US20050001340A1 - Apparatus for the preparation of liquids for the dispense of beverages - Google Patents
Apparatus for the preparation of liquids for the dispense of beverages Download PDFInfo
- Publication number
- US20050001340A1 US20050001340A1 US10/852,900 US85290004A US2005001340A1 US 20050001340 A1 US20050001340 A1 US 20050001340A1 US 85290004 A US85290004 A US 85290004A US 2005001340 A1 US2005001340 A1 US 2005001340A1
- Authority
- US
- United States
- Prior art keywords
- liquid
- gas
- closed container
- fibers
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67D—DISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
- B67D1/00—Apparatus or devices for dispensing beverages on draught
- B67D1/0042—Details of specific parts of the dispensers
- B67D1/0057—Carbonators
- B67D1/0069—Details
- B67D1/0074—Automatic carbonation control
- B67D1/0075—Automatic carbonation control by sensing gas pressure
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
- A23L2/54—Mixing with gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23124—Diffusers consisting of flexible porous or perforated material, e.g. fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/236—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages
- B01F23/2362—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages for aerating or carbonating within receptacles or tanks, e.g. distribution machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3132—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3133—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
- B01F25/31331—Perforated, multi-opening, with a plurality of holes
- B01F25/313311—Porous injectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/75—Discharge mechanisms
- B01F35/753—Discharging at the upper side of the receptacle, e.g. by pressurising the liquid in the receptacle or by centrifugal force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/75—Discharge mechanisms
- B01F35/754—Discharge mechanisms characterised by the means for discharging the components from the mixer
- B01F35/7543—Discharge mechanisms characterised by the means for discharging the components from the mixer using pneumatic pressure, overpressure or gas pressure in a closed receptacle or circuit system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67D—DISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
- B67D1/00—Apparatus or devices for dispensing beverages on draught
- B67D1/0042—Details of specific parts of the dispensers
- B67D1/0057—Carbonators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67D—DISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
- B67D1/00—Apparatus or devices for dispensing beverages on draught
- B67D1/0042—Details of specific parts of the dispensers
- B67D1/0057—Carbonators
- B67D1/0069—Details
- B67D1/007—Structure of the carbonating chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67D—DISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
- B67D1/00—Apparatus or devices for dispensing beverages on draught
- B67D1/0042—Details of specific parts of the dispensers
- B67D1/0057—Carbonators
- B67D1/0069—Details
- B67D1/0071—Carbonating by injecting CO2 in the liquid
- B67D1/0072—Carbonating by injecting CO2 in the liquid through a diffuser, a bubbler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23124—Diffusers consisting of flexible porous or perforated material, e.g. fabric
- B01F23/231244—Dissolving, hollow fiber membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/235—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S261/00—Gas and liquid contact apparatus
- Y10S261/07—Carbonators
Definitions
- beverages require certain levels of gases to be dissolved in at least one of the constituent liquids prior to dispense in order to achieve the desired taste and or presentation effects in the final beverage.
- beverages include carbonated juices, sodas, and the like where carbon dioxide is either pre-dissolved at elevated pressure in water which is added to a concentrate or is pre-dissolved at elevated pressure in the mixture of water plus concentrate. When dispensed correctly a substantial portion of the carbon dioxide remains in solution in the glass or cup, producing the familiar taste effect when the beverage is consumed.
- beverages include chilled or hot coffees, and chocolates where either nitrogen or air gases are pre-dissolved at elevated pressure in water or in premixed water with concentrate.
- the pre-dissolved gases are substantially removed from solutions on passage of the liquid thru the dispense tap to form a large quantity of small bubbles which float and settle at the top of the beverage to produce an appealing presentation of the drink in the glass or cup.
- Still further examples include beverages based on dairy products, which contain pre-dissolved nitrous oxide and water-based beverages containing pre dissolved oxygen.
- the amount of a gas which can be dissolved in a liquid at a selected temperature is proportional to the applied absolute pressure of the gas.
- beverage dispense systems utilizing the gas/liquid contactors have consisted of the two shell ports of the contactor module being connected respectively to a pressurized liquid source and to a dispense tap, whereas the contactor module gas port is connected to a pressurized gas source.
- the contactor module must be built to operate safely at correspondingly high pressures on both the liquid and gas sides of the system.
- a weakly soluble gas e.g., nitrogen
- the contactor module must be built to operate safely at correspondingly high pressures on both the liquid and gas sides of the system.
- contactor modules rated for operation at a maximum pressure of 4 bar gauge will deliver a maximum level of dissolved nitrogen of approximately 110 ml per liter of water. This pre-dissolved gas level directly determines the size of “head” on the dispensed drink, and it is generally accepted that operation of contactor modules at high pressure to deliver high levels of dissolved gas will be desirable if that could be achieved economically.
- the present invention provides a novel apparatus for utilizing hollow fiber gas/liquid contactor modules at much higher liquid and gas pressures than has hitherto been practical or economical.
- the apparatus of the present invention is thus able to deliver liquids containing significantly higher concentrations of dissolved gas than is possible with a conventional apparatus.
- a further advantage of the apparatus of the present invention arises from the elimination of the need for controls to balance liquid and gas pressures within the contactor module thus reducing both the costs and the complexity of most installations.
- a still further advantage arising from the present invention is that when the apparatus is used to dissolve a highly-soluble gas, such as carbon dioxide, the practical performance of the contactor module in typical dispense operation is significantly greater than that of the contactor module of comparable geometry operated in the conventional manner.
- the present invention relates to an apparatus and a method for utilizing the apparatus for applying gas/liquid contactor modules containing hollow fibers for dissolving gases in liquids prior to dispense of a liquid as a beverage.
- the present invention provides an apparatus for preparation and dispense of a liquid beverage which comprises a closed container.
- the closed container contains liquid at a predetermined level within the container.
- the container contains a gas/liquid contactor module at least partially immersed in the liquid, the module having (a) a gas supply channel to the bore side of the fibers, (b) a liquid supply channel to the shell side of the fibers, and (c) an exit port for transport of a gas-containing liquid.
- the remaining space is occupied by a pressurized gas.
- the closed container additionally has an exit port for dispense of a gas-containing liquid from inside the container to a dispense mechanism for preparation of a beverage.
- the closed container has a pressurized gas inlet wherein gas is supplied to the remaining space in the closed container and is maintained at an elevated pressure even during dispense of liquid from the container.
- the liquid within the container may be a beverage such as coffee, tea, soda, and the like or a concentrate suitable for making a beverage by the addition of another liquid, or water.
- the pressurized gas within the container is typically a gas dissolved in a beverage such as carbon-dioxide, nitrogen, nitrous oxide, oxygen, air and the like.
- the contactor module contains a bundle of hollow fiber membranes, which fibers are gas permeable and liquid impermeable.
- the contactor module has a liquid entry port which allows liquid to access the exterior of the hollow fiber membranes within the module.
- the module also contains a gas entry port which allows gas to fill the interior of the hollow fiber membranes in the module. Because the gas is at an elevated pressure while in the presence of the liquid, the liquid dissolves a relatively high portion of the gas, thus providing a liquid containing dissolved gas therein.
- FIG. 1 depicts a cross-sectional view of one embodiment of the present invention
- FIG. 2 depicts a cross-sectional view of another embodiment of the present invention.
- FIG. 3 depicts a cross-sectional view of a further embodiment of the present invention.
- FIG. 1 depicts a cross-sectional view of one embodiment of the present invention.
- An apparatus 10 having a closed container 14 is provided which contains a liquid 16 and a contactor module 24 .
- the module 24 has a shell 22 surrounding a bundle of hollow fibers 12 .
- the module 24 has a space 20 surrounding the bundle of hollow fibers 12 wherein a liquid resides.
- the contactor module 24 has an end cap 30 in the lower area which seals the ends of the fibers in the fiber bundle 12 thereby preventing entry of liquid to the interior of the fibers.
- There is an upper seal 26 which seals the regions around the fibers, however, the upper surface of the seal 26 provides a fiber face 28 which is open to the atmosphere allowing the interior of the fibers 12 to receive gas.
- the upper portion of the closed container 14 is provided with a cap 42 which covers the open face of the hollow fibers 28 and provides a gas channel 32 , which supplies pressurized gas to the open face 28 of the bundle of fibers 12 .
- the cap 42 is sealed between the contactor shell 22 and the inside of the cap 42 with ring seals 38 and 40 .
- An outlet port 34 is provided to allow liquid, surrounding the fiber bundle 12 in the space 20 , to exit from the contactor module 24 .
- the interior of the closed container 14 has a predetermined level of a liquid 16 and in the remaining portion of the interior of the closed container 14 there is a pressurized gas 18 which remains under pressure.
- the contactor module 24 is provided with a lower port 36 to receive liquid from the liquid 16 in the closed container 14 .
- the liquid 16 enters the contactor at the port 36 and fills the space 20 between the fiber bundle 12 and the contactor exterior shell 22 .
- the gas-containing liquid is removed through an upper port 34 .
- the cap 42 is provided with an additional ring seal 44 and a pressure seal 46 , to prevent the pressurized gas from escaping from the closed container 14 .
- a port 48 is connected to a pressurized gas and hence allows gas to enter the closed container 14 at the port 48 to provide the necessary pressurized gas in the space 18 in the apparatus.
- FIG. 2 depicts a cross-sectional view of a further embodiment of the present invention.
- An apparatus 50 has a gas inlet port 63 which is machined within the cap 42 and provides pressurized gas to the gas channel 32 .
- a 3-port, 2-position valve 62 is optionally included in the gas feed line upstream of the gas port 63 .
- a gas pressure regulator 64 is placed between the valve 62 and the gas source 66 .
- the gas source 66 provides pressurized gas at a predetermined pressure to fill the space 18 .
- the level of the liquid 16 can be maintained automatically between two selected levels, an upper level and a lower level.
- a controller 60 When sufficient dispense of the gas-containing liquid through the port 34 causes the liquid level to fall below the lower selected level, a controller 60 operates a valve 62 , to vent pressurized gas from the closed container 14 .
- the controller 60 also operates a valve 56 which allows liquid from the liquid source 58 to be added through a port 54 until the higher selected liquid level is reached in the closed container 14 .
- the controller 60 then operates the valve 62 and closes the liquid entry valve 56 to allow gas pressure to be reapplied to the space 18 in the closed container 14 .
- the closed container 14 is further provided with a controller 60 containing a sensor means 52 , which sensor means 52 detects when the liquid level falls below the lower preselected level and when the liquid level reaches the upper preselected liquid level.
- the controller 60 signals the liquid controlling valve 56 to open and close respectively when the liquid 16 reaches the lower level and again upon refilling when the liquid reaches the upper preselected level.
- An additional advantage of this embodiment of the invention is that the water level can be maintained automatically between the preselected upper and lower levels without needing to depressurize the closed container 14 , before commencing each refilling operation. If the pressure of the water source 58 is above the operating pressure of the closed container 14 , the valve 62 may be omitted in this mode of operation.
- This embodiment of the invention has the further advantage that there is no waste of pressurized gas involved in the operation. This is because all of the water added to the closed container 14 during each refilling operation must first past through the contactor module 24 . This provides a high efficiency in the dissolving of the pressurized gas into the liquid because all of the liquid leaving the system has passed twice through the contactor module 24 . As will be shown in subsequent examples, it has been found that the efficiency for the dissolving of gas into a liquid is significantly higher than the efficiency of a single comparable contactor module operated in a conventional manner at the same pressure, temperature, and dispense flow rate.
- FIG. 3 depicts a cross-sectional view of an apparatus 70 in a still further embodiment of the present invention.
- the contact module 24 rests on the bottom of the closed container 14 .
- the contactor module may be completely immersed in the liquid 16 .
- a tube 68 is connected to the cap 42 of the contactor module 24 .
- the open end of the tube 68 is secured above the liquid level, and generally it will have its open end located just below the gas connection port 49 so as to receive and transport pressurized gas to the open fiber face 28 of the contactor module 24 .
- the liquid exit port 34 in the form of a tube, is connected to a liquid outlet connection 67 which leads to the dispense mechanism for the gas-containing liquid to form a beverage.
- a separate resealable connection 65 is provided to allow refilling of the closed container 14 with liquid.
- the scheme described above in the second embodiment in FIG. 2 may be used for controlling the liquid levels in the closed container 14 .
- a contactor module was assembled within a 10 liter keg according to the embodiment shown in FIG. 3 .
- the keg was filled with water at 12° C., sealed, and pressurized with nitrogen at 4 bar gauge pressure.
- the keg outlet was connected to a dispense tap fitted with a “creamer disc” with 5 holes each of 0.5 mm diameter.
- the liquid level in the glass was 100 mm for 200 ml liquid content.
- Example 2 Using the same arrangement as in Example 1, the keg was pressurized with nitrogen at 7 bar gauge at the same temperature.
- this head corresponds to a dissolved nitrogen level of approximately 145 ml of nitrogen per liter of liquid.
- a contactor module 51 mm internal diameter and containing an active fiber area of 1.2 square meters, was fitted to a 10.5 liter keg according to the embodiment shown in FIG. 2 .
- the keg was insulated and fitted with a liquid level sensor, a liquid level controller and a solenoid valve in line from a source of vacuum-degassed water according to the arrangement shown in FIG. 2 .
- the level sensor was a type which only detected a single level, set at 9.5 liters.
- the controller was provided with a switch which simulated the action of a low-level detection and thus allowed the user to determine when to start re-filling the keg.
- the space in the keg was initially filled with carbon dioxide gas supplied from a cylinder via a non-relieving pressure regulator set at a delivery pressure of 3 bar.
- a pressure gauge was fitted in the feed gas line downstream of this regulator.
- the water source was at a pressure of 4.2 bar and at a temperature of 13.3° C.
- the keg started filling with water when electrical power was applied to the controller, and continued filling until the upper level set by the level sensor was reached. During this time the reading on the pressure gauge in the feed gas line remained at 3 bar.
- the controller switch was operated and the keg re-filled again.
- the feed gas pressure gauge remained at 3 bar, and a further sequence of five 200 ml volumes were dispensed at a flow rate of 1 liter per minute.
- the measured carbonation levels remained constant at 4.22 volumes of carbon dioxide per volume of liquid.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Devices For Dispensing Beverages (AREA)
Abstract
The present invention provides an apparatus for dissolving a gas in a liquid, the apparatus comprising (a) a closed container containing a liquid at a predetermined level, (b) a contactor module at least partially immersed in the liquid having (1) a gas supply channel to the bore side of the fibers, (2) a liquid supply channel to the shell side of the fibers, and (3) an exit port for transport of a gas-containing liquid, and (c) the remaining space in the closed container being occupied by a pressurized gas. The liquid prepared in the apparatus of the present invention containing a dissolved gas, is used to prepare beverages, such as coffee, tea, soda, chocolate and the like, whether hot or cold.
Description
- This application claims the priority of United Kingdom Application 0312421.1 filed 30 May 2003 and United Kingdom Application 0326296.1 filed 12 Nov. 2003 under 35 U.S.C. § 119.
- Not Applicable.
- Many beverages require certain levels of gases to be dissolved in at least one of the constituent liquids prior to dispense in order to achieve the desired taste and or presentation effects in the final beverage. Examples of such beverages include carbonated juices, sodas, and the like where carbon dioxide is either pre-dissolved at elevated pressure in water which is added to a concentrate or is pre-dissolved at elevated pressure in the mixture of water plus concentrate. When dispensed correctly a substantial portion of the carbon dioxide remains in solution in the glass or cup, producing the familiar taste effect when the beverage is consumed. Other examples of beverages include chilled or hot coffees, and chocolates where either nitrogen or air gases are pre-dissolved at elevated pressure in water or in premixed water with concentrate. When these liquids are dispensed correctly, the pre-dissolved gases are substantially removed from solutions on passage of the liquid thru the dispense tap to form a large quantity of small bubbles which float and settle at the top of the beverage to produce an appealing presentation of the drink in the glass or cup.
- Still further examples include beverages based on dairy products, which contain pre-dissolved nitrous oxide and water-based beverages containing pre dissolved oxygen.
- The use of gas/liquid contactor modules containing non-flooding gas-permeable hollow fibers and associated control schemes for controlling dissolved gases in liquids have been described in U.S. Pat. No. 5,565,149 (herein incorporated by reference). Technology disclosed in U.S. Pat. No. 5,565,149 has been commercialized in a range of Cellarstream® dispense systems which are manufactured and marketed by Headmaster, Ltd., Bramshill, United Kingdom and Permea a division of Air Products and Chemicals, Inc. Allentown, Pa., U.S.A.
- The amount of a gas which can be dissolved in a liquid at a selected temperature, is proportional to the applied absolute pressure of the gas.
- Hitherto, beverage dispense systems utilizing the gas/liquid contactors have consisted of the two shell ports of the contactor module being connected respectively to a pressurized liquid source and to a dispense tap, whereas the contactor module gas port is connected to a pressurized gas source.
- In order to maintain efficient operation of such systems, additional controls such as those described in U.S. Pat. No. 5,565,149 are necessary to maintain the pressure of gas applied to the contactor fibers at substantially the same pressure as that of the liquid supply in the contactor module. These conventional systems have drawbacks for certain applications.
- Where it is desired to dissolve a large amount of a weakly soluble gas, e.g., nitrogen, for a beverage such as a chilled draft coffee beverage, the contactor module must be built to operate safely at correspondingly high pressures on both the liquid and gas sides of the system. At a working temperature of 3° C. contactor modules rated for operation at a maximum pressure of 4 bar gauge will deliver a maximum level of dissolved nitrogen of approximately 110 ml per liter of water. This pre-dissolved gas level directly determines the size of “head” on the dispensed drink, and it is generally accepted that operation of contactor modules at high pressure to deliver high levels of dissolved gas will be desirable if that could be achieved economically.
- Additional drawbacks of relatively high costs and complexity of installations present barriers to wide exploitation of such contactor module systems where compared to some retail outlets, a lower frequency of usage would be the norm, for example, in the domestic market sector.
- The present invention provides a novel apparatus for utilizing hollow fiber gas/liquid contactor modules at much higher liquid and gas pressures than has hitherto been practical or economical. The apparatus of the present invention is thus able to deliver liquids containing significantly higher concentrations of dissolved gas than is possible with a conventional apparatus. A further advantage of the apparatus of the present invention arises from the elimination of the need for controls to balance liquid and gas pressures within the contactor module thus reducing both the costs and the complexity of most installations. A still further advantage arising from the present invention is that when the apparatus is used to dissolve a highly-soluble gas, such as carbon dioxide, the practical performance of the contactor module in typical dispense operation is significantly greater than that of the contactor module of comparable geometry operated in the conventional manner.
- The present invention relates to an apparatus and a method for utilizing the apparatus for applying gas/liquid contactor modules containing hollow fibers for dissolving gases in liquids prior to dispense of a liquid as a beverage.
- The present invention provides an apparatus for preparation and dispense of a liquid beverage which comprises a closed container. The closed container contains liquid at a predetermined level within the container. In addition the container contains a gas/liquid contactor module at least partially immersed in the liquid, the module having (a) a gas supply channel to the bore side of the fibers, (b) a liquid supply channel to the shell side of the fibers, and (c) an exit port for transport of a gas-containing liquid. Within the closed container, the remaining space is occupied by a pressurized gas. Generally, the closed container additionally has an exit port for dispense of a gas-containing liquid from inside the container to a dispense mechanism for preparation of a beverage. Further, the closed container has a pressurized gas inlet wherein gas is supplied to the remaining space in the closed container and is maintained at an elevated pressure even during dispense of liquid from the container.
- The liquid within the container may be a beverage such as coffee, tea, soda, and the like or a concentrate suitable for making a beverage by the addition of another liquid, or water.
- The pressurized gas within the container is typically a gas dissolved in a beverage such as carbon-dioxide, nitrogen, nitrous oxide, oxygen, air and the like.
- Typically the contactor module contains a bundle of hollow fiber membranes, which fibers are gas permeable and liquid impermeable. The contactor module has a liquid entry port which allows liquid to access the exterior of the hollow fiber membranes within the module. The module also contains a gas entry port which allows gas to fill the interior of the hollow fiber membranes in the module. Because the gas is at an elevated pressure while in the presence of the liquid, the liquid dissolves a relatively high portion of the gas, thus providing a liquid containing dissolved gas therein.
- In the accompanying drawings which form part of the specification:
-
FIG. 1 depicts a cross-sectional view of one embodiment of the present invention; -
FIG. 2 depicts a cross-sectional view of another embodiment of the present invention; and -
FIG. 3 depicts a cross-sectional view of a further embodiment of the present invention. - Corresponding reference numerals indicate corresponding parts throughout the several figures of the drawings.
- The following detailed description illustrates the invention by way of example and not by way of limitation. The description clearly enables one skilled in the art to make and use the invention, describes several embodiments, adaptations, variations, alternatives, and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
-
FIG. 1 depicts a cross-sectional view of one embodiment of the present invention. Anapparatus 10 having a closedcontainer 14 is provided which contains aliquid 16 and acontactor module 24. Themodule 24 has ashell 22 surrounding a bundle ofhollow fibers 12. Themodule 24 has aspace 20 surrounding the bundle ofhollow fibers 12 wherein a liquid resides. Thecontactor module 24 has anend cap 30 in the lower area which seals the ends of the fibers in thefiber bundle 12 thereby preventing entry of liquid to the interior of the fibers. There is anupper seal 26 which seals the regions around the fibers, however, the upper surface of theseal 26 provides afiber face 28 which is open to the atmosphere allowing the interior of thefibers 12 to receive gas. - The upper portion of the closed
container 14 is provided with acap 42 which covers the open face of thehollow fibers 28 and provides agas channel 32, which supplies pressurized gas to theopen face 28 of the bundle offibers 12. Thecap 42 is sealed between thecontactor shell 22 and the inside of thecap 42 withring seals outlet port 34 is provided to allow liquid, surrounding thefiber bundle 12 in thespace 20, to exit from thecontactor module 24. The interior of the closedcontainer 14 has a predetermined level of aliquid 16 and in the remaining portion of the interior of the closedcontainer 14 there is a pressurizedgas 18 which remains under pressure. - In the
apparatus 10, thecontactor module 24 is provided with alower port 36 to receive liquid from theliquid 16 in the closedcontainer 14. Theliquid 16 enters the contactor at theport 36 and fills thespace 20 between thefiber bundle 12 and thecontactor exterior shell 22. In the use of theapparatus 10, when a gas-containing liquid is desired, the gas-containing liquid is removed through anupper port 34. Thecap 42 is provided with anadditional ring seal 44 and apressure seal 46, to prevent the pressurized gas from escaping from theclosed container 14. Aport 48 is connected to a pressurized gas and hence allows gas to enter theclosed container 14 at theport 48 to provide the necessary pressurized gas in thespace 18 in the apparatus. -
FIG. 2 depicts a cross-sectional view of a further embodiment of the present invention. Anapparatus 50 has agas inlet port 63 which is machined within thecap 42 and provides pressurized gas to thegas channel 32. A 3-port, 2-position valve 62 is optionally included in the gas feed line upstream of thegas port 63. Agas pressure regulator 64 is placed between thevalve 62 and thegas source 66. Thegas source 66 provides pressurized gas at a predetermined pressure to fill thespace 18. In the present embodiment, the level of the liquid 16 can be maintained automatically between two selected levels, an upper level and a lower level. When sufficient dispense of the gas-containing liquid through theport 34 causes the liquid level to fall below the lower selected level, acontroller 60 operates avalve 62, to vent pressurized gas from theclosed container 14. Thecontroller 60 also operates avalve 56 which allows liquid from theliquid source 58 to be added through aport 54 until the higher selected liquid level is reached in theclosed container 14. Thecontroller 60 then operates thevalve 62 and closes theliquid entry valve 56 to allow gas pressure to be reapplied to thespace 18 in theclosed container 14. - The
closed container 14 is further provided with acontroller 60 containing a sensor means 52, which sensor means 52 detects when the liquid level falls below the lower preselected level and when the liquid level reaches the upper preselected liquid level. Thus thecontroller 60 signals theliquid controlling valve 56 to open and close respectively when the liquid 16 reaches the lower level and again upon refilling when the liquid reaches the upper preselected level. - An additional advantage of this embodiment of the invention is that the water level can be maintained automatically between the preselected upper and lower levels without needing to depressurize the
closed container 14, before commencing each refilling operation. If the pressure of thewater source 58 is above the operating pressure of theclosed container 14, thevalve 62 may be omitted in this mode of operation. - This embodiment of the invention has the further advantage that there is no waste of pressurized gas involved in the operation. This is because all of the water added to the
closed container 14 during each refilling operation must first past through thecontactor module 24. This provides a high efficiency in the dissolving of the pressurized gas into the liquid because all of the liquid leaving the system has passed twice through thecontactor module 24. As will be shown in subsequent examples, it has been found that the efficiency for the dissolving of gas into a liquid is significantly higher than the efficiency of a single comparable contactor module operated in a conventional manner at the same pressure, temperature, and dispense flow rate. -
FIG. 3 depicts a cross-sectional view of anapparatus 70 in a still further embodiment of the present invention. In this embodiment, thecontact module 24 rests on the bottom of theclosed container 14. In addition, the contactor module may be completely immersed in the liquid 16. Atube 68 is connected to thecap 42 of thecontactor module 24. The open end of thetube 68 is secured above the liquid level, and generally it will have its open end located just below thegas connection port 49 so as to receive and transport pressurized gas to theopen fiber face 28 of thecontactor module 24. Theliquid exit port 34, in the form of a tube, is connected to aliquid outlet connection 67 which leads to the dispense mechanism for the gas-containing liquid to form a beverage. Aseparate resealable connection 65 is provided to allow refilling of theclosed container 14 with liquid. Alternatively, the scheme described above in the second embodiment inFIG. 2 , may be used for controlling the liquid levels in theclosed container 14. - A contactor module was assembled within a 10 liter keg according to the embodiment shown in
FIG. 3 . The keg was filled with water at 12° C., sealed, and pressurized with nitrogen at 4 bar gauge pressure. - The keg outlet was connected to a dispense tap fitted with a “creamer disc” with 5 holes each of 0.5 mm diameter.
- 185 ml of liquid was dispensed via the tap into a parallel-sided glass containing 15 ml of liquid coffee concentrate.
- The liquid level in the glass was 100 mm for 200 ml liquid content.
- After settling, a thick foam (of about 10 mm in thickness) made of tight and stable small bubbles had formed on the beverage. Allowing for the normal liquid content in the foam, this head corresponds to a dissolved nitrogen level of approximately 90 ml of nitrogen per liter of liquid.
- Using the same arrangement as in Example 1, the keg was pressurized with nitrogen at 7 bar gauge at the same temperature.
- 185 ml was dispensed from the same tap into the same parallel-sided glass containing 15 ml of liquid coffee concentrate.
- After settling, 17 mm of thick foam made of tight and stable small bubbles had formed on the beverage. Allowing for the normal liquid content in the foam, this head corresponds to a dissolved nitrogen level of approximately 145 ml of nitrogen per liter of liquid.
- A contactor module, 51 mm internal diameter and containing an active fiber area of 1.2 square meters, was fitted to a 10.5 liter keg according to the embodiment shown in
FIG. 2 . The keg was insulated and fitted with a liquid level sensor, a liquid level controller and a solenoid valve in line from a source of vacuum-degassed water according to the arrangement shown inFIG. 2 . - The level sensor was a type which only detected a single level, set at 9.5 liters. The controller was provided with a switch which simulated the action of a low-level detection and thus allowed the user to determine when to start re-filling the keg. The space in the keg was initially filled with carbon dioxide gas supplied from a cylinder via a non-relieving pressure regulator set at a delivery pressure of 3 bar. A pressure gauge was fitted in the feed gas line downstream of this regulator.
- The water source was at a pressure of 4.2 bar and at a temperature of 13.3° C. The keg started filling with water when electrical power was applied to the controller, and continued filling until the upper level set by the level sensor was reached. During this time the reading on the pressure gauge in the feed gas line remained at 3 bar.
- The carbonation levels of a sequence of five dispensed volumes of 200 ml each dispensed at a flow rate of 2.0 liters per minute, were measured with a carbonation analyzer of a type used for testing sodas. The measured carbonation levels remained constant at 4.22 volumes of carbon dioxide per volume of liquid for all samples.
- The controller switch was operated and the keg re-filled again. The feed gas pressure gauge remained at 3 bar, and a further sequence of five 200 ml volumes were dispensed at a flow rate of 1 liter per minute. The measured carbonation levels remained constant at 4.22 volumes of carbon dioxide per volume of liquid.
- In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results are obtained. As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Claims (9)
1. An apparatus for preparation and dispense of a liquid beverage, the apparatus which comprises a closed container containing:
(1) a liquid at a predetermined level,
(2) a contactor module at least partially immersed in the liquid having
(a) a gas supply channel to the bore side of the fibers,
(b) a liquid supply channel to the shell side of the fibers, and
(c) an exit port for transport of a gas-containing liquid, and
(3) the remaining space in the closed container being occupied by a pressurized gas.
2. The apparatus of claim 1 wherein the apparatus is provided with a means for connection to an external source of pressurized gas.
3. The apparatus of claim 1 wherein the apparatus is provided with a means for connection to an external source of liquid.
4. The apparatus of claim 3 wherein the liquid is under pressure.
5. The apparatus of claim 1 wherein the apparatus is provided with a means to detect and control the level of liquid in the closed container.
6. The apparatus of claim 1 wherein the apparatus is provided with a means to release the gas pressure within the closed container prior to refilling the closed container with a predetermined quantity of liquid.
7. The apparatus of claim 1 wherein the contactor module is completely immersed in the liquid.
8. The apparatus of claim 1 wherein the liquid is water, coffee, tea, chocolate, soda or a liquid concentrate thereof.
9. The apparatus of claim 1 wherein the pressurized gas is nitrogen, oxygen, air, nitrous oxide, carbon dioxide or a mixture thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/343,679 US7104531B2 (en) | 2003-05-30 | 2006-01-31 | Apparatus for the preparation of liquids for the dispense of beverages |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0312421.1 | 2003-05-30 | ||
GB0312421A GB0312421D0 (en) | 2003-05-30 | 2003-05-30 | Preparation of liquids for the dispense of beverages |
GB0326296A GB0326296D0 (en) | 2003-11-12 | 2003-11-12 | Preparation of liquids for beverages |
GB0326296.1 | 2003-11-12 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/343,679 Continuation-In-Part US7104531B2 (en) | 2003-05-30 | 2006-01-31 | Apparatus for the preparation of liquids for the dispense of beverages |
US11/343,679 Continuation US7104531B2 (en) | 2003-05-30 | 2006-01-31 | Apparatus for the preparation of liquids for the dispense of beverages |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050001340A1 true US20050001340A1 (en) | 2005-01-06 |
Family
ID=33420898
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/852,900 Abandoned US20050001340A1 (en) | 2003-05-30 | 2004-05-25 | Apparatus for the preparation of liquids for the dispense of beverages |
US11/343,679 Expired - Fee Related US7104531B2 (en) | 2003-05-30 | 2006-01-31 | Apparatus for the preparation of liquids for the dispense of beverages |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/343,679 Expired - Fee Related US7104531B2 (en) | 2003-05-30 | 2006-01-31 | Apparatus for the preparation of liquids for the dispense of beverages |
Country Status (5)
Country | Link |
---|---|
US (2) | US20050001340A1 (en) |
EP (1) | EP1491491B1 (en) |
AT (1) | ATE348073T1 (en) |
DE (1) | DE602004003627T2 (en) |
ES (1) | ES2277207T3 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050215999A1 (en) * | 2004-03-19 | 2005-09-29 | Depuy Spine, Inc. | Spinal fixation element and methods |
US20070220700A1 (en) * | 2006-03-21 | 2007-09-27 | Kuo-Chin Cho | Liquid level control device for a container |
US20080286421A1 (en) * | 2006-07-14 | 2008-11-20 | Delease Patricia | Foam-creating compositions, foaming beverage compositions, and methods of preparation thereof |
US20100009052A1 (en) * | 2006-07-14 | 2010-01-14 | Dr. Pepper/Seven Up, Inc. | Beverage containing nitrous oxide and carbon dioxide |
US20100303971A1 (en) * | 2009-06-02 | 2010-12-02 | Whitewave Services, Inc. | Producing foam and dispersing creamer and flavor through packaging |
US20160136590A1 (en) * | 2014-11-13 | 2016-05-19 | Prosper Brands LLC | Gas/liquid mixing apparatus |
US20160228830A1 (en) * | 2013-10-15 | 2016-08-11 | Linde Aktiengesellschaft | Wine oxygenation device |
US20160280528A1 (en) * | 2014-05-15 | 2016-09-29 | Ac Distributing, Inc. | Chilled n2 infused beverage dispensing system and method to prepare and dispense a chilled n2 infused beverage |
US20190281854A1 (en) * | 2018-03-15 | 2019-09-19 | Nicholas J. Singer | Single-serve liquid coffee concentrate |
WO2019195669A1 (en) * | 2018-04-05 | 2019-10-10 | 3M Innovative Properties Company | Gas entrainment system for beverages |
US10477883B2 (en) | 2015-08-25 | 2019-11-19 | Cornelius, Inc. | Gas injection assemblies for batch beverages having spargers |
US10785996B2 (en) | 2015-08-25 | 2020-09-29 | Cornelius, Inc. | Apparatuses, systems, and methods for inline injection of gases into liquids |
US11040314B2 (en) | 2019-01-08 | 2021-06-22 | Marmon Foodservice Technologies, Inc. | Apparatuses, systems, and methods for injecting gasses into beverages |
US20210206617A1 (en) * | 2014-05-15 | 2021-07-08 | Automatic Bar Controls, Inc. | Selectable gas infused beverage dispensing system |
US11375844B2 (en) | 2018-03-15 | 2022-07-05 | Nicholas J. Singer | Single-serve formed soluble coffee product |
WO2023080906A1 (en) * | 2021-11-03 | 2023-05-11 | Craft Standard Enterprises, Inc. | Apparatus, system and method for mixing liquid in a beverage container |
US11708213B2 (en) | 2018-03-15 | 2023-07-25 | Nicholas J. Singer | Single-serve formed soluble coffee product |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050001340A1 (en) | 2003-05-30 | 2005-01-06 | Page John K. | Apparatus for the preparation of liquids for the dispense of beverages |
DE102004041816B4 (en) * | 2004-08-30 | 2008-01-03 | Kwc Ag | Device for carbonating and cooling drinks |
US7318581B2 (en) * | 2005-08-01 | 2008-01-15 | Natural Choice Corporation | Carbonating apparatus |
JP2008057947A (en) * | 2006-08-31 | 2008-03-13 | Satako:Kk | Gas humidifying device |
MX2011004650A (en) * | 2008-10-30 | 2011-08-08 | Porous Media Corp | Venting and filtration systems with gas permeable membrane. |
GB2496010B (en) * | 2011-10-25 | 2017-12-13 | Headmaster Ltd | Producing or dispensing liquid products |
US9114368B2 (en) | 2013-03-08 | 2015-08-25 | Cornelius, Inc. | Batch carbonator and method of forming a carbonated beverage |
US9233824B2 (en) | 2013-06-07 | 2016-01-12 | The Coca-Cola Company | Method of making a beverage including a gas in a beverage making machine |
US9630826B2 (en) | 2013-06-07 | 2017-04-25 | The Coca-Cola Company | Beverage making machine |
US9955710B2 (en) | 2016-03-16 | 2018-05-01 | Cascade And Phoenix On Tap, Llc | Systems to nitrogen-infuse and dispense beverages |
US10730023B2 (en) | 2016-03-16 | 2020-08-04 | Cuatro Connect Llc | Methods to nitrogen-infuse and dispense beverages |
EP3847111B1 (en) * | 2017-09-19 | 2023-10-11 | Société des Produits Nestlé S.A. | Pack for preparing foamed food or beverage products |
US11134805B1 (en) | 2017-10-13 | 2021-10-05 | Off The Beaten Path Coffee, Llc | Cold brewing system and method |
CN112337370A (en) * | 2020-10-16 | 2021-02-09 | 河南科技大学第一附属医院 | Dosing unit is used in antiseptic solution production |
US11751585B1 (en) * | 2022-05-13 | 2023-09-12 | Sharkninja Operating Llc | Flavored beverage carbonation system |
US11745996B1 (en) | 2022-11-17 | 2023-09-05 | Sharkninja Operating Llc | Ingredient containers for use with beverage dispensers |
US11634314B1 (en) | 2022-11-17 | 2023-04-25 | Sharkninja Operating Llc | Dosing accuracy |
US11738988B1 (en) | 2022-11-17 | 2023-08-29 | Sharkninja Operating Llc | Ingredient container valve control |
US12084334B2 (en) | 2022-11-17 | 2024-09-10 | Sharkninja Operating Llc | Ingredient container |
US12103840B2 (en) | 2022-11-17 | 2024-10-01 | Sharkninja Operating Llc | Ingredient container with sealing valve |
US11925287B1 (en) | 2023-03-22 | 2024-03-12 | Sharkninja Operating Llc | Additive container with inlet tube |
US11871867B1 (en) | 2023-03-22 | 2024-01-16 | Sharkninja Operating Llc | Additive container with bottom cover |
US12116257B1 (en) | 2023-03-22 | 2024-10-15 | Sharkninja Operating Llc | Adapter for beverage dispenser |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4927567A (en) * | 1989-06-23 | 1990-05-22 | The Coca-Cola Company | Motorless continuous carbonator |
US4950431A (en) * | 1989-06-28 | 1990-08-21 | The Coca-Cola Company | Motorless batch carbonator |
US5565149A (en) * | 1995-03-15 | 1996-10-15 | Permea, Inc. | Control of dissolved gases in liquids |
US5738808A (en) * | 1995-03-31 | 1998-04-14 | Asahi Glass Company Ltd. | Humidifier for inhalant gas |
US6138995A (en) * | 1998-03-31 | 2000-10-31 | Permea, Inc. | Dispense of beverage containing controlled levels of dissolved gas |
US6158721A (en) * | 1997-05-21 | 2000-12-12 | Dainippon Ink And Chemicals, Inc. | Apparatus and method for adding carbon dioxide gas to ultra pure water |
US6164632A (en) * | 1997-02-05 | 2000-12-26 | Mitsubishi Rayon Co., Ltd. | Method for the preparation of a carbonate spring |
US6659433B2 (en) * | 2000-08-31 | 2003-12-09 | Honda Giken Kogyo Kabushiki Kaisha | Humidifier |
US6712342B2 (en) * | 2001-10-26 | 2004-03-30 | Lancer Partnership, Ltd. | Hollow fiber carbonation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2021531A1 (en) | 1970-05-02 | 1971-12-02 | Metallgesellschaft Ag | Method and device for extending the discharge time of rechargeable batteries |
EP0138060B1 (en) * | 1983-09-16 | 1990-03-07 | Mitsubishi Rayon Co., Ltd. | Hollow-fiber filtering module and water purification device utilizing it |
GB2190853B (en) * | 1984-04-25 | 1988-11-02 | Int Distillers & Vintners Limi | Apparatus for dissolving gases in liquids |
WO2000044480A1 (en) * | 1999-01-29 | 2000-08-03 | Mykrolis Corporation | Method for manufacturing hollow fiber membranes |
DE20215317U1 (en) * | 2002-10-01 | 2003-03-27 | Wodarczak Kühl-Geräte-Bau GmbH, 42897 Remscheid | Device used for preparing drinking water comprises housing that removably positions cartridge filled with hollow fiber membrane in its inner chamber |
US20050001340A1 (en) | 2003-05-30 | 2005-01-06 | Page John K. | Apparatus for the preparation of liquids for the dispense of beverages |
-
2004
- 2004-05-25 US US10/852,900 patent/US20050001340A1/en not_active Abandoned
- 2004-05-28 AT AT04253217T patent/ATE348073T1/en not_active IP Right Cessation
- 2004-05-28 ES ES04253217T patent/ES2277207T3/en not_active Expired - Lifetime
- 2004-05-28 EP EP04253217A patent/EP1491491B1/en not_active Expired - Lifetime
- 2004-05-28 DE DE602004003627T patent/DE602004003627T2/en not_active Expired - Fee Related
-
2006
- 2006-01-31 US US11/343,679 patent/US7104531B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4927567A (en) * | 1989-06-23 | 1990-05-22 | The Coca-Cola Company | Motorless continuous carbonator |
US4950431A (en) * | 1989-06-28 | 1990-08-21 | The Coca-Cola Company | Motorless batch carbonator |
US5565149A (en) * | 1995-03-15 | 1996-10-15 | Permea, Inc. | Control of dissolved gases in liquids |
US5738808A (en) * | 1995-03-31 | 1998-04-14 | Asahi Glass Company Ltd. | Humidifier for inhalant gas |
US6164632A (en) * | 1997-02-05 | 2000-12-26 | Mitsubishi Rayon Co., Ltd. | Method for the preparation of a carbonate spring |
US6158721A (en) * | 1997-05-21 | 2000-12-12 | Dainippon Ink And Chemicals, Inc. | Apparatus and method for adding carbon dioxide gas to ultra pure water |
US6138995A (en) * | 1998-03-31 | 2000-10-31 | Permea, Inc. | Dispense of beverage containing controlled levels of dissolved gas |
US6659433B2 (en) * | 2000-08-31 | 2003-12-09 | Honda Giken Kogyo Kabushiki Kaisha | Humidifier |
US6712342B2 (en) * | 2001-10-26 | 2004-03-30 | Lancer Partnership, Ltd. | Hollow fiber carbonation |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050215999A1 (en) * | 2004-03-19 | 2005-09-29 | Depuy Spine, Inc. | Spinal fixation element and methods |
US20070220700A1 (en) * | 2006-03-21 | 2007-09-27 | Kuo-Chin Cho | Liquid level control device for a container |
US20080286421A1 (en) * | 2006-07-14 | 2008-11-20 | Delease Patricia | Foam-creating compositions, foaming beverage compositions, and methods of preparation thereof |
US20100009052A1 (en) * | 2006-07-14 | 2010-01-14 | Dr. Pepper/Seven Up, Inc. | Beverage containing nitrous oxide and carbon dioxide |
US20100303971A1 (en) * | 2009-06-02 | 2010-12-02 | Whitewave Services, Inc. | Producing foam and dispersing creamer and flavor through packaging |
US20160228830A1 (en) * | 2013-10-15 | 2016-08-11 | Linde Aktiengesellschaft | Wine oxygenation device |
US20160280528A1 (en) * | 2014-05-15 | 2016-09-29 | Ac Distributing, Inc. | Chilled n2 infused beverage dispensing system and method to prepare and dispense a chilled n2 infused beverage |
US11167975B2 (en) * | 2014-05-15 | 2021-11-09 | Automatic Bar Controls, Inc. | Chilled N2 infused beverage dispensing system and method to prepare and dispense a chilled N2 infused beverage |
US20210206617A1 (en) * | 2014-05-15 | 2021-07-08 | Automatic Bar Controls, Inc. | Selectable gas infused beverage dispensing system |
US20160136590A1 (en) * | 2014-11-13 | 2016-05-19 | Prosper Brands LLC | Gas/liquid mixing apparatus |
US11013247B2 (en) | 2015-08-25 | 2021-05-25 | Marmon Foodservice Technologies, Inc. | Apparatuses, systems, and methods for inline injection of gases into liquids |
US10477883B2 (en) | 2015-08-25 | 2019-11-19 | Cornelius, Inc. | Gas injection assemblies for batch beverages having spargers |
US10785996B2 (en) | 2015-08-25 | 2020-09-29 | Cornelius, Inc. | Apparatuses, systems, and methods for inline injection of gases into liquids |
US10463056B2 (en) * | 2018-03-15 | 2019-11-05 | Nicholas J. Singer | Single-serve liquid coffee concentrate |
US20190281854A1 (en) * | 2018-03-15 | 2019-09-19 | Nicholas J. Singer | Single-serve liquid coffee concentrate |
US11375844B2 (en) | 2018-03-15 | 2022-07-05 | Nicholas J. Singer | Single-serve formed soluble coffee product |
US11708213B2 (en) | 2018-03-15 | 2023-07-25 | Nicholas J. Singer | Single-serve formed soluble coffee product |
CN111954470A (en) * | 2018-04-05 | 2020-11-17 | 3M创新有限公司 | Gas entrainment system for beverages |
WO2019195669A1 (en) * | 2018-04-05 | 2019-10-10 | 3M Innovative Properties Company | Gas entrainment system for beverages |
US11040314B2 (en) | 2019-01-08 | 2021-06-22 | Marmon Foodservice Technologies, Inc. | Apparatuses, systems, and methods for injecting gasses into beverages |
WO2023080906A1 (en) * | 2021-11-03 | 2023-05-11 | Craft Standard Enterprises, Inc. | Apparatus, system and method for mixing liquid in a beverage container |
US11807513B2 (en) | 2021-11-03 | 2023-11-07 | Craft Standard Enterprises, Inc. | Apparatus, system and method for mixing liquid in a beverage container |
Also Published As
Publication number | Publication date |
---|---|
ATE348073T1 (en) | 2007-01-15 |
EP1491491A1 (en) | 2004-12-29 |
EP1491491B1 (en) | 2006-12-13 |
DE602004003627D1 (en) | 2007-01-25 |
DE602004003627T2 (en) | 2007-10-18 |
ES2277207T3 (en) | 2007-07-01 |
US7104531B2 (en) | 2006-09-12 |
US20060125128A1 (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7104531B2 (en) | Apparatus for the preparation of liquids for the dispense of beverages | |
US6138995A (en) | Dispense of beverage containing controlled levels of dissolved gas | |
AU2012328207B2 (en) | Producing or dispensing liquid products | |
US20190291062A1 (en) | Systems and methods for carbonating liquid in a container and detecting carbon dioxide levels in a carbon dioxide source | |
US5565149A (en) | Control of dissolved gases in liquids | |
US4950431A (en) | Motorless batch carbonator | |
CN105377408A (en) | Method and apparatus for carbonating a liquid | |
KR20010013924A (en) | Oxygenated water cooler | |
EP0675071A1 (en) | A beverage dispensing system | |
JPS61265080A (en) | Method for foaming malt beverage and spigot for distributingsaid beverage | |
WO2018022671A1 (en) | System and method for deaerating beverages | |
EP1698391B1 (en) | Refrigerated core comprising carbonating system for drinks dispenser | |
US20210023512A1 (en) | Gas entrainment system for beverages | |
Osborn | Method for controlling the concentration of single and multiple dissolved gases in beverages | |
WO2023172203A2 (en) | Drink dispensing apparatus and components thereof | |
WO1998006280A1 (en) | Process and system of carbonation of liquids | |
NZ620209B2 (en) | Producing or dispensing liquid products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |