Nothing Special   »   [go: up one dir, main page]

US20050031943A1 - Battery separator and method of making same - Google Patents

Battery separator and method of making same Download PDF

Info

Publication number
US20050031943A1
US20050031943A1 US10/636,115 US63611503A US2005031943A1 US 20050031943 A1 US20050031943 A1 US 20050031943A1 US 63611503 A US63611503 A US 63611503A US 2005031943 A1 US2005031943 A1 US 2005031943A1
Authority
US
United States
Prior art keywords
precursor
film
films
layered
single stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/636,115
Other languages
English (en)
Inventor
Ronald Call
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celgard LLC
Original Assignee
Celgard LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/636,115 priority Critical patent/US20050031943A1/en
Application filed by Celgard LLC filed Critical Celgard LLC
Assigned to CELGARD INC. reassignment CELGARD INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CALL, RONALD W.
Priority to SG200403829A priority patent/SG129295A1/en
Priority to CA002472281A priority patent/CA2472281A1/en
Priority to TW093118893A priority patent/TWI251364B/zh
Assigned to CELGARD, LLC reassignment CELGARD, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CELGARD, INC.
Priority to KR1020040052636A priority patent/KR100637971B1/ko
Priority to EP04018207A priority patent/EP1505671A2/en
Priority to CNB2004100588861A priority patent/CN100459227C/zh
Priority to JP2004231815A priority patent/JP4516796B2/ja
Assigned to JPMORGAN CHASE BANK, AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: CELGARD, LLC
Publication of US20050031943A1 publication Critical patent/US20050031943A1/en
Priority to US11/683,022 priority patent/US9112214B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a microporous laminated membrane useful as a battery separator, particularly in lithium secondary batteries, and its method of manufacture are disclosed herein.
  • microporous multi-layered membranes as battery separators. See, for example, U.S. Pat. Nos. 5,480,745; 5,691,047; 5,667,911; 5,691,077; and 5,952,120.
  • U.S. Pat. No. 5,480,745 discloses forming the multi-layered film by co-extruding the multi-layered precursor or by heat-welding, at 152° C., pre-formed precursor layers.
  • the multi-layered precursor, formed by either technique, is then made microporous by annealing and stretching. There is no mention of stacking precursors for the step of forming the micropores.
  • U.S. Pat. No. 5,691,047 discloses forming the multi-layered film by co-extruding the multi-layered precursor or by uniting, under heat (120-140° C.) and pressure (1-3 kg/cm 2 ), three or more precursor layers.
  • one 34 ⁇ separator has a peel strength of 1 g/mm and the other, about 0.5 g/mm.
  • the multi-layered precursor, formed by either technique is then made microporous by annealing and stretching. There is no mention of stacking precursors for the step of forming the micropores.
  • U.S. Pat. No. 5,667,911 discloses forming the multi-layered film by uniting (by heat and pressure or by adhesives) cross-plied microporous films to form a multi-layered microporous film.
  • the microporous films are laminated together using heat (110° C.-140° C.) and pressure (300-450 psi) and at line speeds of 15-50 ft/min (4.6-15.2 m/min).
  • U.S. Pat. No. 5,691,077 discloses forming the multi-layered film by uniting, by heat and pressure (calendering), or by adhesives, or by pattern welding, microporous films to form a multi-layered microporous film. Calendering is performed at 125° C. to 130° C. for a residence time of 2 to 10 minutes. Four (4) stacked multi-layered microporous precursors are calendering between a single nip roll.
  • U.S. Pat. No. 5,952,120 discloses forming the multi-layered film by extruding nonporous precursors, bonding together nonporous precursors, annealing the bonded, nonporous precursors, and stretching the bonded, nonporous precursors to form a multi-layered microporous film. At least four (4) tri-layer precursors are simultaneously passed through the steps of bonding, annealing, and stretching. Bonding was performed between nip rollers at 128° C.
  • a battery separator comprises a multi-layered film, individual layers of said film having been bonded together by heat and pressure, having a peel strength of greater than or equal to 40 grams per inch (1.6 g/mm) and a thickness of ⁇ 25 microns.
  • a method for making a battery separator comprises the steps of: extruding and winding up a first precursor film, extruding and winding up a second precursor film, unwinding the first and second precursor films, stacking up the first and second precursor films to form a single stacked precursor, laminating the single stacked precursor film, winding up the laminated single stacked precursor film, stacking up a plurality of laminated single stacked precursor films, and making microporous the stacked plurality of laminated single stacked precursor films.
  • a battery separator refers to a microporous film or membrane for use in electrochemical cells or capacitors.
  • Electrochemical cells include primary (non-rechargeable) and secondary (rechargeable) batteries, such as batteries based on lithium chemistry.
  • These films are commonly made of polyolefins, for example, polyethylene, polypropylene, polybutylene, polymethylpentene, mixtures thereof and copolymers thereof.
  • Polypropylene (including isotactic and atactic) and polyethylene (including LDPE, LLDPE, HDPE, and UHMWPE) and blends thereof and their copolymers are the preferred polyolefins that are used to make commercially available films for these applications.
  • These films may be made by the CELGARD® process (also known as the dry process, i.e., extrude-anneal-stretch) or by a solvent extraction process (also known as the wet process or phase inversion process or TIPS, thermally induced phase separation, process) or by a particle stretch process.
  • Some of these films, those made by the dry process, are often multi-layered films. Multi-layered films are preferred because they have shutdown capability (i.e., can stop the flow of ions in the event of short circuiting).
  • a common multi-layered film is the tri-layered film.
  • a popular tri-layered film has a polypropylene (PP)/polyethylene (PE)/polypropylene (PP) structure, another structure is PE/PP/PE.
  • Another separator is a 5-layered film with a PP/PE/PP/PE/PP or a PE/PP/PE/PP/PE structure.
  • Such separators have a thickness less than 3 mils (75 microns, ⁇ ).
  • the thickness ranges from 0.5 to 1.5 mils (12 to 38 ⁇ ) (thickness is the average of 30 measurements across the width of the film, using a precision micrometer with a 0.25-inch diameter circular shoe contacting the sample at eight (8) psi).
  • the thickness ranges from 0.5 to 1.0 mils (12 to 25 ⁇ ).
  • Adhesion is greater than 40 grams/inch (1.6 g/mm), preferably greater than 50 g/in (2.0 g/mm), and most preferably greater than 60 g/in (2.4 g/mm).
  • Other film properties are: Gurley ⁇ 30 seconds (Gurley—ASTM-D726(B)—a resistance to air flow measured by the Gurley Densometer (e.g.
  • a Mitech Stevens LFRA Texture Analyzer is used.
  • the needle is 1.65 mm in diameter with a 0.5 mm radius.
  • the rate of descent is 2 mm/sec and the amount of deflection is 6 mm.
  • the film is held tight in the clamping device with a central hole of 11.3 mm.
  • the maximum resistance force is the puncture strength.
  • the pore size is about 0.04 ⁇ 0.09 ⁇ .
  • the calculated porosity is less than 60%, preferably about 40%.
  • the calculated density is 100—(apparent density/resin density) and for multi-layered films, calculated porosity is 100— ⁇ (apparent density/resin density) i .
  • the process generally comprises: extruding nonporous precursors; bonding together the nonporous precursors; and making microporous the bonded nonporous precursors.
  • a mixture of matrix components and extractable components are extruded to form a nonporous precursor film.
  • Precursor films are stacked for bonding, the stacking being in the configuration of the desired end product.
  • the stacked precursor films are then bonded.
  • the bonded stacked precursor films are made microporous by subjecting that film to an extraction bath where solvents would be used to remove the extractable components from matrix components.
  • the matrix components are extruded to form a nonporous precursor film.
  • Precursor films are stacked for bonding, the stacking being in the configuration of the desired end product.
  • the stacked precursor films are then bonded.
  • the bonded stacked precursor films are made microporous by subjecting that film to an annealing and then stretching steps where stretching induces pore formation at the interface of crystalline and amphorous regions in the matrix components. The invention will be further described with reference to the dry process.
  • Nonporous precursor films are extruded and wound up. For example, in a blown film process, a tubular parison is extruded, collapsed, and the wound up and in a slot die or T die process, the flat parison is extruded and wound up. Each of these nonporous precursor films will become a layer of the multi-layered microporous membrane.
  • Laminating e.g., bonding with heat and pressure via nip rollers
  • the nonporous precursor films are unwound and stacked in a conventional manner before bonding in a laminator.
  • the unwinding and stacking may be performed as illustrated in U.S. Pat. Nos. 5,691,077 and 5,952,120, except only one set of stacked nonporous precursor films (i.e., a set being a stack of precursor films laid up in the configuration of the desired final microporous membrane) is run through the heated nip rolls of the precursor at a time.
  • a preferred configuration is a tri-layer precursor with a PP/PE/PP lay-up pattern.
  • the higher melting point material (e.g., PP in a PP/PE/PP) precursor be wider than the lower melting point material (e.g., PE in a PP/PE/PP) so to prevent sticking on the heated nip rolls.
  • Line speeds through the heated nip rolls are greater than 50 feet per minute (15.2 m/min) and typically range from 50-200 fpm (15.2-61 m/min).
  • the line speeds are greater than 100 fpm (30.5 m/min), more preferably 125 fpm (38.1 m/min), and most preferably, 150 fpm (45.7 m/min).
  • the heated nip roll temperature ranges from 100-175° C., preferably 145 to 170° C., and most preferably 155-165° C.
  • Nip roll pressure ranges from 100 to 800 pounds per linear inch (pli) (17.7-141.7 kg.per linear cm), preferably 100 to 300 pli (17.7-53.1 kg per linear cm).
  • the film Prior to wind up, however, it is desirable to cool the film. This cooling is preferably accomplished by the use of a chill roll.
  • the chill roll temperatures may range from 20-45° C., preferably 25-40° C. It is most preferred that this film be below the glass transition temperature (Tg) of the outer most layer prior to contact with the chill roll, this prevents the film from sticking to the chill roll.
  • Tg glass transition temperature
  • an air knife may be employed between the heat nip rollers and the chill roll.
  • the bonded, nonporous stacked precursor may curl along the lateral edges of the film. If so, trim knives may be used to remove the curl prior to winding. Two sets of stacked nonporous precursor films may be simultaneously wound onto a single roll.
  • the bonded, stacked precursor film is ready to made microporous.
  • a plurality of the bonded stacked precursor films are stacked.
  • At least four (4) bonded stacked precursor films are stacked for further processing, preferably at least six (6), most preferably at least twelve (12), and still more preferably at least sixteen (16) may be stacked for further processing.
  • the plurality of bonded stacked precursor films are then simultaneously annealed and then stretched in a conventional manner. For example, see: U.S. Pat. Nos. 5,480,945; 5,691,047; 5,667,911; 5,691,077; 5,952,120; and 6,602,593 for typical annealing and stretching conditions.
  • Example 1 and Comparative Example 2 have a nominal thickness of 25 ⁇
  • Example 3 and Comparative Example 4 have a nominal thickness of 20 ⁇ .
  • ER Electrical Resistance
  • N mac r separator / ⁇ electrolyte t separator
  • r separator R(measured resistance of separator)A probe (area of probe, cm 2 )
  • ⁇ electrolyte electrolyte resistivity (ohm-cm)
  • t separator separator thickness (cm))
  • the test cell has a 1 square inch (6.45 square cm) electrode faces that contact the wetted separator.
  • Separators are wetted with a 1 molar LiPF 6 electrolyte in a 3:7 weight ratio ethyl carbonate (EC) to ethyl methyl carbonate (EMC). Measurements are taken at AC amplitude of 5 mV and a frequency range of 22,000 to 24,000 Hz. The report results are the average of four membranes, 4 membranes are stacked and measured, them remove one membrane and measure 3 membranes and so forth, the differences are averaged and reported.
  • EC ethyl carbonate
  • EMC ethyl methyl carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
US10/636,115 2003-08-07 2003-08-07 Battery separator and method of making same Abandoned US20050031943A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/636,115 US20050031943A1 (en) 2003-08-07 2003-08-07 Battery separator and method of making same
SG200403829A SG129295A1 (en) 2003-08-07 2004-06-24 Battery separator and method of making same
CA002472281A CA2472281A1 (en) 2003-08-07 2004-06-25 Battery separator and method of making same
TW093118893A TWI251364B (en) 2003-08-07 2004-06-28 Battery separator and method of making same
KR1020040052636A KR100637971B1 (ko) 2003-08-07 2004-07-07 배터리 격리판 및 이의 제조방법
EP04018207A EP1505671A2 (en) 2003-08-07 2004-07-31 Battery separator and method of making same
CNB2004100588861A CN100459227C (zh) 2003-08-07 2004-08-03 电池隔膜及其制造方法
JP2004231815A JP4516796B2 (ja) 2003-08-07 2004-08-09 電池セパレータおよびその製造方法
US11/683,022 US9112214B2 (en) 2003-08-07 2007-03-07 Battery separator and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/636,115 US20050031943A1 (en) 2003-08-07 2003-08-07 Battery separator and method of making same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/683,022 Division US9112214B2 (en) 2003-08-07 2007-03-07 Battery separator and method of making same

Publications (1)

Publication Number Publication Date
US20050031943A1 true US20050031943A1 (en) 2005-02-10

Family

ID=33552953

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/636,115 Abandoned US20050031943A1 (en) 2003-08-07 2003-08-07 Battery separator and method of making same
US11/683,022 Expired - Lifetime US9112214B2 (en) 2003-08-07 2007-03-07 Battery separator and method of making same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/683,022 Expired - Lifetime US9112214B2 (en) 2003-08-07 2007-03-07 Battery separator and method of making same

Country Status (8)

Country Link
US (2) US20050031943A1 (ja)
EP (1) EP1505671A2 (ja)
JP (1) JP4516796B2 (ja)
KR (1) KR100637971B1 (ja)
CN (1) CN100459227C (ja)
CA (1) CA2472281A1 (ja)
SG (1) SG129295A1 (ja)
TW (1) TWI251364B (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070148552A1 (en) * 2003-12-24 2007-06-28 Takashi Ikemoto Microporous membrane made from polyolefin
US20070238017A1 (en) * 2006-04-07 2007-10-11 Celgard Llc Multilayer separator exhibiting improved strength and stability
US20080251212A1 (en) * 2007-04-13 2008-10-16 Tensylon High Performance Materials, Inc. Apparatus for the manufacture of wide polymeric sheet
US20090092893A1 (en) * 2007-10-05 2009-04-09 Tonen Chemical Corporation Microporous Polymer Membrane
US20090117453A1 (en) * 2005-06-24 2009-05-07 Tonen Chemical Corporation Multi-layer, microporous polyethylene membrane, and battery separator and battery using same
US20090186280A1 (en) * 2005-12-15 2009-07-23 Kazuya Iidani Polyolefin microporous membrane
US20100092729A1 (en) * 2007-04-13 2010-04-15 Harding Kenneth C Wide ultra high molecular weight polyethylene sheet and method of manufacture
US20130101889A1 (en) * 2010-06-25 2013-04-25 Toray Industries, Inc. Composite porous membrane, method for producing composite porous membrane and battery separator using same
US9287543B2 (en) 2011-02-03 2016-03-15 Toray Industries, Inc. Porous film, separator for electric storage device, and electric storage device
WO2018089748A1 (en) 2016-11-11 2018-05-17 Celgard, Llc Improved microlayer membranes, improved battery separators, and related methods
CN110406137A (zh) * 2019-06-26 2019-11-05 佛山市盈博莱科技股份有限公司 一种高孔隙率聚烯烃锂离子电池隔膜的制备方法
US10601012B1 (en) * 2013-03-15 2020-03-24 Celgard, Llc Multilayer hybrid battery separators for lithium ion secondary batteries and methods of making same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727248B1 (ko) * 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
KR101211978B1 (ko) * 2008-09-03 2012-12-13 미쓰비시 쥬시 가부시끼가이샤 세퍼레이터용 적층 다공성 필름
CN102315421B (zh) * 2011-08-30 2014-08-20 珠海汉格能源科技有限公司 一种超薄型聚合物锂离子电池及其制备方法
TWI453114B (zh) * 2012-05-11 2014-09-21 Entire Technology Co Ltd 多孔複合膜的製造方法
CN103904280A (zh) * 2014-03-27 2014-07-02 达尼特材料科技(芜湖)有限公司 一种锂离子电池用隔离膜及其制造方法
CN105449140A (zh) * 2014-08-27 2016-03-30 宁德时代新能源科技股份有限公司 隔离膜及锂离子二次电池
US9605229B2 (en) * 2014-12-19 2017-03-28 Bathium Canada Inc. Lubricant for lamination of lithium sheets into lithium thin films
EP3304618A4 (en) 2015-06-03 2019-07-31 Celgard LLC MICROPOROUS BATTERY SEPARATING MEMBRANES WITH LOW ELECTRICAL RESISTANCE, SEPARATORS, BATTERIES, BATTERIES, AND ASSOCIATED METHODS, IMPROVED
CN105017546B (zh) * 2015-06-09 2017-08-08 界首市天鸿新材料股份有限公司 一种干法双拉锂电池隔膜生产工艺
HUE060106T2 (hu) 2015-07-31 2023-01-28 Celgard Llc Javított többrétegû laminált membránok, szeparátorok, akkumulátorok és eljárások
JP2018530106A (ja) * 2015-08-17 2018-10-11 セルガード エルエルシー 改良されたバッテリーセパレータおよび関連する方法
RU2752855C2 (ru) 2015-09-18 2021-08-11 СЕЛГАРД, ЭлЭлСи Усовершенствованные мембраны, каландрированные микропористые мембраны, аккумуляторные сепараторы и соответствующие способы
KR102143267B1 (ko) * 2016-12-22 2020-08-10 한화토탈 주식회사 미세 다공성 다층 필름 제조 방법 및 그에 의해 제조된 필름
CN109742302A (zh) * 2019-01-15 2019-05-10 江苏安瑞达新材料有限公司 高电解液润湿性的锂离子电池隔膜及其制备方法
RU2766873C1 (ru) * 2021-07-28 2022-03-16 СЕЛГАРД ЭлЭлСи Усовершенствованные мембраны, каландрированные микропористые мембраны, аккумуляторные сепараторы и соответствующие способы
EP4376202A1 (en) 2022-10-12 2024-05-29 Sinoma Lithium Battery Separator (Nanjing) Co., Ltd. Polyolefin porous membrane and preparation method therefor, battery separator, and electrochemical device
CN116231231B (zh) * 2023-05-09 2023-08-01 合肥长阳新能源科技有限公司 一种层间交联共挤电池隔膜及其制备方法与电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480745A (en) * 1994-01-31 1996-01-02 Nitto Denko Corporation Porous film and use of the same
US5667911A (en) * 1994-11-17 1997-09-16 Hoechst Celanese Corporation Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby
US5691047A (en) * 1994-05-12 1997-11-25 Ube Industries, Ltd. Porous multi-layer film
US5691077A (en) * 1994-12-20 1997-11-25 Hoechst Celanese Corporation Shutdown, trilayer battery separator
US5952120A (en) * 1997-04-15 1999-09-14 Celgard Llc Method of making a trilayer battery separator
US20020136945A1 (en) * 2000-01-18 2002-09-26 Call Ronald W. Multilayer battery separators
US6602593B1 (en) * 1999-08-30 2003-08-05 Celgard Inc. Battery separators with reduced splitting propensity
US6833219B2 (en) * 2001-01-05 2004-12-21 Samsung Sdi Co., Ltd. Polymer electrolytes and lithium secondary battery containing the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466734B2 (ja) * 1993-10-05 2003-11-17 呉羽化学工業株式会社 フッ化ビニリデン系樹脂多孔質膜とその製造方法
JP3011309B2 (ja) * 1994-05-12 2000-02-21 宇部興産株式会社 電池用セパレ−タ及びその製法
US5565281A (en) * 1994-12-02 1996-10-15 Hoechst Celanese Corporation Shutdown, bilayer battery separator
JP3852492B2 (ja) * 1996-08-06 2006-11-29 宇部興産株式会社 電池用セパレータの製造法
JP3381538B2 (ja) * 1996-08-06 2003-03-04 宇部興産株式会社 積層多孔質ポリオレフィンフイルムの製法
JPH10237202A (ja) * 1997-02-26 1998-09-08 Nitto Denko Corp 多孔質フィルム及び電池用セパレータ
JPH10241659A (ja) * 1997-02-28 1998-09-11 Nitto Denko Corp 電池セパレータ用多孔質フィルムの製造方法
JPH1160763A (ja) * 1997-08-22 1999-03-05 Ube Ind Ltd 多孔質ポリマーフイルム
JP2000299094A (ja) * 1999-04-14 2000-10-24 Ube Ind Ltd 多孔質フィルム積層体及びそれを用いた電池用セパレータ
US6346350B1 (en) * 1999-04-20 2002-02-12 Celgard Inc. Structurally stable fusible battery separators and method of making same
US6521555B1 (en) * 1999-06-16 2003-02-18 First Quality Nonwovens, Inc. Method of making media of controlled porosity and product thereof
US6379605B1 (en) * 1999-10-22 2002-04-30 Nan Ya Plastics Corporation Process for producing a 3-layer co-extruded biaxial-oriented polypropylene synthetic paper and transparent film for in-mold label
US6969441B2 (en) * 2000-05-15 2005-11-29 Kimberly-Clark Worldwide, Inc. Method and apparatus for producing laminated articles
US6878226B2 (en) * 2002-01-08 2005-04-12 Wei-Ching Yu Continuous methods of making microporous battery separators
US7015155B2 (en) * 2002-07-02 2006-03-21 Kimberly-Clark Worldwide, Inc. Elastomeric adhesive
TW200401237A (en) * 2002-07-05 2004-01-16 Lintec Corp Laminate sheet, laminate sheet roll, and producing methods therefor
US8034440B2 (en) * 2002-10-31 2011-10-11 Kimberly-Clark Worldwide, Inc. Elastomeric film and laminates thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480745A (en) * 1994-01-31 1996-01-02 Nitto Denko Corporation Porous film and use of the same
US5691047A (en) * 1994-05-12 1997-11-25 Ube Industries, Ltd. Porous multi-layer film
US5667911A (en) * 1994-11-17 1997-09-16 Hoechst Celanese Corporation Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby
US5691077A (en) * 1994-12-20 1997-11-25 Hoechst Celanese Corporation Shutdown, trilayer battery separator
US5952120A (en) * 1997-04-15 1999-09-14 Celgard Llc Method of making a trilayer battery separator
US6602593B1 (en) * 1999-08-30 2003-08-05 Celgard Inc. Battery separators with reduced splitting propensity
US20020136945A1 (en) * 2000-01-18 2002-09-26 Call Ronald W. Multilayer battery separators
US6833219B2 (en) * 2001-01-05 2004-12-21 Samsung Sdi Co., Ltd. Polymer electrolytes and lithium secondary battery containing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070148552A1 (en) * 2003-12-24 2007-06-28 Takashi Ikemoto Microporous membrane made from polyolefin
US20090117453A1 (en) * 2005-06-24 2009-05-07 Tonen Chemical Corporation Multi-layer, microporous polyethylene membrane, and battery separator and battery using same
KR101243069B1 (ko) * 2005-06-24 2013-03-13 도레이 배터리 세퍼레이터 필름 주식회사 폴리에틸렌 다층 미세 다공막 및 이를 이용한 전지용세퍼레이터 및 전지
US20090186280A1 (en) * 2005-12-15 2009-07-23 Kazuya Iidani Polyolefin microporous membrane
US8003261B2 (en) 2005-12-15 2011-08-23 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
US8486556B2 (en) * 2006-04-07 2013-07-16 Celgard Llc Multilayer separator exhibiting improved strength and stability
US20070238017A1 (en) * 2006-04-07 2007-10-11 Celgard Llc Multilayer separator exhibiting improved strength and stability
US20100209758A1 (en) * 2006-04-07 2010-08-19 Call Ronald W Multilayer separator exhibiting improved strength and stability
US7905971B2 (en) * 2007-04-13 2011-03-15 BAE Systems Tensylon H.P. M. Inc. Wide ultra high molecular weight polyethylene sheet and method of manufacture
US20100092729A1 (en) * 2007-04-13 2010-04-15 Harding Kenneth C Wide ultra high molecular weight polyethylene sheet and method of manufacture
US20080251212A1 (en) * 2007-04-13 2008-10-16 Tensylon High Performance Materials, Inc. Apparatus for the manufacture of wide polymeric sheet
US20090092893A1 (en) * 2007-10-05 2009-04-09 Tonen Chemical Corporation Microporous Polymer Membrane
US8715849B2 (en) * 2007-10-05 2014-05-06 Toray Battery Separator Film Co., Ltd. Microporous polymer membrane
US20130101889A1 (en) * 2010-06-25 2013-04-25 Toray Industries, Inc. Composite porous membrane, method for producing composite porous membrane and battery separator using same
US9287543B2 (en) 2011-02-03 2016-03-15 Toray Industries, Inc. Porous film, separator for electric storage device, and electric storage device
US10601012B1 (en) * 2013-03-15 2020-03-24 Celgard, Llc Multilayer hybrid battery separators for lithium ion secondary batteries and methods of making same
WO2018089748A1 (en) 2016-11-11 2018-05-17 Celgard, Llc Improved microlayer membranes, improved battery separators, and related methods
WO2018089885A2 (en) 2016-11-11 2018-05-17 Celgard, Llc Improved microlayer membranes, improved battery separators, and related methods
US11495865B2 (en) 2016-11-11 2022-11-08 Celgard, Llc Microlayer membranes, improved battery separators, and related methods
CN110406137A (zh) * 2019-06-26 2019-11-05 佛山市盈博莱科技股份有限公司 一种高孔隙率聚烯烃锂离子电池隔膜的制备方法

Also Published As

Publication number Publication date
CN100459227C (zh) 2009-02-04
EP1505671A2 (en) 2005-02-09
US9112214B2 (en) 2015-08-18
CN1581534A (zh) 2005-02-16
JP4516796B2 (ja) 2010-08-04
US20070148538A1 (en) 2007-06-28
TW200507325A (en) 2005-02-16
CA2472281A1 (en) 2005-02-07
KR100637971B1 (ko) 2006-10-23
TWI251364B (en) 2006-03-11
KR20050015998A (ko) 2005-02-21
SG129295A1 (en) 2007-02-26
JP2005056851A (ja) 2005-03-03

Similar Documents

Publication Publication Date Title
US9112214B2 (en) Battery separator and method of making same
JP6854836B2 (ja) 共押出しされた、多層電池セパレーター
US11731407B2 (en) Low electrical resistance microporous battery separator membranes, separators, cells, batteries, and related methods
US11799169B2 (en) Multilayer microporous separators for lithium ion secondary batteries and related methods
EP0715364B1 (en) Shutdown, bilayer battery separator
US9908317B2 (en) Multilayer battery separators
KR20150128973A (ko) 리튬 이온 이차 전지용 다층 하이브리드 전지 분리막
EP0924780B1 (en) Penta-layer battery separator

Legal Events

Date Code Title Description
AS Assignment

Owner name: CELGARD INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALL, RONALD W.;REEL/FRAME:014729/0709

Effective date: 20031114

AS Assignment

Owner name: CELGARD, LLC, SOUTH CAROLINA

Free format text: CHANGE OF NAME;ASSIGNOR:CELGARD, INC.;REEL/FRAME:014822/0710

Effective date: 20040630

AS Assignment

Owner name: JPMORGAN CHASE BANK, AS ADMINISTRATIVE AGENT, TEXA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CELGARD, LLC;REEL/FRAME:015348/0137

Effective date: 20041109

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION