Nothing Special   »   [go: up one dir, main page]

TWI845109B - Non-volatile memory device - Google Patents

Non-volatile memory device Download PDF

Info

Publication number
TWI845109B
TWI845109B TW112100571A TW112100571A TWI845109B TW I845109 B TWI845109 B TW I845109B TW 112100571 A TW112100571 A TW 112100571A TW 112100571 A TW112100571 A TW 112100571A TW I845109 B TWI845109 B TW I845109B
Authority
TW
Taiwan
Prior art keywords
gate structure
floating gate
volatile memory
item
patent application
Prior art date
Application number
TW112100571A
Other languages
Chinese (zh)
Other versions
TW202332011A (en
Inventor
范德慈
黃義欣
鄭宗文
鄭育明
Original Assignee
物聯記憶體科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/578,414 external-priority patent/US20230232623A1/en
Priority claimed from US17/709,370 external-priority patent/US12225723B2/en
Priority claimed from US18/090,468 external-priority patent/US20240162315A1/en
Application filed by 物聯記憶體科技股份有限公司 filed Critical 物聯記憶體科技股份有限公司
Publication of TW202332011A publication Critical patent/TW202332011A/en
Application granted granted Critical
Publication of TWI845109B publication Critical patent/TWI845109B/en

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A non-volatile memory device includes at least one memory cell, and the memory cell includes a substrate, an assist gate structure, a tunneling dielectric layer, a floating gate, and an upper gate structure. The assist gate structure is disposed on the substrate. The floating gate includes two opposite first top edges arranged along a first direction, two opposite first sidewalls arranged along the first direction, and two opposite second sidewalls arranged along a second direction different from the first direction. The upper gate structure covers the assist gate structure and the floating gate, where at least one of the first top edges of the floating gate is embedded in the upper gate structure. Portions of the upper gate structure extend beyond the second sidewalls of the floating gate in the second direction, and the portions of the upper gate structure are disposed above the substrate.

Description

非揮發性記憶體元件 Non-volatile memory device

本發明係關於一種半導體元件。更具體地,本發明係關於非揮發性記憶體元件。 The present invention relates to a semiconductor device. More specifically, the present invention relates to a non-volatile memory device.

由於非揮發性記憶體(non-volatile memory)可例如重複施行儲存、讀取和抹除數據等操作,且在關閉非揮發性記憶體後,儲存的數據不會遺失,因此非揮發性記憶體已被廣泛應用於個人電腦和電子設備中。 Since non-volatile memory can repeatedly perform operations such as storing, reading, and erasing data, and the stored data will not be lost after the non-volatile memory is turned off, non-volatile memory has been widely used in personal computers and electronic devices.

習知非揮發性記憶體的結構具有堆疊閘極結構,包括依次設置在襯底上的穿隧氧化層(tunneling oxide layer)、浮置閘極(floating gate)、耦合介電層(coupling dielectric layer)和控制閘極(control gate)。當對這種快閃記憶體元件施行編程或抹除操作時,適當的電壓會被分別施加到源極區域、汲極區域和控制閘極,使得電子被注入到浮置閘極中,或者使得電子自浮置閘極中被拉出。 It is known that the structure of non-volatile memory has a stacked gate structure, including a tunneling oxide layer, a floating gate, a coupling dielectric layer, and a control gate sequentially disposed on a substrate. When programming or erasing operations are performed on such a flash memory element, appropriate voltages are applied to the source region, the drain region, and the control gate, respectively, so that electrons are injected into the floating gate, or electrons are pulled out of the floating gate.

在非揮發性記憶體的編程和抹除操作中,浮置閘極和控制閘極之間較大的閘極耦合比(gate-coupling ratio,GCR)通常代表著操作時所需的操作電壓較低,因此顯著提高了快閃記憶體的操作速度和效率。然而,在編程或抹除操作期間,電子必須流經設置在浮置閘極下方的穿隧氧化物層,以被注入至浮置閘極或自浮置閘極中被取出,此過程通常會對穿隧氧化物層的結構造成損害,因而降低記憶體元件的可靠性。 In the programming and erasing operations of non-volatile memory, a larger gate-coupling ratio (GCR) between the floating gate and the control gate usually means a lower operating voltage required for operation, thus significantly improving the operating speed and efficiency of the flash memory. However, during the programming or erasing operation, electrons must flow through the tunnel oxide layer set under the floating gate to be injected into the floating gate or taken out of the floating gate. This process usually damages the structure of the tunnel oxide layer, thereby reducing the reliability of the memory device.

為了提昇記憶體元件的可靠性,可採用抹除閘極(erase gate),並將抹除閘極整合至記憶體元件中。藉由施加正電壓至抹除閘極,抹除閘極便能夠將電子從浮置閘極中拉出。因此,由於浮置閘極中的電子是流經設置在浮置閘極上的穿隧氧化層而被拉出,而並非流經設置在浮置閘極下的穿隧氧化層而被拉出,所以進一步提高了記憶體元件的可靠性。 In order to improve the reliability of memory devices, an erase gate can be used and integrated into the memory device. By applying a positive voltage to the erase gate, the erase gate can pull electrons out of the floating gate. Therefore, since the electrons in the floating gate are pulled out by flowing through the tunnel oxide layer set on the floating gate, rather than flowing through the tunnel oxide layer set under the floating gate, the reliability of the memory device is further improved.

然而,即使將抹除閘極結合到記憶體元件中能成功地提高記憶體元件的可靠性,但是抹除閘極的對準偏差(misalignment)通常會導致抹除閘極和下方的浮置閘極之間的耦合比有顯著變化,這增加了所需抹除電壓的變化,因而劣化了記憶體元件之間的電性一致性。 However, even if incorporating the erase gate into the memory element can successfully improve the reliability of the memory element, the misalignment of the erase gate usually causes a significant variation in the coupling ratio between the erase gate and the underlying floating gate, which increases the variation in the required erase voltage, thereby degrading the electrical consistency between memory elements.

隨著對高效記憶體元件需求的增加,仍需要提供一種改進的記憶體元件,其得以高效地抹除已儲存的數據。 As the demand for efficient memory devices increases, there remains a need to provide an improved memory device that can efficiently erase stored data.

本發明提供了一種非揮發性記憶體元件,其能夠以改善的電性一致性而有效地抹除儲存的數據。 The present invention provides a non-volatile memory device that can effectively erase stored data with improved electrical consistency.

根據本揭露的一些實施例,其揭示了一種非揮發性記憶體元件。非揮發性記憶體元件包括至少一記憶體單元,且至少一記憶體單元包括襯底、輔助閘極結構、穿隧介電層、浮置閘極和上閘極結構。輔助閘極結構設置在襯底上,且包括閘極介電層。穿隧介電層設置在輔助閘極結構一側的襯底上。浮置閘極設置在穿隧介電層上,且包括二第一最上邊緣、二第一側壁和二第二側壁。二第一最上邊緣彼此相對且沿第一方向排列。二第一側壁彼此相對且沿第一方向排列,二第一側壁分別連接至二第一最上邊緣。二第二側壁彼此相對且沿著不同於第一方向的第二方向排列。上閘極結構覆蓋輔助閘極結構和浮置閘極,浮置閘極的至少一第一最上邊緣嵌入於上閘極結構中。部分的上閘極結構在第 二方向上延伸超過浮置閘極的二第二側壁,且上閘極結構的所述部分設置在襯底上。 According to some embodiments of the present disclosure, a non-volatile memory device is disclosed. The non-volatile memory device includes at least one memory cell, and at least one memory cell includes a substrate, an auxiliary gate structure, a tunneling dielectric layer, a floating gate, and an upper gate structure. The auxiliary gate structure is disposed on the substrate and includes a gate dielectric layer. The tunneling dielectric layer is disposed on the substrate on one side of the auxiliary gate structure. The floating gate is disposed on the tunneling dielectric layer and includes two first uppermost edges, two first sidewalls, and two second sidewalls. The two first uppermost edges are opposite to each other and arranged along a first direction. The two first side walls are opposite to each other and arranged along the first direction, and the two first side walls are respectively connected to the two first uppermost edges. The two second side walls are opposite to each other and arranged along the second direction different from the first direction. The upper gate structure covers the auxiliary gate structure and the floating gate, and at least one first uppermost edge of the floating gate is embedded in the upper gate structure. Part of the upper gate structure extends beyond the two second side walls of the floating gate in the second direction, and the said part of the upper gate structure is arranged on the substrate.

藉由使用根據本揭露實施例的非揮發性記憶體元件,即使上閘極結構和其下的浮置閘極之間發生對準偏差,施加至上閘極結構的所需電壓的變化,例如抹除電壓的變化,也會減小或者甚至可以忽略。 By using a non-volatile memory device according to the disclosed embodiment, even if an alignment error occurs between the upper gate structure and the floating gate thereunder, the change in the required voltage applied to the upper gate structure, such as the change in the erase voltage, will be reduced or even negligible.

為了使本揭露的上述特徵和優點更容易理解,下面結合圖式對實施例進行詳細描述。 In order to make the above features and advantages of the present disclosure easier to understand, the embodiments are described in detail below with reference to the drawings.

對於本技術領域中具有通常知識者而言,在閱讀了以下各圖式中所示的優選實施例的詳細說明後,本揭露的上述和其他目的無疑將變得顯而易見。 For those having ordinary knowledge in the art, the above and other purposes of the present disclosure will undoubtedly become apparent after reading the detailed description of the preferred embodiments shown in the following figures.

102:隔離結構 102: Isolation structure

110:第一記憶體區域 110: First memory area

112:第二記憶體區域 112: Second memory area

114:第三記憶體區域 114: The third memory area

116:第四記憶體區域 116: Fourth memory area

200:襯底 200: Lining

202:閘極介電層 202: Gate dielectric layer

204:輔助閘極 204: Auxiliary gate

206:絕緣層 206: Insulation layer

208:犧牲層 208: Sacrifice layer

210:堆疊結構 210: Stack structure

211:側壁 211: Side wall

212:隔離材料層 212: Isolation material layer

213:側壁 213: Side wall

214:介電層 214: Dielectric layer

216:介電層 216: Dielectric layer

218:穿隧介電層 218: Tunneling dielectric layer

220a:圖案化導電層 220a: Patterned conductive layer

220a_2:側壁 220a_2: Side wall

220b:圖案化導電層 220b: Patterned conductive layer

220b_0:頂面 220b_0: Top

220b_1:內表面 220b_1: Inner surface

220b_2:外表面 220b_2: External surface

220b_3:側壁 220b_3: Side wall

221_1:垂直部分 221_1: Vertical part

221_2:水平部分 221_2: Horizontal part

222:源極區 222: Source region

224:浮置閘極 224: Floating gate

224a:浮置閘極 224a: floating gate

224a_0:頂面 224a_0: Top

224a_1:側壁 224a_1: Side wall

224a_2:側壁 224a_2: Side wall

224b:浮置閘極 224b: floating gate

224b_1:垂直部分 224b_1: Vertical section

224b_2:水平部分 224b_2: Horizontal part

225_0:頂面 225_0: Top

225_1:內表面 225_1: Inner surface

225_2:外表面 225_2: External surface

226a_1:第一最上邊緣 226a_1: First top edge

234:上閘極介電層 234: Upper gate dielectric layer

235:上閘極 235: Upper gate pole

235_0:頂面 235_0: Top

236:上閘極結構 236: Upper gate structure

238:薄介電層 238: Thin dielectric layer

239:中間層 239: Middle layer

239_0:頂面 239_0: Top

240:中間結構 240:Intermediate structure

240a:中間結構 240a: Intermediate structure

240b:中間結構 240b: Intermediate structure

242:汲極區 242: Drain area

260:頂介電層 260: Top dielectric layer

260_0:頂面 260_0: Top

262:間隙壁 262: Gap wall

270a:保形層 270a: Conformal layer

270b:堆疊保形層 270b: Stacking conformal layers

270b_1:下層 270b_1: Lower level

270b_2:上層 270b_2: Upper level

272a:間隙壁 272a: Interstitial wall

272b:間隙壁 272b: Interstitial wall

R1:區域 R1: Region

R2:區域 R2: Region

R3:區域 R3: Region

R4:區域 R4: Region

X:方向 X: Direction

Y:方向 Y: Direction

Z:方向 Z: Direction

下列圖式之目的在於使本揭露能更容易地被理解,這些圖式會被併入並構成說明書的一部分。圖式繪示了本揭露的實施例,且連同實施方式的段落以闡述發明之作用原理。 The purpose of the following figures is to make the present disclosure easier to understand, and these figures will be incorporated into and constitute part of the specification. The figures illustrate embodiments of the present disclosure, and together with the paragraphs of the implementation method, the working principle of the invention is explained.

第1圖是本揭露一實施例的非揮發性記憶體元件的俯視示意圖。 Figure 1 is a schematic top view of a non-volatile memory device according to an embodiment of the present disclosure.

第2圖是本揭露一些實施例對應於第1圖的剖線A-A’、剖線B-B’和剖線C-C’的非揮發性記憶體元件的剖面示意圖,其中上閘極結構覆蓋浮置閘極和中間結構。 FIG. 2 is a cross-sectional schematic diagram of a non-volatile memory device corresponding to the section lines A-A’, B-B’ and C-C’ of FIG. 1 according to some embodiments of the present disclosure, wherein the upper gate structure covers the floating gate and the intermediate structure.

第3圖是本揭露一些實施例如第2圖所示的非揮發性記憶體元件的區域R1的放大剖面圖。 FIG. 3 is an enlarged cross-sectional view of region R1 of the non-volatile memory element shown in FIG. 2 in some embodiments of the present disclosure.

第4圖是本揭露其他實施例對應於第1圖的剖線A-A’、剖線B-B’和剖線C-C’的非揮發性記憶體元件的剖面示意圖,其中頂介電層覆蓋浮置閘極。 FIG. 4 is a cross-sectional schematic diagram of a non-volatile memory device corresponding to the section lines A-A’, B-B’ and C-C’ of FIG. 1 according to other embodiments of the present disclosure, wherein the top dielectric layer covers the floating gate.

第5圖是本揭露一些實施例如第4圖所示的非揮發性記憶體元件的區域R2的 放大剖面圖。 FIG. 5 is an enlarged cross-sectional view of region R2 of the non-volatile memory element shown in FIG. 4 in some embodiments of the present disclosure.

第6圖是本揭露其他實施例對應於第1圖的剖線A-A’、剖線B-B’和剖線C-C’的非揮發性記憶體元件的剖面示意圖,其中浮置閘極是L型浮置閘極。 FIG. 6 is a cross-sectional schematic diagram of a non-volatile memory device corresponding to the section lines A-A’, B-B’ and C-C’ of FIG. 1 according to other embodiments of the present disclosure, wherein the floating gate is an L-type floating gate.

第7圖是本揭露一些實施例如第6圖所示的非揮發性記憶體元件的區域R3的放大剖面圖。 FIG. 7 is an enlarged cross-sectional view of region R3 of the non-volatile memory element shown in FIG. 6 in some embodiments of the present disclosure.

第8圖是本揭露其他實施例的非揮發性記憶體元件的俯視示意圖。 Figure 8 is a top view schematic diagram of a non-volatile memory device according to another embodiment of the present disclosure.

第9圖是本揭露一些其他實施例對應於第8圖的剖線A-A’、剖線B-B’和剖線C-C’的非揮發性記憶體元件的剖面示意圖,其中源極區從中間結構暴露出。 FIG. 9 is a cross-sectional schematic diagram of a non-volatile memory device corresponding to the section lines A-A’, B-B’ and C-C’ of FIG. 8 according to some other embodiments of the present disclosure, wherein the source region is exposed from the middle structure.

第10圖是本揭露一些其他實施例如第9圖所示的非揮發性記憶體元件的區域R4的放大剖面圖。 FIG. 10 is an enlarged cross-sectional view of region R4 of the non-volatile memory element shown in FIG. 9 in some other embodiments of the present disclosure.

第11圖至第14圖是本揭露一些實施例用於製造第1圖至第3圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。 Figures 11 to 14 are cross-sectional views of different stages of a method for manufacturing the non-volatile memory device of Figures 1 to 3 according to some embodiments of the present disclosure.

第15圖至第17圖是本揭露一些實施例用於製造第4圖至第5圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。 Figures 15 to 17 are cross-sectional views of different stages of a method for manufacturing the non-volatile memory device of Figures 4 to 5 according to some embodiments of the present disclosure.

第18圖至第19圖是本揭露一些其他實施例用於製造第1圖至第3圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。 Figures 18 and 19 are cross-sectional views of different stages of a method for manufacturing the non-volatile memory device of Figures 1 to 3 according to some other embodiments of the present disclosure.

第20圖至第21圖是本揭露一些其他實施例用於製造第4圖至第5圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。 Figures 20 and 21 are cross-sectional views of different stages of a method for manufacturing the non-volatile memory device of Figures 4 and 5 according to some other embodiments of the present disclosure.

第22圖至第26圖是本揭露的一些實施例用於製造第6圖至第7圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。 Figures 22 to 26 are cross-sectional views of different stages of a method for manufacturing the non-volatile memory device of Figures 6 to 7 according to some embodiments of the present disclosure.

第27圖至第30圖是本揭露的一些實施例用於製造第8圖至第10圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。 Figures 27 to 30 are cross-sectional views of different stages of a method for manufacturing the non-volatile memory device of Figures 8 to 10 according to some embodiments of the present disclosure.

本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與布置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵幷不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考符號和/或文字註記。使用這些重複的參考符號與注記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。 The present disclosure provides several different embodiments that can be used to implement different features of the present disclosure. For the purpose of simplifying the description, the present disclosure also describes examples of specific components and arrangements. The purpose of providing these embodiments is only for illustration and not for any limitation. For example, the description below for "a first feature is formed on or above a second feature" may refer to "the first feature and the second feature are in direct contact" or "there are other features between the first feature and the second feature", so that the first feature and the second feature are not in direct contact. In addition, various embodiments in the present disclosure may use repeated reference symbols and/or text annotations. These repeated reference symbols and annotations are used to make the description more concise and clear, rather than to indicate the relationship between different embodiments and/or configurations.

另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「下」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在使用中以及操作時的可能擺向。隨著半導體裝置的擺向的不同(旋轉90度或其它方位),用以描述其擺向的空間相關敘述亦應透過類似的方式予以解釋。 In addition, for the spatially related descriptive terms mentioned in this disclosure, such as "under", "low", "down", "above", "above", "down", "top", "bottom" and similar terms, for the convenience of description, their usage is to describe the relative relationship between one element or feature and another (or multiple) elements or features in the drawings. In addition to the orientation shown in the drawings, these spatially related terms are also used to describe the possible orientations of the semiconductor device during use and operation. With the different orientations of the semiconductor device (rotated 90 degrees or other orientations), the spatially related descriptions used to describe its orientation should also be interpreted in a similar manner.

雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理係由申請專利範圍所界定,因而亦可被應用至其他的實施例。此外,為了不致使本揭露之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中具有通常知識者的知識範圍。 Although the invention disclosed herein is described below by means of specific embodiments, the inventive principle of the invention disclosed herein is defined by the scope of the patent application and can therefore also be applied to other embodiments. In addition, in order not to obscure the spirit of the present disclosure, certain details will be omitted, and these omitted details belong to the knowledge scope of a person with ordinary knowledge in the relevant technical field.

第1圖是本揭露一實施例的非揮發性記憶體元件的俯視示意圖。參考圖1,非揮發性記憶體元件可以是NOR快閃記憶體元件,其包括至少一個記憶體單元,例如分別容納在第一記憶體區域110、第二記憶體區域112、第三記憶體區域114和第四記憶體區域116中的四個記憶體單元。第一記憶體區域110和第二記憶體區域112中的結構彼此呈現鏡像,且第三記憶體區域114和第四記憶體區 域116中的結構彼此呈現鏡像。根據本揭露的一實施例,非揮發性記憶體元件包括多於四個的記憶體單元,且這些記憶體單元可以排列成具有許多行和列的陣列。 FIG. 1 is a top view of a non-volatile memory device according to an embodiment of the present disclosure. Referring to FIG. 1 , the non-volatile memory device may be a NOR flash memory device, which includes at least one memory cell, for example, four memory cells respectively accommodated in a first memory area 110, a second memory area 112, a third memory area 114, and a fourth memory area 116. The structures in the first memory area 110 and the second memory area 112 are mirror images of each other, and the structures in the third memory area 114 and the fourth memory area 116 are mirror images of each other. According to one embodiment of the present disclosure, the non-volatile memory device includes more than four memory cells, and these memory cells can be arranged in an array having a plurality of rows and columns.

參考第1圖,非揮發性記憶體元件包括襯底200和隔離結構102。襯底200可以是半導體襯底,例如矽襯底或絕緣體上覆矽(SOI)襯底,但不限於此。隔離結構102可以由絕緣材料組成,且用於定義出記憶體單元的主動區。 Referring to FIG. 1, the non-volatile memory element includes a substrate 200 and an isolation structure 102. The substrate 200 may be a semiconductor substrate, such as a silicon substrate or a silicon-on-insulator (SOI) substrate, but is not limited thereto. The isolation structure 102 may be composed of an insulating material and is used to define an active region of the memory cell.

各記憶體單元包括設置在由隔離結構102定義的主動區中的源極區222和汲極區242。源極區222和汲極區242可以是相同導電類型的摻雜區,例如n型或p型。源極區222和汲極區242的導電類型不同於襯底200的導電類型,或者不同於用於容納有源極區222和汲極區242的摻雜井(未繪示)的導電類型。源極區222可以設置在主動區的一側,汲極區242可以設置在主動區的另一側。根據本揭露的一些實施例,源極區222是沿著Y方向延伸的連續區域,且由同一行中的記憶體單元共享。 Each memory cell includes a source region 222 and a drain region 242 disposed in an active region defined by the isolation structure 102. The source region 222 and the drain region 242 may be doped regions of the same conductivity type, such as n-type or p-type. The conductivity type of the source region 222 and the drain region 242 is different from the conductivity type of the substrate 200, or from the conductivity type of a doped well (not shown) for accommodating the source region 222 and the drain region 242. The source region 222 may be disposed on one side of the active region, and the drain region 242 may be disposed on the other side of the active region. According to some embodiments of the present disclosure, the source region 222 is a continuous region extending along the Y direction and is shared by memory cells in the same row.

各記憶體單元還可以包括設置在襯底200上且與汲極區242相鄰的堆疊結構。堆疊結構可以沿著Y方向延伸,且由同一行中的記憶體單元共享。堆疊結構包括輔助閘極204、絕緣層206和上閘極結構236,它們沿著Z方向依序向上堆疊。輔助閘極204可以由諸如多晶矽或金屬的導電材料組成,且輔助閘極204可以作為字線,其被配置為開啟/關閉設置在同一行中的記憶體單元的通道區。 Each memory cell may further include a stacking structure disposed on the substrate 200 and adjacent to the drain region 242. The stacking structure may extend along the Y direction and be shared by the memory cells in the same row. The stacking structure includes an auxiliary gate 204, an insulating layer 206, and an upper gate structure 236, which are sequentially stacked upward along the Z direction. The auxiliary gate 204 may be composed of a conductive material such as polysilicon or metal, and the auxiliary gate 204 may serve as a word line configured to turn on/off the channel region of the memory cells disposed in the same row.

隔離材料層212可以設置在輔助閘極204和絕緣層206的側壁上,以便將輔助閘極204與其他導電部件絕緣。隔離材料層212可以是設置在輔助閘極204的各側壁上的單層、雙層或多層間隙壁,但不限於此。 The isolation material layer 212 can be disposed on the side walls of the auxiliary gate 204 and the insulating layer 206 to insulate the auxiliary gate 204 from other conductive components. The isolation material layer 212 can be a single-layer, double-layer or multi-layer spacer disposed on each side wall of the auxiliary gate 204, but is not limited thereto.

各記憶體單元還包括設置在襯底200上且鄰近源極區222的浮置閘極224。因此,浮置閘極224設置在輔助閘極204的一側,汲極區242設置在輔助閘極204的另一側。浮置閘極224由導電材料組成,例如多晶矽或其他半導體。浮 置閘極224彼此分離,使得電流不能在浮置閘極224之間直接傳輸。由於浮置閘極224彼此分離,所以各浮置閘極224能被獨立地編程或抹除,從而確定各記憶體單元的狀態,例如狀態「1」或狀態「0」。 Each memory cell also includes a floating gate 224 disposed on the substrate 200 and adjacent to the source region 222. Therefore, the floating gate 224 is disposed on one side of the auxiliary gate 204, and the drain region 242 is disposed on the other side of the auxiliary gate 204. The floating gate 224 is composed of a conductive material, such as polysilicon or other semiconductors. The floating gates 224 are separated from each other so that current cannot be directly transmitted between the floating gates 224. Since the floating gates 224 are separated from each other, each floating gate 224 can be independently programmed or erased to determine the state of each memory cell, such as state "1" or state "0".

中間結構240設置在相鄰浮置閘極224之間的間隙中,以圍繞浮置閘極224的周圍。根據不同的要求,中間結構240可以包括被配置為防止相鄰浮置閘極224之間的漏電流的絕緣結構,或者中間結構240可以包括控制閘極結構,其被配置為使熱載子(例如電子)從通道注入浮置閘極224。 The intermediate structure 240 is disposed in the gap between adjacent floating gates 224 to surround the circumference of the floating gates 224. According to different requirements, the intermediate structure 240 may include an insulating structure configured to prevent leakage current between adjacent floating gates 224, or the intermediate structure 240 may include a control gate structure configured to inject hot carriers (e.g., electrons) from the channel into the floating gate 224.

第2圖是本揭露一些實施例對應於第1圖的剖線A-A’、剖線B-B’和剖線C-C’的非揮發性記憶體元件的剖面示意圖,其中上閘極結構覆蓋浮置閘極和中間結構。參考第2圖的剖面AA’,汲極區242分別設置在第一記憶體區域110和第二記憶體區域112中。源極區222設置在第一記憶體區域110和第二記憶體區域112的邊界。 FIG. 2 is a cross-sectional schematic diagram of a non-volatile memory element corresponding to the section lines A-A’, B-B’ and C-C’ of FIG. 1 according to some embodiments of the present disclosure, wherein the upper gate structure covers the floating gate and the middle structure. Referring to the section line AA’ of FIG. 2, the drain region 242 is respectively disposed in the first memory region 110 and the second memory region 112. The source region 222 is disposed at the boundary between the first memory region 110 and the second memory region 112.

對於第一記憶體區域110中的記憶體單元,閘極介電層202設置在襯底200和輔助閘極204之間。藉由以預定電壓施加輔助閘極204偏壓,閘極介電層202下的載子通道可以被導通/截止。絕緣層206可以選擇性地設置在輔助閘極204和上閘極結構236之間,以防止它們之間的漏電流。 For the memory cell in the first memory region 110, the gate dielectric layer 202 is disposed between the substrate 200 and the auxiliary gate 204. By biasing the auxiliary gate 204 with a predetermined voltage, the carrier channel under the gate dielectric layer 202 can be turned on/off. The insulating layer 206 can be selectively disposed between the auxiliary gate 204 and the upper gate structure 236 to prevent leakage current therebetween.

上閘極結構236包括依序堆疊的上閘極介電層234和上閘極235。上閘極介電層234的組成是介電層,其可以允許電子藉由F-N穿隧機制(Fowler-Nordheim tunneling mechanism)通過。上閘極235可以由導電材料組成,例如多晶矽或金屬。上閘極結構236的頂面(對應於上閘極235的頂面235_0)高於浮置閘極224a的頂面。此外,上閘極結構236可以進一步朝向輔助閘極204延伸,因此上閘極結構236的一部分可以延伸超過輔助閘極204的側壁,從而覆蓋浮置閘極224a的頂面224a_0。 The upper gate structure 236 includes an upper gate dielectric layer 234 and an upper gate 235 stacked in sequence. The upper gate dielectric layer 234 is a dielectric layer that allows electrons to pass through by a F-N tunneling mechanism (Fowler-Nordheim tunneling mechanism). The upper gate 235 can be composed of a conductive material, such as polysilicon or metal. The top surface of the upper gate structure 236 (corresponding to the top surface 235_0 of the upper gate 235) is higher than the top surface of the floating gate 224a. In addition, the upper gate structure 236 may further extend toward the auxiliary gate 204, so that a portion of the upper gate structure 236 may extend beyond the sidewall of the auxiliary gate 204, thereby covering the top surface 224a_0 of the floating gate 224a.

浮置閘極224a包括沿X方向設置的兩相對第一側壁224a_1。第一側壁 224a_1可以是垂直或傾斜的側壁,而不是曲面。浮置閘極224a的頂面224a_0是平坦或略微傾斜的表面,而不是曲面。應注意的是,第2圖所示的浮置閘極224a可以是矩形浮置閘極,因為剖面AA’中的浮置閘極224a的輪廓類似於矩形。 The floating gate 224a includes two opposing first sidewalls 224a_1 arranged along the X direction. The first sidewall 224a_1 may be a vertical or inclined sidewall, rather than a curved surface. The top surface 224a_0 of the floating gate 224a is a flat or slightly inclined surface, rather than a curved surface. It should be noted that the floating gate 224a shown in FIG. 2 may be a rectangular floating gate, because the outline of the floating gate 224a in the cross section AA' is similar to a rectangle.

穿隧介電層218設置在襯底200上,且至少位於襯底200和浮置閘極224a之間。穿隧介電層218的材料例如是氧化矽或允許載子通道中的熱電子穿透過的其他層。 The tunnel dielectric layer 218 is disposed on the substrate 200 and is at least located between the substrate 200 and the floating gate 224a. The material of the tunnel dielectric layer 218 is, for example, silicon oxide or other layers that allow hot electrons in the carrier channel to penetrate.

如上所述,中間結構240a可以包括絕緣結構,例如中間基體結構,或者中間結構240b可以包括控制閘極結構,例如控制閘極結構(控制閘極結構可以覆蓋浮置閘極224a的側壁224a_1、224a_2,以對浮置閘極提供額外耦合)。中間結構240a、240b(例如,中間基體結構或控制閘極結構)包括薄介電層238和中間層239。薄介電層238設置在浮置閘極224a的第一側壁224a_1上,中間層239設置在相鄰浮置閘極224a之間的間隙中。根據本揭露的一些實施例,中間結構240a、240b的中間層239的頂面239_0低於浮置閘極224a的頂面224a_0。 As described above, the intermediate structure 240a may include an insulating structure, such as an intermediate substrate structure, or the intermediate structure 240b may include a control gate structure, such as a control gate structure (the control gate structure may cover the sidewalls 224a_1, 224a_2 of the floating gate 224a to provide additional coupling to the floating gate). The intermediate structures 240a, 240b (e.g., the intermediate substrate structure or the control gate structure) include a thin dielectric layer 238 and an intermediate layer 239. The thin dielectric layer 238 is disposed on the first sidewall 224a_1 of the floating gate 224a, and the intermediate layer 239 is disposed in the gap between adjacent floating gates 224a. According to some embodiments of the present disclosure, the top surface 239_0 of the intermediate layer 239 of the intermediate structure 240a, 240b is lower than the top surface 224a_0 of the floating gate 224a.

根據不同的要求,上閘極結構236可以作為抹除閘極結構,其被配置為藉由浮置閘極224a的最上轉角和/或最上邊緣將電子拉出浮置閘極224a,或者不僅作為抹除閘極結構,還作為控制閘極結構,其被配置為將熱載子從載子通道吸引到浮置閘極224a中。一方面,當中間結構240b被配置作為控制閘極結構時,上閘極結構236可以僅作為抹除閘極結構,而不是控制閘極結構。另一方面,當中間結構240a被配置作為絕緣結構時,上閘極結構236可以作為抹除閘極結構和控制閘極結構。 According to different requirements, the upper gate structure 236 can be used as an erase gate structure, which is configured to pull electrons out of the floating gate 224a through the uppermost corner and/or uppermost edge of the floating gate 224a, or not only as an erase gate structure, but also as a control gate structure, which is configured to attract hot carriers from the carrier channel into the floating gate 224a. On the one hand, when the intermediate structure 240b is configured as a control gate structure, the upper gate structure 236 can only be used as an erase gate structure, rather than a control gate structure. On the other hand, when the intermediate structure 240a is configured as an insulating structure, the upper gate structure 236 can serve as an erase gate structure and a control gate structure.

參考第2圖的剖面BB’,輔助閘極204、上閘極結構236和中間結構240a、240b(例如,中間基體結構或控制閘極結構)還設置在隔離結構102上。中間結構240a、240b的一部分可以設置在從輔助閘極204的側壁延伸出來的上閘極結構236和隔離結構102之間,或者中間結構的所述部分可以設置在上閘極結構 236和襯底200之間。 Referring to the cross section BB' of FIG. 2, the auxiliary gate 204, the upper gate structure 236 and the intermediate structures 240a, 240b (e.g., the intermediate substrate structure or the control gate structure) are also disposed on the isolation structure 102. A portion of the intermediate structures 240a, 240b may be disposed between the upper gate structure 236 extending from the sidewall of the auxiliary gate 204 and the isolation structure 102, or the portion of the intermediate structure may be disposed between the upper gate structure 236 and the substrate 200.

參考第2圖的剖面CC’,浮置閘極224a包括沿Y方向設置的兩相對的第二側壁224a_2。第二側壁224a_2可以是垂直或傾斜的側壁。浮置閘極224a的第二側壁224a_2的上部可以被上閘極結構236覆蓋,浮置閘極224的第二側壁224a_2的下部可以被中間結構240a、240b(例如,中間基體結構或控制閘結構)覆蓋。根據本揭露的一些實施例,各第二側壁224a_2的60%至95%表面積被中間層239覆蓋,因此上閘極結構236和第二側壁224a_2之間的接觸面積較小。此外,由於中間結構240a、240b的存在,延伸超出浮置閘極224的第二側壁224a_2的上閘極結構236的底面可以與隔離結構102、穿隧介電層218和襯底200分離。 Referring to the cross section CC' of FIG. 2, the floating gate 224a includes two opposite second sidewalls 224a_2 arranged along the Y direction. The second sidewall 224a_2 may be a vertical or inclined sidewall. The upper portion of the second sidewall 224a_2 of the floating gate 224a may be covered by the upper gate structure 236, and the lower portion of the second sidewall 224a_2 of the floating gate 224 may be covered by the intermediate structures 240a, 240b (e.g., the intermediate substrate structure or the control gate structure). According to some embodiments of the present disclosure, 60% to 95% of the surface area of each second sidewall 224a_2 is covered by the intermediate layer 239, so the contact area between the upper gate structure 236 and the second sidewall 224a_2 is small. In addition, due to the presence of the intermediate structures 240a and 240b, the bottom surface of the upper gate structure 236 extending beyond the second sidewall 224a_2 of the floating gate 224 can be separated from the isolation structure 102, the tunnel dielectric layer 218 and the substrate 200.

根據本揭露的一些實施例,非揮發性記憶體元件還可以包括其他部件,例如通孔、位線、層間介電質等,且第2圖所示的結構可以根據實際需要進一步修改。 According to some embodiments of the present disclosure, the non-volatile memory element may also include other components, such as through holes, bit lines, interlayer dielectrics, etc., and the structure shown in FIG. 2 may be further modified according to actual needs.

第3圖是本揭露一些實施例如第2圖所示的非揮發性記憶體元件的區域R1的放大剖面圖。參照第3圖,浮置閘極224a包括兩個第一最上邊緣226a_1,這兩個第一最上邊緣226a_1彼此相對且沿著第一方向(例如X方向)設置。藉由施加偏壓在上閘極結構236,儲存在浮置閘極224a中的大部分電子可以通過嵌入在上閘極結構236中的第一最上邊緣226a_1被拉出。浮置閘極224a的第一側壁224a_1係沿著諸如X方向的第一方向設置,且第一側壁224a_1分別連接到第一最上邊緣226a_1。浮置閘極224a的第二側壁(未繪示)沿第二方向(例如Y方向)設置,且其被由介電材料組成的介電中間層239覆蓋,或者由作為控制閘極(即耦合閘極)的導電中間層239覆蓋。由於65%到95%的第二側壁(即垂直於Y方向的側壁)被中間層239覆蓋,且兩個第一最上邊緣226a_1都高於上閘極235的最低底面,所以即使上閘極235和浮置閘極224a之間存在對準偏差,上閘極結構236和其下的浮置閘極224a之間的耦合比也不會顯著改變。因此,可以提高非揮發性記憶 體元件之間的電性一致性。 FIG. 3 is an enlarged cross-sectional view of a region R1 of a non-volatile memory device such as that shown in FIG. 2 according to some embodiments of the present disclosure. Referring to FIG. 3 , the floating gate 224a includes two first uppermost edges 226a_1, which are opposite to each other and arranged along a first direction (e.g., X direction). By applying a bias to the upper gate structure 236, most of the electrons stored in the floating gate 224a can be pulled out through the first uppermost edge 226a_1 embedded in the upper gate structure 236. The first sidewall 224a_1 of the floating gate 224a is disposed along a first direction such as the X direction, and the first sidewall 224a_1 is respectively connected to the first uppermost edge 226a_1. The second sidewall (not shown) of the floating gate 224a is disposed along a second direction (such as the Y direction), and is covered by a dielectric intermediate layer 239 composed of a dielectric material, or by a conductive intermediate layer 239 serving as a control gate (i.e., a coupling gate). Since 65% to 95% of the second sidewall (i.e., the sidewall perpendicular to the Y direction) is covered by the middle layer 239, and the two first uppermost edges 226a_1 are both higher than the lowest bottom surface of the upper gate 235, even if there is an alignment deviation between the upper gate 235 and the floating gate 224a, the coupling ratio between the upper gate structure 236 and the floating gate 224a thereunder will not change significantly. Therefore, the electrical consistency between non-volatile memory components can be improved.

在以下段落中,進一步描述了本揭露的其他實施例,且為了簡潔,僅描述了實施例之間的主要差異。 In the following paragraphs, other embodiments of the present disclosure are further described, and for the sake of brevity, only the main differences between the embodiments are described.

第4圖是本揭露的其他實施例對應於第1圖的剖線A-A’、剖線B-B’和剖線C-C’的非揮發性記憶體元件的剖面示意圖,其中頂介電層覆蓋浮置閘極。參考第4圖的剖面AA’,第4圖所示的結構類似於第2圖所示的結構,主要區別在於頂介電層260進一步設置在浮置閘極224a的頂面224a_0上。在第4圖的剖面AA’中,頂介電層260不會延伸超過浮置閘極224a的第一側壁224a_1。在第4圖的剖面CC’中,頂介電層260也不會延伸超過浮置閘極224a的第二側壁224a_2。 FIG. 4 is a cross-sectional schematic diagram of a non-volatile memory device corresponding to the section line A-A', the section line B-B' and the section line C-C' of FIG. 1 according to other embodiments of the present disclosure, wherein the top dielectric layer covers the floating gate. Referring to the section AA' of FIG. 4, the structure shown in FIG. 4 is similar to the structure shown in FIG. 2, the main difference being that the top dielectric layer 260 is further disposed on the top surface 224a_0 of the floating gate 224a. In the section AA' of FIG. 4, the top dielectric layer 260 does not extend beyond the first sidewall 224a_1 of the floating gate 224a. In the cross section CC' of Figure 4, the top dielectric layer 260 does not extend beyond the second sidewall 224a_2 of the floating gate 224a.

第5圖是本揭露一些實施例如第4圖所示的非揮發性記憶體元件的區域R2的放大剖面圖。參考第5圖,浮置閘極224a的第一最上邊緣226a_1沒有被頂介電層260覆蓋,使得浮置閘極224a的第一最上邊緣226a_1中的至少一者仍然可以與上閘極結構236直接接觸。換句話說,從俯視角度來看,頂介電層260的頂面260_0的面積小於浮置閘極224a的頂面224a_0的面積。由於頂介電層260的存在,設置在浮置閘極224a上的部分上閘極結構236會遠離浮置閘極224a的頂面224a_0設置。因此,可以降低由設置在頂介電層260上的閘極結構236引起的耦合比,從而提高非揮發性記憶體元件之間的電性一致性。 FIG. 5 is an enlarged cross-sectional view of a region R2 of a non-volatile memory device according to some embodiments of the present disclosure, such as that shown in FIG. 4. Referring to FIG. 5, the first uppermost edge 226a_1 of the floating gate 224a is not covered by the top dielectric layer 260, so that at least one of the first uppermost edge 226a_1 of the floating gate 224a can still directly contact the upper gate structure 236. In other words, from a top view, the area of the top surface 260_0 of the top dielectric layer 260 is smaller than the area of the top surface 224a_0 of the floating gate 224a. Due to the presence of the top dielectric layer 260, part of the upper gate structure 236 disposed on the floating gate 224a is disposed away from the top surface 224a_0 of the floating gate 224a. Therefore, the coupling ratio caused by the gate structure 236 disposed on the top dielectric layer 260 can be reduced, thereby improving the electrical consistency between non-volatile memory elements.

第6圖是本揭露的其他實施例對應於第1圖的剖線A-A’、剖線B-B’和剖線C-C’的非揮發性記憶體元件的剖面示意圖,其中浮置閘極是L型浮置閘極。參考第6圖的剖面AA’,第6圖所示的結構類似於第2圖所示的結構,主要區別在於浮置閘極224b是包括垂直部分224b_1和水平部分224b_2的L型浮置閘極。垂直部分224b_1和水平部分224b_2可以具有實質相同的厚度和組成。垂直部分224b_1的頂面225_0高於中間結構240a、240b(即中間基體結構或控制閘極結構)的頂面,或者高於中間層239的頂面239_0。水平部分224b_2被中間層239覆蓋。 FIG. 6 is a cross-sectional schematic diagram of a non-volatile memory device corresponding to the section line A-A', the section line B-B' and the section line C-C' of FIG. 1 according to other embodiments of the present disclosure, wherein the floating gate is an L-type floating gate. Referring to the section AA' of FIG. 6, the structure shown in FIG. 6 is similar to the structure shown in FIG. 2, the main difference being that the floating gate 224b is an L-type floating gate including a vertical portion 224b_1 and a horizontal portion 224b_2. The vertical portion 224b_1 and the horizontal portion 224b_2 may have substantially the same thickness and composition. The top surface 225_0 of the vertical portion 224b_1 is higher than the top surface of the intermediate structure 240a, 240b (i.e., the intermediate substrate structure or the control gate structure), or higher than the top surface 239_0 of the intermediate layer 239. The horizontal portion 224b_2 is covered by the intermediate layer 239.

第7圖是本揭露一些實施例如第6圖所示的非揮發性記憶體元件的區域R3的放大剖面圖。參照第7圖,浮置閘極224b包括內表面225_1和與內表面225_1相對的外表面225_2。外表面225_2面向中間結構240a、240b。浮置閘極224b的垂直部分224b_1包括頂面225_0和沿第一方向(例如X方向)設置的兩相對第一最上邊緣226a_1。頂面225_0在X方向上的寬度是浮置閘極224b的底面寬度的1/20到1/3。第一最上邊緣226a_1中的一者或兩者可以被上閘極結構236覆蓋。因為頂面225_0在X方向上的寬度遠小於浮置閘極224b的底面寬度,且浮置閘極224b的第二側壁(即垂直於Y方向的側壁)的65%至95%被中間層239覆蓋,所以即使上閘極235和浮置閘極224b之間存在對準偏差,上閘極結構236和其下的浮置閘極224b之間的耦合比也不會顯著改變。因此,可以提高非揮發性記憶體元件之間的電性一致性。 FIG. 7 is an enlarged cross-sectional view of a region R3 of a non-volatile memory device such as that shown in FIG. 6 according to some embodiments of the present disclosure. Referring to FIG. 7, a floating gate 224b includes an inner surface 225_1 and an outer surface 225_2 opposite to the inner surface 225_1. The outer surface 225_2 faces the intermediate structures 240a, 240b. A vertical portion 224b_1 of the floating gate 224b includes a top surface 225_0 and two opposite first uppermost edges 226a_1 disposed along a first direction (e.g., X direction). The width of the top surface 225_0 in the X direction is 1/20 to 1/3 of the width of the bottom surface of the floating gate 224b. One or both of the first uppermost edges 226a_1 may be covered by the upper gate structure 236. Because the width of the top surface 225_0 in the X direction is much smaller than the bottom width of the floating gate 224b, and 65% to 95% of the second sidewall (i.e., the sidewall perpendicular to the Y direction) of the floating gate 224b is covered by the intermediate layer 239, even if there is an alignment deviation between the upper gate 235 and the floating gate 224b, the coupling ratio between the upper gate structure 236 and the floating gate 224b thereunder will not change significantly. Therefore, the electrical consistency between non-volatile memory elements can be improved.

第8圖是本揭露其他實施例的非揮發性記憶體元件的俯視示意圖。參考第8圖,第8圖所示的結構類似於第1圖所示的結構,主要區別在於浮置閘極224是L型浮置閘極,而不是沿剖線AA’的矩形浮置閘極,且非揮發性記憶體元件的源極區222沒有被中間結構240覆蓋。因此,第一記憶體區域110中的中間結構240與第二記憶體區域112中的中間結構240分離,且第三記憶體區域114中的中間結構240與第四記憶體區域116中的中間結構240分離。 FIG. 8 is a top view schematic diagram of a non-volatile memory device of another embodiment of the present disclosure. Referring to FIG. 8, the structure shown in FIG. 8 is similar to the structure shown in FIG. 1, the main difference being that the floating gate 224 is an L-shaped floating gate instead of a rectangular floating gate along the section line AA', and the source region 222 of the non-volatile memory device is not covered by the intermediate structure 240. Therefore, the intermediate structure 240 in the first memory region 110 is separated from the intermediate structure 240 in the second memory region 112, and the intermediate structure 240 in the third memory region 114 is separated from the intermediate structure 240 in the fourth memory region 116.

第9圖是本揭露一些其他實施例對應於第8圖的剖線A-A’、剖線B-B’和剖線C-C’的非揮發性記憶體元件的剖面示意圖,其中源極區從中間結構暴露出。參考第9圖的剖面AA’,浮置閘極224b是類似於第6圖所示的浮置閘極224b的L型浮置閘極。浮置閘極224b的水平部分224b_2的頂面被中間結構240a、240b覆蓋,且水平部分224b_2的末端遠離浮置閘極224b,所述末端從中間結構240a、240b暴露。此外,中間結構240a、240b具有曲面。 FIG. 9 is a cross-sectional schematic diagram of a non-volatile memory device corresponding to the section lines A-A’, B-B’ and C-C’ of FIG. 8 according to some other embodiments of the present disclosure, wherein the source region is exposed from the intermediate structure. Referring to the section AA’ of FIG. 9, the floating gate 224b is an L-shaped floating gate similar to the floating gate 224b shown in FIG. 6. The top surface of the horizontal portion 224b_2 of the floating gate 224b is covered by the intermediate structures 240a and 240b, and the end of the horizontal portion 224b_2 is far away from the floating gate 224b, and the end is exposed from the intermediate structures 240a and 240b. In addition, the intermediate structures 240a and 240b have curved surfaces.

參考第9圖的剖面BB’,上閘極結構236的一部分覆蓋中間結構240a、 240b的曲面,因此具有彎曲的底面。 Referring to the cross section BB' of FIG. 9, a portion of the upper gate structure 236 covers the curved surface of the middle structure 240a, 240b, and thus has a curved bottom surface.

第10圖是本揭露一些其他實施例如第9圖所示的非揮發性記憶體元件的區域R4的放大剖面圖。參照第10圖,類似於第7圖所示的結構,浮置閘極224b的垂直部分224b_1包括頂面225_0和沿第一方向(例如X方向)設置的兩相對第一最上邊緣226a_1。頂面225_0在X方向上的寬度是浮置閘極224b的底面寬度的1/20至1/3。第一最上邊緣226a_1中的一者或兩者可以被上閘極結構236覆蓋。此外,中間結構240a、240b不僅覆蓋浮置閘極224b的外表面225_2,還覆蓋沿Y方向排列的浮置閘極224b的第二側壁(未繪示)。根據本揭露的一些實施例,中間結構240a、240b的最上頂點和浮置閘極224b的頂面225_0可以實質上處於相同的高度。因為頂面225_0在X方向上的寬度遠小於浮置閘極224b的底面寬度,且浮置閘極224b中超過95%的外表面225_2和超過95%的第二側壁(即垂直於Y方向的側壁)被中間結構240a、240b覆蓋,所以即使上閘極235和浮置閘極224b之間存在對準偏差,上閘極結構236和其下的浮置閘極224b之間的耦合比也不會顯著改變。因此,可以提高非揮發性記憶體元件之間的電性一致性。 FIG. 10 is an enlarged cross-sectional view of region R4 of the non-volatile memory device shown in FIG. 9 according to some other embodiments of the present disclosure. Referring to FIG. 10, similar to the structure shown in FIG. 7, the vertical portion 224b_1 of the floating gate 224b includes a top surface 225_0 and two opposite first uppermost edges 226a_1 arranged along a first direction (e.g., X direction). The width of the top surface 225_0 in the X direction is 1/20 to 1/3 of the width of the bottom surface of the floating gate 224b. One or both of the first uppermost edges 226a_1 may be covered by the upper gate structure 236. In addition, the intermediate structures 240a and 240b not only cover the outer surface 225_2 of the floating gate 224b, but also cover the second sidewall (not shown) of the floating gate 224b arranged along the Y direction. According to some embodiments of the present disclosure, the topmost points of the intermediate structures 240a and 240b and the top surface 225_0 of the floating gate 224b can be substantially at the same height. Because the width of the top surface 225_0 in the X direction is much smaller than the bottom width of the floating gate 224b, and more than 95% of the outer surface 225_2 and more than 95% of the second sidewall (i.e., the sidewall perpendicular to the Y direction) of the floating gate 224b are covered by the intermediate structure 240a, 240b, even if there is an alignment deviation between the upper gate 235 and the floating gate 224b, the coupling ratio between the upper gate structure 236 and the floating gate 224b thereunder will not change significantly. Therefore, the electrical consistency between non-volatile memory elements can be improved.

第11圖至第14圖是本發明一些實施例用於製造第1圖至第3圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。在第11圖至第14圖中,剖面AA’、剖面BB’和剖面CC’分別對應於第1圖的剖線A-A’、剖線B-B’和剖線C-C’。 Figures 11 to 14 are cross-sectional views of different stages of a method for manufacturing a non-volatile memory device in Figures 1 to 3 according to some embodiments of the present invention. In Figures 11 to 14, cross-section AA', cross-section BB' and cross-section CC' correspond to the section line A-A', section line B-B' and section line C-C' of Figure 1, respectively.

參考第11圖的剖面AA’、剖面BB’和剖面CC’,在此製造階段形成的結構至少包括襯底200、至少一堆疊結構210、隔離材料層212、穿隧介電層218和圖案化導電層220a。 Referring to the cross-section AA', cross-section BB' and cross-section CC' of FIG. 11, the structure formed in this manufacturing stage includes at least a substrate 200, at least one stacked structure 210, an isolation material layer 212, a tunnel dielectric layer 218 and a patterned conductive layer 220a.

根據本揭露的一些實施例,襯底200可以是具有合適導電類型的半導體襯底,例如p型或n型。襯底200的組成可以包括矽、鍺、氮化鎵或其他合適的半導體材料,但不限於此。 According to some embodiments of the present disclosure, substrate 200 may be a semiconductor substrate having a suitable conductivity type, such as p-type or n-type. The composition of substrate 200 may include silicon, germanium, gallium nitride or other suitable semiconductor materials, but is not limited thereto.

至少一堆疊結構210在襯底200上。例如,兩個堆疊結構210設置在襯 底200上,且彼此橫向隔開。各堆疊結構210包括依次堆疊的閘極介電層202、輔助閘極204、絕緣層206和犧牲層208。各堆疊結構210包括第一側壁211和第二側壁213,且堆疊結構210的第一側壁211彼此面對。輔助閘極204由導電材料組成,且輔助閘極204被配置為當被施加合適的電壓時,輔助閘極204會開啟/關閉位於輔助閘極204下的襯底200中的載子通道。絕緣層206由絕緣材料組成,例如氧化矽或氮氧化矽,但不限於此,其用於將輔助閘極204與設置在輔助閘極204上各層電性隔離。犧牲層208是堆疊結構210中的最上層,其是臨時層,被配置為在輔助閘極204上形成閘極結構(例如上閘極結構)的後續製程之前被去除。 At least one stacking structure 210 is on the substrate 200. For example, two stacking structures 210 are disposed on the substrate 200 and are laterally spaced apart from each other. Each stacking structure 210 includes a gate dielectric layer 202, an auxiliary gate 204, an insulating layer 206, and a sacrificial layer 208 stacked in sequence. Each stacking structure 210 includes a first sidewall 211 and a second sidewall 213, and the first sidewalls 211 of the stacking structures 210 face each other. The auxiliary gate 204 is composed of a conductive material, and the auxiliary gate 204 is configured to open/close a carrier channel in the substrate 200 under the auxiliary gate 204 when a suitable voltage is applied. The insulating layer 206 is composed of an insulating material, such as silicon oxide or silicon oxynitride, but not limited thereto, and is used to electrically isolate the auxiliary gate 204 from the layers disposed on the auxiliary gate 204. The sacrificial layer 208 is the topmost layer in the stacked structure 210, which is a temporary layer configured to be removed before a subsequent process of forming a gate structure (e.g., an upper gate structure) on the auxiliary gate 204.

隔離材料層212形成在堆疊結構210的側壁211、213上。隔離材料層212的材料例如是氧化矽/氮化矽/氧化矽或氮化矽/氧化矽。隔離材料層212的形成方法包括,例如,首先在襯底200上依序形成覆蓋各堆疊結構210的介電層214及介電層216,然後移除部分介電層214及介電層216,以在各堆疊結構210的側壁上形成隔離材料層212。介電層214的材料例如是氮化矽,介電層216的材料例如是氧化矽。介電層214和介電層216的形成方法例如是化學氣相沉積法。移除部分介電層214和介電層216的方法例如是非等向蝕刻法。 The isolation material layer 212 is formed on the sidewalls 211 and 213 of the stacked structure 210. The material of the isolation material layer 212 is, for example, silicon oxide/silicon nitride/silicon oxide or silicon nitride/silicon oxide. The method for forming the isolation material layer 212 includes, for example, first sequentially forming a dielectric layer 214 and a dielectric layer 216 covering each stacked structure 210 on the substrate 200, and then removing a portion of the dielectric layer 214 and the dielectric layer 216 to form the isolation material layer 212 on the sidewalls of each stacked structure 210. The material of the dielectric layer 214 is, for example, silicon nitride, and the material of the dielectric layer 216 is, for example, silicon oxide. The method for forming the dielectric layer 214 and the dielectric layer 216 is, for example, chemical vapor deposition. The method for removing part of the dielectric layer 214 and the dielectric layer 216 is, for example, anisotropic etching.

穿隧介電層218形成在至少在堆疊結構210之間的襯底200上,或者進一步形成在堆疊結構210的兩側的襯底200上。穿隧介電層218的材料例如是氧化矽,或允許熱電子藉由穿隧效應穿透過的其它層。穿隧介電層218的形成方法例如是熱氧化法或沉積法,但不以此為限。 The tunnel dielectric layer 218 is formed on the substrate 200 at least between the stacked structures 210, or further formed on the substrate 200 on both sides of the stacked structure 210. The material of the tunnel dielectric layer 218 is, for example, silicon oxide, or other layers that allow hot electrons to penetrate through the tunneling effect. The formation method of the tunnel dielectric layer 218 is, for example, thermal oxidation or deposition, but is not limited thereto.

參考第11圖的剖面AA’,圖案化導電層220a形成在堆疊結構210之間的間隙中,且覆蓋各堆疊結構210的側壁211。形成圖案化導電層220a的方法可包括以下步驟。首先,在襯底200上形成導電層(未繪示),導電層的材料例如是摻雜多晶矽、多晶矽化物或其他合適的導電材料。當導電層的材料為摻雜多晶矽時,其形成方法包括,例如,在藉由化學氣相沉積法形成未摻雜多晶矽層之後, 進行離子佈植步驟;或者利用原位摻質佈植方法(in-situ dopant implantation)施行化學氣相沉積方法。然後,施行蝕刻製程,例如非等向蝕刻製程或回蝕製程,以蝕刻導電層。因此,導電層可以被圖案化以形成沿X方向排列的多個導電塊(未繪示)。在這個製造階段,導電塊覆蓋各堆疊結構210的側壁211和側壁213。然後,藉由微影和蝕刻製程移除設置在鄰近堆疊結構210的側壁213的導電塊。如此一來,僅保留設置在堆疊結構210的第一側壁211上的圖案化導電層220a。此外,針對設置於堆疊結構210的第一側壁211上的圖案化導電層220a,從俯視角度來看,此圖案化導電層220a可具有矩形輪廓。圖案化導電層220a的高度可以藉由施行回蝕製程來適當控制。 Referring to the cross section AA' of FIG. 11, the patterned conductive layer 220a is formed in the gap between the stacked structures 210 and covers the sidewalls 211 of each stacked structure 210. The method of forming the patterned conductive layer 220a may include the following steps: First, a conductive layer (not shown) is formed on the substrate 200, and the material of the conductive layer is, for example, doped polysilicon, polycrystalline silicide or other suitable conductive materials. When the material of the conductive layer is doped polysilicon, its formation method includes, for example, after forming an undoped polysilicon layer by chemical vapor deposition, performing an ion implantation step; or performing a chemical vapor deposition method using an in-situ dopant implantation method. Then, an etching process, such as an isotropic etching process or an etch-back process, is performed to etch the conductive layer. Therefore, the conductive layer can be patterned to form a plurality of conductive blocks (not shown) arranged along the X direction. In this manufacturing stage, the conductive blocks cover the sidewalls 211 and 213 of each stacked structure 210. Then, the conductive block disposed on the sidewall 213 adjacent to the stacking structure 210 is removed by lithography and etching processes. In this way, only the patterned conductive layer 220a disposed on the first sidewall 211 of the stacking structure 210 is retained. In addition, the patterned conductive layer 220a disposed on the first sidewall 211 of the stacking structure 210 may have a rectangular outline from a top view. The height of the patterned conductive layer 220a may be appropriately controlled by performing an etching back process.

參考第11圖的剖面BB’,圖案化導電層不存在於襯底200上的預定區域中。參考第11圖的剖面CC’,圖案化導電層220a可以具有垂直或傾斜的側壁220a_2。 Referring to the cross section BB' of FIG. 11, the patterned conductive layer does not exist in a predetermined area on the substrate 200. Referring to the cross section CC' of FIG. 11, the patterned conductive layer 220a may have a vertical or inclined side wall 220a_2.

第12圖是本揭露一些實施例在第11圖之後的製造階段的剖面示意圖,其中間隙壁形成在圖案化導電層上。在第11圖所示的結構被製造之後,形成由介電材料組成的複數間隙壁262,以覆蓋圖案化導電層220a的頂面和堆疊結構210的側壁211、213。 FIG. 12 is a cross-sectional schematic diagram of some embodiments of the present disclosure at a manufacturing stage after FIG. 11, wherein a spacer is formed on a patterned conductive layer. After the structure shown in FIG. 11 is manufactured, a plurality of spacers 262 composed of a dielectric material are formed to cover the top surface of the patterned conductive layer 220a and the sidewalls 211, 213 of the stacked structure 210.

第13圖是本揭露一些實施例在第12圖之後的製造階段的剖面示意圖,其形成了浮置閘極。在第12圖所示的結構被製造之後,使用間隙壁262作為蝕刻遮罩在圖案化導電層上施行蝕刻製程。因此,圖案化導電層被進一步圖案化,以形成鄰近堆疊結構210的第一側壁211的複數浮置閘極224a。之後,在兩個相鄰浮置閘極224a之間的襯底200中形成源極區222。形成源極區222的方法包括,例如,使用間隙壁262作為蝕刻遮罩來施行離子佈植製程。根據元件的需求,佈植的摻質可以是n型或p型摻質。源極區222可以被視為共享的源極區,因為源極區222由兩個相鄰的記憶體單元共享。之後,可以剝除間隙壁262。 FIG. 13 is a cross-sectional schematic diagram of some embodiments of the present disclosure at a manufacturing stage subsequent to FIG. 12, in which a floating gate is formed. After the structure shown in FIG. 12 is manufactured, an etching process is performed on the patterned conductive layer using the spacer 262 as an etching mask. Therefore, the patterned conductive layer is further patterned to form a plurality of floating gates 224a adjacent to the first sidewall 211 of the stacked structure 210. Thereafter, a source region 222 is formed in the substrate 200 between two adjacent floating gates 224a. The method of forming the source region 222 includes, for example, performing an ion implantation process using the spacer 262 as an etching mask. Depending on the requirements of the device, the implanted dopant can be n-type or p-type. The source region 222 can be considered a shared source region because the source region 222 is shared by two adjacent memory cells. Afterwards, the spacer 262 can be stripped.

第14圖是本揭露一些實施例在第13圖之後的製造階段的剖面示意圖,其中中間結構形成在兩個相鄰浮置閘極之間的間隙中。在第13圖所示的結構被製造之後,參考第14圖的剖面AA’,可以在兩個相鄰浮置閘極224a之間的間隙中形成中間結構240a、240b。中間結構240a、240b包括薄介電層238和中間層239。薄介電層238設置在浮置閘極224a的第一側壁224a_1上,中間層239設置在相鄰浮置閘極224a之間的間隙中。薄介電層238的厚度(即在X方向上)小於中間層239的厚度(即在Z方向上)。例如,薄介電層238和中間層239的厚度比為0.01至0.2。根據本揭露的一些實施例,中間結構240a、240b的頂面低於浮置閘極224a的頂面224a_0。 FIG. 14 is a cross-sectional schematic diagram of some embodiments of the present disclosure at a manufacturing stage subsequent to FIG. 13, wherein an intermediate structure is formed in a gap between two adjacent floating gates. After the structure shown in FIG. 13 is manufactured, referring to the cross section AA' of FIG. 14, intermediate structures 240a, 240b can be formed in the gap between two adjacent floating gates 224a. The intermediate structures 240a, 240b include a thin dielectric layer 238 and an intermediate layer 239. The thin dielectric layer 238 is disposed on the first sidewall 224a_1 of the floating gate 224a, and the intermediate layer 239 is disposed in the gap between the adjacent floating gates 224a. The thickness of the thin dielectric layer 238 (i.e., in the X direction) is less than the thickness of the intermediate layer 239 (i.e., in the Z direction). For example, the thickness ratio of the thin dielectric layer 238 to the intermediate layer 239 is 0.01 to 0.2. According to some embodiments of the present disclosure, the top surface of the intermediate structure 240a, 240b is lower than the top surface 224a_0 of the floating gate 224a.

參考第14圖的剖面CC’,浮置閘極224a包括沿Y方向設置的兩相對第二側壁224a_2。各第二側壁224a_2可以是垂直的或傾斜的側壁。浮置閘極224a的第二側壁224a_2的上部可以被隨後形成的上閘極結構覆蓋,且浮置閘極224的第二側壁224a_2的下部被中間結構240a、240b(例如,中間基體結構或控制閘極結構)覆蓋。根據本揭露一些實施例,各第二側壁224a_2的60%至95%表面積被中間層239覆蓋,因此在後續形成的上閘極結構和第二側壁224a_2之間的接觸面積小。此外,由於中間結構240的存在,延伸超過浮置閘極224的第二側壁224a_2的上閘極結構236的底面可以與隔離結構102、穿隧介電層218和襯底200分離。 Referring to the cross section CC' of FIG. 14, the floating gate 224a includes two opposite second sidewalls 224a_2 arranged along the Y direction. Each second sidewall 224a_2 may be a vertical or inclined sidewall. The upper portion of the second sidewall 224a_2 of the floating gate 224a may be covered by an upper gate structure formed subsequently, and the lower portion of the second sidewall 224a_2 of the floating gate 224 is covered by the intermediate structures 240a, 240b (e.g., an intermediate substrate structure or a control gate structure). According to some embodiments of the present disclosure, 60% to 95% of the surface area of each second sidewall 224a_2 is covered by the intermediate layer 239, so the contact area between the upper gate structure and the second sidewall 224a_2 formed subsequently is small. In addition, due to the presence of the intermediate structure 240, the bottom surface of the upper gate structure 236 extending beyond the second sidewall 224a_2 of the floating gate 224 can be separated from the isolation structure 102, the tunnel dielectric layer 218 and the substrate 200.

之後,可以形成上閘極結構和其他部件,以獲得類似於第1圖至第3圖所示的結構的非揮發性記憶體元件。 Afterwards, the upper gate structure and other components can be formed to obtain a non-volatile memory device similar to the structure shown in Figures 1 to 3.

第15圖至第17圖是本揭露一些實施例用於製造第4圖至第5圖的非揮發性記憶體元件的製造方法之各個階段的剖面圖。在第15圖至第17圖中,剖面AA’、剖面BB’和剖面CC’分別對應於第1圖的剖線A-A’、剖線B-B’和剖線C-C’。此外,由於第15圖至第17圖所示的實施例的製造過程類似於第11圖至第14圖所示的實施例的製造過程,因此為了簡潔起見,僅描述實施例之間的主要差異。 Figures 15 to 17 are cross-sectional views of various stages of the manufacturing method of the non-volatile memory device of Figures 4 to 5 for manufacturing some embodiments of the present disclosure. In Figures 15 to 17, the cross-section AA', the cross-section BB' and the cross-section CC' correspond to the cross-section line A-A', the cross-section line B-B' and the cross-section line C-C' of Figure 1, respectively. In addition, since the manufacturing process of the embodiments shown in Figures 15 to 17 is similar to the manufacturing process of the embodiments shown in Figures 11 to 14, for the sake of brevity, only the main differences between the embodiments are described.

參考第15圖的剖面AA’、剖面BB’和剖面CC’,在該製造階段形成的結構類似於第11圖所示的結構,主要區別在於頂介電層260設置在圖案化導電層220a上。因為頂介電層260是在如第11圖所示的導電層全面性沉積之後且在圖案化導電層以形成導電塊(未繪示)之前形成的,所以圖案化導電層220a的側壁沒有被頂介電層260覆蓋。頂介電層260的厚度為圖案化導電層220a厚度的1/3至1/10。 Referring to the cross-section AA', cross-section BB' and cross-section CC' of FIG. 15, the structure formed at this manufacturing stage is similar to the structure shown in FIG. 11, with the main difference that the top dielectric layer 260 is disposed on the patterned conductive layer 220a. Because the top dielectric layer 260 is formed after the conductive layer is fully deposited as shown in FIG. 11 and before the conductive layer is patterned to form a conductive block (not shown), the sidewalls of the patterned conductive layer 220a are not covered by the top dielectric layer 260. The thickness of the top dielectric layer 260 is 1/3 to 1/10 of the thickness of the patterned conductive layer 220a.

第16圖是本揭露一些實施例在第15圖之後的製造階段的剖面示意圖,其中間隙壁形成在圖案化導電層上。在第15圖所示的結構被製造之後,形成由介電材料組成的複數間隙壁262,以覆蓋頂介電層260的頂面和堆疊結構210的側壁211、213。 FIG. 16 is a cross-sectional schematic diagram of some embodiments of the present disclosure at a manufacturing stage after FIG. 15, wherein the spacers are formed on the patterned conductive layer. After the structure shown in FIG. 15 is manufactured, a plurality of spacers 262 composed of dielectric material are formed to cover the top surface of the top dielectric layer 260 and the sidewalls 211, 213 of the stacked structure 210.

參考第17圖的剖面AA’、剖面BB’和剖面CC’,在此製造階段形成的結構類似於第13圖所示的結構,主要區別在於頂介電層260設置在間隙壁262和浮置閘極224a之間。然後,可以剝除間隙壁262。之後,可以形成上閘極結構和其他部件,以獲得類似於第4圖至第5圖所示的結構的非揮發性記憶體元件。 Referring to the cross-sections AA', BB' and CC' of FIG. 17, the structure formed at this manufacturing stage is similar to the structure shown in FIG. 13, with the main difference being that the top dielectric layer 260 is disposed between the spacer 262 and the floating gate 224a. Then, the spacer 262 can be stripped. Thereafter, the upper gate structure and other components can be formed to obtain a non-volatile memory element similar to the structure shown in FIGS. 4 to 5.

第18圖至第19圖是本發明一些其他實施例用於製造第1圖至第3圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。第18圖至第19圖所示的製造過程類似於第11圖至第14圖所示的製造過程,為了簡潔起見,僅描述實施例之間的主要差異。 Figures 18 and 19 are cross-sectional views of different stages of a method for manufacturing the non-volatile memory device of Figures 1 to 3 according to some other embodiments of the present invention. The manufacturing process shown in Figures 18 to 19 is similar to the manufacturing process shown in Figures 11 to 14. For the sake of brevity, only the main differences between the embodiments are described.

參考第18圖的剖面AA’、剖面BB’和剖面CC’,在此製造階段形成的結構類似於第11圖所示的結構,主要區別在於沿Y方向延伸的附加堆疊結構210設置在兩相鄰堆疊結構210之間的襯底200上。由於附加堆疊結構210的存在,附加堆疊結構210可以用於防止圖案化導電層220a被形成在已經被附加堆疊結構210占據的區域中。 Referring to the cross-section AA', cross-section BB' and cross-section CC' of FIG. 18, the structure formed at this manufacturing stage is similar to the structure shown in FIG. 11, the main difference being that the additional stacking structure 210 extending along the Y direction is disposed on the substrate 200 between two adjacent stacking structures 210. Due to the presence of the additional stacking structure 210, the additional stacking structure 210 can be used to prevent the patterned conductive layer 220a from being formed in the area already occupied by the additional stacking structure 210.

第19圖是本揭露一些其他實施例在第18圖之後的製造階段的剖面示意圖。在製造第18圖所示的結構之後,剝除設置在堆疊結構210的第二側壁213 上的圖案化導電層,從而形成浮置閘極224a。 FIG. 19 is a cross-sectional schematic diagram of some other embodiments of the present disclosure at a manufacturing stage after FIG. 18. After manufacturing the structure shown in FIG. 18, the patterned conductive layer disposed on the second sidewall 213 of the stacked structure 210 is removed to form a floating gate 224a.

之後,可以製造第2圖所示的中間結構240a、240b來取代設置在兩相鄰浮置閘極224a之間的附加堆疊結構210。然後,可以形成上閘極結構和其他部件,以獲得類似於第1圖至第3圖所示結構的非揮發性記憶體元件。 Afterwards, the intermediate structures 240a, 240b shown in FIG. 2 may be fabricated to replace the additional stacked structure 210 disposed between the two adjacent floating gates 224a. Then, the upper gate structure and other components may be formed to obtain a non-volatile memory device similar to the structure shown in FIGS. 1 to 3.

第20圖至第21圖是本揭露一些其他實施例用於製造第4圖至第5圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。第20圖至第21圖所示的製造過程類似於第18圖至第19圖所示的製造過程,為了簡潔起見,僅描述實施例之間的主要差異。 Figures 20 and 21 are cross-sectional views of different stages of a method for manufacturing the non-volatile memory device of Figures 4 and 5 according to some other embodiments of the present disclosure. The manufacturing process shown in Figures 20 and 21 is similar to the manufacturing process shown in Figures 18 and 19. For the sake of brevity, only the main differences between the embodiments are described.

參考第20圖的剖面AA’、剖面BB’和剖面CC’,在此製造階段形成的結構類似於第18圖所示的結構,主要區別在於頂介電層260設置在圖案化導電層220a上。因為頂介電層260是在導電層(未繪示)全面性沉積之後且在圖案化導電層以形成導電塊(未繪示)之前形成的,所以圖案化導電層220a的側壁未被頂介電層260覆蓋。頂介電層260的厚度為圖案化導電層220a厚度的1/3至1/10。 Referring to the cross-sections AA', BB' and CC' of FIG. 20, the structure formed at this manufacturing stage is similar to the structure shown in FIG. 18, with the main difference being that the top dielectric layer 260 is disposed on the patterned conductive layer 220a. Because the top dielectric layer 260 is formed after the overall deposition of the conductive layer (not shown) and before the conductive layer is patterned to form a conductive block (not shown), the sidewalls of the patterned conductive layer 220a are not covered by the top dielectric layer 260. The thickness of the top dielectric layer 260 is 1/3 to 1/10 of the thickness of the patterned conductive layer 220a.

第21圖是本揭露一些實施例在第20圖之後的製造階段的剖面示意圖。在製造第20圖所示的結構之後,剝除設置在堆疊結構210的第二側壁213上的圖案化導電層220a,從而形成浮置閘極224a。 FIG. 21 is a cross-sectional schematic diagram of some embodiments of the present disclosure at a manufacturing stage after FIG. 20. After manufacturing the structure shown in FIG. 20, the patterned conductive layer 220a disposed on the second sidewall 213 of the stacked structure 210 is stripped to form a floating gate 224a.

之後,附加堆疊結構210可以用第4圖所示的中間結構240a、240b取代。然後,可以形成上閘極結構和其他部件,以獲得類似於第4圖至第5圖所示的結構的非揮發性記憶體元件。 Afterwards, the additional stack structure 210 can be replaced by the intermediate structures 240a, 240b shown in FIG. 4. Then, the upper gate structure and other components can be formed to obtain a non-volatile memory device similar to the structure shown in FIGS. 4 to 5.

第22圖至第26圖是本揭露的一些實施例用於製造第6圖至第7圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。在第22圖至第26圖中,剖面AA’、剖面BB’和剖面CC’分別對應於第1圖的剖線A-A’、剖線B-B’和剖線C-C’。此外,第22圖至第26圖所示的製造過程可被視為衍生自第11圖至第14圖所示的製造過程,為了簡潔起見,僅描述實施例之間的主要差異。 Figures 22 to 26 are cross-sectional views of different stages of the manufacturing method of the non-volatile memory device of Figures 6 to 7 used in some embodiments of the present disclosure. In Figures 22 to 26, the cross-section AA', the cross-section BB' and the cross-section CC' correspond to the cross-section line A-A', the cross-section line B-B' and the cross-section line C-C' of Figure 1, respectively. In addition, the manufacturing process shown in Figures 22 to 26 can be regarded as derived from the manufacturing process shown in Figures 11 to 14. For the sake of brevity, only the main differences between the embodiments are described.

參考第22圖的剖面AA’、剖面BB’和剖面CC’,複數圖案化導電層220b形成在襯底200上。在第22圖的剖面AA’中,圖案化導電層220b是沿X方向延伸且覆蓋堆疊結構210的連續層。圖案化導電層220b包含相對的內表面220b_1和外表面220b_2。在第22圖的剖面BB’中,不存在任何圖案化導電層220b。因此,從俯視角度來看,如第8圖所示,各圖案化導電層220b是條形的,且在X方向上延伸,且圖案化導電層220b沿著Y方向彼此分離。然後,在形成圖案化導電層220b之後,施行全面性沉積以形成覆蓋圖案化導電層220b和襯底200的保形層270a。在第22圖的剖面CC’中,圖案化導電層220b的側壁220b_3被保形層270a覆蓋。 Referring to the cross sections AA', BB' and CC' of FIG. 22, a plurality of patterned conductive layers 220b are formed on the substrate 200. In the cross section AA' of FIG. 22, the patterned conductive layer 220b is a continuous layer extending in the X direction and covering the stacked structure 210. The patterned conductive layer 220b includes an inner surface 220b_1 and an outer surface 220b_2 opposite to each other. In the cross section BB' of FIG. 22, no patterned conductive layer 220b exists. Therefore, from a top view, as shown in FIG. 8, each patterned conductive layer 220b is strip-shaped and extends in the X direction, and the patterned conductive layers 220b are separated from each other along the Y direction. Then, after forming the patterned conductive layer 220b, a full deposition is performed to form a conformal layer 270a covering the patterned conductive layer 220b and the substrate 200. In the cross section CC' of FIG. 22, the sidewall 220b_3 of the patterned conductive layer 220b is covered by the conformal layer 270a.

然後,參考第23圖的剖面AA’、剖面BB’和剖面CC’,通過非等向蝕刻製程蝕刻保形層270a,從而在堆疊結構210的側壁211、213上形成間隙壁272a。在第22圖的剖面CC’中,圖案化導電層220b的側壁被間隙壁272a覆蓋。本實施例中的間隙壁272a可以在不施行任何微影製程的情況下而被形成。 Then, referring to the cross sections AA', BB' and CC' of FIG. 23, the conformal layer 270a is etched by an anisotropic etching process, thereby forming a spacer 272a on the side walls 211 and 213 of the stacked structure 210. In the cross section CC' of FIG. 22, the side wall of the patterned conductive layer 220b is covered by the spacer 272a. The spacer 272a in this embodiment can be formed without performing any lithography process.

之後,參考第24圖的剖面AA’,使用間隙壁272a作為蝕刻遮罩蝕刻圖案化導電層,從而在堆疊結構210的側壁211、213上形成L型圖案化導電層。各L型圖案化導電層包括垂直部分221_1和水平部分221_2。藉由使用間隙壁272a作為蝕刻遮罩,不需要施行額外的微影製程來定義L型圖案化導電層的輪廓。然後,在襯底200中形成源極區222,源極區222設置於在堆疊結構210的第一側壁211上的兩相鄰間隙壁272a之間。 Thereafter, referring to the cross section AA' of FIG. 24, the spacer 272a is used as an etching mask to etch the patterned conductive layer, thereby forming an L-shaped patterned conductive layer on the sidewalls 211 and 213 of the stacked structure 210. Each L-shaped patterned conductive layer includes a vertical portion 221_1 and a horizontal portion 221_2. By using the spacer 272a as an etching mask, no additional lithography process is required to define the contour of the L-shaped patterned conductive layer. Then, a source region 222 is formed in the substrate 200, and the source region 222 is disposed between two adjacent spacers 272a on the first sidewall 211 of the stacked structure 210.

之後,參考第25圖的剖面AA’、剖面BB’和剖面CC’,剝除間隙壁和犧牲層。如此一來,圖案化導電層220b的垂直部分221_1的頂面220b_0可從殘留的堆疊結構210的頂面凸出。此外,在第25圖的剖面CC’中,圖案化導電層220b的側壁220b_3會被暴露出。 Afterwards, referring to the cross-section AA', cross-section BB' and cross-section CC' of FIG. 25, the spacer and the sacrificial layer are removed. In this way, the top surface 220b_0 of the vertical portion 221_1 of the patterned conductive layer 220b can protrude from the top surface of the remaining stacked structure 210. In addition, in the cross-section CC' of FIG. 25, the side wall 220b_3 of the patterned conductive layer 220b is exposed.

之後,參考第26圖的剖面AA’、剖面BB’和剖面CC’,藉由施行微影和蝕刻製程來蝕刻設置於鄰近堆疊結構210的第二側壁213的圖案化導電層。因 此,浮置閘極224b會被形成在堆疊結構210的第一側壁211上。然後,在兩相鄰堆疊結構210之間的間隙中形成中間結構240a、240b。在剖面AA’和剖面CC’中,可以適當地控制中間結構240a、240b的高度,以覆蓋浮置閘極224b的65%至95%側壁。 Afterwards, referring to the cross-section AA', cross-section BB' and cross-section CC' of FIG. 26, the patterned conductive layer disposed on the second sidewall 213 adjacent to the stacking structure 210 is etched by performing lithography and etching processes. Therefore, the floating gate 224b is formed on the first sidewall 211 of the stacking structure 210. Then, the intermediate structures 240a and 240b are formed in the gap between the two adjacent stacking structures 210. In the cross-section AA' and the cross-section CC', the height of the intermediate structures 240a and 240b can be appropriately controlled to cover 65% to 95% of the sidewall of the floating gate 224b.

之後,可以形成上閘極結構和其他部件,以獲得類似於第6圖至第7圖所示的結構的非揮發性記憶體元件。 Afterwards, the upper gate structure and other components can be formed to obtain a non-volatile memory device similar to the structure shown in Figures 6 to 7.

第27圖至第30圖是本揭露的一些實施例用於製造第8圖至第10圖的非揮發性記憶體元件的製造方法之不同階段的剖面圖。在第27圖至第30圖中,剖面AA’、剖面BB’和剖面CC’分別對應於第8圖的剖線A-A’、剖線B-B’和剖線C-C’。此外,由於第27圖至第30圖所示的實施例的製造過程類似於第22圖至第26圖所示的實施例的製造過程,為了簡潔起見,僅描述實施例之間的主要差異。 Figures 27 to 30 are cross-sectional views of different stages of the manufacturing method of the non-volatile memory device of Figures 8 to 10 used in some embodiments of the present disclosure. In Figures 27 to 30, the cross-section AA', the cross-section BB' and the cross-section CC' correspond to the cross-section line A-A', the cross-section line B-B' and the cross-section line C-C' of Figure 8, respectively. In addition, since the manufacturing process of the embodiments shown in Figures 27 to 30 is similar to the manufacturing process of the embodiments shown in Figures 22 to 26, for the sake of brevity, only the main differences between the embodiments are described.

參考第27圖的剖面AA’、剖面BB’和剖面CC’,在此製造階段形成的結構類似於第22圖所示的結構,主要區別在於使用包括下層270b_1和上層270b_2的堆疊保形層270b來取代第22圖所示的保形層270a。根據本揭露一些實施例,下層270b_1是包括氧化矽/氮化矽/氧化矽的複合介電層,但不限於此。上層270b_2是包括多晶矽或金屬的導電層,但不限於此。 Referring to the cross-section AA', cross-section BB' and cross-section CC' of FIG. 27, the structure formed in this manufacturing stage is similar to the structure shown in FIG. 22, the main difference being that the stacked conformal layer 270b including the lower layer 270b_1 and the upper layer 270b_2 is used to replace the conformal layer 270a shown in FIG. 22. According to some embodiments of the present disclosure, the lower layer 270b_1 is a composite dielectric layer including silicon oxide/silicon nitride/silicon oxide, but not limited thereto. The upper layer 270b_2 is a conductive layer including polysilicon or metal, but not limited thereto.

然後,參考第28圖的剖面AA’、剖面BB’和剖面CC’,藉由非等向蝕刻製程蝕刻保形層270b,從而在堆疊結構210的側壁211、213上形成間隙壁272b。在第28圖的剖面CC’中,圖案化導電層220b的側壁220b_3被間隙壁272b覆蓋。本實施例中的間隙壁272b可以在不施行額外的微影製程的情況下形成。 Then, referring to the cross sections AA', BB' and CC' of FIG. 28, the conformal layer 270b is etched by an anisotropic etching process, thereby forming a spacer 272b on the side walls 211 and 213 of the stacked structure 210. In the cross section CC' of FIG. 28, the side wall 220b_3 of the patterned conductive layer 220b is covered by the spacer 272b. The spacer 272b in this embodiment can be formed without performing an additional lithography process.

之後,參考第29圖的剖面AA’,使用間隙壁272b作為蝕刻遮罩蝕刻圖案化導電層,從而在堆疊結構210的側壁211、213上形成L型圖案化導電層。各L型圖案化導電層包括垂直部分221_1和水平部分221_2。藉由使用間隙壁272b作為蝕刻遮罩,不需要施行額外的微影製程來定義L型圖案化導電層的輪廓。然 後,在襯底200中形成源極區222,該源極區222位於堆疊結構210的側壁211上的兩相鄰間隙壁272b之間。 Thereafter, referring to the cross section AA' of FIG. 29, the spacer 272b is used as an etching mask to etch the patterned conductive layer, thereby forming an L-shaped patterned conductive layer on the sidewalls 211 and 213 of the stacked structure 210. Each L-shaped patterned conductive layer includes a vertical portion 221_1 and a horizontal portion 221_2. By using the spacer 272b as an etching mask, no additional lithography process is required to define the contour of the L-shaped patterned conductive layer. Then, a source region 222 is formed in the substrate 200, and the source region 222 is located between two adjacent spacers 272b on the sidewall 211 of the stacked structure 210.

之後,參考第26圖的剖面AA’、剖面BB’和剖面CC’,藉由施行微影和蝕刻製程來蝕刻設置在鄰近堆疊結構210的第二側壁213之圖案化導電層和間隙壁。因此,浮置閘極224b和中間結構240a、240b形成在堆疊結構210的第一側壁211上。換句話說,中間結構240a、240b由原始堆疊保形層270a形成,如第27圖所示。在剖面AA’和剖面CC’中,可以適當地控制中間結構240a、240b的高度,以覆蓋浮置閘極224b的65%到95%側壁。 Thereafter, referring to the cross-section AA', cross-section BB' and cross-section CC' of FIG. 26, the patterned conductive layer and the spacer disposed adjacent to the second sidewall 213 of the stacking structure 210 are etched by performing lithography and etching processes. Therefore, the floating gate 224b and the intermediate structures 240a, 240b are formed on the first sidewall 211 of the stacking structure 210. In other words, the intermediate structures 240a, 240b are formed by the original stacking conformal layer 270a, as shown in FIG. 27. In the cross-section AA' and the cross-section CC', the height of the intermediate structures 240a, 240b can be appropriately controlled to cover 65% to 95% of the sidewall of the floating gate 224b.

之後,可以形成上閘極結構和其他部件,以獲得類似於第8圖至第10圖所示結構的非揮發性記憶體元件。 Afterwards, the upper gate structure and other components can be formed to obtain a non-volatile memory device similar to the structure shown in Figures 8 to 10.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

102:隔離結構 102: Isolation structure

110:第一記憶體區域 110: First memory area

112:第二記憶體區域 112: Second memory area

200:襯底 200: Lining

202:閘極介電層 202: Gate dielectric layer

204:輔助閘極 204: Auxiliary gate

206:絕緣層 206: Insulation layer

218:穿隧介電層 218: Tunneling dielectric layer

222:源極區 222: Source region

224a_1:側壁 224a_1: Side wall

224a_2:側壁 224a_2: Side wall

224b:浮置閘極 224b: floating gate

224b_1:垂直部分 224b_1: Vertical section

224b_2:水平部分 224b_2: Horizontal part

234:上閘極介電層 234: Upper gate dielectric layer

235:上閘極 235: Upper gate pole

236:上閘極結構 236: Upper gate structure

238:薄介電層 238: Thin dielectric layer

239:中間層 239: Middle layer

239_0:頂面 239_0: Top

240a:中間結構 240a: Intermediate structure

240b:中間結構 240b: Intermediate structure

242:汲極區 242: Drain area

R3:區域 R3: Region

Claims (21)

一種非揮發性記憶體元件,包括至少一記憶體單元,其中所述至少一記憶體單元包括:一襯底;一輔助閘極結構,設置在所述襯底上,且包括一閘極介電層;一穿隧介電層,設置在所述輔助閘極結構一側的所述襯底上;一浮置閘極,設置在所述穿隧介電層上,且包括:二第一最上邊緣,彼此相對且沿一第一方向排列;二第一側壁,彼此相對且沿所述第一方向排列,其中所述二第一側壁分別連接至所述二第一最上邊緣;以及二第二側壁,彼此相對且沿著一第二方向排列,其中所述第二方向不同於所述第一方向;一上閘極結構,覆蓋所述輔助閘極結構和所述浮置閘極,其中所述浮置閘極的所述二第一最上邊緣中的至少一者嵌入於所述上閘極結構中,其中,部分的所述上閘極結構在所述第二方向上延伸超過所述浮置閘極的所述二第二側壁,且所述二第二側壁被一中間結構覆蓋,其中所述上閘極結構的所述部分設置在所述襯底上,而所述中間結構設置在所述上閘極結構的所述部分和所述襯底之間。 A non-volatile memory element includes at least one memory cell, wherein the at least one memory cell includes: a substrate; an auxiliary gate structure, disposed on the substrate and including a gate dielectric layer; a tunnel dielectric layer, disposed on the substrate on one side of the auxiliary gate structure; a floating gate, disposed on the tunnel dielectric layer and including: two first uppermost edges, opposite to each other and arranged along a first direction; two first side walls, opposite to each other and arranged along the first direction, wherein the two first side walls are respectively connected to the two first uppermost edges; and two second side walls, opposite to each other and arranged along the first direction. Arranged in a second direction, wherein the second direction is different from the first direction; an upper gate structure, covering the auxiliary gate structure and the floating gate, wherein at least one of the two first uppermost edges of the floating gate is embedded in the upper gate structure, wherein a portion of the upper gate structure extends beyond the two second side walls of the floating gate in the second direction, and the two second side walls are covered by an intermediate structure, wherein the portion of the upper gate structure is disposed on the substrate, and the intermediate structure is disposed between the portion of the upper gate structure and the substrate. 如申請專利範圍第1項所述的非揮發性記憶體元件,其中,所述浮置閘極的所述第一側壁中之一者面向所述輔助閘極結構,且面向所述輔助閘極結構的所述第一側壁被所述輔助閘極結構覆蓋。 A non-volatile memory device as described in item 1 of the patent application, wherein one of the first side walls of the floating gate faces the auxiliary gate structure, and the first side wall facing the auxiliary gate structure is covered by the auxiliary gate structure. 如申請專利範圍第2項所述的非揮發性記憶體元件,其中,所述第 一側壁中之另一者與所述輔助閘極結構相對,且與所述輔助閘極結構相對的所述第一側壁是垂直或傾斜的側壁。 A non-volatile memory device as described in item 2 of the patent application, wherein the other of the first side walls is opposite to the auxiliary gate structure, and the first side wall opposite to the auxiliary gate structure is a vertical or inclined side wall. 如申請專利範圍第1項所述的非揮發性記憶體元件,其中,所述浮置閘極的所述二第一最上邊緣高於所述輔助閘極結構的頂面。 A non-volatile memory device as described in item 1 of the patent application, wherein the two first uppermost edges of the floating gate are higher than the top surface of the auxiliary gate structure. 如申請專利範圍第1項所述的非揮發性記憶體元件,其中,設置在所述襯底上的所述上閘極結構的所述部分的底面低於所述浮置閘極的所述二第一最上邊緣。 A non-volatile memory device as described in item 1 of the patent application, wherein the bottom surface of the portion of the upper gate structure disposed on the substrate is lower than the two first uppermost edges of the floating gate. 如申請專利範圍第1項所述的非揮發性記憶體元件,其中,所述至少一記憶體單元還包括一控制閘極結構,且部分的所述控制閘極結構覆蓋所述浮置閘極的所述二第二側壁。 As described in item 1 of the patent application scope, the non-volatile memory element, wherein the at least one memory unit further includes a control gate structure, and a portion of the control gate structure covers the two second side walls of the floating gate. 如申請專利範圍第6項所述的非揮發性記憶體元件,其中,所述控制閘極結構的所述部分被延伸超過所述浮置閘極的所述二第二側壁的所述上閘極結構的所述部分覆蓋。 A non-volatile memory device as described in item 6 of the patent application, wherein the portion of the control gate structure is covered by the portion of the upper gate structure extending beyond the two second side walls of the floating gate. 如申請專利範圍第6項所述的非揮發性記憶體元件,其中,所述控制閘極結構的頂面低於所述上閘極結構的頂面。 A non-volatile memory device as described in item 6 of the patent application, wherein the top surface of the control gate structure is lower than the top surface of the upper gate structure. 如申請專利範圍第8項所述的非揮發性記憶體元件,其中,所述控制閘極結構的所述頂面被所述上閘極結構覆蓋。 A non-volatile memory device as described in Item 8 of the patent application, wherein the top surface of the control gate structure is covered by the upper gate structure. 如申請專利範圍第6項所述的非揮發性記憶體元件,其中,所述控制閘極結構的頂面低於所述二第一最上邊緣。 A non-volatile memory device as described in item 6 of the patent application, wherein the top surface of the control gate structure is lower than the two first uppermost edges. 如申請專利範圍第1項所述的非揮發性記憶體元件,其中,所述至少一記憶體單元還包括一頂介電層,設置在所述浮置閘極上,其中,所述頂介電層的頂面被所述上閘極結構覆蓋。 As described in item 1 of the patent application scope, the at least one memory unit further includes a top dielectric layer disposed on the floating gate, wherein the top surface of the top dielectric layer is covered by the upper gate structure. 如申請專利範圍第11項所述的非揮發性記憶體元件,其中,所述頂介電層的所述頂面的面積小於所述浮置閘極的頂面的面積。 A non-volatile memory device as described in item 11 of the patent application, wherein the area of the top surface of the top dielectric layer is smaller than the area of the top surface of the floating gate. 如申請專利範圍第1項所述的非揮發性記憶體元件,其中,所述浮置閘極還包括一垂直部分和一水平部分,其中,所述垂直部分的頂面高於所述水平部分的頂面。 As described in item 1 of the patent application scope, the non-volatile memory element, wherein the floating gate further includes a vertical portion and a horizontal portion, wherein the top surface of the vertical portion is higher than the top surface of the horizontal portion. 如申請專利範圍第13項所述的非揮發性記憶體元件,其中,所述浮置閘極的所述垂直部分包括所述二第一最上邊緣。 A non-volatile memory device as described in claim 13, wherein the vertical portion of the floating gate includes the two first uppermost edges. 如申請專利範圍第13項所述的非揮發性記憶體元件,其中,所述至少一記憶體單元還包括一控制閘極結構,覆蓋所述浮置閘極的所述水平部分的所述頂面。 A non-volatile memory device as described in item 13 of the patent application, wherein the at least one memory unit further includes a control gate structure covering the top surface of the horizontal portion of the floating gate. 如申請專利範圍第1項所述的非揮發性記憶體元件,其中,所述至少一記憶體單元包括一第一記憶體單元和一第二記憶體單元,所述第一記憶體單元和所述第二記憶體單元各包括所述輔助閘極結構和所述浮置閘極,所述 非揮發性記憶體元件還包括一源極區,所述源極區由所述第一記憶體單元和所述第二記憶體單元共享,且所述源極區被所述上閘極結構覆蓋。 As described in item 1 of the patent application scope, the at least one memory cell includes a first memory cell and a second memory cell, the first memory cell and the second memory cell each include the auxiliary gate structure and the floating gate, and the non-volatile memory cell further includes a source region, the source region is shared by the first memory cell and the second memory cell, and the source region is covered by the upper gate structure. 如申請專利範圍第16項所述的非揮發性記憶體元件,其中,所述第一記憶體單元和所述第二記憶體單元彼此間呈現鏡像。 A non-volatile memory device as described in claim 16, wherein the first memory unit and the second memory unit present a mirror image to each other. 如申請專利範圍第16項所述的非揮發性記憶體元件,其中,所述上閘極結構填滿所述第一記憶體單元的所述浮置閘極和所述第二記憶體單元的所述浮置閘極之間的間隙。 A non-volatile memory element as described in item 16 of the patent application, wherein the upper gate structure fills the gap between the floating gate of the first memory unit and the floating gate of the second memory unit. 如申請專利範圍第16項所述的非揮發性記憶體元件,還包括一控制閘極結構,由所述第一記憶體單元和所述第二記憶體單元共享,其中,所述控制閘極結構覆蓋所述源極區。 The non-volatile memory element as described in item 16 of the patent application scope further includes a control gate structure shared by the first memory unit and the second memory unit, wherein the control gate structure covers the source region. 如申請專利範圍第19項所述的非揮發性記憶體元件,其中,部分的所述控制閘極結構覆蓋各所述浮置閘極的所述二第二側壁,且所述控制閘極結構的所述部分設置在所述上閘極結構和所述襯底之間。 As described in item 19 of the patent application, a portion of the control gate structure covers the two second side walls of each floating gate, and the portion of the control gate structure is disposed between the upper gate structure and the substrate. 如申請專利範圍第19項所述的非揮發性記憶體元件,還包括設置在所述襯底中的一隔離結構,其中,延伸超過所述浮置閘極的所述二第二側壁的所述上閘極結構的所述部分被設置在所述隔離結構上。 The non-volatile memory element as described in item 19 of the patent application further includes an isolation structure disposed in the substrate, wherein the portion of the upper gate structure extending beyond the two second side walls of the floating gate is disposed on the isolation structure.
TW112100571A 2022-01-18 2023-01-06 Non-volatile memory device TWI845109B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US17/578,414 2022-01-18
US17/578,414 US20230232623A1 (en) 2022-01-18 2022-01-18 Method of manufacturing non-volatile memory device
US17/709,370 US12225723B2 (en) 2022-03-30 2022-03-30 Non-volatile memory device
US17/709,370 2022-03-30
US202263424139P 2022-11-10 2022-11-10
US63/424,139 2022-11-10
US18/090,468 US20240162315A1 (en) 2022-11-10 2022-12-28 Non-volatile memory device
US18/090,468 2022-12-28

Publications (2)

Publication Number Publication Date
TW202332011A TW202332011A (en) 2023-08-01
TWI845109B true TWI845109B (en) 2024-06-11

Family

ID=88559051

Family Applications (3)

Application Number Title Priority Date Filing Date
TW113127027A TW202446237A (en) 2022-01-18 2023-01-06 Manufacturing method of non-volatile memory device
TW113127016A TW202446230A (en) 2022-01-18 2023-01-06 Non-volatile memory device
TW112100571A TWI845109B (en) 2022-01-18 2023-01-06 Non-volatile memory device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW113127027A TW202446237A (en) 2022-01-18 2023-01-06 Manufacturing method of non-volatile memory device
TW113127016A TW202446230A (en) 2022-01-18 2023-01-06 Non-volatile memory device

Country Status (1)

Country Link
TW (3) TW202446237A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM513458U (en) * 2015-06-12 2015-12-01 Iotmemory Technology Inc Non-volatile memory
TW202018917A (en) * 2018-11-09 2020-05-16 物聯記憶體科技股份有限公司 Non-volatile memory and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM513458U (en) * 2015-06-12 2015-12-01 Iotmemory Technology Inc Non-volatile memory
TW202018917A (en) * 2018-11-09 2020-05-16 物聯記憶體科技股份有限公司 Non-volatile memory and manufacturing method thereof

Also Published As

Publication number Publication date
TW202446230A (en) 2024-11-16
TW202446237A (en) 2024-11-16
TW202332011A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US7473611B2 (en) Methods of forming non-volatile memory cells including fin structures
CN111180508B (en) Nonvolatile memory and method of manufacturing the same
TWI700819B (en) Non-volatile memory and manufacturing method thereof
US7049189B2 (en) Method of fabricating non-volatile memory cell adapted for integration of devices and for multiple read/write operations
CN106328653B (en) Nonvolatile memory and method of manufacturing the same
JP2000150676A (en) Nonvolatile semiconductor memory device and method of manufacturing the same
TWI605572B (en) Non-volatile memory and manufacturing method thereof
TWI815380B (en) Method of manufacturing non-volatile memory device
CN114335185A (en) Split-gate dual-bit nonvolatile memory cell with erase gate disposed over wordline gate and method of making the same
TWI845109B (en) Non-volatile memory device
KR20070049731A (en) Flash memory and its manufacturing method
TWI858963B (en) Non-volatile memory device and method for manufacturing the same
TWI823398B (en) Non-volatile memory device
US20240162315A1 (en) Non-volatile memory device
RU2790414C1 (en) Non-volatile memory device manufacturing method
RU2807966C1 (en) Non-volatile memory device
TWI863636B (en) Non-volatile memory device and method for manufacturing the same
CN116471842A (en) Non-volatile memory device
US20240304692A1 (en) Non-volatile memory device and method for manufacturing the same
CN118019335A (en) Non-volatile memory element and manufacturing method thereof
CN118019336A (en) Non-volatile memory device and method for manufacturing the same
TWI455289B (en) Memory cell, memory device and method for manufacturing memory cell
CN118632534A (en) Non-volatile memory device and method for manufacturing the same
KR20060062791A (en) Nonvolatile Memory Device and Manufacturing Method Thereof
TW201630163A (en) Non-volatile memory and manufacturing method thereof