US20070112393A1 - Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders - Google Patents
Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders Download PDFInfo
- Publication number
- US20070112393A1 US20070112393A1 US11/634,523 US63452306A US2007112393A1 US 20070112393 A1 US20070112393 A1 US 20070112393A1 US 63452306 A US63452306 A US 63452306A US 2007112393 A1 US2007112393 A1 US 2007112393A1
- Authority
- US
- United States
- Prior art keywords
- neural stimulation
- patient
- symptoms
- subset
- neural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36067—Movement disorders, e.g. tremor or Parkinson disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
- A61N1/0534—Electrodes for deep brain stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36082—Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36167—Timing, e.g. stimulation onset
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36167—Timing, e.g. stimulation onset
- A61N1/36178—Burst or pulse train parameters
Definitions
- the present disclosure relates generally to systems and methods for treating symptoms of Parkinson's Disease and/or other movement disorders. More particularly, the present disclosure describes a system and method for enhancing or optimizing the effectiveness of neural stimulation in treating the symptoms of movement disorders such as Parkinson's Disease.
- a wide variety of mental and physical processes are controlled or influenced by neural activity in particular regions of the brain.
- various physical or cognitive functions are directed or affected by neural activity within the sensory or motor cortices.
- particular areas of the brain appear to have distinct functions.
- the areas of the occipital lobes relate to vision; the regions of the left interior frontal lobes relate to language; portions of the cerebral cortex appear to be consistently involved with conscious awareness, memory, and intellect; and particular regions of the cerebral cortex as well as the basal ganglia, the thalamus, and the motor cortex cooperatively interact to facilitate motor function control.
- Parkinson's Disease is related to the degeneration or death of dopamine producing neurons in the substantia nigra region of the basal ganglia in the brain.
- Dopamine is neurotransmitter that transmits signals between areas of the brain.
- the reduction in dopamine causes abnormal neural activity that results in a chronic, progressive deterioration of motor function control.
- Conservative estimates indicate that PD may affect more than one million individuals in the United States alone.
- PD patients typically exhibit one or more of four primary symptoms.
- One primary symptom is a tremor in an extremity (e.g., a hand) that occurs while the extremity is at rest.
- Other primary symptoms include a generalized slowness of movement (bradykinesia); increased muscle rigidity or stiffness (rigidity); and gait or balance problems (postural dysfunction).
- PD patients may exhibit secondary symptoms including: difficulty initiating or resuming movements; loss of fine motor skills; lack of arm swing on the affected side of the body while walking; foot drag on the affected side of the body; decreased facial expression; voice and/or speech changes; cognitive disorders; feelings of depression or anxiety; and/or other symptoms.
- Drug treatments or therapies may involve, for example, the administration of a dopamine precursor that is converted to dopamine within the central nervous system (i.e., Levodopa (L-dopa)). Other types of drug therapies are also available. Unfortunately, drug therapies frequently become less effective or ineffective over time for an undesirably large patient population. A PD patient may require multiple drugs in combination to extend the time period of efficacy of drug therapies.
- Drug treatments additionally have a significant likelihood of inducing undesirable physical side effects; motor function complications such as uncontrollable involuntary movements (dyskinesias) are a particularly common side effect. Furthermore, drug treatments may induce undesirable cognitive side effects such as confusion and/or hallucinations.
- Ablative surgical intervention for PD typically involves the destruction of one or more neural structures within the basal ganglia or thalamus that have become overactive because of the lack of dopamine.
- ablative surgical intervention is a very time consuming and highly invasive procedure. Potential complications associated with the procedure include risk of hemorrhage, stroke, and/or paralysis.
- PD is a progressive disease, multiple deep brain surgeries may be required as symptoms progressively worsen over time.
- ablative surgical intervention may improve a PD patient's motor function, it is not likely to completely restore normal motor function.
- ablative surgical intervention permanently destroys neural tissue, the effects of such intervention cannot be readily adjusted or “fine tuned” over time.
- Neural stimulation treatments have shown promising results for reducing some of the symptoms associated with PD.
- Neural activity is governed by electrical impulses or “action potentials” generated in and propagated by neurons. While in a quiescent state, a neuron is negatively polarized and exhibits a resting membrane potential that is typically between ⁇ 70 and ⁇ 60 mV.
- action potentials generated in and propagated by neurons. While in a quiescent state, a neuron is negatively polarized and exhibits a resting membrane potential that is typically between ⁇ 70 and ⁇ 60 mV.
- synapses Through chemical connections known as synapses, any given neuron receives excitatory and inhibitory input signals or stimuli from other neurons.
- a neuron integrates the excitatory and inhibitory input signals it receives, and generates or fires a series of action potentials in the event that the integration exceeds a threshold potential.
- a neural firing threshold for example, may be approximately ⁇ 55 mV. Action potentials propagate to the neuron's
- Neural activity in the brain can be influenced by neural stimulation, which involves the application of electrical and/or magnetic stimuli to one or more target neural populations within a patient using a waveform generator or other type of device.
- Various neural functions can thus be promoted or disrupted by applying an electrical current to one or more regions of the brain.
- researchers have attempted to treat certain neurological conditions, including PD, using electrical or magnetic stimulation signals to control or affect brain functions.
- Deep Brain Stimulation is a stimulation therapy that has been used as an alternative to drug treatments and ablative surgical therapies.
- one or more electrodes are surgically implanted into the brain proximate to deep brain or subcortical neural structures.
- the electrodes are positioned in or proximate to the ventrointermediate nucleus of the thalamus; basal ganglia structures such as the globus pallidus internalis (GPi); or the Subthalamic Nucleus (STN).
- the location of the stimulation site for the electrodes depends upon the symptoms that a patient exhibits and the severity of the symptoms.
- a pulse generator delivers a continuous or essentially continuous electrical stimulation signal having a pulse repetition frequency of approximately 100 Hz to each of two deep brain electrodes.
- the electrodes are bilaterally positioned on the left and right sides of the brain relative to particular neural structures such as those indicated above.
- U.S. Pat. No. 5,883,709 discloses one conventional DBS system for treating movement disorders.
- DBS therapies may significantly reduce one or more PD symptoms, particularly when combined with drug treatments, they are highly invasive procedures.
- configuring a DBS system to properly function within a patient requires two time consuming, highly invasive surgical procedures for implanting the DBS electrodes. Each such surgical procedure has essentially the same risks as those described above for ablative surgical intervention.
- DBS may not provide relief from some movement disorders.
- MCS Motor Cortex Stimulation
- One MCS system includes a pulse generator connected to a strip electrode that is surgically implanted over a portion of only the motor cortex (precentral gyrus).
- the use of MCS to treat PD symptoms is described in Canavero, Sergro, Extradural Motor Cortex Stimulation for Advanced Parkinson's Disease: Case Report , Movement Disorders (Vol. 15, No. 1, 2000).
- MCS involves the application of stimulation signals to surface regions of the brain rather than deep neural structures
- electrode implantation procedures for MCS are significantly less invasive and time consuming than those for DBS.
- MCS may be a safer and simpler alternative to DBS for treating PD symptoms.
- Present MCS techniques fail to address or adequately consider a variety of factors that may enhance or optimize the extent to which a patient experiences short term and/or long term relief from PD symptoms.
- FIG. 1 is a schematic illustration of a neural stimulation system for treating symptoms of Parkinson's Disease and/or other neurological disorders according to an embodiment of the invention.
- FIG. 2 is a graph illustrating several stimulation parameters that may define, describe, or characterize stimulation signals.
- FIG. 3 is a flowchart illustrating various methods for refining, enhancing, or optimizing neural stimulation therapy for treating symptoms of Parkinson's Disease and/or other movement disorders according to an embodiment of the invention.
- FIG. 4 is a flowchart illustrating various methods for establishing, adjusting, or adapting a test protocol according to an embodiment of the invention.
- FIG. 5 is a flowchart illustrating various methods for determining neural stimulation parameters according to an embodiment of the invention.
- FIG. 6 is a flowchart illustrating various methods for modifying, adjusting, or adapting neural stimulation therapy in view of a likelihood or possibility of a lasting or long term neuroplastic change occurring within a patient over time.
- the following disclosure describes neural stimulation systems and methods for enhancing or optimizing the extent to which a patient may experience relief from symptoms associated with Parkinson's Disease (PD), other movement or motor disorders, and/or various neurological disorders that may have multiple types of symptoms.
- symptoms may include, for example, tremor, rigidity, bradykinesia, postural dysfunction, spasticity, speech deficits, visual disturbances, olfactory deficits, cognitive deficits, memory deficits, emotional or psychiatric disturbances, paresis, pain and/or other symptoms.
- neural stimulation may respond to neural stimulation in different manners, and/or across different time scales.
- neural stimulation optimized to beneficially affect tremor and/or rigidity to a significant degree may provide less significant or minimal benefit relative to other symptoms such as postural dysfunction.
- neural stimulation that has a nearly immediate or reasonably rapid effect upon tremor and/or rigidity may have a significantly or greatly delayed effect upon other symptoms such as bradykinesia.
- Systems and/or methods described herein may facilitate enhancement or optimization of neural stimulation therapy for treating multiple patient symptoms that may exhibit different treatment response characteristics and/or different response timeframes.
- Neural stimulation may facilitate or effectuate neuroplastic changes within a patient's brain, for example, in a manner described in U.S. application Ser. No. 09/802,808, which is incorporated herein by reference.
- Neuroplastic changes can include adaptive structural changes or reorganizations in particular brain regions, which may result in enhancement or restoration of one or more functional abilities (i.e., physical, sensory, and/or cognitive functions) associated with such brain regions, possibly on a long term or lasting basis.
- Application of neural stimulation to a patient in accordance with the principles described herein may increase the likelihood that neuroplastic changes can occur to facilitate at least partial recovery of diminished or lost functionality associated with or giving rise to one or more patient symptoms. Such functional recovery may itself reduce the extent to which the patient requires neural stimulation and/or other therapy on an ongoing basis.
- FIG. 1 is a schematic illustration of a neural stimulation system 100 for treating symptoms of PD and/or other disorders according to an embodiment of the invention.
- the neural stimulation system 100 comprises a pulse generator 110 a configured to deliver stimulation signals to a patient 190 using a set of electrodes 140 .
- the pulse generator 110 a may be coupled to the set of electrodes 140 by one or more leads 112 .
- the pulse generator 110 a may further be configured for wireless and/or wire-based communication with a programming unit 160 .
- the system 100 may further include one or more patient monitoring units 180 configured to detect, monitor, indicate, measure, and/or assess the severity of particular types of patient symptoms.
- the set of electrodes 140 may include one or more cortical electrodes 142 configured to provide, deliver, and/or apply stimulation signals to particular cortical regions of the patient's brain 192 and/or neural populations synaptically connected and/or proximate thereto.
- a cortical electrode 142 may include one or more electrically conductive contacts 144 carried by a substrate 146 in a manner understood by those skilled in the art.
- the set of electrodes 140 may alternatively or additionally include one or more penetrating, depth, and/or deep brain electrodes.
- the set of electrodes 140 may further include or provide one or more stimulation signal return electrodes (i.e., electrodes that provide a current return path) that may be positioned relative to a variety of locations within and/or upon the patient's body.
- the characteristics and/or placement of the set of electrodes 140 may depend upon the nature of patient's underlying disorder(s) and/or the type and/or severity of symptoms that the patient 190 experiences or exhibits.
- one or more portions of the set of electrodes 140 may be surgically implanted to deliver stimulation signals to target neural populations within the patient's brain in a manner described in U.S. Provisional Application No. 60/432,073, entitled “System and Method for Treating Parkinson's Disease and Other Movement Disorders,” filed on Dec. 9, 2002 (Perkins Coie Docket No. 33734.8040US00).
- the pulse generator 110 a may comprise hardware and/or software for generating and outputting stimulation signals to the set of electrodes 140 in accordance with internal instruction sequences and/or in response to control signals, commands, instructions, and/or other information received from the programming unit 160 .
- the pulse generator 110 a may include a power supply, a pulse unit, a control unit, a programmable computer medium, and a communication unit.
- the power supply may comprise a battery or other type of power storage device.
- the pulse unit may comprise circuitry for generating pulse sequences that may be defined or characterized in accordance with various stimulation signal parameters, which are further described below with reference to FIG. 2 .
- the control unit may comprise hardware and/or software configured to direct or manage the local operation of the pulse generator 110 a .
- the communication unit may comprise a user interface that facilitates communication with devices external to the pulse generator 110 a , for example, through telemetric signal transfer.
- the programmable computer medium may comprise hardware and/or memory resident software.
- the programmable computer medium may store operational mode information and/or program instruction sequences that may be selected and/or specified in accordance with information received from the programming unit 160 .
- the pulse generator 110 a may be configured to deliver stimulation signals to particular electrodes 142 and/or specific electrical contacts 144 within the set of electrodes 140 on a selective basis at any given time, in a manner identical, essentially identical, or analogous to that described in U.S. application Ser. No. 09/978,134.
- Each element of the pulse generator 110 a may be incorporated or embedded into a surgically implantable case or housing.
- the pulse generator 110 a may be surgically implanted into the patient 190 in a subclavicular location.
- a pulse generator 110 b may be surgically implanted above the patient's neck, for example, in a skull location posterior to the patient's ear and/or proximate to an electrode implantation site.
- a surgically formed tunnel or path may route the set of leads 112 that couple the pulse generator 110 a , 110 b to the set of electrodes 140 , in a manner understood by those skilled in the art.
- one or more electrically conductive portions of the pulse generator's case or housing may serve as a return electrode for electrical current.
- the programming unit 160 may comprise a device configured to communicate control signals, commands, instructions, and/or other information to the pulse generator 110 a .
- the programming unit 160 may additionally be configured to receive information from the pulse generator 110 a .
- Communication between the programming unit 160 and the pulse generator 110 a may facilitate or effectuate specification, selection, and/or identification of operational modes, instruction sequences, and/or procedures for treating symptoms of PD and/or other neurological disorders in accordance with the present invention, as described in detail below with reference to FIGS. 3 through 6 .
- the programming unit 160 includes a processing unit 162 , a programmable computer medium 164 , and a communication unit 166 .
- the programmable computer medium 164 may store an operating system, program instructions, and/or data, and may comprise various types of hardware and memory resident software, including volatile and/or nonvolatile memory as well as one or more data storage devices.
- the communication unit 166 may include a wire-based and/or wireless telemetry interface 170 that employs magnetic, radio frequency (RF), and/or optical signaling techniques to communicate with the pulse generator 110 a .
- the communication unit 166 may additionally or alternatively include one or more wire-based and/or wireless interfaces that facilitate communication with other devices such as a computer.
- a patient monitoring unit 180 may comprise essentially any type of device, subsystem, and/or system configured to detect, monitor, indicate, measure, and/or assess the severity of one or more types of patient symptoms associated with PD and/or other neurological disorders.
- a patient monitoring unit 180 may comprise a motion detection system configured to detect patient movement associated with tremor.
- a motion detection system may include light emitting and/or detecting devices and/or accelerometers coupled to particular patient extremities.
- a patient monitoring unit 180 may comprise an Electromyography (EMG) system that includes a set of surface or depth electrodes positioned relative to particular muscle groups for detecting electrical signals corresponding to muscle fiber innervation.
- EMG Electromyography
- a patient monitoring unit 180 may comprise an Electroencephalograpy (EEG) system.
- a patient monitoring unit 180 may comprise a neural imaging system.
- a patient monitoring unit 180 may comprise one or more electrodes and/or probes (e.g., cerebral bloodflow monitors) positioned upon, proximate, and/or within given target neural populations, and associated hardware and/or software for detecting, presenting, and/or analyzing signals received therefrom.
- electrodes and/or probes e.g., cerebral bloodflow monitors
- stimulation signals may comprise electromagnetic pulse sequences. Any given pulse sequence may comprise at least one, and possibly multiple, pulse trains, which may be separated by quiescent intervals.
- FIG. 2 is a graph illustrating several stimulation parameters that may define, describe, or characterize a pulse train.
- a stimulus start time t 0 defines an initial point at which a pulse train is applied to one or more elements within the set of electrodes 140 .
- the pulse train may be a biphasic waveform comprising a series of biphasic pulses, and which may be defined, characterized, or described by parameters including a pulse width t 1 for a first pulse phase; a pulse width t 2 for a second pulse phase; and a pulse width t 3 for one or more biphasic pulses.
- the parameters can also include a pulse repetition rate 1/t 4 corresponding to a pulse repetition frequency; a pulse duty cycle equal to t 3 divided by t 4 ; a pulse burst time t 5 that defines a number of pulses in a pulse train; and/or a pulse train repetition rate t 6 .
- Other parameters include a peak current intensity or amplitude I 1 for a first pulse phase and a peak current intensity I 2 for a second pulse phase.
- the pulse width of successive pulses and/or successive pulse phases may vary, such that the pulse repetition frequency within a pulse train and/or a pulse sequence is a function of time.
- a pulse train having a frequency that varies in time may give rise to a “chirped” frequency profile.
- the pulse intensity or amplitude may decay during the first and/or second pulse phases, and the extent of such decay may differ across successive or subsequent pulse phases.
- a pulse may be a charge-balanced waveform, and that in an alternate embodiment, pulses can be monophasic or polyphasic.
- Additional stimulation parameters may specify manners in which pulse trains are applied to selected configurations of elements within the set of electrodes 140 , such as particular electrodes 142 and/or contacts 144 , at any given time.
- a test protocol may define or specify neural stimulation parameters associated with one or more pulse sequences to be applied to a patient 190 across or within a given test period duration that may include one or more neural stimulation delivery periods and possibly one or more quiescent periods during which the patient 190 receives no neural stimulation.
- a test protocol may further define or specify a spatial and/or temporal distribution of elements within the set of electrodes 140 to which neural stimulation may be applied during one or more portions of the test period; and corresponding signal polarities corresponding to particular elements within the set of electrodes 140 relative to one or more portions of the test period.
- Neural stimulation delivered in accordance with a test protocol comprises a test therapy.
- FIG. 3 is a flowchart illustrating various methods for refining, enhancing, or optimizing neural stimulation therapy for treating symptoms of PD and/or other neurological disorders according to an embodiment of the invention.
- a method 200 includes an identification procedure 202 that involves identification of one or more patient symptoms to which neural stimulation therapy, possibly in conjunction with one or more adjunctive therapies, may be directed.
- the method 200 may also include a symptom selection procedure 204 that involves selection or consideration of a first, a next, or an additional subset of patient symptoms to which neural stimulation therapy may be directed.
- the symptom selection procedure 204 may facilitate initial selection of symptoms expected to rapidly respond to neural stimulation, such as tremor and/or rigidity, followed by selection of other symptoms such as bradykinesia that may respond more slowly.
- the method 200 may further include a test protocol management procedure 206 that involves establishing, adjusting, and/or adapting a test protocol that specifies or defines a test therapy intended to be applied to the patient 190 for a given test period.
- the test protocol may specify or define neural stimulation parameters corresponding to the test therapy, and may also specify parameters corresponding to one or more adjunctive therapies such as drug therapies.
- the method 200 may additionally include a test delivery procedure 208 that involves application or delivery of the test therapy to the patient 190 in accordance with the test protocol; and an observation procedure 210 that involves observation, monitoring, and/or measuring of patient symptoms at one or more times in association with and/or following the delivery procedure 208 .
- the observation procedure 210 may involve one or more patient monitoring units 180 , and/or direct human observation of the patient 190 .
- the method 200 may further include an evaluation procedure 212 involving determination of an extent to which one or more patient symptoms currently under consideration have improved or changed as a result of the most recently applied test therapy.
- the evaluation procedure 212 may involve one or more patient monitoring units 180 and/or direct human evaluation of the patient 190 .
- the method 200 may return to the test protocol management procedure 206 .
- the method 200 may return to the symptom selection procedure 204 .
- the method 200 may include an ongoing treatment delivery procedure 218 that involves application of an arrived-at ongoing therapy to the patient in accordance with an ongoing, essentially ongoing, or generally ongoing treatment protocol.
- the ongoing treatment protocol may correspond to or be based upon a previously considered test protocol, and may involve one or more adjunctive therapies.
- the ongoing treatment protocol may be identical or essentially identical to a recently considered test protocol, with the exception that an ongoing treatment duration corresponding to the ongoing treatment protocol may be significantly longer than that of the test period corresponding to such a test therapy.
- the method 200 may also include a reevaluation procedure 220 that involves a one-time, occasional, or periodic reevaluation, adjustment, and/or adaptation of a most recent ongoing treatment protocol in view of potential or likely neuroplastic changes, variations in ongoing treatment effectiveness, and/or overall patient health or condition over time.
- a reevaluation procedure 220 may be performed on a one-time or repeated basis based upon the judgment of a medical professional.
- the reevaluation procedure 220 may itself involve one or more steps of the method 200 . Through a reevaluation procedure 220 , it may be determined that one or more patient symptoms may be better, successfully, or adequately treated or managed in accordance with a different pulse repetition frequency function; a lower peak intensity or amplitude; less frequent neural stimulation; a modified configuration of elements within the set of electrodes 140 and/or modified signal polarities applied thereto; lower dosage and/or less frequent drug therapy; and/or other variations in or modifications to the ongoing treatment protocol. As further described below with reference to FIG.
- a reevaluation procedure 220 that indicates that better, successful, or adequate treatment or management of one or more patient symptoms may be achieved with less intense and/or less frequent neural stimulation may be indicative of compensatory, restorative, and/or rehabilitative neuroplastic change within the patient 190 .
- FIG. 4 is a flowchart illustrating various methods for establishing, adjusting, or adapting a test protocol according to an embodiment of the invention. Such methods may be used in the test protocol management procedure 206 of FIG. 3 .
- a method 300 includes an adjustment procedure 302 that involves adjustment, cessation, or interruption of patient therapies currently in progress as required. Such therapies may comprise neural stimulation and/or one or more adjunctive therapies such as a drug therapy.
- the method 300 may also include a waiting procedure 304 during which effects of recently adjusted, discontinued, or interrupted therapies are allowed to subside, stabilize, or “wash out.”
- the waiting procedure 304 may maximize or increase a likelihood that a previously applied therapy has a minimal or negligible effect upon an upcoming test therapy (i.e., no carry-over effects).
- the method 300 may further include an assessment procedure 306 that involves assessment, qualification, and/or quantification of the severity of one or more patient, symptoms, possibly to establish a baseline or reference patient condition.
- the method 300 may additionally include a duration establishment procedure 308 that involves determination or definition of a test period duration during which a test therapy may be applied to the patient 190 .
- a test period duration may be short or relatively short, for example, approximately 1 or more minutes or hours, to facilitate efficient determination of the effectiveness of a test protocol upon acute or readily responsive patient symptoms.
- a test period duration may be relatively long, for example, approximately 1 or more days, weeks, or even months, to facilitate determination of the effectiveness of a test protocol upon patient symptoms having slower or prolonged treatment response characteristics.
- the method 300 may further include a first test protocol definition procedure 310 that involves determination, selection, and/or specification of neural stimulation parameters that comprise one or more portions of the test protocol.
- the method 300 may additionally include a second test protocol definition procedure 312 that involves determination or definition of a set of parameters corresponding to one or more adjunctive therapies that may form a portion of the test protocol. Such parameters may include, for example, a drug dosage and delivery schedule.
- FIG. 5 is a flowchart illustrating various methods for determining neural stimulation parameters according to an embodiment of the invention. Such methods may be used in the first test protocol definition procedure 310 of FIG. 4 .
- a method 400 includes a delivery period selection procedure 402 that involves determination or selection of a first or next time interval within the current test period that neural stimulation may be delivered to the patient 190 .
- the method 400 may further include a pulse sequence duration procedure 404 that involves selection and/or specification of one or more pulse sequence durations and/or quiescent intervals within and/or between pulse sequences for the neural stimulation delivery period currently under consideration.
- the method 400 may accommodate multiple pulse sequences, variable types of pulse train sequences, and/or quiescent intervals between pulse sequences to provide enhanced flexibility with respect to establishing test protocols that may be useful for efficiently treating symptoms of various disorders.
- DBS Deep Brain Stimulation
- Delivering or applying neural stimulation to one or more target neural populations having synaptic projections into the GPi or associated neural circuitry such that pulse sequences or pulse trains are separated by one or more appropriate quiescent intervals may therefore maintain or sustain reduced GPi activity while eliminating the need to deliver continuous stimulation. Delivery of neural stimulation in such a manner advantageously reduces power consumption.
- a pulse sequence comprising periodic pulse trains lasting approximately 3 seconds separated by quiescent intervals lasting approximately 1.5 seconds may provide significant therapeutic benefit in a power efficient manner.
- the method 400 may additionally include a waveform definition procedure 406 that involves selection and/or specification of a set of waveform parameters that define or describe each pulse sequence currently under consideration.
- waveform characteristics may include a pulse repetition frequency or frequency function, a pulse amplitude decay function, and/or other pulse sequence parameters.
- the pulse repetition frequency may vary within any given pulse sequence, and/or from one pulse sequence to another.
- the method may facilitate the definition of a test protocol or an arrived-at ongoing treatment protocol that includes multiple pulse repetition frequencies, where particular individual pulse frequencies or pulse frequency subsets may be directed toward maximizing or enhancing the effectiveness of neural stimulation in treating particular PD and/or movement disorder symptoms.
- a test protocol or an ongoing treatment protocol may call for neural stimulation that periodically alternates between these pulse repetition frequencies in accordance with given neural stimulation delivery periods and possibly including one or more quiescent periods therebetween.
- the test protocol or the ongoing treatment protocol may call for neural stimulation that sweeps between 15 and 30 Hz in a continuous or nearly continuous manner.
- a test protocol may call for neural stimulation having one or more pulse repetition frequencies specified in accordance with a temporal and/or mathematical function that is based upon individual pulse repetition frequencies determined to be optimal or near-optimal for treating particular subsets of patient symptoms.
- a temporal and/or mathematical function may be based upon the nature and/or severity of such symptoms. For example, if the patient's baseline or reference state indicates that the patient experiences tremor in a significantly more severe manner than bradykinesia, a test protocol may call for neural stimulation in which an amount of time spent delivering stimulation optimized or nearly optimized for treating tremor exceeds an amount of time spent delivering stimulation optimized or nearly optimized for treating bradykinesia.
- the test protocol may call for neural stimulation having a frequency function that is weighted or biased relative to individually determined frequencies corresponding to particular symptom subsets.
- a test protocol may call for neural stimulation that delivers, for example, a combined frequency of 27 Hz for treating both tremor and rigidity, as well as a pulse repetition frequency of 15 Hz for treating bradykinesia.
- a test protocol may call for neural stimulation having a pulse repetition frequency function that depends upon one or more treatment response times associated with particular symptoms, and/or one or more time intervals that relief from particular symptoms persists in the absence of neural stimulation.
- the method 400 may further include an electrode element selection procedure 408 that involves identifying or defining a spatial and/or temporal distribution of electrodes 142 and/or contacts 144 to which neural stimulation may be directed during the delivery period under consideration.
- the electrode element selection procedure 408 may alternatively or additionally select or define signal polarities corresponding to particular electrodes 142 and/or contacts 144 relative to one or more portions of the test period. In the event that a current test period includes more than one delivery period, the method 400 may return to the delivery period selection procedure 402 .
- the method 400 may also include a threshold determination procedure 412 that involves determination of a minimum or near minimum neural stimulation amplitude or intensity that evokes or induces a given type of patient response, reaction, behavior, and/or sensation.
- a neural stimulation threshold may be determined by successively applying higher amplitude neural stimulation signals to the patient 190 until an observable or detectable response occurs.
- Each threshold determination attempt may apply a limited duration neural stimulation signal to the patient 190 , for example, a pulse sequence lasting 0.5 seconds, 1 second, 3 seconds, or some other length of time.
- a waiting, quiescent, or washout period between successive threshold determination attempts, during which the patient 190 receives no neural stimulation may ensure that each threshold determination attempt is independent or essentially independent of residual effects associated with previously applied signals.
- a quiescent period may span several seconds to one or more minutes, for example, approximately one minute.
- the threshold determination procedure 412 involves determination of a motor, movement, or motion threshold through motion detection techniques and/or visual observation. In another embodiment, the threshold determination procedure 412 may involve determination of an EMG threshold and/or another type of neural stimulation threshold.
- the method 400 may further include an amplitude determination procedure 414 that involves determination or selection of peak or average amplitudes or intensities corresponding to the set of pulse sequences defined or specified within the current test period based upon the results or outcome of the threshold determination procedure 412 .
- a peak pulse sequence amplitude may be defined as a given percentage of a neural stimulation threshold, for example, 50% of a movement threshold or 70% of an EMG threshold.
- different pulse sequences within a delivery period or test period may have different peak amplitudes.
- FIG. 6 is a flowchart illustrating various methods for modifying, adjusting, or adapting neural stimulation therapy in view of a likelihood or possibility of a lasting or long term neuroplastic change occurring within a patient 190 over time. Such methods may involve the reevaluation procedure 220 and/or other procedures described above with in association with FIG. 3 .
- the propensity of a given neural population to undergo neuroplastic change may depend upon the application of an initial neural stimulation regimen to the neural population in a particular manner, such as a continuous, generally continuous, or frequent manner over a given or minimum amount of time. This may in turn facilitate or effectuate initiation and reinforcement of chemical and/or structural adaptations or changes in the neural population and/or neural circuitry associated therewith, thereby “priming” the neural population to accept and/or maintain long term or lasting neuroplastic change.
- effective or generally effective treatment of PD or other movement disorder symptoms may initially require continuous, essentially continuous, or nearly continuous neural stimulation for a neuroplastic priming period of approximately one month.
- effective treatment of one or more symptoms may require stimulation for a limited number of hours per day, such as during the patient's normal waking hours.
- effective treatment may require continuous stimulation for approximately 30 minutes, after which treatment may be interrupted for approximately 30 minutes, and so on.
- the stimulation can be applied on a twenty four hour basis for an initial period and then on a reduced basis for a subsequent period.
- the stimulation for example, can be applied all throughout each day for an initial period of approximately one month, and then it can be applied only during waking hours after the initial period. This is expected to provide sufficient results in many situations and conserve battery life.
- One method 500 for modifying, adjusting, or adapting neural stimulation therapy in view of a likelihood or possibility of a lasting or long term neuroplastic change may include a first stimulation optimization or refinement procedure 502 that involves determination of a continuous neural stimulation protocol for treating one or more patient symptoms.
- the method 500 may further include a continuous stimulation procedure 504 that involves delivery or application of neural stimulation to the patient 190 in accordance with the continuous neural stimulation protocol for a predetermined time period, for example, one or more weeks or one or more months.
- the predetermined time period may correspond to an expected or likely neuroplastic priming period.
- the method 500 may additionally include a second stimulation optimization or refinement procedure 506 that involves determination of a noncontinuous and/or periodically interrupted neural stimulation protocol for treating patient symptoms under consideration.
- the method 500 may also include a noncontinuous or interrupted stimulation procedure that involves delivery of noncontinuous and/or interrupted neural stimulation to the patient 190 in accordance with the noncontinuous and/or interrupted neural stimulation protocol.
- the first and/or second stimulation optimization or refinement procedures 502 , 506 may include or encompass one or more procedures described above in association with FIG. 3 . Additionally, the second stimulation optimization or refinement procedure 506 may be repeated following application of noncontinuous or interrupted stimulation to the patient 190 for a given amount of time.
Landscapes
- Health & Medical Sciences (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Psychiatry (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Electrotherapy Devices (AREA)
Abstract
Systems and methods for treating a neurological disorder comprising determining a first set of neural stimulation parameters capable of treating a first subset of symptoms, determining a second set of neural stimulation parameters capable of treating a second subset of symptoms, and applying a neural stimulation therapy based upon the first set of neural stimulation parameters and the second set of neural stimulation parameters to the patient. The first set of neural stimulation parameters can include electrical stimulation at a first frequency, and the second set of neural stimulation parameters can include electrical stimulation at a second frequency. In other embodiments, a treatment method comprises applying a first neural stimulation therapy to the patient in a continuous or generally continuous manner during a first time interval, and applying a second neural stimulation therapy to the patient in a noncontinuous or interrupted manner following the first time interval.
Description
- This application is a continuation of U.S. patent application Ser. No. 10/317,002, entitled “SYSTEMS AND METHODS FOR ENHANCING OR OPTIMIZING NEURAL STIMULATION THERAPY FOR TREATING SYMPTOMS OF PARKINSON'S DISEASE AND/OR OTHER MOVEMENT DISORDERS” which was filed on Dec. 10, 2002, and identified by attorney docket number 337348048US, the disclosure of which is incorporated by reference herein in its entirety. The application also incorporates by reference U.S. application Ser. No. 09/978,134 entitled “SYSTEMS AND METHODS FOR AUTOMATICALLY OPTIMIZING STIMULUS PARAMETERS AND ELECTRODE CONFIGURATIONS FOR NEURO-STIMULATORS,” filed on Oct. 15, 2002 (Perkins Coie Docket No. 337348021US); and U.S. Provisional Application No. 60/432,073 entitled “SYSTEM AND METHOD FOR TREATING PARKINSON'S DISEASE AND OTHER MOVEMENT DISORDERS,” filed on Dec. 9, 2002 (Perkins Coie Docket No. 337348040US, Express Mail No. EV139295255US).
- The present disclosure relates generally to systems and methods for treating symptoms of Parkinson's Disease and/or other movement disorders. More particularly, the present disclosure describes a system and method for enhancing or optimizing the effectiveness of neural stimulation in treating the symptoms of movement disorders such as Parkinson's Disease.
- A wide variety of mental and physical processes are controlled or influenced by neural activity in particular regions of the brain. For example, various physical or cognitive functions are directed or affected by neural activity within the sensory or motor cortices. Across most individuals, particular areas of the brain appear to have distinct functions. In the majority of people, for example, the areas of the occipital lobes relate to vision; the regions of the left interior frontal lobes relate to language; portions of the cerebral cortex appear to be consistently involved with conscious awareness, memory, and intellect; and particular regions of the cerebral cortex as well as the basal ganglia, the thalamus, and the motor cortex cooperatively interact to facilitate motor function control.
- Many problems or abnormalities with body functions can be caused by damage, disease, and/or disorders in the brain. For example, Parkinson's Disease (PD) is related to the degeneration or death of dopamine producing neurons in the substantia nigra region of the basal ganglia in the brain. Dopamine is neurotransmitter that transmits signals between areas of the brain. As the neurons in the substantia nigra deteriorate, the reduction in dopamine causes abnormal neural activity that results in a chronic, progressive deterioration of motor function control. Conservative estimates indicate that PD may affect more than one million individuals in the United States alone.
- PD patients typically exhibit one or more of four primary symptoms. One primary symptom is a tremor in an extremity (e.g., a hand) that occurs while the extremity is at rest. Other primary symptoms include a generalized slowness of movement (bradykinesia); increased muscle rigidity or stiffness (rigidity); and gait or balance problems (postural dysfunction). In addition to or in lieu of these primary symptoms, PD patients may exhibit secondary symptoms including: difficulty initiating or resuming movements; loss of fine motor skills; lack of arm swing on the affected side of the body while walking; foot drag on the affected side of the body; decreased facial expression; voice and/or speech changes; cognitive disorders; feelings of depression or anxiety; and/or other symptoms.
- Effectively treating PD or other movement disorders related to neurological conditions can be very difficult. Current treatments for PD symptoms include drugs, ablative surgical intervention, and/or neural stimulation. Drug treatments or therapies may involve, for example, the administration of a dopamine precursor that is converted to dopamine within the central nervous system (i.e., Levodopa (L-dopa)). Other types of drug therapies are also available. Unfortunately, drug therapies frequently become less effective or ineffective over time for an undesirably large patient population. A PD patient may require multiple drugs in combination to extend the time period of efficacy of drug therapies. Drug treatments additionally have a significant likelihood of inducing undesirable physical side effects; motor function complications such as uncontrollable involuntary movements (dyskinesias) are a particularly common side effect. Furthermore, drug treatments may induce undesirable cognitive side effects such as confusion and/or hallucinations.
- Ablative surgical intervention for PD typically involves the destruction of one or more neural structures within the basal ganglia or thalamus that have become overactive because of the lack of dopamine. Unfortunately, such neural structures reside deep within the brain, and hence ablative surgical intervention is a very time consuming and highly invasive procedure. Potential complications associated with the procedure include risk of hemorrhage, stroke, and/or paralysis. Moreover, because PD is a progressive disease, multiple deep brain surgeries may be required as symptoms progressively worsen over time. Although ablative surgical intervention may improve a PD patient's motor function, it is not likely to completely restore normal motor function. Furthermore, since ablative surgical intervention permanently destroys neural tissue, the effects of such intervention cannot be readily adjusted or “fine tuned” over time.
- Neural stimulation treatments have shown promising results for reducing some of the symptoms associated with PD. Neural activity is governed by electrical impulses or “action potentials” generated in and propagated by neurons. While in a quiescent state, a neuron is negatively polarized and exhibits a resting membrane potential that is typically between −70 and −60 mV. Through chemical connections known as synapses, any given neuron receives excitatory and inhibitory input signals or stimuli from other neurons. A neuron integrates the excitatory and inhibitory input signals it receives, and generates or fires a series of action potentials in the event that the integration exceeds a threshold potential. A neural firing threshold, for example, may be approximately −55 mV. Action potentials propagate to the neuron's synapses and are then conveyed to other synaptically connected neurons.
- Neural activity in the brain can be influenced by neural stimulation, which involves the application of electrical and/or magnetic stimuli to one or more target neural populations within a patient using a waveform generator or other type of device. Various neural functions can thus be promoted or disrupted by applying an electrical current to one or more regions of the brain. As a result, researchers have attempted to treat certain neurological conditions, including PD, using electrical or magnetic stimulation signals to control or affect brain functions.
- Deep Brain Stimulation (DBS) is a stimulation therapy that has been used as an alternative to drug treatments and ablative surgical therapies. In DBS, one or more electrodes are surgically implanted into the brain proximate to deep brain or subcortical neural structures. For treating PD or other movement disorders, the electrodes are positioned in or proximate to the ventrointermediate nucleus of the thalamus; basal ganglia structures such as the globus pallidus internalis (GPi); or the Subthalamic Nucleus (STN). The location of the stimulation site for the electrodes depends upon the symptoms that a patient exhibits and the severity of the symptoms.
- In a typical DBS system, a pulse generator delivers a continuous or essentially continuous electrical stimulation signal having a pulse repetition frequency of approximately 100 Hz to each of two deep brain electrodes. The electrodes are bilaterally positioned on the left and right sides of the brain relative to particular neural structures such as those indicated above. U.S. Pat. No. 5,883,709 discloses one conventional DBS system for treating movement disorders.
- Although DBS therapies may significantly reduce one or more PD symptoms, particularly when combined with drug treatments, they are highly invasive procedures. In general, configuring a DBS system to properly function within a patient requires two time consuming, highly invasive surgical procedures for implanting the DBS electrodes. Each such surgical procedure has essentially the same risks as those described above for ablative surgical intervention. Moreover, DBS may not provide relief from some movement disorders.
- Motor Cortex Stimulation (MCS) is another type of brain stimulation treatment that has been proposed for treating movement disorders. MCS involves the application of stimulation signals to the motor cortex of a patient. One MCS system includes a pulse generator connected to a strip electrode that is surgically implanted over a portion of only the motor cortex (precentral gyrus). The use of MCS to treat PD symptoms is described in Canavero, Sergro, Extradural Motor Cortex Stimulation for Advanced Parkinson's Disease: Case Report, Movement Disorders (Vol. 15, No. 1, 2000).
- Because MCS involves the application of stimulation signals to surface regions of the brain rather than deep neural structures, electrode implantation procedures for MCS are significantly less invasive and time consuming than those for DBS. As a result, MCS may be a safer and simpler alternative to DBS for treating PD symptoms. Present MCS techniques, however, fail to address or adequately consider a variety of factors that may enhance or optimize the extent to which a patient experiences short term and/or long term relief from PD symptoms.
-
FIG. 1 is a schematic illustration of a neural stimulation system for treating symptoms of Parkinson's Disease and/or other neurological disorders according to an embodiment of the invention. -
FIG. 2 is a graph illustrating several stimulation parameters that may define, describe, or characterize stimulation signals. -
FIG. 3 is a flowchart illustrating various methods for refining, enhancing, or optimizing neural stimulation therapy for treating symptoms of Parkinson's Disease and/or other movement disorders according to an embodiment of the invention. -
FIG. 4 is a flowchart illustrating various methods for establishing, adjusting, or adapting a test protocol according to an embodiment of the invention. -
FIG. 5 is a flowchart illustrating various methods for determining neural stimulation parameters according to an embodiment of the invention. -
FIG. 6 is a flowchart illustrating various methods for modifying, adjusting, or adapting neural stimulation therapy in view of a likelihood or possibility of a lasting or long term neuroplastic change occurring within a patient over time. - The following disclosure describes neural stimulation systems and methods for enhancing or optimizing the extent to which a patient may experience relief from symptoms associated with Parkinson's Disease (PD), other movement or motor disorders, and/or various neurological disorders that may have multiple types of symptoms. Such symptoms may include, for example, tremor, rigidity, bradykinesia, postural dysfunction, spasticity, speech deficits, visual disturbances, olfactory deficits, cognitive deficits, memory deficits, emotional or psychiatric disturbances, paresis, pain and/or other symptoms.
- Different symptoms may respond to neural stimulation in different manners, and/or across different time scales. For example, neural stimulation optimized to beneficially affect tremor and/or rigidity to a significant degree may provide less significant or minimal benefit relative to other symptoms such as postural dysfunction. Additionally, neural stimulation that has a nearly immediate or reasonably rapid effect upon tremor and/or rigidity may have a significantly or greatly delayed effect upon other symptoms such as bradykinesia. Systems and/or methods described herein may facilitate enhancement or optimization of neural stimulation therapy for treating multiple patient symptoms that may exhibit different treatment response characteristics and/or different response timeframes.
- Neural stimulation may facilitate or effectuate neuroplastic changes within a patient's brain, for example, in a manner described in U.S. application Ser. No. 09/802,808, which is incorporated herein by reference. Neuroplastic changes can include adaptive structural changes or reorganizations in particular brain regions, which may result in enhancement or restoration of one or more functional abilities (i.e., physical, sensory, and/or cognitive functions) associated with such brain regions, possibly on a long term or lasting basis. Application of neural stimulation to a patient in accordance with the principles described herein may increase the likelihood that neuroplastic changes can occur to facilitate at least partial recovery of diminished or lost functionality associated with or giving rise to one or more patient symptoms. Such functional recovery may itself reduce the extent to which the patient requires neural stimulation and/or other therapy on an ongoing basis.
-
FIG. 1 is a schematic illustration of a neural stimulation system 100 for treating symptoms of PD and/or other disorders according to an embodiment of the invention. In one embodiment, the neural stimulation system 100 comprises apulse generator 110 a configured to deliver stimulation signals to apatient 190 using a set ofelectrodes 140. Thepulse generator 110 a may be coupled to the set ofelectrodes 140 by one or more leads 112. Thepulse generator 110 a may further be configured for wireless and/or wire-based communication with aprogramming unit 160. Depending upon embodiment details, the system 100 may further include one or morepatient monitoring units 180 configured to detect, monitor, indicate, measure, and/or assess the severity of particular types of patient symptoms. - The set of
electrodes 140 may include one or morecortical electrodes 142 configured to provide, deliver, and/or apply stimulation signals to particular cortical regions of the patient'sbrain 192 and/or neural populations synaptically connected and/or proximate thereto. Acortical electrode 142 may include one or more electrically conductive contacts 144 carried by asubstrate 146 in a manner understood by those skilled in the art. The set ofelectrodes 140 may alternatively or additionally include one or more penetrating, depth, and/or deep brain electrodes. The set ofelectrodes 140 may further include or provide one or more stimulation signal return electrodes (i.e., electrodes that provide a current return path) that may be positioned relative to a variety of locations within and/or upon the patient's body. - The characteristics and/or placement of the set of
electrodes 140 may depend upon the nature of patient's underlying disorder(s) and/or the type and/or severity of symptoms that thepatient 190 experiences or exhibits. In one embodiment, one or more portions of the set ofelectrodes 140 may be surgically implanted to deliver stimulation signals to target neural populations within the patient's brain in a manner described in U.S. Provisional Application No. 60/432,073, entitled “System and Method for Treating Parkinson's Disease and Other Movement Disorders,” filed on Dec. 9, 2002 (Perkins Coie Docket No. 33734.8040US00). - The
pulse generator 110 a may comprise hardware and/or software for generating and outputting stimulation signals to the set ofelectrodes 140 in accordance with internal instruction sequences and/or in response to control signals, commands, instructions, and/or other information received from theprogramming unit 160. Thepulse generator 110 a may include a power supply, a pulse unit, a control unit, a programmable computer medium, and a communication unit. The power supply may comprise a battery or other type of power storage device. The pulse unit may comprise circuitry for generating pulse sequences that may be defined or characterized in accordance with various stimulation signal parameters, which are further described below with reference toFIG. 2 . The control unit may comprise hardware and/or software configured to direct or manage the local operation of thepulse generator 110 a. The communication unit may comprise a user interface that facilitates communication with devices external to thepulse generator 110 a, for example, through telemetric signal transfer. The programmable computer medium may comprise hardware and/or memory resident software. The programmable computer medium may store operational mode information and/or program instruction sequences that may be selected and/or specified in accordance with information received from theprogramming unit 160. Thepulse generator 110 a may be configured to deliver stimulation signals toparticular electrodes 142 and/or specific electrical contacts 144 within the set ofelectrodes 140 on a selective basis at any given time, in a manner identical, essentially identical, or analogous to that described in U.S. application Ser. No. 09/978,134. - Each element of the
pulse generator 110 a may be incorporated or embedded into a surgically implantable case or housing. Depending upon embodiment details, thepulse generator 110 a may be surgically implanted into thepatient 190 in a subclavicular location. Alternatively, apulse generator 110 b may be surgically implanted above the patient's neck, for example, in a skull location posterior to the patient's ear and/or proximate to an electrode implantation site. A surgically formed tunnel or path may route the set ofleads 112 that couple thepulse generator electrodes 140, in a manner understood by those skilled in the art. Additionally, one or more electrically conductive portions of the pulse generator's case or housing may serve as a return electrode for electrical current. - The
programming unit 160 may comprise a device configured to communicate control signals, commands, instructions, and/or other information to thepulse generator 110 a. Theprogramming unit 160 may additionally be configured to receive information from thepulse generator 110 a. Communication between theprogramming unit 160 and thepulse generator 110 a may facilitate or effectuate specification, selection, and/or identification of operational modes, instruction sequences, and/or procedures for treating symptoms of PD and/or other neurological disorders in accordance with the present invention, as described in detail below with reference toFIGS. 3 through 6 . - In one embodiment, the
programming unit 160 includes aprocessing unit 162, aprogrammable computer medium 164, and acommunication unit 166. Theprogrammable computer medium 164 may store an operating system, program instructions, and/or data, and may comprise various types of hardware and memory resident software, including volatile and/or nonvolatile memory as well as one or more data storage devices. Thecommunication unit 166 may include a wire-based and/orwireless telemetry interface 170 that employs magnetic, radio frequency (RF), and/or optical signaling techniques to communicate with thepulse generator 110 a. Thecommunication unit 166 may additionally or alternatively include one or more wire-based and/or wireless interfaces that facilitate communication with other devices such as a computer. - A
patient monitoring unit 180 may comprise essentially any type of device, subsystem, and/or system configured to detect, monitor, indicate, measure, and/or assess the severity of one or more types of patient symptoms associated with PD and/or other neurological disorders. For example, apatient monitoring unit 180 may comprise a motion detection system configured to detect patient movement associated with tremor. A motion detection system may include light emitting and/or detecting devices and/or accelerometers coupled to particular patient extremities. As another example, apatient monitoring unit 180 may comprise an Electromyography (EMG) system that includes a set of surface or depth electrodes positioned relative to particular muscle groups for detecting electrical signals corresponding to muscle fiber innervation. As another example, apatient monitoring unit 180 may comprise an Electroencephalograpy (EEG) system. As yet another example, apatient monitoring unit 180 may comprise a neural imaging system. As a final example, apatient monitoring unit 180 may comprise one or more electrodes and/or probes (e.g., cerebral bloodflow monitors) positioned upon, proximate, and/or within given target neural populations, and associated hardware and/or software for detecting, presenting, and/or analyzing signals received therefrom. - As previously indicated, the
pulse generator 110 a generates and outputs stimulation signals. In the context of the present invention, stimulation signals may comprise electromagnetic pulse sequences. Any given pulse sequence may comprise at least one, and possibly multiple, pulse trains, which may be separated by quiescent intervals.FIG. 2 is a graph illustrating several stimulation parameters that may define, describe, or characterize a pulse train. A stimulus start time t0 defines an initial point at which a pulse train is applied to one or more elements within the set ofelectrodes 140. In one embodiment, the pulse train may be a biphasic waveform comprising a series of biphasic pulses, and which may be defined, characterized, or described by parameters including a pulse width t1 for a first pulse phase; a pulse width t2 for a second pulse phase; and a pulse width t3 for one or more biphasic pulses. The parameters can also include a pulse repetition rate 1/t4 corresponding to a pulse repetition frequency; a pulse duty cycle equal to t3 divided by t4; a pulse burst time t5 that defines a number of pulses in a pulse train; and/or a pulse train repetition rate t6. Other parameters include a peak current intensity or amplitude I1 for a first pulse phase and a peak current intensity I2 for a second pulse phase. - In various embodiments, the pulse width of successive pulses and/or successive pulse phases may vary, such that the pulse repetition frequency within a pulse train and/or a pulse sequence is a function of time. A pulse train having a frequency that varies in time may give rise to a “chirped” frequency profile. Additionally or alternatively, the pulse intensity or amplitude may decay during the first and/or second pulse phases, and the extent of such decay may differ across successive or subsequent pulse phases. Those skilled in the art will understand that a pulse may be a charge-balanced waveform, and that in an alternate embodiment, pulses can be monophasic or polyphasic. Additional stimulation parameters may specify manners in which pulse trains are applied to selected configurations of elements within the set of
electrodes 140, such asparticular electrodes 142 and/or contacts 144, at any given time. - As defined herein, a test protocol may define or specify neural stimulation parameters associated with one or more pulse sequences to be applied to a
patient 190 across or within a given test period duration that may include one or more neural stimulation delivery periods and possibly one or more quiescent periods during which thepatient 190 receives no neural stimulation. A test protocol may further define or specify a spatial and/or temporal distribution of elements within the set ofelectrodes 140 to which neural stimulation may be applied during one or more portions of the test period; and corresponding signal polarities corresponding to particular elements within the set ofelectrodes 140 relative to one or more portions of the test period. Neural stimulation delivered in accordance with a test protocol comprises a test therapy. -
FIG. 3 is a flowchart illustrating various methods for refining, enhancing, or optimizing neural stimulation therapy for treating symptoms of PD and/or other neurological disorders according to an embodiment of the invention. In one embodiment, amethod 200 includes anidentification procedure 202 that involves identification of one or more patient symptoms to which neural stimulation therapy, possibly in conjunction with one or more adjunctive therapies, may be directed. Themethod 200 may also include asymptom selection procedure 204 that involves selection or consideration of a first, a next, or an additional subset of patient symptoms to which neural stimulation therapy may be directed. Thesymptom selection procedure 204 may facilitate initial selection of symptoms expected to rapidly respond to neural stimulation, such as tremor and/or rigidity, followed by selection of other symptoms such as bradykinesia that may respond more slowly. - The
method 200 may further include a testprotocol management procedure 206 that involves establishing, adjusting, and/or adapting a test protocol that specifies or defines a test therapy intended to be applied to thepatient 190 for a given test period. The test protocol may specify or define neural stimulation parameters corresponding to the test therapy, and may also specify parameters corresponding to one or more adjunctive therapies such as drug therapies. Themethod 200 may additionally include atest delivery procedure 208 that involves application or delivery of the test therapy to thepatient 190 in accordance with the test protocol; and anobservation procedure 210 that involves observation, monitoring, and/or measuring of patient symptoms at one or more times in association with and/or following thedelivery procedure 208. Theobservation procedure 210 may involve one or morepatient monitoring units 180, and/or direct human observation of thepatient 190. - The
method 200 may further include anevaluation procedure 212 involving determination of an extent to which one or more patient symptoms currently under consideration have improved or changed as a result of the most recently applied test therapy. In a manner analogous to that for theobservation procedure 210, theevaluation procedure 212 may involve one or morepatient monitoring units 180 and/or direct human evaluation of thepatient 190. In the event that further improvement of symptoms currently under consideration is necessary, likely, or possible, themethod 200 may return to the testprotocol management procedure 206. Alternatively, in the event that additional patient symptoms require consideration, themethod 200 may return to thesymptom selection procedure 204. - In addition to procedures directed toward refining, enhancing, or optimizing an extent to which one or more symptoms can be successfully or adequately treated by neural stimulation (possibly in conjunction with one or more adjunctive therapies), the
method 200 may include an ongoingtreatment delivery procedure 218 that involves application of an arrived-at ongoing therapy to the patient in accordance with an ongoing, essentially ongoing, or generally ongoing treatment protocol. The ongoing treatment protocol may correspond to or be based upon a previously considered test protocol, and may involve one or more adjunctive therapies. In particular, the ongoing treatment protocol may be identical or essentially identical to a recently considered test protocol, with the exception that an ongoing treatment duration corresponding to the ongoing treatment protocol may be significantly longer than that of the test period corresponding to such a test therapy. - The
method 200 may also include areevaluation procedure 220 that involves a one-time, occasional, or periodic reevaluation, adjustment, and/or adaptation of a most recent ongoing treatment protocol in view of potential or likely neuroplastic changes, variations in ongoing treatment effectiveness, and/or overall patient health or condition over time. Such reevaluation, adjustment, or adaptation may occur after a predetermined time interval, such as 1 month, several months, or 1 or more years following initiation of an ongoingtreatment delivery procedure 218. Thereevaluation procedure 220 may be performed on a one-time or repeated basis based upon the judgment of a medical professional. - The
reevaluation procedure 220 may itself involve one or more steps of themethod 200. Through areevaluation procedure 220, it may be determined that one or more patient symptoms may be better, successfully, or adequately treated or managed in accordance with a different pulse repetition frequency function; a lower peak intensity or amplitude; less frequent neural stimulation; a modified configuration of elements within the set ofelectrodes 140 and/or modified signal polarities applied thereto; lower dosage and/or less frequent drug therapy; and/or other variations in or modifications to the ongoing treatment protocol. As further described below with reference toFIG. 6 , areevaluation procedure 220 that indicates that better, successful, or adequate treatment or management of one or more patient symptoms may be achieved with less intense and/or less frequent neural stimulation may be indicative of compensatory, restorative, and/or rehabilitative neuroplastic change within thepatient 190. -
FIG. 4 is a flowchart illustrating various methods for establishing, adjusting, or adapting a test protocol according to an embodiment of the invention. Such methods may be used in the testprotocol management procedure 206 ofFIG. 3 . In one embodiment, amethod 300 includes anadjustment procedure 302 that involves adjustment, cessation, or interruption of patient therapies currently in progress as required. Such therapies may comprise neural stimulation and/or one or more adjunctive therapies such as a drug therapy. Themethod 300 may also include awaiting procedure 304 during which effects of recently adjusted, discontinued, or interrupted therapies are allowed to subside, stabilize, or “wash out.” The waitingprocedure 304 may maximize or increase a likelihood that a previously applied therapy has a minimal or negligible effect upon an upcoming test therapy (i.e., no carry-over effects). Themethod 300 may further include anassessment procedure 306 that involves assessment, qualification, and/or quantification of the severity of one or more patient, symptoms, possibly to establish a baseline or reference patient condition. - The
method 300 may additionally include aduration establishment procedure 308 that involves determination or definition of a test period duration during which a test therapy may be applied to thepatient 190. A test period duration may be short or relatively short, for example, approximately 1 or more minutes or hours, to facilitate efficient determination of the effectiveness of a test protocol upon acute or readily responsive patient symptoms. Alternatively, a test period duration may be relatively long, for example, approximately 1 or more days, weeks, or even months, to facilitate determination of the effectiveness of a test protocol upon patient symptoms having slower or prolonged treatment response characteristics. Themethod 300 may further include a first testprotocol definition procedure 310 that involves determination, selection, and/or specification of neural stimulation parameters that comprise one or more portions of the test protocol. Themethod 300 may additionally include a second testprotocol definition procedure 312 that involves determination or definition of a set of parameters corresponding to one or more adjunctive therapies that may form a portion of the test protocol. Such parameters may include, for example, a drug dosage and delivery schedule. -
FIG. 5 is a flowchart illustrating various methods for determining neural stimulation parameters according to an embodiment of the invention. Such methods may be used in the first testprotocol definition procedure 310 ofFIG. 4 . In one embodiment, amethod 400 includes a deliveryperiod selection procedure 402 that involves determination or selection of a first or next time interval within the current test period that neural stimulation may be delivered to thepatient 190. Themethod 400 may further include a pulsesequence duration procedure 404 that involves selection and/or specification of one or more pulse sequence durations and/or quiescent intervals within and/or between pulse sequences for the neural stimulation delivery period currently under consideration. Themethod 400 may accommodate multiple pulse sequences, variable types of pulse train sequences, and/or quiescent intervals between pulse sequences to provide enhanced flexibility with respect to establishing test protocols that may be useful for efficiently treating symptoms of various disorders. - Relative to treating PD symptoms, stimulation that reduces the output activity of the globus pallidus internalis (GPi) can be highly beneficial. Deep Brain Stimulation (DBS) research has shown that stimulation delivered to the globus pallidus internalis (GPi) may significantly reduce GPi activity over a period that can last several seconds beyond the termination of such stimulation. For example, a continuous or essentially continuous pulse train lasting 3 seconds may result in reduced or significantly reduced GPi output activity that lasts approximately 1.5 seconds beyond termination of the 3 second pulse train. Delivering or applying neural stimulation to one or more target neural populations having synaptic projections into the GPi or associated neural circuitry such that pulse sequences or pulse trains are separated by one or more appropriate quiescent intervals may therefore maintain or sustain reduced GPi activity while eliminating the need to deliver continuous stimulation. Delivery of neural stimulation in such a manner advantageously reduces power consumption. Thus, a pulse sequence comprising periodic pulse trains lasting approximately 3 seconds separated by quiescent intervals lasting approximately 1.5 seconds may provide significant therapeutic benefit in a power efficient manner.
- The
method 400 may additionally include awaveform definition procedure 406 that involves selection and/or specification of a set of waveform parameters that define or describe each pulse sequence currently under consideration. Such waveform characteristics may include a pulse repetition frequency or frequency function, a pulse amplitude decay function, and/or other pulse sequence parameters. Depending upon embodiment details and/or current symptoms under consideration, the pulse repetition frequency may vary within any given pulse sequence, and/or from one pulse sequence to another. By accommodating such variation, the method may facilitate the definition of a test protocol or an arrived-at ongoing treatment protocol that includes multiple pulse repetition frequencies, where particular individual pulse frequencies or pulse frequency subsets may be directed toward maximizing or enhancing the effectiveness of neural stimulation in treating particular PD and/or movement disorder symptoms. As an illustrative example, if (a) a pulse repetition frequency of approximately 25 Hz appears optimal or nearly optimal for treating tremor, (b) a pulse repetition frequency of approximately 30 Hz appears optimal for treating rigidity, and (c) a pulse repetition frequency of approximately 15 Hz appears optimal for treating bradykinesia, then a test protocol or an ongoing treatment protocol may call for neural stimulation that periodically alternates between these pulse repetition frequencies in accordance with given neural stimulation delivery periods and possibly including one or more quiescent periods therebetween. Alternatively, the test protocol or the ongoing treatment protocol may call for neural stimulation that sweeps between 15 and 30 Hz in a continuous or nearly continuous manner. - In general, a test protocol may call for neural stimulation having one or more pulse repetition frequencies specified in accordance with a temporal and/or mathematical function that is based upon individual pulse repetition frequencies determined to be optimal or near-optimal for treating particular subsets of patient symptoms. Such a temporal and/or mathematical function may be based upon the nature and/or severity of such symptoms. For example, if the patient's baseline or reference state indicates that the patient experiences tremor in a significantly more severe manner than bradykinesia, a test protocol may call for neural stimulation in which an amount of time spent delivering stimulation optimized or nearly optimized for treating tremor exceeds an amount of time spent delivering stimulation optimized or nearly optimized for treating bradykinesia. Additionally or alternatively, the test protocol may call for neural stimulation having a frequency function that is weighted or biased relative to individually determined frequencies corresponding to particular symptom subsets. Such a test protocol may call for neural stimulation that delivers, for example, a combined frequency of 27 Hz for treating both tremor and rigidity, as well as a pulse repetition frequency of 15 Hz for treating bradykinesia. Furthermore, a test protocol may call for neural stimulation having a pulse repetition frequency function that depends upon one or more treatment response times associated with particular symptoms, and/or one or more time intervals that relief from particular symptoms persists in the absence of neural stimulation.
- The
method 400 may further include an electrodeelement selection procedure 408 that involves identifying or defining a spatial and/or temporal distribution ofelectrodes 142 and/or contacts 144 to which neural stimulation may be directed during the delivery period under consideration. The electrodeelement selection procedure 408 may alternatively or additionally select or define signal polarities corresponding toparticular electrodes 142 and/or contacts 144 relative to one or more portions of the test period. In the event that a current test period includes more than one delivery period, themethod 400 may return to the deliveryperiod selection procedure 402. - The
method 400 may also include athreshold determination procedure 412 that involves determination of a minimum or near minimum neural stimulation amplitude or intensity that evokes or induces a given type of patient response, reaction, behavior, and/or sensation. A neural stimulation threshold may be determined by successively applying higher amplitude neural stimulation signals to thepatient 190 until an observable or detectable response occurs. Each threshold determination attempt may apply a limited duration neural stimulation signal to thepatient 190, for example, a pulse sequence lasting 0.5 seconds, 1 second, 3 seconds, or some other length of time. A waiting, quiescent, or washout period between successive threshold determination attempts, during which thepatient 190 receives no neural stimulation, may ensure that each threshold determination attempt is independent or essentially independent of residual effects associated with previously applied signals. A quiescent period may span several seconds to one or more minutes, for example, approximately one minute. In one embodiment, thethreshold determination procedure 412 involves determination of a motor, movement, or motion threshold through motion detection techniques and/or visual observation. In another embodiment, thethreshold determination procedure 412 may involve determination of an EMG threshold and/or another type of neural stimulation threshold. - The
method 400 may further include anamplitude determination procedure 414 that involves determination or selection of peak or average amplitudes or intensities corresponding to the set of pulse sequences defined or specified within the current test period based upon the results or outcome of thethreshold determination procedure 412. Depending upon embodiment details, a peak pulse sequence amplitude may be defined as a given percentage of a neural stimulation threshold, for example, 50% of a movement threshold or 70% of an EMG threshold. In some embodiments, different pulse sequences within a delivery period or test period may have different peak amplitudes. -
FIG. 6 is a flowchart illustrating various methods for modifying, adjusting, or adapting neural stimulation therapy in view of a likelihood or possibility of a lasting or long term neuroplastic change occurring within apatient 190 over time. Such methods may involve thereevaluation procedure 220 and/or other procedures described above with in association withFIG. 3 . The propensity of a given neural population to undergo neuroplastic change may depend upon the application of an initial neural stimulation regimen to the neural population in a particular manner, such as a continuous, generally continuous, or frequent manner over a given or minimum amount of time. This may in turn facilitate or effectuate initiation and reinforcement of chemical and/or structural adaptations or changes in the neural population and/or neural circuitry associated therewith, thereby “priming” the neural population to accept and/or maintain long term or lasting neuroplastic change. - As an illustrative example, depending upon symptom type and severity, effective or generally effective treatment of PD or other movement disorder symptoms may initially require continuous, essentially continuous, or nearly continuous neural stimulation for a neuroplastic priming period of approximately one month. After such a neuroplastic priming period, however, effective treatment of one or more symptoms may require stimulation for a limited number of hours per day, such as during the patient's normal waking hours. Alternatively, effective treatment may require continuous stimulation for approximately 30 minutes, after which treatment may be interrupted for approximately 30 minutes, and so on. In another embodiment, the stimulation can be applied on a twenty four hour basis for an initial period and then on a reduced basis for a subsequent period. The stimulation, for example, can be applied all throughout each day for an initial period of approximately one month, and then it can be applied only during waking hours after the initial period. This is expected to provide sufficient results in many situations and conserve battery life.
- One
method 500 for modifying, adjusting, or adapting neural stimulation therapy in view of a likelihood or possibility of a lasting or long term neuroplastic change may include a first stimulation optimization orrefinement procedure 502 that involves determination of a continuous neural stimulation protocol for treating one or more patient symptoms. Themethod 500 may further include acontinuous stimulation procedure 504 that involves delivery or application of neural stimulation to thepatient 190 in accordance with the continuous neural stimulation protocol for a predetermined time period, for example, one or more weeks or one or more months. The predetermined time period may correspond to an expected or likely neuroplastic priming period. Themethod 500 may additionally include a second stimulation optimization orrefinement procedure 506 that involves determination of a noncontinuous and/or periodically interrupted neural stimulation protocol for treating patient symptoms under consideration. Themethod 500 may also include a noncontinuous or interrupted stimulation procedure that involves delivery of noncontinuous and/or interrupted neural stimulation to thepatient 190 in accordance with the noncontinuous and/or interrupted neural stimulation protocol. The first and/or second stimulation optimization orrefinement procedures FIG. 3 . Additionally, the second stimulation optimization orrefinement procedure 506 may be repeated following application of noncontinuous or interrupted stimulation to thepatient 190 for a given amount of time. - From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims (16)
1. A method for treating a set of symptoms corresponding to a neurological disorder exhibited by a patient, comprising:
determining a first set of neural stimulation parameters capable of treating a first subset of symptoms;
determining a second set of neural stimulation parameters capable of treating a second subset of symptoms; and
applying a neural stimulation therapy based upon the first set of neural stimulation parameters and the second set of neural stimulation parameters to the patient.
2. The method of claim 1 , wherein the first set of neural stimulation parameters defines a first frequency and the second set of neural stimulation parameters defines a second frequency.
3. The method of claim 2 , wherein the neural stimulation therapy defines a frequency function that includes the first and the second frequencies.
4. The method of claim 3 , wherein the neural stimulation therapy defines a frequency function that sweeps between the first and the second frequencies.
5. The method of claim 1 , wherein the first subset of symptoms responds to neural stimulation more rapidly than the second subset of symptoms.
6. The method of claim 1 , further comprising positioning a set of electrodes with respect to a target neural population within the patient.
7. The method of claim 6 , wherein at least one electrode within the set of electrodes is configured to deliver neural stimulation therapy to a cortical region within the patient.
8. The method of claim 7 , wherein the cortical region corresponds to a neural population that facilitates control of at least one type of patient movement.
9. A method for treating a set of symptoms corresponding to a neurological disorder exhibited by a patient, comprising:
applying a first neural stimulation signal having a first frequency to the patient to treat a first subset of symptoms; and
applying a second neural stimulation signal having a second frequency to the patient to treat a second subset of symptoms.
10. The method of claim 9 , wherein the first neural stimulation signal is applied during a first time interval and the second neural stimulation signal is applied during a second time interval.
11. The method of claim 10 , wherein the first and second time intervals depend upon a severity of the first subset of symptoms relative to the second subset of symptoms.
12. A method for treating a set of symptoms corresponding to a neurological disorder exhibited by a patient, comprising:
applying a first neural stimulation therapy to the patient in a continuous or generally continuous manner during a first time interval; and
applying a second neural stimulation therapy to the patient in a noncontinuous or interrupted manner following the first time interval,
wherein the second neural stimulation therapy provides an extent of relief from a subset of patient symptoms that is acceptable relative to an extent of relief from the subset of patient symptoms provided by the first neural stimulation therapy.
13. The method of claim 12 , wherein the first time interval is greater than approximately one week.
14. The method of claim 12 , wherein the first time interval is approximately one month.
15. The method of claim 12 , wherein the second neural stimulation therapy comprises continuous or generally continuous neural stimulation during the patient's waking hours.
16. A method for treating a set of symptoms corresponding to a neurological disorder exhibited by a patient, comprising:
applying a first neural stimulation therapy to the patient in a continuous or generally continuous manner during a first time interval; and
applying a second neural stimulation therapy to the patient in a noncontinuous or interrupted manner following the first time interval,
wherein the second neural stimulation therapy provides an extent of relief from a subset of patient symptoms that is generally identical to an extent of relief from the subset of patient symptoms provided by the first neural stimulation therapy.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/634,523 US20070112393A1 (en) | 2002-12-10 | 2006-12-04 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
US12/843,766 US20100292754A1 (en) | 2002-12-10 | 2010-07-26 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
US13/297,688 US9427585B2 (en) | 2002-11-01 | 2011-11-16 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinsons disease and or other movement disorders |
US15/250,240 US10004901B2 (en) | 2002-12-10 | 2016-08-29 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/317,002 US7236830B2 (en) | 2002-12-10 | 2002-12-10 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders |
US11/634,523 US20070112393A1 (en) | 2002-12-10 | 2006-12-04 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/317,002 Continuation US7236830B2 (en) | 2002-11-01 | 2002-12-10 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/843,766 Division US20100292754A1 (en) | 2002-11-01 | 2010-07-26 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070112393A1 true US20070112393A1 (en) | 2007-05-17 |
Family
ID=32468920
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/317,002 Expired - Lifetime US7236830B2 (en) | 2002-11-01 | 2002-12-10 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders |
US10/782,526 Expired - Fee Related US7353064B2 (en) | 2002-12-10 | 2004-02-19 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of movement disorders and/or other neurologic dysfunction |
US11/634,523 Abandoned US20070112393A1 (en) | 2002-11-01 | 2006-12-04 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
US12/843,766 Abandoned US20100292754A1 (en) | 2002-11-01 | 2010-07-26 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
US13/297,688 Expired - Fee Related US9427585B2 (en) | 2002-11-01 | 2011-11-16 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinsons disease and or other movement disorders |
US15/250,240 Expired - Lifetime US10004901B2 (en) | 2002-12-10 | 2016-08-29 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/317,002 Expired - Lifetime US7236830B2 (en) | 2002-11-01 | 2002-12-10 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders |
US10/782,526 Expired - Fee Related US7353064B2 (en) | 2002-12-10 | 2004-02-19 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of movement disorders and/or other neurologic dysfunction |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/843,766 Abandoned US20100292754A1 (en) | 2002-11-01 | 2010-07-26 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
US13/297,688 Expired - Fee Related US9427585B2 (en) | 2002-11-01 | 2011-11-16 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinsons disease and or other movement disorders |
US15/250,240 Expired - Lifetime US10004901B2 (en) | 2002-12-10 | 2016-08-29 | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders |
Country Status (5)
Country | Link |
---|---|
US (6) | US7236830B2 (en) |
EP (1) | EP1569714A4 (en) |
AU (1) | AU2003293541B2 (en) |
CA (1) | CA2508827A1 (en) |
WO (1) | WO2004052183A2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060287566A1 (en) * | 2005-06-16 | 2006-12-21 | Abraham Zangen | Transcranial magnetic stimulation system and methods |
US20080312706A1 (en) * | 2000-10-20 | 2008-12-18 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of | Coil for magnetic stimulation and methods for using the same |
US20090105786A1 (en) * | 2007-10-22 | 2009-04-23 | University Of Washington | Method and device for strengthening synaptic connections |
US20090121989A1 (en) * | 2007-11-09 | 2009-05-14 | Seiko Epson Corporation | Active matrix device, electrooptic display, and electronic apparatus |
US20100152522A1 (en) * | 2008-12-11 | 2010-06-17 | Yiftach Roth | Systems and methods for controlling electric field pulse parameters using transcranial magnetic stimulation |
US7869885B2 (en) | 2006-04-28 | 2011-01-11 | Cyberonics, Inc | Threshold optimization for tissue stimulation therapy |
US7869867B2 (en) | 2006-10-27 | 2011-01-11 | Cyberonics, Inc. | Implantable neurostimulator with refractory stimulation |
US7962220B2 (en) | 2006-04-28 | 2011-06-14 | Cyberonics, Inc. | Compensation reduction in tissue stimulation therapy |
US7974701B2 (en) | 2007-04-27 | 2011-07-05 | Cyberonics, Inc. | Dosing limitation for an implantable medical device |
US7996079B2 (en) | 2006-01-24 | 2011-08-09 | Cyberonics, Inc. | Input response override for an implantable medical device |
US8150508B2 (en) | 2006-03-29 | 2012-04-03 | Catholic Healthcare West | Vagus nerve stimulation method |
US8204603B2 (en) | 2008-04-25 | 2012-06-19 | Cyberonics, Inc. | Blocking exogenous action potentials by an implantable medical device |
US8260426B2 (en) | 2008-01-25 | 2012-09-04 | Cyberonics, Inc. | Method, apparatus and system for bipolar charge utilization during stimulation by an implantable medical device |
US20130110220A1 (en) * | 2011-10-28 | 2013-05-02 | Martin Brown | Transcutaneous electrical nerve stimulation of the knee |
US8457747B2 (en) | 2008-10-20 | 2013-06-04 | Cyberonics, Inc. | Neurostimulation with signal duration determined by a cardiac cycle |
US8565867B2 (en) | 2005-01-28 | 2013-10-22 | Cyberonics, Inc. | Changeable electrode polarity stimulation by an implantable medical device |
US20140074180A1 (en) * | 2012-09-10 | 2014-03-13 | Dustin A. Heldman | Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically |
US20140074179A1 (en) * | 2012-09-10 | 2014-03-13 | Dustin A Heldman | Movement disorder therapy system, devices and methods, and intelligent methods of tuning |
US9008780B2 (en) | 2011-10-05 | 2015-04-14 | Case Western Reserve University | Methods and associated neural prosthetic devices for bridging brain areas to improve function |
US9314633B2 (en) | 2008-01-25 | 2016-04-19 | Cyberonics, Inc. | Contingent cardio-protection for epilepsy patients |
US10653883B2 (en) | 2009-01-23 | 2020-05-19 | Livanova Usa, Inc. | Implantable medical device for providing chronic condition therapy and acute condition therapy using vagus nerve stimulation |
US10758732B1 (en) * | 2012-09-10 | 2020-09-01 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy and brain mapping system and methods of tuning remotely, intelligently and/or automatically |
Families Citing this family (264)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7062330B1 (en) * | 1998-10-26 | 2006-06-13 | Boveja Birinder R | Electrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator |
US20060217782A1 (en) * | 1998-10-26 | 2006-09-28 | Boveja Birinder R | Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components |
US7756584B2 (en) | 2000-07-13 | 2010-07-13 | Advanced Neuromodulation Systems, Inc. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US20050021118A1 (en) * | 2000-07-13 | 2005-01-27 | Chris Genau | Apparatuses and systems for applying electrical stimulation to a patient |
US7024247B2 (en) | 2001-10-15 | 2006-04-04 | Northstar Neuroscience, Inc. | Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures |
US7146217B2 (en) * | 2000-07-13 | 2006-12-05 | Northstar Neuroscience, Inc. | Methods and apparatus for effectuating a change in a neural-function of a patient |
US7831305B2 (en) | 2001-10-15 | 2010-11-09 | Advanced Neuromodulation Systems, Inc. | Neural stimulation system and method responsive to collateral neural activity |
US7010351B2 (en) | 2000-07-13 | 2006-03-07 | Northstar Neuroscience, Inc. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US7305268B2 (en) | 2000-07-13 | 2007-12-04 | Northstar Neurscience, Inc. | Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators |
US7672730B2 (en) * | 2001-03-08 | 2010-03-02 | Advanced Neuromodulation Systems, Inc. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US7221981B2 (en) | 2002-03-28 | 2007-05-22 | Northstar Neuroscience, Inc. | Electrode geometries for efficient neural stimulation |
US7236830B2 (en) | 2002-12-10 | 2007-06-26 | Northstar Neuroscience, Inc. | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders |
US20050075680A1 (en) | 2003-04-18 | 2005-04-07 | Lowry David Warren | Methods and systems for intracranial neurostimulation and/or sensing |
US7167750B2 (en) | 2003-02-03 | 2007-01-23 | Enteromedics, Inc. | Obesity treatment with electrically induced vagal down regulation |
EP1651106A4 (en) * | 2003-07-09 | 2009-05-27 | Medical Technologies Unltd Inc | Comprehensive neuromuscular profiler |
WO2005011805A2 (en) | 2003-08-01 | 2005-02-10 | Northstar Neuroscience, Inc. | Apparatus and methods for applying neural stimulation to a patient |
EP1694403A2 (en) * | 2003-11-20 | 2006-08-30 | Advanced Neuromodulation Systems, Inc. | Electrical stimulation system, lead, and method providing reduced neuroplasticity effects |
US20060069415A1 (en) * | 2003-11-20 | 2006-03-30 | Advanced Neuromodulation Systems, Inc. | Electrical stimulation system, lead, and method providing modified reduced neuroplasticity effect |
US9050469B1 (en) | 2003-11-26 | 2015-06-09 | Flint Hills Scientific, Llc | Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals |
US7520848B2 (en) * | 2004-04-09 | 2009-04-21 | The Board Of Trustees Of The Leland Stanford Junior University | Robotic apparatus for targeting and producing deep, focused transcranial magnetic stimulation |
US8052591B2 (en) | 2006-05-05 | 2011-11-08 | The Board Of Trustees Of The Leland Stanford Junior University | Trajectory-based deep-brain stereotactic transcranial magnetic stimulation |
WO2005107859A1 (en) * | 2004-05-04 | 2005-11-17 | The Cleveland Clinic Foundation | Methods of treating medical conditions by neuromodulation of the cerebellar pathways |
US7725196B2 (en) | 2004-05-04 | 2010-05-25 | The Cleveland Clinic Foundation | Corpus callosum neuromodulation assembly |
WO2005107856A2 (en) * | 2004-05-04 | 2005-11-17 | The Cleveland Clinic Foundation | Methods of treating neurological conditions by neuromodulation of interhemispheric fibers |
NL1026137C2 (en) * | 2004-05-07 | 2005-11-08 | Vanderlande Ind Nederland | Device for sorting products. |
DE102004025825A1 (en) * | 2004-05-24 | 2005-12-29 | Forschungszentrum Jülich GmbH | Apparatus for treating patients by brain stimulation, an electronic component and the use of the device and the electronic component in medicine and medical treatment method |
US8862235B1 (en) * | 2005-07-01 | 2014-10-14 | Alfred E. Mann Foundation For Scientific Research | Brain implant device |
US7346382B2 (en) | 2004-07-07 | 2008-03-18 | The Cleveland Clinic Foundation | Brain stimulation models, systems, devices, and methods |
AU2005275209B2 (en) * | 2004-07-15 | 2010-06-24 | Advanced Neuromodulation Systems, Inc. | Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy |
US7565200B2 (en) | 2004-11-12 | 2009-07-21 | Advanced Neuromodulation Systems, Inc. | Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects |
US20110307030A1 (en) * | 2005-03-24 | 2011-12-15 | Michael Sasha John | Methods for Evaluating and Selecting Electrode Sites of a Brain Network to Treat Brain Disorders |
US20060167529A1 (en) | 2005-01-26 | 2006-07-27 | Schecter Stuart O | Method and algorithm for defining the pathologic state from a plurality of intrinsically and extrinsically derived signals |
US20090030332A1 (en) * | 2005-01-26 | 2009-01-29 | Schecter Stuart O | microfabricated cardiac sensor with tactile feedback and method and apparatus for calibrating the same using a plurality of signals |
US20100312129A1 (en) | 2005-01-26 | 2010-12-09 | Schecter Stuart O | Cardiovascular haptic handle system |
US8187209B1 (en) * | 2005-03-17 | 2012-05-29 | Great Lakes Neurotechnologies Inc | Movement disorder monitoring system and method |
US7933645B2 (en) * | 2005-03-31 | 2011-04-26 | The United States Of America As Represented By The Secretary Of The Navy | Use of EEG to measure cerebral changes during computer-based motion sickness-inducing tasks |
US9457184B2 (en) * | 2005-04-06 | 2016-10-04 | Berlin Heals Holding Ag | Electromedical implantable or extracorporeally applicable device for the treatment or monitoring of organs, and method for therapeutic organ treatment |
US20160361559A1 (en) | 2007-10-12 | 2016-12-15 | Berlin Heals Holding Ag | Electromedical implantable or extracorporeally applicable device for the treatment or monitoring of organs, and method for therapeutic organ treatment |
US20070088404A1 (en) * | 2005-10-19 | 2007-04-19 | Allen Wyler | Methods and systems for improving neural functioning, including cognitive functioning and neglect disorders |
US7729773B2 (en) | 2005-10-19 | 2010-06-01 | Advanced Neuromodualation Systems, Inc. | Neural stimulation and optical monitoring systems and methods |
US8929991B2 (en) | 2005-10-19 | 2015-01-06 | Advanced Neuromodulation Systems, Inc. | Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits |
US7657310B2 (en) * | 2006-01-26 | 2010-02-02 | Cyberonics, Inc. | Treatment of reproductive endocrine disorders by vagus nerve stimulation |
US9352167B2 (en) | 2006-05-05 | 2016-05-31 | Rio Grande Neurosciences, Inc. | Enhanced spatial summation for deep-brain transcranial magnetic stimulation |
US8267850B2 (en) | 2007-11-27 | 2012-09-18 | Cervel Neurotech, Inc. | Transcranial magnet stimulation of deep brain targets |
WO2008033792A2 (en) * | 2006-09-11 | 2008-03-20 | Neuroquest Therapeutics | Repetitive transcranial magnetic stimulation for movement disorders |
US20080139870A1 (en) * | 2006-12-12 | 2008-06-12 | Northstar Neuroscience, Inc. | Systems and methods for treating patient hypertonicity |
US20080172103A1 (en) * | 2007-01-17 | 2008-07-17 | Vanderbilt University | Methods and system for brain stimulation |
ES2550960T3 (en) * | 2007-02-01 | 2015-11-13 | Boston Scientific Neuromodulation Corporation | Neurostimulation system to measure the activity of a patient |
US8224436B2 (en) * | 2007-04-02 | 2012-07-17 | Cardiac Research, Inc. | Unidirectional neural stimulation systems, devices and methods |
US8956274B2 (en) * | 2007-08-05 | 2015-02-17 | Cervel Neurotech, Inc. | Transcranial magnetic stimulation field shaping |
WO2009055634A1 (en) * | 2007-10-24 | 2009-04-30 | Neostim Inc. | Intra-session control of transcranial magnetic stimulation |
WO2009020938A1 (en) * | 2007-08-05 | 2009-02-12 | Neostim, Inc. | Monophasic multi-coil arrays for trancranial magnetic stimulation |
US20100185042A1 (en) * | 2007-08-05 | 2010-07-22 | Schneider M Bret | Control and coordination of transcranial magnetic stimulation electromagnets for modulation of deep brain targets |
WO2009023680A1 (en) * | 2007-08-13 | 2009-02-19 | Neostim, Inc. | Gantry and switches for position-based triggering of tms pulses in moving coils |
EP2183025B1 (en) * | 2007-08-20 | 2017-07-05 | Cervel Neurotech, Inc. | Firing patterns for deep brain transcranial magnetic stimulation |
US20100331602A1 (en) * | 2007-09-09 | 2010-12-30 | Mishelevich David J | Focused magnetic fields |
US8380314B2 (en) | 2007-09-26 | 2013-02-19 | Medtronic, Inc. | Patient directed therapy control |
EP2207590A1 (en) * | 2007-09-26 | 2010-07-21 | Medtronic, INC. | Therapy program selection |
US20090264789A1 (en) * | 2007-09-26 | 2009-10-22 | Medtronic, Inc. | Therapy program selection |
WO2009049068A1 (en) * | 2007-10-09 | 2009-04-16 | Neostim, Inc. | Display of modeled magnetic fields |
EP2211986B1 (en) | 2007-10-16 | 2013-11-20 | Medtronic, Inc. | Therapy control based on a patient movement state |
US20100286468A1 (en) * | 2007-10-26 | 2010-11-11 | David J Mishelevich | Transcranial magnetic stimulation with protection of magnet-adjacent structures |
US9179850B2 (en) | 2007-10-30 | 2015-11-10 | Neuropace, Inc. | Systems, methods and devices for a skull/brain interface |
US20090112278A1 (en) | 2007-10-30 | 2009-04-30 | Neuropace, Inc. | Systems, Methods and Devices for a Skull/Brain Interface |
AU2008325211B2 (en) * | 2007-11-06 | 2014-11-13 | Signal Coordinating Therapy, Inc. | Compositions and methods for treating Parkinson's disease and related disorders |
US9089707B2 (en) | 2008-07-02 | 2015-07-28 | The Board Of Regents, The University Of Texas System | Systems, methods and devices for paired plasticity |
US8457757B2 (en) * | 2007-11-26 | 2013-06-04 | Micro Transponder, Inc. | Implantable transponder systems and methods |
WO2009070697A2 (en) * | 2007-11-26 | 2009-06-04 | Micro Transponder Inc. | Implantable transponder systems and methods |
US8849407B1 (en) | 2008-01-04 | 2014-09-30 | Yuri P. Danilov | Non-invasive neuromodulation (NINM) for rehabilitation of brain function |
US8337404B2 (en) | 2010-10-01 | 2012-12-25 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
WO2009094050A1 (en) | 2008-01-25 | 2009-07-30 | Medtronic, Inc. | Sleep stage detection |
US8382667B2 (en) | 2010-10-01 | 2013-02-26 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8571643B2 (en) | 2010-09-16 | 2013-10-29 | Flint Hills Scientific, Llc | Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
US9220889B2 (en) | 2008-02-11 | 2015-12-29 | Intelect Medical, Inc. | Directional electrode devices with locating features |
US8019440B2 (en) | 2008-02-12 | 2011-09-13 | Intelect Medical, Inc. | Directional lead assembly |
US9186502B2 (en) * | 2008-02-14 | 2015-11-17 | Enteromedics Inc. | Treatment of excess weight by neural downregulation in combination with compositions |
EP2280758A2 (en) * | 2008-04-18 | 2011-02-09 | Medtronic, Inc. | Psychiatric disorder therapy control |
US9613184B2 (en) * | 2008-04-18 | 2017-04-04 | Medtronic, Inc. | Analyzing a washout period characteristic for psychiatric disorder therapy delivery |
WO2009129486A2 (en) * | 2008-04-18 | 2009-10-22 | Medtronic, Inc. | Timing therapy evaluation trials |
US10688303B2 (en) | 2008-04-18 | 2020-06-23 | Medtronic, Inc. | Therapy target selection for psychiatric disorder therapy |
US9272153B2 (en) | 2008-05-15 | 2016-03-01 | Boston Scientific Neuromodulation Corporation | VOA generation system and method using a fiber specific analysis |
US8155750B2 (en) * | 2008-07-24 | 2012-04-10 | Boston Scientific Neuromodulation Corporation | System and method for avoiding, reversing, and managing neurological accommodation to electrical stimulation |
CN102186433B (en) | 2008-10-01 | 2014-12-10 | S·华 | System and method for wire-guided pedicle screw stabilization of spinal vertebrae |
US8923981B2 (en) | 2008-10-03 | 2014-12-30 | Duke University | Non-regular electrical stimulation patterns designed with a cost function for treating neurological disorders |
US8798755B2 (en) | 2008-10-03 | 2014-08-05 | Duke University | Non-regular electrical stimulation patterns for treating neurological disorders |
US11013924B2 (en) | 2008-10-03 | 2021-05-25 | Duke University | Non-regular electrical stimulation patterns for treating neurological disorders |
US9802046B2 (en) | 2008-10-03 | 2017-10-31 | Duke University | Non-regular electrical stimulation patterns for improved efficiency in treating Parkinson's Disease |
CA3099328C (en) | 2008-10-03 | 2023-01-03 | Duke University | Non-regular electrical stimulation patterns for treating neurological disorders |
US9662502B2 (en) | 2008-10-14 | 2017-05-30 | Great Lakes Neurotechnologies Inc. | Method and system for tuning of movement disorder therapy devices |
US11786730B1 (en) * | 2008-10-14 | 2023-10-17 | Great Lakes Neurotechnologies Inc. | Method and system for tuning of movement disorder therapy devices |
US10966652B1 (en) * | 2008-10-14 | 2021-04-06 | Great Lakes Neurotechnologies Inc. | Method and system for quantifying movement disorder systems |
US9393418B2 (en) * | 2011-06-03 | 2016-07-19 | Great Lakes Neuro Technologies Inc. | Movement disorder therapy system, devices and methods of tuning |
US8417344B2 (en) | 2008-10-24 | 2013-04-09 | Cyberonics, Inc. | Dynamic cranial nerve stimulation based on brain state determination from cardiac data |
US20100114237A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Mood circuit monitoring to control therapy delivery |
US8255057B2 (en) | 2009-01-29 | 2012-08-28 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US8795148B2 (en) * | 2009-10-26 | 2014-08-05 | Cervel Neurotech, Inc. | Sub-motor-threshold stimulation of deep brain targets using transcranial magnetic stimulation |
EP2384223A4 (en) | 2009-01-07 | 2014-06-18 | Cervel Neurotech Inc | Shaped coils for transcranial magnetic stimulation |
US20100185256A1 (en) * | 2009-01-16 | 2010-07-22 | Northstar Neuroscience, Inc. | Methods and systems for establishing, adjusting, and/or modulating parameters for neural stimulation based on functional and/or structural measurements |
AU2010221136B2 (en) | 2009-03-06 | 2015-08-13 | Eneura, Inc. | Method and apparatus to record and analyze TMS treatments and results |
ES2942684T3 (en) | 2009-04-22 | 2023-06-05 | Nevro Corp | Spinal cord modulation systems to induce paresthetic and anesthetic effects |
US8239028B2 (en) | 2009-04-24 | 2012-08-07 | Cyberonics, Inc. | Use of cardiac parameters in methods and systems for treating a chronic medical condition |
US8827912B2 (en) | 2009-04-24 | 2014-09-09 | Cyberonics, Inc. | Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters |
US9375585B2 (en) * | 2009-06-17 | 2016-06-28 | Nexstim Oy | Magnetic stimulation device and method |
WO2011013041A1 (en) * | 2009-07-30 | 2011-02-03 | Koninklijke Philips Electronics N.V. | System and method for deep brain stimulation |
US20110028859A1 (en) * | 2009-07-31 | 2011-02-03 | Neuropace, Inc. | Methods, Systems and Devices for Monitoring a Target in a Neural System and Facilitating or Controlling a Cell Therapy |
CA2772330A1 (en) | 2009-08-27 | 2011-03-03 | The Cleveland Clinic Foundation | System and method to estimate region of tissue activation |
US8233987B2 (en) * | 2009-09-10 | 2012-07-31 | Respicardia, Inc. | Respiratory rectification |
US9770204B2 (en) | 2009-11-11 | 2017-09-26 | Medtronic, Inc. | Deep brain stimulation for sleep and movement disorders |
WO2011068997A1 (en) | 2009-12-02 | 2011-06-09 | The Cleveland Clinic Foundation | Reversing cognitive-motor impairments in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming |
US8914115B2 (en) * | 2009-12-03 | 2014-12-16 | Medtronic, Inc. | Selecting therapy cycle parameters based on monitored brain signal |
WO2011084788A2 (en) | 2009-12-21 | 2011-07-14 | Sherwin Hua | Insertion of medical devices through non-orthogonal and orthogonal trajectories within the cranium and methods of using |
US20110160797A1 (en) * | 2009-12-28 | 2011-06-30 | Boston Scientific Neuromodulation Corporation | Methods to concurrently stimulate different brain targets |
JP5802218B2 (en) * | 2009-12-30 | 2015-10-28 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | System and method for independently operating multiple neural stimulation channels |
US9044606B2 (en) * | 2010-01-22 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Methods and devices for activating brown adipose tissue using electrical energy |
RU2012139028A (en) | 2010-02-12 | 2014-03-20 | Сапиенс Стиринг Брейн Стимьюлейшн Б.В. | METHOD AND SYSTEM FOR DETERMINING SETTINGS FOR DEEP BRAIN STIMULATION |
US8099170B2 (en) * | 2010-03-19 | 2012-01-17 | Medtronic, Inc. | Electrical stimulation based on phase response mapping |
US8649871B2 (en) | 2010-04-29 | 2014-02-11 | Cyberonics, Inc. | Validity test adaptive constraint modification for cardiac data used for detection of state changes |
US8562536B2 (en) | 2010-04-29 | 2013-10-22 | Flint Hills Scientific, Llc | Algorithm for detecting a seizure from cardiac data |
US8831732B2 (en) | 2010-04-29 | 2014-09-09 | Cyberonics, Inc. | Method, apparatus and system for validating and quantifying cardiac beat data quality |
EP3305363A1 (en) | 2010-05-27 | 2018-04-11 | Ndi Medical, LLC | Waveform shapes for treating neurological disorders optimized for energy efficiency |
US8825164B2 (en) | 2010-06-11 | 2014-09-02 | Enteromedics Inc. | Neural modulation devices and methods |
JP5830090B2 (en) | 2010-06-14 | 2015-12-09 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | Programming interface for spinal nerve regulation |
US8679009B2 (en) | 2010-06-15 | 2014-03-25 | Flint Hills Scientific, Llc | Systems approach to comorbidity assessment |
US10085689B1 (en) | 2010-06-18 | 2018-10-02 | Great Lakes NeuroTechnolgies Inc. | Device and method for monitoring and assessment of movement disorder symptoms |
US8447406B2 (en) | 2010-06-29 | 2013-05-21 | Medtronic, Inc. | Medical method and device for monitoring a neural brain network |
US9492679B2 (en) | 2010-07-16 | 2016-11-15 | Rio Grande Neurosciences, Inc. | Transcranial magnetic stimulation for altering susceptibility of tissue to pharmaceuticals and radiation |
US8641646B2 (en) | 2010-07-30 | 2014-02-04 | Cyberonics, Inc. | Seizure detection using coordinate data |
US9211411B2 (en) | 2010-08-26 | 2015-12-15 | Medtronic, Inc. | Therapy for rapid eye movement behavior disorder (RBD) |
US8562523B2 (en) | 2011-03-04 | 2013-10-22 | Flint Hills Scientific, Llc | Detecting, assessing and managing extreme epileptic events |
US8562524B2 (en) | 2011-03-04 | 2013-10-22 | Flint Hills Scientific, Llc | Detecting, assessing and managing a risk of death in epilepsy |
US8684921B2 (en) | 2010-10-01 | 2014-04-01 | Flint Hills Scientific Llc | Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis |
US8565886B2 (en) | 2010-11-10 | 2013-10-22 | Medtronic, Inc. | Arousal state modulation with electrical stimulation |
US8706181B2 (en) | 2011-01-25 | 2014-04-22 | Medtronic, Inc. | Target therapy delivery site selection |
US9504390B2 (en) | 2011-03-04 | 2016-11-29 | Globalfoundries Inc. | Detecting, assessing and managing a risk of death in epilepsy |
EP2691900A2 (en) | 2011-03-29 | 2014-02-05 | Boston Scientific Neuromodulation Corporation | System and method for image registration |
US8942828B1 (en) | 2011-04-13 | 2015-01-27 | Stuart Schecter, LLC | Minimally invasive cardiovascular support system with true haptic coupling |
US8725239B2 (en) | 2011-04-25 | 2014-05-13 | Cyberonics, Inc. | Identifying seizures using heart rate decrease |
US9402550B2 (en) | 2011-04-29 | 2016-08-02 | Cybertronics, Inc. | Dynamic heart rate threshold for neurological event detection |
US9592389B2 (en) | 2011-05-27 | 2017-03-14 | Boston Scientific Neuromodulation Corporation | Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information |
EP2742450A2 (en) | 2011-08-09 | 2014-06-18 | Boston Scientific Neuromodulation Corporation | Systems and methods for stimulation-related volume analysis, creation, and sharing |
AU2012304370B2 (en) | 2011-09-08 | 2016-01-28 | Nevro Corporation | Selective high frequency spinal cord modulation for inhibiting pain, including cephalic and/or total body pain with reduced side effects, and associated systems and methods |
US9271864B2 (en) | 2011-10-04 | 2016-03-01 | Feinstein Patents Llc | Orthosis for range of motion, muscular and neurologic rehabilitation of the lower extremities |
US9549677B2 (en) | 2011-10-14 | 2017-01-24 | Flint Hills Scientific, L.L.C. | Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm |
FI20116085L (en) * | 2011-11-03 | 2013-05-04 | Nexstim Oy | Method and apparatus for determining the effects of transcranial stimulation of the brain |
CA2851551A1 (en) * | 2011-10-14 | 2013-04-18 | Nexstim Oy | Method and apparatus for approximating effects of transcranial magnetic stimulation to a brain |
US10448839B2 (en) | 2012-04-23 | 2019-10-22 | Livanova Usa, Inc. | Methods, systems and apparatuses for detecting increased risk of sudden death |
US10013082B2 (en) | 2012-06-05 | 2018-07-03 | Stuart Schecter, LLC | Operating system with haptic interface for minimally invasive, hand-held surgical instrument |
WO2014025624A1 (en) | 2012-08-04 | 2014-02-13 | Boston Scientific Neuromodulation Corporation | Techniques and methods for storing and transferring registration, atlas, and lead information between medical devices |
WO2014036075A1 (en) | 2012-08-28 | 2014-03-06 | Boston Scientific Neuromodulation Corporation | Point-and-click programming for deep brain stimulation using real-time monopolar review trendlines |
US11844945B1 (en) * | 2012-09-10 | 2023-12-19 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy system, devices and methods of remotely tuning |
US11975195B1 (en) * | 2012-09-10 | 2024-05-07 | Great Lakes Neurotechnologies Inc. | Artificial intelligence systems for quantifying movement disorder symptoms and adjusting treatment based on symptom quantification |
US9289603B1 (en) | 2012-09-10 | 2016-03-22 | Great Lakes Neuro Technologies Inc. | Movement disorder therapy system, devices and methods, and methods of remotely tuning |
US9792412B2 (en) | 2012-11-01 | 2017-10-17 | Boston Scientific Neuromodulation Corporation | Systems and methods for VOA model generation and use |
BR112015017042B1 (en) * | 2013-01-21 | 2022-03-03 | Cala Health, Inc | Device to treat tremor |
US10220211B2 (en) | 2013-01-22 | 2019-03-05 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
EP2950880A4 (en) * | 2013-01-29 | 2017-06-14 | National ICT Australia Limited | Neuroprosthetic stimulation |
US10232179B2 (en) * | 2013-03-13 | 2019-03-19 | Duke University | Systems and methods for administering spinal cord stimulation based on temporal patterns of electrical stimulation |
US9056195B2 (en) | 2013-03-15 | 2015-06-16 | Cyberonics, Inc. | Optimization of cranial nerve stimulation to treat seizure disorderse during sleep |
EP2999515A4 (en) * | 2013-05-22 | 2016-10-05 | Deep Brain Innovations LLC | Deep brain stimulator and method of use |
US9895539B1 (en) | 2013-06-10 | 2018-02-20 | Nevro Corp. | Methods and systems for disease treatment using electrical stimulation |
US9597500B2 (en) * | 2013-06-26 | 2017-03-21 | California Institute Of Technology | Remote activation of the midbrain by transcranial direct current stimulation of prefrontal cortex |
WO2015100306A1 (en) | 2013-12-23 | 2015-07-02 | Deep Brain Innovations LLC | Programming systems for deep brain stimulator system |
EP3094371B1 (en) * | 2014-01-17 | 2019-04-03 | Medtronic Inc. | Movement disorder symptom control |
US20150242580A1 (en) * | 2014-02-26 | 2015-08-27 | Medicalcue, Inc. | Systems and methods for point of care guidance |
CA2857555A1 (en) * | 2014-04-01 | 2015-10-01 | William F. Stubbeman | Method and system for therapeutic brain stimulation using electromagnetic pulses |
US9585611B2 (en) | 2014-04-25 | 2017-03-07 | Cyberonics, Inc. | Detecting seizures based on heartbeat data |
US9302109B2 (en) | 2014-04-25 | 2016-04-05 | Cyberonics, Inc. | Cranial nerve stimulation to treat depression during sleep |
EP3148640B1 (en) | 2014-06-02 | 2024-01-24 | Cala Health, Inc. | Systems for peripheral nerve stimulation to treat tremor |
US9959388B2 (en) | 2014-07-24 | 2018-05-01 | Boston Scientific Neuromodulation Corporation | Systems, devices, and methods for providing electrical stimulation therapy feedback |
US20160022168A1 (en) * | 2014-07-24 | 2016-01-28 | University Of Lethbridge | Brain state dependent therapy for improved neural training and rehabilitation |
US10265528B2 (en) | 2014-07-30 | 2019-04-23 | Boston Scientific Neuromodulation Corporation | Systems and methods for electrical stimulation-related patient population volume analysis and use |
US10272247B2 (en) | 2014-07-30 | 2019-04-30 | Boston Scientific Neuromodulation Corporation | Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming |
US9974959B2 (en) | 2014-10-07 | 2018-05-22 | Boston Scientific Neuromodulation Corporation | Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters |
USD751213S1 (en) | 2014-12-03 | 2016-03-08 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
USD750264S1 (en) | 2014-12-03 | 2016-02-23 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
USD750267S1 (en) | 2014-12-03 | 2016-02-23 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
USD752766S1 (en) | 2014-12-03 | 2016-03-29 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
US9227051B1 (en) | 2014-12-03 | 2016-01-05 | Neurohabilitation Corporation | Devices for delivering non-invasive neuromodulation to a patient |
US9272133B1 (en) | 2014-12-03 | 2016-03-01 | Neurohabilitation Corporation | Methods of manufacturing devices for the neurorehabilitation of a patient |
USD750794S1 (en) | 2014-12-03 | 2016-03-01 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
US9283377B1 (en) | 2014-12-03 | 2016-03-15 | Neurohabilitation Corporation | Devices for delivering non-invasive neuromodulation to a patient |
USD751722S1 (en) | 2014-12-03 | 2016-03-15 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
USD750266S1 (en) | 2014-12-03 | 2016-02-23 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
US9072889B1 (en) | 2014-12-03 | 2015-07-07 | Neurohabilitation Corporation | Systems for providing non-invasive neurorehabilitation of a patient |
USD753316S1 (en) | 2014-12-03 | 2016-04-05 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
US9993640B2 (en) | 2014-12-03 | 2018-06-12 | Neurohabilitation Corporation | Devices for delivering non-invasive neuromodulation to a patient |
USD752236S1 (en) | 2014-12-03 | 2016-03-22 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
US9415210B2 (en) | 2014-12-03 | 2016-08-16 | Neurohabilitation Corporation | Methods of manufacturing devices for the neurorehabilitation of a patient |
USD749746S1 (en) | 2014-12-03 | 2016-02-16 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
US9656060B2 (en) | 2014-12-03 | 2017-05-23 | Neurohabilitation Corporation | Methods of manufacturing devices for the neurorehabilitation of a patient |
US9616222B2 (en) | 2014-12-03 | 2017-04-11 | Neurohabilitation Corporation | Systems for providing non-invasive neurorehabilitation of a patient |
US9415209B2 (en) | 2014-12-03 | 2016-08-16 | Neurohabilitation Corporation | Methods of manufacturing devices for the neurorehabilitation of a patient |
US9981127B2 (en) | 2014-12-03 | 2018-05-29 | Neurohabilitation Corporation | Systems and methods for providing non-invasive neurorehabilitation of a patient |
USD760397S1 (en) | 2014-12-03 | 2016-06-28 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
USD750265S1 (en) | 2014-12-03 | 2016-02-23 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
USD751214S1 (en) | 2014-12-03 | 2016-03-08 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
USD759830S1 (en) | 2014-12-03 | 2016-06-21 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
USD750268S1 (en) | 2014-12-03 | 2016-02-23 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
USD753315S1 (en) | 2014-12-03 | 2016-04-05 | Neurohabilitation Corporation | Non-invasive neurostimulation device |
US9789306B2 (en) | 2014-12-03 | 2017-10-17 | Neurohabilitation Corporation | Systems and methods for providing non-invasive neurorehabilitation of a patient |
US10080884B2 (en) | 2014-12-29 | 2018-09-25 | Ethicon Llc | Methods and devices for activating brown adipose tissue using electrical energy |
US10092738B2 (en) | 2014-12-29 | 2018-10-09 | Ethicon Llc | Methods and devices for inhibiting nerves when activating brown adipose tissue |
CN104548342A (en) * | 2014-12-31 | 2015-04-29 | 清华大学 | Implantable electric pulse stimulation system |
US10596379B2 (en) | 2015-02-16 | 2020-03-24 | Newronika S.r.l. | Apparatus and method for treating neurological disorders |
DE102015104614A1 (en) | 2015-03-26 | 2016-09-29 | Med-El Elektromedizinische Geräte GmbH | Apparatus and method for electrical stimulation using a cochlear implant |
US10456059B2 (en) * | 2015-04-06 | 2019-10-29 | Forest Devices, Inc. | Neuorological condition detection unit and method of using the same |
US9724521B2 (en) | 2015-04-09 | 2017-08-08 | Medtronic, Inc. | Frequency based therapy generation |
US9956419B2 (en) | 2015-05-26 | 2018-05-01 | Boston Scientific Neuromodulation Corporation | Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation |
US10780283B2 (en) | 2015-05-26 | 2020-09-22 | Boston Scientific Neuromodulation Corporation | Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation |
CA2988586A1 (en) | 2015-06-10 | 2016-12-15 | Cala Health, Inc. | Neuromodulation system for peripheral nerve stimulation with detachable therapy unit |
WO2017003946A1 (en) | 2015-06-29 | 2017-01-05 | Boston Scientific Neuromodulation Corporation | Systems and methods for selecting stimulation parameters based on stimulation target region, effects, or side effects |
ES2940303T3 (en) | 2015-06-29 | 2023-05-05 | Boston Scient Neuromodulation Corp | Stimulation parameter selection systems by use of targets and direction |
CN107925829B (en) * | 2015-09-01 | 2020-05-15 | Med-El电气医疗器械有限公司 | Stimulation rate and location matched to instantaneous frequency |
US10675468B2 (en) * | 2015-09-18 | 2020-06-09 | Medtronic, Inc. | Electrical stimulation therapy for inducing patient sensations |
US10300282B2 (en) | 2015-09-18 | 2019-05-28 | Medtronic, Inc. | Electrical stimulation therapy for inducing patient sensations |
US20170080234A1 (en) * | 2015-09-21 | 2017-03-23 | Boston Scientific Neuromodulation Corporation | Automated program optimization |
CN108348746B (en) | 2015-09-23 | 2021-10-12 | 卡拉健康公司 | System and method for peripheral nerve stimulation in fingers or hands to treat hand tremor |
EP3359252B1 (en) | 2015-10-09 | 2020-09-09 | Boston Scientific Neuromodulation Corporation | System and methods for clinical effects mapping for directional stimulations leads |
US11318310B1 (en) | 2015-10-26 | 2022-05-03 | Nevro Corp. | Neuromodulation for altering autonomic functions, and associated systems and methods |
CN108778411B (en) | 2016-01-21 | 2022-06-03 | 卡拉健康公司 | Systems, methods, and devices for peripheral neuromodulation for treating diseases associated with overactive bladder |
CN109310865B (en) | 2016-01-25 | 2022-09-13 | 内弗洛公司 | Electrostimulation treatment of congestive heart failure, and associated systems and methods |
US10716942B2 (en) | 2016-04-25 | 2020-07-21 | Boston Scientific Neuromodulation Corporation | System and methods for directional steering of electrical stimulation |
US11103708B2 (en) | 2016-06-01 | 2021-08-31 | Duke University | Systems and methods for determining optimal temporal patterns of neural stimulation |
AU2017281934B2 (en) | 2016-06-24 | 2019-11-14 | Boston Scientific Neuromodulation Corporation | Systems and methods for visual analytics of clinical effects |
JP7077297B2 (en) | 2016-07-08 | 2022-05-30 | カラ ヘルス,インコーポレイテッド | Systems and methods for stimulating N nerves with strictly N electrodes and improved drywall |
WO2018044881A1 (en) | 2016-09-02 | 2018-03-08 | Boston Scientific Neuromodulation Corporation | Systems and methods for visualizing and directing stimulation of neural elements |
US10780282B2 (en) | 2016-09-20 | 2020-09-22 | Boston Scientific Neuromodulation Corporation | Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters |
US10864368B2 (en) | 2016-09-27 | 2020-12-15 | Medtronic, Inc. | Adaptive deep brain stimulation using homeostatic window |
EP3493876B1 (en) | 2016-10-14 | 2021-03-17 | Boston Scientific Neuromodulation Corporation | Systems for closed-loop determination of stimulation parameter settings for an electrical simulation system |
US11123565B1 (en) | 2016-10-31 | 2021-09-21 | Nevro Corp. | Treatment of neurodegenerative disease with high frequency stimulation, and associated systems and methods |
JP6834005B2 (en) | 2017-01-03 | 2021-02-24 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | Systems and methods for selecting MRI-matched stimulus parameters |
WO2018132334A1 (en) | 2017-01-10 | 2018-07-19 | Boston Scientific Neuromodulation Corporation | Systems and methods for creating stimulation programs based on user-defined areas or volumes |
US10625082B2 (en) | 2017-03-15 | 2020-04-21 | Boston Scientific Neuromodulation Corporation | Visualization of deep brain stimulation efficacy |
EP4252653A3 (en) * | 2017-03-28 | 2023-12-06 | Ecole Polytechnique Fédérale de Lausanne (EPFL) EPFL-TTO | A neurostimulation system for central nervous stimulation (cns) and peripheral nervous stimulation (pns) |
US11357986B2 (en) | 2017-04-03 | 2022-06-14 | Boston Scientific Neuromodulation Corporation | Systems and methods for estimating a volume of activation using a compressed database of threshold values |
WO2018187241A1 (en) | 2017-04-03 | 2018-10-11 | Cala Health, Inc. | Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder |
EP3651849B1 (en) | 2017-07-14 | 2023-05-31 | Boston Scientific Neuromodulation Corporation | Estimating clinical effects of electrical stimulation |
US10960214B2 (en) | 2017-08-15 | 2021-03-30 | Boston Scientific Neuromodulation Corporation | Systems and methods for controlling electrical stimulation using multiple stimulation fields |
US11491325B2 (en) | 2017-09-05 | 2022-11-08 | University Of Florida Research Foundation, Incorporated | Stimulating spinal cord motor neurons using electrical signals |
US11123549B1 (en) | 2017-09-08 | 2021-09-21 | Nevro Corp. | Electrical therapy applied to the brain with increased efficacy and/or decreased undesirable side effects, and associated systems and methods |
EP3684463A4 (en) | 2017-09-19 | 2021-06-23 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement |
US11717686B2 (en) | 2017-12-04 | 2023-08-08 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
US11266849B2 (en) * | 2017-12-12 | 2022-03-08 | Eb Neuro S.P.A. | Control device and a machine for interactive cerebral and bodily navigation with real-time anatomical display and control functions |
WO2019133997A1 (en) | 2017-12-31 | 2019-07-04 | Neuroenhancement Lab, LLC | System and method for neuroenhancement to enhance emotional response |
WO2019143790A1 (en) | 2018-01-17 | 2019-07-25 | Cala Health, Inc. | Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation |
IT201800002962A1 (en) | 2018-02-22 | 2019-08-22 | Newronika Srl | APPARATUS FOR THE TREATMENT OF NEUROLOGICAL DISORDERS USING ELECTROSTIMULATION AND METHOD OF PROCESSING THE NEUROLOGICAL SIGNAL COLLECTED BY THIS APP |
US11364361B2 (en) | 2018-04-20 | 2022-06-21 | Neuroenhancement Lab, LLC | System and method for inducing sleep by transplanting mental states |
WO2019210202A1 (en) | 2018-04-27 | 2019-10-31 | Boston Scientific Neuromodulation Corporation | Multi-mode electrical stimulation systems and methods of making and using |
EP3784332B1 (en) | 2018-04-27 | 2023-04-26 | Boston Scientific Neuromodulation Corporation | Systems for visualizing and programming electrical stimulation |
US11701293B2 (en) | 2018-09-11 | 2023-07-18 | Encora, Inc. | Apparatus and method for reduction of neurological movement disorder symptoms using wearable device |
US11839583B1 (en) | 2018-09-11 | 2023-12-12 | Encora, Inc. | Apparatus and method for reduction of neurological movement disorder symptoms using wearable device |
CA3112564A1 (en) | 2018-09-14 | 2020-03-19 | Neuroenhancement Lab, LLC | System and method of improving sleep |
US11318309B2 (en) | 2018-12-13 | 2022-05-03 | Newronika S.P.A. | Method and apparatus for treating Tourette Syndrome by brain stimulation |
US11590352B2 (en) | 2019-01-29 | 2023-02-28 | Nevro Corp. | Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods |
US11160580B2 (en) | 2019-04-24 | 2021-11-02 | Spine23 Inc. | Systems and methods for pedicle screw stabilization of spinal vertebrae |
EP3750592B1 (en) | 2019-05-20 | 2024-07-03 | Biopro Scientific Co., Ltd. | System for treating movement disorders |
EP3744385A1 (en) | 2019-05-20 | 2020-12-02 | Biopro Scientific Co., Ltd. | System for treating neural disorders |
US11786694B2 (en) | 2019-05-24 | 2023-10-17 | NeuroLight, Inc. | Device, method, and app for facilitating sleep |
US11890468B1 (en) | 2019-10-03 | 2024-02-06 | Cala Health, Inc. | Neurostimulation systems with event pattern detection and classification |
US12076564B2 (en) | 2020-04-14 | 2024-09-03 | Medtronic, Inc. | Patient specific optimization algorithm |
US11147982B1 (en) | 2021-05-05 | 2021-10-19 | Kambix Innovations, Llc | Method and system for thermal stimulation of targeted neural circuits for neurodegenerative disorders |
EP4337119A1 (en) | 2021-05-12 | 2024-03-20 | Spine23 Inc. | Systems and methods for pedicle screw stabilization of spinal vertebrae |
EP4387713A1 (en) | 2021-08-18 | 2024-06-26 | Advanced Neuromodulation Systems, Inc. | Systems and methods for providing digital health services |
WO2023220471A1 (en) * | 2022-05-13 | 2023-11-16 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Thalamic stimulation system for the treatment of motor disorders |
Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3650276A (en) * | 1969-03-26 | 1972-03-21 | Inst Demedicina Si Farmacie | Method and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder |
US4140133A (en) * | 1977-04-26 | 1979-02-20 | Moskovsky Oblastnoi Nauchno-Issledovatelsky Institut Akusherstva I Ginekolog Ii | Device for pulse current action on central nervous system |
US4245645A (en) * | 1977-09-28 | 1981-01-20 | Arseneault Pierre Michel | Self-locking cerebral electrical probe |
US4328813A (en) * | 1980-10-20 | 1982-05-11 | Medtronic, Inc. | Brain lead anchoring system |
US4431000A (en) * | 1978-11-29 | 1984-02-14 | Gatron Corporation | Transcutaneous nerve stimulator with pseusorandom pulse generator |
US4590946A (en) * | 1984-06-14 | 1986-05-27 | Biomed Concepts, Inc. | Surgically implantable electrode for nerve bundles |
US4646744A (en) * | 1984-06-29 | 1987-03-03 | Zion Foundation | Method and treatment with transcranially applied electrical signals |
US5002053A (en) * | 1989-04-21 | 1991-03-26 | University Of Arkansas | Method of and device for inducing locomotion by electrical stimulation of the spinal cord |
US5092835A (en) * | 1990-07-06 | 1992-03-03 | Schurig Janet L S | Brain and nerve healing power apparatus and method |
US5184620A (en) * | 1991-12-26 | 1993-02-09 | Marquette Electronics, Inc. | Method of using a multiple electrode pad assembly |
US5193540A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
US5282468A (en) * | 1990-06-07 | 1994-02-01 | Medtronic, Inc. | Implantable neural electrode |
US5299569A (en) * | 1991-05-03 | 1994-04-05 | Cyberonics, Inc. | Treatment of neuropsychiatric disorders by nerve stimulation |
US5304206A (en) * | 1991-11-18 | 1994-04-19 | Cyberonics, Inc. | Activation techniques for implantable medical device |
US5314458A (en) * | 1990-06-01 | 1994-05-24 | University Of Michigan | Single channel microstimulator |
US5405375A (en) * | 1994-01-21 | 1995-04-11 | Incontrol, Inc. | Combined mapping, pacing, and defibrillating catheter |
US5406957A (en) * | 1992-02-05 | 1995-04-18 | Tansey; Michael A. | Electroencephalic neurofeedback apparatus for training and tracking of cognitive states |
US5411540A (en) * | 1993-06-03 | 1995-05-02 | Massachusetts Institute Of Technology | Method and apparatus for preferential neuron stimulation |
US5417719A (en) * | 1993-08-25 | 1995-05-23 | Medtronic, Inc. | Method of using a spinal cord stimulation lead |
US5520190A (en) * | 1994-10-31 | 1996-05-28 | Ventritex, Inc. | Cardiac blood flow sensor and method |
US5591216A (en) * | 1995-05-19 | 1997-01-07 | Medtronic, Inc. | Method for treatment of sleep apnea by electrical stimulation |
US5593432A (en) * | 1993-06-23 | 1997-01-14 | Neuroware Therapy International, Inc. | Method for neurostimulation for pain alleviation |
US5601611A (en) * | 1994-08-05 | 1997-02-11 | Ventritex, Inc. | Optical blood flow measurement apparatus and method and implantable defibrillator incorporating same |
US5611350A (en) * | 1996-02-08 | 1997-03-18 | John; Michael S. | Method and apparatus for facilitating recovery of patients in deep coma |
US5628317A (en) * | 1996-04-04 | 1997-05-13 | Medtronic, Inc. | Ultrasonic techniques for neurostimulator control |
US5707334A (en) * | 1995-08-21 | 1998-01-13 | Young; Robert B. | Method of treating amygdala related transitory disorders |
US5711316A (en) * | 1996-04-30 | 1998-01-27 | Medtronic, Inc. | Method of treating movement disorders by brain infusion |
US5713923A (en) * | 1996-05-13 | 1998-02-03 | Medtronic, Inc. | Techniques for treating epilepsy by brain stimulation and drug infusion |
US5713922A (en) * | 1996-04-25 | 1998-02-03 | Medtronic, Inc. | Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain |
US5716377A (en) * | 1996-04-25 | 1998-02-10 | Medtronic, Inc. | Method of treating movement disorders by brain stimulation |
US5722401A (en) * | 1994-10-19 | 1998-03-03 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe |
US5735814A (en) * | 1996-04-30 | 1998-04-07 | Medtronic, Inc. | Techniques of treating neurodegenerative disorders by brain infusion |
US5750376A (en) * | 1991-07-08 | 1998-05-12 | Neurospheres Holdings Ltd. | In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny |
US5752979A (en) * | 1996-11-01 | 1998-05-19 | Medtronic, Inc. | Method of controlling epilepsy by brain stimulation |
US5865842A (en) * | 1996-08-29 | 1999-02-02 | Medtronic, Inc. | System and method for anchoring brain stimulation lead or catheter |
US5871517A (en) * | 1997-01-15 | 1999-02-16 | Somatics, Inc. | Convulsive therapy apparatus to stimulate and monitor the extent of therapeutic value of the treatment |
US5885976A (en) * | 1995-05-08 | 1999-03-23 | Sandyk; Reuven | Methods useful for the treatment of neurological and mental disorders related to deficient serotonin neurotransmission and impaired pineal melatonin functions |
US5886769A (en) * | 1998-05-18 | 1999-03-23 | Zolten; A. J. | Method of training and rehabilitating brain function using hemi-lenses |
US5893883A (en) * | 1997-04-30 | 1999-04-13 | Medtronic, Inc. | Portable stimulation screening device for screening therapeutic effect of electrical stimulation on a patient user during normal activities of the patient user |
US5904916A (en) * | 1996-03-05 | 1999-05-18 | Hirsch; Alan R. | Use of odorants to alter learning capacity |
US6011996A (en) * | 1998-01-20 | 2000-01-04 | Medtronic, Inc | Dual electrode lead and method for brain target localization in functional stereotactic brain surgery |
US6016449A (en) * | 1997-10-27 | 2000-01-18 | Neuropace, Inc. | System for treatment of neurological disorders |
US6018682A (en) * | 1998-04-30 | 2000-01-25 | Medtronic, Inc. | Implantable seizure warning system |
US6021352A (en) * | 1996-06-26 | 2000-02-01 | Medtronic, Inc, | Diagnostic testing methods and apparatus for implantable therapy devices |
US6026326A (en) * | 1997-01-13 | 2000-02-15 | Medtronic, Inc. | Apparatus and method for treating chronic constipation |
US6035236A (en) * | 1998-07-13 | 2000-03-07 | Bionergy Therapeutics, Inc. | Methods and apparatus for electrical microcurrent stimulation therapy |
US6040180A (en) * | 1996-05-23 | 2000-03-21 | Neuralstem Biopharmaceuticals, Ltd. | In vitro generation of differentiated neurons from cultures of mammalian multipotential CNS stem cells |
US6042579A (en) * | 1997-04-30 | 2000-03-28 | Medtronic, Inc. | Techniques for treating neurodegenerative disorders by infusion of nerve growth factors into the brain |
US6052624A (en) * | 1999-01-07 | 2000-04-18 | Advanced Bionics Corporation | Directional programming for implantable electrode arrays |
US6055456A (en) * | 1999-04-29 | 2000-04-25 | Medtronic, Inc. | Single and multi-polar implantable lead for sacral nerve electrical stimulation |
US6057847A (en) * | 1996-12-20 | 2000-05-02 | Jenkins; Barry | System and method of image generation and encoding using primitive reprojection |
US6057846A (en) * | 1995-07-14 | 2000-05-02 | Sever, Jr.; Frank | Virtual reality psychophysiological conditioning medium |
US6058331A (en) * | 1998-04-27 | 2000-05-02 | Medtronic, Inc. | Apparatus and method for treating peripheral vascular disease and organ ischemia by electrical stimulation with closed loop feedback control |
US6060048A (en) * | 1990-10-19 | 2000-05-09 | New York University | Method for transplanting cells into the brain and therapeutic uses therefor |
US6176242B1 (en) * | 1999-04-30 | 2001-01-23 | Medtronic Inc | Method of treating manic depression by brain infusion |
US6190893B1 (en) * | 1998-09-18 | 2001-02-20 | Massachusetts Institute Of Technology | Electroactive materials for stimulation of biological activity of bone marrow stromal cells |
US6198958B1 (en) * | 1998-06-11 | 2001-03-06 | Beth Israel Deaconess Medical Center, Inc. | Method and apparatus for monitoring a magnetic resonance image during transcranial magnetic stimulation |
US6205360B1 (en) * | 1995-09-07 | 2001-03-20 | Cochlear Limited | Apparatus and method for automatically determining stimulation parameters |
US6210417B1 (en) * | 1999-04-29 | 2001-04-03 | Medtronic, Inc. | Medical lead positioning and anchoring system |
US6221908B1 (en) * | 1998-03-12 | 2001-04-24 | Scientific Learning Corporation | System for stimulating brain plasticity |
US6339725B1 (en) * | 1996-05-31 | 2002-01-15 | The Board Of Trustees Of Southern Illinois University | Methods of modulating aspects of brain neural plasticity by vagus nerve stimulation |
US6353754B1 (en) * | 2000-04-24 | 2002-03-05 | Neuropace, Inc. | System for the creation of patient specific templates for epileptiform activity detection |
US6354299B1 (en) * | 1997-10-27 | 2002-03-12 | Neuropace, Inc. | Implantable device for patient communication |
US6356792B1 (en) * | 2000-01-20 | 2002-03-12 | Electro Core Technologies, Llc | Skull mounted electrode lead securing assembly |
US6366813B1 (en) * | 1998-08-05 | 2002-04-02 | Dilorenzo Daniel J. | Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease |
US6375666B1 (en) * | 1999-12-09 | 2002-04-23 | Hans Alois Mische | Methods and devices for treatment of neurological disorders |
US6381496B1 (en) * | 1999-10-01 | 2002-04-30 | Advanced Bionics Corporation | Parameter context switching for an implanted device |
US6505075B1 (en) * | 1999-05-29 | 2003-01-07 | Richard L. Weiner | Peripheral nerve stimulation method |
US6507755B1 (en) * | 1998-12-01 | 2003-01-14 | Neurometrix, Inc. | Apparatus and method for stimulating human tissue |
US6529774B1 (en) * | 2000-11-09 | 2003-03-04 | Neuropace, Inc. | Extradural leads, neurostimulator assemblies, and processes of using them for somatosensory and brain stimulation |
US20030074032A1 (en) * | 2001-10-15 | 2003-04-17 | Gliner Bradford Evan | Neural stimulation system and method responsive to collateral neural activity |
US20030078633A1 (en) * | 2001-09-28 | 2003-04-24 | Firlik Andrew D. | Methods and implantable apparatus for electrical therapy |
US6684105B2 (en) * | 2001-08-31 | 2004-01-27 | Biocontrol Medical, Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US6687525B2 (en) * | 2000-06-07 | 2004-02-03 | New York University | Method and system for diagnosing and treating thalamocortical dysrhythmia |
US6690974B2 (en) * | 2000-04-05 | 2004-02-10 | Neuropace, Inc. | Stimulation signal generator for an implantable device |
US6708064B2 (en) * | 2000-02-24 | 2004-03-16 | Ali R. Rezai | Modulation of the brain to affect psychiatric disorders |
US20040073270A1 (en) * | 2000-07-13 | 2004-04-15 | Firlik Andrew D. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US6725094B2 (en) * | 1999-03-24 | 2004-04-20 | Lloyd R. Saberski | Apparatus and methods for reducing pain and/or retraining muscles |
US20040082847A1 (en) * | 2002-10-23 | 2004-04-29 | Mcdermott Kathleen B. | System and methods for identifying brain regions supporting language |
US6839594B2 (en) * | 2001-04-26 | 2005-01-04 | Biocontrol Medical Ltd | Actuation and control of limbs through motor nerve stimulation |
US20050004620A1 (en) * | 2002-12-09 | 2005-01-06 | Medtronic, Inc. | Implantable medical device with anti-infection agent |
US20050015129A1 (en) * | 1999-12-09 | 2005-01-20 | Mische Hans A. | Methods and devices for the treatment of neurological and physiological disorders |
US20050021107A1 (en) * | 2001-03-08 | 2005-01-27 | Firlik Andrew D. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US20050021105A1 (en) * | 2000-07-13 | 2005-01-27 | Firlik Andrew D. | Methods and apparatus for effectuating a change in a neural-function of a patient |
US20050021104A1 (en) * | 1998-08-05 | 2005-01-27 | Dilorenzo Daniel John | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US20050021118A1 (en) * | 2000-07-13 | 2005-01-27 | Chris Genau | Apparatuses and systems for applying electrical stimulation to a patient |
US20050033378A1 (en) * | 2002-12-09 | 2005-02-10 | Sheffield Warren Douglas | Methods for treating and/or collecting information regarding neurological disorders, including language disorders |
US6873872B2 (en) * | 1999-12-07 | 2005-03-29 | George Mason University | Adaptive electric field modulation of neural systems |
US20050070971A1 (en) * | 2003-08-01 | 2005-03-31 | Brad Fowler | Apparatus and methods for applying neural stimulation to a patient |
US20050075680A1 (en) * | 2003-04-18 | 2005-04-07 | Lowry David Warren | Methods and systems for intracranial neurostimulation and/or sensing |
US20050075679A1 (en) * | 2002-09-30 | 2005-04-07 | Gliner Bradford E. | Methods and apparatuses for treating neurological disorders by electrically stimulating cells implanted in the nervous system |
US20060015153A1 (en) * | 2004-07-15 | 2006-01-19 | Gliner Bradford E | Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy |
US6990377B2 (en) * | 2003-04-24 | 2006-01-24 | Northstar Neuroscience, Inc. | Systems and methods for facilitating and/or effectuating development, rehabilitation, restoration, and/or recovery of visual function through neural stimulation |
US7006859B1 (en) * | 2002-07-20 | 2006-02-28 | Flint Hills Scientific, L.L.C. | Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes |
US7010351B2 (en) * | 2000-07-13 | 2006-03-07 | Northstar Neuroscience, Inc. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US7024247B2 (en) * | 2001-10-15 | 2006-04-04 | Northstar Neuroscience, Inc. | Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures |
Family Cites Families (180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2716226A (en) | 1951-06-22 | 1955-08-23 | Reiner Electronics Co Inc | Electrical solderless connector |
US2721316A (en) | 1953-06-09 | 1955-10-18 | Joseph D Shaw | Method and means for aiding the blind |
US3628193A (en) | 1969-02-19 | 1971-12-21 | Inst Of Medical Sciences The | Tactile image projection system |
US3850161A (en) * | 1973-04-09 | 1974-11-26 | S Liss | Method and apparatus for monitoring and counteracting excess brain electrical energy to prevent epileptic seizures and the like |
US3918461A (en) | 1974-01-31 | 1975-11-11 | Irving S Cooper | Method for electrically stimulating the human brain |
US4030509A (en) | 1975-09-30 | 1977-06-21 | Mieczyslaw Mirowski | Implantable electrodes for accomplishing ventricular defibrillation and pacing and method of electrode implantation and utilization |
US4125116A (en) | 1977-02-14 | 1978-11-14 | The Johns Hopkins University | Human tissue stimulation electrode structure |
US4214804A (en) | 1978-09-25 | 1980-07-29 | Daig Corporation | Press fit electrical connection apparatus |
US4474186A (en) | 1979-07-17 | 1984-10-02 | Georgetown University | Computerized electro-oculographic (CEOG) system with feedback control of stimuli |
US4308868A (en) | 1980-05-27 | 1982-01-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Implantable electrical device |
US4340038A (en) | 1980-12-15 | 1982-07-20 | Pacesetter Systems, Inc. | Magnetic field concentration means and method for an implanted device |
US4390023A (en) * | 1981-04-30 | 1983-06-28 | Medtronic, Inc. | Patterned electrical tissue stimulator |
US4542752A (en) | 1983-04-22 | 1985-09-24 | Cordis Corporation | Implantable device having porous surface with carbon coating |
US4702254A (en) | 1983-09-14 | 1987-10-27 | Jacob Zabara | Neurocybernetic prosthesis |
US4844075A (en) | 1984-01-09 | 1989-07-04 | Pain Suppression Labs, Inc. | Transcranial stimulation for the treatment of cerebral palsy |
US4607639A (en) | 1984-05-18 | 1986-08-26 | Regents Of The University Of California | Method and system for controlling bladder evacuation |
CA1292285C (en) | 1985-08-21 | 1991-11-19 | Paul H. Stypulkowski | External ear canal electrode to be placed proximate the tympanic membrane and method of stimulating/recording utilizing external ear canal electrode placed proximate the tympanic membrane |
US5054906A (en) | 1986-01-17 | 1991-10-08 | Brimfield Precision, Inc. | Indirectly illuminating ophthalmological speculum |
EP0272318A1 (en) | 1986-06-16 | 1988-06-29 | Elefant, Mordecai | Method and apparatus for delivering a prescriptive electrical signal |
US4969468A (en) | 1986-06-17 | 1990-11-13 | Alfred E. Mann Foundation For Scientific Research | Electrode array for use in connection with a living body and method of manufacture |
US4869255A (en) | 1987-12-04 | 1989-09-26 | Ad-Tech Medical Instrument Corp. | Electrical connection device |
US4865048A (en) | 1987-12-31 | 1989-09-12 | Eckerson Harold D | Method and apparatus for drug free neurostimulation |
US4903702A (en) * | 1988-10-17 | 1990-02-27 | Ad-Tech Medical Instrument Corporation | Brain-contact for sensing epileptogenic foci with improved accuracy |
DE3914662A1 (en) | 1989-05-03 | 1990-11-08 | Alt Eckhard | DEVICE FOR TRANSMITTING ELECTRICAL SIGNALS BETWEEN AN IMPLANTABLE MEDICAL DEVICE AND ELECTRICALLY EXPENSIBLE HUMAN TISSUE |
US5024226A (en) * | 1989-08-17 | 1991-06-18 | Critikon, Inc. | Epidural oxygen sensor |
US5063932A (en) | 1989-10-03 | 1991-11-12 | Mieczyslaw Mirowski | Controlled discharge defibrillation electrode |
US5215088A (en) * | 1989-11-07 | 1993-06-01 | The University Of Utah | Three-dimensional electrode device |
US5271417A (en) | 1990-01-23 | 1993-12-21 | Cardiac Pacemakers, Inc. | Defibrillation electrode having smooth current distribution |
US5031618A (en) | 1990-03-07 | 1991-07-16 | Medtronic, Inc. | Position-responsive neuro stimulator |
US5044368A (en) * | 1990-04-23 | 1991-09-03 | Ad-Tech Medical Instrument Corporation | Diagnostic electrode for use with magnetic resonance imaging |
US5713926A (en) | 1990-04-25 | 1998-02-03 | Cardiac Pacemakers, Inc. | Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode |
US5121754A (en) * | 1990-08-21 | 1992-06-16 | Medtronic, Inc. | Lateral displacement percutaneously inserted epidural lead |
US5224491A (en) | 1991-01-07 | 1993-07-06 | Medtronic, Inc. | Implantable electrode for location within a blood vessel |
US5269303A (en) * | 1991-02-22 | 1993-12-14 | Cyberonics, Inc. | Treatment of dementia by nerve stimulation |
US5215086A (en) * | 1991-05-03 | 1993-06-01 | Cyberonics, Inc. | Therapeutic treatment of migraine symptoms by stimulation |
US5255678A (en) | 1991-06-21 | 1993-10-26 | Ecole Polytechnique | Mapping electrode balloon |
US5169384A (en) | 1991-08-16 | 1992-12-08 | Bosniak Stephen L | Apparatus for facilitating post-traumatic, post-surgical, and/or post-inflammatory healing of tissue |
US5303705A (en) | 1992-05-01 | 1994-04-19 | Nenov Valeriy I | Evoked 23NA MR imaging of sodium currents in the brain |
US5263967B1 (en) | 1992-05-15 | 2000-12-19 | Brimfield Prec Inc | Medical instrument with dual action drive |
US5476494A (en) | 1992-09-11 | 1995-12-19 | Massachusetts Institute Of Technology | Low pressure neural contact structure |
US5441528A (en) * | 1992-09-25 | 1995-08-15 | Symtonic, S.A. | Method and system for applying low energy emission therapy |
WO1994007564A2 (en) | 1992-10-01 | 1994-04-14 | Cardiac Pacemakers, Inc. | Stent-type defibrillation electrode structures |
US5370672A (en) | 1992-10-30 | 1994-12-06 | The Johns Hopkins University | Computer-controlled neurological stimulation system |
US5358513A (en) | 1992-12-09 | 1994-10-25 | Medtronic, Inc. | Parameter selection and electrode placement of neuromuscular electrical stimulation apparatus |
SE9203734D0 (en) * | 1992-12-11 | 1992-12-11 | Siemens Elema Ab | defibrillation |
US5537512A (en) | 1993-05-26 | 1996-07-16 | Northrop Grumman Corporation | Neural network elements |
US5540736A (en) | 1993-08-02 | 1996-07-30 | Haimovich; Yechiel | Transcranial electrostimulation apparatus having two electrode pairs and independent current generators |
US5464446A (en) | 1993-10-12 | 1995-11-07 | Medtronic, Inc. | Brain lead anchoring system |
JPH09508553A (en) | 1994-02-09 | 1997-09-02 | ユニヴァーシティ オブ アイオワ リサーチ ファンデーション | Human cerebral cortical nerve prosthesis |
US5843093A (en) * | 1994-02-09 | 1998-12-01 | University Of Iowa Research Foundation | Stereotactic electrode assembly |
US5697975A (en) | 1994-02-09 | 1997-12-16 | The University Of Iowa Research Foundation | Human cerebral cortex neural prosthetic for tinnitus |
US5562708A (en) | 1994-04-21 | 1996-10-08 | Medtronic, Inc. | Method and apparatus for treatment of atrial fibrillation |
US5769778A (en) | 1994-04-22 | 1998-06-23 | Somatics, Inc. | Medical magnetic non-convulsive stimulation therapy |
US6152143A (en) | 1994-05-09 | 2000-11-28 | Somnus Medical Technologies, Inc. | Method for treatment of air way obstructions |
US5685313A (en) | 1994-05-31 | 1997-11-11 | Brain Monitor Ltd. | Tissue monitor |
US5549655A (en) | 1994-09-21 | 1996-08-27 | Medtronic, Inc. | Method and apparatus for synchronized treatment of obstructive sleep apnea |
US5540734A (en) | 1994-09-28 | 1996-07-30 | Zabara; Jacob | Cranial nerve stimulation treatments using neurocybernetic prosthesis |
US5522864A (en) * | 1994-10-25 | 1996-06-04 | Wallace; Larry B. | Apparatus and method for ocular treatment |
US5545186A (en) | 1995-03-30 | 1996-08-13 | Medtronic, Inc. | Prioritized rule based method and apparatus for diagnosis and treatment of arrhythmias |
US5772591A (en) * | 1995-06-06 | 1998-06-30 | Patient Comfort, Inc. | Electrode assembly for signaling a monitor |
US5649936A (en) * | 1995-09-19 | 1997-07-22 | Real; Douglas D. | Stereotactic guide apparatus for use with neurosurgical headframe |
US5782873A (en) | 1995-10-11 | 1998-07-21 | Trustees Of Boston University | Method and apparatus for improving the function of sensory cells |
US20020169485A1 (en) | 1995-10-16 | 2002-11-14 | Neuropace, Inc. | Differential neurostimulation therapy driven by physiological context |
US6944501B1 (en) | 2000-04-05 | 2005-09-13 | Neurospace, Inc. | Neurostimulator involving stimulation strategies and process for using it |
US6480743B1 (en) | 2000-04-05 | 2002-11-12 | Neuropace, Inc. | System and method for adaptive brain stimulation |
US6095148A (en) | 1995-11-03 | 2000-08-01 | Children's Medical Center Corporation | Neuronal stimulation using electrically conducting polymers |
WO1997021324A1 (en) * | 1995-12-01 | 1997-06-12 | Cochlear Limited | A feedback system to control electrode voltages in a cochlear stimulator and the like |
NL1001890C2 (en) * | 1995-12-13 | 1997-06-17 | Cordis Europ | Catheter with plate-shaped electrode array. |
US5824030A (en) | 1995-12-21 | 1998-10-20 | Pacesetter, Inc. | Lead with inter-electrode spacing adjustment |
US6463328B1 (en) | 1996-02-02 | 2002-10-08 | Michael Sasha John | Adaptive brain stimulation method and system |
US6066163A (en) * | 1996-02-02 | 2000-05-23 | John; Michael Sasha | Adaptive brain stimulation method and system |
US6126657A (en) | 1996-02-23 | 2000-10-03 | Somnus Medical Technologies, Inc. | Apparatus for treatment of air way obstructions |
US5833603A (en) * | 1996-03-13 | 1998-11-10 | Lipomatrix, Inc. | Implantable biosensing transponder |
US5964794A (en) | 1996-03-21 | 1999-10-12 | Biotronik Mess- Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin | Implantable stimulation electrode |
AU714617B2 (en) * | 1996-04-04 | 2000-01-06 | Medtronic, Inc. | Living tissue stimulation and recording techniques |
US5702429A (en) | 1996-04-04 | 1997-12-30 | Medtronic, Inc. | Neural stimulation techniques with feedback |
US5925070A (en) | 1996-04-04 | 1999-07-20 | Medtronic, Inc. | Techniques for adjusting the locus of excitation of electrically excitable tissue |
US5683422A (en) | 1996-04-25 | 1997-11-04 | Medtronic, Inc. | Method and apparatus for treating neurodegenerative disorders by electrical brain stimulation |
US5824021A (en) | 1996-04-25 | 1998-10-20 | Medtronic Inc. | Method and apparatus for providing feedback to spinal cord stimulation for angina |
US5782798A (en) | 1996-06-26 | 1998-07-21 | Medtronic, Inc. | Techniques for treating eating disorders by brain stimulation and drug infusion |
US6246912B1 (en) * | 1996-06-27 | 2001-06-12 | Sherwood Services Ag | Modulated high frequency tissue modification |
JP2000504966A (en) | 1996-08-15 | 2000-04-25 | ニュートナス,インコーポレーテッド | Skull brain stimulation |
US5883709A (en) | 1996-08-22 | 1999-03-16 | Asahi Kogaku Kogyo Kabushiki Kaisha | Inclination monitoring system including reflection of collimated light |
US5797970A (en) | 1996-09-04 | 1998-08-25 | Medtronic, Inc. | System, adaptor and method to provide medical electrical stimulation |
US5843148A (en) | 1996-09-27 | 1998-12-01 | Medtronic, Inc. | High resolution brain stimulation lead and method of use |
US5948007A (en) | 1997-04-30 | 1999-09-07 | Medtronic, Inc. | Dual channel implantation neurostimulation techniques |
US6128537A (en) | 1997-05-01 | 2000-10-03 | Medtronic, Inc | Techniques for treating anxiety by brain stimulation and drug infusion |
US5975085A (en) | 1997-05-01 | 1999-11-02 | Medtronic, Inc. | Method of treating schizophrenia by brain stimulation and drug infusion |
US5861017A (en) | 1997-06-06 | 1999-01-19 | Shriners Hospitals For Children | Portable functional electrical stimulation (FES) system for upper or lower extremity applications |
US6024702A (en) * | 1997-09-03 | 2000-02-15 | Pmt Corporation | Implantable electrode manufactured with flexible printed circuit |
US5843150A (en) | 1997-10-08 | 1998-12-01 | Medtronic, Inc. | System and method for providing electrical and/or fluid treatment within a patient's brain |
US5941906A (en) | 1997-10-15 | 1999-08-24 | Medtronic, Inc. | Implantable, modular tissue stimulator |
US5938688A (en) | 1997-10-22 | 1999-08-17 | Cornell Research Foundation, Inc. | Deep brain stimulation method |
US6230049B1 (en) * | 1999-08-13 | 2001-05-08 | Neuro Pace, Inc. | Integrated system for EEG monitoring and electrical stimulation with a multiplicity of electrodes |
US6647296B2 (en) * | 1997-10-27 | 2003-11-11 | Neuropace, Inc. | Implantable apparatus for treating neurological disorders |
US6597954B1 (en) | 1997-10-27 | 2003-07-22 | Neuropace, Inc. | System and method for controlling epileptic seizures with spatially separated detection and stimulation electrodes |
US6427086B1 (en) | 1997-10-27 | 2002-07-30 | Neuropace, Inc. | Means and method for the intracranial placement of a neurostimulator |
US6459936B2 (en) | 1997-10-27 | 2002-10-01 | Neuropace, Inc. | Methods for responsively treating neurological disorders |
DE19750043A1 (en) | 1997-11-12 | 1999-05-20 | Johann W Prof Dr Bartha | Novel cuff electrode and method for producing it |
US6128527A (en) * | 1997-12-03 | 2000-10-03 | University Of Iowa Research Foundation | Apparatus and method of analyzing electrical brain activity |
US6205361B1 (en) * | 1998-02-10 | 2001-03-20 | Advanced Bionics Corporation | Implantable expandable multicontact electrodes |
US6631295B2 (en) * | 1998-02-13 | 2003-10-07 | University Of Iowa Research Foundation | System and method for diagnosing and/or reducing tinnitus |
US6319241B1 (en) | 1998-04-30 | 2001-11-20 | Medtronic, Inc. | Techniques for positioning therapy delivery elements within a spinal cord or a brain |
US6161047A (en) * | 1998-04-30 | 2000-12-12 | Medtronic Inc. | Apparatus and method for expanding a stimulation lead body in situ |
US6421566B1 (en) * | 1998-04-30 | 2002-07-16 | Medtronic, Inc. | Selective dorsal column stimulation in SCS, using conditioning pulses |
US6006124A (en) | 1998-05-01 | 1999-12-21 | Neuropace, Inc. | Means and method for the placement of brain electrodes |
US5938689A (en) | 1998-05-01 | 1999-08-17 | Neuropace, Inc. | Electrode configuration for a brain neuropacemaker |
US7890176B2 (en) * | 1998-07-06 | 2011-02-15 | Boston Scientific Neuromodulation Corporation | Methods and systems for treating chronic pelvic pain |
US6104960A (en) | 1998-07-13 | 2000-08-15 | Medtronic, Inc. | System and method for providing medical electrical stimulation to a portion of the nervous system |
US6304787B1 (en) * | 1998-08-26 | 2001-10-16 | Advanced Bionics Corporation | Cochlear electrode array having current-focusing and tissue-treating features |
JP2002523183A (en) | 1998-08-27 | 2002-07-30 | ノヴァヴィズィオン アーゲー | Method and apparatus for training human vision |
US6569654B2 (en) | 1998-09-18 | 2003-05-27 | Massachusetts Institute Of Technology | Electroactive materials for stimulation of biological activity of stem cells |
CA2346971C (en) | 1998-10-13 | 2011-02-08 | Somanetics Corporation | Multi-channel non-invasive tissue oximeter |
US20060217782A1 (en) | 1998-10-26 | 2006-09-28 | Boveja Birinder R | Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components |
US7062330B1 (en) | 1998-10-26 | 2006-06-13 | Boveja Birinder R | Electrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator |
US6253109B1 (en) * | 1998-11-05 | 2001-06-26 | Medtronic Inc. | System for optimized brain stimulation |
US6161044A (en) | 1998-11-23 | 2000-12-12 | Synaptic Corporation | Method and apparatus for treating chronic pain syndromes, tremor, dementia and related disorders and for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation |
WO2000040295A1 (en) * | 1999-01-06 | 2000-07-13 | Ball Semiconductor, Inc. | Implantable neuro-stimulator |
WO2000067846A1 (en) | 1999-05-11 | 2000-11-16 | Exogen, Inc. | Method and apparatus for ultrasonic treatment of reflex sympathetic dystrophy |
US6161045A (en) | 1999-06-01 | 2000-12-12 | Neuropace, Inc. | Method for determining stimulation parameters for the treatment of epileptic seizures |
AU6951500A (en) | 1999-06-07 | 2000-12-28 | Johns Hopkins University, The | Cardiac shock electrode system and corresponding implantable defibrillator system |
US6301493B1 (en) | 1999-07-10 | 2001-10-09 | Physiometrix, Inc. | Reservoir electrodes for electroencephalograph headgear appliance |
US6516227B1 (en) | 1999-07-27 | 2003-02-04 | Advanced Bionics Corporation | Rechargeable spinal cord stimulator system |
US6236892B1 (en) * | 1999-10-07 | 2001-05-22 | Claudio A. Feler | Spinal cord stimulation lead |
US6499488B1 (en) | 1999-10-28 | 2002-12-31 | Winchester Development Associates | Surgical sensor |
US6764498B2 (en) | 1999-12-09 | 2004-07-20 | Hans Alois Mische | Methods and devices for treatment of neurological disorders |
WO2001039831A1 (en) | 1999-12-06 | 2001-06-07 | Advanced Bionics Corporation | Implantable device programmer |
US6665562B2 (en) | 1999-12-07 | 2003-12-16 | George Mason University | Adaptive electric field modulation of neural systems |
US6658299B1 (en) * | 2000-01-04 | 2003-12-02 | William H. Dobelle | Artificial system for vision and the like |
US6907296B1 (en) | 2000-02-15 | 2005-06-14 | Pacesetter, Inc. | Implantable cardiac lead having convenient implant location identification and method of manufacture |
US6418344B1 (en) | 2000-02-24 | 2002-07-09 | Electrocore Techniques, Llc | Method of treating psychiatric disorders by electrical stimulation within the orbitofrontal cerebral cortex |
US6487450B1 (en) | 2000-02-24 | 2002-11-26 | Cedars-Sinai Medical Center | System and method for preventing Sudden Cardiac Death by nerve sprouting from right stellate ganglion |
US6473639B1 (en) | 2000-03-02 | 2002-10-29 | Neuropace, Inc. | Neurological event detection procedure using processed display channel based algorithms and devices incorporating these procedures |
US6810286B2 (en) * | 2000-03-06 | 2004-10-26 | Medtronic, Inc | Stimulation for delivery of molecular therapy |
US6748276B1 (en) * | 2000-06-05 | 2004-06-08 | Advanced Neuromodulation Systems, Inc. | Neuromodulation therapy system |
US6549814B1 (en) * | 2000-06-09 | 2003-04-15 | Juergen Strutz | Blade electrode array for insertion under soft tissue of lateral wall of cochlea |
AU2001268473A1 (en) | 2000-06-20 | 2002-01-02 | Advanced Bionics Corporation | Apparatus for treatment of mood and/or anxiety disorders by electrical brain stimulation and/or drug infusion |
US7305268B2 (en) * | 2000-07-13 | 2007-12-04 | Northstar Neurscience, Inc. | Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators |
US20040176831A1 (en) | 2000-07-13 | 2004-09-09 | Gliner Bradford Evan | Apparatuses and systems for applying electrical stimulation to a patient |
US20030125786A1 (en) | 2000-07-13 | 2003-07-03 | Gliner Bradford Evan | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US7756584B2 (en) | 2000-07-13 | 2010-07-13 | Advanced Neuromodulation Systems, Inc. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US6402678B1 (en) | 2000-07-31 | 2002-06-11 | Neuralieve, Inc. | Means and method for the treatment of migraine headaches |
US6497699B1 (en) * | 2000-08-09 | 2002-12-24 | The Research Foundation Of State University Of New York | Hybrid neuroprosthesis for the treatment of brain disorders |
DE10039240A1 (en) | 2000-08-11 | 2002-02-28 | Hans Ulrich May | Electrotherapeutic device |
US6591138B1 (en) | 2000-08-31 | 2003-07-08 | Neuropace, Inc. | Low frequency neurostimulator for the treatment of neurological disorders |
JP2002072309A (en) | 2000-09-01 | 2002-03-12 | Canon Inc | Camera and camera system |
US6405079B1 (en) | 2000-09-22 | 2002-06-11 | Mehdi M. Ansarinia | Stimulation method for the dural venous sinuses and adjacent dura for treatment of medical conditions |
US6898464B2 (en) * | 2000-10-05 | 2005-05-24 | Innersea Technology | Optical telemetry of data and power for wireless biomedical sensors and actuators |
AU2001237911A1 (en) * | 2000-10-30 | 2002-05-21 | Neuropace, Inc. | System and method for determining stimulation parameters for the treatment of epileptic seizures |
US7089059B1 (en) | 2000-11-03 | 2006-08-08 | Pless Benjamin D | Predicting susceptibility to neurological dysfunction based on measured neural electrophysiology |
US6591137B1 (en) | 2000-11-09 | 2003-07-08 | Neuropace, Inc. | Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders |
US6788975B1 (en) | 2001-01-30 | 2004-09-07 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy |
US7149586B2 (en) | 2002-03-28 | 2006-12-12 | Second Sight Medical Products, Inc. | Variable pitch electrode array |
US7299096B2 (en) | 2001-03-08 | 2007-11-20 | Northstar Neuroscience, Inc. | System and method for treating Parkinson's Disease and other movement disorders |
WO2002073526A2 (en) * | 2001-03-13 | 2002-09-19 | Wide Horizon Holdings Inc. | Cerebral programming |
US7010856B2 (en) * | 2001-03-16 | 2006-03-14 | Nihon Kohden Corporation | Lead wire attachment method, electrode, and spot welder |
WO2003017061A2 (en) * | 2001-08-20 | 2003-02-27 | Reuven Sandyk | Method and apparatus for treatment of patients |
US20060241717A1 (en) * | 2001-08-30 | 2006-10-26 | Whitehurst Todd K | Treatment of movement disorders by extra dural motor cortex stimulation |
WO2003026738A1 (en) * | 2001-09-28 | 2003-04-03 | Northstar Neuroscience, Inc. | Methods and apparatus for electrically stimulating cells implanted in the nervous system |
US6944497B2 (en) | 2001-10-31 | 2005-09-13 | Medtronic, Inc. | System and method of treating stuttering by neuromodulation |
US7110820B2 (en) | 2002-02-05 | 2006-09-19 | Tcheng Thomas K | Responsive electrical stimulation for movement disorders |
US7221981B2 (en) | 2002-03-28 | 2007-05-22 | Northstar Neuroscience, Inc. | Electrode geometries for efficient neural stimulation |
US7146222B2 (en) * | 2002-04-15 | 2006-12-05 | Neurospace, Inc. | Reinforced sensing and stimulation leads and use in detection systems |
US7184840B2 (en) * | 2002-04-22 | 2007-02-27 | Medtronic, Inc. | Implantable lead with isolated contact coupling |
US20050154426A1 (en) | 2002-05-09 | 2005-07-14 | Boveja Birinder R. | Method and system for providing therapy for neuropsychiatric and neurological disorders utilizing transcranical magnetic stimulation and pulsed electrical vagus nerve(s) stimulation |
US20050182453A1 (en) | 2002-05-24 | 2005-08-18 | Whitehurst Todd K. | Treatment of epilepsy by high frequency electrical stimulation and/or drug stimulation |
US6934580B1 (en) | 2002-07-20 | 2005-08-23 | Flint Hills Scientific, L.L.C. | Stimulation methodologies and apparatus for control of brain states |
US20040092809A1 (en) * | 2002-07-26 | 2004-05-13 | Neurion Inc. | Methods for measurement and analysis of brain activity |
US7471974B2 (en) | 2002-09-13 | 2008-12-30 | Brainlab Ag | Method for planning stimulation of hyper/hypometabolic cortical areas |
US7236830B2 (en) * | 2002-12-10 | 2007-06-26 | Northstar Neuroscience, Inc. | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders |
US7302298B2 (en) * | 2002-11-27 | 2007-11-27 | Northstar Neuroscience, Inc | Methods and systems employing intracranial electrodes for neurostimulation and/or electroencephalography |
US6959215B2 (en) | 2002-12-09 | 2005-10-25 | Northstar Neuroscience, Inc. | Methods for treating essential tremor |
US7065412B2 (en) | 2003-04-25 | 2006-06-20 | Medtronic, Inc. | Implantable trial neurostimulation device |
US7107104B2 (en) | 2003-05-30 | 2006-09-12 | Medtronic, Inc. | Implantable cortical neural lead and method |
EP1694403A2 (en) * | 2003-11-20 | 2006-08-30 | Advanced Neuromodulation Systems, Inc. | Electrical stimulation system, lead, and method providing reduced neuroplasticity effects |
US8093205B2 (en) | 2003-12-01 | 2012-01-10 | Medtronic, Inc. | Method for treating a stroke by implanting a first therapy delivery element in the CNS and a second therapy delivery element in a damaged tissue of the CNS to promote neurogenesis |
US20050154425A1 (en) | 2004-08-19 | 2005-07-14 | Boveja Birinder R. | Method and system to provide therapy for neuropsychiatric disorders and cognitive impairments using gradient magnetic pulses to the brain and pulsed electrical stimulation to vagus nerve(s) |
US20060106430A1 (en) * | 2004-11-12 | 2006-05-18 | Brad Fowler | Electrode configurations for reducing invasiveness and/or enhancing neural stimulation efficacy, and associated methods |
US7565200B2 (en) * | 2004-11-12 | 2009-07-21 | Advanced Neuromodulation Systems, Inc. | Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects |
WO2006083744A1 (en) | 2005-01-31 | 2006-08-10 | Medtronic, Inc. | Anchoring of a medical device component adjacent a dura of the brain or spinal cord |
-
2002
- 2002-12-10 US US10/317,002 patent/US7236830B2/en not_active Expired - Lifetime
-
2003
- 2003-12-10 CA CA002508827A patent/CA2508827A1/en not_active Abandoned
- 2003-12-10 WO PCT/US2003/039596 patent/WO2004052183A2/en not_active Application Discontinuation
- 2003-12-10 EP EP03790492A patent/EP1569714A4/en not_active Withdrawn
- 2003-12-10 AU AU2003293541A patent/AU2003293541B2/en not_active Ceased
-
2004
- 2004-02-19 US US10/782,526 patent/US7353064B2/en not_active Expired - Fee Related
-
2006
- 2006-12-04 US US11/634,523 patent/US20070112393A1/en not_active Abandoned
-
2010
- 2010-07-26 US US12/843,766 patent/US20100292754A1/en not_active Abandoned
-
2011
- 2011-11-16 US US13/297,688 patent/US9427585B2/en not_active Expired - Fee Related
-
2016
- 2016-08-29 US US15/250,240 patent/US10004901B2/en not_active Expired - Lifetime
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3650276A (en) * | 1969-03-26 | 1972-03-21 | Inst Demedicina Si Farmacie | Method and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder |
US4140133A (en) * | 1977-04-26 | 1979-02-20 | Moskovsky Oblastnoi Nauchno-Issledovatelsky Institut Akusherstva I Ginekolog Ii | Device for pulse current action on central nervous system |
US4245645A (en) * | 1977-09-28 | 1981-01-20 | Arseneault Pierre Michel | Self-locking cerebral electrical probe |
US4431000A (en) * | 1978-11-29 | 1984-02-14 | Gatron Corporation | Transcutaneous nerve stimulator with pseusorandom pulse generator |
US4328813A (en) * | 1980-10-20 | 1982-05-11 | Medtronic, Inc. | Brain lead anchoring system |
US4590946A (en) * | 1984-06-14 | 1986-05-27 | Biomed Concepts, Inc. | Surgically implantable electrode for nerve bundles |
US4646744A (en) * | 1984-06-29 | 1987-03-03 | Zion Foundation | Method and treatment with transcranially applied electrical signals |
US5002053A (en) * | 1989-04-21 | 1991-03-26 | University Of Arkansas | Method of and device for inducing locomotion by electrical stimulation of the spinal cord |
US5314458A (en) * | 1990-06-01 | 1994-05-24 | University Of Michigan | Single channel microstimulator |
US5282468A (en) * | 1990-06-07 | 1994-02-01 | Medtronic, Inc. | Implantable neural electrode |
US5092835A (en) * | 1990-07-06 | 1992-03-03 | Schurig Janet L S | Brain and nerve healing power apparatus and method |
US6060048A (en) * | 1990-10-19 | 2000-05-09 | New York University | Method for transplanting cells into the brain and therapeutic uses therefor |
US5299569A (en) * | 1991-05-03 | 1994-04-05 | Cyberonics, Inc. | Treatment of neuropsychiatric disorders by nerve stimulation |
US5750376A (en) * | 1991-07-08 | 1998-05-12 | Neurospheres Holdings Ltd. | In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny |
US5304206A (en) * | 1991-11-18 | 1994-04-19 | Cyberonics, Inc. | Activation techniques for implantable medical device |
US5193540A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
US5184620A (en) * | 1991-12-26 | 1993-02-09 | Marquette Electronics, Inc. | Method of using a multiple electrode pad assembly |
US5406957A (en) * | 1992-02-05 | 1995-04-18 | Tansey; Michael A. | Electroencephalic neurofeedback apparatus for training and tracking of cognitive states |
US5411540A (en) * | 1993-06-03 | 1995-05-02 | Massachusetts Institute Of Technology | Method and apparatus for preferential neuron stimulation |
US5593432A (en) * | 1993-06-23 | 1997-01-14 | Neuroware Therapy International, Inc. | Method for neurostimulation for pain alleviation |
US5417719A (en) * | 1993-08-25 | 1995-05-23 | Medtronic, Inc. | Method of using a spinal cord stimulation lead |
US5405375A (en) * | 1994-01-21 | 1995-04-11 | Incontrol, Inc. | Combined mapping, pacing, and defibrillating catheter |
US5601611A (en) * | 1994-08-05 | 1997-02-11 | Ventritex, Inc. | Optical blood flow measurement apparatus and method and implantable defibrillator incorporating same |
US5722401A (en) * | 1994-10-19 | 1998-03-03 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe |
US5520190A (en) * | 1994-10-31 | 1996-05-28 | Ventritex, Inc. | Cardiac blood flow sensor and method |
US5885976A (en) * | 1995-05-08 | 1999-03-23 | Sandyk; Reuven | Methods useful for the treatment of neurological and mental disorders related to deficient serotonin neurotransmission and impaired pineal melatonin functions |
US5591216A (en) * | 1995-05-19 | 1997-01-07 | Medtronic, Inc. | Method for treatment of sleep apnea by electrical stimulation |
US6057846A (en) * | 1995-07-14 | 2000-05-02 | Sever, Jr.; Frank | Virtual reality psychophysiological conditioning medium |
US5707334A (en) * | 1995-08-21 | 1998-01-13 | Young; Robert B. | Method of treating amygdala related transitory disorders |
US6205360B1 (en) * | 1995-09-07 | 2001-03-20 | Cochlear Limited | Apparatus and method for automatically determining stimulation parameters |
US5611350A (en) * | 1996-02-08 | 1997-03-18 | John; Michael S. | Method and apparatus for facilitating recovery of patients in deep coma |
US5904916A (en) * | 1996-03-05 | 1999-05-18 | Hirsch; Alan R. | Use of odorants to alter learning capacity |
US5628317A (en) * | 1996-04-04 | 1997-05-13 | Medtronic, Inc. | Ultrasonic techniques for neurostimulator control |
US5716377A (en) * | 1996-04-25 | 1998-02-10 | Medtronic, Inc. | Method of treating movement disorders by brain stimulation |
US5713922A (en) * | 1996-04-25 | 1998-02-03 | Medtronic, Inc. | Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain |
US5735814A (en) * | 1996-04-30 | 1998-04-07 | Medtronic, Inc. | Techniques of treating neurodegenerative disorders by brain infusion |
US5711316A (en) * | 1996-04-30 | 1998-01-27 | Medtronic, Inc. | Method of treating movement disorders by brain infusion |
US5713923A (en) * | 1996-05-13 | 1998-02-03 | Medtronic, Inc. | Techniques for treating epilepsy by brain stimulation and drug infusion |
US6040180A (en) * | 1996-05-23 | 2000-03-21 | Neuralstem Biopharmaceuticals, Ltd. | In vitro generation of differentiated neurons from cultures of mammalian multipotential CNS stem cells |
US6339725B1 (en) * | 1996-05-31 | 2002-01-15 | The Board Of Trustees Of Southern Illinois University | Methods of modulating aspects of brain neural plasticity by vagus nerve stimulation |
US6556868B2 (en) * | 1996-05-31 | 2003-04-29 | The Board Of Trustees Of Southern Illinois University | Methods for improving learning or memory by vagus nerve stimulation |
US6021352A (en) * | 1996-06-26 | 2000-02-01 | Medtronic, Inc, | Diagnostic testing methods and apparatus for implantable therapy devices |
US5865842A (en) * | 1996-08-29 | 1999-02-02 | Medtronic, Inc. | System and method for anchoring brain stimulation lead or catheter |
US5752979A (en) * | 1996-11-01 | 1998-05-19 | Medtronic, Inc. | Method of controlling epilepsy by brain stimulation |
US6057847A (en) * | 1996-12-20 | 2000-05-02 | Jenkins; Barry | System and method of image generation and encoding using primitive reprojection |
US6026326A (en) * | 1997-01-13 | 2000-02-15 | Medtronic, Inc. | Apparatus and method for treating chronic constipation |
US5871517A (en) * | 1997-01-15 | 1999-02-16 | Somatics, Inc. | Convulsive therapy apparatus to stimulate and monitor the extent of therapeutic value of the treatment |
US5893883A (en) * | 1997-04-30 | 1999-04-13 | Medtronic, Inc. | Portable stimulation screening device for screening therapeutic effect of electrical stimulation on a patient user during normal activities of the patient user |
US6042579A (en) * | 1997-04-30 | 2000-03-28 | Medtronic, Inc. | Techniques for treating neurodegenerative disorders by infusion of nerve growth factors into the brain |
US6360122B1 (en) * | 1997-10-27 | 2002-03-19 | Neuropace, Inc. | Data recording methods for an implantable device |
US6354299B1 (en) * | 1997-10-27 | 2002-03-12 | Neuropace, Inc. | Implantable device for patient communication |
US6016449A (en) * | 1997-10-27 | 2000-01-18 | Neuropace, Inc. | System for treatment of neurological disorders |
US6011996A (en) * | 1998-01-20 | 2000-01-04 | Medtronic, Inc | Dual electrode lead and method for brain target localization in functional stereotactic brain surgery |
US6221908B1 (en) * | 1998-03-12 | 2001-04-24 | Scientific Learning Corporation | System for stimulating brain plasticity |
US6058331A (en) * | 1998-04-27 | 2000-05-02 | Medtronic, Inc. | Apparatus and method for treating peripheral vascular disease and organ ischemia by electrical stimulation with closed loop feedback control |
US6018682A (en) * | 1998-04-30 | 2000-01-25 | Medtronic, Inc. | Implantable seizure warning system |
US5886769A (en) * | 1998-05-18 | 1999-03-23 | Zolten; A. J. | Method of training and rehabilitating brain function using hemi-lenses |
US6198958B1 (en) * | 1998-06-11 | 2001-03-06 | Beth Israel Deaconess Medical Center, Inc. | Method and apparatus for monitoring a magnetic resonance image during transcranial magnetic stimulation |
US6035236A (en) * | 1998-07-13 | 2000-03-07 | Bionergy Therapeutics, Inc. | Methods and apparatus for electrical microcurrent stimulation therapy |
US20050021104A1 (en) * | 1998-08-05 | 2005-01-27 | Dilorenzo Daniel John | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US6366813B1 (en) * | 1998-08-05 | 2002-04-02 | Dilorenzo Daniel J. | Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease |
US6190893B1 (en) * | 1998-09-18 | 2001-02-20 | Massachusetts Institute Of Technology | Electroactive materials for stimulation of biological activity of bone marrow stromal cells |
US6507755B1 (en) * | 1998-12-01 | 2003-01-14 | Neurometrix, Inc. | Apparatus and method for stimulating human tissue |
US6052624A (en) * | 1999-01-07 | 2000-04-18 | Advanced Bionics Corporation | Directional programming for implantable electrode arrays |
US6725094B2 (en) * | 1999-03-24 | 2004-04-20 | Lloyd R. Saberski | Apparatus and methods for reducing pain and/or retraining muscles |
US6210417B1 (en) * | 1999-04-29 | 2001-04-03 | Medtronic, Inc. | Medical lead positioning and anchoring system |
US6055456A (en) * | 1999-04-29 | 2000-04-25 | Medtronic, Inc. | Single and multi-polar implantable lead for sacral nerve electrical stimulation |
US6176242B1 (en) * | 1999-04-30 | 2001-01-23 | Medtronic Inc | Method of treating manic depression by brain infusion |
US6505075B1 (en) * | 1999-05-29 | 2003-01-07 | Richard L. Weiner | Peripheral nerve stimulation method |
US6381496B1 (en) * | 1999-10-01 | 2002-04-30 | Advanced Bionics Corporation | Parameter context switching for an implanted device |
US6873872B2 (en) * | 1999-12-07 | 2005-03-29 | George Mason University | Adaptive electric field modulation of neural systems |
US20050015129A1 (en) * | 1999-12-09 | 2005-01-20 | Mische Hans A. | Methods and devices for the treatment of neurological and physiological disorders |
US6375666B1 (en) * | 1999-12-09 | 2002-04-23 | Hans Alois Mische | Methods and devices for treatment of neurological disorders |
US6356792B1 (en) * | 2000-01-20 | 2002-03-12 | Electro Core Technologies, Llc | Skull mounted electrode lead securing assembly |
US6708064B2 (en) * | 2000-02-24 | 2004-03-16 | Ali R. Rezai | Modulation of the brain to affect psychiatric disorders |
US6690974B2 (en) * | 2000-04-05 | 2004-02-10 | Neuropace, Inc. | Stimulation signal generator for an implantable device |
US6353754B1 (en) * | 2000-04-24 | 2002-03-05 | Neuropace, Inc. | System for the creation of patient specific templates for epileptiform activity detection |
US6687525B2 (en) * | 2000-06-07 | 2004-02-03 | New York University | Method and system for diagnosing and treating thalamocortical dysrhythmia |
US7010351B2 (en) * | 2000-07-13 | 2006-03-07 | Northstar Neuroscience, Inc. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US20040073270A1 (en) * | 2000-07-13 | 2004-04-15 | Firlik Andrew D. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US20050021118A1 (en) * | 2000-07-13 | 2005-01-27 | Chris Genau | Apparatuses and systems for applying electrical stimulation to a patient |
US20050021105A1 (en) * | 2000-07-13 | 2005-01-27 | Firlik Andrew D. | Methods and apparatus for effectuating a change in a neural-function of a patient |
US20050021106A1 (en) * | 2000-07-13 | 2005-01-27 | Firlik Andrew D. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US6529774B1 (en) * | 2000-11-09 | 2003-03-04 | Neuropace, Inc. | Extradural leads, neurostimulator assemblies, and processes of using them for somatosensory and brain stimulation |
US20050021107A1 (en) * | 2001-03-08 | 2005-01-27 | Firlik Andrew D. | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
US6839594B2 (en) * | 2001-04-26 | 2005-01-04 | Biocontrol Medical Ltd | Actuation and control of limbs through motor nerve stimulation |
US6684105B2 (en) * | 2001-08-31 | 2004-01-27 | Biocontrol Medical, Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US20030078633A1 (en) * | 2001-09-28 | 2003-04-24 | Firlik Andrew D. | Methods and implantable apparatus for electrical therapy |
US20030074032A1 (en) * | 2001-10-15 | 2003-04-17 | Gliner Bradford Evan | Neural stimulation system and method responsive to collateral neural activity |
US7024247B2 (en) * | 2001-10-15 | 2006-04-04 | Northstar Neuroscience, Inc. | Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures |
US7006859B1 (en) * | 2002-07-20 | 2006-02-28 | Flint Hills Scientific, L.L.C. | Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes |
US20050075679A1 (en) * | 2002-09-30 | 2005-04-07 | Gliner Bradford E. | Methods and apparatuses for treating neurological disorders by electrically stimulating cells implanted in the nervous system |
US20040082847A1 (en) * | 2002-10-23 | 2004-04-29 | Mcdermott Kathleen B. | System and methods for identifying brain regions supporting language |
US20050004620A1 (en) * | 2002-12-09 | 2005-01-06 | Medtronic, Inc. | Implantable medical device with anti-infection agent |
US20050033378A1 (en) * | 2002-12-09 | 2005-02-10 | Sheffield Warren Douglas | Methods for treating and/or collecting information regarding neurological disorders, including language disorders |
US20050075680A1 (en) * | 2003-04-18 | 2005-04-07 | Lowry David Warren | Methods and systems for intracranial neurostimulation and/or sensing |
US6990377B2 (en) * | 2003-04-24 | 2006-01-24 | Northstar Neuroscience, Inc. | Systems and methods for facilitating and/or effectuating development, rehabilitation, restoration, and/or recovery of visual function through neural stimulation |
US20050070971A1 (en) * | 2003-08-01 | 2005-03-31 | Brad Fowler | Apparatus and methods for applying neural stimulation to a patient |
US20060015153A1 (en) * | 2004-07-15 | 2006-01-19 | Gliner Bradford E | Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080312706A1 (en) * | 2000-10-20 | 2008-12-18 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of | Coil for magnetic stimulation and methods for using the same |
US8608634B2 (en) | 2000-10-20 | 2013-12-17 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Coil for magnetic stimulation and methods for using the same |
US8565867B2 (en) | 2005-01-28 | 2013-10-22 | Cyberonics, Inc. | Changeable electrode polarity stimulation by an implantable medical device |
US9586047B2 (en) | 2005-01-28 | 2017-03-07 | Cyberonics, Inc. | Contingent cardio-protection for epilepsy patients |
US7976451B2 (en) | 2005-06-16 | 2011-07-12 | The United States Of America As Represented By The Department Of Health And Human Services | Transcranial magnetic stimulation system and methods |
US20060287566A1 (en) * | 2005-06-16 | 2006-12-21 | Abraham Zangen | Transcranial magnetic stimulation system and methods |
US7996079B2 (en) | 2006-01-24 | 2011-08-09 | Cyberonics, Inc. | Input response override for an implantable medical device |
US8660666B2 (en) | 2006-03-29 | 2014-02-25 | Catholic Healthcare West | Microburst electrical stimulation of cranial nerves for the treatment of medical conditions |
US9533151B2 (en) | 2006-03-29 | 2017-01-03 | Dignity Health | Microburst electrical stimulation of cranial nerves for the treatment of medical conditions |
US9108041B2 (en) | 2006-03-29 | 2015-08-18 | Dignity Health | Microburst electrical stimulation of cranial nerves for the treatment of medical conditions |
US8150508B2 (en) | 2006-03-29 | 2012-04-03 | Catholic Healthcare West | Vagus nerve stimulation method |
US8615309B2 (en) | 2006-03-29 | 2013-12-24 | Catholic Healthcare West | Microburst electrical stimulation of cranial nerves for the treatment of medical conditions |
US8219188B2 (en) | 2006-03-29 | 2012-07-10 | Catholic Healthcare West | Synchronization of vagus nerve stimulation with the cardiac cycle of a patient |
US8280505B2 (en) | 2006-03-29 | 2012-10-02 | Catholic Healthcare West | Vagus nerve stimulation method |
US8738126B2 (en) | 2006-03-29 | 2014-05-27 | Catholic Healthcare West | Synchronization of vagus nerve stimulation with the cardiac cycle of a patient |
US9289599B2 (en) | 2006-03-29 | 2016-03-22 | Dignity Health | Vagus nerve stimulation method |
US7962220B2 (en) | 2006-04-28 | 2011-06-14 | Cyberonics, Inc. | Compensation reduction in tissue stimulation therapy |
US7869885B2 (en) | 2006-04-28 | 2011-01-11 | Cyberonics, Inc | Threshold optimization for tissue stimulation therapy |
US7869867B2 (en) | 2006-10-27 | 2011-01-11 | Cyberonics, Inc. | Implantable neurostimulator with refractory stimulation |
US8306627B2 (en) | 2007-04-27 | 2012-11-06 | Cyberonics, Inc. | Dosing limitation for an implantable medical device |
US7974701B2 (en) | 2007-04-27 | 2011-07-05 | Cyberonics, Inc. | Dosing limitation for an implantable medical device |
US20090105786A1 (en) * | 2007-10-22 | 2009-04-23 | University Of Washington | Method and device for strengthening synaptic connections |
US20090121989A1 (en) * | 2007-11-09 | 2009-05-14 | Seiko Epson Corporation | Active matrix device, electrooptic display, and electronic apparatus |
US8260426B2 (en) | 2008-01-25 | 2012-09-04 | Cyberonics, Inc. | Method, apparatus and system for bipolar charge utilization during stimulation by an implantable medical device |
US9314633B2 (en) | 2008-01-25 | 2016-04-19 | Cyberonics, Inc. | Contingent cardio-protection for epilepsy patients |
US8204603B2 (en) | 2008-04-25 | 2012-06-19 | Cyberonics, Inc. | Blocking exogenous action potentials by an implantable medical device |
US8457747B2 (en) | 2008-10-20 | 2013-06-04 | Cyberonics, Inc. | Neurostimulation with signal duration determined by a cardiac cycle |
US8874218B2 (en) | 2008-10-20 | 2014-10-28 | Cyberonics, Inc. | Neurostimulation with signal duration determined by a cardiac cycle |
US9180305B2 (en) | 2008-12-11 | 2015-11-10 | Yeda Research & Development Co. Ltd. At The Weizmann Institute Of Science | Systems and methods for controlling electric field pulse parameters using transcranial magnetic stimulation |
US20100152522A1 (en) * | 2008-12-11 | 2010-06-17 | Yiftach Roth | Systems and methods for controlling electric field pulse parameters using transcranial magnetic stimulation |
US9421393B2 (en) | 2008-12-11 | 2016-08-23 | Yeda Research & Development Co., Ltd. at the Weizmann Institute of Science | Systems and methods for controlling electric field pulse parameters using transcranial magnetic stimulation |
US10653883B2 (en) | 2009-01-23 | 2020-05-19 | Livanova Usa, Inc. | Implantable medical device for providing chronic condition therapy and acute condition therapy using vagus nerve stimulation |
US9008780B2 (en) | 2011-10-05 | 2015-04-14 | Case Western Reserve University | Methods and associated neural prosthetic devices for bridging brain areas to improve function |
US9533150B2 (en) | 2011-10-05 | 2017-01-03 | University Of Kansas | Methods and associated neural prosthetic devices for bridging brain areas to improve function |
US20130110220A1 (en) * | 2011-10-28 | 2013-05-02 | Martin Brown | Transcutaneous electrical nerve stimulation of the knee |
US9314609B2 (en) * | 2011-10-28 | 2016-04-19 | Martin Brown | Device for providing electrical stimulation of a human knee |
US20140074179A1 (en) * | 2012-09-10 | 2014-03-13 | Dustin A Heldman | Movement disorder therapy system, devices and methods, and intelligent methods of tuning |
US9522278B1 (en) * | 2012-09-10 | 2016-12-20 | Great Lakes Neuro Technologies Inc. | Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically |
US9238142B2 (en) * | 2012-09-10 | 2016-01-19 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically |
US9211417B2 (en) * | 2012-09-10 | 2015-12-15 | Great Lakes Neurotechnologies Inc | Movement disorder therapy system, devices and methods, and intelligent methods of tuning |
US9717920B1 (en) * | 2012-09-10 | 2017-08-01 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy system, devices and methods, and intelligent methods of tuning |
US10092754B1 (en) * | 2012-09-10 | 2018-10-09 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically |
US20180361153A1 (en) * | 2012-09-10 | 2018-12-20 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically |
US10478626B1 (en) * | 2012-09-10 | 2019-11-19 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy system, devices and methods, and intelligent methods of tuning |
US20140074180A1 (en) * | 2012-09-10 | 2014-03-13 | Dustin A. Heldman | Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically |
US10758732B1 (en) * | 2012-09-10 | 2020-09-01 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy and brain mapping system and methods of tuning remotely, intelligently and/or automatically |
US10881856B2 (en) * | 2012-09-10 | 2021-01-05 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically |
US10974049B1 (en) * | 2012-09-10 | 2021-04-13 | Great Lakes Neurotechnologies Inc | Artificial intelligence systems for quantifying movement disorder symptoms and adjusting treatment based on symptom quantification |
US11383087B1 (en) * | 2012-09-10 | 2022-07-12 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy system, devices and methods, and intelligent methods of tuning |
Also Published As
Publication number | Publication date |
---|---|
WO2004052183A2 (en) | 2004-06-24 |
US7236830B2 (en) | 2007-06-26 |
AU2003293541A1 (en) | 2004-06-30 |
US20100292754A1 (en) | 2010-11-18 |
US7353064B2 (en) | 2008-04-01 |
EP1569714A2 (en) | 2005-09-07 |
US10004901B2 (en) | 2018-06-26 |
US20160367810A1 (en) | 2016-12-22 |
CA2508827A1 (en) | 2004-06-24 |
WO2004052183A3 (en) | 2004-11-04 |
AU2003293541B2 (en) | 2009-03-05 |
US20120065700A1 (en) | 2012-03-15 |
US9427585B2 (en) | 2016-08-30 |
US20040249422A1 (en) | 2004-12-09 |
EP1569714A4 (en) | 2008-03-26 |
US20040111127A1 (en) | 2004-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10004901B2 (en) | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of parkinson's disease and/or other movement disorders | |
US11786729B2 (en) | Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy | |
US7917225B2 (en) | Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of parkinson's disease, other movement disorders, and/or drug side effects | |
US7684866B2 (en) | Apparatus and methods for applying neural stimulation to a patient | |
US8000794B2 (en) | Method and apparatus for affecting neurologic function and/or treating Neurologic dysfunction through timed neural stimulation | |
US9162051B2 (en) | Treatment of language, behavior and social disorders | |
US20030074032A1 (en) | Neural stimulation system and method responsive to collateral neural activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED NEUROMODULATION SYSTEMS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHSTAR NEUROSCIENCE, INC.;REEL/FRAME:022813/0542 Effective date: 20090521 Owner name: ADVANCED NEUROMODULATION SYSTEMS, INC.,TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHSTAR NEUROSCIENCE, INC.;REEL/FRAME:022813/0542 Effective date: 20090521 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |