Ltd. | Semiconductor device |
US6774494B2 (en) * | 2001-03-22 | 2004-08-10 | Renesas Technology Corp. | Semiconductor device and manufacturing method thereof |
US6828668B2 (en) * | 1994-07-07 | 2004-12-07 | Tessera, Inc. | Flexible lead structures and methods of making same |
US20050151238A1 (en) * | 2003-12-29 | 2005-07-14 | Vinu Yamunan | Three-level leadframe for no-lead packages |
US6962282B2 (en) * | 2002-03-09 | 2005-11-08 | Fujitsu Limited | System for providing an open-cavity low profile encapsulated semiconductor package |
US7262124B2 (en) * | 2002-11-21 | 2007-08-28 | Kaijo Corporation | Wire loop, semiconductor device having same, wire bonding method and wire bonding apparatus |
US20070290325A1 (en) * | 2006-06-16 | 2007-12-20 | Lite-On Semiconductor Corporation | Surface mounting structure and packaging method thereof |
US7737545B2 (en) * | 2003-09-24 | 2010-06-15 | Interconnect Portfolio Llc | Multi-surface IC packaging structures and methods for their manufacture |
US7780064B2 (en) * | 2006-06-02 | 2010-08-24 | Asm Technology Singapore Pte Ltd | Wire bonding method for forming low-loop profiles |
US7880290B2 (en) * | 2006-12-29 | 2011-02-01 | Samsung Electronics Co., Ltd. | Flip-chip packages allowing reduced size without electrical shorts and methods of manufacturing the same |
US7964956B1 (en) * | 2007-12-10 | 2011-06-21 | Oracle America, Inc. | Circuit packaging and connectivity |
US7967062B2 (en) * | 2006-06-16 | 2011-06-28 | International Business Machines Corporation | Thermally conductive composite interface, cooled electronic assemblies employing the same, and methods of fabrication thereof |
US8039970B2 (en) * | 2007-01-31 | 2011-10-18 | Kabushiki Kaisha Toshiba | Stacked semiconductor device and method of manufacturing the same |
US20110272449A1 (en) * | 2007-10-04 | 2011-11-10 | Texas Instruments Incorporated | Dual Capillary IC Wirebonding |
US8071470B2 (en) * | 2008-10-23 | 2011-12-06 | Carsem (M) Sdn. Bhd. | Wafer level package using stud bump coated with solder |
US8213184B2 (en) * | 2006-08-04 | 2012-07-03 | International Business Machines Corporation | Method of testing using a temporary chip attach carrier |
Family Cites Families (785)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2230663A (en) | 1940-01-18 | 1941-02-04 | Alden Milton | Electric contact and wire assembly mechanism |
DE1439262B2 (en) | 1963-07-23 | 1972-03-30 | Siemens AG, 1000 Berlin u. 8000 München | METHOD OF CONTACTING SEMICONDUCTOR COMPONENTS BY THERMOCOMPRESSION |
US3358897A (en) | 1964-03-31 | 1967-12-19 | Tempress Res Co | Electric lead wire bonding tools |
US3430835A (en) | 1966-06-07 | 1969-03-04 | Westinghouse Electric Corp | Wire bonding apparatus for microelectronic components |
DE2228703A1 (en) | 1972-06-13 | 1974-01-10 | Licentia Gmbh | PROCESS FOR MANUFACTURING A SPECIFIED SOLDER THICKNESS IN THE MANUFACTURING OF SEMI-CONDUCTOR COMPONENTS |
JPS5150661A (en) * | 1974-10-30 | 1976-05-04 | Hitachi Ltd | |
US4072816A (en) | 1976-12-13 | 1978-02-07 | International Business Machines Corporation | Integrated circuit package |
US4067104A (en) | 1977-02-24 | 1978-01-10 | Rockwell International Corporation | Method of fabricating an array of flexible metallic interconnects for coupling microelectronics components |
US4213556A (en) | 1978-10-02 | 1980-07-22 | General Motors Corporation | Method and apparatus to detect automatic wire bonder failure |
JPS59189069A (en) | 1983-04-12 | 1984-10-26 | Alps Electric Co Ltd | Device and method for coating solder on terminal |
JPS59189069U (en) | 1983-06-02 | 1984-12-14 | 昭和アルミニウム株式会社 | Cooling system |
JPS61125062A (en) | 1984-11-22 | 1986-06-12 | Hitachi Ltd | Method and device for attaching pin |
US4667267A (en) | 1985-01-22 | 1987-05-19 | Rogers Corporation | Decoupling capacitor for pin grid array package |
US4604644A (en) | 1985-01-28 | 1986-08-05 | International Business Machines Corporation | Solder interconnection structure for joining semiconductor devices to substrates that have improved fatigue life, and process for making |
US4642889A (en) | 1985-04-29 | 1987-02-17 | Amp Incorporated | Compliant interconnection and method therefor |
JPS61269345A (en) | 1985-05-24 | 1986-11-28 | Hitachi Ltd | Semiconductor device |
JP2608701B2 (en) | 1985-09-19 | 1997-05-14 | 三菱電機株式会社 | Inspection circuit for protective device |
US5917707A (en) | 1993-11-16 | 1999-06-29 | Formfactor, Inc. | Flexible contact structure with an electrically conductive shell |
US4924353A (en) | 1985-12-20 | 1990-05-08 | Hughes Aircraft Company | Connector system for coupling to an integrated circuit chip |
US4716049A (en) | 1985-12-20 | 1987-12-29 | Hughes Aircraft Company | Compressive pedestal for microminiature connections |
JPS62158338A (en) | 1985-12-28 | 1987-07-14 | Tanaka Denshi Kogyo Kk | Semiconductor device |
US4695870A (en) | 1986-03-27 | 1987-09-22 | Hughes Aircraft Company | Inverted chip carrier |
JPS62226307A (en) | 1986-03-28 | 1987-10-05 | Toshiba Corp | Robot device |
US4771930A (en) | 1986-06-30 | 1988-09-20 | Kulicke And Soffa Industries Inc. | Apparatus for supplying uniform tail lengths |
JPH07122787B2 (en) | 1986-09-30 | 1995-12-25 | カシオ計算機株式会社 | Continuous character generator |
JPS6397941A (en) | 1986-10-14 | 1988-04-28 | Fuji Photo Film Co Ltd | Photosensitive material |
US4955523A (en) | 1986-12-17 | 1990-09-11 | Raychem Corporation | Interconnection of electronic components |
DE3703694A1 (en) | 1987-02-06 | 1988-08-18 | Dynapert Delvotec Gmbh | BALL BONDING METHOD AND DEVICE FOR CARRYING OUT THE SAME |
KR970003915B1 (en) | 1987-06-24 | 1997-03-22 | 미다 가쓰시게 | Semiconductor device and the use memory module |
US5138438A (en) | 1987-06-24 | 1992-08-11 | Akita Electronics Co. Ltd. | Lead connections means for stacked tab packaged IC chips |
JP2642359B2 (en) | 1987-09-11 | 1997-08-20 | 株式会社日立製作所 | Semiconductor device |
JPS6412769A (en) | 1987-07-07 | 1989-01-17 | Sony Corp | Correction circuit for image distortion |
US4804132A (en) | 1987-08-28 | 1989-02-14 | Difrancesco Louis | Method for cold bonding |
US4845354A (en) | 1988-03-08 | 1989-07-04 | International Business Machines Corporation | Process control for laser wire bonding |
JPH01313969A (en) | 1988-06-13 | 1989-12-19 | Hitachi Ltd | Semiconductor device |
US4998885A (en) | 1989-10-27 | 1991-03-12 | International Business Machines Corporation | Elastomeric area array interposer |
US5077598A (en) | 1989-11-08 | 1991-12-31 | Hewlett-Packard Company | Strain relief flip-chip integrated circuit assembly with test fixturing |
US5095187A (en) | 1989-12-20 | 1992-03-10 | Raychem Corporation | Weakening wire supplied through a wire bonder |
AU637874B2 (en) | 1990-01-23 | 1993-06-10 | Sumitomo Electric Industries, Ltd. | Substrate for packaging a semiconductor device |
CA2034703A1 (en) | 1990-01-23 | 1991-07-24 | Masanori Nishiguchi | Substrate for packaging a semiconductor device |
US5376403A (en) | 1990-02-09 | 1994-12-27 | Capote; Miguel A. | Electrically conductive compositions and methods for the preparation and use thereof |
US5948533A (en) | 1990-02-09 | 1999-09-07 | Ormet Corporation | Vertically interconnected electronic assemblies and compositions useful therefor |
US5083697A (en) | 1990-02-14 | 1992-01-28 | Difrancesco Louis | Particle-enhanced joining of metal surfaces |
US4975079A (en) | 1990-02-23 | 1990-12-04 | International Business Machines Corp. | Connector assembly for chip testing |
US4999472A (en) | 1990-03-12 | 1991-03-12 | Neinast James E | Electric arc system for ablating a surface coating |
US5241456A (en) | 1990-07-02 | 1993-08-31 | General Electric Company | Compact high density interconnect structure |
US5148265A (en) | 1990-09-24 | 1992-09-15 | Ist Associates, Inc. | Semiconductor chip assemblies with fan-in leads |
US5148266A (en) | 1990-09-24 | 1992-09-15 | Ist Associates, Inc. | Semiconductor chip assemblies having interposer and flexible lead |
US5679977A (en) | 1990-09-24 | 1997-10-21 | Tessera, Inc. | Semiconductor chip assemblies, methods of making same and components for same |
US5067382A (en) | 1990-11-02 | 1991-11-26 | Cray Computer Corporation | Method and apparatus for notching a lead wire attached to an IC chip to facilitate severing the wire |
KR940001149B1 (en) | 1991-04-16 | 1994-02-14 | 삼성전자 주식회사 | Chip bonding method of semiconductor device |
JPH04346436A (en) | 1991-05-24 | 1992-12-02 | Fujitsu Ltd | Bump manufacturing method and device |
US5316788A (en) | 1991-07-26 | 1994-05-31 | International Business Machines Corporation | Applying solder to high density substrates |
US5133495A (en) | 1991-08-12 | 1992-07-28 | International Business Machines Corporation | Method of bonding flexible circuit to circuitized substrate to provide electrical connection therebetween |
US5203075A (en) | 1991-08-12 | 1993-04-20 | Inernational Business Machines | Method of bonding flexible circuit to cicuitized substrate to provide electrical connection therebetween using different solders |
JPH06510122A (en) | 1991-08-23 | 1994-11-10 | エヌチップ インコーポレイテッド | Burn-in techniques for unpackaged integrated circuits |
US5220489A (en) | 1991-10-11 | 1993-06-15 | Motorola, Inc. | Multicomponent integrated circuit package |
US5238173A (en) | 1991-12-04 | 1993-08-24 | Kaijo Corporation | Wire bonding misattachment detection apparatus and that detection method in a wire bonder |
JP2931936B2 (en) | 1992-01-17 | 1999-08-09 | 株式会社日立製作所 | Method for manufacturing lead frame for semiconductor device, lead frame for semiconductor device, and resin-sealed semiconductor device |
US5241454A (en) | 1992-01-22 | 1993-08-31 | International Business Machines Corporation | Mutlilayered flexible circuit package |
US5831836A (en) | 1992-01-30 | 1998-11-03 | Lsi Logic | Power plane for semiconductor device |
US5222014A (en) | 1992-03-02 | 1993-06-22 | Motorola, Inc. | Three-dimensional multi-chip pad array carrier |
US5438224A (en) | 1992-04-23 | 1995-08-01 | Motorola, Inc. | Integrated circuit package having a face-to-face IC chip arrangement |
US5494667A (en) | 1992-06-04 | 1996-02-27 | Kabushiki Kaisha Hayahibara | Topically applied hair restorer containing pine extract |
US5977618A (en) | 1992-07-24 | 1999-11-02 | Tessera, Inc. | Semiconductor connection components and methods with releasable lead support |
US6054756A (en) | 1992-07-24 | 2000-04-25 | Tessera, Inc. | Connection components with frangible leads and bus |
WO1994003036A1 (en) | 1992-07-24 | 1994-02-03 | Tessera, Inc. | Semiconductor connection components and methods with releasable lead support |
US20050062492A1 (en) | 2001-08-03 | 2005-03-24 | Beaman Brian Samuel | High density integrated circuit apparatus, test probe and methods of use thereof |
US5371654A (en) | 1992-10-19 | 1994-12-06 | International Business Machines Corporation | Three dimensional high performance interconnection package |
US6295729B1 (en) | 1992-10-19 | 2001-10-02 | International Business Machines Corporation | Angled flying lead wire bonding process |
JP2716336B2 (en) | 1993-03-10 | 1998-02-18 | 日本電気株式会社 | Integrated circuit device |
JPH06268101A (en) | 1993-03-17 | 1994-09-22 | Hitachi Ltd | Semiconductor device and its manufacture, electronic device, lead frame, and mounting substrate |
US5340771A (en) | 1993-03-18 | 1994-08-23 | Lsi Logic Corporation | Techniques for providing high I/O count connections to semiconductor dies |
US5811982A (en) | 1995-11-27 | 1998-09-22 | International Business Machines Corporation | High density cantilevered probe for electronic devices |
US7368924B2 (en) * | 1993-04-30 | 2008-05-06 | International Business Machines Corporation | Probe structure having a plurality of discrete insulated probe tips projecting from a support surface, apparatus for use thereof and methods of fabrication thereof |
US20030048108A1 (en) | 1993-04-30 | 2003-03-13 | Beaman Brian Samuel | Structural design and processes to control probe position accuracy in a wafer test probe assembly |
JPH06333931A (en) | 1993-05-20 | 1994-12-02 | Nippondenso Co Ltd | Manufacture of fine electrode of semiconductor device |
JP2981385B2 (en) | 1993-09-06 | 1999-11-22 | シャープ株式会社 | Structure of chip component type LED and method of manufacturing the same |
US5346118A (en) | 1993-09-28 | 1994-09-13 | At&T Bell Laboratories | Surface mount solder assembly of leadless integrated circuit packages to substrates |
US6835898B2 (en) * | 1993-11-16 | 2004-12-28 | Formfactor, Inc. | Electrical contact structures formed by configuring a flexible wire to have a springable shape and overcoating the wire with at least one layer of a resilient conductive material, methods of mounting the contact structures to electronic components, and applications for employing the contact structures |
US6741085B1 (en) | 1993-11-16 | 2004-05-25 | Formfactor, Inc. | Contact carriers (tiles) for populating larger substrates with spring contacts |
EP1213754A3 (en) | 1994-03-18 | 2005-05-25 | Hitachi Chemical Co., Ltd. | Fabrication process of semiconductor package and semiconductor package |
US5578869A (en) | 1994-03-29 | 1996-11-26 | Olin Corporation | Components for housing an integrated circuit device |
US5802699A (en) | 1994-06-07 | 1998-09-08 | Tessera, Inc. | Methods of assembling microelectronic assembly with socket for engaging bump leads |
US5615824A (en) | 1994-06-07 | 1997-04-01 | Tessera, Inc. | Soldering with resilient contacts |
JPH07335783A (en) | 1994-06-13 | 1995-12-22 | Fujitsu Ltd | Semiconductor device and semiconductor device unit |
US5468995A (en) | 1994-07-05 | 1995-11-21 | Motorola, Inc. | Semiconductor device having compliant columnar electrical connections |
US6177636B1 (en) | 1994-12-29 | 2001-01-23 | Tessera, Inc. | Connection components with posts |
US5656550A (en) | 1994-08-24 | 1997-08-12 | Fujitsu Limited | Method of producing a semicondutor device having a lead portion with outer connecting terminal |
US5659952A (en) | 1994-09-20 | 1997-08-26 | Tessera, Inc. | Method of fabricating compliant interface for semiconductor chip |
US5541567A (en) | 1994-10-17 | 1996-07-30 | International Business Machines Corporation | Coaxial vias in an electronic substrate |
US5679954A (en) | 1994-11-14 | 1997-10-21 | Soloman; Sabrie | Non-destructive identification of tablet and tablet dissolution by means of infared spectroscopy |
DE69531996T2 (en) * | 1994-11-15 | 2004-07-22 | Formfactor, Inc., Livermore | ELECTRICAL CONTACT STRUCTURE MADE OF FLEXIBLE WIRE |
US6826827B1 (en) | 1994-12-29 | 2004-12-07 | Tessera, Inc. | Forming conductive posts by selective removal of conductive material |
JP2833522B2 (en) | 1995-04-27 | 1998-12-09 | 日本電気株式会社 | Semiconductor device |
US5736074A (en) | 1995-06-30 | 1998-04-07 | Micro Fab Technologies, Inc. | Manufacture of coated spheres |
US5971253A (en) | 1995-07-31 | 1999-10-26 | Tessera, Inc. | Microelectronic component mounting with deformable shell terminals |
US5872051A (en) | 1995-08-02 | 1999-02-16 | International Business Machines Corporation | Process for transferring material to semiconductor chip conductive pads using a transfer substrate |
US5874781A (en) | 1995-08-16 | 1999-02-23 | Micron Technology, Inc. | Angularly offset stacked die multichip device and method of manufacture |
US5886412A (en) | 1995-08-16 | 1999-03-23 | Micron Technology, Inc. | Angularly offset and recessed stacked die multichip device |
US5810609A (en) | 1995-08-28 | 1998-09-22 | Tessera, Inc. | Socket for engaging bump leads on a microelectronic device and methods therefor |
US5766987A (en) | 1995-09-22 | 1998-06-16 | Tessera, Inc. | Microelectronic encapsulation methods and equipment |
US6211572B1 (en) | 1995-10-31 | 2001-04-03 | Tessera, Inc. | Semiconductor chip package with fan-in leads |
JP3332308B2 (en) | 1995-11-07 | 2002-10-07 | 新光電気工業株式会社 | Semiconductor device and manufacturing method thereof |
JPH09134934A (en) | 1995-11-07 | 1997-05-20 | Sumitomo Metal Ind Ltd | Semiconductor package and semiconductor device |
US5718361A (en) | 1995-11-21 | 1998-02-17 | International Business Machines Corporation | Apparatus and method for forming mold for metallic material |
US5731709A (en) | 1996-01-26 | 1998-03-24 | Motorola, Inc. | Method for testing a ball grid array semiconductor device and a device for such testing |
US7166495B2 (en) | 1996-02-20 | 2007-01-23 | Micron Technology, Inc. | Method of fabricating a multi-die semiconductor package assembly |
US5994152A (en) | 1996-02-21 | 1999-11-30 | Formfactor, Inc. | Fabricating interconnects and tips using sacrificial substrates |
JP3146345B2 (en) | 1996-03-11 | 2001-03-12 | アムコー テクノロジー コリア インコーポレーティド | Bump forming method for bump chip scale semiconductor package |
US6000126A (en) | 1996-03-29 | 1999-12-14 | General Dynamics Information Systems, Inc. | Method and apparatus for connecting area grid arrays to printed wire board |
US6821821B2 (en) | 1996-04-18 | 2004-11-23 | Tessera, Inc. | Methods for manufacturing resistors using a sacrificial layer |
DE19618227A1 (en) | 1996-05-07 | 1997-11-13 | Herbert Streckfus Gmbh | Method and device for soldering electronic components on a printed circuit board |
KR100186333B1 (en) | 1996-06-20 | 1999-03-20 | 문정환 | Chip-sized semiconductor package and its manufacturing method |
JPH1012769A (en) | 1996-06-24 | 1998-01-16 | Ricoh Co Ltd | Semiconductor device and its manufacture |
JPH10135221A (en) | 1996-10-29 | 1998-05-22 | Taiyo Yuden Co Ltd | Bump-forming method |
EP2270845A3 (en) | 1996-10-29 | 2013-04-03 | Invensas Corporation | Integrated circuits and methods for their fabrication |
JPH10135220A (en) | 1996-10-29 | 1998-05-22 | Taiyo Yuden Co Ltd | Bump-forming method |
US6492719B2 (en) | 1999-07-30 | 2002-12-10 | Hitachi, Ltd. | Semiconductor device |
US6054337A (en) | 1996-12-13 | 2000-04-25 | Tessera, Inc. | Method of making a compliant multichip package |
US6225688B1 (en) | 1997-12-11 | 2001-05-01 | Tessera, Inc. | Stacked microelectronic assembly and method therefor |
US6121676A (en) | 1996-12-13 | 2000-09-19 | Tessera, Inc. | Stacked microelectronic assembly and method therefor |
US5736785A (en) | 1996-12-20 | 1998-04-07 | Industrial Technology Research Institute | Semiconductor package for improving the capability of spreading heat |
JP3400279B2 (en) | 1997-01-13 | 2003-04-28 | 株式会社新川 | Bump forming method |
US5898991A (en) | 1997-01-16 | 1999-05-04 | International Business Machines Corporation | Methods of fabrication of coaxial vias and magnetic devices |
US5839191A (en) | 1997-01-24 | 1998-11-24 | Unisys Corporation | Vibrating template method of placing solder balls on the I/O pads of an integrated circuit package |
JPH1118364A (en) | 1997-06-27 | 1999-01-22 | Matsushita Electric Ind Co Ltd | Capstan motor |
EP1030369B1 (en) | 1997-08-19 | 2007-12-12 | Hitachi, Ltd. | Multichip module structure and method for manufacturing the same |
CA2213590C (en) | 1997-08-21 | 2006-11-07 | Keith C. Carroll | Flexible circuit connector and method of making same |
JP3859318B2 (en) | 1997-08-29 | 2006-12-20 | シチズン電子株式会社 | Electronic circuit packaging method |
US6525414B2 (en) | 1997-09-16 | 2003-02-25 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device including a wiring board and semiconductor elements mounted thereon |
JP3937265B2 (en) | 1997-09-29 | 2007-06-27 | エルピーダメモリ株式会社 | Semiconductor device |
JP3262531B2 (en) * | 1997-10-02 | 2002-03-04 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Bent flying lead wire bonding process |
JP2978861B2 (en) | 1997-10-28 | 1999-11-15 | 九州日本電気株式会社 | Molded BGA type semiconductor device and manufacturing method thereof |
US6038136A (en) | 1997-10-29 | 2000-03-14 | Hestia Technologies, Inc. | Chip package with molded underfill |
JP3393800B2 (en) * | 1997-11-05 | 2003-04-07 | 新光電気工業株式会社 | Manufacturing method of semiconductor device |
JPH11219984A (en) | 1997-11-06 | 1999-08-10 | Sharp Corp | Semiconductor device package, its manufacture and circuit board therefor |
US6222136B1 (en) | 1997-11-12 | 2001-04-24 | International Business Machines Corporation | Printed circuit board with continuous connective bumps |
US6038133A (en) | 1997-11-25 | 2000-03-14 | Matsushita Electric Industrial Co., Ltd. | Circuit component built-in module and method for producing the same |
JPH11163022A (en) | 1997-11-28 | 1999-06-18 | Sony Corp | Semiconductor and manufacture of the same and electronic equipment |
US6124546A (en) | 1997-12-03 | 2000-09-26 | Advanced Micro Devices, Inc. | Integrated circuit chip package and method of making the same |
US6260264B1 (en) | 1997-12-08 | 2001-07-17 | 3M Innovative Properties Company | Methods for making z-axis electrical connections |
US6052287A (en) | 1997-12-09 | 2000-04-18 | Sandia Corporation | Silicon ball grid array chip carrier |
US5973391A (en) | 1997-12-11 | 1999-10-26 | Read-Rite Corporation | Interposer with embedded circuitry and method for using the same to package microelectronic units |
JP3536650B2 (en) | 1998-02-27 | 2004-06-14 | 富士ゼロックス株式会社 | Bump forming method and apparatus |
JPH11260856A (en) | 1998-03-11 | 1999-09-24 | Matsushita Electron Corp | Semiconductor device and its manufacture and mounting structure of the device |
US5933713A (en) | 1998-04-06 | 1999-08-03 | Micron Technology, Inc. | Method of forming overmolded chip scale package and resulting product |
US6222276B1 (en) | 1998-04-07 | 2001-04-24 | International Business Machines Corporation | Through-chip conductors for low inductance chip-to-chip integration and off-chip connections |
KR100260997B1 (en) | 1998-04-08 | 2000-07-01 | 마이클 디. 오브라이언 | Semiconductor package |
US6329224B1 (en) | 1998-04-28 | 2001-12-11 | Tessera, Inc. | Encapsulation of microelectronic assemblies |
US6180881B1 (en) | 1998-05-05 | 2001-01-30 | Harlan Ruben Isaak | Chip stack and method of making same |
JPH11330134A (en) | 1998-05-12 | 1999-11-30 | Hitachi Ltd | Wire-bonding method and device, and semiconductor device |
KR100266693B1 (en) | 1998-05-30 | 2000-09-15 | 김영환 | Stackable ball grid array semiconductor package and fabrication method thereof |
US5977640A (en) | 1998-06-26 | 1999-11-02 | International Business Machines Corporation | Highly integrated chip-on-chip packaging |
KR100265563B1 (en) | 1998-06-29 | 2000-09-15 | 김영환 | Ball grid array package and fabricating method thereof |
US6414391B1 (en) | 1998-06-30 | 2002-07-02 | Micron Technology, Inc. | Module assembly for stacked BGA packages with a common bus bar in the assembly |
US6164523A (en) * | 1998-07-01 | 2000-12-26 | Semiconductor Components Industries, Llc | Electronic component and method of manufacture |
US6399426B1 (en) | 1998-07-21 | 2002-06-04 | Miguel Albert Capote | Semiconductor flip-chip package and method for the fabrication thereof |
US5854507A (en) | 1998-07-21 | 1998-12-29 | Hewlett-Packard Company | Multiple chip assembly |
US6515355B1 (en) | 1998-09-02 | 2003-02-04 | Micron Technology, Inc. | Passivation layer for packaged integrated circuits |
JP2000091383A (en) | 1998-09-07 | 2000-03-31 | Ngk Spark Plug Co Ltd | Wiring board |
US6194250B1 (en) | 1998-09-14 | 2001-02-27 | Motorola, Inc. | Low-profile microelectronic package |
US6684007B2 (en) | 1998-10-09 | 2004-01-27 | Fujitsu Limited | Optical coupling structures and the fabrication processes |
US6268662B1 (en) | 1998-10-14 | 2001-07-31 | Texas Instruments Incorporated | Wire bonded flip-chip assembly of semiconductor devices |
JP3407275B2 (en) | 1998-10-28 | 2003-05-19 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Bump and method of forming the same |
US6332270B2 (en) | 1998-11-23 | 2001-12-25 | International Business Machines Corporation | Method of making high density integral test probe |
US6255126B1 (en) | 1998-12-02 | 2001-07-03 | Formfactor, Inc. | Lithographic contact elements |
WO2000045430A1 (en) | 1999-01-29 | 2000-08-03 | Matsushita Electric Industrial Co., Ltd. | Electronic parts mounting method and device therefor |
US6206273B1 (en) | 1999-02-17 | 2001-03-27 | International Business Machines Corporation | Structures and processes to create a desired probetip contact geometry on a wafer test probe |
KR100319609B1 (en) | 1999-03-09 | 2002-01-05 | 김영환 | A wire arrayed chip size package and the fabrication method thereof |
US6177729B1 (en) | 1999-04-03 | 2001-01-23 | International Business Machines Corporation | Rolling ball connector |
US6211574B1 (en) | 1999-04-16 | 2001-04-03 | Advanced Semiconductor Engineering Inc. | Semiconductor package with wire protection and method therefor |
JP2000323516A (en) | 1999-05-14 | 2000-11-24 | Fujitsu Ltd | Manufacture of wiring substrate, wiring substrate, and semiconductor device |
US6376769B1 (en) | 1999-05-18 | 2002-04-23 | Amerasia International Technology, Inc. | High-density electronic package, and method for making same |
US6258625B1 (en) | 1999-05-18 | 2001-07-10 | International Business Machines Corporation | Method of interconnecting electronic components using a plurality of conductive studs |
JP3398721B2 (en) | 1999-05-20 | 2003-04-21 | アムコー テクノロジー コリア インコーポレーティド | Semiconductor package and manufacturing method thereof |
US6238949B1 (en) | 1999-06-18 | 2001-05-29 | National Semiconductor Corporation | Method and apparatus for forming a plastic chip on chip package module |
JP4367730B2 (en) | 1999-06-25 | 2009-11-18 | 株式会社エンプラス | IC socket and spring means of the IC socket |
US6228687B1 (en) | 1999-06-28 | 2001-05-08 | Micron Technology, Inc. | Wafer-level package and methods of fabricating |
TW417839U (en) | 1999-07-30 | 2001-01-01 | Shen Ming Tung | Stacked memory module structure and multi-layered stacked memory module structure using the same |
JP5333337B2 (en) | 1999-08-12 | 2013-11-06 | 富士通セミコンダクター株式会社 | Manufacturing method of semiconductor device |
US6168965B1 (en) | 1999-08-12 | 2001-01-02 | Tower Semiconductor Ltd. | Method for making backside illuminated image sensor |
JP4526651B2 (en) | 1999-08-12 | 2010-08-18 | 富士通セミコンダクター株式会社 | Semiconductor device |
US6319764B1 (en) | 1999-08-25 | 2001-11-20 | Micron Technology, Inc. | Method of forming haze-free BST films |
EP2081419B1 (en) | 1999-09-02 | 2013-08-07 | Ibiden Co., Ltd. | Printed circuit board and method of manufacturing printed circuit board |
US6867499B1 (en) | 1999-09-30 | 2005-03-15 | Skyworks Solutions, Inc. | Semiconductor packaging |
JP3513444B2 (en) | 1999-10-20 | 2004-03-31 | 株式会社新川 | Method for forming pin-shaped wires |
JP2001127246A (en) | 1999-10-29 | 2001-05-11 | Fujitsu Ltd | Semiconductor device |
US6362525B1 (en) | 1999-11-09 | 2002-03-26 | Cypress Semiconductor Corp. | Circuit structure including a passive element formed within a grid array substrate and method for making the same |
JP3619410B2 (en) | 1999-11-18 | 2005-02-09 | 株式会社ルネサステクノロジ | Bump forming method and system |
JP3798597B2 (en) | 1999-11-30 | 2006-07-19 | 富士通株式会社 | Semiconductor device |
JP3566156B2 (en) | 1999-12-02 | 2004-09-15 | 株式会社新川 | Method for forming pin-shaped wires |
US6790757B1 (en) | 1999-12-20 | 2004-09-14 | Agere Systems Inc. | Wire bonding method for copper interconnects in semiconductor devices |
KR100426494B1 (en) | 1999-12-20 | 2004-04-13 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor package and its manufacturing method |
KR20010061849A (en) | 1999-12-29 | 2001-07-07 | 박종섭 | Wafer level package |
JP2001196407A (en) | 2000-01-14 | 2001-07-19 | Seiko Instruments Inc | Semiconductor device and method of forming the same |
US6710454B1 (en) | 2000-02-16 | 2004-03-23 | Micron Technology, Inc. | Adhesive layer for an electronic apparatus having multiple semiconductor devices |
JP2001319992A (en) | 2000-02-28 | 2001-11-16 | Shinko Electric Ind Co Ltd | Wiring board, semiconductor device, and their manufacturing methods |
JP2001339011A (en) | 2000-03-24 | 2001-12-07 | Shinko Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
JP3980807B2 (en) | 2000-03-27 | 2007-09-26 | 株式会社東芝 | Semiconductor device and semiconductor module |
JP2001274196A (en) | 2000-03-28 | 2001-10-05 | Rohm Co Ltd | Semiconductor device |
US6581276B2 (en) | 2000-04-04 | 2003-06-24 | Amerasia International Technology, Inc. | Fine-pitch flexible connector, and method for making same |
KR100583491B1 (en) | 2000-04-07 | 2006-05-24 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor package and its manufacturing method |
US6578754B1 (en) | 2000-04-27 | 2003-06-17 | Advanpack Solutions Pte. Ltd. | Pillar connections for semiconductor chips and method of manufacture |
US6531335B1 (en) | 2000-04-28 | 2003-03-11 | Micron Technology, Inc. | Interposers including upwardly protruding dams, semiconductor device assemblies including the interposers, and methods |
JP2001326236A (en) | 2000-05-12 | 2001-11-22 | Nec Kyushu Ltd | Manufacturing method of semiconductor device |
JP2001326304A (en) | 2000-05-15 | 2001-11-22 | Toshiba Corp | Semiconductor device and its manufacturing method |
US6522018B1 (en) | 2000-05-16 | 2003-02-18 | Micron Technology, Inc. | Ball grid array chip packages having improved testing and stacking characteristics |
US6647310B1 (en) | 2000-05-30 | 2003-11-11 | Advanced Micro Devices, Inc. | Temperature control of an integrated circuit |
US6531784B1 (en) | 2000-06-02 | 2003-03-11 | Amkor Technology, Inc. | Semiconductor package with spacer strips |
US6717245B1 (en) | 2000-06-02 | 2004-04-06 | Micron Technology, Inc. | Chip scale packages performed by wafer level processing |
US6395199B1 (en) | 2000-06-07 | 2002-05-28 | Graftech Inc. | Process for providing increased conductivity to a material |
US6560117B2 (en) | 2000-06-28 | 2003-05-06 | Micron Technology, Inc. | Packaged microelectronic die assemblies and methods of manufacture |
US6525413B1 (en) | 2000-07-12 | 2003-02-25 | Micron Technology, Inc. | Die to die connection method and assemblies and packages including dice so connected |
US6476583B2 (en) | 2000-07-21 | 2002-11-05 | Jomahip, Llc | Automatic battery charging system for a battery back-up DC power supply |
JP2002050871A (en) | 2000-08-02 | 2002-02-15 | Casio Comput Co Ltd | Build-up circuit board and manufacturing method thereof |
SE517086C2 (en) | 2000-08-08 | 2002-04-09 | Ericsson Telefon Ab L M | Method for securing solder beads and any components attached to one and the same side of a substrate |
US20020020898A1 (en) | 2000-08-16 | 2002-02-21 | Vu Quat T. | Microelectronic substrates with integrated devices |
US6462575B1 (en) | 2000-08-28 | 2002-10-08 | Micron Technology, Inc. | Method and system for wafer level testing and burning-in semiconductor components |
JP2002076250A (en) | 2000-08-29 | 2002-03-15 | Nec Corp | Semiconductor device |
US6614103B1 (en) | 2000-09-01 | 2003-09-02 | General Electric Company | Plastic packaging of LED arrays |
JP3874062B2 (en) | 2000-09-05 | 2007-01-31 | セイコーエプソン株式会社 | Semiconductor device |
US6507104B2 (en) | 2000-09-07 | 2003-01-14 | Siliconware Precision Industries Co., Ltd. | Semiconductor package with embedded heat-dissipating device |
US7009297B1 (en) | 2000-10-13 | 2006-03-07 | Bridge Semiconductor Corporation | Semiconductor chip assembly with embedded metal particle |
US6423570B1 (en) | 2000-10-18 | 2002-07-23 | Intel Corporation | Method to protect an encapsulated die package during back grinding with a solder metallization layer and devices formed thereby |
US6538336B1 (en) | 2000-11-14 | 2003-03-25 | Rambus Inc. | Wirebond assembly for high-speed integrated circuits |
JP4505983B2 (en) | 2000-12-01 | 2010-07-21 | 日本電気株式会社 | Semiconductor device |
JP3798620B2 (en) | 2000-12-04 | 2006-07-19 | 富士通株式会社 | Manufacturing method of semiconductor device |
TW511405B (en) | 2000-12-27 | 2002-11-21 | Matsushita Electric Ind Co Ltd | Device built-in module and manufacturing method thereof |
US6734539B2 (en) | 2000-12-27 | 2004-05-11 | Lucent Technologies Inc. | Stacked module package |
KR100393102B1 (en) | 2000-12-29 | 2003-07-31 | 앰코 테크놀로지 코리아 주식회사 | Stacked semiconductor package |
AUPR244801A0 (en) | 2001-01-10 | 2001-02-01 | Silverbrook Research Pty Ltd | A method and apparatus (WSM01) |
US6388322B1 (en) | 2001-01-17 | 2002-05-14 | Aralight, Inc. | Article comprising a mechanically compliant bump |
US6653170B1 (en) | 2001-02-06 | 2003-11-25 | Charles W. C. Lin | Semiconductor chip assembly with elongated wire ball bonded to chip and electrolessly plated to support circuit |
US6472743B2 (en) | 2001-02-22 | 2002-10-29 | Siliconware Precision Industries, Co., Ltd. | Semiconductor package with heat dissipating structure |
KR100401020B1 (en) | 2001-03-09 | 2003-10-08 | 앰코 테크놀로지 코리아 주식회사 | Stacking structure of semiconductor chip and semiconductor package using it |
JP2002289769A (en) | 2001-03-26 | 2002-10-04 | Matsushita Electric Ind Co Ltd | Stacked semiconductor device and its manufacturing method |
SG108245A1 (en) | 2001-03-30 | 2005-01-28 | Micron Technology Inc | Ball grid array interposer, packages and methods |
ATE425556T1 (en) | 2001-04-12 | 2009-03-15 | Matsushita Electric Works Ltd | LIGHT SOURCE COMPONENT WITH LED AND METHOD FOR PRODUCING IT |
US7115986B2 (en) | 2001-05-02 | 2006-10-03 | Micron Technology, Inc. | Flexible ball grid array chip scale packages |
US6825552B2 (en) | 2001-05-09 | 2004-11-30 | Tessera, Inc. | Connection components with anisotropic conductive material interconnection |
TW544826B (en) | 2001-05-18 | 2003-08-01 | Nec Electronics Corp | Flip-chip-type semiconductor device and manufacturing method thereof |
US6930256B1 (en) | 2002-05-01 | 2005-08-16 | Amkor Technology, Inc. | Integrated circuit substrate having laser-embedded conductive patterns and method therefor |
US6900528B2 (en) | 2001-06-21 | 2005-05-31 | Micron Technology, Inc. | Stacked mass storage flash memory package |
US6754407B2 (en) | 2001-06-26 | 2004-06-22 | Intel Corporation | Flip-chip package integrating optical and electrical devices and coupling to a waveguide on a board |
US20030006494A1 (en) | 2001-07-03 | 2003-01-09 | Lee Sang Ho | Thin profile stackable semiconductor package and method for manufacturing |
US6486545B1 (en) | 2001-07-26 | 2002-11-26 | Amkor Technology, Inc. | Pre-drilled ball grid array package |
US6451626B1 (en) | 2001-07-27 | 2002-09-17 | Charles W.C. Lin | Three-dimensional stacked semiconductor package |
US6765287B1 (en) | 2001-07-27 | 2004-07-20 | Charles W. C. Lin | Three-dimensional stacked semiconductor package |
JP4023159B2 (en) | 2001-07-31 | 2007-12-19 | ソニー株式会社 | Manufacturing method of semiconductor device and manufacturing method of laminated semiconductor device |
JP3895952B2 (en) | 2001-08-06 | 2007-03-22 | 日本電気株式会社 | Transflective liquid crystal display device and manufacturing method thereof |
US6550666B2 (en) | 2001-08-21 | 2003-04-22 | Advanpack Solutions Pte Ltd | Method for forming a flip chip on leadframe semiconductor package |
US7605479B2 (en) | 2001-08-22 | 2009-10-20 | Tessera, Inc. | Stacked chip assembly with encapsulant layer |
US7176506B2 (en) | 2001-08-28 | 2007-02-13 | Tessera, Inc. | High frequency chip packages with connecting elements |
SG117395A1 (en) | 2001-08-29 | 2005-12-29 | Micron Technology Inc | Wire bonded microelectronic device assemblies and methods of manufacturing same |
US6864166B1 (en) | 2001-08-29 | 2005-03-08 | Micron Technology, Inc. | Method of manufacturing wire bonded microelectronic device assemblies |
US6787926B2 (en) | 2001-09-05 | 2004-09-07 | Taiwan Semiconductor Manufacturing Co., Ltd | Wire stitch bond on an integrated circuit bond pad and method of making the same |
US20030057544A1 (en) | 2001-09-13 | 2003-03-27 | Nathan Richard J. | Integrated assembly protocol |
US6476506B1 (en) | 2001-09-28 | 2002-11-05 | Motorola, Inc. | Packaged semiconductor with multiple rows of bond pads and method therefor |
DE10297316T5 (en) | 2001-10-09 | 2004-12-09 | Tessera, Inc., San Jose | Stacked assemblies |
US6977440B2 (en) | 2001-10-09 | 2005-12-20 | Tessera, Inc. | Stacked packages |
JP2003122611A (en) | 2001-10-11 | 2003-04-25 | Oki Electric Ind Co Ltd | Data providing method and server device |
JP4257771B2 (en) | 2001-10-16 | 2009-04-22 | シンジーテック株式会社 | Conductive blade |
US20030094666A1 (en) | 2001-11-16 | 2003-05-22 | R-Tec Corporation | Interposer |
JP3875077B2 (en) | 2001-11-16 | 2007-01-31 | 富士通株式会社 | Electronic device and device connection method |
JP2003174124A (en) | 2001-12-04 | 2003-06-20 | Sainekkusu:Kk | Method of forming external electrode of semiconductor device |
KR100435813B1 (en) | 2001-12-06 | 2004-06-12 | 삼성전자주식회사 | Multi chip package using metal bar and manufacturing method thereof |
JP2003197668A (en) | 2001-12-10 | 2003-07-11 | Senmao Koochii Kofun Yugenkoshi | Bonding wire for semiconductor package, and its manufacturing method |
JP3507059B2 (en) | 2002-06-27 | 2004-03-15 | 沖電気工業株式会社 | Stacked multi-chip package |
JP2003197669A (en) | 2001-12-28 | 2003-07-11 | Seiko Epson Corp | Bonding method and bonding apparatus |
TW584950B (en) | 2001-12-31 | 2004-04-21 | Megic Corp | Chip packaging structure and process thereof |
TW548816B (en) | 2002-01-23 | 2003-08-21 | Via Tech Inc | Formation method of conductor pillar |
JP3935370B2 (en) | 2002-02-19 | 2007-06-20 | セイコーエプソン株式会社 | Bumped semiconductor element manufacturing method, semiconductor device and manufacturing method thereof, circuit board, and electronic device |
SG115456A1 (en) | 2002-03-04 | 2005-10-28 | Micron Technology Inc | Semiconductor die packages with recessed interconnecting structures and methods for assembling the same |
DE10209922A1 (en) | 2002-03-07 | 2003-10-02 | Infineon Technologies Ag | Electronic module, use of electronic modules to be separated and processes for their production |
KR100452819B1 (en) | 2002-03-18 | 2004-10-15 | 삼성전기주식회사 | Chip scale package and method of fabricating the same |
US6979230B2 (en) | 2002-03-20 | 2005-12-27 | Gabe Cherian | Light socket |
JP2003318327A (en) | 2002-04-22 | 2003-11-07 | Mitsui Chemicals Inc | Printed wiring board and stacked package |
US7323767B2 (en) | 2002-04-25 | 2008-01-29 | Micron Technology, Inc. | Standoffs for centralizing internals in packaging process |
US7633765B1 (en) | 2004-03-23 | 2009-12-15 | Amkor Technology, Inc. | Semiconductor package including a top-surface metal layer for implementing circuit features |
US7078822B2 (en) | 2002-06-25 | 2006-07-18 | Intel Corporation | Microelectronic device interconnects |
US6906415B2 (en) | 2002-06-27 | 2005-06-14 | Micron Technology, Inc. | Semiconductor device assemblies and packages including multiple semiconductor devices and methods |
JP4601892B2 (en) | 2002-07-04 | 2010-12-22 | ラムバス・インコーポレーテッド | Semiconductor device and bump manufacturing method of semiconductor chip |
JP2004047702A (en) | 2002-07-11 | 2004-02-12 | Toshiba Corp | Semiconductor device laminated module |
US6756252B2 (en) | 2002-07-17 | 2004-06-29 | Texas Instrument Incorporated | Multilayer laser trim interconnect method |
US6987032B1 (en) | 2002-07-19 | 2006-01-17 | Asat Ltd. | Ball grid array package and process for manufacturing same |
US7943436B2 (en) | 2002-07-29 | 2011-05-17 | Synopsys, Inc. | Integrated circuit devices and methods and apparatuses for designing integrated circuit devices |
TW549592U (en) | 2002-08-16 | 2003-08-21 | Via Tech Inc | Integrated circuit package with a balanced-part structure |
US7053485B2 (en) | 2002-08-16 | 2006-05-30 | Tessera, Inc. | Microelectronic packages with self-aligning features |
US6740546B2 (en) | 2002-08-21 | 2004-05-25 | Micron Technology, Inc. | Packaged microelectronic devices and methods for assembling microelectronic devices |
US6964881B2 (en) | 2002-08-27 | 2005-11-15 | Micron Technology, Inc. | Multi-chip wafer level system packages and methods of forming same |
JP3765778B2 (en) | 2002-08-29 | 2006-04-12 | ローム株式会社 | Capillary for wire bonding and wire bonding method using the same |
JP2004095799A (en) | 2002-08-30 | 2004-03-25 | Toshiba Corp | Semiconductor device and method of manufacturing the same |
US20040041757A1 (en) | 2002-09-04 | 2004-03-04 | Ming-Hsiang Yang | Light emitting diode display module with high heat-dispersion and the substrate thereof |
US7246431B2 (en) | 2002-09-06 | 2007-07-24 | Tessera, Inc. | Methods of making microelectronic packages including folded substrates |
US7294928B2 (en) | 2002-09-06 | 2007-11-13 | Tessera, Inc. | Components, methods and assemblies for stacked packages |
US7071547B2 (en) | 2002-09-11 | 2006-07-04 | Tessera, Inc. | Assemblies having stacked semiconductor chips and methods of making same |
US7229906B2 (en) | 2002-09-19 | 2007-06-12 | Kulicke And Soffa Industries, Inc. | Method and apparatus for forming bumps for semiconductor interconnections using a wire bonding machine |
US7259445B2 (en) | 2002-09-30 | 2007-08-21 | Advanced Interconnect Technologies Limited | Thermal enhanced package for block mold assembly |
US7045884B2 (en) | 2002-10-04 | 2006-05-16 | International Rectifier Corporation | Semiconductor device package |
US7045887B2 (en) | 2002-10-08 | 2006-05-16 | Chippac, Inc. | Semiconductor multi-package module having inverted second package stacked over die-up flip-chip ball grid array (BGA) package |
US6989122B1 (en) | 2002-10-17 | 2006-01-24 | National Semiconductor Corporation | Techniques for manufacturing flash-free contacts on a semiconductor package |
TW567601B (en) | 2002-10-18 | 2003-12-21 | Siliconware Precision Industries Co Ltd | Module device of stacked semiconductor package and method for fabricating the same |
TWI221664B (en) | 2002-11-07 | 2004-10-01 | Via Tech Inc | Structure of chip package and process thereof |
US20050176233A1 (en) | 2002-11-15 | 2005-08-11 | Rajeev Joshi | Wafer-level chip scale package and method for fabricating and using the same |
JP2004172157A (en) | 2002-11-15 | 2004-06-17 | Shinko Electric Ind Co Ltd | Semiconductor package and package stack semiconductor device |
JP4464041B2 (en) | 2002-12-13 | 2010-05-19 | キヤノン株式会社 | Columnar structure, electrode having columnar structure, and manufacturing method thereof |
JP2004200316A (en) | 2002-12-17 | 2004-07-15 | Shinko Electric Ind Co Ltd | Semiconductor device |
US20050161814A1 (en) | 2002-12-27 | 2005-07-28 | Fujitsu Limited | Method for forming bumps, semiconductor device and method for manufacturing same, substrate processing apparatus, and semiconductor manufacturing apparatus |
KR100621991B1 (en) | 2003-01-03 | 2006-09-13 | 삼성전자주식회사 | Chip scale stack package |
JP2004221257A (en) | 2003-01-14 | 2004-08-05 | Seiko Epson Corp | Wire bonding method and device thereof |
JP2006518944A (en) | 2003-02-25 | 2006-08-17 | テッセラ,インコーポレイテッド | Ball grid array with bumps |
TW583757B (en) | 2003-02-26 | 2004-04-11 | Advanced Semiconductor Eng | A structure of a flip-chip package and a process thereof |
US20040217471A1 (en) | 2003-02-27 | 2004-11-04 | Tessera, Inc. | Component and assemblies with ends offset downwardly |
JP3885747B2 (en) | 2003-03-13 | 2007-02-28 | 株式会社デンソー | Wire bonding method |
JP2004343030A (en) | 2003-03-31 | 2004-12-02 | North:Kk | Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board |
JP2004319892A (en) | 2003-04-18 | 2004-11-11 | Renesas Technology Corp | Manufacturing method of semiconductor device |
JP2004327855A (en) | 2003-04-25 | 2004-11-18 | Nec Electronics Corp | Semiconductor device and its manufacturing method |
JP4199588B2 (en) | 2003-04-25 | 2008-12-17 | テセラ・インターコネクト・マテリアルズ,インコーポレイテッド | Wiring circuit board manufacturing method and semiconductor integrated circuit device manufacturing method using the wiring circuit board |
DE10320646A1 (en) | 2003-05-07 | 2004-09-16 | Infineon Technologies Ag | Electronic component, typically integrated circuit, system support and manufacturing method, with support containing component positions in lines and columns, starting with coating auxiliary support with photosensitive layer |
JP4145730B2 (en) | 2003-06-17 | 2008-09-03 | 松下電器産業株式会社 | Module with built-in semiconductor |
US20040262728A1 (en) | 2003-06-30 | 2004-12-30 | Sterrett Terry L. | Modular device assemblies |
KR100604821B1 (en) | 2003-06-30 | 2006-07-26 | 삼성전자주식회사 | Stack type Ball grid array package and method for manufacturing the same |
JP2005033141A (en) | 2003-07-11 | 2005-02-03 | Sony Corp | Semiconductor device, its manufacturing method, false wafer, its manufacturing method, and packaging structure of semiconductor device |
US7227095B2 (en) | 2003-08-06 | 2007-06-05 | Micron Technology, Inc. | Wire bonders and methods of wire-bonding |
KR100537892B1 (en) | 2003-08-26 | 2005-12-21 | 삼성전자주식회사 | Chip stack package and manufacturing method thereof |
KR100546374B1 (en) | 2003-08-28 | 2006-01-26 | 삼성전자주식회사 | Multi chip package having center pads and method for manufacturing the same |
US7372151B1 (en) | 2003-09-12 | 2008-05-13 | Asat Ltd. | Ball grid array package and process for manufacturing same |
JP2005093551A (en) | 2003-09-12 | 2005-04-07 | Genusion:Kk | Package structure of semiconductor device, and packaging method |
JP3999720B2 (en) | 2003-09-16 | 2007-10-31 | 沖電気工業株式会社 | Semiconductor device and manufacturing method thereof |
WO2005031863A1 (en) | 2003-09-26 | 2005-04-07 | Tessera, Inc. | Structure and method of making capped chips having vertical interconnects |
US7495179B2 (en) | 2003-10-06 | 2009-02-24 | Tessera, Inc. | Components with posts and pads |
US7462936B2 (en) | 2003-10-06 | 2008-12-09 | Tessera, Inc. | Formation of circuitry with modification of feature height |
JP4272968B2 (en) | 2003-10-16 | 2009-06-03 | エルピーダメモリ株式会社 | Semiconductor device and semiconductor chip control method |
JP4167965B2 (en) | 2003-11-07 | 2008-10-22 | テセラ・インターコネクト・マテリアルズ,インコーポレイテッド | Method for manufacturing wiring circuit member |
KR100564585B1 (en) | 2003-11-13 | 2006-03-28 | 삼성전자주식회사 | Double stacked BGA package and multi-stacked BGA package |
TWI227555B (en) | 2003-11-17 | 2005-02-01 | Advanced Semiconductor Eng | Structure of chip package and the process thereof |
KR100621992B1 (en) | 2003-11-19 | 2006-09-13 | 삼성전자주식회사 | structure and method of wafer level stack for devices of different kind and system-in-package using the same |
JP2005183923A (en) | 2003-11-28 | 2005-07-07 | Matsushita Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
US7345361B2 (en) | 2003-12-04 | 2008-03-18 | Intel Corporation | Stackable integrated circuit packaging |
JP2005175019A (en) | 2003-12-08 | 2005-06-30 | Sharp Corp | Semiconductor device and multilayer semiconductor device |
JP5197961B2 (en) | 2003-12-17 | 2013-05-15 | スタッツ・チップパック・インコーポレイテッド | Multi-chip package module and manufacturing method thereof |
DE10360708B4 (en) | 2003-12-19 | 2008-04-10 | Infineon Technologies Ag | Semiconductor module with a semiconductor stack, rewiring plate, and method of making the same |
JP4334996B2 (en) | 2003-12-24 | 2009-09-30 | 株式会社フジクラ | SUBSTRATE FOR MULTILAYER WIRING BOARD, DOUBLE WIRE WIRING BOARD AND METHOD FOR PRODUCING THEM |
US7495644B2 (en) | 2003-12-26 | 2009-02-24 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing display device |
JP3917133B2 (en) | 2003-12-26 | 2007-05-23 | 株式会社東芝 | LSI package with interface module and interposer, interface module, connection monitor circuit, signal processing LSI used therefor |
US6900530B1 (en) | 2003-12-29 | 2005-05-31 | Ramtek Technology, Inc. | Stacked IC |
US7176043B2 (en) | 2003-12-30 | 2007-02-13 | Tessera, Inc. | Microelectronic packages and methods therefor |
US7709968B2 (en) | 2003-12-30 | 2010-05-04 | Tessera, Inc. | Micro pin grid array with pin motion isolation |
US8207604B2 (en) | 2003-12-30 | 2012-06-26 | Tessera, Inc. | Microelectronic package comprising offset conductive posts on compliant layer |
JP2005203497A (en) | 2004-01-14 | 2005-07-28 | Toshiba Corp | Semiconductor device and method for manufacturing same |
US20050173807A1 (en) | 2004-02-05 | 2005-08-11 | Jianbai Zhu | High density vertically stacked semiconductor device |
US7198987B1 (en) | 2004-03-04 | 2007-04-03 | Skyworks Solutions, Inc. | Overmolded semiconductor package with an integrated EMI and RFI shield |
US8399972B2 (en) | 2004-03-04 | 2013-03-19 | Skyworks Solutions, Inc. | Overmolded semiconductor package with a wirebond cage for EMI shielding |
US7095105B2 (en) | 2004-03-23 | 2006-08-22 | Texas Instruments Incorporated | Vertically stacked semiconductor device |
JP4484035B2 (en) | 2004-04-06 | 2010-06-16 | セイコーエプソン株式会社 | Manufacturing method of semiconductor device |
US8092734B2 (en) | 2004-05-13 | 2012-01-10 | Aptina Imaging Corporation | Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers |
US7629695B2 (en) | 2004-05-20 | 2009-12-08 | Kabushiki Kaisha Toshiba | Stacked electronic component and manufacturing method thereof |
US6962864B1 (en) | 2004-05-26 | 2005-11-08 | National Chung Cheng University | Wire-bonding method for chips with copper interconnects by introducing a thin layer |
US7233057B2 (en) | 2004-05-28 | 2007-06-19 | Nokia Corporation | Integrated circuit package with optimized mold shape |
TWI255022B (en) | 2004-05-31 | 2006-05-11 | Via Tech Inc | Circuit carrier and manufacturing process thereof |
US7453157B2 (en) | 2004-06-25 | 2008-11-18 | Tessera, Inc. | Microelectronic packages and methods therefor |
TWI250596B (en) | 2004-07-23 | 2006-03-01 | Ind Tech Res Inst | Wafer-level chip scale packaging method |
JP3956965B2 (en) | 2004-09-07 | 2007-08-08 | 日立エーアイシー株式会社 | Chip component type light emitting device and wiring board therefor |
US7290448B2 (en) | 2004-09-10 | 2007-11-06 | Yamaha Corporation | Physical quantity sensor, lead frame, and manufacturing method therefor |
CN1755929B (en) | 2004-09-28 | 2010-08-18 | 飞思卡尔半导体(中国)有限公司 | Method for forming semiconductor package and its structure |
JP4385329B2 (en) * | 2004-10-08 | 2009-12-16 | Okiセミコンダクタ株式会社 | Manufacturing method of semiconductor device |
US7595548B2 (en) | 2004-10-08 | 2009-09-29 | Yamaha Corporation | Physical quantity sensor and manufacturing method therefor |
JP4671802B2 (en) | 2004-10-18 | 2011-04-20 | 富士通株式会社 | Plating method, semiconductor device manufacturing method, and circuit board manufacturing method |
US20060087013A1 (en) | 2004-10-21 | 2006-04-27 | Etron Technology, Inc. | Stacked multiple integrated circuit die package assembly |
EP1807239A2 (en) | 2004-11-02 | 2007-07-18 | Imasys AG | Laying device, contacting device, advancing system, laying and contacting unit, production system, method for the production and a transponder unit |
WO2006052616A1 (en) | 2004-11-03 | 2006-05-18 | Tessera, Inc. | Stacked packaging improvements |
TW200631111A (en) | 2004-11-04 | 2006-09-01 | Koninkl Philips Electronics Nv | Nanotube-based circuit connection approach |
US7750483B1 (en) | 2004-11-10 | 2010-07-06 | Bridge Semiconductor Corporation | Semiconductor chip assembly with welded metal pillar and enlarged plated contact terminal |
US7268421B1 (en) | 2004-11-10 | 2007-09-11 | Bridge Semiconductor Corporation | Semiconductor chip assembly with welded metal pillar that includes enlarged ball bond |
JP4917257B2 (en) | 2004-11-12 | 2012-04-18 | 浜松ホトニクス株式会社 | Laser processing method |
KR100674926B1 (en) | 2004-12-08 | 2007-01-26 | 삼성전자주식회사 | Memory card and method of fabricating the same |
US7301770B2 (en) | 2004-12-10 | 2007-11-27 | International Business Machines Corporation | Cooling apparatus, cooled electronic module, and methods of fabrication thereof employing thermally conductive, wire-bonded pin fins |
JP4504798B2 (en) | 2004-12-16 | 2010-07-14 | パナソニック株式会社 | Multistage semiconductor module |
KR100843137B1 (en) | 2004-12-27 | 2008-07-02 | 삼성전자주식회사 | Semiconductor device package |
JP2006186086A (en) | 2004-12-27 | 2006-07-13 | Itoo:Kk | Method for soldering printed circuit board and guide plate for preventing bridge |
DE102005006333B4 (en) | 2005-02-10 | 2007-10-18 | Infineon Technologies Ag | Semiconductor device having a plurality of bonding terminals and bonded contact elements of different metal composition and method for producing the same |
DE102005006995B4 (en) | 2005-02-15 | 2008-01-24 | Infineon Technologies Ag | Semiconductor device with plastic housing and external connections and method for producing the same |
KR100867038B1 (en) | 2005-03-02 | 2008-11-04 | 삼성전기주식회사 | Printed circuit board with embedded capacitors, and manufacturing process thereof |
KR100630741B1 (en) | 2005-03-04 | 2006-10-02 | 삼성전자주식회사 | Stack type semiconductor package having a multiple molding process and manufacturing method thereof |
US7939934B2 (en) | 2005-03-16 | 2011-05-10 | Tessera, Inc. | Microelectronic packages and methods therefor |
US20060216868A1 (en) | 2005-03-25 | 2006-09-28 | Advanced Semiconductor Engineering Inc. | Package structure and fabrication thereof |
US7582963B2 (en) | 2005-03-29 | 2009-09-01 | Texas Instruments Incorporated | Vertically integrated system-in-a-package |
US7371676B2 (en) | 2005-04-08 | 2008-05-13 | Micron Technology, Inc. | Method for fabricating semiconductor components with through wire interconnects |
TWI284394B (en) | 2005-05-12 | 2007-07-21 | Advanced Semiconductor Eng | Lid used in package structure and the package structure of having the same |
JP2006324553A (en) | 2005-05-20 | 2006-11-30 | Renesas Technology Corp | Semiconductor device and method of manufacturing same |
US7528474B2 (en) | 2005-05-31 | 2009-05-05 | Stats Chippac Ltd. | Stacked semiconductor package assembly having hollowed substrate |
US7216794B2 (en) | 2005-06-09 | 2007-05-15 | Texas Instruments Incorporated | Bond capillary design for ribbon wire bonding |
JP4322844B2 (en) | 2005-06-10 | 2009-09-02 | シャープ株式会社 | Semiconductor device and stacked semiconductor device |
US20100078795A1 (en) | 2005-07-01 | 2010-04-01 | Koninklijke Philips Electronics, N.V. | Electronic device |
TWI294757B (en) | 2005-07-06 | 2008-03-11 | Delta Electronics Inc | Circuit board with a through hole wire, and forming method thereof |
US7476608B2 (en) | 2005-07-14 | 2009-01-13 | Hewlett-Packard Development Company, L.P. | Electrically connecting substrate with electrical device |
JP4787559B2 (en) | 2005-07-26 | 2011-10-05 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
US7355289B2 (en) | 2005-07-29 | 2008-04-08 | Freescale Semiconductor, Inc. | Packaged integrated circuit with enhanced thermal dissipation |
TWI263313B (en) | 2005-08-15 | 2006-10-01 | Phoenix Prec Technology Corp | Stack structure of semiconductor component embedded in supporting board |
SG130055A1 (en) | 2005-08-19 | 2007-03-20 | Micron Technology Inc | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices |
SG130066A1 (en) | 2005-08-26 | 2007-03-20 | Micron Technology Inc | Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices |
JP5522561B2 (en) | 2005-08-31 | 2014-06-18 | マイクロン テクノロジー, インク. | Microelectronic device package, stacked microelectronic device package, and method of manufacturing microelectronic device |
US7485969B2 (en) | 2005-09-01 | 2009-02-03 | Micron Technology, Inc. | Stacked microelectronic devices and methods for manufacturing microelectronic devices |
US7675152B2 (en) | 2005-09-01 | 2010-03-09 | Texas Instruments Incorporated | Package-on-package semiconductor assembly |
US20070080360A1 (en) | 2005-10-06 | 2007-04-12 | Url Mirsky | Microelectronic interconnect substrate and packaging techniques |
KR101241650B1 (en) | 2005-10-19 | 2013-03-08 | 엘지이노텍 주식회사 | Package of light emitting diode |
US8810031B2 (en) | 2005-10-26 | 2014-08-19 | Industrial Technology Research Institute | Wafer-to-wafer stack with supporting pedestal |
US7504716B2 (en) | 2005-10-26 | 2009-03-17 | Texas Instruments Incorporated | Structure and method of molded QFN device suitable for miniaturization, multiple rows and stacking |
JP2007123595A (en) | 2005-10-28 | 2007-05-17 | Nec Corp | Semiconductor device and its mounting structure |
TW200733272A (en) | 2005-11-01 | 2007-09-01 | Koninkl Philips Electronics Nv | Methods of packaging a semiconductor die and die package formed by the methods |
JP4530975B2 (en) | 2005-11-14 | 2010-08-25 | 株式会社新川 | Wire bonding method |
JP2007142042A (en) | 2005-11-16 | 2007-06-07 | Sharp Corp | Semiconductor package, manufacturing method thereof, semiconductor module, and electronic equipment |
US7344917B2 (en) | 2005-11-30 | 2008-03-18 | Freescale Semiconductor, Inc. | Method for packaging a semiconductor device |
US7307348B2 (en) | 2005-12-07 | 2007-12-11 | Micron Technology, Inc. | Semiconductor components having through wire interconnects (TWI) |
US8058101B2 (en) | 2005-12-23 | 2011-11-15 | Tessera, Inc. | Microelectronic packages and methods therefor |
JP4530984B2 (en) | 2005-12-28 | 2010-08-25 | 株式会社新川 | Wire bonding apparatus, bonding control program, and bonding method |
US7378726B2 (en) | 2005-12-28 | 2008-05-27 | Intel Corporation | Stacked packages with interconnecting pins |
WO2007083351A1 (en) | 2006-01-17 | 2007-07-26 | Spansion Llc | Semiconductor device and method for manufacturing same |
JP2007194436A (en) | 2006-01-19 | 2007-08-02 | Elpida Memory Inc | Semiconductor package and manufacturing method thereof, substrate with conductive post, and laminated semiconductor device and manufacturing method thereof |
US20070190747A1 (en) | 2006-01-23 | 2007-08-16 | Tessera Technologies Hungary Kft. | Wafer level packaging to lidded chips |
JP2007201254A (en) | 2006-01-27 | 2007-08-09 | Ibiden Co Ltd | Built-in semiconductor-element including board, and built-in semiconductor-element including multilayer circuit board |
JP2007208159A (en) | 2006-02-06 | 2007-08-16 | Hitachi Ltd | Semiconductor device |
SG135074A1 (en) | 2006-02-28 | 2007-09-28 | Micron Technology Inc | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices |
TWI295115B (en) | 2006-02-13 | 2008-03-21 | Ind Tech Res Inst | Encapsulation and methods thereof |
JP2007234845A (en) | 2006-03-01 | 2007-09-13 | Nec Corp | Semiconductor device |
US7876180B2 (en) | 2006-03-09 | 2011-01-25 | Kyocera Corporation | Waveguide forming apparatus, dielectric waveguide forming apparatus, pin structure, and high frequency circuit |
JP4949719B2 (en) | 2006-04-07 | 2012-06-13 | ラピスセミコンダクタ株式会社 | Semiconductor device and manufacturing method thereof |
US7390700B2 (en) | 2006-04-07 | 2008-06-24 | Texas Instruments Incorporated | Packaged system of semiconductor chips having a semiconductor interposer |
US7759782B2 (en) | 2006-04-07 | 2010-07-20 | Tessera, Inc. | Substrate for a microelectronic package and method of fabricating thereof |
WO2007116544A1 (en) | 2006-04-10 | 2007-10-18 | Murata Manufacturing Co., Ltd. | Composite substrate and method of manufacturing composite substrate |
JP5598787B2 (en) | 2006-04-17 | 2014-10-01 | マイクロンメモリジャパン株式会社 | Manufacturing method of stacked semiconductor device |
US7659612B2 (en) | 2006-04-24 | 2010-02-09 | Micron Technology, Inc. | Semiconductor components having encapsulated through wire interconnects (TWI) |
US7242081B1 (en) | 2006-04-24 | 2007-07-10 | Advanced Semiconductor Engineering Inc. | Stacked package structure |
US7910385B2 (en) | 2006-05-12 | 2011-03-22 | Micron Technology, Inc. | Method of fabricating microelectronic devices |
DE102006022360B4 (en) | 2006-05-12 | 2009-07-09 | Infineon Technologies Ag | shielding |
JP4961848B2 (en) | 2006-06-12 | 2012-06-27 | 日本電気株式会社 | WIRING BOARD HAVING METAL POST, SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE MODULE MANUFACTURING METHOD |
KR101043484B1 (en) | 2006-06-29 | 2011-06-23 | 인텔 코포레이션 | Apparatus, system, and method for wireless connection in integrated circuit packages |
KR100792352B1 (en) | 2006-07-06 | 2008-01-08 | 삼성전기주식회사 | Bottom substrate of pop and manufacturing method thereof |
JP2008016688A (en) | 2006-07-07 | 2008-01-24 | Elpida Memory Inc | Method of manufacturing semiconductor device |
US7612638B2 (en) | 2006-07-14 | 2009-11-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Waveguides in integrated circuits |
SG139573A1 (en) | 2006-07-17 | 2008-02-29 | Micron Technology Inc | Microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods |
KR100800478B1 (en) | 2006-07-18 | 2008-02-04 | 삼성전자주식회사 | Stack type semiconductor package and method of fabricating the same |
US20080023805A1 (en) | 2006-07-26 | 2008-01-31 | Texas Instruments Incorporated | Array-Processed Stacked Semiconductor Packages |
JP5132101B2 (en) | 2006-07-27 | 2013-01-30 | 新光電気工業株式会社 | Stack package structure, unit package used for manufacturing the same, and manufacturing method |
US8048479B2 (en) | 2006-08-01 | 2011-11-01 | Qimonda Ag | Method for placing material onto a target board by means of a transfer board |
JP2008039502A (en) | 2006-08-03 | 2008-02-21 | Alps Electric Co Ltd | Contact and its manufacturing method |
KR100809696B1 (en) | 2006-08-08 | 2008-03-06 | 삼성전자주식회사 | A Multi chip package stacked a plurality of semiconductor chips having different size and method of manufacturing the same |
US20080042265A1 (en) | 2006-08-15 | 2008-02-21 | Merilo Leo A | Chip scale module package in bga semiconductor package |
US7425758B2 (en) | 2006-08-28 | 2008-09-16 | Micron Technology, Inc. | Metal core foldover package structures |
US7560360B2 (en) | 2006-08-30 | 2009-07-14 | International Business Machines Corporation | Methods for enhancing trench capacitance and trench capacitor |
KR20080020069A (en) | 2006-08-30 | 2008-03-05 | 삼성전자주식회사 | Semiconductor package and method for fabricating the same |
KR100891516B1 (en) | 2006-08-31 | 2009-04-06 | 주식회사 하이닉스반도체 | Stackable fbga type semiconductor package and stack package using the same |
US7683460B2 (en) | 2006-09-22 | 2010-03-23 | Infineon Technologies Ag | Module with a shielding and/or heat dissipating element |
KR100770934B1 (en) | 2006-09-26 | 2007-10-26 | 삼성전자주식회사 | Semiconductor package and semiconductor system in package |
TWI336502B (en) | 2006-09-27 | 2011-01-21 | Advanced Semiconductor Eng | Semiconductor package and semiconductor device and the method of making the same |
US7901989B2 (en) | 2006-10-10 | 2011-03-08 | Tessera, Inc. | Reconstituted wafer level stacking |
TWI312561B (en) | 2006-10-27 | 2009-07-21 | Advanced Semiconductor Eng | Structure of package on package and method for fabricating the same |
KR100817073B1 (en) | 2006-11-03 | 2008-03-26 | 삼성전자주식회사 | Semiconductor chip stack package with reinforce member for preventing package warpage connected to pcb |
US8174119B2 (en) | 2006-11-10 | 2012-05-08 | Stats Chippac, Ltd. | Semiconductor package with embedded die |
US8193034B2 (en) | 2006-11-10 | 2012-06-05 | Stats Chippac, Ltd. | Semiconductor device and method of forming vertical interconnect structure using stud bumps |
WO2008065896A1 (en) | 2006-11-28 | 2008-06-05 | Kyushu Institute Of Technology | Method for manufacturing semiconductor device having dual-face electrode structure and semiconductor device manufactured by the method |
US7659617B2 (en) | 2006-11-30 | 2010-02-09 | Tessera, Inc. | Substrate for a flexible microelectronic assembly and a method of fabricating thereof |
US7537962B2 (en) | 2006-12-22 | 2009-05-26 | Stats Chippac Ltd. | Method of fabricating a shielded stacked integrated circuit package system |
JP2008166439A (en) | 2006-12-27 | 2008-07-17 | Spansion Llc | Semiconductor device and manufacturing method thereof |
US8598717B2 (en) | 2006-12-27 | 2013-12-03 | Spansion Llc | Semiconductor device and method for manufacturing the same |
DE102007062787A1 (en) | 2006-12-29 | 2008-07-17 | Qimonda Ag | Semiconductor arrangement for use in integrated circuit, has organic solderability preservative material applied to one of substrate and semiconductor chip, and copper wire wire-bonded to one of chip and substrate by material |
US20080156518A1 (en) | 2007-01-03 | 2008-07-03 | Tessera, Inc. | Alignment and cutting of microelectronic substrates |
TWI332702B (en) | 2007-01-09 | 2010-11-01 | Advanced Semiconductor Eng | Stackable semiconductor package and the method for making the same |
JP5347222B2 (en) | 2007-01-10 | 2013-11-20 | 富士通株式会社 | Manufacturing method of semiconductor device |
US7719122B2 (en) | 2007-01-11 | 2010-05-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | System-in-package packaging for minimizing bond wire contamination and yield loss |
KR100827667B1 (en) | 2007-01-16 | 2008-05-07 | 삼성전자주식회사 | Semiconductor package having semiconductor chip in substrate and method of fabricating the same |
WO2008093414A1 (en) | 2007-01-31 | 2008-08-07 | Fujitsu Microelectronics Limited | Semiconductor device and method for manufacturing the same |
US8685792B2 (en) | 2007-03-03 | 2014-04-01 | Stats Chippac Ltd. | Integrated circuit package system with interposer |
JP5584474B2 (en) | 2007-03-05 | 2014-09-03 | インヴェンサス・コーポレイション | Chip with rear contact connected to front contact by through via |
US20080217708A1 (en) | 2007-03-09 | 2008-09-11 | Skyworks Solutions, Inc. | Integrated passive cap in a system-in-package |
JP5010316B2 (en) | 2007-03-16 | 2012-08-29 | 日本電気株式会社 | Wiring board having a metal post, semiconductor device |
US7517733B2 (en) | 2007-03-22 | 2009-04-14 | Stats Chippac, Ltd. | Leadframe design for QFN package with top terminal leads |
TWI335070B (en) | 2007-03-23 | 2010-12-21 | Advanced Semiconductor Eng | Semiconductor package and the method of making the same |
WO2008117488A1 (en) | 2007-03-23 | 2008-10-02 | Sanyo Electric Co., Ltd | Semiconductor device and method for manufacturing the same |
US8198716B2 (en) | 2007-03-26 | 2012-06-12 | Intel Corporation | Die backside wire bond technology for single or stacked die package |
JP4926787B2 (en) | 2007-03-30 | 2012-05-09 | アオイ電子株式会社 | Manufacturing method of semiconductor device |
JPWO2008120755A1 (en) | 2007-03-30 | 2010-07-15 | 日本電気株式会社 | Functional element built-in circuit board, manufacturing method thereof, and electronic device |
US20080246126A1 (en) | 2007-04-04 | 2008-10-09 | Freescale Semiconductor, Inc. | Stacked and shielded die packages with interconnects |
US7800916B2 (en) | 2007-04-09 | 2010-09-21 | Endicott Interconnect Technologies, Inc. | Circuitized substrate with internal stacked semiconductor chips, method of making same, electrical assembly utilizing same and information handling system utilizing same |
US7589394B2 (en) | 2007-04-10 | 2009-09-15 | Ibiden Co., Ltd. | Interposer |
JP5003260B2 (en) | 2007-04-13 | 2012-08-15 | 日本電気株式会社 | Semiconductor device and manufacturing method thereof |
US7994622B2 (en) | 2007-04-16 | 2011-08-09 | Tessera, Inc. | Microelectronic packages having cavities for receiving microelectric elements |
KR20080094251A (en) | 2007-04-19 | 2008-10-23 | 삼성전자주식회사 | Wafer level package and method for the manufacturing same |
JP5601751B2 (en) | 2007-04-26 | 2014-10-08 | スパンション エルエルシー | Semiconductor device |
US20080280393A1 (en) | 2007-05-09 | 2008-11-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Methods for forming package structures |
US20080284045A1 (en) | 2007-05-18 | 2008-11-20 | Texas Instruments Incorporated | Method for Fabricating Array-Molded Package-On-Package |
TWI371809B (en) | 2007-06-04 | 2012-09-01 | Advanced Semiconductor Eng | Wafer structure and method for fabricating the same |
US7872335B2 (en) | 2007-06-08 | 2011-01-18 | Broadcom Corporation | Lead frame-BGA package with enhanced thermal performance and I/O counts |
JP2008306128A (en) | 2007-06-11 | 2008-12-18 | Shinko Electric Ind Co Ltd | Semiconductor device and its production process |
KR100865125B1 (en) | 2007-06-12 | 2008-10-24 | 삼성전기주식회사 | Semiconductor and method for manufacturing thereof |
TW200908819A (en) | 2007-06-15 | 2009-02-16 | Ngk Spark Plug Co | Wiring substrate with reinforcing member |
US7576415B2 (en) | 2007-06-15 | 2009-08-18 | Advanced Semiconductor Engineering, Inc. | EMI shielded semiconductor package |
US7944034B2 (en) | 2007-06-22 | 2011-05-17 | Texas Instruments Incorporated | Array molded package-on-package having redistribution lines |
JP5179787B2 (en) | 2007-06-22 | 2013-04-10 | ラピスセミコンダクタ株式会社 | Semiconductor device and manufacturing method thereof |
US7619901B2 (en) | 2007-06-25 | 2009-11-17 | Epic Technologies, Inc. | Integrated structures and fabrication methods thereof implementing a cell phone or other electronic system |
US7911805B2 (en) | 2007-06-29 | 2011-03-22 | Tessera, Inc. | Multilayer wiring element having pin interface |
SG148901A1 (en) | 2007-07-09 | 2009-01-29 | Micron Technology Inc | Packaged semiconductor assemblies and methods for manufacturing such assemblies |
KR20090007120A (en) | 2007-07-13 | 2009-01-16 | 삼성전자주식회사 | An wafer level stacked package having a via contact in encapsulation portion and manufacturing method thereof |
US7781877B2 (en) | 2007-08-07 | 2010-08-24 | Micron Technology, Inc. | Packaged integrated circuit devices with through-body conductive vias, and methods of making same |
JP2009044110A (en) | 2007-08-13 | 2009-02-26 | Elpida Memory Inc | Semiconductor device and its manufacturing method |
SG150396A1 (en) | 2007-08-16 | 2009-03-30 | Micron Technology Inc | Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods |
KR101329355B1 (en) | 2007-08-31 | 2013-11-20 | 삼성전자주식회사 | stack-type semicondoctor package, method of forming the same and electronic system including the same |
KR101365621B1 (en) | 2007-09-04 | 2014-02-24 | 서울반도체 주식회사 | Light emitting diode package having heat dissipating slugs |
JP2009064966A (en) | 2007-09-06 | 2009-03-26 | Shinko Electric Ind Co Ltd | Multilayer wiring board and manufacturing method thereof, and semiconductor device |
US7808439B2 (en) | 2007-09-07 | 2010-10-05 | University Of Tennessee Reserch Foundation | Substrate integrated waveguide antenna array |
US9330945B2 (en) | 2007-09-18 | 2016-05-03 | Stats Chippac Ltd. | Integrated circuit package system with multi-chip module |
US8039960B2 (en) | 2007-09-21 | 2011-10-18 | Stats Chippac, Ltd. | Solder bump with inner core pillar in semiconductor package |
KR100902128B1 (en) | 2007-09-28 | 2009-06-09 | 삼성전기주식회사 | Heat radiating printed circuit board and semiconductor chip package |
JP2009088254A (en) | 2007-09-28 | 2009-04-23 | Toshiba Corp | Electronic component package, and manufacturing method for electronic component package |
KR101388538B1 (en) | 2007-09-28 | 2014-04-23 | 테세라, 인코포레이티드 | Flip chip interconnection with double post |
KR20090033605A (en) | 2007-10-01 | 2009-04-06 | 삼성전자주식회사 | Stack-type semicondoctor package, method of forming the same and electronic system including the same |
US7777351B1 (en) | 2007-10-01 | 2010-08-17 | Amkor Technology, Inc. | Thin stacked interposer package |
US20090091009A1 (en) | 2007-10-03 | 2009-04-09 | Corisis David J | Stackable integrated circuit package |
US7834464B2 (en) | 2007-10-09 | 2010-11-16 | Infineon Technologies Ag | Semiconductor chip package, semiconductor chip assembly, and method for fabricating a device |
US20090115047A1 (en) | 2007-10-10 | 2009-05-07 | Tessera, Inc. | Robust multi-layer wiring elements and assemblies with embedded microelectronic elements |
TWI389220B (en) | 2007-10-22 | 2013-03-11 | 矽品精密工業股份有限公司 | Semiconductor package and method for fabricating the same |
TWI360207B (en) | 2007-10-22 | 2012-03-11 | Advanced Semiconductor Eng | Chip package structure and method of manufacturing |
FR2923081B1 (en) | 2007-10-26 | 2009-12-11 | 3D Plus | PROCESS FOR VERTICAL INTERCONNECTION OF 3D ELECTRONIC MODULES BY VIAS. |
GB0721957D0 (en) | 2007-11-08 | 2007-12-19 | Photonstar Led Ltd | Ultra high thermal performance packaging for optoelectronics devices |
JP2009123863A (en) | 2007-11-14 | 2009-06-04 | Tessera Interconnect Materials Inc | Method of forming bump structure and the bump structure |
WO2009067556A2 (en) | 2007-11-19 | 2009-05-28 | Nexxus Lighting, Inc. | Apparatus and methods for thermal management of light emitting diodes |
US20090127686A1 (en) | 2007-11-21 | 2009-05-21 | Advanced Chip Engineering Technology Inc. | Stacking die package structure for semiconductor devices and method of the same |
JP2009135398A (en) | 2007-11-29 | 2009-06-18 | Ibiden Co Ltd | Combination substrate |
KR100886100B1 (en) | 2007-11-29 | 2009-02-27 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor package and method for manufacturing the same |
US7902644B2 (en) | 2007-12-07 | 2011-03-08 | Stats Chippac Ltd. | Integrated circuit package system for electromagnetic isolation |
US7696631B2 (en) | 2007-12-10 | 2010-04-13 | International Business Machines Corporation | Wire bonding personalization and discrete component attachment on wirebond pads |
US8390117B2 (en) | 2007-12-11 | 2013-03-05 | Panasonic Corporation | Semiconductor device and method of manufacturing the same |
US7706144B2 (en) | 2007-12-17 | 2010-04-27 | Lynch Thomas W | Heat dissipation system and related method |
JP2009158593A (en) | 2007-12-25 | 2009-07-16 | Tessera Interconnect Materials Inc | Bump structure and method of manufacturing the same |
US20090170241A1 (en) | 2007-12-26 | 2009-07-02 | Stats Chippac, Ltd. | Semiconductor Device and Method of Forming the Device Using Sacrificial Carrier |
US20090166873A1 (en) | 2007-12-27 | 2009-07-02 | Advanced Chip Engineering Technology Inc. | Inter-connecting structure for semiconductor device package and method of the same |
JP4989614B2 (en) | 2007-12-28 | 2012-08-01 | サムソン エルイーディー カンパニーリミテッド. | High power LED package manufacturing method |
US8048720B2 (en) | 2008-01-30 | 2011-11-01 | Kulicke And Soffa Industries, Inc. | Wire loop and method of forming the wire loop |
US20090194829A1 (en) | 2008-01-31 | 2009-08-06 | Shine Chung | MEMS Packaging Including Integrated Circuit Dies |
US8120186B2 (en) | 2008-02-15 | 2012-02-21 | Qimonda Ag | Integrated circuit and method |
US8258015B2 (en) | 2008-02-22 | 2012-09-04 | Stats Chippac Ltd. | Integrated circuit package system with penetrable film adhesive |
US7956456B2 (en) | 2008-02-27 | 2011-06-07 | Texas Instruments Incorporated | Thermal interface material design for enhanced thermal performance and improved package structural integrity |
US8018065B2 (en) | 2008-02-28 | 2011-09-13 | Atmel Corporation | Wafer-level integrated circuit package with top and bottom side electrical connections |
KR101501739B1 (en) | 2008-03-21 | 2015-03-11 | 삼성전자주식회사 | Method of Fabricating Semiconductor Packages |
US7919871B2 (en) | 2008-03-21 | 2011-04-05 | Stats Chippac Ltd. | Integrated circuit package system for stackable devices |
US8525214B2 (en) | 2008-03-25 | 2013-09-03 | Bridge Semiconductor Corporation | Semiconductor chip assembly with post/base heat spreader with thermal via |
US8072079B2 (en) | 2008-03-27 | 2011-12-06 | Stats Chippac, Ltd. | Through hole vias at saw streets including protrusions or recesses for interconnection |
WO2009122835A1 (en) | 2008-03-31 | 2009-10-08 | 株式会社村田製作所 | Electronic component module and method for manufacturing the electronic component module |
JP5043743B2 (en) | 2008-04-18 | 2012-10-10 | ラピスセミコンダクタ株式会社 | Manufacturing method of semiconductor device |
US7741156B2 (en) | 2008-05-27 | 2010-06-22 | Stats Chippac, Ltd. | Semiconductor device and method of forming through vias with reflowed conductive material |
KR20090123680A (en) | 2008-05-28 | 2009-12-02 | 주식회사 하이닉스반도체 | Stacked semiconductor package |
US8093704B2 (en) | 2008-06-03 | 2012-01-10 | Intel Corporation | Package on package using a bump-less build up layer (BBUL) package |
US8021907B2 (en) | 2008-06-09 | 2011-09-20 | Stats Chippac, Ltd. | Method and apparatus for thermally enhanced semiconductor package |
CN102067310B (en) | 2008-06-16 | 2013-08-21 | 泰塞拉公司 | Stacking of wafer-level chip scale packages having edge contacts and manufacture method thereof |
US7932170B1 (en) | 2008-06-23 | 2011-04-26 | Amkor Technology, Inc. | Flip chip bump structure and fabrication method |
DE102008048420A1 (en) | 2008-06-27 | 2010-01-28 | Qimonda Ag | Chip arrangement and method for producing a chip arrangement |
US7969009B2 (en) | 2008-06-30 | 2011-06-28 | Qualcomm Incorporated | Through silicon via bridge interconnect |
TWI473553B (en) | 2008-07-03 | 2015-02-11 | Advanced Semiconductor Eng | Chip package structure |
US7859033B2 (en) | 2008-07-09 | 2010-12-28 | Eastman Kodak Company | Wafer level processing for backside illuminated sensors |
JP5339800B2 (en) | 2008-07-10 | 2013-11-13 | 三菱電機株式会社 | Manufacturing method of semiconductor device |
TWI372453B (en) | 2008-09-01 | 2012-09-11 | Advanced Semiconductor Eng | Copper bonding wire, wire bonding structure and method for processing and bonding a wire |
SG177945A1 (en) | 2008-07-18 | 2012-02-28 | United Test & Assembly Ct Lt | Packaging structural member |
CN102105981B (en) | 2008-07-31 | 2013-11-13 | 斯盖沃克斯解决方案公司 | Semiconductor package with integrated interference shielding and method of manufacture therof |
US8923004B2 (en) | 2008-07-31 | 2014-12-30 | Micron Technology, Inc. | Microelectronic packages with small footprints and associated methods of manufacturing |
US8004093B2 (en) | 2008-08-01 | 2011-08-23 | Stats Chippac Ltd. | Integrated circuit package stacking system |
US7800810B2 (en) | 2008-08-06 | 2010-09-21 | Spatial Photonics, Inc. | Packaging and testing of multiple MEMS devices on a wafer |
TW201007924A (en) | 2008-08-07 | 2010-02-16 | Advanced Semiconductor Eng | Chip package structure |
US20100044860A1 (en) | 2008-08-21 | 2010-02-25 | Tessera Interconnect Materials, Inc. | Microelectronic substrate or element having conductive pads and metal posts joined thereto using bond layer |
KR100997793B1 (en) | 2008-09-01 | 2010-12-02 | 주식회사 하이닉스반도체 | Semiconductor pacakge and method of manufacturing thereof |
KR20100033012A (en) | 2008-09-19 | 2010-03-29 | 주식회사 하이닉스반도체 | Semiconductor package and stacked semiconductor package having the same |
US7842541B1 (en) | 2008-09-24 | 2010-11-30 | Amkor Technology, Inc. | Ultra thin package and fabrication method |
US8237257B2 (en) | 2008-09-25 | 2012-08-07 | King Dragon International Inc. | Substrate structure with die embedded inside and dual build-up layers over both side surfaces and method of the same |
US8063475B2 (en) | 2008-09-26 | 2011-11-22 | Stats Chippac Ltd. | Semiconductor package system with through silicon via interposer |
WO2010041630A1 (en) | 2008-10-10 | 2010-04-15 | 日本電気株式会社 | Semiconductor device and method for manufacturing same |
JP5185062B2 (en) | 2008-10-21 | 2013-04-17 | パナソニック株式会社 | Multilayer semiconductor device and electronic device |
KR101461630B1 (en) | 2008-11-06 | 2014-11-20 | 삼성전자주식회사 | Wafer level chip on chip package, package on package improving solder joint reliability but reducing mounting height and manufacturing method thereof |
TW201023308A (en) | 2008-12-01 | 2010-06-16 | Advanced Semiconductor Eng | Package-on-package device, semiconductor package and method for manufacturing the same |
KR101011863B1 (en) | 2008-12-02 | 2011-01-31 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor package and fabricating?method thereof |
KR101015651B1 (en) | 2008-12-05 | 2011-02-22 | 삼성전기주식회사 | Chip embedded printed circuit board and manufacturing method thereof |
JP2010135671A (en) | 2008-12-08 | 2010-06-17 | Panasonic Corp | Semiconductor equipment and method of manufacturing the same |
US7642128B1 (en) | 2008-12-12 | 2010-01-05 | Stats Chippac, Ltd. | Semiconductor device and method of forming a vertical interconnect structure for 3-D FO-WLCSP |
US7898083B2 (en) | 2008-12-17 | 2011-03-01 | Texas Instruments Incorporated | Method for low stress flip-chip assembly of fine-pitch semiconductor devices |
TWI499024B (en) | 2009-01-07 | 2015-09-01 | Advanced Semiconductor Eng | Package-on-package device, semiconductor package and method for manufacturing the same |
US8012797B2 (en) | 2009-01-07 | 2011-09-06 | Advanced Semiconductor Engineering, Inc. | Method for forming stackable semiconductor device packages including openings with conductive bumps of specified geometries |
JP2010199528A (en) | 2009-01-27 | 2010-09-09 | Tatsuta System Electronics Kk | Bonding wire |
JP2010177597A (en) | 2009-01-30 | 2010-08-12 | Sanyo Electric Co Ltd | Semiconductor module and portable device |
US20100200981A1 (en) | 2009-02-09 | 2010-08-12 | Advanced Semiconductor Engineering, Inc. | Semiconductor package and method of manufacturing the same |
US9142586B2 (en) | 2009-02-24 | 2015-09-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Pad design for backside illuminated image sensor |
JP2010206007A (en) | 2009-03-04 | 2010-09-16 | Nec Corp | Semiconductor device and method of manufacturing the same |
US8115283B1 (en) | 2009-07-14 | 2012-02-14 | Amkor Technology, Inc. | Reversible top/bottom MEMS package |
WO2010101163A1 (en) | 2009-03-04 | 2010-09-10 | 日本電気株式会社 | Substrate with built-in functional element, and electronic device using the substrate |
US8106498B2 (en) | 2009-03-05 | 2012-01-31 | Stats Chippac Ltd. | Integrated circuit packaging system with a dual board-on-chip structure and method of manufacture thereof |
DE102009001461A1 (en) | 2009-03-11 | 2010-09-16 | Robert Bosch Gmbh | Method for producing an electronic assembly |
US8258010B2 (en) | 2009-03-17 | 2012-09-04 | Stats Chippac, Ltd. | Making a semiconductor device having conductive through organic vias |
US20100244276A1 (en) | 2009-03-25 | 2010-09-30 | Lsi Corporation | Three-dimensional electronics package |
US20110068478A1 (en) | 2009-03-26 | 2011-03-24 | Reza Argenty Pagaila | Integrated circuit packaging system with package stacking and method of manufacture thereof |
US8194411B2 (en) | 2009-03-31 | 2012-06-05 | Hong Kong Applied Science and Technology Research Institute Co. Ltd | Electronic package with stacked modules with channels passing through metal layers of the modules |
US8053814B2 (en) | 2009-04-08 | 2011-11-08 | International Business Machines Corporation | On-chip embedded thermal antenna for chip cooling |
JP2010251483A (en) | 2009-04-14 | 2010-11-04 | Renesas Electronics Corp | Semiconductor device and method of manufacturing the same |
US8039316B2 (en) | 2009-04-14 | 2011-10-18 | Stats Chippac Ltd. | Integrated circuit packaging system with stacked integrated circuit and heat spreader with openings and method of manufacture thereof |
US20100289142A1 (en) | 2009-05-15 | 2010-11-18 | Il Kwon Shim | Integrated circuit packaging system with coin bonded interconnects and method of manufacture thereof |
US8020290B2 (en) | 2009-06-14 | 2011-09-20 | Jayna Sheats | Processes for IC fabrication |
TWI379367B (en) | 2009-06-15 | 2012-12-11 | Kun Yuan Technology Co Ltd | Chip packaging method and structure thereof |
US20120153444A1 (en) | 2009-06-18 | 2012-06-21 | Rohm Co., Ltd | Semiconductor device |
US20100327419A1 (en) | 2009-06-26 | 2010-12-30 | Sriram Muthukumar | Stacked-chip packages in package-on-package apparatus, methods of assembling same, and systems containing same |
JP5214554B2 (en) | 2009-07-30 | 2013-06-19 | ラピスセミコンダクタ株式会社 | Semiconductor chip built-in package and manufacturing method thereof, and package-on-package semiconductor device and manufacturing method thereof |
US8183678B2 (en) | 2009-08-04 | 2012-05-22 | Amkor Technology Korea, Inc. | Semiconductor device having an interposer |
US20110209908A1 (en) | 2009-08-06 | 2011-09-01 | Advanced Chip Engineering Technology Inc. | Conductor package structure and method of the same |
KR101124102B1 (en) | 2009-08-24 | 2012-03-21 | 삼성전기주식회사 | Substrate for light emitting device package and light emitting device package comprising the same |
EP2290686A3 (en) | 2009-08-28 | 2011-04-20 | STMicroelectronics S.r.l. | Method to perform electrical testing and assembly of electronic devices |
US7923304B2 (en) * | 2009-09-10 | 2011-04-12 | Stats Chippac Ltd. | Integrated circuit packaging system with conductive pillars and method of manufacture thereof |
US8264091B2 (en) | 2009-09-21 | 2012-09-11 | Stats Chippac Ltd. | Integrated circuit packaging system with encapsulated via and method of manufacture thereof |
US8008121B2 (en) | 2009-11-04 | 2011-08-30 | Stats Chippac, Ltd. | Semiconductor package and method of mounting semiconductor die to opposite sides of TSV substrate |
US8390108B2 (en) | 2009-12-16 | 2013-03-05 | Stats Chippac Ltd. | Integrated circuit packaging system with stacking interconnect and method of manufacture thereof |
US8169065B2 (en) | 2009-12-22 | 2012-05-01 | Epic Technologies, Inc. | Stackable circuit structures and methods of fabrication thereof |
TW201123387A (en) | 2009-12-25 | 2011-07-01 | xiang-hua Wang | Thermal-electric separated metal PCB with a chip carrier. |
TWI392066B (en) | 2009-12-28 | 2013-04-01 | 矽品精密工業股份有限公司 | Package structure and fabrication method thereof |
TWI395312B (en) | 2010-01-20 | 2013-05-01 | 矽品精密工業股份有限公司 | Package structure having mems element and method of making the same |
JP5550369B2 (en) | 2010-02-03 | 2014-07-16 | 新日鉄住金マテリアルズ株式会社 | Copper bonding wire for semiconductor and its bonding structure |
JP2011166051A (en) * | 2010-02-15 | 2011-08-25 | Panasonic Corp | Semiconductor device and method of manufacturing the same |
US7990711B1 (en) | 2010-02-24 | 2011-08-02 | International Business Machines Corporation | Double-face heat removal of vertically integrated chip-stacks utilizing combined symmetric silicon carrier fluid cavity and micro-channel cold plate |
US7928552B1 (en) | 2010-03-12 | 2011-04-19 | Stats Chippac Ltd. | Integrated circuit packaging system with multi-tier conductive interconnects and method of manufacture thereof |
US9496152B2 (en) | 2010-03-12 | 2016-11-15 | STATS ChipPAC Pte. Ltd. | Carrier system with multi-tier conductive posts and method of manufacture thereof |
KR101667656B1 (en) | 2010-03-24 | 2016-10-20 | 삼성전자주식회사 | Method of forming package on package |
US8624374B2 (en) | 2010-04-02 | 2014-01-07 | Advanced Semiconductor Engineering, Inc. | Semiconductor device packages with fan-out and with connecting elements for stacking and manufacturing methods thereof |
US8278746B2 (en) | 2010-04-02 | 2012-10-02 | Advanced Semiconductor Engineering, Inc. | Semiconductor device packages including connecting elements |
US8564141B2 (en) | 2010-05-06 | 2013-10-22 | SK Hynix Inc. | Chip unit and stack package having the same |
US8558392B2 (en) | 2010-05-14 | 2013-10-15 | Stats Chippac, Ltd. | Semiconductor device and method of forming interconnect structure and mounting semiconductor die in recessed encapsulant |
US8288854B2 (en) | 2010-05-19 | 2012-10-16 | Advanced Semiconductor Engineering, Inc. | Semiconductor package and method for making the same |
US8217502B2 (en) | 2010-06-08 | 2012-07-10 | Stats Chippac Ltd. | Integrated circuit packaging system with multipart conductive pillars and method of manufacture thereof |
US20120001336A1 (en) | 2010-07-02 | 2012-01-05 | Texas Instruments Incorporated | Corrosion-resistant copper-to-aluminum bonds |
US8330272B2 (en) | 2010-07-08 | 2012-12-11 | Tessera, Inc. | Microelectronic packages with dual or multiple-etched flip-chip connectors |
KR20120007839A (en) | 2010-07-15 | 2012-01-25 | 삼성전자주식회사 | Manufacturing method of stack type package |
US8482111B2 (en) | 2010-07-19 | 2013-07-09 | Tessera, Inc. | Stackable molded microelectronic packages |
JP5713598B2 (en) | 2010-07-20 | 2015-05-07 | 新光電気工業株式会社 | Socket and manufacturing method thereof |
US8796135B2 (en) | 2010-07-23 | 2014-08-05 | Tessera, Inc. | Microelectronic elements with rear contacts connected with via first or via middle structures |
US8847376B2 (en) | 2010-07-23 | 2014-09-30 | Tessera, Inc. | Microelectronic elements with post-assembly planarization |
US8791575B2 (en) | 2010-07-23 | 2014-07-29 | Tessera, Inc. | Microelectronic elements having metallic pads overlying vias |
KR101683814B1 (en) | 2010-07-26 | 2016-12-08 | 삼성전자주식회사 | Semiconductor apparatus having through vias |
US8580607B2 (en) | 2010-07-27 | 2013-11-12 | Tessera, Inc. | Microelectronic packages with nanoparticle joining |
US8304900B2 (en) | 2010-08-11 | 2012-11-06 | Stats Chippac Ltd. | Integrated circuit packaging system with stacked lead and method of manufacture thereof |
US8076184B1 (en) | 2010-08-16 | 2011-12-13 | Stats Chippac, Ltd. | Semiconductor device and method of forming wafer-level multi-row etched leadframe with base leads and embedded semiconductor die |
US8518746B2 (en) | 2010-09-02 | 2013-08-27 | Stats Chippac, Ltd. | Semiconductor device and method of forming TSV semiconductor wafer with embedded semiconductor die |
US8354297B2 (en) | 2010-09-03 | 2013-01-15 | Stats Chippac, Ltd. | Semiconductor device and method of forming different height conductive pillars to electrically interconnect stacked laterally offset semiconductor die |
US8080445B1 (en) | 2010-09-07 | 2011-12-20 | Stats Chippac, Ltd. | Semiconductor device and method of forming WLP with semiconductor die embedded within penetrable encapsulant between TSV interposers |
US20120063090A1 (en) | 2010-09-09 | 2012-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cooling mechanism for stacked die package and method of manufacturing the same |
US8409922B2 (en) | 2010-09-14 | 2013-04-02 | Stats Chippac, Ltd. | Semiconductor device and method of forming leadframe interposer over semiconductor die and TSV substrate for vertical electrical interconnect |
US8349735B2 (en) | 2010-09-22 | 2013-01-08 | Stats Chippac, Ltd. | Semiconductor device and method of forming conductive TSV with insulating annular ring |
US8415704B2 (en) | 2010-09-22 | 2013-04-09 | Ut-Battelle, Llc | Close-packed array of light emitting devices |
US9224647B2 (en) | 2010-09-24 | 2015-12-29 | Stats Chippac, Ltd. | Semiconductor device and method of forming TSV interposer with semiconductor die and build-up interconnect structure on opposing surfaces of the interposer |
JP5616739B2 (en) | 2010-10-01 | 2014-10-29 | 新日鉄住金マテリアルズ株式会社 | Multilayer copper bonding wire bonding structure |
US20120080787A1 (en) | 2010-10-05 | 2012-04-05 | Qualcomm Incorporated | Electronic Package and Method of Making an Electronic Package |
US8618646B2 (en) | 2010-10-12 | 2013-12-31 | Headway Technologies, Inc. | Layered chip package and method of manufacturing same |
CN102024782B (en) | 2010-10-12 | 2012-07-25 | 北京大学 | Three-dimensional vertical interconnecting structure and manufacturing method thereof |
JP2012104790A (en) | 2010-10-12 | 2012-05-31 | Elpida Memory Inc | Semiconductor device |
JP5591653B2 (en) | 2010-10-27 | 2014-09-17 | 東和精工株式会社 | Label peeling machine |
US8263435B2 (en) | 2010-10-28 | 2012-09-11 | Stats Chippac, Ltd. | Semiconductor device and method of stacking semiconductor die in mold laser package interconnected by bumps and conductive vias |
US8697492B2 (en) | 2010-11-02 | 2014-04-15 | Tessera, Inc. | No flow underfill |
US8525318B1 (en) | 2010-11-10 | 2013-09-03 | Amkor Technology, Inc. | Semiconductor device and fabricating method thereof |
KR101075241B1 (en) | 2010-11-15 | 2011-11-01 | 테세라, 인코포레이티드 | Microelectronic package with terminals on dielectric mass |
JPWO2012067177A1 (en) | 2010-11-17 | 2014-05-12 | 株式会社フジクラ | Wiring board and manufacturing method thereof |
KR20120056052A (en) | 2010-11-24 | 2012-06-01 | 삼성전자주식회사 | Semiconductor Package |
US8502387B2 (en) | 2010-12-09 | 2013-08-06 | Stats Chippac Ltd. | Integrated circuit packaging system with vertical interconnection and method of manufacture thereof |
US8853558B2 (en) | 2010-12-10 | 2014-10-07 | Tessera, Inc. | Interconnect structure |
US8772817B2 (en) | 2010-12-22 | 2014-07-08 | Cree, Inc. | Electronic device submounts including substrates with thermally conductive vias |
US8736065B2 (en) | 2010-12-22 | 2014-05-27 | Intel Corporation | Multi-chip package having a substrate with a plurality of vertically embedded die and a process of forming the same |
KR101215271B1 (en) | 2010-12-29 | 2012-12-26 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor package structure and method of manufacturing the same |
US20120184116A1 (en) | 2011-01-18 | 2012-07-19 | Tyco Electronics Corporation | Interposer |
US8766436B2 (en) | 2011-03-01 | 2014-07-01 | Lsi Corporation | Moisture barrier for a wire bond |
US8508045B2 (en) | 2011-03-03 | 2013-08-13 | Broadcom Corporation | Package 3D interconnection and method of making same |
US8841765B2 (en) | 2011-04-22 | 2014-09-23 | Tessera, Inc. | Multi-chip module with stacked face-down connected dies |
US9508622B2 (en) | 2011-04-28 | 2016-11-29 | Freescale Semiconductor, Inc. | Method for protecting copper wire bonds on aluminum pads of a semiconductor device from corrosion |
US8618659B2 (en) | 2011-05-03 | 2013-12-31 | Tessera, Inc. | Package-on-package assembly with wire bonds to encapsulation surface |
KR101128063B1 (en) | 2011-05-03 | 2012-04-23 | 테세라, 인코포레이티드 | Package-on-package assembly with wire bonds to encapsulation surface |
US8476115B2 (en) | 2011-05-03 | 2013-07-02 | Stats Chippac, Ltd. | Semiconductor device and method of mounting cover to semiconductor die and interposer with adhesive material |
US8633059B2 (en) | 2011-05-11 | 2014-01-21 | Stats Chippac Ltd. | Integrated circuit packaging system with interconnect and method of manufacture thereof |
US8669646B2 (en) | 2011-05-31 | 2014-03-11 | Broadcom Corporation | Apparatus and method for grounding an IC package lid for EMI reduction |
US9128123B2 (en) | 2011-06-03 | 2015-09-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interposer test structures and methods |
US9117811B2 (en) | 2011-06-13 | 2015-08-25 | Tessera, Inc. | Flip chip assembly and process with sintering material on metal bumps |
US9006031B2 (en) | 2011-06-23 | 2015-04-14 | Stats Chippac, Ltd. | Semiconductor device and method of forming EWLB package with standoff conductive layer over encapsulant bumps |
KR20130007049A (en) | 2011-06-28 | 2013-01-18 | 삼성전자주식회사 | Package on package using through silicon via technique |
US8476770B2 (en) | 2011-07-07 | 2013-07-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and methods for forming through vias |
US9449941B2 (en) | 2011-07-07 | 2016-09-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Connecting function chips to a package to form package-on-package |
US8816505B2 (en) | 2011-07-29 | 2014-08-26 | Tessera, Inc. | Low stress vias |
US8487421B2 (en) | 2011-08-01 | 2013-07-16 | Tessera, Inc. | Microelectronic package with stacked microelectronic elements and method for manufacture thereof |
US8937309B2 (en) | 2011-08-08 | 2015-01-20 | Micron Technology, Inc. | Semiconductor die assemblies, semiconductor devices including same, and methods of fabrication |
US20130037929A1 (en) | 2011-08-09 | 2013-02-14 | Kay S. Essig | Stackable wafer level packages and related methods |
US20130040423A1 (en) | 2011-08-10 | 2013-02-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of Multi-Chip Wafer Level Packaging |
US8988895B2 (en) | 2011-08-23 | 2015-03-24 | Tessera, Inc. | Interconnection elements with encased interconnects |
US20130049218A1 (en) | 2011-08-31 | 2013-02-28 | Zhiwei Gong | Semiconductor device packaging having pre-encapsulation through via formation |
KR101800440B1 (en) | 2011-08-31 | 2017-11-23 | 삼성전자주식회사 | Semiconductor package having plural semiconductor chips and method of forming the same |
US9177832B2 (en) | 2011-09-16 | 2015-11-03 | Stats Chippac, Ltd. | Semiconductor device and method of forming a reconfigured stackable wafer level package with vertical interconnect |
US8816404B2 (en) | 2011-09-16 | 2014-08-26 | Stats Chippac, Ltd. | Semiconductor device and method of forming stacked semiconductor die and conductive interconnect structure through an encapsulant |
KR101900423B1 (en) | 2011-09-19 | 2018-09-21 | 삼성전자주식회사 | Semiconductor memory device |
EP2769409A1 (en) | 2011-10-03 | 2014-08-27 | Invensas Corporation | Stub minimization for multi-die wirebond assemblies with orthogonal windows |
KR101906408B1 (en) | 2011-10-04 | 2018-10-11 | 삼성전자주식회사 | Semiconductor package and method of manufacturing the same |
US20130087915A1 (en) | 2011-10-10 | 2013-04-11 | Conexant Systems, Inc. | Copper Stud Bump Wafer Level Package |
US8836136B2 (en) | 2011-10-17 | 2014-09-16 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US9105552B2 (en) | 2011-10-31 | 2015-08-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package on package devices and methods of packaging semiconductor dies |
KR101297015B1 (en) | 2011-11-03 | 2013-08-14 | 주식회사 네패스 | Method of manufacturing fan-out semiconductor package using lead frame, semiconductor package thereof, and package on package thereof |
US9196588B2 (en) | 2011-11-04 | 2015-11-24 | Invensas Corporation | EMI shield |
US8916781B2 (en) | 2011-11-15 | 2014-12-23 | Invensas Corporation | Cavities containing multi-wiring structures and devices |
US8552556B1 (en) | 2011-11-22 | 2013-10-08 | Amkor Technology, Inc. | Wafer level fan out package |
US8912651B2 (en) | 2011-11-30 | 2014-12-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package-on-package (PoP) structure including stud bulbs and method |
TWI464031B (en) | 2011-12-14 | 2014-12-11 | Univ Yuan Ze | Method for suppressing kirkendall voids formation at the interface between solder and cu pad |
KR101924388B1 (en) | 2011-12-30 | 2018-12-04 | 삼성전자주식회사 | Semiconductor Package having a redistribution structure |
US8680684B2 (en) | 2012-01-09 | 2014-03-25 | Invensas Corporation | Stackable microelectronic package structures |
US9258922B2 (en) | 2012-01-18 | 2016-02-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | PoP structures including through-assembly via modules |
US8686570B2 (en) | 2012-01-20 | 2014-04-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-dimensional integrated circuit structures and methods of forming the same |
KR20130090143A (en) | 2012-02-03 | 2013-08-13 | 삼성전자주식회사 | Package on package type semicoductor packages and method for fabricating the same |
US8742576B2 (en) | 2012-02-15 | 2014-06-03 | Oracle International Corporation | Maintaining alignment in a multi-chip module using a compressible structure |
US8946757B2 (en) | 2012-02-17 | 2015-02-03 | Invensas Corporation | Heat spreading substrate with embedded interconnects |
US8372741B1 (en) | 2012-02-24 | 2013-02-12 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
US9349706B2 (en) | 2012-02-24 | 2016-05-24 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
DE102012203293B4 (en) | 2012-03-02 | 2021-12-02 | Robert Bosch Gmbh | Semiconductor module with integrated waveguide for radar signals |
US20130234317A1 (en) | 2012-03-09 | 2013-09-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Packaging Methods and Packaged Semiconductor Devices |
US9082763B2 (en) | 2012-03-15 | 2015-07-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Joint structure for substrates and methods of forming |
US9842798B2 (en) | 2012-03-23 | 2017-12-12 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming a PoP device with embedded vertical interconnect units |
KR20130111780A (en) | 2012-04-02 | 2013-10-11 | 삼성전자주식회사 | Silicon devices having an emi shield |
US9405064B2 (en) | 2012-04-04 | 2016-08-02 | Texas Instruments Incorporated | Microstrip line of different widths, ground planes of different distances |
US8922005B2 (en) | 2012-04-11 | 2014-12-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and apparatus for package on package devices with reversed stud bump through via interconnections |
US8978247B2 (en) | 2012-05-22 | 2015-03-17 | Invensas Corporation | TSV fabrication using a removable handling structure |
US8835228B2 (en) | 2012-05-22 | 2014-09-16 | Invensas Corporation | Substrate-less stackable package with wire-bond interconnect |
US9171790B2 (en) | 2012-05-30 | 2015-10-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package on package devices and methods of packaging semiconductor dies |
US8948712B2 (en) | 2012-05-31 | 2015-02-03 | Skyworks Solutions, Inc. | Via density and placement in radio frequency shielding applications |
US20130323409A1 (en) | 2012-05-31 | 2013-12-05 | Skyworks Solutions, Inc. | Systems and methods for controlling electromagnetic interference for integrated circuit modules |
US8981559B2 (en) | 2012-06-25 | 2015-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package on package devices and methods of packaging semiconductor dies |
US8742597B2 (en) | 2012-06-29 | 2014-06-03 | Intel Corporation | Package substrates with multiple dice |
US8653626B2 (en) | 2012-07-18 | 2014-02-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package structures including a capacitor and methods of forming the same |
US9502390B2 (en) | 2012-08-03 | 2016-11-22 | Invensas Corporation | BVA interposer |
US10115671B2 (en) | 2012-08-03 | 2018-10-30 | Snaptrack, Inc. | Incorporation of passives and fine pitch through via for package on package |
US8642393B1 (en) | 2012-08-08 | 2014-02-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package on package devices and methods of forming same |
US8828860B2 (en) | 2012-08-30 | 2014-09-09 | International Business Machines Corporation | Double solder bumps on substrates for low temperature flip chip bonding |
US9443797B2 (en) | 2012-09-14 | 2016-09-13 | STATS ChipPAC Pte. Ltd. | Semiconductor device having wire studs as vertical interconnect in FO-WLP |
US8963339B2 (en) | 2012-10-08 | 2015-02-24 | Qualcomm Incorporated | Stacked multi-chip integrated circuit package |
US8975726B2 (en) | 2012-10-11 | 2015-03-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | POP structures and methods of forming the same |
KR101419597B1 (en) | 2012-11-06 | 2014-07-14 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor device and manufacturing method thereof |
US9418971B2 (en) | 2012-11-08 | 2016-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package-on-package structure including a thermal isolation material and method of forming the same |
US9412661B2 (en) | 2012-11-21 | 2016-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for forming package-on-package structure |
US9401338B2 (en) | 2012-11-29 | 2016-07-26 | Freescale Semiconductor, Inc. | Electronic devices with embedded die interconnect structures, and methods of manufacture thereof |
US8878353B2 (en) | 2012-12-20 | 2014-11-04 | Invensas Corporation | Structure for microelectronic packaging with bond elements to encapsulation surface |
US20140175657A1 (en) | 2012-12-21 | 2014-06-26 | Mihir A. Oka | Methods to improve laser mark contrast on die backside film in embedded die packages |
US8729714B1 (en) | 2012-12-31 | 2014-05-20 | Intel Mobile Communications GmbH | Flip-chip wafer level package and methods thereof |
US9378982B2 (en) | 2013-01-31 | 2016-06-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Die package with openings surrounding end-portions of through package vias (TPVs) and package on package (PoP) using the die package |
US8940630B2 (en) | 2013-02-01 | 2015-01-27 | Invensas Corporation | Method of making wire bond vias and microelectronic package having wire bond vias |
US9136254B2 (en) | 2013-02-01 | 2015-09-15 | Invensas Corporation | Microelectronic package having wire bond vias and stiffening layer |
US8907500B2 (en) | 2013-02-04 | 2014-12-09 | Invensas Corporation | Multi-die wirebond packages with elongated windows |
US20140225248A1 (en) | 2013-02-13 | 2014-08-14 | Qualcomm Incorporated | Power distribution and thermal solution for direct stacked integrated circuits |
US9209081B2 (en) | 2013-02-21 | 2015-12-08 | Freescale Semiconductor, Inc. | Semiconductor grid array package |
US20140239490A1 (en) | 2013-02-26 | 2014-08-28 | Unimicron Technology Corporation | Packaging substrate and fabrication method thereof |
US20140239479A1 (en) | 2013-02-26 | 2014-08-28 | Paul R Start | Microelectronic package including an encapsulated heat spreader |
US9461025B2 (en) | 2013-03-12 | 2016-10-04 | Taiwan Semiconductor Manfacturing Company, Ltd. | Electric magnetic shielding structure in packages |
US9299670B2 (en) | 2013-03-14 | 2016-03-29 | Freescale Semiconductor, Inc. | Stacked microelectronic packages having sidewall conductors and methods for the fabrication thereof |
US9788466B2 (en) | 2013-04-16 | 2017-10-10 | Skyworks Solutions, Inc. | Apparatus and methods related to ground paths implemented with surface mount devices |
KR20140126598A (en) | 2013-04-23 | 2014-10-31 | 삼성전자주식회사 | semiconductor package and method for manufacturing of the same |
RU2602746C2 (en) | 2013-06-28 | 2016-11-20 | ИНТЕЛ АйПи КОРПОРЕЙШН | Microelectromechanical system (mems) on application specific integrated circuit (asic) |
US9167710B2 (en) | 2013-08-07 | 2015-10-20 | Invensas Corporation | Embedded packaging with preformed vias |
US9685365B2 (en) | 2013-08-08 | 2017-06-20 | Invensas Corporation | Method of forming a wire bond having a free end |
KR102161173B1 (en) | 2013-08-29 | 2020-09-29 | 삼성전자주식회사 | Package-on-package device and method of fabricating the same |
US20150076714A1 (en) | 2013-09-16 | 2015-03-19 | Invensas Corporation | Microelectronic element with bond elements to encapsulation surface |
US9012263B1 (en) | 2013-10-31 | 2015-04-21 | Freescale Semiconductor, Inc. | Method for treating a bond pad of a package substrate |
US9379078B2 (en) | 2013-11-07 | 2016-06-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D die stacking structure with fine pitches |
KR101631934B1 (en) | 2013-11-13 | 2016-06-21 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor package structure and manufacturing method thereof |
US9379074B2 (en) | 2013-11-22 | 2016-06-28 | Invensas Corporation | Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects |
US9583456B2 (en) | 2013-11-22 | 2017-02-28 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
US9263394B2 (en) | 2013-11-22 | 2016-02-16 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
US9653442B2 (en) | 2014-01-17 | 2017-05-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit package and methods of forming same |
US9583411B2 (en) | 2014-01-17 | 2017-02-28 | Invensas Corporation | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
KR20150091932A (en) | 2014-02-04 | 2015-08-12 | 앰코 테크놀로지 코리아 주식회사 | Manufacturing method of semiconductor device and semiconductor device thereof |
US9224709B2 (en) | 2014-02-13 | 2015-12-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device including an embedded surface mount device and method of forming the same |
US9362161B2 (en) | 2014-03-20 | 2016-06-07 | Stats Chippac, Ltd. | Semiconductor device and method of forming 3D dual side die embedded build-up semiconductor package |
US9318452B2 (en) | 2014-03-21 | 2016-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor packages and methods of forming the same |
US9437459B2 (en) | 2014-05-01 | 2016-09-06 | Freescale Semiconductor, Inc. | Aluminum clad copper structure of an electronic component package and a method of making an electronic component package with an aluminum clad copper structure |
US20150340305A1 (en) | 2014-05-20 | 2015-11-26 | Freescale Semiconductor, Inc. | Stacked die package with redistribution layer |
US10325876B2 (en) | 2014-06-25 | 2019-06-18 | Nxp Usa, Inc. | Surface finish for wirebonding |
WO2016009974A1 (en) | 2014-07-15 | 2016-01-21 | 富士フイルム株式会社 | Detection system and detection method |
US9735084B2 (en) | 2014-12-11 | 2017-08-15 | Invensas Corporation | Bond via array for thermal conductivity |
KR101640341B1 (en) | 2015-02-04 | 2016-07-15 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor package |
US9653428B1 (en) | 2015-04-14 | 2017-05-16 | Amkor Technology, Inc. | Semiconductor package and fabricating method thereof |
US9490222B1 (en) | 2015-10-12 | 2016-11-08 | Invensas Corporation | Wire bond wires for interference shielding |
US10490528B2 (en) | 2015-10-12 | 2019-11-26 | Invensas Corporation | Embedded wire bond wires |
US10181457B2 (en) | 2015-10-26 | 2019-01-15 | Invensas Corporation | Microelectronic package for wafer-level chip scale packaging with fan-out |
US9984992B2 (en) | 2015-12-30 | 2018-05-29 | Invensas Corporation | Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces |
US9935075B2 (en) | 2016-07-29 | 2018-04-03 | Invensas Corporation | Wire bonding method and apparatus for electromagnetic interference shielding |
-
2012
- 2012-02-24 US US13/405,108 patent/US8836136B2/en active Active
- 2012-02-24 US US13/404,408 patent/US9105483B2/en active Active
- 2012-02-24 US US13/404,458 patent/US8404520B1/en active Active
- 2012-10-16 KR KR1020147013295A patent/KR101904410B1/en active IP Right Grant
- 2012-10-16 EP EP18183273.4A patent/EP3416190B1/en active Active
- 2012-10-16 EP EP12787211.7A patent/EP2769411A1/en not_active Ceased
- 2012-10-16 CN CN201280062529.5A patent/CN104011858B/en active Active
- 2012-10-16 JP JP2014537149A patent/JP2014530511A/en active Pending
- 2012-10-16 WO PCT/US2012/060402 patent/WO2013059181A1/en active Application Filing
- 2012-10-17 TW TW101138311A patent/TWI599016B/en active
-
2013
- 2013-03-12 US US13/795,811 patent/US9041227B2/en active Active
- 2013-08-14 US US13/966,636 patent/US9252122B2/en active Active
-
2015
- 2015-05-21 US US14/718,719 patent/US9761558B2/en active Active
-
2017
- 2017-09-08 US US15/699,288 patent/US10756049B2/en active Active
-
2020
- 2020-08-21 US US16/999,601 patent/US11189595B2/en active Active
-
2021
- 2021-10-27 US US17/512,123 patent/US11735563B2/en active Active
-
2023
- 2023-07-12 US US18/221,171 patent/US20240055393A1/en active Pending
Patent Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623649A (en) * | 1969-06-09 | 1971-11-30 | Gen Motors Corp | Wedge bonding tool for the attachment of semiconductor leads |
US3795037A (en) * | 1970-05-05 | 1974-03-05 | Int Computers Ltd | Electrical connector devices |
US4327860A (en) * | 1980-01-03 | 1982-05-04 | Kulicke And Soffa Ind. Inc. | Method of making slack free wire interconnections |
US4422568A (en) * | 1981-01-12 | 1983-12-27 | Kulicke And Soffa Industries, Inc. | Method of making constant bonding wire tail lengths |
US4437604A (en) * | 1982-03-15 | 1984-03-20 | Kulicke & Soffa Industries, Inc. | Method of making fine wire interconnections |
US4793814A (en) * | 1986-07-21 | 1988-12-27 | Rogers Corporation | Electrical circuit board interconnect |
US6215670B1 (en) * | 1993-11-16 | 2001-04-10 | Formfactor, Inc. | Method for manufacturing raised electrical contact pattern of controlled geometry |
US5455390A (en) * | 1994-02-01 | 1995-10-03 | Tessera, Inc. | Microelectronics unit mounting with multiple lead bonding |
US5801441A (en) * | 1994-07-07 | 1998-09-01 | Tessera, Inc. | Microelectronic mounting with multiple lead deformation and bonding |
US5688716A (en) * | 1994-07-07 | 1997-11-18 | Tessera, Inc. | Fan-out semiconductor chip assembly |
US5989936A (en) * | 1994-07-07 | 1999-11-23 | Tessera, Inc. | Microelectronic assembly fabrication with terminal formation from a conductive layer |
US6117694A (en) * | 1994-07-07 | 2000-09-12 | Tessera, Inc. | Flexible lead structures and methods of making same |
US6828668B2 (en) * | 1994-07-07 | 2004-12-07 | Tessera, Inc. | Flexible lead structures and methods of making same |
US6194291B1 (en) * | 1994-07-07 | 2001-02-27 | Tessera, Inc. | Microelectronic assemblies with multiple leads |
US5518964A (en) * | 1994-07-07 | 1996-05-21 | Tessera, Inc. | Microelectronic mounting with multiple lead deformation and bonding |
US5495667A (en) * | 1994-11-07 | 1996-03-05 | Micron Technology, Inc. | Method for forming contact pins for semiconductor dice and interconnects |
US6362520B2 (en) * | 1996-12-12 | 2002-03-26 | Tessera, Inc. | Microelectronic mounting with multiple lead deformation using restraining straps |
US6208024B1 (en) * | 1996-12-12 | 2001-03-27 | Tessera, Inc. | Microelectronic mounting with multiple lead deformation using restraining straps |
US20010007370A1 (en) * | 1996-12-12 | 2001-07-12 | Distefano Thomas H. | Microelectronic mounting with multiple lead deformation using restraining straps |
US6133072A (en) * | 1996-12-13 | 2000-10-17 | Tessera, Inc. | Microelectronic connector with planar elastomer sockets |
US6002168A (en) * | 1997-11-25 | 1999-12-14 | Tessera, Inc. | Microelectronic component with rigid interposer |
US6262482B1 (en) * | 1998-02-03 | 2001-07-17 | Oki Electric Industry Co., Ltd. | Semiconductor device |
US7416107B2 (en) * | 1998-09-29 | 2008-08-26 | Micron Technology, Inc. | Concave face wire bond capillary and method |
US6158647A (en) * | 1998-09-29 | 2000-12-12 | Micron Technology, Inc. | Concave face wire bond capillary |
US7677429B2 (en) * | 1998-09-29 | 2010-03-16 | Micron Technology, Inc. | Concave face wire bond capillary and method |
US6439450B1 (en) * | 1998-09-29 | 2002-08-27 | Micron Technology, Inc. | Concave face wire bond capillary |
US6774494B2 (en) * | 2001-03-22 | 2004-08-10 | Renesas Technology Corp. | Semiconductor device and manufacturing method thereof |
US6962282B2 (en) * | 2002-03-09 | 2005-11-08 | Fujitsu Limited | System for providing an open-cavity low profile encapsulated semiconductor package |
US7262124B2 (en) * | 2002-11-21 | 2007-08-28 | Kaijo Corporation | Wire loop, semiconductor device having same, wire bonding method and wire bonding apparatus |
US7737545B2 (en) * | 2003-09-24 | 2010-06-15 | Interconnect Portfolio Llc | Multi-surface IC packaging structures and methods for their manufacture |
US20050151238A1 (en) * | 2003-12-29 | 2005-07-14 | Vinu Yamunan | Three-level leadframe for no-lead packages |
US7780064B2 (en) * | 2006-06-02 | 2010-08-24 | Asm Technology Singapore Pte Ltd | Wire bonding method for forming low-loop profiles |
US20070290325A1 (en) * | 2006-06-16 | 2007-12-20 | Lite-On Semiconductor Corporation | Surface mounting structure and packaging method thereof |
US7967062B2 (en) * | 2006-06-16 | 2011-06-28 | International Business Machines Corporation | Thermally conductive composite interface, cooled electronic assemblies employing the same, and methods of fabrication thereof |
US8213184B2 (en) * | 2006-08-04 | 2012-07-03 | International Business Machines Corporation | Method of testing using a temporary chip attach carrier |
US7880290B2 (en) * | 2006-12-29 | 2011-02-01 | Samsung Electronics Co., Ltd. | Flip-chip packages allowing reduced size without electrical shorts and methods of manufacturing the same |
US8039970B2 (en) * | 2007-01-31 | 2011-10-18 | Kabushiki Kaisha Toshiba | Stacked semiconductor device and method of manufacturing the same |
US20110272449A1 (en) * | 2007-10-04 | 2011-11-10 | Texas Instruments Incorporated | Dual Capillary IC Wirebonding |
US7964956B1 (en) * | 2007-12-10 | 2011-06-21 | Oracle America, Inc. | Circuit packaging and connectivity |
US8071470B2 (en) * | 2008-10-23 | 2011-12-06 | Carsem (M) Sdn. Bhd. | Wafer level package using stud bump coated with solder |
US20120043655A1 (en) * | 2008-10-23 | 2012-02-23 | Carsem (M) Sdn. Bhd. | Wafer-level package using stud bump coated with solder |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10128216B2 (en) | 2010-07-19 | 2018-11-13 | Tessera, Inc. | Stackable molded microelectronic packages |
US11424211B2 (en) | 2011-05-03 | 2022-08-23 | Tessera Llc | Package-on-package assembly with wire bonds to encapsulation surface |
US11735563B2 (en) | 2011-10-17 | 2023-08-22 | Invensas Llc | Package-on-package assembly with wire bond vias |
US10756049B2 (en) | 2011-10-17 | 2020-08-25 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US9761558B2 (en) | 2011-10-17 | 2017-09-12 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US11189595B2 (en) | 2011-10-17 | 2021-11-30 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US20130114235A1 (en) * | 2011-11-04 | 2013-05-09 | Invensas Corporation | Emi shield |
US9196588B2 (en) * | 2011-11-04 | 2015-11-24 | Invensas Corporation | EMI shield |
US9691679B2 (en) | 2012-02-24 | 2017-06-27 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
US9917073B2 (en) | 2012-07-31 | 2018-03-13 | Invensas Corporation | Reconstituted wafer-level package dram with conductive interconnects formed in encapsulant at periphery of the package |
US10297582B2 (en) | 2012-08-03 | 2019-05-21 | Invensas Corporation | BVA interposer |
US8980695B2 (en) * | 2012-08-31 | 2015-03-17 | Chipmos Technologies Inc. | Manufacturing method of wafer level package |
US20140315355A1 (en) * | 2012-08-31 | 2014-10-23 | Chipmos Technologies Inc. | Manufacturing method of wafer level package |
US20170301834A1 (en) * | 2013-05-20 | 2017-10-19 | Koninklijke Philips N.V. | Chip scale light emitting device package with dome |
US11145794B2 (en) * | 2013-05-20 | 2021-10-12 | Lumileds Llc | Chip scale light emitting device package with dome |
DE102013211405A1 (en) * | 2013-06-18 | 2014-12-18 | Infineon Technologies Ag | METHOD FOR PRODUCING A SEMICONDUCTOR MODULE |
DE102013211405B4 (en) | 2013-06-18 | 2020-06-04 | Infineon Technologies Ag | METHOD FOR PRODUCING A SEMICONDUCTOR MODULE |
CN104241151A (en) * | 2013-06-18 | 2014-12-24 | 英飞凌科技股份有限公司 | Method for Producing a Semiconductor Module |
US10032743B2 (en) | 2013-06-18 | 2018-07-24 | Infineon Technologies Ag | Method for producing a semiconductor module |
US10460958B2 (en) | 2013-08-07 | 2019-10-29 | Invensas Corporation | Method of manufacturing embedded packaging with preformed vias |
US9685365B2 (en) | 2013-08-08 | 2017-06-20 | Invensas Corporation | Method of forming a wire bond having a free end |
US10008477B2 (en) | 2013-09-16 | 2018-06-26 | Invensas Corporation | Microelectronic element with bond elements to encapsulation surface |
US11990382B2 (en) | 2014-01-17 | 2024-05-21 | Adeia Semiconductor Technologies Llc | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
US11404338B2 (en) | 2014-01-17 | 2022-08-02 | Invensas Corporation | Fine pitch bva using reconstituted wafer with area array accessible for testing |
US9837330B2 (en) | 2014-01-17 | 2017-12-05 | Invensas Corporation | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
US10529636B2 (en) | 2014-01-17 | 2020-01-07 | Invensas Corporation | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
US9888579B2 (en) | 2015-03-05 | 2018-02-06 | Invensas Corporation | Pressing of wire bond wire tips to provide bent-over tips |
EP3363047A4 (en) * | 2015-10-12 | 2019-06-19 | Invensas Corporation | Embedded wire bond wires |
CN108431952A (en) * | 2015-10-12 | 2018-08-21 | 英帆萨斯公司 | Embedded wire bonding line |
US10332854B2 (en) | 2015-10-23 | 2019-06-25 | Invensas Corporation | Anchoring structure of fine pitch bva |
US9659848B1 (en) * | 2015-11-18 | 2017-05-23 | Invensas Corporation | Stiffened wires for offset BVA |
US20170141020A1 (en) * | 2015-11-18 | 2017-05-18 | Invensas Corporation | Stiffened wires for offset bva |
EP3398207A4 (en) * | 2015-12-30 | 2019-06-19 | Invensas Corporation | Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces |
KR102436803B1 (en) | 2015-12-30 | 2022-08-25 | 인벤사스 코포레이션 | Recessed wire bond wire for discrete surface mount and vertical integration with wire bond mount surfaces |
KR20180089457A (en) * | 2015-12-30 | 2018-08-08 | 인벤사스 코포레이션 | Embedded wire bond wires for separate surface mount and vertical integration with wire bond mounting surface |
CN105972018A (en) * | 2016-06-21 | 2016-09-28 | 深圳爱易瑞科技有限公司 | Intelligent industrial dispensing control method |
CN105952749A (en) * | 2016-06-21 | 2016-09-21 | 深圳爱易瑞科技有限公司 | Adhesive dispensing method for fingerprint recognition module |
US10424525B2 (en) | 2017-05-23 | 2019-09-24 | Stmicroelectronics S.R.L. | Method of manufacturing semiconductor devices |
US10861760B2 (en) | 2017-05-23 | 2020-12-08 | Stmicroelectronics S.R.L. | Method of manufacturing semiconductor devices and corresponding semiconductor device |
US20230115846A1 (en) * | 2021-10-13 | 2023-04-13 | Skyworks Solutions, Inc. | Electronic Package and Method for Manufacturing an Electronic Package |
Also Published As
Publication number | Publication date |
---|---|
KR20140085517A (en) | 2014-07-07 |
US11735563B2 (en) | 2023-08-22 |
US8836136B2 (en) | 2014-09-16 |
EP2769411A1 (en) | 2014-08-27 |
US11189595B2 (en) | 2021-11-30 |
US9252122B2 (en) | 2016-02-02 |
US20130093087A1 (en) | 2013-04-18 |
TW201336038A (en) | 2013-09-01 |
US20130200533A1 (en) | 2013-08-08 |
US8404520B1 (en) | 2013-03-26 |
US9761558B2 (en) | 2017-09-12 |
WO2013059181A1 (en) | 2013-04-25 |
CN104011858A (en) | 2014-08-27 |
CN104011858B (en) | 2017-10-10 |
EP3416190B1 (en) | 2019-12-04 |
TWI599016B (en) | 2017-09-11 |
US20180026007A1 (en) | 2018-01-25 |
KR101904410B1 (en) | 2018-10-05 |
JP2014530511A (en) | 2014-11-17 |
US20150255424A1 (en) | 2015-09-10 |
US20130328219A1 (en) | 2013-12-12 |
US20220165703A1 (en) | 2022-05-26 |
US9105483B2 (en) | 2015-08-11 |
US20240055393A1 (en) | 2024-02-15 |
EP3416190A1 (en) | 2018-12-19 |
US9041227B2 (en) | 2015-05-26 |
US20130093088A1 (en) | 2013-04-18 |
US20210035948A1 (en) | 2021-02-04 |
US10756049B2 (en) | 2020-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11189595B2 (en) | Package-on-package assembly with wire bond vias | |
US9601454B2 (en) | Method of forming a component having wire bonds and a stiffening layer | |
US8940630B2 (en) | Method of making wire bond vias and microelectronic package having wire bond vias | |
US11424211B2 (en) | Package-on-package assembly with wire bonds to encapsulation surface | |
US9691679B2 (en) | Method for package-on-package assembly with wire bonds to encapsulation surface | |
US9349706B2 (en) | Method for package-on-package assembly with wire bonds to encapsulation surface | |
US8618659B2 (en) | Package-on-package assembly with wire bonds to encapsulation surface | |
KR101994954B1 (en) | Microelectronic package having wire bond vias, method of making and stiffening layer for same | |
US11830845B2 (en) | Package-on-package assembly with wire bonds to encapsulation surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INVENSAS CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAU, ELLIS;CO, REYNALDO;ALATORRE, ROSEANN;AND OTHERS;REEL/FRAME:027801/0421 Effective date: 20120223 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ROYAL BANK OF CANADA, AS COLLATERAL AGENT, CANADA Free format text: SECURITY INTEREST;ASSIGNORS:INVENSAS CORPORATION;TESSERA, INC.;TESSERA ADVANCED TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040797/0001 Effective date: 20161201 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., NORTH CAROLINA Free format text: SECURITY INTEREST;ASSIGNORS:ROVI SOLUTIONS CORPORATION;ROVI TECHNOLOGIES CORPORATION;ROVI GUIDES, INC.;AND OTHERS;REEL/FRAME:053468/0001 Effective date: 20200601 |
|
AS | Assignment |
Owner name: PHORUS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: IBIQUITY DIGITAL CORPORATION, MARYLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: FOTONATION CORPORATION (F/K/A DIGITALOPTICS CORPORATION AND F/K/A DIGITALOPTICS CORPORATION MEMS), CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: INVENSAS BONDING TECHNOLOGIES, INC. (F/K/A ZIPTRONIX, INC.), CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: DTS LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: TESSERA ADVANCED TECHNOLOGIES, INC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: INVENSAS CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: DTS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: TESSERA, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: INVENSAS LLC, CALIFORNIA Free format text: CERTIFICATE OF CONVERSION & CHANGE OF NAME;ASSIGNOR:INVENSAS CORPORATION;REEL/FRAME:061387/0680 Effective date: 20211001 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |