US11428720B2 - Measuring arrangement and method of measuring electrical signals - Google Patents
Measuring arrangement and method of measuring electrical signals Download PDFInfo
- Publication number
- US11428720B2 US11428720B2 US16/278,914 US201916278914A US11428720B2 US 11428720 B2 US11428720 B2 US 11428720B2 US 201916278914 A US201916278914 A US 201916278914A US 11428720 B2 US11428720 B2 US 11428720B2
- Authority
- US
- United States
- Prior art keywords
- sampling
- tracking
- signals
- clock
- measuring arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
- G01R19/2506—Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
- G01R19/2509—Details concerning sampling, digitizing or waveform capturing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/32—Automatic controllers electric with inputs from more than one sensing element; with outputs to more than one correcting element
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/05—Digital input using the sampling of an analogue quantity at regular intervals of time, input from a/d converter or output to d/a converter
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/06—Non-recursive filters
- H03H17/0621—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
- H03H17/0628—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing the input and output signals being derived from two separate clocks, i.e. asynchronous sample rate conversion
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H2218/00—Indexing scheme relating to details of digital filters
- H03H2218/06—Multiple-input, multiple-output [MIMO]; Multiple-input, single-output [MISO]
Definitions
- the invention relates to a measuring arrangement with at least two measurement inputs for the capture of signals of alternating electrical magnitudes, a sampling apparatus that is arranged following the measurement inputs with which a sampling of the signals is performed while forming digital sample values, and a clock tracking apparatus that performs an adaptation of a sampling clock used by the sampling device for the sampling in the light of the frequency of the signal to be sampled.
- the invention also relates to a method for the measurement of electrical signals with such a measuring arrangement.
- a measuring arrangement with which a tracking of the sampling clock used for sampling the signals is performed for the correct sampling of the electrical signals, for example signals of an alternating current or an alternating voltage, is known from German patent DE 102 03 683 C1.
- the frequency of the signal to be sampled is determined for this purpose, and, depending on the frequency, an adjustment of the sampling clock is performed with a control arrangement.
- the sampling clock is supplied to a sampling apparatus which is configured for sampling the electrical signal according to the sampling clock.
- a measurement of electrical signals with tracking of the sampling clock is used, for example, in devices that serve for the observation, monitoring and/or protection of equipment or processes, for example an electrical energy supply network.
- a sampling clock tracking that operates over a wide frequency range of the signal to be sampled is usually realized.
- the sampling clock tracking is carried out centrally for the device, and applied equally to all the measurement inputs. The formation of the same number of sample values every time for each oscillation period of the signal can be achieved through the tracking of the sampling clock.
- the central sampling clock tracking is then always adequate if the signals at the measurement inputs exhibit matching frequencies.
- situations can however arise in which the measurement points at which the signals are captured are galvanically isolated from one another, and can thus exhibit different frequencies.
- energy supply networks for example, there are states of the equipment or grid in which some measurement points are temporarily galvanically isolated from one another (e.g. by opened power switches). Different frequencies of the parts of the equipment are thereby possible.
- the sampling frequency tracked in the device arises in such a way that some measurement inputs are operated with a correct sampling clock and other measurement inputs with an incorrect sampling clock. Measurement errors that can lead to malfunctions of the device (e.g. to unwanted protection triggering of the protection devices for energy supply networks, protection failures or incorrect triggering of recorders) result from incorrect tracking of the sampling clock.
- German patent DE 102 03 683 C1 proposes that the above-described procedure is carried out separately for each signal, in that the signals are applied to the control arrangement for sampling clock tracking via a selector switch.
- a measuring arrangement comprising:
- sampling apparatus connected to said measurement inputs, said sampling apparatus being configured to sample at least two of the signals, each with its own sampling clock, and forming digital sample values;
- a clock tracking apparatus configured to adapt a sampling clock used by said sampling apparatus for sampling in dependence on a frequency of the signal to be sampled simultaneously for each of the at least two signals.
- the objects of the invention are achieved through a measuring arrangement of the type mentioned at the beginning in which the sampling apparatus is configured to sample at least two of the signals, each with its own sampling clock, wherein the clock tracking apparatus is configured to perform an adaptation of the sampling clock in the light of the frequency of the signal to be sampled simultaneously for each of these at least two signals.
- a plurality of signals with different frequencies can thus be sampled simultaneously with a correctly tracked sampling clock.
- the clock tracking apparatus is therefore designed to carry out a respective, appropriate sampling clock tracking for each signal. This has the advantage that each signal is correctly sampled even in the case of signals with frequencies that differ significantly from one another.
- the measuring arrangement is part of a device for the observation, monitoring and/or protection of an electrical energy supply network.
- Such devices in particular are namely increasingly also employed for the acquisition of a plurality of signals that are captured at different measurement points in the energy supply network.
- These signals do not necessarily here have to have the same frequency, since, for example, a galvanic isolation (for example a temporarily opened switch) is present between the measurement points. It is thus of great importance to avoid measurement inaccuracies that result from an incorrect tracking of the sampling clock. Errors in the measurement of electrical magnitudes in energy supply networks can namely lead to parts of the network being unintentionally switched off, or to inadequate functions of the protection system, so that the energy supply network can no longer be operated safely and reliably.
- the measurement inputs are divided into different tracking groups, wherein respective measurement inputs of such signals whose frequencies, as a result of the particular features of the energy supply network, match are grouped into the same tracking group, and the clock tracking apparatus is configured to perform an adaptation of the sampling clock for each tracking group.
- Specific measurement inputs can advantageously be brought together into groups in this way, so that a clock tracking does not have to be carried out separately for each measurement input.
- no switching apparatus that can create a temporary isolation point is located between such measurement points, the measurement inputs of such signals can be grouped together into one group.
- the tracking groups can be specified by an adjustment of the arrangement on the part of the user.
- the adjustment can then, for example, be performed in the context of a device parameterization.
- the user analyzes the associated network plans for this purpose, and sets up the tracking groups in an appropriate manner.
- the tracking groups are formed automatically by the measuring arrangement on the basis of the topology of the energy supply network and/or of the state of switching apparatuses of the energy supply network.
- the topology can be recognized in such a way that such measurement inputs whose signals cannot be galvanically disconnected from one another by an isolation point are brought together to form tracking groups.
- a dynamic adaptation to temporarily opened switching apparatuses can, moreover, be carried out, so that in the presence of an opened switching apparatus, the signals that are then galvanically isolated are handled in different tracking groups. After the closure of the switching apparatus, a handling can then take place in the same tracking group.
- the sampling clock tracking can be designed particularly efficiently if the clock tracking apparatus is configured to determine in each case the frequency of one signal of each tracking group, and to perform the adaptation of the sampling clock for all the measurement inputs belonging to the respective tracking group on the basis of the frequency determined.
- the complexity for the frequency measuring can be reduced by this to one signal per tracking group.
- the measuring arrangement comprises a control apparatus that carries out at least two observation, protection and/or monitoring functions, and that exclusively such sample values as are obtained by sampling signals at measurement inputs that are assigned to the same tracking group are supplied to each observation, protection and/or monitoring function.
- the device is a local protection device or a central data processing installation.
- a central data processing installation can, for example, be a central protection installation that is arranged in a control room of the energy supply network and to which the signals are supplied in analog or digital form (e.g. via a so-called process bus). The central protection installation then carries out an analysis of the network state and, if appropriate, transmits a switching command to one or a plurality of switching apparatuses.
- a cloud computer system that consists of one or a plurality of computing apparatuses and which offers the protection function as a service may also be considered as a central data processing installation.
- a method of measuring electrical signals comprising:
- the objects of the invention are also achieved by a method for measuring electrical signals wherein signals of alternating electrical magnitudes are acquired with at least two measurement inputs of a measuring arrangement, a sampling of the signals is performed while forming digital sample values with a sampling apparatus of the measuring arrangement that is arranged following the measurement inputs, and an adaptation of a sampling clock used by the sampling device for the sampling is performed by a clock tracking apparatus of the measuring arrangement in the light of the frequency of the signal to be sampled.
- At least two of the signals are sampled with the sampling apparatus each with its own sampling clock, and the clock tracking apparatus performs an adaptation of the sampling clock in the light of the frequency of the signal to be sampled simultaneously for each of these at least two signals.
- FIG. 1 shows a device with a measuring arrangement with sampling clock tracking according to the prior art
- FIG. 2 shows a device with a measuring arrangement according to the invention with sampling clock tracking
- FIG. 3 shows an exemplary embodiment of an electrical energy supply network with a device with a measuring arrangement
- FIG. 4 shows the electrical energy supply network according to FIG. 3 in a first exemplary switched state
- FIG. 5 shows the electrical energy supply network according to FIG. 3 in a second exemplary switched state.
- the measuring arrangement 11 comprises a measurement input 12 a . Further measurement inputs 12 b and 12 c can optionally be provided.
- a sampling apparatus 13 is arranged following the measurement input 12 a (and the optional measurement inputs 12 b and 12 c ).
- a clock tracking apparatus 15 is arranged following the sampling apparatus 13 on the output side via an optional selector switch 14 . A clock output of the clock tracking apparatus 15 is connected to a clock input of the sampling apparatus 13 .
- An observation, protection and/or monitoring function 16 of the device 10 is also arranged following the measuring arrangement 11 .
- the measuring arrangement 11 is operated as described below.
- the signal of an alternating electrical magnitude that is present at the measurement input 12 a is sampled in the usual way with the sampling apparatus 13 .
- a sampling clock which corresponds to or is derived from a clock signal T present at the clock input of the sampling apparatus is used here for the sampling. Since the signal to be sampled can be subject to fluctuations in terms of its frequency, the sampling clock used is adapted in the light of the frequency of the signal, so that the number of sampled values in each period of the signal is constant.
- the frequency of the signal is determined in a usual manner by the clock tracking apparatus 15 for this purpose, and the clock signal T is derived from it. This is supplied to the sampling apparatus 13 for adaptation of the sampling clock used for the sampling.
- the concrete mode of operation of the adaptation of the sampling clock may, for example, correspond to that which is explained in the above-mentioned German patent DE 102 03 683 C1.
- the sampled signal is, moreover, supplied to the observation, protection and/or monitoring function 16 of the device 10 which carries out an evaluation of the signal and, if relevant, outputs an output signal A that is derived from the result of the evaluation.
- the device 10 can, for example, be a protection device for protecting and monitoring an electrical energy supply network.
- the function 16 can in this case be a protection function, for example a remote protection function or an overcurrent protection function which, as an output signal A, outputs an error signal whenever a fault is established in the energy supply network.
- the signal to be evaluated at any one time can be selected by means of the selector switch 14 .
- the tracking of the sampling clock is adjusted in each case to the frequency of the signal selected by the selector switch 14 .
- FIG. 2 shows a device 20 with a measuring arrangement 21 .
- the general structure of the measuring arrangement 21 corresponds to the structure explained in connection with FIG. 1 relating to the measuring arrangement 11 , so that considerations below will largely relate to the differentiating features.
- the measuring arrangement 21 also comprises measurement inputs 22 a - c through which signals of alternating electrical magnitudes can be supplied to the measuring arrangement 21 .
- a sampling apparatus 23 which is connected at the output side to a clock tracking apparatus 24 , is arranged following the measurement inputs 22 a - c.
- the sampling apparatus 23 comprises a plurality of sampling components, from which the sampling components 23 a and 23 b are shown by way of example in FIG. 2 .
- the measurement inputs 22 a and 22 b are here assigned to the first sampling component 23 a
- the second sampling component 23 b is assigned to the measurement input 22 b .
- the clock sampling apparatus 24 also comprises a plurality of clock tracking components corresponding to the number of sampling components, of which the clock tracking components 24 a and 24 b are shown by way of example in FIG. 2 .
- the assignment of the measurement inputs 22 a - c to the individual sampling components 23 a , 23 b of the sampling apparatus 23 is done in such a way that in each case such measurement inputs to which signals whose frequencies match are applied are brought together into a so-called “tracking group.”
- the measurement inputs of a tracking group are in each case assigned to one sampling component 23 a , 23 b of the sampling apparatus 23 .
- the signals at the measurement inputs 22 a and 22 b exhibit the same frequency, and are therefore brought together into one tracking group which is assigned to the sampling component 23 a .
- the signal at the measurement input 23 c can exhibit a frequency differing therefrom, and therefore belongs to a second tracking group that is assigned to the sampling component 23 b.
- the assignment can, here, for example take place through adjustment on the part of the user during the parameterization of the device 20 .
- An automatic assignment can also take place as an alternative.
- the clock tracking apparatus 24 For each tracking group, the clock tracking apparatus 24 comprises a clock tracking component 24 a , 24 b .
- the frequency of the signals of the respective tracking group is determined for this purpose by each clock tracking component 24 a , 24 b .
- the frequency determination preferably only takes place in each case for one signal of the respective tracking group, in order to minimize the complexity for the frequency measurement.
- a respective clock signal is generated by the clock tracking apparatus 24 on the basis of the determined frequency, and is supplied to the sampling apparatus 23 .
- the frequency of the signal present at the measurement input 22 b is determined by the clock tracking component 24 a . Since the measurement inputs 22 a and 22 b are assigned to the same tracking group, the frequency determined can also be used for the signal present at measurement input 22 a . On the basis of the frequency determined, the clock tracking component 24 a determines a clock signal T a which is passed to the sampling component 23 a . A sampling of the signals present at the measurement inputs 22 a and 22 b can thus be performed with a sampling clock adapted to the signal frequency by the clock signal T a . The frequency of the signal present at the measurement input 22 c is determined correspondingly with the clock tracking component 24 b .
- the clock tracking component 24 b determines a clock signal T b which is passed to the sampling component 23 b .
- a sampling of the signal present at the measurement input 22 c can thus be performed with a sampling clock adapted to the signal frequency by the clock signal T b .
- the concrete mode of operation of the adaptation of the sampling clock is not relevant for the implementation of the measuring arrangement. It can, for example, correspond to that which is explained in the above-mentioned German patent DE 102 03 683 C1.
- the signals sampled with the respectively adapted sampling clock are passed for further evaluation to observation, protection and/or monitoring functions 25 a and 25 b that are executed by a control apparatus of the device 20 . It is necessary to ensure here that only such signals as belong to the same tracking group are passed in each case to an observation, protection and/or monitoring function.
- the number and division of the tracking groups is to be adapted in each case to the equipment at which the signals are captured with the device.
- the number of sampling components and of clock tracking components is to be chosen appropriately in accordance with the number of tracking groups.
- sampling components and clock tracking components can be implemented as hardware or as software.
- appropriate instances of, for example, digital filters and other functional modules can be created.
- a dynamic adaptation of the tracking groups can be realized very easily.
- FIGS. 3-5 A detailed example of an energy supply network 30 with a power plant unit that is monitored by a protection device 40 is shown in FIGS. 3-5 .
- the energy supply network 30 here comprises a generator 31 that can be started up by a field coil 32 that is fed by an excitation transformer 33 .
- the power plant unit is connected via a generator transformer 34 to a busbar 35 that is connected to the rest of the grid 36 a , which is not shown in detail in FIGS. 3-5 .
- Reference sign 36 b identifies an auxiliary requirement network of the power plant.
- the power plant unit can be isolated from the busbar by means of a high-voltage power switch 37 a .
- the generator 31 can itself be disconnected from the generator transformer 34 by means of a generator power switch 37 b.
- a start-up converter 38 can furthermore be connected to the power plant unit via a converter-power switch 37 c.
- the energy supply network 30 comprises a large number of measurement points at which alternating electrical magnitudes are acquired with sensors.
- a first current converter 39 a is provided for the capture of a three-phase current signal (“I-3ph”)
- a second current converter 39 b is provided for the capture of a three-phase current signal
- a third current converter 39 c is provided for the capture of a three-phase current signal
- a fourth current converter 39 d is provided for the capture of a three-phase current signal
- a fifth current converter 39 e is provided for the capture of a three-phase current signal
- a sixth current converter 39 f is provided for the capture of a three-phase current signal.
- a first voltage converter 39 g is provided for the capture of a three-phase voltage signal (“U-3ph”)
- a second voltage converter 39 h is provided for the capture of a three-phase voltage signal
- a third voltage converter 39 i is provided for the capture of a three-phase voltage signal
- a fourth voltage converter 39 j is provided for the capture of a three-phase voltage signal.
- the signals are supplied to corresponding measurement inputs 41 of the protection device 40 .
- the protection device 40 comprises a measuring arrangement 42 designed in accordance with the explanations for FIG. 2 , with sampling clock tracking which, for the sake of clarity, is not shown in detail.
- the protection device 40 furthermore comprises observation, protection and/or monitoring functions 43 a - d which serve for the analysis of the signals present at the measurement inputs 41 of the protection device 40 .
- the function 43 a can be a voltage and frequency protection
- the function 43 b a transformer protection and a line protection (high-voltage side)
- the function 43 c can be an overcurrent and overload protection
- the function 43 d can be a generator protection.
- Other functions are, of course, are also possible.
- the power switches 37 a - c present in the energy supply network 30 permit operating states in which individual measurement points are galvanically isolated from one another. For this reason there is a need to divide the measurement inputs into tracking groups. In the concrete example, the topology and possible disconnections make three tracking groups necessary. The measurement inputs 41 are therefore assigned to different tracking groups.
- the measurement input assigned to the fourth voltage converter 39 j is thus assigned alone to a first tracking group.
- the respective measurement inputs that are assigned to the second voltage converter 39 h and to the third voltage converter 39 i , as well as the third current converter 39 c and the fourth current converter 39 d , the fifth current converter 39 e and the sixth current converter at 39 f are assigned to a second tracking group.
- those measurement inputs to which the first voltage converter 39 q as well as the first current converter 39 a and the second current converter 39 b are assigned to a third tracking group.
- FIG. 4 shows a first scenario in which the high-voltage power switch 37 a is closed and the generator power switch 37 b is open.
- the network 36 a supplies the auxiliary power requirement of the power plant network 36 b through the generator transformer 34 .
- the signals of the tracking groups 1 and 2 explained above thus have matching frequencies.
- the converter power switch 37 c is closed, and the generator 31 , with the connected gas turbine, is being run up by the start-up converter 38 starting from 0 Hz.
- the frequency of the signals belonging to tracking group 3 are thus significantly different from those of the signals of tracking groups 1 and 2 .
- the excitation is fed via the excitation transformer 33 , which is connected to the low-voltage side of the generator transformer 34 .
- the third current converter 39 c is thus to be assigned to tracking group 2 , and has a direct connection to the required protection functions (overcurrent, overload).
- the fourth current converter 39 d presents a special case. Although it is located below the generator-power switch 37 b , it is to be assigned to tracking group 2 . When the generator power switch 37 b is open and feed is taking place via the start-up converter 38 , a current is fed in that does not correspond to Kirchhoff's current law (transformer differential protection) as is used in the transformer protection. This measurement point is to be “released” for the transformer protection, i.e. removed from the measurement. The transformer protection is, alternatively, to be set to be less sensitive.
- the power plant unit is first connected to the network 36 a .
- the protection is triggered (e.g. by means of the power plant disconnection protection) as a result of a network short-circuit that is not switched off in good time.
- the near short-circuit signifies a release of load from the generator 31 , and thus an acceleration of the rotor.
- the high-voltage power switch 37 a is opened by the triggering of the protection. After the high-voltage power switch 37 a has opened, the acceleration of the rotor results in a higher frequency of the power plant unit.
- the frequencies of the network 36 a and of the power plant unit are thus different.
- the fourth voltage converter 39 j is to be assigned to its own tracking group, tracking group 1 .
- tracking groups 2 and 3 have the same frequency.
- the speed regulation of the power plant unit brings its frequency again toward the network frequency, and the power plant unit can be re-synchronized.
- the measuring arrangement is also possible within the scope of the invention for the measuring arrangement to be a component of a central data processing installation. This allows applications such as a central plant protection, process bus applications or cloud-based services to be realized
- Advantages of the measuring arrangement described include, amongst other things, lower hardware costs, since a single device can be used for more complex equipment implementations. Through the formation of tracking groups and the assignment of the measurement inputs to these tracking groups, a high measurement accuracy is also achieved with galvanically isolated plant parts, and malfunctions are avoided.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Emergency Protection Circuit Devices (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Measuring Frequencies, Analyzing Spectra (AREA)
Abstract
Description
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18157336 | 2018-02-19 | ||
EP18157336.1 | 2018-02-19 | ||
EP18157336.1A EP3527996B1 (en) | 2018-02-19 | 2018-02-19 | Measuring system and method for measuring electrical signals |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190257862A1 US20190257862A1 (en) | 2019-08-22 |
US11428720B2 true US11428720B2 (en) | 2022-08-30 |
Family
ID=61244438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/278,914 Active 2041-01-24 US11428720B2 (en) | 2018-02-19 | 2019-02-19 | Measuring arrangement and method of measuring electrical signals |
Country Status (3)
Country | Link |
---|---|
US (1) | US11428720B2 (en) |
EP (1) | EP3527996B1 (en) |
BR (1) | BR102019002524A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112485511A (en) * | 2020-12-11 | 2021-03-12 | 国网辽宁省电力有限公司阜新供电公司 | Alternating current sampling device based on tracking compensation algorithm and sampling compensation method thereof |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6249235B1 (en) * | 1997-03-12 | 2001-06-19 | Nec Corporation | Sampling frequency conversion apparatus and fractional frequency dividing apparatus for sampling frequency |
US20030014200A1 (en) * | 1999-08-09 | 2003-01-16 | Power Measurement Ltd. | Revenue meter with power quality features |
DE10203683C1 (en) | 2002-01-24 | 2003-08-21 | Siemens Ag | Electrical signal measuring parameter extraction method with sampling rate for providing sampled signal values matched to momentary signal frequency |
US6906655B1 (en) * | 2003-12-18 | 2005-06-14 | Eaton Corporation | Plural channel analog-to-digital converter, method and meter employing an input channel with a predetermined direct current bias |
US20060083169A1 (en) * | 2002-05-10 | 2006-04-20 | Mayah Communications Gmbh | Method and/or system for transferring/receiving audio and/or video signals and minimizing delay time over internet networks and relating apparatuses |
US20070046507A1 (en) * | 2005-08-30 | 2007-03-01 | Oki Electric Industry Co., Ltd. | Sampling rate converting method and circuit |
EP1786103A2 (en) | 2005-11-14 | 2007-05-16 | Sony Corporation | Sampling frequency conversion apparatus and signal switching apparatus |
US20080120521A1 (en) * | 2006-11-21 | 2008-05-22 | Etaliq Inc. | Automated Testing and Control of Networked Devices |
US7956694B1 (en) * | 2008-05-12 | 2011-06-07 | Wilson Jeffrey D | Phase controlled dimmer using a narrow band quadrature demodulator |
US20110271007A1 (en) * | 2010-04-28 | 2011-11-03 | Futurewei Technologies, Inc. | System and Method for a Context Layer Switch |
US20120081153A1 (en) * | 2010-09-30 | 2012-04-05 | Schneider Electric USA, Inc. | Quantizing sampled inputs using fixed frequency analog to digital conversions through interpolation |
US20120162133A1 (en) * | 2009-09-27 | 2012-06-28 | Inferpoint Systems Limited | Touch display capable of eliminating display impact on touch |
US20140043012A1 (en) * | 2012-02-08 | 2014-02-13 | Vega Grieshaber Kg | Apparatus and method for sampling a signal |
WO2015110150A1 (en) | 2014-01-22 | 2015-07-30 | Siemens Aktiengesellschaft | Digital measurement input for an electric automation device, electric automation device comprising a digital measurement input, and method for processing digital input measurement values |
US20150318696A1 (en) * | 2012-11-20 | 2015-11-05 | Siemens Aktiengesellschaft | Method and system for operating an electrical energy supply network |
US20160011305A1 (en) * | 2013-02-12 | 2016-01-14 | Urs-Us Medical Technology Inc. | Analog store digital read ultrasound beamforming system and method |
US9508484B2 (en) * | 2012-02-22 | 2016-11-29 | Phoenix Contact Gmbh & Co. Kg | Planar transmitter with a layered structure |
US20180003819A1 (en) * | 2014-11-14 | 2018-01-04 | Ursus Medical, Llc | Ultrasound beamforming system and method based on analog random access memory array |
US20180292447A1 (en) * | 2016-07-26 | 2018-10-11 | Aclara Technologies, Llc | Floating Neutral Detection and Localization System and Methods |
-
2018
- 2018-02-19 EP EP18157336.1A patent/EP3527996B1/en active Active
-
2019
- 2019-02-07 BR BR102019002524A patent/BR102019002524A2/en active Search and Examination
- 2019-02-19 US US16/278,914 patent/US11428720B2/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6249235B1 (en) * | 1997-03-12 | 2001-06-19 | Nec Corporation | Sampling frequency conversion apparatus and fractional frequency dividing apparatus for sampling frequency |
US20030014200A1 (en) * | 1999-08-09 | 2003-01-16 | Power Measurement Ltd. | Revenue meter with power quality features |
DE10203683C1 (en) | 2002-01-24 | 2003-08-21 | Siemens Ag | Electrical signal measuring parameter extraction method with sampling rate for providing sampled signal values matched to momentary signal frequency |
US20060083169A1 (en) * | 2002-05-10 | 2006-04-20 | Mayah Communications Gmbh | Method and/or system for transferring/receiving audio and/or video signals and minimizing delay time over internet networks and relating apparatuses |
US6906655B1 (en) * | 2003-12-18 | 2005-06-14 | Eaton Corporation | Plural channel analog-to-digital converter, method and meter employing an input channel with a predetermined direct current bias |
US20070046507A1 (en) * | 2005-08-30 | 2007-03-01 | Oki Electric Industry Co., Ltd. | Sampling rate converting method and circuit |
EP1786103A2 (en) | 2005-11-14 | 2007-05-16 | Sony Corporation | Sampling frequency conversion apparatus and signal switching apparatus |
US7738615B2 (en) | 2005-11-14 | 2010-06-15 | Sony Corporation | Sampling frequency conversion apparatus and signal switching apparatus |
US20080120521A1 (en) * | 2006-11-21 | 2008-05-22 | Etaliq Inc. | Automated Testing and Control of Networked Devices |
US7956694B1 (en) * | 2008-05-12 | 2011-06-07 | Wilson Jeffrey D | Phase controlled dimmer using a narrow band quadrature demodulator |
US20120162133A1 (en) * | 2009-09-27 | 2012-06-28 | Inferpoint Systems Limited | Touch display capable of eliminating display impact on touch |
US20110271007A1 (en) * | 2010-04-28 | 2011-11-03 | Futurewei Technologies, Inc. | System and Method for a Context Layer Switch |
US20120081153A1 (en) * | 2010-09-30 | 2012-04-05 | Schneider Electric USA, Inc. | Quantizing sampled inputs using fixed frequency analog to digital conversions through interpolation |
US20140043012A1 (en) * | 2012-02-08 | 2014-02-13 | Vega Grieshaber Kg | Apparatus and method for sampling a signal |
US9508484B2 (en) * | 2012-02-22 | 2016-11-29 | Phoenix Contact Gmbh & Co. Kg | Planar transmitter with a layered structure |
US20150318696A1 (en) * | 2012-11-20 | 2015-11-05 | Siemens Aktiengesellschaft | Method and system for operating an electrical energy supply network |
US20160011305A1 (en) * | 2013-02-12 | 2016-01-14 | Urs-Us Medical Technology Inc. | Analog store digital read ultrasound beamforming system and method |
WO2015110150A1 (en) | 2014-01-22 | 2015-07-30 | Siemens Aktiengesellschaft | Digital measurement input for an electric automation device, electric automation device comprising a digital measurement input, and method for processing digital input measurement values |
US9917662B2 (en) | 2014-01-22 | 2018-03-13 | Siemens Aktiengesellschaft | Digital measurement input for an electric automation device, electric automation device comprising a digital measurement input, and method for processing digital input measurement values |
US20180003819A1 (en) * | 2014-11-14 | 2018-01-04 | Ursus Medical, Llc | Ultrasound beamforming system and method based on analog random access memory array |
US20180292447A1 (en) * | 2016-07-26 | 2018-10-11 | Aclara Technologies, Llc | Floating Neutral Detection and Localization System and Methods |
Also Published As
Publication number | Publication date |
---|---|
US20190257862A1 (en) | 2019-08-22 |
BR102019002524A2 (en) | 2019-09-10 |
EP3527996A1 (en) | 2019-08-21 |
EP3527996B1 (en) | 2023-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6933714B2 (en) | Method and apparatus for measuring the impedance of an electrical energy supply system | |
RU2550152C1 (en) | System and method of protection of electric power system | |
CN107819357B (en) | Isolated parallel UPS system with fault location detection | |
US9684020B2 (en) | Merging unit and method of operating a merging unit | |
US20120283890A1 (en) | Control Apparatus for Micro-grid Connect/Disconnect from Grid | |
CN102495322B (en) | Synchronous performance test method for digital relay protection device based on IEC61850 (International Electrotechnical Commission 61850) | |
Adamiak et al. | Design of a priority-based load shed scheme and operation tests | |
US11428720B2 (en) | Measuring arrangement and method of measuring electrical signals | |
CN109283407A (en) | Voltage circuit based on whole station date comprision monitors system | |
CN110350516B (en) | Automatic identification method for single-ring network topology of high-voltage distribution network | |
Apostolov | IEC 61850 9-2 process bus applications and benefits | |
US20150276832A1 (en) | Detection of islanding condition in electricity network | |
EP2503668A1 (en) | Merging unit and method of operating a merging unit | |
Solomin et al. | Integration of adaptive digital combined current and voltage transformer into digital substation Ethernet grid | |
CN108627795B (en) | Method and device for monitoring open circuit of voltage transformer in measuring circuit of power equipment | |
WO2020011742A1 (en) | Ground fault detection circuit and apparatus | |
RU208087U1 (en) | DEVICE FOR AUTOMATIC STANDBY STANDBY | |
US11114892B2 (en) | Electric power system transducer failure monitor and measurement recovery | |
Brosinsky et al. | HVAC/HVDC Control Center-Test and Demonstrator System | |
RU210953U1 (en) | Controller of the controlled point of sectioning of medium voltage electric networks | |
CN109283406B (en) | Current loop monitoring system based on total station data contrastive analysis | |
KR101798757B1 (en) | Synchronization device in a high voltage direct current system and method thereof | |
US11079436B2 (en) | Multiple merging unit testing system | |
KR20140122484A (en) | System for monitoring, diagnosing, and protecting electric power distribution | |
JP2020518216A (en) | Separation system formation detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HERRMANN, HANS-JOACHIM;MIESKE, FRANK;LOERKE, MATTHIAS;SIGNING DATES FROM 20190314 TO 20190319;REEL/FRAME:048667/0649 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |