US20090186082A1 - Method of manufacturing modified release dosage forms - Google Patents
Method of manufacturing modified release dosage forms Download PDFInfo
- Publication number
- US20090186082A1 US20090186082A1 US12/360,579 US36057909A US2009186082A1 US 20090186082 A1 US20090186082 A1 US 20090186082A1 US 36057909 A US36057909 A US 36057909A US 2009186082 A1 US2009186082 A1 US 2009186082A1
- Authority
- US
- United States
- Prior art keywords
- active ingredient
- shell
- release
- core
- dosage form
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002552 dosage form Substances 0.000 title claims abstract description 114
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000004480 active ingredient Substances 0.000 claims abstract description 206
- 239000002245 particle Substances 0.000 claims abstract description 77
- 239000007788 liquid Substances 0.000 claims abstract description 39
- 239000007787 solid Substances 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims description 109
- 239000000463 material Substances 0.000 claims description 69
- 238000000465 moulding Methods 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 54
- 238000000576 coating method Methods 0.000 claims description 45
- 239000011248 coating agent Substances 0.000 claims description 37
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 35
- 229920000642 polymer Polymers 0.000 claims description 35
- 230000009969 flowable effect Effects 0.000 claims description 33
- 239000011148 porous material Substances 0.000 claims description 30
- 238000002844 melting Methods 0.000 claims description 28
- 229920001577 copolymer Polymers 0.000 claims description 27
- 229920001223 polyethylene glycol Polymers 0.000 claims description 27
- 229920001169 thermoplastic Polymers 0.000 claims description 24
- 239000002202 Polyethylene glycol Substances 0.000 claims description 23
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 22
- 230000001419 dependent effect Effects 0.000 claims description 20
- 239000004416 thermosoftening plastic Substances 0.000 claims description 20
- 230000008018 melting Effects 0.000 claims description 19
- 229920001800 Shellac Polymers 0.000 claims description 18
- 239000004208 shellac Substances 0.000 claims description 18
- 229940113147 shellac Drugs 0.000 claims description 18
- 235000013874 shellac Nutrition 0.000 claims description 18
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 claims description 18
- 238000013268 sustained release Methods 0.000 claims description 18
- 239000012730 sustained-release form Substances 0.000 claims description 18
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 16
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 16
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 16
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 15
- 239000012729 immediate-release (IR) formulation Substances 0.000 claims description 15
- 229920003169 water-soluble polymer Polymers 0.000 claims description 12
- 229920003176 water-insoluble polymer Polymers 0.000 claims description 11
- 229920002785 Croscarmellose sodium Polymers 0.000 claims description 8
- 229920002301 cellulose acetate Polymers 0.000 claims description 7
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 6
- 229960001681 croscarmellose sodium Drugs 0.000 claims description 5
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 claims description 5
- 238000001746 injection moulding Methods 0.000 claims description 2
- 239000011257 shell material Substances 0.000 description 134
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 49
- -1 poly(ethylene oxide) Polymers 0.000 description 48
- 239000003814 drug Substances 0.000 description 39
- 229940079593 drug Drugs 0.000 description 37
- 229920002472 Starch Polymers 0.000 description 26
- 235000019698 starch Nutrition 0.000 description 26
- 230000003111 delayed effect Effects 0.000 description 25
- 239000002609 medium Substances 0.000 description 25
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 24
- 230000003628 erosive effect Effects 0.000 description 20
- 230000006870 function Effects 0.000 description 19
- 239000007858 starting material Substances 0.000 description 19
- 238000004090 dissolution Methods 0.000 description 18
- 230000000712 assembly Effects 0.000 description 17
- 238000000429 assembly Methods 0.000 description 17
- 239000004014 plasticizer Substances 0.000 description 17
- 230000002459 sustained effect Effects 0.000 description 17
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 16
- 235000010980 cellulose Nutrition 0.000 description 15
- 229920002678 cellulose Polymers 0.000 description 15
- 239000001913 cellulose Substances 0.000 description 15
- 229910052753 mercury Inorganic materials 0.000 description 15
- 230000002035 prolonged effect Effects 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 229920000881 Modified starch Polymers 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 239000008107 starch Substances 0.000 description 13
- 229940032147 starch Drugs 0.000 description 13
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 11
- 239000012530 fluid Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 10
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 10
- 230000002496 gastric effect Effects 0.000 description 10
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 10
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000000969 carrier Substances 0.000 description 9
- 235000014113 dietary fatty acids Nutrition 0.000 description 9
- 239000000194 fatty acid Substances 0.000 description 9
- 229930195729 fatty acid Natural products 0.000 description 9
- 235000011187 glycerol Nutrition 0.000 description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 description 9
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 9
- 150000001720 carbohydrates Chemical class 0.000 description 8
- 235000014633 carbohydrates Nutrition 0.000 description 8
- 235000019426 modified starch Nutrition 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 7
- 238000013270 controlled release Methods 0.000 description 7
- 125000005456 glyceride group Chemical group 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 6
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 6
- 229920003134 Eudragit® polymer Polymers 0.000 description 6
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 6
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 6
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 6
- 239000004359 castor oil Substances 0.000 description 6
- 235000019438 castor oil Nutrition 0.000 description 6
- 229960001777 castor oil Drugs 0.000 description 6
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 6
- 239000003925 fat Substances 0.000 description 6
- 235000019197 fats Nutrition 0.000 description 6
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 6
- BALXUFOVQVENIU-KXNXZCPBSA-N pseudoephedrine hydrochloride Chemical compound [H+].[Cl-].CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 BALXUFOVQVENIU-KXNXZCPBSA-N 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 6
- 239000001069 triethyl citrate Substances 0.000 description 6
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 6
- 235000013769 triethyl citrate Nutrition 0.000 description 6
- 230000004584 weight gain Effects 0.000 description 6
- 235000019786 weight gain Nutrition 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 5
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 5
- 229920008262 Thermoplastic starch Polymers 0.000 description 5
- 229920002494 Zein Polymers 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 5
- 150000002334 glycols Chemical class 0.000 description 5
- 229960001680 ibuprofen Drugs 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 5
- 229920001610 polycaprolactone Polymers 0.000 description 5
- 229920002689 polyvinyl acetate Polymers 0.000 description 5
- 239000011118 polyvinyl acetate Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 150000003626 triacylglycerols Chemical class 0.000 description 5
- 239000005019 zein Substances 0.000 description 5
- 229940093612 zein Drugs 0.000 description 5
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- RPZANUYHRMRTTE-UHFFFAOYSA-N 2,3,4-trimethoxy-6-(methoxymethyl)-5-[3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxyoxane;1-[[3,4,5-tris(2-hydroxybutoxy)-6-[4,5,6-tris(2-hydroxybutoxy)-2-(2-hydroxybutoxymethyl)oxan-3-yl]oxyoxan-2-yl]methoxy]butan-2-ol Chemical compound COC1C(OC)C(OC)C(COC)OC1OC1C(OC)C(OC)C(OC)OC1COC.CCC(O)COC1C(OCC(O)CC)C(OCC(O)CC)C(COCC(O)CC)OC1OC1C(OCC(O)CC)C(OCC(O)CC)C(OCC(O)CC)OC1COCC(O)CC RPZANUYHRMRTTE-UHFFFAOYSA-N 0.000 description 4
- YUXIBTJKHLUKBD-UHFFFAOYSA-N Dibutyl succinate Chemical compound CCCCOC(=O)CCC(=O)OCCCC YUXIBTJKHLUKBD-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 4
- 229920003091 Methocel™ Polymers 0.000 description 4
- DLRVVLDZNNYCBX-UHFFFAOYSA-N Polydextrose Polymers OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(O)O1 DLRVVLDZNNYCBX-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 108010073771 Soybean Proteins Proteins 0.000 description 4
- 150000001242 acetic acid derivatives Chemical class 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000005018 casein Substances 0.000 description 4
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 4
- 235000021240 caseins Nutrition 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 229960002097 dibutylsuccinate Drugs 0.000 description 4
- 239000012738 dissolution medium Substances 0.000 description 4
- 238000012377 drug delivery Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000000796 flavoring agent Substances 0.000 description 4
- 235000019634 flavors Nutrition 0.000 description 4
- 230000037406 food intake Effects 0.000 description 4
- 239000012943 hotmelt Substances 0.000 description 4
- 239000000416 hydrocolloid Substances 0.000 description 4
- 229920013819 hydroxyethyl ethylcellulose Polymers 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229920000609 methyl cellulose Polymers 0.000 description 4
- 235000010981 methylcellulose Nutrition 0.000 description 4
- 239000001923 methylcellulose Substances 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 239000002195 soluble material Substances 0.000 description 4
- 229940001941 soy protein Drugs 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 239000012815 thermoplastic material Substances 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 3
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 244000299461 Theobroma cacao Species 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 229940035676 analgesics Drugs 0.000 description 3
- 239000000730 antalgic agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 235000019219 chocolate Nutrition 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 description 3
- VKNUORWMCINMRB-UHFFFAOYSA-N diethyl malate Chemical compound CCOC(=O)CC(O)C(=O)OCC VKNUORWMCINMRB-UHFFFAOYSA-N 0.000 description 3
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 description 3
- AMTWCFIAVKBGOD-UHFFFAOYSA-N dioxosilane;methoxy-dimethyl-trimethylsilyloxysilane Chemical compound O=[Si]=O.CO[Si](C)(C)O[Si](C)(C)C AMTWCFIAVKBGOD-UHFFFAOYSA-N 0.000 description 3
- 235000019325 ethyl cellulose Nutrition 0.000 description 3
- 229920001249 ethyl cellulose Polymers 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 239000003349 gelling agent Substances 0.000 description 3
- 239000001087 glyceryl triacetate Substances 0.000 description 3
- 235000013773 glyceryl triacetate Nutrition 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000001341 hydroxy propyl starch Substances 0.000 description 3
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 3
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 3
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 3
- 229920000639 hydroxypropylmethylcellulose acetate succinate Polymers 0.000 description 3
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 3
- 229960000991 ketoprofen Drugs 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 3
- 239000007932 molded tablet Substances 0.000 description 3
- 229960002009 naproxen Drugs 0.000 description 3
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 3
- 239000000025 natural resin Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 235000008390 olive oil Nutrition 0.000 description 3
- 239000008375 oral care agent Substances 0.000 description 3
- 229960005489 paracetamol Drugs 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 229920001515 polyalkylene glycol Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 239000010499 rapseed oil Substances 0.000 description 3
- 239000008159 sesame oil Substances 0.000 description 3
- 235000011803 sesame oil Nutrition 0.000 description 3
- 229940083037 simethicone Drugs 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 229960002622 triacetin Drugs 0.000 description 3
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- KHOITXIGCFIULA-UHFFFAOYSA-N Alophen Chemical compound C1=CC(OC(=O)C)=CC=C1C(C=1N=CC=CC=1)C1=CC=C(OC(C)=O)C=C1 KHOITXIGCFIULA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 2
- ZRVUJXDFFKFLMG-UHFFFAOYSA-N Meloxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=C(C)S1 ZRVUJXDFFKFLMG-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 239000004368 Modified starch Substances 0.000 description 2
- 229920001100 Polydextrose Polymers 0.000 description 2
- 229920002562 Polyethylene Glycol 3350 Polymers 0.000 description 2
- 108010009736 Protein Hydrolysates Proteins 0.000 description 2
- 239000004373 Pullulan Substances 0.000 description 2
- 229920001218 Pullulan Polymers 0.000 description 2
- 239000004783 Serene Substances 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical class [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000004163 Spermaceti wax Substances 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 235000019486 Sunflower oil Nutrition 0.000 description 2
- 108010046377 Whey Proteins Proteins 0.000 description 2
- 102000007544 Whey Proteins Human genes 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 229940069428 antacid Drugs 0.000 description 2
- 239000003159 antacid agent Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000003474 anti-emetic effect Effects 0.000 description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940125683 antiemetic agent Drugs 0.000 description 2
- 239000002111 antiemetic agent Substances 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 235000013871 bee wax Nutrition 0.000 description 2
- 239000012166 beeswax Substances 0.000 description 2
- 229940092738 beeswax Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960000503 bisacodyl Drugs 0.000 description 2
- 239000004204 candelilla wax Substances 0.000 description 2
- 235000013868 candelilla wax Nutrition 0.000 description 2
- 229940073532 candelilla wax Drugs 0.000 description 2
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 235000013869 carnauba wax Nutrition 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- QBPFLULOKWLNNW-UHFFFAOYSA-N chrysazin Chemical compound O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=CC=C2O QBPFLULOKWLNNW-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229960005168 croscarmellose Drugs 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229960001259 diclofenac Drugs 0.000 description 2
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 2
- 229940008099 dimethicone Drugs 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 2
- HYPPXZBJBPSRLK-UHFFFAOYSA-N diphenoxylate Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCC(C#N)(C=1C=CC=CC=1)C1=CC=CC=C1 HYPPXZBJBPSRLK-UHFFFAOYSA-N 0.000 description 2
- 229960004192 diphenoxylate Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000003172 expectorant agent Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229960002390 flurbiprofen Drugs 0.000 description 2
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 2
- 235000021588 free fatty acids Nutrition 0.000 description 2
- 229940125695 gastrointestinal agent Drugs 0.000 description 2
- 239000004083 gastrointestinal agent Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229940049654 glyceryl behenate Drugs 0.000 description 2
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 2
- 229940075507 glyceryl monostearate Drugs 0.000 description 2
- 229940074050 glyceryl myristate Drugs 0.000 description 2
- FETSQPAGYOVAQU-UHFFFAOYSA-N glyceryl palmitostearate Chemical compound OCC(O)CO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O FETSQPAGYOVAQU-UHFFFAOYSA-N 0.000 description 2
- 229940046813 glyceryl palmitostearate Drugs 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 2
- 239000010514 hydrogenated cottonseed oil Substances 0.000 description 2
- 235000019866 hydrogenated palm kernel oil Nutrition 0.000 description 2
- 239000008173 hydrogenated soybean oil Substances 0.000 description 2
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 229940050526 hydroxyethylstarch Drugs 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 2
- 229960001571 loperamide Drugs 0.000 description 2
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229960001929 meloxicam Drugs 0.000 description 2
- KBOPZPXVLCULAV-UHFFFAOYSA-N mesalamine Chemical compound NC1=CC=C(O)C(C(O)=O)=C1 KBOPZPXVLCULAV-UHFFFAOYSA-N 0.000 description 2
- 229960004963 mesalazine Drugs 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 235000019808 microcrystalline wax Nutrition 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 229920001206 natural gum Polymers 0.000 description 2
- 239000002417 nutraceutical Substances 0.000 description 2
- 235000021436 nutraceutical agent Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 239000008055 phosphate buffer solution Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 235000013856 polydextrose Nutrition 0.000 description 2
- 239000001259 polydextrose Substances 0.000 description 2
- 229940035035 polydextrose Drugs 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229940068965 polysorbates Drugs 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000005599 propionic acid derivatives Chemical class 0.000 description 2
- 229960003863 prucalopride Drugs 0.000 description 2
- ZPMNHBXQOOVQJL-UHFFFAOYSA-N prucalopride Chemical compound C1CN(CCCOC)CCC1NC(=O)C1=CC(Cl)=C(N)C2=C1OCC2 ZPMNHBXQOOVQJL-UHFFFAOYSA-N 0.000 description 2
- 229960003908 pseudoephedrine Drugs 0.000 description 2
- KWGRBVOPPLSCSI-WCBMZHEXSA-N pseudoephedrine Chemical compound CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WCBMZHEXSA-N 0.000 description 2
- 235000019423 pullulan Nutrition 0.000 description 2
- 230000000541 pulsatile effect Effects 0.000 description 2
- DCBSHORRWZKAKO-UHFFFAOYSA-N rac-1-monomyristoylglycerol Chemical compound CCCCCCCCCCCCCC(=O)OCC(O)CO DCBSHORRWZKAKO-UHFFFAOYSA-N 0.000 description 2
- 229960000620 ranitidine Drugs 0.000 description 2
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N serine Chemical compound OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 239000012176 shellac wax Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 229920003109 sodium starch glycolate Polymers 0.000 description 2
- 239000008109 sodium starch glycolate Substances 0.000 description 2
- 229940079832 sodium starch glycolate Drugs 0.000 description 2
- 239000008279 sol Substances 0.000 description 2
- 235000019385 spermaceti wax Nutrition 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000002600 sunflower oil Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 235000021119 whey protein Nutrition 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- RJMIEHBSYVWVIN-LLVKDONJSA-N (2r)-2-[4-(3-oxo-1h-isoindol-2-yl)phenyl]propanoic acid Chemical compound C1=CC([C@H](C(O)=O)C)=CC=C1N1C(=O)C2=CC=CC=C2C1 RJMIEHBSYVWVIN-LLVKDONJSA-N 0.000 description 1
- OMDQUFIYNPYJFM-XKDAHURESA-N (2r,3r,4s,5r,6s)-2-(hydroxymethyl)-6-[[(2r,3s,4r,5s,6r)-4,5,6-trihydroxy-3-[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]methoxy]oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@H](O)[C@H](O)O1 OMDQUFIYNPYJFM-XKDAHURESA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- MDKGKXOCJGEUJW-VIFPVBQESA-N (2s)-2-[4-(thiophene-2-carbonyl)phenyl]propanoic acid Chemical compound C1=CC([C@@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 MDKGKXOCJGEUJW-VIFPVBQESA-N 0.000 description 1
- DBTMGCOVALSLOR-DEVYUCJPSA-N (2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](CO)O[C@H](O)[C@@H]2O)O)O[C@H](CO)[C@H]1O DBTMGCOVALSLOR-DEVYUCJPSA-N 0.000 description 1
- FELGMEQIXOGIFQ-CYBMUJFWSA-N (3r)-9-methyl-3-[(2-methylimidazol-1-yl)methyl]-2,3-dihydro-1h-carbazol-4-one Chemical compound CC1=NC=CN1C[C@@H]1C(=O)C(C=2C(=CC=CC=2)N2C)=C2CC1 FELGMEQIXOGIFQ-CYBMUJFWSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- SFOVDSLXFUGAIV-UHFFFAOYSA-N 1-[(4-fluorophenyl)methyl]-n-piperidin-4-ylbenzimidazol-2-amine Chemical compound C1=CC(F)=CC=C1CN1C2=CC=CC=C2N=C1NC1CCNCC1 SFOVDSLXFUGAIV-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- FEBUJFMRSBAMES-UHFFFAOYSA-N 2-[(2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-phosphanyloxan-4-yl]oxy}-3,5-dihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-4-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl phosphinite Chemical compound OC1C(O)C(O)C(CO)OC1OCC1C(O)C(OC2C(C(OP)C(O)C(CO)O2)O)C(O)C(OC2C(C(CO)OC(P)C2O)O)O1 FEBUJFMRSBAMES-UHFFFAOYSA-N 0.000 description 1
- TYCOFFBAZNSQOJ-UHFFFAOYSA-N 2-[4-(3-fluorophenyl)phenyl]propanoic acid Chemical compound C1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC(F)=C1 TYCOFFBAZNSQOJ-UHFFFAOYSA-N 0.000 description 1
- XKSAJZSJKURQRX-UHFFFAOYSA-N 2-acetyloxy-5-(4-fluorophenyl)benzoic acid Chemical compound C1=C(C(O)=O)C(OC(=O)C)=CC=C1C1=CC=C(F)C=C1 XKSAJZSJKURQRX-UHFFFAOYSA-N 0.000 description 1
- SPCKHVPPRJWQRZ-UHFFFAOYSA-N 2-benzhydryloxy-n,n-dimethylethanamine;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 SPCKHVPPRJWQRZ-UHFFFAOYSA-N 0.000 description 1
- OHXPGWPVLFPUSM-KLRNGDHRSA-N 3,7,12-trioxo-5beta-cholanic acid Chemical compound C1CC(=O)C[C@H]2CC(=O)[C@H]3[C@@H]4CC[C@H]([C@@H](CCC(O)=O)C)[C@@]4(C)C(=O)C[C@@H]3[C@]21C OHXPGWPVLFPUSM-KLRNGDHRSA-N 0.000 description 1
- SYCHUQUJURZQMO-UHFFFAOYSA-N 4-hydroxy-2-methyl-1,1-dioxo-n-(1,3-thiazol-2-yl)-1$l^{6},2-benzothiazine-3-carboxamide Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=CS1 SYCHUQUJURZQMO-UHFFFAOYSA-N 0.000 description 1
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 description 1
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 1
- 241001116389 Aloe Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 235000017399 Caesalpinia tinctoria Nutrition 0.000 description 1
- 239000010369 Cascara Substances 0.000 description 1
- 244000025596 Cassia laevigata Species 0.000 description 1
- 235000006693 Cassia laevigata Nutrition 0.000 description 1
- ZKLPARSLTMPFCP-UHFFFAOYSA-N Cetirizine Chemical compound C1CN(CCOCC(=O)O)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZKLPARSLTMPFCP-UHFFFAOYSA-N 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 241000556215 Frangula purshiana Species 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- VPNYRYCIDCJBOM-UHFFFAOYSA-M Glycopyrronium bromide Chemical compound [Br-].C1[N+](C)(C)CCC1OC(=O)C(O)(C=1C=CC=CC=1)C1CCCC1 VPNYRYCIDCJBOM-UHFFFAOYSA-M 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 241000063180 Idiomarina fontislapidosi Species 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- 229920001543 Laminarin Polymers 0.000 description 1
- 239000005717 Laminarin Substances 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- JAUOIFJMECXRGI-UHFFFAOYSA-N Neoclaritin Chemical compound C=1C(Cl)=CC=C2C=1CCC1=CC=CN=C1C2=C1CCNCC1 JAUOIFJMECXRGI-UHFFFAOYSA-N 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- TVQZAMVBTVNYLA-UHFFFAOYSA-N Pranoprofen Chemical compound C1=CC=C2CC3=CC(C(C(O)=O)C)=CC=C3OC2=N1 TVQZAMVBTVNYLA-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229920002305 Schizophyllan Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- 241000388430 Tara Species 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 235000009499 Vanilla fragrans Nutrition 0.000 description 1
- 244000263375 Vanilla tahitensis Species 0.000 description 1
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- ZNOZWUKQPJXOIG-XSBHQQIPSA-L [(2r,3s,4r,5r,6s)-6-[[(1r,3s,4r,5r,8s)-3,4-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-8-yl]oxy]-4-[[(1r,3r,4r,5r,8s)-8-[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-sulfonatooxyoxan-2-yl]oxy-4-hydroxy-2,6-dioxabicyclo[3.2.1]octan-3-yl]oxy]-5-hydroxy-2-( Chemical compound O[C@@H]1[C@@H](O)[C@@H](OS([O-])(=O)=O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H]2OC[C@H]1O[C@H](O[C@H]1[C@H]([C@@H](CO)O[C@@H](O[C@@H]3[C@@H]4OC[C@H]3O[C@H](O)[C@@H]4O)[C@@H]1O)OS([O-])(=O)=O)[C@@H]2O ZNOZWUKQPJXOIG-XSBHQQIPSA-L 0.000 description 1
- 235000010358 acesulfame potassium Nutrition 0.000 description 1
- 229960004998 acesulfame potassium Drugs 0.000 description 1
- 239000000619 acesulfame-K Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- SEIGJEJVIMIXIU-UHFFFAOYSA-J aluminum;sodium;carbonate;dihydroxide Chemical compound [Na+].O[Al+]O.[O-]C([O-])=O SEIGJEJVIMIXIU-UHFFFAOYSA-J 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 239000002269 analeptic agent Substances 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 230000002456 anti-arthritic effect Effects 0.000 description 1
- 230000001142 anti-diarrhea Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 230000002921 anti-spasmodic effect Effects 0.000 description 1
- 229940124346 antiarthritic agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 229940125708 antidiabetic agent Drugs 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 229940125714 antidiarrheal agent Drugs 0.000 description 1
- 239000003793 antidiarrheal agent Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 229940111133 antiinflammatory and antirheumatic drug oxicams Drugs 0.000 description 1
- 229940111131 antiinflammatory and antirheumatic product propionic acid derivative Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940125716 antipyretic agent Drugs 0.000 description 1
- 229940124575 antispasmodic agent Drugs 0.000 description 1
- 239000003434 antitussive agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 239000002830 appetite depressant Substances 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- GXDALQBWZGODGZ-UHFFFAOYSA-N astemizole Chemical compound C1=CC(OC)=CC=C1CCN1CCC(NC=2N(C3=CC=CC=C3N=2)CC=2C=CC(F)=CC=2)CC1 GXDALQBWZGODGZ-UHFFFAOYSA-N 0.000 description 1
- 229940090047 auto-injector Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000008376 breath freshener Substances 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- 239000008372 bubblegum flavor Substances 0.000 description 1
- 239000008364 bulk solution Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 229940125692 cardiovascular agent Drugs 0.000 description 1
- 239000002327 cardiovascular agent Substances 0.000 description 1
- 229960003184 carprofen Drugs 0.000 description 1
- IVUMCTKHWDRRMH-UHFFFAOYSA-N carprofen Chemical compound C1=CC(Cl)=C[C]2C3=CC=C(C(C(O)=O)C)C=C3N=C21 IVUMCTKHWDRRMH-UHFFFAOYSA-N 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 229940071704 cascara sagrada Drugs 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000003576 central nervous system agent Substances 0.000 description 1
- 229940125693 central nervous system agent Drugs 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229960001803 cetirizine Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- SOYKEARSMXGVTM-UHFFFAOYSA-N chlorphenamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 SOYKEARSMXGVTM-UHFFFAOYSA-N 0.000 description 1
- 229960003291 chlorphenamine Drugs 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000008373 coffee flavor Substances 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- JURKNVYFZMSNLP-UHFFFAOYSA-N cyclobenzaprine Chemical compound C1=CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 JURKNVYFZMSNLP-UHFFFAOYSA-N 0.000 description 1
- 229960003572 cyclobenzaprine Drugs 0.000 description 1
- 230000001120 cytoprotective effect Effects 0.000 description 1
- 229960001577 dantron Drugs 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229960002997 dehydrocholic acid Drugs 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229960001271 desloratadine Drugs 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 229960001985 dextromethorphan Drugs 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 229940015828 dihydroxyaluminum sodium carbonate Drugs 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 description 1
- HCFDWZZGGLSKEP-UHFFFAOYSA-N doxylamine Chemical compound C=1C=CC=NC=1C(C)(OCCN(C)C)C1=CC=CC=C1 HCFDWZZGGLSKEP-UHFFFAOYSA-N 0.000 description 1
- 229960005178 doxylamine Drugs 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 230000003419 expectorant effect Effects 0.000 description 1
- 229940066493 expectorants Drugs 0.000 description 1
- ZWJINEZUASEZBH-UHFFFAOYSA-N fenamic acid Chemical class OC(=O)C1=CC=CC=C1NC1=CC=CC=C1 ZWJINEZUASEZBH-UHFFFAOYSA-N 0.000 description 1
- 229960001395 fenbufen Drugs 0.000 description 1
- ZPAKPRAICRBAOD-UHFFFAOYSA-N fenbufen Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1 ZPAKPRAICRBAOD-UHFFFAOYSA-N 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 229960003592 fexofenadine Drugs 0.000 description 1
- RWTNPBWLLIMQHL-UHFFFAOYSA-N fexofenadine Chemical compound C1=CC(C(C)(C(O)=O)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 RWTNPBWLLIMQHL-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229960004369 flufenamic acid Drugs 0.000 description 1
- LPEPZBJOKDYZAD-UHFFFAOYSA-N flufenamic acid Chemical compound OC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 LPEPZBJOKDYZAD-UHFFFAOYSA-N 0.000 description 1
- 229950007979 flufenisal Drugs 0.000 description 1
- 229950001284 fluprofen Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000008369 fruit flavor Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 229940015042 glycopyrrolate Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000008123 high-intensity sweetener Substances 0.000 description 1
- 229940077716 histamine h2 receptor antagonists for peptic ulcer and gord Drugs 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 229960004187 indoprofen Drugs 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229950002252 isoxicam Drugs 0.000 description 1
- YYUAYBYLJSNDCX-UHFFFAOYSA-N isoxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC=1C=C(C)ON=1 YYUAYBYLJSNDCX-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229940116108 lactase Drugs 0.000 description 1
- 229960003174 lansoprazole Drugs 0.000 description 1
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- 239000008374 liqueur flavor Substances 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 229960003088 loratadine Drugs 0.000 description 1
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 229960003803 meclofenamic acid Drugs 0.000 description 1
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- OJLOPKGSLYJEMD-URPKTTJQSA-N methyl 7-[(1r,2r,3r)-3-hydroxy-2-[(1e)-4-hydroxy-4-methyloct-1-en-1-yl]-5-oxocyclopentyl]heptanoate Chemical compound CCCCC(C)(O)C\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(=O)OC OJLOPKGSLYJEMD-URPKTTJQSA-N 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 239000008368 mint flavor Substances 0.000 description 1
- 229960005249 misoprostol Drugs 0.000 description 1
- 201000003152 motion sickness Diseases 0.000 description 1
- 230000000510 mucolytic effect Effects 0.000 description 1
- 229940066491 mucolytics Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 229960004872 nizatidine Drugs 0.000 description 1
- SGXXNSQHWDMGGP-IZZDOVSWSA-N nizatidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CSC(CN(C)C)=N1 SGXXNSQHWDMGGP-IZZDOVSWSA-N 0.000 description 1
- 235000013615 non-nutritive sweetener Nutrition 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229960000381 omeprazole Drugs 0.000 description 1
- 229960005343 ondansetron Drugs 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229960000292 pectin Drugs 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 229960005382 phenolphthalein Drugs 0.000 description 1
- DLNKOYKMWOXYQA-APPZFPTMSA-N phenylpropanolamine Chemical compound C[C@@H](N)[C@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-APPZFPTMSA-N 0.000 description 1
- 229960000395 phenylpropanolamine Drugs 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 229960000851 pirprofen Drugs 0.000 description 1
- PIDSZXPFGCURGN-UHFFFAOYSA-N pirprofen Chemical compound ClC1=CC(C(C(O)=O)C)=CC=C1N1CC=CC1 PIDSZXPFGCURGN-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 229960003101 pranoprofen Drugs 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229940126409 proton pump inhibitor Drugs 0.000 description 1
- 239000000612 proton pump inhibitor Substances 0.000 description 1
- 229960003447 pseudoephedrine hydrochloride Drugs 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 229940124513 senna glycoside Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000008143 stimulant laxative Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 229950005175 sudoxicam Drugs 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960004492 suprofen Drugs 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229960000351 terfenadine Drugs 0.000 description 1
- IMCGHZIGRANKHV-AJNGGQMLSA-N tert-butyl (3s,5s)-2-oxo-5-[(2s,4s)-5-oxo-4-propan-2-yloxolan-2-yl]-3-propan-2-ylpyrrolidine-1-carboxylate Chemical compound O1C(=O)[C@H](C(C)C)C[C@H]1[C@H]1N(C(=O)OC(C)(C)C)C(=O)[C@H](C(C)C)C1 IMCGHZIGRANKHV-AJNGGQMLSA-N 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 239000008379 tooth decay inhibitor Substances 0.000 description 1
- 239000008378 tooth mineralizer Substances 0.000 description 1
- 239000008377 tooth whitener Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 239000002996 urinary tract agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J3/00—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
- A61J3/10—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G3/00—Sweetmeats; Confectionery; Marzipan; Coated or filled products
- A23G3/02—Apparatus specially adapted for manufacture or treatment of sweetmeats or confectionery; Accessories therefor
- A23G3/04—Sugar-cookers
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G3/00—Sweetmeats; Confectionery; Marzipan; Coated or filled products
- A23G3/34—Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
- A23G3/36—Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds
- A23G3/364—Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
- A23G3/368—Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing vitamins, antibiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J3/00—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
- A61J3/005—Coating of tablets or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
- A61P29/02—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID] without antiinflammatory effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/02—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
- B30B11/08—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with moulds carried by a turntable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/34—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses for coating articles, e.g. tablets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2806—Coating materials
- A61K9/2833—Organic macromolecular compounds
- A61K9/2853—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers, poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2806—Coating materials
- A61K9/2833—Organic macromolecular compounds
- A61K9/2873—Proteins, e.g. gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2893—Tablet coating processes
Definitions
- This invention relates to modified release dosage forms such as modified release pharmaceutical compositions. More particularly, this invention relates to modified release dosage forms comprising a molded core, and a shell residing upon at least a portion of the core.
- Modified release pharmaceutical dosage forms have long been used to optimize drug delivery and enhance patient compliance, especially by reducing the number of doses of medicine the patient must take in a day.
- a drug one particularly preferred type of active ingredient
- the rate at which an orally delivered pharmaceutical active ingredient reaches its site of action in the body depends on a number of factors, including the rate and extent of drug absorption through the g.i. mucosa.
- the drug To be absorbed into the circulatory system (blood), the drug must first be dissolved in the g.i. fluids.
- diffusion across the g.i. membranes is relatively rapid compared to dissolution.
- the dissolution of the active ingredient is the rate limiting step in drug absorption, and controlling the rate of dissolution allows the formulator to control the rate of drug absorption into the circulatory system of a patient.
- modified release dosage forms provide a desired blood concentration versus time (pharmacokinetic, or PK) profile for the drug.
- PK profile for a drug is governed by the rate of absorption of the drug into the blood, and the rate of elimination of the drug from the blood.
- the type of PK profile desired depends, among other factors, on the particular active ingredient, and physiological condition being treated.
- One particularly desirable PK profile for a number of drugs and conditions is one in which the level of drug in the blood is maintained essentially constant (i.e. the rate of drug absorption is approximately equal to the rate of drug elimination) over a relatively long period of time.
- Such systems have the benefit of reducing the frequency of dosing, improving patient compliance, as well as minimizing side effects while maintaining full therapeutic efficacy.
- a dosage form which provides a “zero-order,” or constant, release rate of the drug is useful for this purpose. Since zero-order release systems are difficult to achieve, systems which approximate a constant release rate, such as for example first-order and square root of time profiles are often used to provide sustained (prolonged, extended, or retarded) release of a drug.
- PK profile is achieved by a dosage form that delivers a delayed release dissolution profile, in which the release of drug from the dosage form is delayed for a pre-determined time after ingestion by the patient.
- the delay period (“lag time”) can be followed either by prompt release of the active ingredient (“delayed burst”), or by sustained (prolonged, extended, or retarded) release of the active ingredient (“delayed then sustained”).
- a dosage form or drug delivery system
- a controlled rate e.g. sustained, prolonged, extended or retarded release
- diffusion erosion, and osmosis
- One classic diffusion-controlled release system comprises a “reservoir” containing the active ingredient, surrounded by a “membrane” through which the active ingredient must diffuse in order to be absorbed into the bloodstream of the patient.
- the rate of drug release, (dM/dt) depends on the area (A) of the membrane, the diffusional pathlength (l), the concentration gradient ( ⁇ C) of the drug across the membrane, the partition coefficient (K) of the drug into the membrane, and the diffusion coefficient (D):
- diffusion-controlled systems generally deliver a non-constant release rate.
- rate of drug release from diffusion-controlled release systems typically follows first order kinetics.
- One disadvantage of membrane-reservoir type systems is their vulnerability to “dose dumping.” The diffusional membrane must remain intact without breach throughout the functional life of the dosage form in order to prevent this occurrence and the possibility of overdose along with the associated toxic side effects.
- One typical type of diffusional membrane-reservoir systems comprises a compressed tablet core which acts as the reservoir, surrounded by a shell (or coating) which functions as the diffusional membrane.
- Current core-shell systems are limited by the available methods for manufacturing them, as well as the materials that are suitable for use with the current methods.
- a shell, or coating, which confers modified release properties is typically applied via conventional methods, such as for example, spray-coating in a coating pan.
- Pan-coating produces a single shell which essentially surrounds the core. Defects that commonly occur during coating, include “picking,” “sticking,” and “twinning,” all of which result in undesired holes in the coating, which lead to dose dumping.
- the coating compositions that can be applied via spraying are limited by their viscosity. High viscosity solutions are difficult or impractical to pump and deliver through a spray nozzle. Spray coating methods suffer the further limitations of being time-intensive and costly. Several hours of spraying may be required to spray an effective amount of coating to control the release of an active ingredient. Coating times of 8 to 24 hours are not uncommon.
- Another common type of diffusion-controlled release system comprises active ingredient, distributed throughout an insoluble porous matrix through which the active ingredient must diffuse in order to be absorbed into the bloodstream of the patient.
- the amount of drug (M) released at a given time at sink conditions i.e. drug concentration at the matrix surface is much greater than drug concentration in the bulk solution
- the amount of drug (M) released at a given time at sink conditions depends on the area (A) of the matrix, the diffusion coefficient (D), the porosity (E) and tortuosity (T) of the matrix, the drug solubility (Cs) in the dissolution medium, time (t) and the drug concentration (Cp) in the dosage form:
- the amount of drug released is generally proportional to the square root of time. Assuming factors such as matrix porosity and tortuosity are constant within the dosage form, a plot of amount of drug released versus the square root of time should be linear.
- One typical type of diffusional matrix system may be prepared by compression of the active ingredient along with a mixture of soluble and insoluble materials designed to produce a desired porosity and tortuosity as the soluble materials dissolve in the dissolution medium or gastro-intestinal fluids.
- a commonly used erosion-controlled release system comprises a “matrix” throughout which the drug is distributed.
- the matrix typically comprises a material which swells at the surface, and slowly dissolves away layer by layer, liberating drug as it dissolves.
- the rate of drug release, (dM/dt) depends on the rate of erosion (dx/dt) of the matrix, the concentration profile in the matrix, and the surface area (A) of the system:
- variation in one or more terms typically leads to a non-constant release rate of drug.
- rate of drug release from erosion-controlled release systems typically follows first order kinetics.
- One typical method of preparing such eroding matrix systems is by compression of the active ingredient blended with a mixture of compressible excipients comprising water swellable erodible materials which create a temporary barrier as they swell, and allow small amounts of active ingredient to be released as the continuously receding surface layer slowly dissolves in the dissolution medium or gastro-intestinal fluids.
- Another type of erosion controlled delivery system employs materials which swell and dissolve slowly by surface erosion to provide a delayed release of pharmaceutical active ingredient. Delayed release is useful, for example in pulsatile or repeat action delivery systems, in which an immediate release dose is delivered, followed by a pre-determined lag time before a subsequent dose is delivered from the system.
- the lag time (T 1 ) depends on the thickness (h) of the erodible layer, and the rate of erosion (dx/dt) of the matrix, which in turn depends on the swelling rate and solubility of the matrix components:
- dM/dt is generally described by either the diffusion-controlled or erosion-controlled equations above, and T 1 is the lag time.
- Modified release dosage forms prepared via compression to obtain either diffusional or eroding matrices are exemplified in U.S. Pat. Nos. 5,738,874 and 6,294,200, and WO 99/51209. Compressed dosage forms are limited by the achievable geometry's, as well as the suitable materials for producing them.
- WO 97/49384 describes a hot-melt extrudable mixture of a therapeutic compound and a high molecular weight poly(ethylene oxide).
- the formulation further comprises poly(ethylene glycol).
- the high molecular weight poly(ethylene oxide)s employed have molecular weights ranging from about 1 to about 10 million Daltons.
- the minimum ratio of high molecular weight poly(ethylene oxide) to active ingredient is 80:20.
- the dosage forms of this reference are limited in the amount of active ingredient they can deliver.
- the maximum amount of active ingredient that may be delivered in the composition is not more that 20 weight percent of the composition.
- Typical hot-melt systems are additionally limited by high processing temperatures, and are therefore not optimal for delivering low melting, or heat labile active ingredients.
- Typical hot-melt systems are additionally not optimal for delivering coated particles of active ingredients, due to both the high processing temperatures, and the high shear imparted during processing through extruders or spray nozzles.
- Typical hot-melt systems are additionally not optimal for applying a coating thereon by conventional methods such as spraying, dipping, or compression.
- modified release matrix systems It would be desirable to have a versatile and cost-effective method for preparing modified release matrix systems, which are not susceptible to dose dumping. It would additionally be desirable to have a method for preparing modified release matrix systems in a variety of shapes, for either functional purposes, e.g. achieving a desired release profile using certain advantageous geometries, or for consumer preference purposes, such as swallowability, dosage form elegance, and product identification and differentiation. It would additionally be desirable to have a controlled release matrix systems capable of delivering a relatively high level of active ingredient in a relatively small dosage form. It would additionally be desirable to have modified release matrix systems for delivering low-melting or heat labile active ingredients. It would additionally be desirable to have modified release matrix systems capable of delivering coated particles of active ingredient. It would additionally be desirable to have a method of applying a shell to a molded core.
- the dosage form of this invention comprises: (a) at least one active ingredient; (b) a molded core which is solid at room temperature; and (c) a shell which is in contact with at least a portion of the core, wherein the dosage form provides modified release of the active ingredient upon contacting of the dosage form with a liquid medium.
- the molded core comprises one or more active ingredients dispersed in a molded matrix.
- the shell is capable of providing modified release of at least one active ingredient upon contacting of the dosage form with a liquid medium.
- the shell is capable of providing a time delay prior to the release of at least one active ingredient upon contacting of the dosage form with a liquid medium.
- the time delay is independent of the pH of the liquid medium.
- the shell comprises at least about 30 percent by weight of a thermal-reversible carrier.
- the shell comprises at least one active ingredient.
- the core comprises a molded matrix.
- the core comprises at least one active ingredient.
- the core is capable of providing modified release of at least one active ingredient upon contacting of the dosage form with a liquid medium.
- the core comprises one or more release-modifying excipients.
- the release modifying excipient is selected from the group consisting of swellable erodible hydrophilic materials, pH-dependent polymers, insoluble edible materials, and pore-formers, and derivatives, copolymers, and combinations thereof.
- the core comprises at least 30% of thermal-reversible carrier.
- the thermal-reversible carrier is selected from the group consisting of polyethylene glycol, thermoplastic polyethylene oxide, shellac, and derivatives, copolymers, and combinations thereof.
- the thermal-reversible carrier has a melting point of about 20 to about 110° C.
- the core comprises a plurality of particles which comprise at least one active ingredient.
- At least a portion of the particles are coated with a coating capable of providing modified release of the active ingredient contained therein upon contacting of the coated particles with a liquid medium.
- At least a portion of the particles are coated with a coating comprising 10-100 wt. % of a release-modifying polymer selected from the group consisting of pH-dependent polymers, water-soluble polymer, water-insoluble polymers, and copolymers and derivatives and mixtures thereof.
- a release-modifying polymer selected from the group consisting of pH-dependent polymers, water-soluble polymer, water-insoluble polymers, and copolymers and derivatives and mixtures thereof.
- a time delay occurs prior to release of at least a portion of the active ingredient.
- the portion of the active ingredient released after the time delay is released in a sustained manner.
- the dosage form comprises first and second active ingredients which are the same or different, and upon contacting of the dosage form with a liquid medium, the first active ingredient is released in a sustained manner, and a time delay precedes release of the second active ingredient.
- the shell comprises a first active ingredient and the core comprises a second active ingredient which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by a time delay, followed by release of the second active ingredient.
- the shell comprises a first active ingredient and the core comprises a second active ingredient which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by sustained release of the second active ingredient.
- the shell comprises a first active ingredient and the core comprises particles comprising a second active ingredient which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by sustained release of the second active ingredient.
- the level of active ingredient is at least about 25 weight percent of the core.
- the molded matrix comprises a thermal reversible carrier having a melting point from about 20 to about 100° C.
- the molded matrix comprises a thermal reversible carrier selected from the group consisting of thermoplastic polyalkalene oxides, low melting hydrophobic materials, thermoplastic polymers, the thermoplastic starches, and combinations thereof.
- the molded matrix comprises a low-melting thermal-reversible carrier selected from the group consisting of polycaprolactones, polyvinyl acetate, polyalkylene glycols, and combinations thereof at a level of about 30 to about 70 weight percent of the matrix.
- the molded matrix comprises a thermal-reversible carrier selected from the group consisting of polyethylene glycol or polyethylene oxide at a level from about 10 to about 100 weight percent of the matrix.
- the molded matrix further comprises a thermoplastic polyethylene oxide at a level of about 15 to about 25%.
- the shell has a thickness from about 300 to about 2000 microns.
- the shell has a thickness from about 150 to about 400 microns.
- the weight of the shell is from about 50 to about 400 percent of the weight of the core.
- the weight of the shell is from about 20 to about 100 percent of the weight of the core.
- the core is substantially free of pores having a diameter of 0.5 to 5.0 microns.
- the thermal reversible carrier is polyethylene glycol having a molecular weight from about 100 to about 8000 Daltons.
- the molded matrix comprises a release-modifying excipient.
- the release modifying polymer is shellac.
- the release-modifying excipient is croscarmellose sodium.
- the dosage form further comprises tributyl citrate as a plasticizer.
- the shell comprises a film-former selected from the group consisting of cellulose acetate, ammonio methacrylate copolymer type B, shellac, hydroxyporoylmethylcellulose, polyethylene oxide, and combinations thereof.
- the shell comprises a release-modifying excipient selected from swellable erodible hydrophilic materials.
- the release-modifying excipient is croscarmellose sodium.
- the shell comprises triethyl citrate as a plasticizer.
- FIG. 1A depicts a cross-sectional side view of one embodiment of the dosage form of this invention.
- FIG. 1B depicts a cross-sectional side view of another embodiment of the dosage form of this invention.
- FIG. 2 depicts the % release of active ingredient vs. hours measured for the dosage form of Example 1.
- dosage form applies to any solid object, semi-solid, or liquid composition designed to contain a specific pre-determined amount (i.e. dose) of a certain ingredient, for example an active ingredient as defined below.
- Suitable dosage forms may be pharmaceutical drug delivery systems, including those for oral administration, buccal administration, rectal administration, topical or mucosal delivery, or subcutaneous implants, or other implanted drug delivery systems; or compositions for delivering minerals, vitamins and other nutraceuticals, oral care agents, flavorants, and the like.
- the dosage forms of the present invention are considered to be solid, however they may contain liquid or semi-solid components.
- the dosage form is an orally administered system for delivering a pharmaceutical active ingredient to the gastro-intestinal tract of a human.
- the dosage forms of the invention exhibit modified release of one or more active ingredients contained therein.
- One or more active ingredients may be found within the shell, molded matrix, or coated or uncoated particles distributed therethrough.
- the term “modified release” shall apply to dosage forms, matrices, particles, coatings, portions thereof, or compositions that alter the release of an active ingredient in any manner.
- the active ingredient or ingredients that are released in a modified manner may be contained within the shell, core, composition, or portion thereof providing the modification.
- the modified release active ingredient may be contained in a different portion of the dosage form from the shell, core, composition, or portion thereof providing the modification; for example the modified release active ingredient may be contained in the core, and the modification may be provided by an overlaying shell portion.
- Types of modified release include controlled, prolonged, sustained, extended, delayed, pulsatile, repeat action, and the like. Suitable mechanisms for achieving these types of modified release include diffusion, erosion, surface area control via geometry and/or impermeable barriers, or other mechanisms known in the art. Moreover, the modified release properties of the dosage form may be achieved through design of the core or a portion thereof, or the shell or a portion thereof, or a combination of these parts of the dosage form.
- FIG. 1A is a cross-sectional side view of a dosage form 202 which comprises a molded core 204 comprising a molded matrix and a shell 203 which is in contact with at least a portion of the core 204 .
- the core 204 comprises a plurality of uncoated particles 206 although this is not required in this embodiment of the invention.
- the active ingredient may be contained within the matrix, the uncoated particles (if employed), the shell; or a combination thereof.
- the dosage form provides modified release of the active ingredient upon contacting of the dosage form with a liquid medium such as water, gastrointestinal fluid and the like. Either the shell or the matrix or a combination thereof may provide modified release of the active ingredient.
- FIG. 1B is a cross-sectional side view of a dosage form 252 which comprises a molded core 254 comprising a molded matrix and a shell 253 which is in contact with at least a portion of the core 254 .
- the core 254 comprises a plurality of coated particles 256 .
- the active ingredient may be contained within the matrix, the coated particles, the shell, or a combination thereof.
- the dosage form provides modified release of the active ingredient upon contacting of the dosage form with a liquid medium such as water, gastrointestinal fluid and the like. Any of the shell, the coating, the matrix or a combination thereof may provide modified release of the active ingredient
- the active ingredient employed in the dosage forms of this invention may be found within the core, the particles (whether coated or uncoated), the shell or a combination thereof.
- Suitable active ingredients for use in this invention include for example pharmaceuticals, minerals, vitamins and other nutraceuticals, oral care agents, flavorants and mixtures thereof.
- Suitable pharmaceuticals include analgesics, anti-inflammatory agents, antiarthritics, anesthetics, antihistamines, antitussives, antibiotics, anti-infective agents, antivirals, anticoagulants, antidepressants, antidiabetic agents, antiemetics, antiflatulents, antifungals, antispasmodics, appetite suppressants, bronchodilators, cardiovascular agents, central nervous system agents, central nervous system stimulants, decongestants, diuretics, expectorants, gastrointestinal agents, migraine preparations, motion sickness products, mucolytics, muscle relaxants, osteoporosis preparations, polydimethylsiloxanes, respiratory agents, sleep-aids, urinary tract agents and mixtures thereof.
- Suitable oral care agents include breath fresheners, tooth whiteners, antimicrobial agents, tooth mineralizers, tooth decay inhibitors, topical anesthetics, mucoprotectants, and the like.
- Suitable flavorants include menthol, peppermint, mint flavors, fruit flavors, chocolate, vanilla, bubble gum flavors, coffee flavors, liqueur flavors and combinations and the like.
- Suitable gastrointestinal agents include antacids such as calcium carbonate, magnesium hydroxide, magnesium oxide, magnesium carbonate, aluminum hydroxide, sodium bicarbonate, dihydroxyaluminum sodium carbonate; stimulant laxatives, such as bisacodyl, cascara sagrada, danthron, senna, phenolphthalein, aloe, castor oil, ricinoleic acid, and dehydrocholic acid, and mixtures thereof; H2 receptor antagonists, such as famotadine, ranitidine, cimetadine, nizatidine; proton pump inhibitors such as omeprazole or lansoprazole; gastrointestinal cytoprotectives, such as sucraflate and misoprostol; gastrointestinal prokinetics, such as prucalopride, antibiotics for H.
- antacids such as calcium carbonate, magnesium hydroxide, magnesium oxide, magnesium carbonate, aluminum hydroxide, sodium bicarbonate, dihydroxyaluminum
- pylori such as clarithromycin, amoxicillin, tetracycline, and metronidazole; antidiarrheals, such as diphenoxylate and loperamide; glycopyrrolate; antiemetics, such as ondansetron, analgesics, such as mesalamine.
- the active ingredient or agent may be selected from bisacodyl, famotadine, ranitidine, cimetidine, prucalopride, diphenoxylate, loperamide, lactase, mesalamine, bismuth, antacids, and pharmaceutically acceptable salts, esters, isomers, and mixtures thereof.
- the active agent is selected from analgesics, anti-inflammatories, and antipyretics, e.g. non-steroidal anti-inflammatory drugs (NSAIDs), including propionic acid derivatives, e.g. ibuprofen, naproxen, ketoprofen and the like; acetic acid derivatives, e.g. indomethacin, diclofenac, sulindac, tolmetin, and the like; fenamic acid derivatives, e.g. mefanamic acid, meclofenamic acid, flufenamic acid, and the like; biphenylcarbodylic acid derivatives, e.g.
- NSAIDs non-steroidal anti-inflammatory drugs
- the active agent is selected from propionic acid derivative NSAID, e.g. ibuprofen, naproxen, flurbiprofen, fenbufen, fenoprofen, indoprofen, ketoprofen, fluprofen, pirprofen, carprofen, oxaprozin, pranoprofen, suprofen, and pharmaceutically acceptable salts, derivatives, and combinations thereof.
- NSAID e.g. ibuprofen, naproxen, flurbiprofen, fenbufen, fenoprofen, indoprofen, ketoprofen, fluprofen, pirprofen, carprofen, oxaprozin, pranoprofen, suprofen, and pharmaceutically acceptable salts, derivatives, and combinations thereof.
- the active ingredient may be selected from acetaminophen, acetyl salicylic acid, ibuprofen, naproxen, ketoprofen, flurbiprofen, diclofenac, cyclobenzaprine, meloxicam, rofecoxib, celecoxib, and pharmaceutically acceptable salts, esters, isomers, and mixtures thereof.
- the active ingredient may be selected from pseudoephedrine, phenylpropanolamine, chlorpheniramine, dextromethorphan, diphenhydramine, doxylamine, astemizole, norastemizole, terfenadine, fexofenadine, loratadine, desloratadine, cetirizine, mixtures thereof and pharmaceutically acceptable salts, esters, isomers, and mixtures thereof.
- Suitable polydimethylsiloxanes which include, but are not limited to dimethicone and simethicone, are those disclosed in U.S. Pat. Nos. 4,906,478, 5,275,822, and 6,103,260, the contents of each is expressly incorporated herein by reference.
- simethicone refers to the broader class of polydimethylsiloxanes, including but not limited to simethicone and dimethicone.
- the active ingredient or ingredients are present in the dosage form in a therapeutically effective amount, which is an amount that produces the desired therapeutic response upon oral administration and can be readily determined by one skilled in the art. In determining such amounts, the particular active ingredient being administered, the bioavailability characteristics of the active ingredient, the dose regime, the age and weight of the patient, and other factors must be considered, as known in the art.
- the dosage form comprises one or more active ingredient or ingredients at a combined level of more than about 20 weight percent, e.g. at least about 25 weight percent, or at least about 30 weight percent, or at least about 50 weight percent of the dosage form.
- the active ingredient or ingredients may be present in the dosage form in any form.
- the active ingredient may be dispersed at the molecular level, e.g. melted or dissolved, within the dosage form, or may be in the form of particles, which in turn may be coated or uncoated.
- the particles typically have an average particle size of about 1-2000 microns. In one preferred embodiment, such particles are crystals having an average particle size of about 1-300 microns. In another preferred embodiment, the particles are granules or pellets having an average particle size of about 50-2000 microns, preferably about 50-1000 microns, most preferably about 100-800 microns.
- the molded matrix of the present invention is made by molding, preferably using a solvent-free process.
- the matrix comprises a flowable material.
- the flowable material may be any edible material that is flowable at a temperature between about 37° C. and about 250° C., and that is solid, semi-solid, or can form a gel at a temperature between about ⁇ 10° C. and about 80° C.
- the flowable material comprises 10-100% by weight of a thermal reversible carrier having a melting point of less than about 100° C., preferably from about 20 to about 100° C.; and optionally up to about 30 weight percent of various adjuvants such as for example plasticizers, gelling agents, colorants, stabilizers, preservatives, and the like as known in the art.
- the matrix may optionally further comprise up to about 55 weight percent of one or more release-modifying excipients as described below.
- such low melting materials may include, for example thermoplastic polyalkalene oxides, low melting hydrophobic materials, thermoplastic polymers, thermoplastic starches, and the like.
- Preferred low-melting materials may be selected from thermoplastic polymers, thermoplastic polyalkalene oxides, low melting hydrophobic materials, and combinations thereof.
- Suitable thermal-reversible carriers for making the molded matrix include are thermoplastic materials typically having a melting point below about 110° C., more preferably between about 20 and about 100° C.
- suitable thermal-reversible carriers for solvent-free molding include thermoplastic polyalkalene glycols, thermoplastic polyalkalene oxides, low melting hydrophobic materials, thermoplastic polymers, thermoplastic starches, and the like.
- Preferred thermal-reversible carriers include polyethylene glycol and polyethylene oxide.
- Suitable thermoplastic polyalkylene glycols for use as thermal-reversible carriers include polyethylene glycol having molecular weight from about 100 to about 20,000, e.g. from about 100 to about 8,000, say about 1000 to about 8,000 Daltons.
- Suitable thermoplastic polyalkalene oxides include polyethylene oxide having a molecular weight from about 100,000 to about 900,000 Daltons.
- Suitable low-melting hydrophobic materials for use as thermal-reversible carriers include fats, fatty acid esters, phospholipids, and waxes which are solid at room temperature, fat-containing mixtures such as chocolate; and the like.
- suitable fats include hydrogenated vegetable oils such as for example cocoa butter, hydrogenated palm kernel oil, hydrogenated cottonseed oil, hydrogenated sunflower oil, and hydrogenated soybean oil; and free fatty acids and their salts.
- Suitable fatty acid esters include sucrose fatty acid esters, mono, di, and triglycerides, glyceryl behenate, glyceryl palmitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl trilaurylate, glyceryl myristate, GlycoWax-932, lauroyl macrogol-32 glycerides, and stearoyl macrogol-32 glycerides.
- suitable phospholipids include phosphotidyl choline, phosphotidyl serene, phosphotidyl enositol, and phosphotidic acid.
- suitable waxes which are solid at room temperature include carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax.
- the matrix comprises a low-melting thermal-reversible carrier selected from polycaprolactones, polyvinyl acetate, polyalkylene glycols and combinations thereof at a level of about 30 to about 70 weight percent, e.g. about 35 to about 50 weight percent of the matrix.
- the low-melting thermal-reversible polymer has a melting point of less than about 100° C.
- the matrix further comprises a thermoplastic polyethylene oxide at a level of about 15 to about 25% as a strengthening polymer. Polyethylene oxides having suitable thermoplastic properties for use in the present invention have a molecular weight of about 100,000 to about 900,000.
- the matrix is substantially free of poly(ethylene oxide), e.g. contains less than 1%, or contains less than 0.1 weight percent of poly(ethylene oxide).
- the matrix composition may comprise any of the materials set forth above having a melting point of less than 100° C., and the matrix composition may also comprise other materials such as release modifying agents, various adjuvants such as for example plasticizers, gelling agents, colorants, stabilizers, preservatives, and the like as known in the art.
- Suitable release-modifying moldible excipients for making the molded matrix, or a portion thereof, by molding include but are not limited to swellable erodible hydrophilic materials, pH-dependent polymers, insoluble edible materials, and pore-formers.
- Suitable swellable erodible hydrophilic materials for use as release-modifying excipients for making the molded matrix, or a portion thereof, by molding include water swellable cellulose derivatives, polyalkalene glycols, thermoplastic polyalkalene oxides, acrylic polymers, hydrocolloids, clays, gelling starches, and swelling cross-linked polymers, and derivatives, copolymers, and combinations thereof.
- suitable water swellable cellulose derivatives include sodium carboxymethylcellulose, cross-linked hydroxypropylcellulose, hydroxypropyl cellulose (HPC), hydroxypropylmethylcellulose (HPMC), hydroxyisopropylcellulose, hydroxybutylcellulose, hydroxyphenylcellulose, hydroxyethylcellulose (HEC), hydroxypentylcellulose, hydroxypropylethylcellulose, hydroxypropylbutylcellulose, hydroxypropylethylcellulose.
- suitable polyalkalene glycols include polyethylene glycol.
- suitable thermoplastic polyalkalene oxides include poly(ethylene oxide).
- acrylic polymers include potassium methacrylatedivinylbenzene copolymer, polymethylmethacrylate, CARBOPOL (high-molecular weight cross-linked acrylic acid homopolymers and copolymers), and the like.
- suitable hydrocolloids include alginates, agar, guar gum, locust bean gum, kappa carrageenan, iota carrageenan, tara, gum arabic, tragacanth, pectin, xanthan gum, gellan gum, maltodextrin, galactomannan, pusstulan, laminarin, scleroglucan, gum arabic, inulin, pectin, gelatin, whelan, rhamsan, zooglan, methylan, chitin, cyclodextrin, chitosan.
- Suitable clays include smectites such as bentonite, kaolin, and laponite; magnesium trisilicate, magnesium aluminum silicate, and the like, and derivatives and mixtures thereof.
- suitable gelling starches include acid hydrolyzed starches, swelling starches such as sodium starch glycolate, and derivatives thereof.
- suitable swelling cross-linked polymers include cross-linked polyvinyl pyrrolidone, cross-linked agar, and cross-linked carboxymethylcellose sodium.
- Suitable pH-dependent polymers for use as release-modifying excipients for making the molded matrix or a portion thereof by molding include enteric cellulose derivatives, for example hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate, cellulose acetate phthalate; natural resins such as shellac and zein; enteric acetate derivatives such as for example polyvinylacetate phthalate, cellulose acetate phthalate, acetaldehyde dimethylcellulose acetate; and enteric acrylate derivatives such as for example polymethacrylate-based polymers such as poly(methacrylic acid, methyl methacrylate) 1:2, which is commercially available from Rohm Pharma GmbH under the tradename EUDRAGIT S, and poly(methacrylic acid, methyl methacrylate) 1:1, which is commercially available from Rohm Pharma GmbH under the tradename EUDRAGIT L, and the like, and derivatives, salts, copolymers, and combinations thereof.
- Suitable insoluble edible materials for use as release-modifying excipients for making the molded matrix, or a portion thereof, by molding include water-insoluble polymers, and low-melting hydrophobic materials.
- suitable water-insoluble polymers include ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers; and the like and derivatives, copolymers, and combinations thereof.
- Suitable low-melting hydrophobic materials include fats, fatty acid esters, phospholipids, and waxes.
- suitable fats include hydrogenated vegetable oils such as for example cocoa butter, hydrogenated palm kernel oil, hydrogenated cottonseed oil, hydrogenated sunflower oil, and hydrogenated soybean oil; and free fatty acids and their salts.
- suitable fatty acid esters include sucrose fatty acid esters, mono, di, and triglycerides, glyceryl behenate, glyceryl palmitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl trilaurylate, glyceryl myristate, GlycoWax-932, lauroyl macrogol-32 glycerides, and stearoyl macrogol-32 glycerides.
- Suitable phospholipids include phosphotidyl choline, phosphotidyl serene, phosphotidyl enositol, and phosphotidic acid.
- suitable waxes include carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax; fat-containing mixtures such as chocolate; and the like.
- Suitable pore-formers for use as release-modifying excipients for making the molded matrix or a portion thereof by molding include water-soluble organic and inorganic materials.
- the pore former is hydroxypropylmethylcellulose.
- suitable water-soluble organic materials include water soluble polymers including water soluble cellulose derivatives such as hydroxypropylmethylcellulose, and hydroxypropylcellulose; water soluble carbohydrates such as sugars, and starches; water soluble polymers such as polyvinylpyrrolidone and polyethylene glycol, and insoluble swelling polymers such as microcrystalline cellulose.
- suitable water soluble inorganic materials include salts such as sodium chloride and potassium chloride and the like and/or mixtures thereof.
- Suitable plasticizers for making the molded matrix, or a portion thereof, by molding include triacetin, acetylated monoglyceride, rape oil, olive oil, sesame oil, acetyltributyl citrate, glycerin sorbitol, diethyloxalate, diethylmalate, diethyl fumarate, dibutyl succinate, diethylmalonate, dioctylphthalate, dibutylsuccinate, triethylcitrate, tributylcitrate, glyceroltributyrate, propylene glycol, polyethylene glycols, hydrogenated castor oil, fatty acids, substituted triglycerides and glycerides, and the like.
- the matrix may be in a variety of different shapes.
- the matrix may be shaped as a polyhedron, such as a cube, pyramid, prism, or the like; or may have the geometry of a space figure with some non-flat faces, such as a cone, truncated cone, cylinder, sphere, torus, or the like.
- the matrix has one or more major faces.
- matrix surface may have two opposing major faces formed by contact with upper and lower mold surfaces.
- the core surface may further comprise a “belly-band” located between the two major faces, and formed by contact with the side walls in the mold.
- the matrix is prepared by thermal setting molding using the method and apparatus described in copending U.S. patent application Ser. No. 09/966,450, pages 57-63, the disclosure of which is incorporated herein by reference.
- the matrix is formed by injecting a starting material in flowable form into a molding chamber.
- the starting material preferably comprises an active ingredient and a thermal setting material at a temperature above the melting point of the thermal setting material but below the decomposition temperature of the active ingredient.
- the starting material is cooled and solidifies in the molding chamber into a shaped form (i.e., having the shape of the mold).
- the matrix is prepared by thermal cycle molding using the method and apparatus described in copending U.S. patent application Ser. No. 09/966,497, pages 27-51, the disclosure of which is incorporated herein by reference.
- the matrix is formed by injecting a starting material in flowable form into a heated molding chamber.
- the starting material preferably comprises an active ingredient and a thermoplastic material at a temperature above the set temperature of the thermoplastic material but below the decomposition temperature of the active ingredient.
- the starting material is cooled and solidifies in the molding chamber into a shaped form (i.e., having the shape of the mold).
- the starting material must be in flowable form.
- it may comprise solid particles suspended in a molten matrix, for example a polymer matrix.
- the starting material may be completely molten or in the form of a paste.
- the starting material may comprise an active ingredient dissolved in a molten material.
- the starting material may be made by dissolving and/or suspending a solid in a solvent, which solvent is then evaporated from the starting material after it has been molded.
- the particles typically have an average particle size of about 1-2000 microns.
- the particles are crystals of the active ingredient or ingredients, and the average particle size is about 1-300 microns.
- the particles are granules or pellets, and the average particle size is about 50-2000 microns, preferably about 50-1000 microns, most preferably about 100-800 microns.
- the particles may comprise active ingredient as described herein, or may be inactive particles included for example to provide a visual distinction to the appearance of the dosage form.
- the particles may be as described herein, and the particle coating may comprise In particular embodiments of this invention in which coated particles are employed, the particles may be as described herein, and the particle coating may comprise about 10-100 weight percent (based on the weight of the coating) of a film former; optionally up to about 50 weight percent based on the weight of the coating of a pore former; and optionally up to about 30 weight percent of various adjuvants or excipients such as plasticizers etc.
- the particles may be coated using conventional coating technology which is well known to those skilled in the art including microencapsulation techniques such as coacervation, spray-drying, and fluidized bed coating including tangential spray rotor coating and bottom spray wurster coating.
- Suitable film formers for particle coating include, but are not limited to, film-forming water soluble polymers, film-forming proteins, film-forming water insoluble polymers, and film-forming pH-dependent polymers.
- the film-former for particle coating may be selected from cellulose acetate, ammonio methacrylate copolymer type B, shellac, hydroxypropylmethylcellulose, and polyethylene oxide, and combinations thereof.
- Suitable film-forming water soluble polymers for particle coating include water soluble vinyl polymers such as polyvinylalcohol; water soluble polycarbohydrates such as hydroxypropyl starch, hydroxyethyl starch, pullulan, methylethyl starch, carboxymethyl starch, pre-gelatinized starches, and film-forming modified starches; water swellable cellulose derivatives such as hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), methyl cellulose (MC), hydroxyethylmethylcellulose (HEMC), hydroxybutylmethylcellulose (HBMC), hydroxyethylethylcellulose (HEEC), and hydroxyethylhydroxypropylmethyl cellulose (HEMPMC); water soluble copolymers such as methacrylic acid and methacrylate ester copolymers, polyvinyl alcohol and polyethylene glycol copolymers, polyethylene oxide and polyvinylpyrrolidone copolymers; and derivatives and combinations
- Suitable film-forming proteins may be natural or chemically modified, and include gelatin, whey protein, myofibrillar proteins, coaggulatable proteins such as albumin, casein, caseinates and casein isolates, soy protein and soy protein isolates, zein; and polymers, derivatives and mixtures thereof.
- suitable film formers may be selected from film forming water insoluble polymers; film forming pH-dependent polymers; and copolymers and combinations thereof.
- the release-modifying particle coating preferably comprises a pore former.
- Suitable film forming water insoluble polymers for use in release-modifying particle coatings include for example ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers; and the like and derivatives, copolymers, and combinations thereof.
- Suitable film forming pH-dependent polymers for use in release-modifying particle coatings include for example enteric cellulose derivatives, such as for example hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate, cellulose acetate phthalate; natural resins, such as shellac and zein; enteric acetate derivatives such as for example polyvinylacetate phthalate, cellulose acetate phthalate, acetaldehyde dimethylcellulose acetate; and enteric acrylate derivatives such as for example polymethacrylate-based polymers such as poly(methacrylic acid, methyl methacrylate) 1:2, which is commercially available from Rohm Pharma GmbH under the tradename EUDRAGIT S, and poly(methacrylic acid, methyl methacrylate) 1:1, which is commercially available from Rohm Pharma GmbH under the tradename EUDRAGIT L; and the like, and derivatives, salts, copolymers, and combinations thereof.
- enteric cellulose derivatives such as for
- Suitable pore formers for use in release-modifying particle coatings include water-soluble organic and inorganic materials.
- the pore former is selected from hydroxypropylcellulose and hydroxypropylmethylcellulose.
- suitable water-soluble organic materials include water soluble cellulose derivatives such as hydroxypropylmethylcellulose, and hydroxypropylcellulose; water soluble carbohydrates such as sugars, and starches; water soluble polymers such as polyvinylpyrrolidone and polyethylene glycol, and insoluble swelling polymers such as microcrystalline cellulose.
- suitable water soluble inorganic materials include salts such as sodium chloride and potassium chloride and the like and/or mixtures thereof.
- suitable adjuvants or excipients for particle coatings include plasticizers, detackifiers, humectants, surfactants, anti-foaming agents, colorants, opacifiers, and the like.
- Suitable plasticizers for making the core, the shell, or a portion thereof, by molding include, but not be limited to polyethylene glycol; propylene glycol; glycerin; sorbitol; triethyl citrate; tributyl citrate; dibutyl sebecate; vegetable oils such as castor oil, rape oil, olive oil, and sesame oil; surfactants such as polysorbates, sodium lauryl sulfates, and dioctyl-sodium sulfosuccinates; mono acetate of glycerol; diacetate of glycerol; triacetate of glycerol; natural gums; triacetin; acetyltributyl citrate; diethyloxalate
- the dosage form releases one or more active ingredients contained therein in a sustained, extended, prolonged, or retarded manner, more preferably at a substantially constant rate upon contacting of the dosage form with a liquid medium.
- the molded matrix may function as a diffusional matrix or an eroding matrix.
- the molded matrix functions as an eroding matrix from which dispersed active ingredient is liberated in a sustained, extended, prolonged, or retarded manner, the molded matrix preferably comprises a release-modifying moldable excipient selected from swellable erodible hydrophilic materials, pH-dependent polymers, insoluble edible materials, and combinations thereof.
- the molded matrix functions as a diffusional matrix through which active ingredient contained therein is liberated in a sustained, extended, prolonged, or retarded manner
- the molded matrix preferably comprises a release-modifying excipient selected from combinations of insoluble edible materials and pore formers.
- the thermal-reversible carrier may function by dissolving and forming pores or channels through which the active ingredient may be liberated.
- the dosage form releases at least first and second active ingredients contained therein in a sustained, extended, prolonged, or retarded manner.
- the first and second active ingredients have different unmodified release characteristics; however the dosage form advantageously provides different types of modification to the first and second active ingredients, such that the dissolution profiles of the first and second active ingredients from the dosage form are similar.
- the dosage form advantageously provides different types of modification to the first and second active ingredients, such that the dissolution profiles of the first and second active ingredients from the dosage form are substantially different, e.g. the first and second active ingredients are released from the dosage for at different rates or times upon contacting of the dosage form with a liquid medium.
- the first and second active ingredient are both released from the dosage form at a substantially constant rate upon contacting of the dosage form with a liquid medium.
- a time delay occurs prior to release of at least a portion of one or more active ingredients occurs followed by sustained release of the delayed release active ingredient or ingredients.
- the time delay is provided by the dissolution of all or a portion of the molded matrix, and the subsequent sustained release is provided by one or more coatings on the particles of active ingredient.
- the molded matrix preferably comprises a release modifying excipient selected from pH-dependent polymers.
- the particle coating preferably comprises a release modifying excipient which may be selected from combinations of pore formers and insoluble edible materials; swellable erodible hydrophilic materials; pH-dependent polymers; and combinations thereof.
- the dosage form comprises first and second active ingredients which may be the same or different, and upon contacting of the dosage form with a liquid medium, sustained release of the first active ingredient occurs, followed by sustained release of the second active ingredient.
- the sustained release of first active ingredient is provided by the controlled dissolution of all or a portion of the molded matrix, and the subsequent sustained release of the second active ingredient is provided by one or more coatings on the particles of active ingredient.
- the molded matrix preferably comprises a release modifying excipient selected from swellable erodible hydrophilic materials, pH-dependent polymers, insoluble edible materials, and combinations thereof.
- the particle coating preferably comprises a release modifying excipient which may be selected from combinations of pore formers and insoluble edible materials; swellable erodible hydrophilic materials; pH-dependent polymers, and combinations thereof.
- the matrix comprises a first dose of active ingredient and the particles contained therein comprise a second dose of active ingredient which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first dose of active ingredient occurs, followed by a lag time, which is in turn followed by delayed release of the second dose active ingredient.
- the matrix preferably comprises materials which exhibit rapid dissolution in gastro-intestinal fluids.
- the immediate release shell portion or portions may comprise readily soluble materials selected from water soluble or water swellable thermoplastic film formers, water soluble or water swellable thickeners, crystallizable and non-crystallizable carbohydrates.
- suitable water soluble or water swellable thermoplastic film formers may be selected from water swellable cellulose derivatives, thermoplastic starches, polyalkalene glycols, polyalkalene oxides, and amorphous sugar glass, and combinations thereof.
- suitable film formers may be selected from film forming water soluble polymers such as for example water soluble vinyl polymers, water soluble polycarbohydrates, water swellable cellulose derivatives, and water soluble copolymers; film-forming proteins, and combinations thereof.
- suitable thickeners may be selected from gelling polymers or hydrocolloids; gelling starches, and crystallizable carbohydrates, and combinations thereof.
- suitable non-crystallizable carbohydrates may be selected from polydextrose, starch hydrolysates, and non-crystallizable sugar alcohols, and combinations thereof.
- the immediate release matrix will preferably liberate the coated particles of delayed release active ingredient by being breached or dissolved within 30 minutes in 900 ml water or 0.1 N HCl, or phosphate buffer solution at 37° C. with stirring by a USP type 2 (Paddle method) at 50 or 100 rpm.
- the time delay is provided by a coating on the particles containing the second dose of active ingredient.
- the delayed release particle coating comprises a release-modifying excipient selected from swellable erodible hydrophilic materials, and pH-dependent polymers, and combinations thereof.
- the matrix comprises a first dose of active ingredient and the particles contained therein comprise a second dose of active ingredient which may be the same or different than the first dose of active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first dose of active ingredient occurs followed by sustained release of the second dose of active ingredient.
- the matrix preferably comprises materials which exhibit rapid dissolution in gastro-intestinal fluids.
- the immediate release shell portion or portions may comprise readily soluble materials selected from water soluble or water swellable thermoplastic film formers, water soluble or water swellable thickeners, crystallizable and non-crystallizable carbohydrates.
- suitable water soluble or water swellable thermoplastic film formers may be selected from water swellable cellulose derivatives, thermoplastic starches, polyalkalene glycols, polyalkalene oxides, and amorphous sugar glass, and combinations thereof.
- suitable film formers may be selected from film forming water soluble polymers such as for example water soluble vinyl polymers, water soluble polycarbohydrates, water swellable cellulose derivatives, and water soluble copolymers; film-forming proteins, and combinations thereof.
- suitable thickeners may be selected from gelling polymers or hydrocolloids; gelling starches, and crystallizable carbohydrates.
- suitable non-crystallizable carbohydrates may be selected from polydextrose, starch hydrolysates, and non-crystallizable sugar alcohols.
- the immediate release matrix will preferably liberate the coated particles of delayed release active ingredient by being breached or dissolved within 30 minutes in 900 ml water or 0.1 N HCl, or phosphate buffer solution at 37° C. with stirring by a USP type 2 (Paddle method) at 50 or 100 rpm.
- the sustained release is provided by a coating on the particles containing the second dose of active ingredient.
- the sustained release particle coating comprises a release-modifying excipient which may be selected from combinations of pore formers and insoluble edible materials; swellable erodible hydrophilic materials; pH-dependent polymers.
- the molded matrix of the present invention is made by injecting the flowable material through an orifice into a mold cavity, then solidifying the flowable material, according to the method set forth herein, the disclosure of which is incorporated herein by reference.
- the orifice has a diameter greater than the diameter of the particles, e.g. from about 1000 to about 4000 microns, say about 2000 to about 3000 microns.
- the particles are introduced into the mold cavity in the form of a flowable slurry or suspension in the matrix material.
- the flowable slurry or suspension may be introduced under pressure through the orifice.
- the mold assembly may be free of a valve at the injection point.
- the mold assembly may comprise an elastomeric plug type valve which does not crush the particles upon closing.
- this method provides a versatile and cost-effective process for preparing the modified release molded matrix systems of the present invention.
- the method of the present invention may be carried out at relatively low processing temperatures, enabling the incorporation of low melting active ingredients, heat labile active ingredients, and coated particles into molded matrix dosage forms.
- the combination of methods and materials of the present invention enable the incorporation of relatively high levels of active ingredient into the molded matrix dosage form, and enable the production of unique elegant dosage forms with transparent, semi-transparent, or translucent matrices.
- the shell contains active ingredient which is released essentially immediately upon ingestion of the dosage form.
- the shell preferably comprises materials which exhibit rapid dissolution in gastro-intestinal fluids.
- the shell functions as a diffusional membrane which contains pores through which fluids can enter the dosage form, and dissolved active ingredient can be released in a sustained, extended, prolonged or retarded manner.
- the rate of release of active ingredient from the underlying core will depend upon the total pore area in the shell, the pathlength of the pores, and the solubility and diffusivity of the active ingredient (in addition to its rate of release from the core portion itself).
- the release of the active ingredient from the dosage form may be described as controlled, prolonged, sustained or extended.
- the contribution to active ingredient dissolution from the shell may follow zero-order, first-order, or square-root of time kinetics.
- the diffusional membrane shell portion preferably comprises a release-modifying excipient such as a combination of a pore former and an insoluble edible material such as for example a film forming water insoluble polymer.
- a release-modifying excipient such as a combination of a pore former and an insoluble edible material such as for example a film forming water insoluble polymer.
- the thermal-reversible carrier may function by dissolving and forming pores or channels through which the active ingredient may be liberated.
- the shell functions as an eroding matrix from which active ingredient dispersed in the shell is liberated by the dissolution of successive layers of the shell surface.
- the rate of active ingredient release will depend on the dissolution rate of the matrix material in the shell.
- Particularly useful matrix materials for providing surface erosion include those which first absorb liquid, then swell and/or gel prior to dissolving.
- the eroding matrix shell preferably comprises a swellable erodible hydrophilic material.
- the shell functions as a barrier to prevent release therethrough of an active ingredient contained in the underlying core or core portion.
- active ingredient is typically released from a portion of the core which is not covered by the barrier shell portion.
- Such embodiments advantageously allow for control of the surface area for release of the active ingredient.
- the surface area for release of active ingredient can be maintained substantially constant over time.
- the release of at least one active ingredient follows substantially zero-order kinetics.
- the barrier shell portion preferably comprises a water insoluble material such as for example a water insoluble polymer.
- the shell functions as a delayed release coating to delay release of an active ingredient which is contained in the core or a portion thereof.
- the lag-time for onset of active ingredient release may be governed by erosion of the shell or diffusion through the shell, or a combination thereof.
- the eroding matrix shell preferably comprises a swellable erodible hydrophilic material.
- the thickness of the shell portion is critical to the release properties of the dosage form.
- the dosage forms of the invention can be made with precise control over shell thickness.
- the shell is made by the thermal cycle or thermal setting injection molding methods and apparatus described herein.
- the shell of the present invention may be prepared by molding, using a solvent-free process, or a solvent-based process, and depending on the method used, typically comprises a variety of excipients which are useful for conferring desired properties to the shell.
- the shell may optionally further comprise one or more active ingredients.
- the shell will typically comprise at least about 30 percent, e.g. at least about 45 percent by weight of a thermal-reversible carrier.
- the shell may optionally further comprise up to about 55 weight percent of a release-modifying excipient.
- the shell may optionally further comprise up to about 30 weight percent total of various plasticizers, adjuvants and excipients.
- the release modifying excipient is preferably selected from swellable, erodible hydrophilic materials.
- the shell typically has a thickness of about 200 to about 4000 microns, e.g. about 300 to about 2000 microns.
- the flowable starting material may be completely molten or in the form of a paste.
- the starting material may comprise an active ingredient dissolved in a molten material.
- the ingredients comprising the starting material are preferably mixed together, and heated to a temperature above the melting temperature of the thermal reversible carrier to produce the flowable starting material.
- the shell will typically comprise at least about 10 weight percent, e.g. at least about 12 weight percent or at least about 15 weight percent or at least about 20 weight percent or at least about 25 weight percent of a film-former.
- the solvent-molded shell may optionally further comprise up to about 55 weight percent of a release-modifying excipient.
- the solvent-molded shell may again also optionally further comprise up to about 30 weight percent total of various plasticizers, adjuvants, and excipients.
- the shell typically has a thickness of less than about 800 microns, e.g. about 100 to about 600 microns, e.g. about 150 to about 400 microns.
- the flowable starting material may be made by dissolving and/or suspending a solid in a solvent.
- the solvent is then evaporated from the starting material after it has been molded.
- the ingredients comprising the starting material are preferably mixed together, and optionally heated, to disperse the film former and optional other ingredients to produce the flowable starting material.
- the total weight of the shell portion or portions is preferably about 20 percent to about 400 percent of the weight of the core. In embodiments wherein the shell portion or portions prepared by a solvent-free molding process, the total weight of the shell portion or portions is typically from about 50 percent to about 400 percent, e.g. from about 75 percent to about 400 percent, or about 100 percent to about 200 percent of the weight of the core. In embodiments wherein the shell portion or portions are prepared by a solvent-based molding process, the total weight of the shell portion or portions is typically from about 20 percent to about 100 percent of the weight of the core.
- Suitable thermal-reversible carriers for preparing the shell by solvent-free molding typically have a melting point below about 110° C., e.g. from about 20 to about 100° C.
- Suitable thermal-reversible carriers for preparing the shell by solvent-free molding may be selected from the thermal-reversible carriers listed herein for preparing the core by solvent-free molding.
- Particularly preferred thermal-reversible carriers for preparing the shell by solvent-free molding may be selected from polyethylene glycol, thermoplastic polyethylene oxide, shellac, and combinations thereof.
- Suitable release modifying agents for making the shell portion by solvent-free or solvent-based molding include but are not limited to swellable erodible hydrophilic materials, film-formers, pH dependent polymers, and pore-formers.
- Suitable plasticizers for making the shell by solvent-free or solvent-based molding include, but are not limited to polyethylene glycol; propylene glycol; glycerin; sorbitol; triethyl citrate; tributyl citrate; dibutyl sebecate; vegetable oils such as castor oil, rape oil, olive oil, and sesame oil; surfactants such as polysorbates, sodium lauryl sulfates, and dioctyl-sodium sulfosuccinates; mono acetate of glycerol; diacetate of glycerol; triacetate of glycerol; natural gums; triacetin; acetyltributyl citrate; diethyloxalate; diethylmalate; diethyl fumarate; diethylmalonate; dioctylphthalate; dibutylsuccinate; glyceroltributyrate; hydrogenated castor oil; fatty acids; substitute
- Suitable adjuvants and excipients for making the shell by solvent-free or solvent-based molding include secondary film formers such as for example shellac, secondary gelling agents, such as for example cross-linked carboxymethylcellulose, cross-linked polyvinylpyrrolidone, sodium starch glycolate, and the like, as well as preservatives, high intensity sweeteners such as aspartame, acesulfame potassium, sucralose, and saccharin; flavors, antioxidants, surfactants, and coloring agents, many examples of which are known in the art.
- secondary film formers such as for example shellac
- secondary gelling agents such as for example cross-linked carboxymethylcellulose, cross-linked polyvinylpyrrolidone, sodium starch glycolate, and the like
- preservatives such as for example cross-linked carboxymethylcellulose, cross-linked polyvinylpyrrolidone, sodium starch glycolate, and the like
- high intensity sweeteners such as aspartame, acesulfame potassium,
- Suitable film-formers for preparing the shell by solvent-based molding include, but are not limited to, film-forming water soluble polymers, film-forming proteins, film-forming water insoluble polymers, and film-forming pH-dependent polymers.
- the film-former for making the shell or portion thereof by molding may be selected from cellulose acetate, ammonio methacrylate copolymer type B, shellac, hydroxypropylmethylcellulose, and polyethylene oxide, and combinations thereof.
- Suitable film-forming water soluble polymers include water soluble vinyl polymers such as polyvinylalcohol (PVA); water soluble polycarbohydrates such as hydroxypropyl starch, hydroxyethyl starch, pullulan, methylethyl starch, carboxymethyl starch, pre-gelatinized starches, and film-forming modified starches; water swellable cellulose derivatives such as hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), methyl cellulose (MC), hydroxyethylmethylcellulose (HEMC), hydroxybutylmethylcellulose (HBMC), hydroxyethylethylcellulose (HEEC), and hydroxyethylhydroxypropylmethyl cellulose (HEMPMC); water soluble copolymers such as methacrylic acid and methacrylate ester copolymers, polyvinyl alcohol and polyethylene glycol copolymers, polyethylene oxide and polyvinylpyrrolidone copolymers; and derivatives and combinations
- Suitable film-forming proteins may be natural or chemically modified, and include gelatin, whey protein, myofibrillar proteins, coaggulatable proteins such as albumin, casein, caseinates and casein isolates, soy protein and soy protein isolates, zein; and polymers, derivatives and mixtures thereof.
- Suitable film-forming water insoluble polymers include for example ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers; and the like and derivatives, copolymers, and combinations thereof.
- Suitable film-forming pH-dependent polymers include enteric cellulose derivatives, such as for example hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate, cellulose acetate phthalate; natural resins, such as shellac and zein; enteric acetate derivatives such as for example polyvinylacetate phthalate, cellulose acetate phthalate, acetaldehyde dimethylcellulose acetate; and enteric acrylate derivatives such as for example polymethacrylate-based polymers such as poly(methacrylic acid, methyl methacrylate) 1:2, which is commercially available from Rohm Pharma GmbH under the tradename, EUDRAGIT S, and poly(methacrylic acid, methyl methacrylate) 1:1, which is commercially available from Rohm Pharma GmbH under the tradename, EUDRAGIT L, and the like, and derivatives, salts, copolymers, and combinations thereof.
- enteric cellulose derivatives such as for example hydroxypropyl methylcellulose
- HPMC 2910 is a cellulose ether having a degree of substitution of about 1.9 and a hydroxypropyl molar substitution of 0.23, and containing, based upon the total weight of the compound, from about 29% to about 30% methoxyl groups and from about 7% to about 12% hydroxylpropyl groups.
- HPMC 2910 is commercially available from the Dow Chemical Company under the tradename METHOCEL E.
- METHOCEL E5 which is one grade of HPMC-2910 suitable for use in the present invention, has a viscosity of about 4 to 6 cps (4 to 6 millipascal-seconds) at 20° C.
- METHOCEL E6 which is another grade of HPMC-2910 suitable for use in the present invention, has a viscosity of about 5 to 7 cps (5 to 7 millipascal-seconds) at 20° C. in a 2% aqueous solution as determined by a Ubbelohde viscometer.
- METHOCEL E15 which is another grade of HPMC-2910 suitable for use in the present invention, has a viscosity of about 15000 cps (15 millipascal-seconds) at 20° C. in a 2% aqueous solution as determined by a Ubbelohde viscometer.
- degree of substitution shall mean the average number of substituent groups attached to a anhydroglucose ring
- hydroxypropyl molar substitution shall mean the number of moles of hydroxypropyl per mole anhydroglucose.
- polyvinyl alcohol and polyethylene glycol copolymer are commercially available from BASF Corporation under the tradename KOLLICOAT IR.
- modified starches include starches that have been modified by crosslinking, chemically modified for improved stability or optimized performance, or physically modified for improved solubility properties or optimized performance.
- chemically-modified starches are well known in the art and typically include those starches that have been chemically treated to cause replacement of some of its hydroxyl groups with either ester or ether groups.
- Crosslinking may occur in modified starches when two hydroxyl groups on neighboring starch molecules are chemically linked.
- pre-gelatinized starches or “instantized starches” refers to modified starches that have been pre-wetted, then dried to enhance their cold-water solubility.
- Suitable modified starches are commercially available from several suppliers such as, for example, A.E. Staley Manufacturing Company, and National Starch & Chemical Company.
- One suitable film forming modified starch includes the pre-gelatinized waxy maize derivative starches that are commercially available from National Starch & Chemical Company under the tradenames PURITY GUM and FILMSET, and derivatives, copolymers, and mixtures thereof.
- Such waxy maize starches typically contain, based upon the total weight of the starch, from about 0 percent to about 18 percent of amylose and from about 100% to about 88% of amylopectin.
- Another suitable film forming modified starch includes the hydroxypropylated starches, in which some of the hydroxyl groups of the starch have been etherified with hydroxypropyl groups, usually via treatment with propylene oxide.
- a suitable hydroxypropyl starch that possesses film-forming properties is available from Grain Processing Company under the tradename, PURE-COTE B790.
- Suitable tapioca dextrins for use as film formers include those available from National Starch & Chemical Company under the tradenames CRYSTAL GUM or K-4484, and derivatives thereof such as modified food starch derived from tapioca, which is available from National Starch and Chemical under the tradename PURITY GUM 40 , and copolymers and mixtures thereof.
- the shell is prepared using the molding methods and apparatuses described in copending U.S. patent application Ser. No. 09/966,939, pages 27-51 and 57-63, which is incorporated herein by reference in its entirety.
- the shell itself may comprise at least one active ingredient.
- the shell is applied to the core in the form of a flowable material using the thermal cycle method and apparatus described in copending U.S. patent application Ser. No. 09/966,497, pages 27-51, the disclosure of which is incorporated herein by reference.
- the shell is applied using a thermal cycle molding module having the general configuration shown in FIG. 3 therein.
- the thermal cycle molding module 200 comprises a rotor 202 around which a plurality of mold units 204 are disposed.
- the thermal cycle molding module includes a reservoir 206 (see FIG. 4 therein) for holding shell flowable material.
- the thermal cycle molding module is provided with a temperature control system for rapidly heating and cooling the mold units.
- FIGS. 55 and 56 depict the temperature control system 600.
- the thermal cycle molding module is preferably of the type shown in FIG. 28A of copending U.S. application Ser. No. 09/966,497, comprising a series of mold units 204.
- the mold units 204 in turn comprise upper mold assemblies 214, rotatable center mold assemblies 212 and lower mold assemblies 210 as shown in FIG. 28C.
- Cores are continuously transferred to the mold assemblies, which then close over the cores.
- the shell flowable material which is heated to a flowable state in reservoir 206, is injected into the mold cavities created by the closed mold assemblies.
- the temperature of the shell flowable material is then decreased, hardening it.
- the mold assemblies open and eject the coated cores. In one particular embodiment, coating is performed in two steps, each half of the cores being coated separately as shown in the flow diagram of FIG. 28B of copending U.S. application Ser. No. 09/966,497 via rotation of the center mold assembly.
- the shell completely surrounds the core.
- At least one active ingredient contained within the dosage form exhibits a delayed burst release profile.
- delayed burst release profile it is meant that the release of that particular active ingredient from the dosage form is delayed for a pre-determined time after ingestion by the patient, and the delay period (“lag time”) is followed by prompt (immediate) release of that active ingredient.
- At least one shell portion of the present invention provides for the delay period and is preferably substantially free of the active ingredient to be released in a delayed burst manner.
- the delayed burst active ingredient is typically contained within the corresponding underlying core portion.
- the core portion may be prepared by compression or molding, and is formulated for immediate release, as is known in the art, so that the core portion is readily soluble upon contact with the dissolution medium.
- the core portion preferably comprises a disintegrant, and optionally comprises additional excipients such as fillers or thermoplastic materials selected from water-soluble or low-melting materials, and surfactants or wetting agents.
- additional excipients such as fillers or thermoplastic materials selected from water-soluble or low-melting materials, and surfactants or wetting agents.
- USP 24 specifies that in pH 5.8 phosphate buffer, using USP apparatus 2 (paddles) at 50 rpm, at least 80% of the acetaminophen contained in the dosage form is released therefrom within 30 minutes after dosing, and for ibuprofen tablets, USP 24 specifies that in pH 7.2 phosphate buffer, using USP apparatus 2 (paddles) at 50 rpm, at least 80% of the ibuprofen contained in the dosage form is released therefrom within 60 minutes after dosing. See USP 24, 2000 Version, 19-20 and 856 (1999).
- At least one active ingredient contained within the dosage form exhibits a delayed and sustained release profile.
- delayed then sustained release profile it is meant that the release of that particular active ingredient from the dosage form is delayed for a pre-determined time after ingestion by the patient, and the delay period (“lag time”) is followed by sustained (prolonged, extended, or retarded) release of that active ingredient.
- At least one shell portion of the present invention provides for the delay period, and is preferably substantially free of the active ingredient to be released in a delayed then sustained manner.
- the delayed then sustained release active ingredient is preferably contained within the corresponding underlying core portion.
- the core portion may function for example as an eroding matrix or a diffusional matrix, or an osmotic pump.
- the core portion functions as a diffusional matrix through which active ingredient is liberated in a sustained, extended, prolonged, or retarded manner
- the core portion preferably comprises a release-modifying excipient selected from combinations of insoluble edible materials and pore-formers.
- the thermal-reversible carrier may function by dissolving and forming pores or channels through which the active ingredient may be liberated.
- the core portion functions as an eroding matrix from which dispersed active ingredient is liberated in a sustained, extended, prolonged, or retarded manner
- the core portion preferably comprises a release-modifying compressible or moldable excipient selected from swellable erodible hydrophilic materials, pH-dependent polymers, and combinations thereof.
- the dosage form comprises first and second active ingredients which may be the same or different, and upon contacting of the dosage form with a liquid medium, delayed release of the first active ingredient occurs followed by sustained release of the second active ingredient.
- the shell comprises a first active ingredient and the core comprises a second active ingredient (for example, within the matrix or coated or uncoated particles or a combination thereof) which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by delayed release of the second active ingredient.
- a second active ingredient for example, within the matrix or coated or uncoated particles or a combination thereof
- the shell comprises a first active ingredient and the core comprises a second active ingredient (for example, within the matrix or coated or uncoated particles or a combination thereof) which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by sustained release of the second active ingredient.
- a second active ingredient for example, within the matrix or coated or uncoated particles or a combination thereof
- the core or matrix or shell of the present invention are substantially free of pores having a diameter of 0.5-5.0 microns.
- substantially free means that the shell portion or portions have a pore volume of less than about 0.02 cc/g, preferably less than about 0.01 cc/g, more preferably less than about 0.005 cc/g in the pore diameter range of 0.5 to 5.0 microns.
- typical compressed materials have pore volumes of more than about 0.02 cc/g in this diameter range.
- the core is a molded core and the core or core portions are substantially free of pores having a diameter of 0.5-5.0 microns.
- the pore volume, pore diameter and density may be determined using a Quantachrome Instruments PoreMaster 60 mercury intrusion porosimeter and associated computer software program known as “Porowin.” The procedure is documented in the Quantachrome Instruments PoreMaster Operation Manual.
- the PoreMaster determines both pore volume and pore diameter of a solid or powder by forced intrusion of a non-wetting liquid (mercury), which involves evacuation of the sample in a sample cell (penetrometer), filling the cell with mercury to surround the sample with mercury, applying pressure to the sample cell by: (i) compressed air (up to 50 psi maximum); and (ii) a hydraulic (oil) pressure generator (up to 60000 psi maximum).
- Intruded volume is measured by a change in the capacitance as mercury moves from outside the sample into its pores under applied pressure.
- the samples remain in sealed packages or as received in the dessicator until analysis.
- the vacuum pump is switched on, the mercury vapor cold trap is filled with liquid nitrogen, the compressed gas supply is regulated at 55 psi., and the instrument is turned on and allowed a warm up time of at least 30 minutes.
- the empty penetrometer cell is assembled as described in the instrument manual and its weight is recorded. The cell is installed in the low pressure station and “evacuation and fill only” is selected from the analysis menu, and the following settings are employed:
- Fine Evacuation time 1 min.
- Fine Evacuation rate 10 Coarse Evacuation time: 5 min.
- the cell (filled with mercury) is then removed and weighed.
- the cell is then emptied into the mercury reservoir, and two tablets from each sample are placed in the cell and the cell is reassembled.
- the weight of the cell and sample are then recorded.
- the cell is then installed in the low-pressure station, the low-pressure option is selected from the menu, and the following parameters are set:
- Dosage forms according to the invention comprising molded cores with shells thereon were made as follows.
- the molded cores (Example 1A) were made from the following ingredients:
- a beaker was submersed in a water bath (Ret digi-visc; Antal-Direct, Wayne, Pa.) where the water temperature was set at 70° C.
- Polyethylene glycol (PEG) 3350 was added to the beaker and was mixed with a spatula until all PEG was melted.
- Croscarmellose sodium was then added followed by mixing for 2 minutes.
- Pseudoephedrine hydrochloride crystal was added, followed by mixing for 5 minutes.
- 570 to 610 mg of the molten mixture was added a round, concave lower punch and die unit (0.4375 inch diameter) which was manually joined with the upper punch to form a molded tablet core.
- the molded tablet core was ejected from the die.
- the shells (Example 1B) were made of the following ingredients:
- a beaker was submersed in a water bath (Ret digi-visc; Antal-Direct, Wayne, Pa.) where the water temperature was set at 70° C.
- Polyethylene glycol (PEG) 3350 was added to the beaker and was mixed with a spatula until all PEG was melted.
- Tributyl citrate was added to the molten PEG mixture, followed by mixing for 1 minute.
- a laboratory scale thermal cycle molding module was used to apply the shell in two portions onto the core.
- a first mold assembly comprising a cavity was cycled to hot stage at 85° C. for 30 seconds.
- a first portion of the shell material in flowable form (Example 1B) was added to the cavity.
- a molded core (Example 1A) was then inserted into the cavity.
- a blank mold assembly that masked half the core was screwed into the first mold assembly.
- the joined mold assemblies were cycled to cold stage at 5° C. for 60 seconds to harden the shell on the exposed half of the core.
- the blank mold assembly was removed and the molded core coated with the first shell portion was ejected form the cavity.
- a second mold assembly comprising a second cavity was cycled to hot stage at 85° C. for 30 seconds.
- a second portion of the shell material in flowable form (Example 1B) was added to the cavity.
- the molded core comprising the first shell portion was inserted into the second mold assembly in such a way that the uncoated half of the core (without the first shell portion) was inserted into the second mold cavity.
- the first mold assembly which was kept in cold cycle at 5° C., was screwed into the second mold assembly.
- the second mold assembly was cycled to cold stage at 5° C. for 60 seconds to harden a second shell portion on the core.
- the first mold assembly was removed and the dosage form, a molded core coated with the first and second shell portions (Example 1C), was ejected from the mold assembly.
- the weight gain of the dosage form due to the first and second shell portions was recorded.
- Shell material in flowable form (Example 1B) was added into a flat faced, 0.6875 inch rubber mold and a coated core (Example 1C) was inserted into the mold. Additional shell material was added to fill the mold. The round molded tablet core was removed from the mold after 5 minutes of cooling in the mold. The weight gain of the core due to the shell was recorded.
- FIG. 2 depicts the % release of active ingredient vs. hours for the dosage form of Example 1 and other dosage forms. More particularly this figure shows the dissolution rate of three different samples of different shell weight gain of the present invention.
- Curve (a) shows the release rate of pseudoephedrine HCL from the matrix with 314% shell weight gain of this invention.
- Curve (b) shows the release rate of pseudoephedrine HCL from the matrix with 118% shell weight gain of this invention.
- Curve (c) shows the release rate of pseudoephedrine HCL from the matrix with 55% shell weight gain of this invention. All curves were derived using the following dissolution analysis: USP Type II apparatus (paddles, 50 RPM) in 0.1 N HCL and pH 5.6 phosphate buffer at 37° C.
- Samples were tested at 1, 2, 3, 4, 8, 12, 16, 20, and 24 hours for pseudoephedrine HCl.
- Dissolution samples were analyzed for pseudoephedrine HCl versus a standard prepared at the theoretical concentration for 100% released of each compound.
- Samples were analyzed using a HPLC equipped with a Waters® 717 Autoinjector and a Waters® 486 UV detector set at a wavelength of 214 nm.
- the mobile phase was prepared using 55% acetonitrile and 45% 18 mM Potassium phosphate buffer.
- the injection volume was 50 ⁇ L with a run time of approximately 8 minutes and a pump flow of 2.0 mL/min.
- the column used was a Zorbax® 300-SCX (4.6 mm ⁇ 25 cm).
- Dosage forms of the invention are made in a continuous process using an apparatus comprising two thermal cycle molding modules linked in series via a transfer device as described at pages 14-16 of copending U.S. application Ser. No. 09/966,939, the disclosure of which is incorporated herein by reference.
- the dosage forms comprise a molded core and a shell.
- the core comprises the ingredients of Example 1A, provided in flowable form as described in Example 1.
- the shell comprises the ingredients of Example 1B, provided in flowable form as described in Example 1.
- the thermal cycle molding modules have the general configuration shown in FIG. 3 of copending U.S. application Ser. No. 09/966,497, which depicts a thermal cycle molding module 200 comprising a rotor 202 around which a plurality of mold units 204 are disposed.
- Each thermal cycle molding module includes its own reservoir 206 (see FIG. 4 of copending U.S. application Ser. No. 09/966,497) for holding the core flowable material, and the shell flowable material, respectively.
- each thermal cycle molding module is provided with a temperature control system for rapidly heating and cooling the mold units.
- FIGS. 55 and 56 of copending U.S. application Ser. No. 09/966,497 depict the temperature control system 600.
- the cores are made in a first thermal cycle molding module, which is linked via a transfer device to a second thermal cycle molding module.
- the first thermal cycle molding module has the specific configuration shown in FIG. 26A of copending U.S. application Ser. No. 09/966,497.
- the first thermal cycle molding module comprises center mold assemblies 212 and upper mold assemblies 214 as shown in FIG. 26C, which mate to form mold cavities having the shape of the cores.
- Core flowable material which is heated to a flowable state in reservoir 206, is injected into the resulting mold cavities.
- the temperature of the core flowable material is then decreased, hardening the core flowable material into cores.
- the mold assemblies open and eject the cores, which are received by the transfer device.
- the transfer device has the structure shown as 300 in FIG. 3 and described at pages 51-57 of copending U.S. application Ser. No. 09/966,414, the disclosure of which is incorporated herein by reference. It comprises a plurality of transfer units 304 attached in cantilever fashion to a belt 312 as shown in FIGS. 68 and 69 of copending U.S. application Ser. No. 09/966,414.
- the transfer device rotates and operates in sync with the thermal cycle molding modules to which it is coupled.
- Transfer units 304 comprise retainers 330 for holding the cores as they travel around the transfer device.
- the transfer device transfers the cores to the second thermal cycle molding module, which applies the shell to the cores.
- the second thermal cycle molding module is of the type shown in FIG. 28A of copending U.S. application Ser. No. 09/966,497.
- the mold units 204 of the second thermal cycle molding module comprise upper mold assemblies 214, rotatable center mold assemblies 212 and lower mold assemblies 210 as shown in FIG. 28C. Cores are continuously transferred to the mold assemblies, which then close over the cores.
- Shell material which is heated to a flowable state in reservoir 206, is injected into the mold cavities created by the closed mold assemblies. The temperature of the shell material is then decreased, hardening it.
- the mold assemblies open and eject the coated cores. Coating is performed in two steps, each half of the cores being coated separately as shown in the flow diagram of FIG. 28B of copending U.S. application Ser. No. 09/966,939 via rotation of the center mold assembly.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Polymers & Plastics (AREA)
- Nutrition Science (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
Abstract
In one embodiment, a dosage form comprises: (a) at least one active ingredient; (b) a molded core which is solid at room temperature; and (c) a shell which is in contact with at least a portion of the core, wherein the dosage form provides modified release of the active ingredient upon contacting of the dosage form with a liquid medium. In another embodiment of this invention, a dosage form comprises: (a) at least one active ingredient; (b) a molded core comprising a plurality of particles; and (c) a shell which is in contact with at least a portion of the core, wherein the dosage form provides modified release of the active ingredient upon contacting of the dosage form with a liquid medium.
Description
- 1. Field of the Invention
- This invention relates to modified release dosage forms such as modified release pharmaceutical compositions. More particularly, this invention relates to modified release dosage forms comprising a molded core, and a shell residing upon at least a portion of the core.
- 2. Background Information
- Modified release pharmaceutical dosage forms have long been used to optimize drug delivery and enhance patient compliance, especially by reducing the number of doses of medicine the patient must take in a day. For this purpose, it is often desirable to modify the rate of release of a drug (one particularly preferred type of active ingredient) from a dosage form into the gastro-intestinal (g.i.) fluids of a patient, especially to slow the release to provide prolonged action of the drug in the body.
- The rate at which an orally delivered pharmaceutical active ingredient reaches its site of action in the body depends on a number of factors, including the rate and extent of drug absorption through the g.i. mucosa. To be absorbed into the circulatory system (blood), the drug must first be dissolved in the g.i. fluids. For many drugs, diffusion across the g.i. membranes is relatively rapid compared to dissolution. In these cases, the dissolution of the active ingredient is the rate limiting step in drug absorption, and controlling the rate of dissolution allows the formulator to control the rate of drug absorption into the circulatory system of a patient.
- An important objective of modified release dosage forms is to provide a desired blood concentration versus time (pharmacokinetic, or PK) profile for the drug. Fundamentally, the PK profile for a drug is governed by the rate of absorption of the drug into the blood, and the rate of elimination of the drug from the blood. The type of PK profile desired depends, among other factors, on the particular active ingredient, and physiological condition being treated.
- One particularly desirable PK profile for a number of drugs and conditions, is one in which the level of drug in the blood is maintained essentially constant (i.e. the rate of drug absorption is approximately equal to the rate of drug elimination) over a relatively long period of time. Such systems have the benefit of reducing the frequency of dosing, improving patient compliance, as well as minimizing side effects while maintaining full therapeutic efficacy. A dosage form which provides a “zero-order,” or constant, release rate of the drug is useful for this purpose. Since zero-order release systems are difficult to achieve, systems which approximate a constant release rate, such as for example first-order and square root of time profiles are often used to provide sustained (prolonged, extended, or retarded) release of a drug.
- Another particularly desirable PK profile is achieved by a dosage form that delivers a delayed release dissolution profile, in which the release of drug from the dosage form is delayed for a pre-determined time after ingestion by the patient. The delay period (“lag time”) can be followed either by prompt release of the active ingredient (“delayed burst”), or by sustained (prolonged, extended, or retarded) release of the active ingredient (“delayed then sustained”).
- Well known mechanisms by which a dosage form (or drug delivery system) can deliver drug at a controlled rate (e.g. sustained, prolonged, extended or retarded release) include diffusion, erosion, and osmosis.
- One classic diffusion-controlled release system comprises a “reservoir” containing the active ingredient, surrounded by a “membrane” through which the active ingredient must diffuse in order to be absorbed into the bloodstream of the patient. The rate of drug release, (dM/dt) depends on the area (A) of the membrane, the diffusional pathlength (l), the concentration gradient (ΔC) of the drug across the membrane, the partition coefficient (K) of the drug into the membrane, and the diffusion coefficient (D):
-
dM/dt={ADKΔC}/l - Since one or more of the above terms, particularly the diffusional pathlength and concentration gradient tend to be non-constant, diffusion-controlled systems generally deliver a non-constant release rate. In general, the rate of drug release from diffusion-controlled release systems typically follows first order kinetics. One disadvantage of membrane-reservoir type systems is their vulnerability to “dose dumping.” The diffusional membrane must remain intact without breach throughout the functional life of the dosage form in order to prevent this occurrence and the possibility of overdose along with the associated toxic side effects. One typical type of diffusional membrane-reservoir systems comprises a compressed tablet core which acts as the reservoir, surrounded by a shell (or coating) which functions as the diffusional membrane. Current core-shell systems are limited by the available methods for manufacturing them, as well as the materials that are suitable for use with the current methods. A shell, or coating, which confers modified release properties is typically applied via conventional methods, such as for example, spray-coating in a coating pan. Pan-coating produces a single shell which essentially surrounds the core. Defects that commonly occur during coating, include “picking,” “sticking,” and “twinning,” all of which result in undesired holes in the coating, which lead to dose dumping. The coating compositions that can be applied via spraying are limited by their viscosity. High viscosity solutions are difficult or impractical to pump and deliver through a spray nozzle. Spray coating methods suffer the further limitations of being time-intensive and costly. Several hours of spraying may be required to spray an effective amount of coating to control the release of an active ingredient. Coating times of 8 to 24 hours are not uncommon.
- Another common type of diffusion-controlled release system comprises active ingredient, distributed throughout an insoluble porous matrix through which the active ingredient must diffuse in order to be absorbed into the bloodstream of the patient. The amount of drug (M) released at a given time at sink conditions (i.e. drug concentration at the matrix surface is much greater than drug concentration in the bulk solution), depends on the area (A) of the matrix, the diffusion coefficient (D), the porosity (E) and tortuosity (T) of the matrix, the drug solubility (Cs) in the dissolution medium, time (t) and the drug concentration (Cp) in the dosage form:
-
M=A(DE/T(2Cp−ECs)(Cs)t)1/2 - It will be noted in the above relationship that the amount of drug released is generally proportional to the square root of time. Assuming factors such as matrix porosity and tortuosity are constant within the dosage form, a plot of amount of drug released versus the square root of time should be linear. One typical type of diffusional matrix system may be prepared by compression of the active ingredient along with a mixture of soluble and insoluble materials designed to produce a desired porosity and tortuosity as the soluble materials dissolve in the dissolution medium or gastro-intestinal fluids.
- A commonly used erosion-controlled release system comprises a “matrix” throughout which the drug is distributed. The matrix typically comprises a material which swells at the surface, and slowly dissolves away layer by layer, liberating drug as it dissolves. The rate of drug release, (dM/dt), in these systems depends on the rate of erosion (dx/dt) of the matrix, the concentration profile in the matrix, and the surface area (A) of the system:
-
dM/dt=A{dx/dt}{f(C)} - Again, variation in one or more terms, such as surface area, typically leads to a non-constant release rate of drug. In general, the rate of drug release from erosion-controlled release systems typically follows first order kinetics. One typical method of preparing such eroding matrix systems is by compression of the active ingredient blended with a mixture of compressible excipients comprising water swellable erodible materials which create a temporary barrier as they swell, and allow small amounts of active ingredient to be released as the continuously receding surface layer slowly dissolves in the dissolution medium or gastro-intestinal fluids.
- Another type of erosion controlled delivery system employs materials which swell and dissolve slowly by surface erosion to provide a delayed release of pharmaceutical active ingredient. Delayed release is useful, for example in pulsatile or repeat action delivery systems, in which an immediate release dose is delivered, followed by a pre-determined lag time before a subsequent dose is delivered from the system. In these systems, the lag time (T1) depends on the thickness (h) of the erodible layer, and the rate of erosion (dx/dt) of the matrix, which in turn depends on the swelling rate and solubility of the matrix components:
-
T 1 =h(dx/dt) - The cumulative amount of drug (M) released from these systems at a given time generally follows the equation:
-
M=(dM/dt)(t−T 1) - where dM/dt is generally described by either the diffusion-controlled or erosion-controlled equations above, and T1 is the lag time.
- Modified release dosage forms prepared via compression to obtain either diffusional or eroding matrices are exemplified in U.S. Pat. Nos. 5,738,874 and 6,294,200, and WO 99/51209. Compressed dosage forms are limited by the achievable geometry's, as well as the suitable materials for producing them.
- WO 97/49384 describes a hot-melt extrudable mixture of a therapeutic compound and a high molecular weight poly(ethylene oxide). In some embodiments, the formulation further comprises poly(ethylene glycol). The high molecular weight poly(ethylene oxide)s employed have molecular weights ranging from about 1 to about 10 million Daltons. The minimum ratio of high molecular weight poly(ethylene oxide) to active ingredient is 80:20. The dosage forms of this reference are limited in the amount of active ingredient they can deliver. The maximum amount of active ingredient that may be delivered in the composition is not more that 20 weight percent of the composition. Typical hot-melt systems are additionally limited by high processing temperatures, and are therefore not optimal for delivering low melting, or heat labile active ingredients. Typical hot-melt systems are additionally not optimal for delivering coated particles of active ingredients, due to both the high processing temperatures, and the high shear imparted during processing through extruders or spray nozzles. Typical hot-melt systems are additionally not optimal for applying a coating thereon by conventional methods such as spraying, dipping, or compression.
- It would be desirable to have a versatile and cost-effective method for preparing modified release matrix systems, which are not susceptible to dose dumping. It would additionally be desirable to have a method for preparing modified release matrix systems in a variety of shapes, for either functional purposes, e.g. achieving a desired release profile using certain advantageous geometries, or for consumer preference purposes, such as swallowability, dosage form elegance, and product identification and differentiation. It would additionally be desirable to have a controlled release matrix systems capable of delivering a relatively high level of active ingredient in a relatively small dosage form. It would additionally be desirable to have modified release matrix systems for delivering low-melting or heat labile active ingredients. It would additionally be desirable to have modified release matrix systems capable of delivering coated particles of active ingredient. It would additionally be desirable to have a method of applying a shell to a molded core.
- It is one object of this invention to provide a dosage form in which at least one active ingredient contained therein exhibits a modified release profile upon contacting of the dosage form with a liquid medium. It is another object of this invention to provide a dosage form in which at least one active ingredient contained therein exhibits a modified release profile upon contacting of the dosage form with a liquid medium. Other objects, features and advantages of the invention will be apparent to those skilled in the art from the detailed description set forth below.
- In one embodiment, the dosage form of this invention comprises: (a) at least one active ingredient; (b) a molded core which is solid at room temperature; and (c) a shell which is in contact with at least a portion of the core, wherein the dosage form provides modified release of the active ingredient upon contacting of the dosage form with a liquid medium.
- In another embodiment, the molded core comprises one or more active ingredients dispersed in a molded matrix.
- In another embodiment, the shell is capable of providing modified release of at least one active ingredient upon contacting of the dosage form with a liquid medium.
- In another embodiment, the shell is capable of providing a time delay prior to the release of at least one active ingredient upon contacting of the dosage form with a liquid medium.
- In another embodiment, the time delay is independent of the pH of the liquid medium.
- In another embodiment, the shell comprises at least about 30 percent by weight of a thermal-reversible carrier.
- In another embodiment, the shell comprises at least one active ingredient.
- In another embodiment, the core comprises a molded matrix.
- In another embodiment, the core comprises at least one active ingredient.
- In another embodiment, the core is capable of providing modified release of at least one active ingredient upon contacting of the dosage form with a liquid medium.
- In another embodiment, the core comprises one or more release-modifying excipients.
- In another embodiment, the release modifying excipient is selected from the group consisting of swellable erodible hydrophilic materials, pH-dependent polymers, insoluble edible materials, and pore-formers, and derivatives, copolymers, and combinations thereof.
- In another embodiment, the core comprises at least 30% of thermal-reversible carrier.
- In another embodiment, the thermal-reversible carrier is selected from the group consisting of polyethylene glycol, thermoplastic polyethylene oxide, shellac, and derivatives, copolymers, and combinations thereof.
- In another embodiment, the thermal-reversible carrier has a melting point of about 20 to about 110° C.
- In another embodiment, the core comprises a plurality of particles which comprise at least one active ingredient.
- In another embodiment, at least a portion of the particles are coated with a coating capable of providing modified release of the active ingredient contained therein upon contacting of the coated particles with a liquid medium.
- In another embodiment, at least a portion of the particles are coated with a coating comprising 10-100 wt. % of a release-modifying polymer selected from the group consisting of pH-dependent polymers, water-soluble polymer, water-insoluble polymers, and copolymers and derivatives and mixtures thereof.
- In another embodiment, upon contacting of the dosage form with a liquid medium, a time delay occurs prior to release of at least a portion of the active ingredient.
- In another embodiment, the portion of the active ingredient released after the time delay is released in a sustained manner.
- In another embodiment, the dosage form comprises first and second active ingredients which are the same or different, and upon contacting of the dosage form with a liquid medium, the first active ingredient is released in a sustained manner, and a time delay precedes release of the second active ingredient.
- In another embodiment, the shell comprises a first active ingredient and the core comprises a second active ingredient which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by a time delay, followed by release of the second active ingredient.
- In another embodiment, the shell comprises a first active ingredient and the core comprises a second active ingredient which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by sustained release of the second active ingredient.
- In another embodiment, the shell comprises a first active ingredient and the core comprises particles comprising a second active ingredient which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by sustained release of the second active ingredient.
- In another embodiment, the level of active ingredient is at least about 25 weight percent of the core.
- In another embodiment, the molded matrix comprises a thermal reversible carrier having a melting point from about 20 to about 100° C.
- In another embodiment, the molded matrix comprises a thermal reversible carrier selected from the group consisting of thermoplastic polyalkalene oxides, low melting hydrophobic materials, thermoplastic polymers, the thermoplastic starches, and combinations thereof.
- In another embodiment, the molded matrix comprises a low-melting thermal-reversible carrier selected from the group consisting of polycaprolactones, polyvinyl acetate, polyalkylene glycols, and combinations thereof at a level of about 30 to about 70 weight percent of the matrix.
- In another embodiment, the molded matrix comprises a thermal-reversible carrier selected from the group consisting of polyethylene glycol or polyethylene oxide at a level from about 10 to about 100 weight percent of the matrix.
- In another embodiment, the molded matrix further comprises a thermoplastic polyethylene oxide at a level of about 15 to about 25%.
- In another embodiment, the shell has a thickness from about 300 to about 2000 microns.
- In another embodiment, the shell has a thickness from about 150 to about 400 microns.
- In another embodiment, the weight of the shell is from about 50 to about 400 percent of the weight of the core.
- In another embodiment, the weight of the shell is from about 20 to about 100 percent of the weight of the core.
- In another embodiment, the core is substantially free of pores having a diameter of 0.5 to 5.0 microns.
- In another embodiment, the thermal reversible carrier is polyethylene glycol having a molecular weight from about 100 to about 8000 Daltons.
- In another embodiment, the molded matrix comprises a release-modifying excipient.
- In another embodiment, the release modifying polymer is shellac.
- In another embodiment, the release-modifying excipient is croscarmellose sodium.
- In another embodiment, the dosage form further comprises tributyl citrate as a plasticizer.
- In another embodiment, the shell comprises a film-former selected from the group consisting of cellulose acetate, ammonio methacrylate copolymer type B, shellac, hydroxyporoylmethylcellulose, polyethylene oxide, and combinations thereof.
- In another embodiment, the shell comprises a release-modifying excipient selected from swellable erodible hydrophilic materials.
- In another embodiment, the release-modifying excipient is croscarmellose sodium.
- In another embodiment, the shell comprises triethyl citrate as a plasticizer.
-
FIG. 1A depicts a cross-sectional side view of one embodiment of the dosage form of this invention. -
FIG. 1B depicts a cross-sectional side view of another embodiment of the dosage form of this invention. -
FIG. 2 depicts the % release of active ingredient vs. hours measured for the dosage form of Example 1. - As used herein, the term “dosage form” applies to any solid object, semi-solid, or liquid composition designed to contain a specific pre-determined amount (i.e. dose) of a certain ingredient, for example an active ingredient as defined below. Suitable dosage forms may be pharmaceutical drug delivery systems, including those for oral administration, buccal administration, rectal administration, topical or mucosal delivery, or subcutaneous implants, or other implanted drug delivery systems; or compositions for delivering minerals, vitamins and other nutraceuticals, oral care agents, flavorants, and the like. Preferably the dosage forms of the present invention are considered to be solid, however they may contain liquid or semi-solid components. In a particularly preferred embodiment, the dosage form is an orally administered system for delivering a pharmaceutical active ingredient to the gastro-intestinal tract of a human.
- The dosage forms of the invention exhibit modified release of one or more active ingredients contained therein. One or more active ingredients may be found within the shell, molded matrix, or coated or uncoated particles distributed therethrough. As used herein, the term “modified release” shall apply to dosage forms, matrices, particles, coatings, portions thereof, or compositions that alter the release of an active ingredient in any manner. The active ingredient or ingredients that are released in a modified manner may be contained within the shell, core, composition, or portion thereof providing the modification. Alternatively the modified release active ingredient may be contained in a different portion of the dosage form from the shell, core, composition, or portion thereof providing the modification; for example the modified release active ingredient may be contained in the core, and the modification may be provided by an overlaying shell portion. Types of modified release include controlled, prolonged, sustained, extended, delayed, pulsatile, repeat action, and the like. Suitable mechanisms for achieving these types of modified release include diffusion, erosion, surface area control via geometry and/or impermeable barriers, or other mechanisms known in the art. Moreover, the modified release properties of the dosage form may be achieved through design of the core or a portion thereof, or the shell or a portion thereof, or a combination of these parts of the dosage form.
- A first embodiment of this invention is depicted in
FIG. 1A , which is a cross-sectional side view of adosage form 202 which comprises a moldedcore 204 comprising a molded matrix and ashell 203 which is in contact with at least a portion of thecore 204. InFIG. 1A thecore 204 comprises a plurality ofuncoated particles 206 although this is not required in this embodiment of the invention. The active ingredient may be contained within the matrix, the uncoated particles (if employed), the shell; or a combination thereof. The dosage form provides modified release of the active ingredient upon contacting of the dosage form with a liquid medium such as water, gastrointestinal fluid and the like. Either the shell or the matrix or a combination thereof may provide modified release of the active ingredient. - Another embodiment of this invention is depicted in
FIG. 1B , which is a cross-sectional side view of adosage form 252 which comprises a moldedcore 254 comprising a molded matrix and ashell 253 which is in contact with at least a portion of thecore 254. InFIG. 1B thecore 254 comprises a plurality ofcoated particles 256. The active ingredient may be contained within the matrix, the coated particles, the shell, or a combination thereof. The dosage form provides modified release of the active ingredient upon contacting of the dosage form with a liquid medium such as water, gastrointestinal fluid and the like. Any of the shell, the coating, the matrix or a combination thereof may provide modified release of the active ingredient - The active ingredient employed in the dosage forms of this invention may be found within the core, the particles (whether coated or uncoated), the shell or a combination thereof. Suitable active ingredients for use in this invention include for example pharmaceuticals, minerals, vitamins and other nutraceuticals, oral care agents, flavorants and mixtures thereof. Suitable pharmaceuticals include analgesics, anti-inflammatory agents, antiarthritics, anesthetics, antihistamines, antitussives, antibiotics, anti-infective agents, antivirals, anticoagulants, antidepressants, antidiabetic agents, antiemetics, antiflatulents, antifungals, antispasmodics, appetite suppressants, bronchodilators, cardiovascular agents, central nervous system agents, central nervous system stimulants, decongestants, diuretics, expectorants, gastrointestinal agents, migraine preparations, motion sickness products, mucolytics, muscle relaxants, osteoporosis preparations, polydimethylsiloxanes, respiratory agents, sleep-aids, urinary tract agents and mixtures thereof.
- Suitable oral care agents include breath fresheners, tooth whiteners, antimicrobial agents, tooth mineralizers, tooth decay inhibitors, topical anesthetics, mucoprotectants, and the like.
- Suitable flavorants include menthol, peppermint, mint flavors, fruit flavors, chocolate, vanilla, bubble gum flavors, coffee flavors, liqueur flavors and combinations and the like.
- Examples of suitable gastrointestinal agents include antacids such as calcium carbonate, magnesium hydroxide, magnesium oxide, magnesium carbonate, aluminum hydroxide, sodium bicarbonate, dihydroxyaluminum sodium carbonate; stimulant laxatives, such as bisacodyl, cascara sagrada, danthron, senna, phenolphthalein, aloe, castor oil, ricinoleic acid, and dehydrocholic acid, and mixtures thereof; H2 receptor antagonists, such as famotadine, ranitidine, cimetadine, nizatidine; proton pump inhibitors such as omeprazole or lansoprazole; gastrointestinal cytoprotectives, such as sucraflate and misoprostol; gastrointestinal prokinetics, such as prucalopride, antibiotics for H. pylori, such as clarithromycin, amoxicillin, tetracycline, and metronidazole; antidiarrheals, such as diphenoxylate and loperamide; glycopyrrolate; antiemetics, such as ondansetron, analgesics, such as mesalamine.
- In one embodiment of the invention, the active ingredient or agent may be selected from bisacodyl, famotadine, ranitidine, cimetidine, prucalopride, diphenoxylate, loperamide, lactase, mesalamine, bismuth, antacids, and pharmaceutically acceptable salts, esters, isomers, and mixtures thereof.
- In another embodiment, the active agent is selected from analgesics, anti-inflammatories, and antipyretics, e.g. non-steroidal anti-inflammatory drugs (NSAIDs), including propionic acid derivatives, e.g. ibuprofen, naproxen, ketoprofen and the like; acetic acid derivatives, e.g. indomethacin, diclofenac, sulindac, tolmetin, and the like; fenamic acid derivatives, e.g. mefanamic acid, meclofenamic acid, flufenamic acid, and the like; biphenylcarbodylic acid derivatives, e.g. diflunisal, flufenisal, and the like; and oxicams, e.g. piroxicam, sudoxicam, isoxicam, meloxicam, and the like. In a particularly preferred embodiment, the active agent is selected from propionic acid derivative NSAID, e.g. ibuprofen, naproxen, flurbiprofen, fenbufen, fenoprofen, indoprofen, ketoprofen, fluprofen, pirprofen, carprofen, oxaprozin, pranoprofen, suprofen, and pharmaceutically acceptable salts, derivatives, and combinations thereof. In another embodiment of the invention, the active ingredient may be selected from acetaminophen, acetyl salicylic acid, ibuprofen, naproxen, ketoprofen, flurbiprofen, diclofenac, cyclobenzaprine, meloxicam, rofecoxib, celecoxib, and pharmaceutically acceptable salts, esters, isomers, and mixtures thereof.
- In another embodiment of the invention, the active ingredient may be selected from pseudoephedrine, phenylpropanolamine, chlorpheniramine, dextromethorphan, diphenhydramine, doxylamine, astemizole, norastemizole, terfenadine, fexofenadine, loratadine, desloratadine, cetirizine, mixtures thereof and pharmaceutically acceptable salts, esters, isomers, and mixtures thereof.
- Examples of suitable polydimethylsiloxanes, which include, but are not limited to dimethicone and simethicone, are those disclosed in U.S. Pat. Nos. 4,906,478, 5,275,822, and 6,103,260, the contents of each is expressly incorporated herein by reference. As used herein, the term “simethicone” refers to the broader class of polydimethylsiloxanes, including but not limited to simethicone and dimethicone.
- The active ingredient or ingredients are present in the dosage form in a therapeutically effective amount, which is an amount that produces the desired therapeutic response upon oral administration and can be readily determined by one skilled in the art. In determining such amounts, the particular active ingredient being administered, the bioavailability characteristics of the active ingredient, the dose regime, the age and weight of the patient, and other factors must be considered, as known in the art. In a preferred embodiment the dosage form comprises one or more active ingredient or ingredients at a combined level of more than about 20 weight percent, e.g. at least about 25 weight percent, or at least about 30 weight percent, or at least about 50 weight percent of the dosage form.
- The active ingredient or ingredients may be present in the dosage form in any form. For example, the active ingredient may be dispersed at the molecular level, e.g. melted or dissolved, within the dosage form, or may be in the form of particles, which in turn may be coated or uncoated. If the active ingredient is in form of particles, the particles (whether coated or uncoated) typically have an average particle size of about 1-2000 microns. In one preferred embodiment, such particles are crystals having an average particle size of about 1-300 microns. In another preferred embodiment, the particles are granules or pellets having an average particle size of about 50-2000 microns, preferably about 50-1000 microns, most preferably about 100-800 microns.
- The molded matrix of the present invention is made by molding, preferably using a solvent-free process. In a preferred embodiment, the matrix comprises a flowable material. The flowable material may be any edible material that is flowable at a temperature between about 37° C. and about 250° C., and that is solid, semi-solid, or can form a gel at a temperature between about −10° C. and about 80° C. In a preferred embodiment, the flowable material comprises 10-100% by weight of a thermal reversible carrier having a melting point of less than about 100° C., preferably from about 20 to about 100° C.; and optionally up to about 30 weight percent of various adjuvants such as for example plasticizers, gelling agents, colorants, stabilizers, preservatives, and the like as known in the art. The matrix may optionally further comprise up to about 55 weight percent of one or more release-modifying excipients as described below.
- In embodiments of this invention in which the matrix comprises 10-100% by weight of a thermal reversible carrier having a melting point of less than about 100° C., such low melting materials may include, for example thermoplastic polyalkalene oxides, low melting hydrophobic materials, thermoplastic polymers, thermoplastic starches, and the like. Preferred low-melting materials may be selected from thermoplastic polymers, thermoplastic polyalkalene oxides, low melting hydrophobic materials, and combinations thereof.
- Suitable thermal-reversible carriers for making the molded matrix include are thermoplastic materials typically having a melting point below about 110° C., more preferably between about 20 and about 100° C. Examples of suitable thermal-reversible carriers for solvent-free molding include thermoplastic polyalkalene glycols, thermoplastic polyalkalene oxides, low melting hydrophobic materials, thermoplastic polymers, thermoplastic starches, and the like. Preferred thermal-reversible carriers include polyethylene glycol and polyethylene oxide. Suitable thermoplastic polyalkylene glycols for use as thermal-reversible carriers include polyethylene glycol having molecular weight from about 100 to about 20,000, e.g. from about 100 to about 8,000, say about 1000 to about 8,000 Daltons. Suitable thermoplastic polyalkalene oxides include polyethylene oxide having a molecular weight from about 100,000 to about 900,000 Daltons. Suitable low-melting hydrophobic materials for use as thermal-reversible carriers include fats, fatty acid esters, phospholipids, and waxes which are solid at room temperature, fat-containing mixtures such as chocolate; and the like. Examples of suitable fats include hydrogenated vegetable oils such as for example cocoa butter, hydrogenated palm kernel oil, hydrogenated cottonseed oil, hydrogenated sunflower oil, and hydrogenated soybean oil; and free fatty acids and their salts. Examples of suitable fatty acid esters include sucrose fatty acid esters, mono, di, and triglycerides, glyceryl behenate, glyceryl palmitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl trilaurylate, glyceryl myristate, GlycoWax-932, lauroyl macrogol-32 glycerides, and stearoyl macrogol-32 glycerides. Examples of suitable phospholipids include phosphotidyl choline, phosphotidyl serene, phosphotidyl enositol, and phosphotidic acid. Examples of suitable waxes which are solid at room temperature include carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax.
- In one preferred embodiment, the matrix comprises a low-melting thermal-reversible carrier selected from polycaprolactones, polyvinyl acetate, polyalkylene glycols and combinations thereof at a level of about 30 to about 70 weight percent, e.g. about 35 to about 50 weight percent of the matrix. The low-melting thermal-reversible polymer has a melting point of less than about 100° C. In one such embodiment, the matrix further comprises a thermoplastic polyethylene oxide at a level of about 15 to about 25% as a strengthening polymer. Polyethylene oxides having suitable thermoplastic properties for use in the present invention have a molecular weight of about 100,000 to about 900,000. In another such embodiment, the matrix is substantially free of poly(ethylene oxide), e.g. contains less than 1%, or contains less than 0.1 weight percent of poly(ethylene oxide).
- In other embodiments of this invention in which it is not required that the matrix comprise a material have a melting point of less than 100° C., the matrix composition may comprise any of the materials set forth above having a melting point of less than 100° C., and the matrix composition may also comprise other materials such as release modifying agents, various adjuvants such as for example plasticizers, gelling agents, colorants, stabilizers, preservatives, and the like as known in the art.
- Suitable release-modifying moldible excipients for making the molded matrix, or a portion thereof, by molding include but are not limited to swellable erodible hydrophilic materials, pH-dependent polymers, insoluble edible materials, and pore-formers.
- Suitable swellable erodible hydrophilic materials for use as release-modifying excipients for making the molded matrix, or a portion thereof, by molding include water swellable cellulose derivatives, polyalkalene glycols, thermoplastic polyalkalene oxides, acrylic polymers, hydrocolloids, clays, gelling starches, and swelling cross-linked polymers, and derivatives, copolymers, and combinations thereof. Examples of suitable water swellable cellulose derivatives include sodium carboxymethylcellulose, cross-linked hydroxypropylcellulose, hydroxypropyl cellulose (HPC), hydroxypropylmethylcellulose (HPMC), hydroxyisopropylcellulose, hydroxybutylcellulose, hydroxyphenylcellulose, hydroxyethylcellulose (HEC), hydroxypentylcellulose, hydroxypropylethylcellulose, hydroxypropylbutylcellulose, hydroxypropylethylcellulose. Examples of suitable polyalkalene glycols include polyethylene glycol. Examples of suitable thermoplastic polyalkalene oxides include poly(ethylene oxide). Examples of suitable acrylic polymers include potassium methacrylatedivinylbenzene copolymer, polymethylmethacrylate, CARBOPOL (high-molecular weight cross-linked acrylic acid homopolymers and copolymers), and the like. Examples of suitable hydrocolloids include alginates, agar, guar gum, locust bean gum, kappa carrageenan, iota carrageenan, tara, gum arabic, tragacanth, pectin, xanthan gum, gellan gum, maltodextrin, galactomannan, pusstulan, laminarin, scleroglucan, gum arabic, inulin, pectin, gelatin, whelan, rhamsan, zooglan, methylan, chitin, cyclodextrin, chitosan. Examples of suitable clays include smectites such as bentonite, kaolin, and laponite; magnesium trisilicate, magnesium aluminum silicate, and the like, and derivatives and mixtures thereof. Examples of suitable gelling starches include acid hydrolyzed starches, swelling starches such as sodium starch glycolate, and derivatives thereof. Examples of suitable swelling cross-linked polymers include cross-linked polyvinyl pyrrolidone, cross-linked agar, and cross-linked carboxymethylcellose sodium.
- Suitable pH-dependent polymers for use as release-modifying excipients for making the molded matrix or a portion thereof by molding include enteric cellulose derivatives, for example hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate, cellulose acetate phthalate; natural resins such as shellac and zein; enteric acetate derivatives such as for example polyvinylacetate phthalate, cellulose acetate phthalate, acetaldehyde dimethylcellulose acetate; and enteric acrylate derivatives such as for example polymethacrylate-based polymers such as poly(methacrylic acid, methyl methacrylate) 1:2, which is commercially available from Rohm Pharma GmbH under the tradename EUDRAGIT S, and poly(methacrylic acid, methyl methacrylate) 1:1, which is commercially available from Rohm Pharma GmbH under the tradename EUDRAGIT L, and the like, and derivatives, salts, copolymers, and combinations thereof.
- Suitable insoluble edible materials for use as release-modifying excipients for making the molded matrix, or a portion thereof, by molding include water-insoluble polymers, and low-melting hydrophobic materials. Examples of suitable water-insoluble polymers include ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers; and the like and derivatives, copolymers, and combinations thereof. Suitable low-melting hydrophobic materials include fats, fatty acid esters, phospholipids, and waxes. Examples of suitable fats include hydrogenated vegetable oils such as for example cocoa butter, hydrogenated palm kernel oil, hydrogenated cottonseed oil, hydrogenated sunflower oil, and hydrogenated soybean oil; and free fatty acids and their salts. Examples of suitable fatty acid esters include sucrose fatty acid esters, mono, di, and triglycerides, glyceryl behenate, glyceryl palmitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl trilaurylate, glyceryl myristate, GlycoWax-932, lauroyl macrogol-32 glycerides, and stearoyl macrogol-32 glycerides. Examples of suitable phospholipids include phosphotidyl choline, phosphotidyl serene, phosphotidyl enositol, and phosphotidic acid. Examples of suitable waxes include carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax; fat-containing mixtures such as chocolate; and the like.
- Suitable pore-formers for use as release-modifying excipients for making the molded matrix or a portion thereof by molding include water-soluble organic and inorganic materials. In one embodiment the pore former is hydroxypropylmethylcellulose. Examples of suitable water-soluble organic materials include water soluble polymers including water soluble cellulose derivatives such as hydroxypropylmethylcellulose, and hydroxypropylcellulose; water soluble carbohydrates such as sugars, and starches; water soluble polymers such as polyvinylpyrrolidone and polyethylene glycol, and insoluble swelling polymers such as microcrystalline cellulose. Examples of suitable water soluble inorganic materials include salts such as sodium chloride and potassium chloride and the like and/or mixtures thereof.
- Suitable plasticizers for making the molded matrix, or a portion thereof, by molding, include triacetin, acetylated monoglyceride, rape oil, olive oil, sesame oil, acetyltributyl citrate, glycerin sorbitol, diethyloxalate, diethylmalate, diethyl fumarate, dibutyl succinate, diethylmalonate, dioctylphthalate, dibutylsuccinate, triethylcitrate, tributylcitrate, glyceroltributyrate, propylene glycol, polyethylene glycols, hydrogenated castor oil, fatty acids, substituted triglycerides and glycerides, and the like.
- The matrix may be in a variety of different shapes. For example, the matrix may be shaped as a polyhedron, such as a cube, pyramid, prism, or the like; or may have the geometry of a space figure with some non-flat faces, such as a cone, truncated cone, cylinder, sphere, torus, or the like. In certain embodiments, the matrix has one or more major faces. For example in certain embodiments matrix surface may have two opposing major faces formed by contact with upper and lower mold surfaces. In such embodiments the core surface may further comprise a “belly-band” located between the two major faces, and formed by contact with the side walls in the mold.
- In one embodiment, the matrix is prepared by thermal setting molding using the method and apparatus described in copending U.S. patent application Ser. No. 09/966,450, pages 57-63, the disclosure of which is incorporated herein by reference. In this embodiment, the matrix is formed by injecting a starting material in flowable form into a molding chamber. The starting material preferably comprises an active ingredient and a thermal setting material at a temperature above the melting point of the thermal setting material but below the decomposition temperature of the active ingredient. The starting material is cooled and solidifies in the molding chamber into a shaped form (i.e., having the shape of the mold).
- In another embodiment, the matrix is prepared by thermal cycle molding using the method and apparatus described in copending U.S. patent application Ser. No. 09/966,497, pages 27-51, the disclosure of which is incorporated herein by reference. In this embodiment, the matrix is formed by injecting a starting material in flowable form into a heated molding chamber. The starting material preferably comprises an active ingredient and a thermoplastic material at a temperature above the set temperature of the thermoplastic material but below the decomposition temperature of the active ingredient. The starting material is cooled and solidifies in the molding chamber into a shaped form (i.e., having the shape of the mold).
- According to these methods, the starting material must be in flowable form. For example, it may comprise solid particles suspended in a molten matrix, for example a polymer matrix. The starting material may be completely molten or in the form of a paste. The starting material may comprise an active ingredient dissolved in a molten material. Alternatively, the starting material may be made by dissolving and/or suspending a solid in a solvent, which solvent is then evaporated from the starting material after it has been molded.
- If particles are contained in the matrix, the particles (whether coated or uncoated) typically have an average particle size of about 1-2000 microns. In one preferred embodiment, the particles are crystals of the active ingredient or ingredients, and the average particle size is about 1-300 microns. In another preferred embodiment, the particles are granules or pellets, and the average particle size is about 50-2000 microns, preferably about 50-1000 microns, most preferably about 100-800 microns.
- In particular embodiments of this invention in which uncoated particles are employed, the particles may comprise active ingredient as described herein, or may be inactive particles included for example to provide a visual distinction to the appearance of the dosage form.
- In particular embodiments of this invention in which coated particles are employed, the particles may be as described herein, and the particle coating may comprise In particular embodiments of this invention in which coated particles are employed, the particles may be as described herein, and the particle coating may comprise about 10-100 weight percent (based on the weight of the coating) of a film former; optionally up to about 50 weight percent based on the weight of the coating of a pore former; and optionally up to about 30 weight percent of various adjuvants or excipients such as plasticizers etc. The particles may be coated using conventional coating technology which is well known to those skilled in the art including microencapsulation techniques such as coacervation, spray-drying, and fluidized bed coating including tangential spray rotor coating and bottom spray wurster coating. Examples of suitable particle coating methods and materials can be found in U.S. Pat. Nos. 5,286,497; 4,863,742; 4,173,626; 4,980,170; 4,984,240; 5,912,013; 6,270,805; and 6,322,819. Such coated particles may provide controlled release of the active ingredient contained therein in certain embodiments.
- Suitable film formers for particle coating include, but are not limited to, film-forming water soluble polymers, film-forming proteins, film-forming water insoluble polymers, and film-forming pH-dependent polymers. In one embodiment, the film-former for particle coating may be selected from cellulose acetate, ammonio methacrylate copolymer type B, shellac, hydroxypropylmethylcellulose, and polyethylene oxide, and combinations thereof.
- Suitable film-forming water soluble polymers for particle coating include water soluble vinyl polymers such as polyvinylalcohol; water soluble polycarbohydrates such as hydroxypropyl starch, hydroxyethyl starch, pullulan, methylethyl starch, carboxymethyl starch, pre-gelatinized starches, and film-forming modified starches; water swellable cellulose derivatives such as hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), methyl cellulose (MC), hydroxyethylmethylcellulose (HEMC), hydroxybutylmethylcellulose (HBMC), hydroxyethylethylcellulose (HEEC), and hydroxyethylhydroxypropylmethyl cellulose (HEMPMC); water soluble copolymers such as methacrylic acid and methacrylate ester copolymers, polyvinyl alcohol and polyethylene glycol copolymers, polyethylene oxide and polyvinylpyrrolidone copolymers; and derivatives and combinations thereof.
- Suitable film-forming proteins may be natural or chemically modified, and include gelatin, whey protein, myofibrillar proteins, coaggulatable proteins such as albumin, casein, caseinates and casein isolates, soy protein and soy protein isolates, zein; and polymers, derivatives and mixtures thereof.
- In embodiments in which the particle coating confers modified release to one or more active ingredients contained in the particle, suitable film formers may be selected from film forming water insoluble polymers; film forming pH-dependent polymers; and copolymers and combinations thereof. In certain such embodiments in which the particle coating functions as a diffusional membrane, the release-modifying particle coating preferably comprises a pore former.
- Suitable film forming water insoluble polymers for use in release-modifying particle coatings include for example ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers; and the like and derivatives, copolymers, and combinations thereof.
- Suitable film forming pH-dependent polymers for use in release-modifying particle coatings include for example enteric cellulose derivatives, such as for example hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate, cellulose acetate phthalate; natural resins, such as shellac and zein; enteric acetate derivatives such as for example polyvinylacetate phthalate, cellulose acetate phthalate, acetaldehyde dimethylcellulose acetate; and enteric acrylate derivatives such as for example polymethacrylate-based polymers such as poly(methacrylic acid, methyl methacrylate) 1:2, which is commercially available from Rohm Pharma GmbH under the tradename EUDRAGIT S, and poly(methacrylic acid, methyl methacrylate) 1:1, which is commercially available from Rohm Pharma GmbH under the tradename EUDRAGIT L; and the like, and derivatives, salts, copolymers, and combinations thereof.
- Suitable pore formers for use in release-modifying particle coatings include water-soluble organic and inorganic materials. In one embodiment the pore former is selected from hydroxypropylcellulose and hydroxypropylmethylcellulose. Examples of suitable water-soluble organic materials include water soluble cellulose derivatives such as hydroxypropylmethylcellulose, and hydroxypropylcellulose; water soluble carbohydrates such as sugars, and starches; water soluble polymers such as polyvinylpyrrolidone and polyethylene glycol, and insoluble swelling polymers such as microcrystalline cellulose. Examples of suitable water soluble inorganic materials include salts such as sodium chloride and potassium chloride and the like and/or mixtures thereof.
- Examples of suitable adjuvants or excipients for particle coatings include plasticizers, detackifiers, humectants, surfactants, anti-foaming agents, colorants, opacifiers, and the like. Suitable plasticizers for making the core, the shell, or a portion thereof, by molding include, but not be limited to polyethylene glycol; propylene glycol; glycerin; sorbitol; triethyl citrate; tributyl citrate; dibutyl sebecate; vegetable oils such as castor oil, rape oil, olive oil, and sesame oil; surfactants such as polysorbates, sodium lauryl sulfates, and dioctyl-sodium sulfosuccinates; mono acetate of glycerol; diacetate of glycerol; triacetate of glycerol; natural gums; triacetin; acetyltributyl citrate; diethyloxalate; diethylmalate; diethyl fumarate; diethylmalonate; dioctylphthalate; dibutylsuccinate; glyceroltributyrate; hydrogenated castor oil; fatty acids; substituted triglycerides and glycerides; and the like and/or mixtures thereof. In one embodiment, the plasticizer is triethyl citrate. In certain embodiments, the shell is substantially free of plasticizers, i.e. contains less than about 1%, say less than about 0.01% of plasticizers.
- In certain particularly preferred embodiments of this invention, the dosage form releases one or more active ingredients contained therein in a sustained, extended, prolonged, or retarded manner, more preferably at a substantially constant rate upon contacting of the dosage form with a liquid medium. In such embodiments, the molded matrix may function as a diffusional matrix or an eroding matrix. In embodiments in which the molded matrix functions as an eroding matrix from which dispersed active ingredient is liberated in a sustained, extended, prolonged, or retarded manner, the molded matrix preferably comprises a release-modifying moldable excipient selected from swellable erodible hydrophilic materials, pH-dependent polymers, insoluble edible materials, and combinations thereof. In embodiments in which the molded matrix functions as a diffusional matrix through which active ingredient contained therein is liberated in a sustained, extended, prolonged, or retarded manner, the molded matrix preferably comprises a release-modifying excipient selected from combinations of insoluble edible materials and pore formers. Alternately, in such embodiments in which the matrix is prepared by solvent-free molding, the thermal-reversible carrier may function by dissolving and forming pores or channels through which the active ingredient may be liberated.
- In certain other preferred embodiments of this invention, the dosage form releases at least first and second active ingredients contained therein in a sustained, extended, prolonged, or retarded manner. In certain such embodiments, the first and second active ingredients have different unmodified release characteristics; however the dosage form advantageously provides different types of modification to the first and second active ingredients, such that the dissolution profiles of the first and second active ingredients from the dosage form are similar. In certain other such embodiments, the dosage form advantageously provides different types of modification to the first and second active ingredients, such that the dissolution profiles of the first and second active ingredients from the dosage form are substantially different, e.g. the first and second active ingredients are released from the dosage for at different rates or times upon contacting of the dosage form with a liquid medium. In a particularly preferred embodiment, the first and second active ingredient are both released from the dosage form at a substantially constant rate upon contacting of the dosage form with a liquid medium.
- In certain other embodiments of this invention, upon contacting of the dosage form with a liquid medium, a time delay occurs prior to release of at least a portion of one or more active ingredients occurs followed by sustained release of the delayed release active ingredient or ingredients. In such embodiments, the time delay is provided by the dissolution of all or a portion of the molded matrix, and the subsequent sustained release is provided by one or more coatings on the particles of active ingredient. In such embodiments, the molded matrix preferably comprises a release modifying excipient selected from pH-dependent polymers. In such embodiments, the particle coating preferably comprises a release modifying excipient which may be selected from combinations of pore formers and insoluble edible materials; swellable erodible hydrophilic materials; pH-dependent polymers; and combinations thereof.
- In another particular embodiment of this invention, the dosage form comprises first and second active ingredients which may be the same or different, and upon contacting of the dosage form with a liquid medium, sustained release of the first active ingredient occurs, followed by sustained release of the second active ingredient. In such embodiments, the sustained release of first active ingredient is provided by the controlled dissolution of all or a portion of the molded matrix, and the subsequent sustained release of the second active ingredient is provided by one or more coatings on the particles of active ingredient. In such embodiments, the molded matrix preferably comprises a release modifying excipient selected from swellable erodible hydrophilic materials, pH-dependent polymers, insoluble edible materials, and combinations thereof. In such embodiments, the particle coating preferably comprises a release modifying excipient which may be selected from combinations of pore formers and insoluble edible materials; swellable erodible hydrophilic materials; pH-dependent polymers, and combinations thereof.
- In another particularly preferred embodiment of this invention, the matrix comprises a first dose of active ingredient and the particles contained therein comprise a second dose of active ingredient which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first dose of active ingredient occurs, followed by a lag time, which is in turn followed by delayed release of the second dose active ingredient. In such embodiments, the matrix preferably comprises materials which exhibit rapid dissolution in gastro-intestinal fluids. For example the immediate release shell portion or portions may comprise readily soluble materials selected from water soluble or water swellable thermoplastic film formers, water soluble or water swellable thickeners, crystallizable and non-crystallizable carbohydrates. In certain such embodiments, suitable water soluble or water swellable thermoplastic film formers may be selected from water swellable cellulose derivatives, thermoplastic starches, polyalkalene glycols, polyalkalene oxides, and amorphous sugar glass, and combinations thereof. In certain other such embodiments, suitable film formers may be selected from film forming water soluble polymers such as for example water soluble vinyl polymers, water soluble polycarbohydrates, water swellable cellulose derivatives, and water soluble copolymers; film-forming proteins, and combinations thereof. In certain other such embodiments, suitable thickeners may be selected from gelling polymers or hydrocolloids; gelling starches, and crystallizable carbohydrates, and combinations thereof. In certain other such embodiments, suitable non-crystallizable carbohydrates may be selected from polydextrose, starch hydrolysates, and non-crystallizable sugar alcohols, and combinations thereof. In such embodiments, the immediate release matrix will preferably liberate the coated particles of delayed release active ingredient by being breached or dissolved within 30 minutes in 900 ml water or 0.1 N HCl, or phosphate buffer solution at 37° C. with stirring by a USP type 2 (Paddle method) at 50 or 100 rpm. In these embodiments, the time delay is provided by a coating on the particles containing the second dose of active ingredient. Preferably the delayed release particle coating comprises a release-modifying excipient selected from swellable erodible hydrophilic materials, and pH-dependent polymers, and combinations thereof.
- In another particularly preferred embodiment of this invention, the matrix comprises a first dose of active ingredient and the particles contained therein comprise a second dose of active ingredient which may be the same or different than the first dose of active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first dose of active ingredient occurs followed by sustained release of the second dose of active ingredient. In such embodiments, the matrix preferably comprises materials which exhibit rapid dissolution in gastro-intestinal fluids. For example the immediate release shell portion or portions may comprise readily soluble materials selected from water soluble or water swellable thermoplastic film formers, water soluble or water swellable thickeners, crystallizable and non-crystallizable carbohydrates. In certain such embodiments, suitable water soluble or water swellable thermoplastic film formers may be selected from water swellable cellulose derivatives, thermoplastic starches, polyalkalene glycols, polyalkalene oxides, and amorphous sugar glass, and combinations thereof. In certain other such embodiments, suitable film formers may be selected from film forming water soluble polymers such as for example water soluble vinyl polymers, water soluble polycarbohydrates, water swellable cellulose derivatives, and water soluble copolymers; film-forming proteins, and combinations thereof. In certain other such embodiments, suitable thickeners may be selected from gelling polymers or hydrocolloids; gelling starches, and crystallizable carbohydrates. In certain other such embodiments, suitable non-crystallizable carbohydrates may be selected from polydextrose, starch hydrolysates, and non-crystallizable sugar alcohols. In such embodiments, the immediate release matrix will preferably liberate the coated particles of delayed release active ingredient by being breached or dissolved within 30 minutes in 900 ml water or 0.1 N HCl, or phosphate buffer solution at 37° C. with stirring by a USP type 2 (Paddle method) at 50 or 100 rpm. In these embodiments, the sustained release is provided by a coating on the particles containing the second dose of active ingredient. Preferably the sustained release particle coating comprises a release-modifying excipient which may be selected from combinations of pore formers and insoluble edible materials; swellable erodible hydrophilic materials; pH-dependent polymers.
- Preferably the molded matrix of the present invention is made by injecting the flowable material through an orifice into a mold cavity, then solidifying the flowable material, according to the method set forth herein, the disclosure of which is incorporated herein by reference. In one such embodiment wherein the dosage form comprises particles, the orifice has a diameter greater than the diameter of the particles, e.g. from about 1000 to about 4000 microns, say about 2000 to about 3000 microns. In certain such embodiments the particles are introduced into the mold cavity in the form of a flowable slurry or suspension in the matrix material. The flowable slurry or suspension may be introduced under pressure through the orifice. In one embodiment, the mold assembly may be free of a valve at the injection point. In another embodiment, the mold assembly may comprise an elastomeric plug type valve which does not crush the particles upon closing.
- Advantageously this method provides a versatile and cost-effective process for preparing the modified release molded matrix systems of the present invention. Advantageously, the method of the present invention may be carried out at relatively low processing temperatures, enabling the incorporation of low melting active ingredients, heat labile active ingredients, and coated particles into molded matrix dosage forms. Advantageously the combination of methods and materials of the present invention enable the incorporation of relatively high levels of active ingredient into the molded matrix dosage form, and enable the production of unique elegant dosage forms with transparent, semi-transparent, or translucent matrices.
- In certain embodiments of the invention, the shell contains active ingredient which is released essentially immediately upon ingestion of the dosage form. In these embodiments, the shell preferably comprises materials which exhibit rapid dissolution in gastro-intestinal fluids.
- In certain other embodiments, the shell functions as a diffusional membrane which contains pores through which fluids can enter the dosage form, and dissolved active ingredient can be released in a sustained, extended, prolonged or retarded manner. In these embodiments, the rate of release of active ingredient from the underlying core will depend upon the total pore area in the shell, the pathlength of the pores, and the solubility and diffusivity of the active ingredient (in addition to its rate of release from the core portion itself). In preferred embodiments in which the shell functions as a diffusional membrane, the release of the active ingredient from the dosage form may be described as controlled, prolonged, sustained or extended. In these embodiments, the contribution to active ingredient dissolution from the shell may follow zero-order, first-order, or square-root of time kinetics. In certain such embodiments, the diffusional membrane shell portion preferably comprises a release-modifying excipient such as a combination of a pore former and an insoluble edible material such as for example a film forming water insoluble polymer. Alternately, in such embodiments in which the shell is prepared by solvent-free molding, the thermal-reversible carrier may function by dissolving and forming pores or channels through which the active ingredient may be liberated.
- In certain other embodiments, the shell functions as an eroding matrix from which active ingredient dispersed in the shell is liberated by the dissolution of successive layers of the shell surface. In these embodiments, the rate of active ingredient release will depend on the dissolution rate of the matrix material in the shell. Particularly useful matrix materials for providing surface erosion include those which first absorb liquid, then swell and/or gel prior to dissolving. In certain such embodiments, the eroding matrix shell preferably comprises a swellable erodible hydrophilic material.
- In certain other embodiments, the shell functions as a barrier to prevent release therethrough of an active ingredient contained in the underlying core or core portion. In such embodiments, active ingredient is typically released from a portion of the core which is not covered by the barrier shell portion. Such embodiments advantageously allow for control of the surface area for release of the active ingredient. In certain particular embodiments, for example, the surface area for release of active ingredient can be maintained substantially constant over time. In a particularly preferred embodiment, the release of at least one active ingredient follows substantially zero-order kinetics. In certain such embodiments, the barrier shell portion preferably comprises a water insoluble material such as for example a water insoluble polymer.
- In certain other embodiments, the shell functions as a delayed release coating to delay release of an active ingredient which is contained in the core or a portion thereof. In these embodiments, the lag-time for onset of active ingredient release may be governed by erosion of the shell or diffusion through the shell, or a combination thereof. In certain such embodiments, the eroding matrix shell preferably comprises a swellable erodible hydrophilic material.
- In embodiments in which the shell functions to modify the release of an active ingredient which is contained in the core or the subject shell portion, the thickness of the shell portion is critical to the release properties of the dosage form. Advantageously the dosage forms of the invention can be made with precise control over shell thickness. In a preferred embodiment in which the shell functions to modify the release of an active ingredient which is contained in the core or the shell, the shell is made by the thermal cycle or thermal setting injection molding methods and apparatus described herein.
- The shell of the present invention may be prepared by molding, using a solvent-free process, or a solvent-based process, and depending on the method used, typically comprises a variety of excipients which are useful for conferring desired properties to the shell. The shell may optionally further comprise one or more active ingredients.
- In embodiments in which the shell is prepared using a solvent-free molding process, the shell will typically comprise at least about 30 percent, e.g. at least about 45 percent by weight of a thermal-reversible carrier. The shell may optionally further comprise up to about 55 weight percent of a release-modifying excipient. The shell may optionally further comprise up to about 30 weight percent total of various plasticizers, adjuvants and excipients. In certain embodiments in which the shell is prepared by solvent-free molding, and functions to delay the release of one or more active ingredients from an underlying core portion, the release modifying excipient is preferably selected from swellable, erodible hydrophilic materials.
- In embodiments wherein the shell is prepared by a solvent-free molding process, the shell typically has a thickness of about 200 to about 4000 microns, e.g. about 300 to about 2000 microns.
- In embodiments wherein the shell is prepared by a solvent-free molding process, the flowable starting material may be completely molten or in the form of a paste. The starting material may comprise an active ingredient dissolved in a molten material. The ingredients comprising the starting material are preferably mixed together, and heated to a temperature above the melting temperature of the thermal reversible carrier to produce the flowable starting material.
- In embodiments in which the shell is prepared using a solvent-based molding process, the shell will typically comprise at least about 10 weight percent, e.g. at least about 12 weight percent or at least about 15 weight percent or at least about 20 weight percent or at least about 25 weight percent of a film-former. Here, the solvent-molded shell may optionally further comprise up to about 55 weight percent of a release-modifying excipient. The solvent-molded shell may again also optionally further comprise up to about 30 weight percent total of various plasticizers, adjuvants, and excipients. In embodiments wherein the shell is prepared by a solvent-based molding process, the shell typically has a thickness of less than about 800 microns, e.g. about 100 to about 600 microns, e.g. about 150 to about 400 microns.
- In embodiments wherein the shell is prepared by a solvent-based molding process, the flowable starting material may be made by dissolving and/or suspending a solid in a solvent. The solvent is then evaporated from the starting material after it has been molded. The ingredients comprising the starting material are preferably mixed together, and optionally heated, to disperse the film former and optional other ingredients to produce the flowable starting material.
- The total weight of the shell portion or portions is preferably about 20 percent to about 400 percent of the weight of the core. In embodiments wherein the shell portion or portions prepared by a solvent-free molding process, the total weight of the shell portion or portions is typically from about 50 percent to about 400 percent, e.g. from about 75 percent to about 400 percent, or about 100 percent to about 200 percent of the weight of the core. In embodiments wherein the shell portion or portions are prepared by a solvent-based molding process, the total weight of the shell portion or portions is typically from about 20 percent to about 100 percent of the weight of the core.
- Suitable thermal-reversible carriers for preparing the shell by solvent-free molding typically have a melting point below about 110° C., e.g. from about 20 to about 100° C. Suitable thermal-reversible carriers for preparing the shell by solvent-free molding may be selected from the thermal-reversible carriers listed herein for preparing the core by solvent-free molding. Particularly preferred thermal-reversible carriers for preparing the shell by solvent-free molding may be selected from polyethylene glycol, thermoplastic polyethylene oxide, shellac, and combinations thereof.
- Suitable release modifying agents for making the shell portion by solvent-free or solvent-based molding include but are not limited to swellable erodible hydrophilic materials, film-formers, pH dependent polymers, and pore-formers.
- Suitable plasticizers for making the shell by solvent-free or solvent-based molding include, but are not limited to polyethylene glycol; propylene glycol; glycerin; sorbitol; triethyl citrate; tributyl citrate; dibutyl sebecate; vegetable oils such as castor oil, rape oil, olive oil, and sesame oil; surfactants such as polysorbates, sodium lauryl sulfates, and dioctyl-sodium sulfosuccinates; mono acetate of glycerol; diacetate of glycerol; triacetate of glycerol; natural gums; triacetin; acetyltributyl citrate; diethyloxalate; diethylmalate; diethyl fumarate; diethylmalonate; dioctylphthalate; dibutylsuccinate; glyceroltributyrate; hydrogenated castor oil; fatty acids; substituted triglycerides and glycerides; and the like and/or mixtures thereof. In one embodiment, the plasticizer is triethyl citrate. In certain embodiments, the shell is substantially free of plasticizers, i.e. contains less than about 1%, say less than about 0.01% of plasticizers.
- Suitable adjuvants and excipients for making the shell by solvent-free or solvent-based molding include secondary film formers such as for example shellac, secondary gelling agents, such as for example cross-linked carboxymethylcellulose, cross-linked polyvinylpyrrolidone, sodium starch glycolate, and the like, as well as preservatives, high intensity sweeteners such as aspartame, acesulfame potassium, sucralose, and saccharin; flavors, antioxidants, surfactants, and coloring agents, many examples of which are known in the art.
- Suitable film-formers for preparing the shell by solvent-based molding include, but are not limited to, film-forming water soluble polymers, film-forming proteins, film-forming water insoluble polymers, and film-forming pH-dependent polymers. In one embodiment, the film-former for making the shell or portion thereof by molding may be selected from cellulose acetate, ammonio methacrylate copolymer type B, shellac, hydroxypropylmethylcellulose, and polyethylene oxide, and combinations thereof.
- Suitable film-forming water soluble polymers include water soluble vinyl polymers such as polyvinylalcohol (PVA); water soluble polycarbohydrates such as hydroxypropyl starch, hydroxyethyl starch, pullulan, methylethyl starch, carboxymethyl starch, pre-gelatinized starches, and film-forming modified starches; water swellable cellulose derivatives such as hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), methyl cellulose (MC), hydroxyethylmethylcellulose (HEMC), hydroxybutylmethylcellulose (HBMC), hydroxyethylethylcellulose (HEEC), and hydroxyethylhydroxypropylmethyl cellulose (HEMPMC); water soluble copolymers such as methacrylic acid and methacrylate ester copolymers, polyvinyl alcohol and polyethylene glycol copolymers, polyethylene oxide and polyvinylpyrrolidone copolymers; and derivatives and combinations thereof.
- Suitable film-forming proteins may be natural or chemically modified, and include gelatin, whey protein, myofibrillar proteins, coaggulatable proteins such as albumin, casein, caseinates and casein isolates, soy protein and soy protein isolates, zein; and polymers, derivatives and mixtures thereof.
- Suitable film-forming water insoluble polymers, include for example ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers; and the like and derivatives, copolymers, and combinations thereof.
- Suitable film-forming pH-dependent polymers include enteric cellulose derivatives, such as for example hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate, cellulose acetate phthalate; natural resins, such as shellac and zein; enteric acetate derivatives such as for example polyvinylacetate phthalate, cellulose acetate phthalate, acetaldehyde dimethylcellulose acetate; and enteric acrylate derivatives such as for example polymethacrylate-based polymers such as poly(methacrylic acid, methyl methacrylate) 1:2, which is commercially available from Rohm Pharma GmbH under the tradename, EUDRAGIT S, and poly(methacrylic acid, methyl methacrylate) 1:1, which is commercially available from Rohm Pharma GmbH under the tradename, EUDRAGIT L, and the like, and derivatives, salts, copolymers, and combinations thereof.
- One suitable hydroxypropylmethylcellulose compound for use as a thermoplastic film-forming water soluble polymer is HPMC 2910, which is a cellulose ether having a degree of substitution of about 1.9 and a hydroxypropyl molar substitution of 0.23, and containing, based upon the total weight of the compound, from about 29% to about 30% methoxyl groups and from about 7% to about 12% hydroxylpropyl groups. HPMC 2910 is commercially available from the Dow Chemical Company under the tradename METHOCEL E. METHOCEL E5, which is one grade of HPMC-2910 suitable for use in the present invention, has a viscosity of about 4 to 6 cps (4 to 6 millipascal-seconds) at 20° C. in a 2% aqueous solution as determined by a Ubbelohde viscometer. Similarly, METHOCEL E6, which is another grade of HPMC-2910 suitable for use in the present invention, has a viscosity of about 5 to 7 cps (5 to 7 millipascal-seconds) at 20° C. in a 2% aqueous solution as determined by a Ubbelohde viscometer. METHOCEL E15, which is another grade of HPMC-2910 suitable for use in the present invention, has a viscosity of about 15000 cps (15 millipascal-seconds) at 20° C. in a 2% aqueous solution as determined by a Ubbelohde viscometer. As used herein, “degree of substitution” shall mean the average number of substituent groups attached to a anhydroglucose ring, and “hydroxypropyl molar substitution” shall mean the number of moles of hydroxypropyl per mole anhydroglucose.
- One suitable polyvinyl alcohol and polyethylene glycol copolymer is commercially available from BASF Corporation under the tradename KOLLICOAT IR.
- As used herein, “modified starches” include starches that have been modified by crosslinking, chemically modified for improved stability or optimized performance, or physically modified for improved solubility properties or optimized performance. Examples of chemically-modified starches are well known in the art and typically include those starches that have been chemically treated to cause replacement of some of its hydroxyl groups with either ester or ether groups. Crosslinking, as used herein, may occur in modified starches when two hydroxyl groups on neighboring starch molecules are chemically linked. As used herein, “pre-gelatinized starches” or “instantized starches” refers to modified starches that have been pre-wetted, then dried to enhance their cold-water solubility. Suitable modified starches are commercially available from several suppliers such as, for example, A.E. Staley Manufacturing Company, and National Starch & Chemical Company. One suitable film forming modified starch includes the pre-gelatinized waxy maize derivative starches that are commercially available from National Starch & Chemical Company under the tradenames PURITY GUM and FILMSET, and derivatives, copolymers, and mixtures thereof. Such waxy maize starches typically contain, based upon the total weight of the starch, from about 0 percent to about 18 percent of amylose and from about 100% to about 88% of amylopectin.
- Another suitable film forming modified starch includes the hydroxypropylated starches, in which some of the hydroxyl groups of the starch have been etherified with hydroxypropyl groups, usually via treatment with propylene oxide. One example of a suitable hydroxypropyl starch that possesses film-forming properties is available from Grain Processing Company under the tradename, PURE-COTE B790.
- Suitable tapioca dextrins for use as film formers include those available from National Starch & Chemical Company under the tradenames CRYSTAL GUM or K-4484, and derivatives thereof such as modified food starch derived from tapioca, which is available from National Starch and Chemical under the
tradename PURITY GUM 40, and copolymers and mixtures thereof. - In a preferred embodiment, the shell is prepared using the molding methods and apparatuses described in copending U.S. patent application Ser. No. 09/966,939, pages 27-51 and 57-63, which is incorporated herein by reference in its entirety. The shell itself may comprise at least one active ingredient.
- In a preferred embodiment of the invention, the shell is applied to the core in the form of a flowable material using the thermal cycle method and apparatus described in copending U.S. patent application Ser. No. 09/966,497, pages 27-51, the disclosure of which is incorporated herein by reference. In this embodiment, the shell is applied using a thermal cycle molding module having the general configuration shown in FIG. 3 therein. The thermal cycle molding module 200 comprises a
rotor 202 around which a plurality ofmold units 204 are disposed. The thermal cycle molding module includes a reservoir 206 (see FIG. 4 therein) for holding shell flowable material. In addition, the thermal cycle molding module is provided with a temperature control system for rapidly heating and cooling the mold units. FIGS. 55 and 56 depict the temperature control system 600. - The thermal cycle molding module is preferably of the type shown in FIG. 28A of copending U.S. application Ser. No. 09/966,497, comprising a series of
mold units 204. Themold units 204 in turn comprise upper mold assemblies 214, rotatable center mold assemblies 212 and lower mold assemblies 210 as shown in FIG. 28C. Cores are continuously transferred to the mold assemblies, which then close over the cores. The shell flowable material, which is heated to a flowable state inreservoir 206, is injected into the mold cavities created by the closed mold assemblies. The temperature of the shell flowable material is then decreased, hardening it. The mold assemblies open and eject the coated cores. In one particular embodiment, coating is performed in two steps, each half of the cores being coated separately as shown in the flow diagram of FIG. 28B of copending U.S. application Ser. No. 09/966,497 via rotation of the center mold assembly. - In a preferred embodiment of the invention, the shell completely surrounds the core.
- In one particular embodiment of this invention, at least one active ingredient contained within the dosage form exhibits a delayed burst release profile. By “delayed burst release profile” it is meant that the release of that particular active ingredient from the dosage form is delayed for a pre-determined time after ingestion by the patient, and the delay period (“lag time”) is followed by prompt (immediate) release of that active ingredient. At least one shell portion of the present invention provides for the delay period and is preferably substantially free of the active ingredient to be released in a delayed burst manner. In such embodiments, the delayed burst active ingredient is typically contained within the corresponding underlying core portion. In these embodiments, the core portion may be prepared by compression or molding, and is formulated for immediate release, as is known in the art, so that the core portion is readily soluble upon contact with the dissolution medium. In such embodiments the core portion preferably comprises a disintegrant, and optionally comprises additional excipients such as fillers or thermoplastic materials selected from water-soluble or low-melting materials, and surfactants or wetting agents. In these embodiments, the dissolution of the burst release active ingredient, after the delay period, meets USP specifications for immediate release tablets containing that active ingredient. For example, for acetaminophen tablets, USP 24 specifies that in pH 5.8 phosphate buffer, using USP apparatus 2 (paddles) at 50 rpm, at least 80% of the acetaminophen contained in the dosage form is released therefrom within 30 minutes after dosing, and for ibuprofen tablets, USP 24 specifies that in pH 7.2 phosphate buffer, using USP apparatus 2 (paddles) at 50 rpm, at least 80% of the ibuprofen contained in the dosage form is released therefrom within 60 minutes after dosing. See USP 24, 2000 Version, 19-20 and 856 (1999).
- In another particular embodiment of this invention at least one active ingredient contained within the dosage form exhibits a delayed and sustained release profile. By “delayed then sustained release profile” it is meant that the release of that particular active ingredient from the dosage form is delayed for a pre-determined time after ingestion by the patient, and the delay period (“lag time”) is followed by sustained (prolonged, extended, or retarded) release of that active ingredient. At least one shell portion of the present invention provides for the delay period, and is preferably substantially free of the active ingredient to be released in a delayed then sustained manner. In such embodiments, the delayed then sustained release active ingredient is preferably contained within the corresponding underlying core portion. In such embodiments the core portion may function for example as an eroding matrix or a diffusional matrix, or an osmotic pump. In embodiments in which the core portion functions as a diffusional matrix through which active ingredient is liberated in a sustained, extended, prolonged, or retarded manner, the core portion preferably comprises a release-modifying excipient selected from combinations of insoluble edible materials and pore-formers. Alternately, in such embodiments in which the core portion is prepared by molding, the thermal-reversible carrier may function by dissolving and forming pores or channels through which the active ingredient may be liberated. In embodiments in which the core portion functions as an eroding matrix from which dispersed active ingredient is liberated in a sustained, extended, prolonged, or retarded manner, the core portion preferably comprises a release-modifying compressible or moldable excipient selected from swellable erodible hydrophilic materials, pH-dependent polymers, and combinations thereof.
- In another particularly preferred embodiment of this invention, the dosage form comprises first and second active ingredients which may be the same or different, and upon contacting of the dosage form with a liquid medium, delayed release of the first active ingredient occurs followed by sustained release of the second active ingredient.
- In another particularly preferred embodiment of this invention, the shell comprises a first active ingredient and the core comprises a second active ingredient (for example, within the matrix or coated or uncoated particles or a combination thereof) which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by delayed release of the second active ingredient.
- In another particularly preferred embodiment of this invention, the shell comprises a first active ingredient and the core comprises a second active ingredient (for example, within the matrix or coated or uncoated particles or a combination thereof) which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by sustained release of the second active ingredient.
- In one embodiment of this invention, the core or matrix or shell of the present invention, whether prepared by a solvent-free molding process, or by a solvent-based molding process, are substantially free of pores having a diameter of 0.5-5.0 microns. As used herein, “substantially free” means that the shell portion or portions have a pore volume of less than about 0.02 cc/g, preferably less than about 0.01 cc/g, more preferably less than about 0.005 cc/g in the pore diameter range of 0.5 to 5.0 microns. In contrast, typical compressed materials have pore volumes of more than about 0.02 cc/g in this diameter range. In another embodiment of this invention, the core is a molded core and the core or core portions are substantially free of pores having a diameter of 0.5-5.0 microns.
- The pore volume, pore diameter and density may be determined using a
Quantachrome Instruments PoreMaster 60 mercury intrusion porosimeter and associated computer software program known as “Porowin.” The procedure is documented in the Quantachrome Instruments PoreMaster Operation Manual. The PoreMaster determines both pore volume and pore diameter of a solid or powder by forced intrusion of a non-wetting liquid (mercury), which involves evacuation of the sample in a sample cell (penetrometer), filling the cell with mercury to surround the sample with mercury, applying pressure to the sample cell by: (i) compressed air (up to 50 psi maximum); and (ii) a hydraulic (oil) pressure generator (up to 60000 psi maximum). Intruded volume is measured by a change in the capacitance as mercury moves from outside the sample into its pores under applied pressure. The corresponding pore size diameter (d) at which the intrusion takes place is calculated directly from the so-called “Washburn Equation”: d=−(4γ(cos θ))/P where γ is the surface tension of liquid mercury, θ is the contact angle between mercury and the sample surface and P is the applied pressure. - Equipment used for pore volume measurements:
- 2. Analytical Balance capable of weighing to 0.0001 g.
- Reagents used for measurements:
- 1. High purity nitrogen.
2. Triply distilled mercury.
3. High pressure fluid (Dila AX, available from Shell Chemical Co.).
4. Liquid nitrogen (for Hg vapor cold trap).
5. Isopropanol or methanol for cleaning sample cells.
6. Liquid detergent for cell cleaning. - Procedure:
- The samples remain in sealed packages or as received in the dessicator until analysis. The vacuum pump is switched on, the mercury vapor cold trap is filled with liquid nitrogen, the compressed gas supply is regulated at 55 psi., and the instrument is turned on and allowed a warm up time of at least 30 minutes. The empty penetrometer cell is assembled as described in the instrument manual and its weight is recorded. The cell is installed in the low pressure station and “evacuation and fill only” is selected from the analysis menu, and the following settings are employed:
- Fine Evacuation time: 1 min.
Fine Evacuation rate: 10
Coarse Evacuation time: 5 min. - The cell (filled with mercury) is then removed and weighed. The cell is then emptied into the mercury reservoir, and two tablets from each sample are placed in the cell and the cell is reassembled. The weight of the cell and sample are then recorded. The cell is then installed in the low-pressure station, the low-pressure option is selected from the menu, and the following parameters are set:
- Mode: Low pressure
Fine evacuation rate: 10
Fine evacuation until: 200 μHg
Coarse evacuation time: 10 min.
Fill pressure: Contact +0.1
Maximum pressure: 50 - Mercury contact angle; 140
Mercury surface tension: 480 - Data acquisition is then begun. The pressure vs. cumulative volume-intruded plot is displayed on the screen. After low-pressure analysis is complete, the cell is removed from the low-pressure station and reweighed. The space above the mercury is filled with hydraulic oil, and the cell is assembled and installed in the high-pressure cavity. The following settings are used:
- Mode: Fixed rate
Motor speed: 5
Start pressure: 20
End pressure: 60,000
Direction: Intrusion and extrusion - Oil fill length: 5
Mercury contact angle: 140
Mercury surface tension: 480 - Data acquisition is then begun and graphic plot pressure vs. intruded volume is displayed on the screen. After the high pressure run is complete, the low- and high-pressure data files of the same sample are merged.
- This invention will be illustrated by the following examples, which are not meant to limit the invention in any way.
- Dosage forms according to the invention, comprising molded cores with shells thereon were made as follows.
- The molded cores (Example 1A) were made from the following ingredients:
-
Trade Weight Mg/ Tablet Name Manufacturer % Tablet Pseudoephedrine BASF 22.0 130 Hydrochloride PharmaChemikalien Crystal GmbH & Co., Ludwigshafen/ Rhein. Polyethylene Carbowax ® Union Carbide 45.0 267 Glycol 3350 Corporation, Danbury, CT Shellac Powder Regular Mantrose-Haeuser 7.0 42 bleached Company, shellac Atteboro, MA Croscarmellose Ac-Di-Sol ® FINE MUSCLE 26.0 154 Sodium COORDINATION Corporation, Newark DE - Processing Steps: A beaker was submersed in a water bath (Ret digi-visc; Antal-Direct, Wayne, Pa.) where the water temperature was set at 70° C. Polyethylene glycol (PEG) 3350 was added to the beaker and was mixed with a spatula until all PEG was melted. Shellac powder, screened through a #40 mesh screen, was added to the molten PEG and the combined ingredients were mixed until all powder was dispersed. Croscarmellose sodium was then added followed by mixing for 2 minutes. Pseudoephedrine hydrochloride crystal was added, followed by mixing for 5 minutes. 570 to 610 mg of the molten mixture was added a round, concave lower punch and die unit (0.4375 inch diameter) which was manually joined with the upper punch to form a molded tablet core. The molded tablet core was ejected from the die.
- The shells (Example 1B) were made of the following ingredients:
-
Trade Weight Mg/ Shell Name Manufacturer % Tablet Polyethylene Carbowax ® Union Carbide 45.0 849 Glycol 3350 Corporation, Danbury, CT Polyethylene Polyox ® Union Carbide 15.0 283 Oxide (MW WSR N-80 Corporation, 200,000) Danbury, CT Shellac Powder Regular Mantrose-Haeuser 20.0 377 bleached Company, Atteboro, shellac MA Croscarmellose Ac-Di-Sol ® FMC Corporation, 10.0 188 Sodium Newark, DE Tributyl Morflex, Inc., 10.0 188 Citrate Greensboro, NC - Processing Steps: A beaker was submersed in a water bath (Ret digi-visc; Antal-Direct, Wayne, Pa.) where the water temperature was set at 70° C. Polyethylene glycol (PEG) 3350 was added to the beaker and was mixed with a spatula until all PEG was melted. Shellac powder, screened through a #40 mesh screen, was added to the molten PEG and the ingredients were mixed until all powder was dispersed. Tributyl citrate was added to the molten PEG mixture, followed by mixing for 1 minute. Polyethylene oxide (MW=200,000) was then added, followed by mixing for 10 minutes. Croscarmellose sodium was added, followed by mixing for 2 minutes.
- A laboratory scale thermal cycle molding module was used to apply the shell in two portions onto the core. A first mold assembly comprising a cavity was cycled to hot stage at 85° C. for 30 seconds. A first portion of the shell material in flowable form (Example 1B) was added to the cavity. A molded core (Example 1A) was then inserted into the cavity. A blank mold assembly that masked half the core was screwed into the first mold assembly. The joined mold assemblies were cycled to cold stage at 5° C. for 60 seconds to harden the shell on the exposed half of the core. The blank mold assembly was removed and the molded core coated with the first shell portion was ejected form the cavity.
- A second mold assembly comprising a second cavity was cycled to hot stage at 85° C. for 30 seconds. A second portion of the shell material in flowable form (Example 1B) was added to the cavity. The molded core comprising the first shell portion was inserted into the second mold assembly in such a way that the uncoated half of the core (without the first shell portion) was inserted into the second mold cavity. The first mold assembly, which was kept in cold cycle at 5° C., was screwed into the second mold assembly. The second mold assembly was cycled to cold stage at 5° C. for 60 seconds to harden a second shell portion on the core. The first mold assembly was removed and the dosage form, a molded core coated with the first and second shell portions (Example 1C), was ejected from the mold assembly. The weight gain of the dosage form due to the first and second shell portions was recorded.
- Shell material in flowable form (Example 1B) was added into a flat faced, 0.6875 inch rubber mold and a coated core (Example 1C) was inserted into the mold. Additional shell material was added to fill the mold. The round molded tablet core was removed from the mold after 5 minutes of cooling in the mold. The weight gain of the core due to the shell was recorded.
-
FIG. 2 depicts the % release of active ingredient vs. hours for the dosage form of Example 1 and other dosage forms. More particularly this figure shows the dissolution rate of three different samples of different shell weight gain of the present invention. Curve (a) shows the release rate of pseudoephedrine HCL from the matrix with 314% shell weight gain of this invention. Curve (b) shows the release rate of pseudoephedrine HCL from the matrix with 118% shell weight gain of this invention. Curve (c) shows the release rate of pseudoephedrine HCL from the matrix with 55% shell weight gain of this invention. All curves were derived using the following dissolution analysis: USP Type II apparatus (paddles, 50 RPM) in 0.1 N HCL and pH 5.6 phosphate buffer at 37° C. Samples were tested at 1, 2, 3, 4, 8, 12, 16, 20, and 24 hours for pseudoephedrine HCl. Dissolution samples were analyzed for pseudoephedrine HCl versus a standard prepared at the theoretical concentration for 100% released of each compound. Samples were analyzed using a HPLC equipped with a Waters® 717 Autoinjector and a Waters® 486 UV detector set at a wavelength of 214 nm. The mobile phase was prepared using 55% acetonitrile and 45% 18 mM Potassium phosphate buffer. The injection volume was 50 μL with a run time of approximately 8 minutes and a pump flow of 2.0 mL/min. The column used was a Zorbax® 300-SCX (4.6 mm×25 cm). - Dosage forms of the invention are made in a continuous process using an apparatus comprising two thermal cycle molding modules linked in series via a transfer device as described at pages 14-16 of copending U.S. application Ser. No. 09/966,939, the disclosure of which is incorporated herein by reference. The dosage forms comprise a molded core and a shell. The core comprises the ingredients of Example 1A, provided in flowable form as described in Example 1. The shell comprises the ingredients of Example 1B, provided in flowable form as described in Example 1.
- The thermal cycle molding modules have the general configuration shown in FIG. 3 of copending U.S. application Ser. No. 09/966,497, which depicts a thermal cycle molding module 200 comprising a
rotor 202 around which a plurality ofmold units 204 are disposed. Each thermal cycle molding module includes its own reservoir 206 (see FIG. 4 of copending U.S. application Ser. No. 09/966,497) for holding the core flowable material, and the shell flowable material, respectively. In addition, each thermal cycle molding module is provided with a temperature control system for rapidly heating and cooling the mold units. FIGS. 55 and 56 of copending U.S. application Ser. No. 09/966,497 depict the temperature control system 600. - The cores are made in a first thermal cycle molding module, which is linked via a transfer device to a second thermal cycle molding module. The first thermal cycle molding module has the specific configuration shown in FIG. 26A of copending U.S. application Ser. No. 09/966,497. The first thermal cycle molding module comprises center mold assemblies 212 and upper mold assemblies 214 as shown in FIG. 26C, which mate to form mold cavities having the shape of the cores. As
rotor 202 rotates, the opposing center and upper mold assemblies close. Core flowable material, which is heated to a flowable state inreservoir 206, is injected into the resulting mold cavities. The temperature of the core flowable material is then decreased, hardening the core flowable material into cores. The mold assemblies open and eject the cores, which are received by the transfer device. - The transfer device has the structure shown as 300 in FIG. 3 and described at pages 51-57 of copending U.S. application Ser. No. 09/966,414, the disclosure of which is incorporated herein by reference. It comprises a plurality of transfer units 304 attached in cantilever fashion to a belt 312 as shown in FIGS. 68 and 69 of copending U.S. application Ser. No. 09/966,414. The transfer device rotates and operates in sync with the thermal cycle molding modules to which it is coupled. Transfer units 304 comprise retainers 330 for holding the cores as they travel around the transfer device.
- The transfer device transfers the cores to the second thermal cycle molding module, which applies the shell to the cores. The second thermal cycle molding module is of the type shown in FIG. 28A of copending U.S. application Ser. No. 09/966,497. The
mold units 204 of the second thermal cycle molding module comprise upper mold assemblies 214, rotatable center mold assemblies 212 and lower mold assemblies 210 as shown in FIG. 28C. Cores are continuously transferred to the mold assemblies, which then close over the cores. Shell material, which is heated to a flowable state inreservoir 206, is injected into the mold cavities created by the closed mold assemblies. The temperature of the shell material is then decreased, hardening it. The mold assemblies open and eject the coated cores. Coating is performed in two steps, each half of the cores being coated separately as shown in the flow diagram of FIG. 28B of copending U.S. application Ser. No. 09/966,939 via rotation of the center mold assembly. - Although this invention has been illustrated by reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made which clearly fall within the scope of this invention.
Claims (21)
1. A dosage form comprising: (a) at least one active ingredient; (b) a molded core which is solid at room temperature; and (c) a shell which is in contact with at least a portion of the molded core, wherein the dosage form provides modified release of the active ingredient upon contacting of the dosage form with a liquid medium.
2-49. (canceled)
50. A method for manufacturing a dosage form comprising a core and a shell, wherein said method comprises injecting a matrix in flowable form into a molding chamber to form a core, applying a shell to said core such that said shell in contact with at least a portion of the outside of said core, wherein said matrix comprises polyethylene glycol having a molecular weight from about 100 to about 8000 Daltons and at least one active ingredient, wherein said core is solid at room temperature, and wherein the dosage form provides modified release of at least one of said at least one active ingredient upon contacting of the dosage form with a liquid medium.
51. A method of claim 50 , wherein said shell is applied by injection molding.
52. A method of claim 50 wherein said core is substantially free of pores having a diameter of 0.5 to 5.0 microns.
53. The method of claim 50 , in which said modified release is a time delay prior to the release of said at least one active ingredient.
54. The method of claim 50 , in which said modified release is a sustained release of said at least one active ingredient.
55. The method of claim 50 , in which the shell comprises a first active ingredient and the core comprises a second active ingredient which may be the same or different than the first active ingredient, and upon contacting of the dosage form with a liquid medium, immediate release of the first active ingredient occurs followed by sustained release of the second active ingredient.
56. The method of claim 50 , in which the level of active ingredient in the core is at least about 25 weight percent.
57. The method of claim 50 , in which the core comprises one or more release-modifying excipients selected from the group consisting of swellable erodible hydrophilic materials, pH-dependent polymers, insoluble edible materials, and pore-formers, copolymers, and combinations thereof.
58. The method of claim 57 , in which the release-modifying excipient is selected from the group consisting of shellac or croscarmellose sodium.
59. The method of claim 50 , in which the core comprises a plurality of particles which comprise said at least one active ingredient.
60. The method of claim 59 , in which at least a portion of the particles are coated with a coating capable of providing modified release of said at least one active ingredient contained therein upon contacting of the coated particles with a liquid medium.
61. The method of claim 59 , in which said portion of particles are coated with a coating comprising 10-100 wt. % of a release-modifying polymer selected from the group consisting of pH-dependent polymers, water-soluble polymers, water-insoluble polymers, and copolymers, and mixtures thereof.
62. The method of claim 50 , in which said matrix comprises said polyethylene glycol at a level from about 10 to about 100 weight percent of the matrix.
63. The method of claim 62 , in which the matrix further comprises a thermoplastic polyethylene oxide at a level of about 15 to about 25%.
64. The method of claim 50 , in which the shell comprises at least about 30 percent by weight of a thermal-reversible carrier having a melting point from about 20 to about 110° C.
65. The method of claim 50 , in which the shell comprises at least one of said at least one active ingredient.
66. The method of claim 50 , in which the shell has a thickness from about 300 to about 2000 microns.
67. The method of claim 50 , in which the weight of the shell is from about 50 to about 400 percent of the weight of the core.
68. The method of claim 50 , in which the shell comprises a film-former selected from the group consisting of cellulose acetate, ammonia methacrylate copolymer type B, shellac, hydroxypropylmethylcellulose, polyethylene oxide, and combinations thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/360,579 US20090186082A1 (en) | 2001-09-28 | 2009-01-27 | Method of manufacturing modified release dosage forms |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/966,450 US6982094B2 (en) | 2001-09-28 | 2001-09-28 | Systems, methods and apparatuses for manufacturing dosage forms |
US09/966,509 US6767200B2 (en) | 2001-09-28 | 2001-09-28 | Systems, methods and apparatuses for manufacturing dosage forms |
US09/966,939 US6837696B2 (en) | 2001-09-28 | 2001-09-28 | Apparatus for manufacturing dosage forms |
US09/967,414 US6742646B2 (en) | 2001-09-28 | 2001-09-28 | Systems, methods and apparatuses for manufacturing dosage forms |
US10/476,504 US20040213848A1 (en) | 2001-09-28 | 2002-09-28 | Modified release dosage forms |
PCT/US2002/031116 WO2003026615A2 (en) | 2001-09-28 | 2002-09-28 | Modified release dosage forms |
US12/360,579 US20090186082A1 (en) | 2001-09-28 | 2009-01-27 | Method of manufacturing modified release dosage forms |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/476,504 Continuation US20040213848A1 (en) | 2001-09-28 | 2002-09-28 | Modified release dosage forms |
PCT/US2002/031116 Continuation WO2003026615A2 (en) | 2001-09-28 | 2002-09-28 | Modified release dosage forms |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090186082A1 true US20090186082A1 (en) | 2009-07-23 |
Family
ID=25512088
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/966,939 Expired - Lifetime US6837696B2 (en) | 2001-09-28 | 2001-09-28 | Apparatus for manufacturing dosage forms |
US10/476,503 Abandoned US20050019376A1 (en) | 2001-09-28 | 2002-09-28 | Dosage form containing a confectionery composition |
US12/360,579 Abandoned US20090186082A1 (en) | 2001-09-28 | 2009-01-27 | Method of manufacturing modified release dosage forms |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/966,939 Expired - Lifetime US6837696B2 (en) | 2001-09-28 | 2001-09-28 | Apparatus for manufacturing dosage forms |
US10/476,503 Abandoned US20050019376A1 (en) | 2001-09-28 | 2002-09-28 | Dosage form containing a confectionery composition |
Country Status (17)
Country | Link |
---|---|
US (3) | US6837696B2 (en) |
EP (1) | EP1429915B1 (en) |
JP (1) | JP2005504639A (en) |
KR (1) | KR100861670B1 (en) |
CN (2) | CN100488763C (en) |
AT (1) | ATE420762T1 (en) |
AU (1) | AU2002337711B2 (en) |
CA (1) | CA2462008C (en) |
DE (1) | DE60230886D1 (en) |
ES (1) | ES2319971T3 (en) |
HU (1) | HUP0401653A2 (en) |
MX (1) | MXPA04002971A (en) |
NO (1) | NO20041716L (en) |
NZ (1) | NZ532095A (en) |
PL (1) | PL369169A1 (en) |
WO (1) | WO2003028990A1 (en) |
ZA (2) | ZA200403166B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8399011B1 (en) * | 2012-08-10 | 2013-03-19 | Magnifica Inc. | Oral particle compositions containing a core and an acid-soluble coat |
US20140206587A1 (en) * | 2011-08-24 | 2014-07-24 | Honggang Chen | Benefit agent delivery particles comprising non-ionic polysaccharides |
US20150093439A1 (en) * | 2013-09-27 | 2015-04-02 | Mcneil-Ppc, Inc. | Compression coated pulsatile release compositions |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040146559A1 (en) * | 2002-09-28 | 2004-07-29 | Sowden Harry S. | Dosage forms having an inner core and outer shell with different shapes |
US7122143B2 (en) * | 2001-09-28 | 2006-10-17 | Mcneil-Ppc, Inc. | Methods for manufacturing dosage forms |
US6837696B2 (en) * | 2001-09-28 | 2005-01-04 | Mcneil-Ppc, Inc. | Apparatus for manufacturing dosage forms |
US7838026B2 (en) | 2001-09-28 | 2010-11-23 | Mcneil-Ppc, Inc. | Burst-release polymer composition and dosage forms comprising the same |
EP1463489A1 (en) * | 2001-09-28 | 2004-10-06 | McNEIL-PPC, INC. | Composite dosage forms |
US7217381B2 (en) * | 2001-09-28 | 2007-05-15 | Mcneil-Ppc, Inc. | Systems, methods and apparatuses for manufacturing dosage forms |
US7776314B2 (en) | 2002-06-17 | 2010-08-17 | Grunenthal Gmbh | Abuse-proofed dosage system |
US7807197B2 (en) * | 2002-09-28 | 2010-10-05 | Mcneil-Ppc, Inc. | Composite dosage forms having an inlaid portion |
ITMO20030122A1 (en) * | 2003-04-30 | 2004-11-01 | Sacmi | APPARATUS AND METHOD FOR AWAYING OBJECTS FROM TRAINING VEHICLES. |
DE10336400A1 (en) | 2003-08-06 | 2005-03-24 | Grünenthal GmbH | Anti-abuse dosage form |
US20070048228A1 (en) | 2003-08-06 | 2007-03-01 | Elisabeth Arkenau-Maric | Abuse-proofed dosage form |
DE102004032051A1 (en) | 2004-07-01 | 2006-01-19 | Grünenthal GmbH | Process for the preparation of a secured against misuse, solid dosage form |
DE102005005446A1 (en) | 2005-02-04 | 2006-08-10 | Grünenthal GmbH | Break-resistant dosage forms with sustained release |
DE10361596A1 (en) | 2003-12-24 | 2005-09-29 | Grünenthal GmbH | Process for producing an anti-abuse dosage form |
GB0322358D0 (en) * | 2003-09-24 | 2003-10-22 | Bioprogress Technology Ltd | Improvements in powder compaction and enrobing |
ITMO20030289A1 (en) * | 2003-10-23 | 2005-04-24 | Sacmi | EQUIPMENT, METHOD AND ARTICLE. |
US8067029B2 (en) | 2004-01-13 | 2011-11-29 | Mcneil-Ppc, Inc. | Rapidly disintegrating gelatinous coated tablets |
US7879354B2 (en) | 2004-01-13 | 2011-02-01 | Mcneil-Ppc, Inc. | Rapidly disintegrating gelatinous coated tablets |
US20050196448A1 (en) * | 2004-03-05 | 2005-09-08 | Hai Yong Huang | Polymeric compositions and dosage forms comprising the same |
US20050196442A1 (en) * | 2004-03-05 | 2005-09-08 | Huang Hai Y. | Polymeric compositions and dosage forms comprising the same |
US20050196446A1 (en) * | 2004-03-05 | 2005-09-08 | Huang Hai Y. | Polymeric compositions and dosage forms comprising the same |
US20050196447A1 (en) * | 2004-03-05 | 2005-09-08 | Huang Hai Y. | Polymeric compositions and dosage forms comprising the same |
US7178562B2 (en) * | 2004-04-08 | 2007-02-20 | Graham Packaging Pet Technologies Inc. | Pellet transfer apparatus and method |
US20050281876A1 (en) | 2004-06-18 | 2005-12-22 | Shun-Por Li | Solid dosage form for acid-labile active ingredient |
DE102004032049A1 (en) | 2004-07-01 | 2006-01-19 | Grünenthal GmbH | Anti-abuse, oral dosage form |
JP2008514253A (en) * | 2004-09-24 | 2008-05-08 | バイオプログレス・テクノロジー・リミテッド | Additional improvements in powder compaction and enrobe |
EP1944007A3 (en) * | 2004-09-24 | 2008-07-23 | BioProgress Technology Limited | Additional improvements in powder compaction and enrobing |
US20070190133A1 (en) * | 2004-10-27 | 2007-08-16 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20060088586A1 (en) * | 2004-10-27 | 2006-04-27 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20060088593A1 (en) * | 2004-10-27 | 2006-04-27 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20060088587A1 (en) * | 2004-10-27 | 2006-04-27 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20060087051A1 (en) * | 2004-10-27 | 2006-04-27 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20070281022A1 (en) * | 2004-10-27 | 2007-12-06 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US8383159B2 (en) * | 2004-10-27 | 2013-02-26 | Mcneil-Ppc, Inc. | Dosage forms having a microreliefed surface and methods and apparatus for their production |
KR100597182B1 (en) | 2004-10-29 | 2006-07-05 | 한영수 | Forming apparatus of cones strengtrening for pelvic floor muscles |
US7530804B2 (en) * | 2004-12-07 | 2009-05-12 | Mcneil-Ppc, Inc. | System and process for providing at least one opening in dosage forms |
US7404708B2 (en) * | 2004-12-07 | 2008-07-29 | Mcneil-Ppc, Inc. | System and process for providing at least one opening in dosage forms |
DE102005005449A1 (en) | 2005-02-04 | 2006-08-10 | Grünenthal GmbH | Process for producing an anti-abuse dosage form |
US8211078B2 (en) | 2005-02-17 | 2012-07-03 | The Procter And Gamble Company | Sanitary napkins capable of taking complex three-dimensional shape in use |
US9579238B2 (en) | 2005-02-17 | 2017-02-28 | The Procter & Gamble Company | Sanitary napkins capable of taking complex three-dimensional shape in use |
US8673352B2 (en) * | 2005-04-15 | 2014-03-18 | Mcneil-Ppc, Inc. | Modified release dosage form |
US20060233882A1 (en) * | 2005-04-15 | 2006-10-19 | Sowden Harry S | Osmotic dosage form |
US20070048366A1 (en) * | 2005-08-26 | 2007-03-01 | Jen-Chi Chen | Gelatin-based coatings having improved durability |
US20070077300A1 (en) * | 2005-09-30 | 2007-04-05 | Wynn David W | Oral compositions containing a salivation inducing agent |
JP4841564B2 (en) * | 2005-12-06 | 2011-12-21 | 旭化成ケミカルズ株式会社 | Tablet production method by high-speed direct tableting |
DE102005061787A1 (en) * | 2005-12-23 | 2007-06-28 | Fette Gmbh | Device for generating a negative pressure in the sealed space of a tablet press and / or an insulator |
CN101415406B (en) * | 2006-04-05 | 2014-03-12 | 洲际大品牌有限责任公司 | Calcium phosphate complex in acid containing chewing gum |
US20070237729A1 (en) * | 2006-04-05 | 2007-10-11 | Cadbury Adams Usa, Llc. | Impact of calcium phosphate complex on dental caries |
MX2008012524A (en) | 2006-04-05 | 2008-10-10 | Cadbury Adams Usa Llc | Calcium phosphate complex and salts in oral delivery systems. |
US7630787B2 (en) * | 2006-04-19 | 2009-12-08 | Husky Injection Molding Systems Ltd | System for integrating insert with molded article |
FI20070521L (en) * | 2006-11-10 | 2008-05-11 | Atacama Labs Oy | Grains, tablets and granulation process |
US8951562B2 (en) * | 2006-11-10 | 2015-02-10 | Atacama Labs Oy | Method and apparatus or dry granulation |
FI20060990A0 (en) * | 2006-11-10 | 2006-11-10 | Iprbox Oy | Grains, tablets and granulation method |
EP1952696A1 (en) * | 2007-02-01 | 2008-08-06 | Nestec S.A. | A method and apparatus for making centre-filled shaped food products |
DE102007011485A1 (en) | 2007-03-07 | 2008-09-11 | Grünenthal GmbH | Dosage form with more difficult abuse |
AU2008246717B2 (en) * | 2007-04-26 | 2013-02-28 | Eisai R & D Management Co., Ltd. | Method for production of tablet |
EP2155167A2 (en) | 2007-06-04 | 2010-02-24 | Egalet A/S | Controlled release pharmaceutical compositions for prolonged effect |
US8002823B2 (en) * | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
JP5098535B2 (en) * | 2007-09-21 | 2012-12-12 | 東洋製罐株式会社 | Molten resin feeder |
US7867418B2 (en) * | 2007-09-24 | 2011-01-11 | Mars, Incorporated | Tool and apparatus for forming a moldable material |
NZ586792A (en) | 2008-01-25 | 2012-09-28 | Gruenenthal Chemie | Tamper resistant controlled release pharmaceutical tablets form having convex and concave surfaces |
WO2009135946A1 (en) * | 2008-05-09 | 2009-11-12 | Atacama Labs Oy | Method and apparatus for dry granulation |
PT2273983T (en) | 2008-05-09 | 2016-10-28 | Gruenenthal Gmbh | Process for the preparation of an intermediate powder formulation and a final solid dosage form under usage of a spray congealing step |
US8328966B1 (en) * | 2008-09-11 | 2012-12-11 | The United States Of America As Represented By The Secretary Of The Navy | Method for making miniature explosive powder charges |
US8382921B1 (en) * | 2008-09-11 | 2013-02-26 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus for making miniature explosive powder charges |
IT1394597B1 (en) * | 2008-11-05 | 2012-07-05 | Politi | DRY GRANULATION IN GAS FLOW. |
WO2010089132A1 (en) | 2009-02-06 | 2010-08-12 | Egalet A/S | Immediate release composition resistant to abuse by intake of alcohol |
US20100255084A1 (en) * | 2009-04-06 | 2010-10-07 | Yoel Ovil | Medicinal melting capsules for oral mucosal absorption |
US20100255086A1 (en) * | 2009-04-06 | 2010-10-07 | Yoel Ovil | Method for oral mucosal absorption of acetyl salycylic acid |
US20100255088A1 (en) * | 2009-04-06 | 2010-10-07 | Yoel Ovil | Method for delivering a combination of resveratrol and aspirin for use in treatment and prevention of vascular disease |
AU2010265213B2 (en) | 2009-06-24 | 2012-08-23 | Egalet Ltd. | Controlled release formulations |
ES2534908T3 (en) | 2009-07-22 | 2015-04-30 | Grünenthal GmbH | Hot melt extruded controlled release dosage form |
PL2997965T3 (en) | 2009-07-22 | 2019-06-28 | Grünenthal GmbH | Tamper-resistant dosage form for oxidation-sensitive opioids |
US9610224B2 (en) | 2009-09-24 | 2017-04-04 | Johnson & Johnson Consumer Inc. | Manufacture of tablet in a die utilizing powder blend containing water-containing material |
ES2486791T3 (en) | 2010-09-02 | 2014-08-19 | Grünenthal GmbH | Tamper resistant dosage form comprising an inorganic salt |
PE20131126A1 (en) | 2010-09-02 | 2013-10-21 | Gruenenthal Chemie | ALTERATION RESISTANT DOSAGE FORM INCLUDING AN ANIONIC POLYMER |
WO2013017234A1 (en) | 2011-07-29 | 2013-02-07 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
RS56527B1 (en) | 2011-07-29 | 2018-02-28 | Gruenenthal Gmbh | Tamper-resistant tablet providing immediate drug release |
WO2013127831A1 (en) | 2012-02-28 | 2013-09-06 | Grünenthal GmbH | Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer |
AU2013248351B2 (en) | 2012-04-18 | 2018-04-26 | Grunenthal Gmbh | Tamper resistant and dose-dumping resistant pharmaceutical dosage form |
US9233491B2 (en) | 2012-05-01 | 2016-01-12 | Johnson & Johnson Consumer Inc. | Machine for production of solid dosage forms |
US9445971B2 (en) * | 2012-05-01 | 2016-09-20 | Johnson & Johnson Consumer Inc. | Method of manufacturing solid dosage form |
US9511028B2 (en) | 2012-05-01 | 2016-12-06 | Johnson & Johnson Consumer Inc. | Orally disintegrating tablet |
US10064945B2 (en) | 2012-05-11 | 2018-09-04 | Gruenenthal Gmbh | Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc |
WO2013183497A1 (en) | 2012-06-05 | 2013-12-12 | 武田薬品工業株式会社 | Dry-coated tablet |
US9737490B2 (en) | 2013-05-29 | 2017-08-22 | Grünenthal GmbH | Tamper resistant dosage form with bimodal release profile |
BR112015026549A2 (en) | 2013-05-29 | 2017-07-25 | Gruenenthal Gmbh | tamper-proof dosage form containing one or more particles |
BR112016000194A8 (en) | 2013-07-12 | 2019-12-31 | Gruenenthal Gmbh | tamper-resistant dosage form containing ethylene vinyl acetate polymer |
WO2015078891A1 (en) | 2013-11-26 | 2015-06-04 | Farmaceutici Formenti S.P.A. | Preparation of a powdery pharmaceutical composition by means of cryo-milling |
JP6075278B2 (en) * | 2013-12-05 | 2017-02-08 | 株式会社デンソー | Press machine |
BR112016015944A8 (en) | 2014-01-10 | 2020-06-09 | Johnson & Johnson Consumer Inc | process to produce tablet, which uses radiofrequency and coated particles dissipating energy |
MX2016014738A (en) | 2014-05-12 | 2017-03-06 | Gruenenthal Gmbh | Tamper resistant immediate release capsule formulation comprising tapentadol. |
EA201692388A1 (en) | 2014-05-26 | 2017-05-31 | Грюненталь Гмбх | DOSAGE FORM AS PARTICLE MULTIPLE, PROTECTED AGAINST CALLED DOSE RESET BY ETHANOL |
KR20160126217A (en) | 2015-04-23 | 2016-11-02 | 주식회사 진명 에프 엠 씨 | Apparatus For Supplying Container |
WO2016170097A1 (en) | 2015-04-24 | 2016-10-27 | Grünenthal GmbH | Tamper-resistant dosage form with immediate release and resistance against solvent extraction |
TWI580310B (en) * | 2015-08-14 | 2017-04-21 | Bottle-Top Dev Co | Microwave heating system |
EP3337624A4 (en) | 2015-08-21 | 2019-10-30 | Aprecia Pharmaceuticals LLC | Three-dimensional printing system and equipment assembly |
US10842750B2 (en) | 2015-09-10 | 2020-11-24 | Grünenthal GmbH | Protecting oral overdose with abuse deterrent immediate release formulations |
ITUB20154653A1 (en) * | 2015-10-14 | 2017-04-14 | Sacmi | Apparatus and method for processing doses. |
EP3222414B1 (en) * | 2016-03-24 | 2019-07-17 | Korsch AG | Rotation press with stamps with at least two stamp tips at staggered heights for carrying out multiple pressing processes during a rotation |
CN106166849A (en) * | 2016-08-24 | 2016-11-30 | 海宁艾迪欧动物保健品科技有限公司 | A kind of Chinese crude drug cake of press device of automatic charging |
US10493026B2 (en) | 2017-03-20 | 2019-12-03 | Johnson & Johnson Consumer Inc. | Process for making tablet using radiofrequency and lossy coated particles |
CN107028901A (en) * | 2017-03-29 | 2017-08-11 | 陈永雷 | A kind of medicine lozenge, functional food lozenge, health food lozenge regional compartmentalization prepare method |
CN107041845B (en) * | 2017-05-05 | 2023-05-23 | 杨超翔 | Child drug delivery device and method |
ES2975449T3 (en) | 2017-05-22 | 2024-07-05 | Johnson & Johnson Consumer Inc | Pharmaceutical form of pill |
CN108158816B (en) * | 2018-01-18 | 2021-01-19 | 广东省惠州市中药厂有限公司 | Rhizome medicinal material extraction and granulation equipment and extraction method |
GB2578272B (en) * | 2018-07-10 | 2023-03-29 | Innopharma Res Limited | Apparatus and method for the production of solid dosage forms |
BR112021006668A2 (en) | 2018-10-15 | 2021-07-06 | Aprecia Pharmaceuticals LLC | method and system for forming a dosage form within a package |
US11413839B2 (en) * | 2018-12-14 | 2022-08-16 | Natoli Engineering Company, Inc. | Device to level a feeder platform |
DE102019210354B4 (en) * | 2019-07-12 | 2024-06-06 | Theegarten-Pactec Gmbh & Co. Kg | Rotary head with rotating workstations |
IT202000012685A1 (en) * | 2020-05-28 | 2021-11-28 | Perfetti Van Melle Spa | METHOD FOR MAKING A COMPRESSED PRODUCT |
US12125574B2 (en) | 2020-08-28 | 2024-10-22 | Omnicell, Inc. | Systems and methods for parallel preparation processing |
CN112590291B (en) * | 2020-12-04 | 2022-07-22 | 重庆医药高等专科学校 | Tabletting device for pharmacy |
CN113002046B (en) * | 2021-03-03 | 2021-12-14 | 林美珊 | Spiral extrusion type solid-liquid separator |
CN115581262B (en) * | 2022-09-08 | 2024-07-19 | 广州麟威健康科技股份有限公司 | Automatic forming device for sports nutritious food |
Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4173626A (en) * | 1978-12-11 | 1979-11-06 | Merck & Co., Inc. | Sustained release indomethacin |
US4523021A (en) * | 1981-05-12 | 1985-06-11 | Imperial Chemical Industries Plc | 1'-Substituted-spiro[pyrrolidine-3,3'-indoline]-2,2',5-triones |
US4572833A (en) * | 1982-08-13 | 1986-02-25 | A/S Alfred Benzon | Method for preparing a pharmaceutical controlled release composition |
US4764378A (en) * | 1986-02-10 | 1988-08-16 | Zetachron, Inc. | Buccal drug dosage form |
US4863742A (en) * | 1986-06-20 | 1989-09-05 | Elan Corporation Plc | Controlled absorption pharmaceutical composition |
US4874614A (en) * | 1985-03-25 | 1989-10-17 | Abbott Laboratories | Pharmaceutical tableting method |
US4906478A (en) * | 1988-12-12 | 1990-03-06 | Valentine Enterprises, Inc. | Simethicone/calcium silicate composition |
US4980170A (en) * | 1988-06-30 | 1990-12-25 | Klinge Pharma Gmbh | Pharmaceutical formulation as well as a process for its preparation |
US4984240A (en) * | 1988-12-22 | 1991-01-08 | Codex Corporation | Distributed switching architecture for communication module redundancy |
US5032406A (en) * | 1989-02-21 | 1991-07-16 | Norwich Eaton Pharmaceuticals, Inc. | Dual-action tablet |
US5100675A (en) * | 1989-05-03 | 1992-03-31 | Schering Corporation | Sustained release tablet comprising loratadine, ibuprofen and pseudoephedrine |
US5158777A (en) * | 1990-02-16 | 1992-10-27 | E. R. Squibb & Sons, Inc. | Captopril formulation providing increased duration of activity |
US5229134A (en) * | 1989-12-05 | 1993-07-20 | Laboratories Smith Kline & French | Pharmaceutical compositions |
US5275822A (en) * | 1989-10-19 | 1994-01-04 | Valentine Enterprises, Inc. | Defoaming composition |
US5286497A (en) * | 1991-05-20 | 1994-02-15 | Carderm Capital L.P. | Diltiazem formulation |
US5397574A (en) * | 1993-10-04 | 1995-03-14 | Andrx Pharmaceuticals, Inc. | Controlled release potassium dosage form |
US5415868A (en) * | 1993-06-09 | 1995-05-16 | L. Perrigo Company | Caplets with gelatin cover and process for making same |
US5558879A (en) * | 1995-04-28 | 1996-09-24 | Andrx Pharmaceuticals, Inc. | Controlled release formulation for water soluble drugs in which a passageway is formed in situ |
US5738874A (en) * | 1992-09-24 | 1998-04-14 | Jagotec Ag | Pharmaceutical tablet capable of liberating one or more drugs at different release rates |
US5807579A (en) * | 1995-11-16 | 1998-09-15 | F.H. Faulding & Co. Limited | Pseudoephedrine combination pharmaceutical compositions |
US5814336A (en) * | 1995-05-17 | 1998-09-29 | The Procter & Gamble Company | Pharmaceutical dosage form for colonic delivery |
US5824338A (en) * | 1996-08-19 | 1998-10-20 | L. Perrigo Company | Caplet and gelatin covering therefor |
US5830502A (en) * | 1994-10-28 | 1998-11-03 | Alza Corporation | Injection-molded dosage form |
US5912013A (en) * | 1991-07-23 | 1999-06-15 | Shire Laboratories, Inc. | Advanced drug delivery system and method of treating psychiatric, neurological and other disorders with carbamazepine |
US5972389A (en) * | 1996-09-19 | 1999-10-26 | Depomed, Inc. | Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter |
US6103260A (en) * | 1997-07-17 | 2000-08-15 | Mcneil-Ppc, Inc. | Simethicone/anhydrous calcium phosphate compositions |
US6270805B1 (en) * | 1998-11-06 | 2001-08-07 | Andrx Pharmaceuticals, Inc. | Two pellet controlled release formulation for water soluble drugs which contains an alkaline metal stearate |
US6294200B1 (en) * | 1996-02-06 | 2001-09-25 | Jagotec Ag | Pharmaceutical tablet suitable to deliver the active substance in subsequent and predeterminable times |
US6322819B1 (en) * | 1998-10-21 | 2001-11-27 | Shire Laboratories, Inc. | Oral pulsed dose drug delivery system |
US20020028240A1 (en) * | 2000-04-17 | 2002-03-07 | Toyohiro Sawada | Timed-release compression-coated solid composition for oral administration |
US20020102309A1 (en) * | 1999-09-14 | 2002-08-01 | Jane C. I. Hirsh | Controlled release formulation for administration of an anti-inflammatory naphthalene derivative |
US20030066068A1 (en) * | 2001-09-28 | 2003-04-03 | Koninklijke Philips Electronics N.V. | Individual recommender database using profiles of others |
US20030068367A1 (en) * | 2001-09-28 | 2003-04-10 | Sowden Harry S. | Systems, methods and apparatuses for manufacturing dosage forms |
US6742646B2 (en) * | 2001-09-28 | 2004-06-01 | Mcneil-Ppc, Inc. | Systems, methods and apparatuses for manufacturing dosage forms |
US6982094B2 (en) * | 2001-09-28 | 2006-01-03 | Mcneil-Ppc, Inc. | Systems, methods and apparatuses for manufacturing dosage forms |
US7122143B2 (en) * | 2001-09-28 | 2006-10-17 | Mcneil-Ppc, Inc. | Methods for manufacturing dosage forms |
Family Cites Families (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US124183A (en) * | 1872-02-27 | Improvement in packings for engines | ||
US86973A (en) * | 1869-02-16 | Improvement in tarn-guide and clearer | ||
US599865A (en) * | 1898-03-01 | Emanuel l | ||
US2307371A (en) * | 1941-08-13 | 1943-01-05 | Ray O Vac Co | Molding process |
US2386173A (en) * | 1943-05-13 | 1945-10-02 | American Viscose Corp | Apparatus for the production of artificial filaments |
US2996431A (en) * | 1953-12-16 | 1961-08-15 | Barry Richard Henry | Friable tablet and process for manufacturing same |
US2849965A (en) * | 1954-04-15 | 1958-09-02 | John Holroyd & Company Ltd | Machines for use in the production of coated tablets and the like |
GB759081A (en) | 1954-04-15 | 1956-10-10 | John Holroyd And Company Ltd | Improvements relating to machines for the production of coated tablets and the like |
US2946298A (en) * | 1957-11-13 | 1960-07-26 | Arthur Colton Company | Compression coating tablet press |
DE1155348B (en) | 1958-11-13 | 1963-10-03 | Tatra Np | Pneumatic actuation device for switching a step change gear, especially for motor vehicles |
GB936386A (en) | 1959-01-16 | 1963-09-11 | Wellcome Found | Pellets for supplying biologically active substances to ruminants |
US3096248A (en) * | 1959-04-06 | 1963-07-02 | Rexall Drug & Chemical Company | Method of making an encapsulated tablet |
GB972128A (en) * | 1960-01-21 | 1964-10-07 | Wellcome Found | Pellets for supplying biologically active substances to ruminants and the manufacture of such pellets |
GB994742A (en) | 1960-09-09 | 1965-06-10 | Wellcome Found | Pharmaceutical tablets containing anthelmintics, and the manufacture thereof |
NL125920C (en) * | 1960-12-28 | |||
NL297357A (en) * | 1962-08-31 | |||
GB1144915A (en) | 1966-11-24 | 1969-03-12 | Armour Pharma | Improvements in or relating to pastille formulations |
US3627583A (en) * | 1969-04-29 | 1971-12-14 | Sucrest Corp | Direct compression vehicles |
US3832252A (en) * | 1970-09-29 | 1974-08-27 | T Higuchi | Method of making a drug-delivery device |
NL175029C (en) | 1970-12-23 | 1984-09-17 | Boehringer Sohn Ingelheim | DEPOT DRAGEE, COVERED WITH AN INSOLUBLIC AND DESTRUCTIBLE SHELL, WHICH INCREASES A CUT IN ONE OR MORE PLACES. |
US3726622A (en) * | 1971-08-20 | 1973-04-10 | Wolverine Pentronix | Compacting apparatus |
DE2157465C3 (en) * | 1971-11-19 | 1975-04-24 | Werner & Pfleiderer, 7000 Stuttgart | Filling device for a hydraulic block press |
US4139589A (en) * | 1975-02-26 | 1979-02-13 | Monique Beringer | Process for the manufacture of a multi-zone tablet and tablet manufactured by this process |
US4230693A (en) * | 1975-04-21 | 1980-10-28 | Armour-Dial, Inc. | Antacid tablets and processes for their preparation |
US4097606A (en) * | 1975-10-08 | 1978-06-27 | Bristol-Myers Company | APAP Tablet containing an alkali metal carboxymethylated starch and processes for manufacturing same |
SE414386B (en) | 1976-03-10 | 1980-07-28 | Aco Laekemedel Ab | VIEW TO PREPARE AND AT THE SAME PACKAGE PHARMACEUTICAL DOSAGE UNITS |
GB1548022A (en) * | 1976-10-06 | 1979-07-04 | Wyeth John & Brother Ltd | Pharmaceutial dosage forms |
US4139627A (en) * | 1977-10-06 | 1979-02-13 | Beecham Inc. | Anesthetic lozenges |
GB2030042A (en) * | 1978-09-21 | 1980-04-02 | Beecham Group Ltd | Antacid fondant |
NL7906689A (en) * | 1979-09-06 | 1981-03-10 | Dawsonville Corp Nv | TATTOO. |
US4271206A (en) * | 1979-10-26 | 1981-06-02 | General Foods Corporation | Gasified candy having a predetermined shape |
US4273793A (en) * | 1979-10-26 | 1981-06-16 | General Foods Corporation | Apparatus and process for the preparation of gasified confectionaries by pressurized injection molding |
US4473526A (en) * | 1980-01-23 | 1984-09-25 | Eugen Buhler | Method of manufacturing dry-pressed molded articles |
US4292017A (en) * | 1980-07-09 | 1981-09-29 | Doepel Wallace A | Apparatus for compressing tablets |
US4362757A (en) * | 1980-10-22 | 1982-12-07 | Amstar Corporation | Crystallized, readily water dispersible sugar product containing heat sensitive, acidic or high invert sugar substances |
US5002970A (en) * | 1981-07-31 | 1991-03-26 | Eby Iii George A | Flavor masked ionizable zinc compositions for oral absorption |
US4372942A (en) * | 1981-08-13 | 1983-02-08 | Beecham Inc. | Candy base and liquid center hard candy made therefrom |
DE3144678A1 (en) * | 1981-11-10 | 1983-05-19 | Eugen Dipl.-Ing. 8871 Burtenbach Bühler | METHOD AND DEVICE FOR THE PRODUCTION OF MOLDINGS FROM A GIANT CAPABILITY |
JPS58152813A (en) | 1982-03-08 | 1983-09-10 | Sumitomo Chem Co Ltd | Tablet having clear carved seal and its preparation |
US4516335A (en) * | 1982-04-09 | 1985-05-14 | Sanyo Electric Co., Ltd. | Clothes dryer |
US4517205A (en) * | 1983-01-03 | 1985-05-14 | Nabisco Brands, Inc. | Co-deposited two-component hard candy |
US4882167A (en) * | 1983-05-31 | 1989-11-21 | Jang Choong Gook | Dry direct compression compositions for controlled release dosage forms |
US4749575A (en) * | 1983-10-03 | 1988-06-07 | Bio-Dar Ltd. | Microencapsulated medicament in sweet matrix |
US4781714A (en) * | 1983-11-02 | 1988-11-01 | Alza Corporation | Dispenser for delivering thermo-responsive composition |
DE3404108A1 (en) * | 1984-02-07 | 1985-08-14 | Kilian & Co GmbH, 5000 Köln | TABLET PRESS |
US4518335A (en) | 1984-03-14 | 1985-05-21 | Allied Corporation | Dilatant mold and dilatant molding apparatus |
JPS60217106A (en) * | 1984-04-12 | 1985-10-30 | 高橋 信之 | Inorganic-powder freezing molding method |
US4661521A (en) * | 1984-04-30 | 1987-04-28 | Mallinckrodt, Inc. | Direct tableting acetaminophen compositions |
GB8517073D0 (en) * | 1985-07-05 | 1985-08-14 | Hepworth Iron Co Ltd | Pipe pipe couplings &c |
DK8603837A (en) * | 1985-08-13 | 1987-02-14 | ||
US5188840A (en) * | 1985-09-26 | 1993-02-23 | Chugai Seiyaku Kabushiki Kaisha | Slow-release pharmaceutical agent |
US4898733A (en) * | 1985-11-04 | 1990-02-06 | International Minerals & Chemical Corp. | Layered, compression molded device for the sustained release of a beneficial agent |
US5229164A (en) * | 1985-12-19 | 1993-07-20 | Capsoid Pharma Gmbh | Process for producing individually dosed administration forms |
DE3610878A1 (en) | 1986-04-01 | 1987-10-08 | Boehringer Ingelheim Kg | PELLET SHAPES |
US4757090A (en) * | 1986-07-14 | 1988-07-12 | Mallinckrodt, Inc. | Direct tableting acetaminophen compositions |
US4762719A (en) * | 1986-08-07 | 1988-08-09 | Mark Forester | Powder filled cough product |
CA1290526C (en) * | 1986-11-07 | 1991-10-15 | Marianne Wieser | Mold and die operation |
DE3640574A1 (en) | 1986-11-27 | 1988-06-09 | Katjes Fassin Gmbh & Co Kg | METHOD FOR PRODUCING AN EDIBLE PRALINE-SHAPED PRODUCT AND DEVICE FOR IMPLEMENTING THE METHOD |
US4820524A (en) * | 1987-02-20 | 1989-04-11 | Mcneilab, Inc. | Gelatin coated caplets and process for making same |
US4792448A (en) | 1987-06-11 | 1988-12-20 | Pfizer Inc. | Generic zero order controlled drug delivery system |
US4813818A (en) * | 1987-08-25 | 1989-03-21 | Michael Sanzone | Apparatus and method for feeding powdered materials |
US4851226A (en) * | 1987-11-16 | 1989-07-25 | Mcneil Consumer Products Company | Chewable medicament tablet containing means for taste masking |
US4894236A (en) * | 1988-01-12 | 1990-01-16 | Choong-Gook Jang | Direct compression tablet binders for acetaminophen |
US4929446A (en) * | 1988-04-19 | 1990-05-29 | American Cyanamid Company | Unit dosage form |
DE3830353A1 (en) * | 1988-09-07 | 1990-03-15 | Basf Ag | METHOD FOR THE CONTINUOUS PRODUCTION OF SOLID PHARMACEUTICAL FORMS |
US5146730A (en) * | 1989-09-20 | 1992-09-15 | Banner Gelatin Products Corp. | Film-enrobed unitary-core medicament and the like |
DK469989D0 (en) * | 1989-09-22 | 1989-09-22 | Bukh Meditec | PHARMACEUTICAL PREPARATION |
US5169645A (en) * | 1989-10-31 | 1992-12-08 | Duquesne University Of The Holy Ghost | Directly compressible granules having improved flow properties |
US5223266A (en) * | 1990-01-24 | 1993-06-29 | Alza Corporation | Long-term delivery device with early startup |
JP2801728B2 (en) * | 1990-03-13 | 1998-09-21 | フロイント産業株式会社 | Sugar-coated product and method for producing the same |
US4983394A (en) * | 1990-05-03 | 1991-01-08 | Warner-Lambert Company | Flavor enhancing and medicinal taste masking agent |
US4980169A (en) * | 1990-05-03 | 1990-12-25 | Warner-Lambert Company | Flavor enhancing and increasing efficacy of cough drops |
US5213738A (en) * | 1990-05-15 | 1993-05-25 | L. Perrigo Company | Method for making a capsule-shaped tablet |
US5089270A (en) * | 1990-05-15 | 1992-02-18 | L. Perrigo Company | Capsule-shaped tablet |
US5075114A (en) * | 1990-05-23 | 1991-12-24 | Mcneil-Ppc, Inc. | Taste masking and sustained release coatings for pharmaceuticals |
EP0461547A1 (en) | 1990-06-15 | 1991-12-18 | Swatch Ag | Watch with time zone display elements fitted to the bracelet thereof and set of such elements to be mounted on such a watch |
US5464631A (en) * | 1990-06-27 | 1995-11-07 | Warner-Lambert Company | Encapsulated dosage forms |
US5228916A (en) * | 1990-11-05 | 1993-07-20 | Mcneil-Ppc, Inc. | Apparatus for creating a gelatin coating |
US5538125A (en) * | 1990-11-05 | 1996-07-23 | Mcneil-Ppc, Inc. | Indexing and feeding systems for apparatus for gelatin coating tablets |
US5503673A (en) * | 1990-11-05 | 1996-04-02 | Mcneil-Ppc, Inc | Apparatus for dip coating product |
US5436026A (en) * | 1990-11-05 | 1995-07-25 | Mcneil-Ppc, Inc. | Discharge and transfer system for apparatus for gelatin coating tablets |
US5378475A (en) | 1991-02-21 | 1995-01-03 | University Of Kentucky Research Foundation | Sustained release drug delivery devices |
NZ241613A (en) * | 1991-02-27 | 1993-06-25 | Janssen Pharmaceutica Nv | Highlighting intagliations in tablets |
CA2068402C (en) * | 1991-06-14 | 1998-09-22 | Michael R. Hoy | Taste mask coatings for preparation of chewable pharmaceutical tablets |
US5200191A (en) * | 1991-09-11 | 1993-04-06 | Banner Gelatin Products Corp. | Softgel manufacturing process |
US5200195A (en) * | 1991-12-06 | 1993-04-06 | Alza Corporation | Process for improving dosage form delivery kinetics |
US5579338A (en) * | 1992-06-29 | 1996-11-26 | Mitsubishi Denki Kabushiki Kaisha | Spread spectrum receiver using partial correlations |
US5317849A (en) * | 1992-08-07 | 1994-06-07 | Sauter Manufacturing Corporation | Encapsulation equipment and method |
JPH07507564A (en) | 1992-09-30 | 1995-08-24 | ファイザー・インク. | Articles containing a core and a coating of variable thickness |
TW272942B (en) * | 1993-02-10 | 1996-03-21 | Takeda Pharm Industry Co Ltd | |
US5391378A (en) * | 1993-02-22 | 1995-02-21 | Elizabeth-Hata International, Inc. | Two-part medicinal tablet and method of manufacture |
JP2524955B2 (en) * | 1993-04-22 | 1996-08-14 | トーワ株式会社 | Method and apparatus for resin sealing molding of electronic parts |
DE69425453T2 (en) * | 1993-04-23 | 2001-04-12 | Novartis Ag, Basel | Drug delivery device with controlled release |
ZA944949B (en) | 1993-07-12 | 1995-04-05 | Smithkline Beecham Corp | Matrix-entrapped beadlet preparation |
US5622719A (en) * | 1993-09-10 | 1997-04-22 | Fuisz Technologies Ltd. | Process and apparatus for making rapidly dissolving dosage units and product therefrom |
DE4341442C2 (en) * | 1993-12-04 | 1998-11-05 | Lohmann Therapie Syst Lts | Device for the controlled release of active substances and their use |
IT1274034B (en) * | 1994-07-26 | 1997-07-14 | Applied Pharma Res | PHARMACEUTICAL COMPOSITIONS BASED ON RUBBER TO BE CHEWED AND PROCEDURE FOR THEIR PREPARATION |
DE4446468A1 (en) * | 1994-12-23 | 1996-06-27 | Basf Ag | Process for the production of coated tablets |
DK0824344T3 (en) * | 1995-05-09 | 2005-08-15 | Phoqus Pharmaceuticals Ltd | Powdered composition for electrostatic coating of pharmaceutical substrates |
US5578336A (en) | 1995-06-07 | 1996-11-26 | Monte; Woodrow C. | Confection carrier for vitamins, enzymes, phytochemicals and ailmentary vegetable compositions and method of making |
US6185356B1 (en) | 1995-06-27 | 2001-02-06 | Lumitex, Inc. | Protective cover for a lighting device |
US5614207A (en) * | 1995-06-30 | 1997-03-25 | Mcneil-Ppc, Inc. | Dry mouth lozenge |
GB9517031D0 (en) | 1995-08-19 | 1995-10-25 | Procter & Gamble | Confection compositions |
DE19539361A1 (en) | 1995-10-23 | 1997-04-24 | Basf Ag | Process for the preparation of multilayer, solid pharmaceutical forms for oral or rectal administration |
DE19710213A1 (en) * | 1997-03-12 | 1998-09-17 | Basf Ag | Process for the manufacture of solid combination dosage forms |
US5837301A (en) * | 1997-04-28 | 1998-11-17 | Husky Injection Molding Systems Ltd. | Injection molding machine having a high speed turret |
US6149939A (en) * | 1997-05-09 | 2000-11-21 | Strumor; Mathew A. | Healthful dissolvable oral tablets, and mini-bars |
WO1999002136A1 (en) | 1997-07-09 | 1999-01-21 | Peter Greither | Method and device for producing a multi-layer, physiologically tolerated presentation form |
US5942034A (en) * | 1997-07-24 | 1999-08-24 | Bayer Corporation | Apparatus for the gelatin coating of medicaments |
US6432442B1 (en) | 1998-02-23 | 2002-08-13 | Mcneil-Ppc, Inc. | Chewable product |
US6365185B1 (en) * | 1998-03-26 | 2002-04-02 | University Of Cincinnati | Self-destructing, controlled release peroral drug delivery system |
US6372254B1 (en) | 1998-04-02 | 2002-04-16 | Impax Pharmaceuticals Inc. | Press coated, pulsatile drug delivery system suitable for oral administration |
US6365183B1 (en) | 1998-05-07 | 2002-04-02 | Alza Corporation | Method of fabricating a banded prolonged release active agent dosage form |
WO1999059552A1 (en) | 1998-05-15 | 1999-11-25 | Chugai Seiyaku Kabushiki Kaisha | Regulated release preparations |
US6103257A (en) * | 1998-07-17 | 2000-08-15 | Num-Pop, Inc. | System for delivering pharmaceuticals to the buccal mucosa |
US6200590B1 (en) * | 1998-08-10 | 2001-03-13 | Naphcare, Inc. | Controlled, phased-release suppository and its method of production |
DE19840256A1 (en) * | 1998-09-03 | 2000-03-09 | Basf Ag | Widely applicable, continuous method for preparing coated solid dosage forms, comprises extruding mixture of drug and thermoplastic binder then applying coating composition in liquid or vapor form |
US5997905A (en) * | 1998-09-04 | 1999-12-07 | Mcneil-Ppc | Preparation of pharmaceutically active particles |
US6174547B1 (en) * | 1999-07-14 | 2001-01-16 | Alza Corporation | Dosage form comprising liquid formulation |
US6602521B1 (en) | 1998-09-29 | 2003-08-05 | Impax Pharmaceuticals, Inc. | Multiplex drug delivery system suitable for oral administration |
US6248361B1 (en) * | 1999-02-26 | 2001-06-19 | Integ, Ltd. | Water-soluble folic acid compositions |
US6248760B1 (en) * | 1999-04-14 | 2001-06-19 | Paul C Wilhelmsen | Tablet giving rapid release of nicotine for transmucosal administration |
DE19941997A1 (en) | 1999-09-02 | 2001-03-08 | Gunther Meinhardt Voss | Method and device for producing a tablet or the like |
-
2001
- 2001-09-28 US US09/966,939 patent/US6837696B2/en not_active Expired - Lifetime
-
2002
- 2002-09-26 WO PCT/US2002/030614 patent/WO2003028990A1/en active IP Right Grant
- 2002-09-26 DE DE60230886T patent/DE60230886D1/en not_active Expired - Lifetime
- 2002-09-26 AU AU2002337711A patent/AU2002337711B2/en not_active Ceased
- 2002-09-26 MX MXPA04002971A patent/MXPA04002971A/en active IP Right Grant
- 2002-09-26 AT AT02773600T patent/ATE420762T1/en not_active IP Right Cessation
- 2002-09-26 HU HU0401653A patent/HUP0401653A2/en unknown
- 2002-09-26 ES ES02773600T patent/ES2319971T3/en not_active Expired - Lifetime
- 2002-09-26 JP JP2003532282A patent/JP2005504639A/en active Pending
- 2002-09-26 CA CA2462008A patent/CA2462008C/en not_active Expired - Fee Related
- 2002-09-26 KR KR1020047004675A patent/KR100861670B1/en not_active IP Right Cessation
- 2002-09-26 CN CNB028216733A patent/CN100488763C/en not_active Expired - Fee Related
- 2002-09-26 PL PL02369169A patent/PL369169A1/en unknown
- 2002-09-26 EP EP02773600A patent/EP1429915B1/en not_active Expired - Lifetime
- 2002-09-26 NZ NZ532095A patent/NZ532095A/en not_active IP Right Cessation
- 2002-09-28 CN CNA028235428A patent/CN1946378A/en active Pending
- 2002-09-28 US US10/476,503 patent/US20050019376A1/en not_active Abandoned
-
2004
- 2004-04-26 ZA ZA200403166A patent/ZA200403166B/en unknown
- 2004-04-26 ZA ZA200403167A patent/ZA200403167B/en unknown
- 2004-04-27 NO NO20041716A patent/NO20041716L/en not_active Application Discontinuation
-
2009
- 2009-01-27 US US12/360,579 patent/US20090186082A1/en not_active Abandoned
Patent Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4173626A (en) * | 1978-12-11 | 1979-11-06 | Merck & Co., Inc. | Sustained release indomethacin |
US4523021A (en) * | 1981-05-12 | 1985-06-11 | Imperial Chemical Industries Plc | 1'-Substituted-spiro[pyrrolidine-3,3'-indoline]-2,2',5-triones |
US4572833A (en) * | 1982-08-13 | 1986-02-25 | A/S Alfred Benzon | Method for preparing a pharmaceutical controlled release composition |
US4874614A (en) * | 1985-03-25 | 1989-10-17 | Abbott Laboratories | Pharmaceutical tableting method |
US4764378A (en) * | 1986-02-10 | 1988-08-16 | Zetachron, Inc. | Buccal drug dosage form |
US4863742A (en) * | 1986-06-20 | 1989-09-05 | Elan Corporation Plc | Controlled absorption pharmaceutical composition |
US4980170A (en) * | 1988-06-30 | 1990-12-25 | Klinge Pharma Gmbh | Pharmaceutical formulation as well as a process for its preparation |
US4906478A (en) * | 1988-12-12 | 1990-03-06 | Valentine Enterprises, Inc. | Simethicone/calcium silicate composition |
US4984240A (en) * | 1988-12-22 | 1991-01-08 | Codex Corporation | Distributed switching architecture for communication module redundancy |
US5032406A (en) * | 1989-02-21 | 1991-07-16 | Norwich Eaton Pharmaceuticals, Inc. | Dual-action tablet |
US5100675A (en) * | 1989-05-03 | 1992-03-31 | Schering Corporation | Sustained release tablet comprising loratadine, ibuprofen and pseudoephedrine |
US5275822A (en) * | 1989-10-19 | 1994-01-04 | Valentine Enterprises, Inc. | Defoaming composition |
US5229134A (en) * | 1989-12-05 | 1993-07-20 | Laboratories Smith Kline & French | Pharmaceutical compositions |
US5158777A (en) * | 1990-02-16 | 1992-10-27 | E. R. Squibb & Sons, Inc. | Captopril formulation providing increased duration of activity |
US5286497A (en) * | 1991-05-20 | 1994-02-15 | Carderm Capital L.P. | Diltiazem formulation |
US5912013A (en) * | 1991-07-23 | 1999-06-15 | Shire Laboratories, Inc. | Advanced drug delivery system and method of treating psychiatric, neurological and other disorders with carbamazepine |
US5738874A (en) * | 1992-09-24 | 1998-04-14 | Jagotec Ag | Pharmaceutical tablet capable of liberating one or more drugs at different release rates |
US5415868A (en) * | 1993-06-09 | 1995-05-16 | L. Perrigo Company | Caplets with gelatin cover and process for making same |
US5397574A (en) * | 1993-10-04 | 1995-03-14 | Andrx Pharmaceuticals, Inc. | Controlled release potassium dosage form |
US5830502A (en) * | 1994-10-28 | 1998-11-03 | Alza Corporation | Injection-molded dosage form |
US5558879A (en) * | 1995-04-28 | 1996-09-24 | Andrx Pharmaceuticals, Inc. | Controlled release formulation for water soluble drugs in which a passageway is formed in situ |
US5814336A (en) * | 1995-05-17 | 1998-09-29 | The Procter & Gamble Company | Pharmaceutical dosage form for colonic delivery |
US5807579A (en) * | 1995-11-16 | 1998-09-15 | F.H. Faulding & Co. Limited | Pseudoephedrine combination pharmaceutical compositions |
US6294200B1 (en) * | 1996-02-06 | 2001-09-25 | Jagotec Ag | Pharmaceutical tablet suitable to deliver the active substance in subsequent and predeterminable times |
US5824338A (en) * | 1996-08-19 | 1998-10-20 | L. Perrigo Company | Caplet and gelatin covering therefor |
US5972389A (en) * | 1996-09-19 | 1999-10-26 | Depomed, Inc. | Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter |
US6103260A (en) * | 1997-07-17 | 2000-08-15 | Mcneil-Ppc, Inc. | Simethicone/anhydrous calcium phosphate compositions |
US6322819B1 (en) * | 1998-10-21 | 2001-11-27 | Shire Laboratories, Inc. | Oral pulsed dose drug delivery system |
US6270805B1 (en) * | 1998-11-06 | 2001-08-07 | Andrx Pharmaceuticals, Inc. | Two pellet controlled release formulation for water soluble drugs which contains an alkaline metal stearate |
US20020102309A1 (en) * | 1999-09-14 | 2002-08-01 | Jane C. I. Hirsh | Controlled release formulation for administration of an anti-inflammatory naphthalene derivative |
US20020028240A1 (en) * | 2000-04-17 | 2002-03-07 | Toyohiro Sawada | Timed-release compression-coated solid composition for oral administration |
US20030066068A1 (en) * | 2001-09-28 | 2003-04-03 | Koninklijke Philips Electronics N.V. | Individual recommender database using profiles of others |
US20030068367A1 (en) * | 2001-09-28 | 2003-04-10 | Sowden Harry S. | Systems, methods and apparatuses for manufacturing dosage forms |
US6742646B2 (en) * | 2001-09-28 | 2004-06-01 | Mcneil-Ppc, Inc. | Systems, methods and apparatuses for manufacturing dosage forms |
US6837696B2 (en) * | 2001-09-28 | 2005-01-04 | Mcneil-Ppc, Inc. | Apparatus for manufacturing dosage forms |
US6982094B2 (en) * | 2001-09-28 | 2006-01-03 | Mcneil-Ppc, Inc. | Systems, methods and apparatuses for manufacturing dosage forms |
US7122143B2 (en) * | 2001-09-28 | 2006-10-17 | Mcneil-Ppc, Inc. | Methods for manufacturing dosage forms |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140206587A1 (en) * | 2011-08-24 | 2014-07-24 | Honggang Chen | Benefit agent delivery particles comprising non-ionic polysaccharides |
US8399011B1 (en) * | 2012-08-10 | 2013-03-19 | Magnifica Inc. | Oral particle compositions containing a core and an acid-soluble coat |
US20150093439A1 (en) * | 2013-09-27 | 2015-04-02 | Mcneil-Ppc, Inc. | Compression coated pulsatile release compositions |
Also Published As
Publication number | Publication date |
---|---|
CN100488763C (en) | 2009-05-20 |
JP2005504639A (en) | 2005-02-17 |
ES2319971T3 (en) | 2009-05-18 |
US20050019376A1 (en) | 2005-01-27 |
WO2003028990A1 (en) | 2003-04-10 |
NZ532095A (en) | 2005-12-23 |
CN1946378A (en) | 2007-04-11 |
EP1429915B1 (en) | 2009-01-14 |
ZA200403167B (en) | 2005-05-27 |
CN1578724A (en) | 2005-02-09 |
ZA200403166B (en) | 2005-05-18 |
ATE420762T1 (en) | 2009-01-15 |
HUP0401653A2 (en) | 2004-11-29 |
AU2002337711B2 (en) | 2008-06-05 |
US6837696B2 (en) | 2005-01-04 |
KR20040039458A (en) | 2004-05-10 |
US20030068367A1 (en) | 2003-04-10 |
PL369169A1 (en) | 2005-04-18 |
CA2462008A1 (en) | 2003-04-10 |
KR100861670B1 (en) | 2008-10-07 |
DE60230886D1 (en) | 2009-03-05 |
EP1429915A1 (en) | 2004-06-23 |
MXPA04002971A (en) | 2005-06-20 |
CA2462008C (en) | 2010-08-31 |
NO20041716L (en) | 2004-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1429742B1 (en) | Modified release dosage forms | |
US20090186082A1 (en) | Method of manufacturing modified release dosage forms | |
CA2499882C (en) | Modified release dosage form with two cores | |
US20030228368A1 (en) | Edible solid composition and dosage form | |
CA2500312A1 (en) | Modified release dosage form | |
AU2002337772A1 (en) | Modified release dosage forms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |