Nothing Special   »   [go: up one dir, main page]

TWI735912B - 在一狀態期間中的次脈動用之電漿系統、電漿工具、射頻產生器、控制器、及方法 - Google Patents

在一狀態期間中的次脈動用之電漿系統、電漿工具、射頻產生器、控制器、及方法 Download PDF

Info

Publication number
TWI735912B
TWI735912B TW108124594A TW108124594A TWI735912B TW I735912 B TWI735912 B TW I735912B TW 108124594 A TW108124594 A TW 108124594A TW 108124594 A TW108124594 A TW 108124594A TW I735912 B TWI735912 B TW I735912B
Authority
TW
Taiwan
Prior art keywords
state
signal
states
power level
during
Prior art date
Application number
TW108124594A
Other languages
English (en)
Other versions
TW201941254A (zh
Inventor
小約翰 C 微寇爾
哈密特 席恩
布萊佛 J 琳戴克
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/466,724 external-priority patent/US9390893B2/en
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW201941254A publication Critical patent/TW201941254A/zh
Application granted granted Critical
Publication of TWI735912B publication Critical patent/TWI735912B/zh

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • Plasma Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

揭露一種在一狀態期間達成次脈動的方法。該方法包含自一時脈源接收具有兩狀態的一時脈訊號、並自該時脈訊號產生一脈動訊號。該脈動訊號在該複數狀態之一狀態內具有複數次狀態。該複數次狀態以大於該些狀態之一頻率的一頻率相對於彼此交替。該方法包含提供該脈動訊號以控制藉由一RF產生器所產生之一射頻(RF)訊號的一功率。該功率係受到控制以與該脈動訊號同步。

Description

在一狀態期間中的次脈動用之電漿系統、電漿工具、射頻 產生器、控制器、及方法
本發明實施例係關於在射頻(RF)產生器的一狀態期間產生複數次脈動。
電漿室係用以進行各種製程,如蝕刻、沉積等。例如,當將能量供給至電漿室時,便將氣體供應至電漿室。當氣體處於電漿室時同時供給能量,便會擊發電漿。電漿係用以蝕刻基板或清理電漿室。又,使用液體或氣體流入電漿室中,可將材料沉積至基板上。
然而,控制製程是困難的。例如,基板上的材料可能會被過度蝕刻或蝕刻不足。又例如,沉積在基板上的複數膜層的厚度可能比期望厚度更厚或比期望厚度更薄。
本申請案中的實施例係於此背景下所產生。
本發明的實施例提供在一狀態期間內之次脈動用的設備、方法及電腦程式。應明白,可以各種方式如製程、設備、系統、裝置、或電腦可讀媒體上之方法實施本發明的實施例。下面說明數個實施例。
在某些實施例中,揭露一種在一狀態期間達成次脈動的方法。該方法包含自一時脈源接收一時脈訊號、並自該時脈訊號產生一脈動訊號,該時脈訊號具有兩狀態。該脈動訊號在該複數狀態之一狀態內具有複數次狀態。該複數次狀態在大於該些狀態之一頻率的一頻率下相對於彼此交替。該方法包含提供該脈動訊號以控制藉由一RF產生器所產生之一射頻(RF)訊號的一功率。該功率係受到控制以與該脈動訊號同步。
在各種實施例中,揭露一種RF產生器。該RF產生器包含一處理器。該處理器自一時脈源接收一時脈訊號。該時脈訊號具有兩狀態。該處理器自該時脈訊號產生一脈動訊號。該脈動訊號在該複數狀態之一狀態內具有複數次狀態。該複數次狀態具有大於該些狀態之一頻率的一頻率。該處理器提供該脈動訊號以控制一RF訊號的一功率。該功率受到控制以與該脈動訊號同步。該RF產生器包含耦合至該處理器之一RF電源。該RF電源產生具有該功率的該RF訊號,以藉由一阻抗匹配電路將該RF訊號提供至一電漿室。
在各種實施例中,揭露一種電漿系統。該電漿系統包含一處理器,該處理器自一時脈源接收一時脈訊號。該時脈訊號具有兩狀態。該處理器自該時脈訊號產生一脈動訊號。該脈動訊號在該複數狀態之一狀態內具有複數次狀態且該複數次狀態具有大於該些狀態之一頻率的一頻率。該處理器提供一脈動訊號以控制一射頻(RF)訊號的一功率。該功率受到控制以與該脈動訊號同步。該電漿系統更包含用以產生具有該功率之該RF訊號的一RF電源。該電漿系統亦包含 耦合至該RF電源之一RF纜線。該電漿系統包含耦合至該RF電源的一阻抗匹配電路,該阻抗匹配電路係用以藉由該RF纜線接收該RF訊號。該阻抗匹配電路匹配耦合至該阻抗匹配電路之一負載的一阻抗與耦合至該阻抗匹配電路之一源的一阻抗,以自該RF訊號產生一經修改的RF訊號。該電漿系統包含耦合至該阻抗匹配電路的一電漿室,該電漿室係用以接收該經修改的RF訊號以改變一電漿的一阻抗。
上述實施例的某些優點方法在一狀態使用次脈動以在該狀態內產生複數次狀態。當該次脈動係受到低頻RF產生器(如2MHz RF產生器等)所用時,能粗略控制晶圓處理,晶圓例如是基板、其上沉積有一或多種材料之一或多層膜層的基板等。例如,相較於未被次脈動的RF訊號,當低頻RF產生器所產生之RF訊號在一狀態內被次脈動時,可更進一步粗略控制基板上的材料蝕刻或沉積。又,當次脈動係受到高頻RF產生器如60MHz RF產生器等所用時,能精細控制晶圓處理。例如,例如,相較於未被次脈動的RF訊號,當高頻RF產生器所產生之RF訊號在一狀態內被次脈動時,可更進一步細緻地控制基板上的材料蝕刻或沉積。應注意,在某些實施例中,細緻控制是為達到落在與粗略控制相關之速率範圍內的速率範圍。
由隨附之圖示及下列的詳細說明當可明白本發明的其他態樣。
100:RF產生器
200:圖
210:圖
202:脈動訊號
204:時脈訊號
212:RF訊號
214:RF訊號
220:圖
222:脈動訊號
230:圖
232:脈動訊號
240:圖
242:脈動訊號
300:系統
302:阻抗匹配電路
304:電漿室
306:工具使用者界面(UI)系統
307:工具UI系統
308:RF纜線
310:RF纜線
312:RF傳輸線
313:纜線
314:纜線
314:夾頭
316:上電極
318:晶圓
320:上表面
322:RF電源
324:RF電源
350:系統
400:圖
402:功率訊號
404:經輸送之功率訊號
410:圖
412:經輸送之功率訊號
420:圖
422:經輸送之功率訊號
430:圖
432:經輸送之功率訊號
440:圖
442:脈動訊號
500:圖
510:系統
600:圖
602:RF訊號
604:RF訊號
610:圖
620:圖
622:脈動訊號
700:系統
710:系統
800:圖
802:訊號
812:RF訊號
820:圖
822:脈動訊號
900:圖
910:系統
1000:圖
1002:訊號
1004:訊號
1010:圖
1012:經輸送的功率訊號
1014:經輸送的功率訊號
1100:系統
1104:處理邏輯
1110:系統
1200:系統
1202:開關
1300:DSP
1302:內部時脈源
1320:DSP
1322:反相器
1324:另一內部時脈源
1326:處理邏輯
1328:加法器
1400:DSP
AFTS0x:自動頻率調整器
AFTS0ax:自動頻率調整器
AFTS0bx:自動頻率調整器
AFTS0y:自動頻率調整器
AFTS0ay:自動頻率調整器
AFTS0by:自動頻率調整器
AFTS1x:自動頻率調整器
AFTS1ax:自動頻率調整器
AFTS1bx:自動頻率調整器
AFTS1y:自動頻率調整器
AFTS1ay:自動頻率調整器
AFTS1by:自動頻率調整器
Clk:時脈訊號
Clk1:訊號
DSPx:數位訊號處理器
DSPy:數位訊號處理器
PRS0a:參數控制器
PRS1a:參數控制器
PRS0b:參數控制器
PRS1b:參數控制器
PWRS0x:功率控制器
PWRS0ax:功率控制器
PWRS0bx:功率控制器
PWRS0y:功率控制器
PWRS0ay:功率控制器
PWRS0by:功率控制器
PWRS1x:功率控制器
PWRS1ax:功率控制器
PWRS1bx:功率控制器
PWRS1y:功率控制器
PWRS1ay:功率控制器
PWRS1by:功率控制器
S0:狀態
S0a:次狀態
S0ax:次狀態
S0ay:次狀態
S0b:次狀態
S0bx:次狀態
S0by:次狀態
S1:狀態
S1a:次狀態
S1ax:次狀態
S1ay:次狀態
S1b:次狀態
S1bx:次狀態
S1by:次狀態
Sm:狀態
Sna:次狀態
Snb:次狀態
TTL:訊號
TTL1:訊號
TTL2:訊號
TTL4:訊號
TTL4-1:訊號
TTL4-2:訊號
TTL5:訊號
參考附圖及下列說明可最佳地瞭解本案的實施例。
圖1例示根據本發明所述之某些實施例之由RF產生器所產生之射頻(RF)訊號之一狀態內的次脈動。
圖2A例示根據本發明所述之某些實施例之x百萬赫茲(MHz)RF產生器之一狀態內的次脈動。
圖2B例示根據本發明所述之各種實施例使用,利用y MHz RF產生器所產生之脈動所達到之x MHz RF產生器所產生之次脈動。
圖2C例示根據本發明所述之數個實施例之在次狀態S1b期間具有非零邏輯位準的訊號。
圖2D例示根據本發明所述之某些實施例,說明在次狀態S1b期間具有非零邏輯位準之訊號以及y MHz RF產生器所產生的脈動訊號的使用。
圖2E係用以例示根據本發明所述之數個實施例之在狀態S1期間具有不同於50%工作週期的一工作週期。
圖3A圖示根據本發明所述之各種實施例之用以控制狀態S0及次狀態S1a與S1b期間之離子能量的系統。
圖3B圖示根據本發明所述之數個實施例之當x MHz RF產生器為主產生器時,用以控制狀態S0及次狀態S1a與S1b期間之離子能量的另一系統。
圖4A例示根據本發明所述之某些實施例之操作在兩狀態S1與S0下的x MHz RF產生器及操作在狀態S1、次狀態S0a與次狀態S0b下的y MHz RF產生器。
圖4B例示根據本發明所述之各種實施例之操作在狀態S1、次狀態S0a與次狀態S0b下的y MHz RF產生器以及在次狀態S0b期間不同於圖4A所示之功率訊號的一位準。
圖4C例示根據本發明所述之某些實施例之操作在狀態S1、次狀態S0a與次狀態S0b下的y MHz RF產生器以及在狀態次S0a期間不同於圖4A所示的一位準。
圖4D例示根據本發明所述之各種實施例,相較於圖4A中所示之經輸送的功率訊號之位準,在狀態S0a與S0b期間使用不同位準之經輸送的功率訊號。
圖4E例示根據本發明所述之各種實施例之在狀態S0期間非為50%工作週期的一相異工作週期。
圖5A顯示根據本發明所述之某些實施例的一系統,此系統係用以例示y MHz RF產生器產生具有狀態S1、及次狀態S0a與S0b之RF訊號。
圖5B顯示根據本發明所述之各種實施例的一系統,此系統係用以例示當x MHz RF產生器為主產生器時,y MHz RF產生器產生具有狀態S1、及次狀態S0a與S0b的RF訊號。
圖6A例示根據本發明所述之某些實施例之x MHz RF產生器所產生之RF訊號在狀態S1與S0兩狀態期間的次脈動。
圖6B例示根據本發明所述之各種實施例使用y MHz RF產生器並協同使用產生具有四個次狀態S0a、S0b、S1a與S1b之RF訊號的x MHz RF產生器。
圖6C例示根據本發明所述之數個實施例在狀態S0期間之工作週期係不同於在狀態S1期間的工作週期。
圖7A顯示根據本發明中所述之某些實施例之一系統,此系統係用以例示在x MHz RF產生器中使用四個次狀態S0a、S0b、S1a與S1b。
圖7B顯示根據本發明所述之各種實施例的一系統,此系統係用以例示當x MHz RF產生器為主產生器時,在x MHz RF產生器中使用四個次狀態S0a、S0b、S1a與S1b。
圖8A例示根據本發明所述之某些實施例之y MHz RF產生器所產生之RF訊號在狀態S1與S0兩狀態期間的次脈動。
圖8B例示根據本發明所述之各種實施例使用x MHz RF產生器並協同使用產生具有四個次狀態S0a、S0b、S1a與S1b之RF訊號的y MHz RF產生器。
圖8C例示根據本發明所述之各種實施例在狀態S0期間之工作週期係不同於在狀態S1期間之工作週期。
圖9A顯示根據本發明所述之某些實施例之一系統,此系統係用以例示在y MHz RF產生器中使用四個次狀態S0a、S0b、S1a與S1b。
圖9B顯示根據本發明所述之各種實施例的一系統,此系統係用以例示當x MHz RF產生器為主產生器時,在y MHz RF產生器中使用四個次狀態S0a、S0b、S1a與S1b。
圖10A根據本發明所述之各種實施例例示x與y MHz RF產生器兩者的多個次狀態。
圖10B根據本發明所述之數個實施例例示x與y MHz RF產生器兩者的多個次狀態。
圖11A顯示根據本發明所述之某些實施例之一系統,此系統係用以例示在x與y MHz RF產生器兩者中同時使用次脈動。
圖11B顯示根據本發明所述之各種實施例之一系統,此系統係用以例示當x MHz RF產生器作為主產生器時,在x與y MHz RF產生器兩者中同時使用次脈動。
圖12顯示根據本發明所述之數個實施例之一系統,此系統係用以例示在x MHz RF產生器或y MHz RF產生器中使用開關選擇四個次狀態S1a、S1b、S0a與S0b中的一者。
圖13A顯示根據本發明所述之某些實施例之一數位訊號處理器(DSP),此DSP係用以例示使用內部時脈源產生數位脈動訊號。
圖13B顯示根據本發明所述之各種實施例的一DSP,此DSP係用以例示使用複數內部時脈源產生數位脈動訊號。
圖14顯示根據本發明所述之某些實施例之一DSP,此DSP使用調變訊號來決定是否產生多個次狀態Sna與Snb或產生狀態Sm。
下面的實施例說明一狀態內之次脈動用的系統與方法。當明白,在缺乏某些或全部此些特定細節的情況下仍可施行本發明實施例。在其他情況下,不詳細說明習知的製程操作以免不必要地模糊本發明實施例。
圖1顯示射頻(RF)產生器100的一實施例,用以例示一狀態內的次脈動。RF產生器100接收時脈訊號(如電晶體-電晶體邏輯(TTL)訊號等)或產生時脈訊號。例如,RF產生器100自時脈源接收時脈訊號或包含能產生時脈訊號的時脈源。時脈源的實例包含振盪器(如石英振盪器等)或與鎖相迴路耦合的振盪 器。時脈訊號具有狀態Sm,其中m為1或0。例如,時脈訊號具有高狀態與低狀態,低狀態係低於高狀態。又例如,時脈訊號具有邏輯位準1與邏輯位準0。
RF產生器100自具有狀態Sm的時脈訊號產生脈動訊號。例如,RF產生器100產生脈動訊號,脈動訊號自狀態Sm轉換至次狀態Sna然後更進一步地轉換至次狀態Snb,其中n為0或1。RF產生器100所產生的脈動訊號的頻率係高於具有狀態Sm的時脈訊號的頻率。例如,脈動訊號在狀態S1或S0期間所具有的頻率係高於時脈訊號在狀態S1與狀態S0期間所具有的頻率。又例如,脈動訊號在狀態S1與S0期間所具有的頻率係高於時脈訊號在狀態S1與狀態S0期間所具有的頻率。
在某些實施例中,狀態S1所具有的功率位準係高於狀態S0的功率位準。例如,具有狀態S1之RF訊號的功率位準為2000瓦,狀態S0期間RF訊號的功率位準為0瓦。又例如,具有狀態S1之RF訊號的功率位準係高於0瓦,狀態S0期間RF訊號的功率位準為0瓦。又更例如,狀態S0期間RF訊號的功率位準係高於0瓦,狀態S1期間RF訊號的功率位準係高於狀態S0期間RF訊號的功率位準。
次狀態Sna與Snb係嵌於時脈訊號的狀態S1或狀態S0內。例如,次狀態Sna與Snb佔據複數狀態Sm中的一者。又例如,次狀態S1a與S1b佔據狀態S1但不佔據狀態S0。又更例如,次狀態S0a與S0b佔據狀態S0但不佔據狀態S1。
如圖102所例示,具有次狀態Sna與Snb的脈動訊號自次狀態Sna轉換至次狀態Snb,然後更進一步地自次狀態Snb轉換至次狀態Sna,接著自次狀態Sna轉換至次狀態Snb,然後轉換至狀態Sm。
圖2A為圖200的一實施例,圖200係用以例示x百萬赫茲(MHz)RF產生器之一狀態內的次脈動,其中x為2。在某些實施例中x係落在預定範圍2內。例如,x係落在2個MHz內。又例如,x為2.5。又更例如,x為1.5。
在各種實施例中,x為27。在各種實施例中,x係落在預定範圍27內。例如,x係落在27的2MHz內。又例如,x為25.5。又更例如,x為29。又更例如,x係落在27的5MHz內。
圖200繪示脈動訊號202等之邏輯位準對時間的關係,時間的單位為秒。脈動訊號202係由如TTL1訊號等的時脈訊號204所產生。例如,脈動訊號202係藉著以如TTL2訊號等之調變訊號來調變時脈訊號204而自時脈訊號204產生。又例如,當時脈訊號204的振幅(如功率位準)乘以和脈動訊號202之振幅相同的一訊號振幅時,產生脈動訊號202。脈動訊號202為數位脈動訊號TTL3的一實例。
在時脈訊號204的狀態S0期間,脈動訊號202具有一邏輯位準,如邏輯位準0、邏輯位準0.5、邏輯位準0.2等。在時脈訊號204的狀態S1期間,脈動訊號202具有複數邏輯位準,如邏輯位準1與邏輯位準0、邏輯位準0.5與邏輯位準1、邏輯位準0.9與邏輯位準0等。在時脈訊號204的狀態S1期間,脈動訊號202在次狀態S1a與S1b之間轉換,例如交替。在脈動訊號202之次狀態S1a與S1b之間的轉換頻率係高於在時脈訊號204之狀態S1與S0之間的轉換頻率。例如,在次狀態S1b與S1a之間的轉換頻率為在狀態S0與S1之間的轉換頻率的四倍。又例如,在次狀態S1b與S1a之間的轉換頻率為在狀態S0與S1之間的轉換頻率的五倍。又更例如,在次狀態S1b與S1a之間的轉換頻率為在狀態S0與S1之間的轉換頻率的兩倍至100倍之間。
應注意,在各種實施例中,在次狀態S1a與S1b之間的訊號202的脈動會促進化學僵局(如氣體進入的時間等)發生於電漿室內、或使電漿室內達到一壓力、或達到使電漿室內達到一溫度、或使電漿室之下電極與上電極之間達到一間隙。又,在某些實施例中,進行在次狀態S1a與S1b之間之訊號202的脈動以控制基板的蝕刻或基板上的膜層沉積。在數個實施例中,在次狀態S1a與S1b之間之訊號202的脈動能降低會對晶圓之沉積膜層、矽、線路等或其上具有積體電路之基板的特徵部(如電路元件)造成損害之能量的產生機會。又,在某些實施例中,次狀態S1a能促進電漿室內產生離子之能量的產生,而次狀態S1b能促進電漿室內離子的移動以增進如蝕刻、清理、降低沉積率(和狀態S0期間相比)等製程。
應注意,x MHz RF產生器在時脈訊號204的狀態S0期間所產生之功率量係少於在脈動訊號204之次狀態S1a與S1b期間所產生之功率量。較少的功率量會導致電漿之離子之離子能量少於次狀態S1a與S1b期間所產生之離子能量及/或離子密度少於次狀態S1a與S1b期間所產生之離子密度。
圖2B為圖210之一實施例,圖210係用以例示x MHz RF產生器與y MHz RF產生器之使用。y的實例包含27與60。在某些實施例中,y係落在預定範圍27之內。例如,y係介於25與29MHz之間。又例如,y係介於57與63MHz之間。又更例如,y係介於24與30MHz之間。又例如,y係介於55與65MHz之間。
在某些實施例中,當x為2時、y為27。在各種實施例中,當x為27時、y為60。在數個實施例中,當x為2時、y為60。
圖210繪示RF產生器所產生之RF訊號的經輸送的功率與時間之間的關係。應注意,經輸送的功率為前饋功率與反射功率之間的差。在某些實施 例中,前饋功率為RF產生器所產生並供給至電漿室的功率,反射功率為自電漿室朝向RF產生器反射的功率。
圖210包含RF訊號212,其係類似於脈動訊號202(圖2A)。例如,RF訊號212具有狀態S0、次狀態S1a與次狀態S1b且以脈動訊號202在此些狀態之間轉換的方式在狀態S0、次狀態S1a與次狀態S1b之間轉換。RF訊號212所具有的頻率係和脈動訊號202的頻率與TTL3訊號的頻率相同。RF訊號212係自經輸送的功率所產生,經輸送的功率係基於x MHz RF產生器所供給之RF訊號及朝向x MHz RF產生器反射之RF訊號所產生。
在RF訊號212的狀態S0期間,y MHz產生器供給一RF訊號。當y MHz RF產生器供給RF訊號時,功率自電漿室朝向y MHz RF產生器反射以更進一步地產生經輸送的功率RF訊號214。RF訊號214具有狀態S0且所具有之頻率係與TTL1訊號的頻率相同。又,在RF訊號212的次狀態S1a與S1b期間,RF訊號214具有狀態S1。RF訊號212在狀態S1與S0之間轉換。例如,當RF訊號212在狀態S0、次狀態S1a與次狀態S1b之間轉換時,RF訊號214在狀態S1與S0之間轉換。
圖2C為圖220之一實施例,圖220係用以例示在次狀態S1b期間具有非零邏輯位準的脈動訊號222。除了脈動訊號222在次狀態S1b期間具有非零邏輯位準外,脈動訊號222係類似於脈動訊號202(圖2B)。例如,除了脈動訊號222從次狀態S1a掉落至次狀態S1b(次狀態S1b的位準係高於脈動訊號204之狀態S0的位準)外,脈動訊號222係以類似於脈動訊號202的方式產生。接著,脈動訊號222自次狀態S1b的位準掉落至狀態S0的位準以自次狀態S1b轉換至狀態S0。脈動訊號222具有之頻率係與數位脈動訊號TTL3之頻率相同。
圖2D為圖230之一實施例,圖230係用以例示與y MHz RF產生器所產生的脈動訊號214協同使用之在次狀態S1b期間具有非零邏輯位準的脈動訊號232。除了脈動訊號232在次狀態S1b期間具有非零邏輯位準外,脈動訊號232係類似於脈動訊號212(圖2B)。例如,除了脈動訊號232從次狀態S1a轉換至高於脈動訊號214之狀態S0之經輸送的功率位準的一位準外,脈動訊號232係以類似於脈動訊號212的方式產生。較高位準係於次狀態S1b期間達到。在次狀態S1b期間達到較高位準後,脈動訊號232在狀態S0期間轉換至脈動訊號214的位準。脈動訊號232所具有之頻率係與數位脈動訊號TTL3的頻率相同。
應注意,雖然將基於y MHz RF產生器所供給之RF訊號所產生的脈動訊號214顯示為具有約100瓦的高量經輸送的功率位準及約10瓦的低量經輸送的功率位準,但在某些實施例中,脈動訊號214在在狀態S1期間具有介於60瓦至160瓦的高功率位準,並在狀態S0期間具有介於1瓦至55瓦的低功率位準。在各種實施例中,在次狀態S1a期間基於x MHz RF產生器所供給之RF訊號所產生之脈動經輸送的功率訊號的最高功率位準係高於在狀態S1期間基於y MHz RF產生器所供給之RF訊號所產生之脈動經輸送的功率訊號的最高功率位準。在某些實施例中,在狀態S0期間基於x MHz RF產生器所供給之RF訊號所產生之經輸送的功率脈動訊號的最低功率位準係低於在狀態S0期間基於y MHz RF產生器所供給之RF訊號所產生之經輸送的功率脈動訊號的最低功率位準。
在各種實施例中,狀態S0佔據的時間期間係與次狀態S1a與S1b兩者佔據的時間期間相同。例如,狀態S0佔據時脈訊號TTL1的半個時脈週期,次狀態S1a與S1b佔據剩下的半個時脈週期。在數個實施例中,狀態S0佔據的時間 期間係小於或大於時脈訊號TTL1之半個時脈週期,次狀態S1a與S1b佔據時脈週期的剩餘期間。
圖2E顯示圖240的一實施例,圖240係用以例示在狀態S1期間非50%工作週期的一相異工作週期。圖240繪示2MHz RF產生器所輸送之功率對時間t的關係。經輸送的功率係顯示為脈動訊號242。應注意,訊號242在狀態S1期間的工作週期係大於50%,且狀態S1期間所佔據的時間係等於狀態S0期間所佔據的時間。例如,訊號242在次狀態S1a期間所佔據的時間係多於在次狀態S1b期間所佔據的時間。在某些實施例中,訊號242在狀態S1期間的工作週期係小於50%。例如,經輸送之RF訊號在次狀態S1a期間所佔據的時間係少於在次狀態S1b期間所佔據的時間。
更應注意,每一訊號202、212、222與232(圖2A至2D)在狀態S1期間的工作週期為50%。
在數個實施例中,x MHz RF產生器所輸送之功率的狀態S1佔據時間係少於x MHz RF產生器所輸送之功率的狀態S0佔據時間。在此些實施例中,經輸送的功率在狀態S1期間的工作週期為50%。
在各種實施例中,x MHz RF產生器所輸送之功率的狀態S1佔據時間係少於或多於x MHz RF產生器所輸送之功率的狀態S0佔據時間。在此些實施例中,經輸送的功率在狀態S1期間的工作週期係大於或小於50%。
在某些實施例中,TTL訊號所具有之頻率係等於脈動訊號242在狀態S1期間所具有的頻率。TTL訊號係由產生TTL3訊號的裝置所產生。例如,下面將說明的x MHz RF產生器的數位訊號處理器(DSPx)自TTL1訊號及調變訊號產生TTL訊號。調變訊號對TTL1訊號進行調變以產生TTL訊號。
圖3A顯示系統300的一實施例,系統300係用以控制TTL1訊號的狀態S1期間的離子能量。系統300包含x MHz RF產生器與y MHz RF產生器。系統300更包含阻抗匹配電路302、電漿室304及工具使用者界面(UI)系統306。工具UI系統306的實例包含桌上型電腦、伺服器、虛擬機器、筆記型電腦、平板電腦、手機、智慧手機等。在各種實施例中,工具UI系統306包含處理器及記憶體裝置,下面將提供其實例。在某些實施例中,工具UI系統306係藉由如廣域網路(WAN)、區域網路(LAN)、網際網路、內部網路等的電腦網路耦合至x與y MHz RF產生器。
阻抗匹配電路302係藉由RF纜線308耦合至x MHz RF產生器的輸出。類似地,阻抗匹配電路302係藉由RF纜線310耦合至y MHz RF產生器的輸出。阻抗匹配網路302匹配耦合至阻抗匹配網路302一側之電漿系統304之一負載的阻抗與耦合至阻抗匹配網路302另一側之一源的阻抗。例如,阻抗匹配網路302匹配RF傳輸線312與電漿系統304的阻抗與x MHz RF產生器、y MHz RF產生器、RF纜線308、及RF纜線310的阻抗。
電漿室304係藉由RF傳輸線312耦合至阻抗匹配電路302。電漿室304包含夾頭314、上電極316及其他部件(未顯示),如圍繞上電極316的上介電環、圍繞上介電環的上電極延伸件、圍繞夾頭314之下電極的下介電環、圍繞下介電環的下電極延伸件、上電漿排除區(PEZ)環、下PEZ環等。上電極316係面對夾頭314並與其相望。晶圓318(如虛置基板、半導體晶圓等)在夾頭314的上表面320上受到其支撐。在製造期間於半導體晶圓上進行各種製程,如化學氣相沉積、清理、沉積、濺射、蝕刻、離子植入、光阻剝除等。在半導體晶圓上建構積體電路,如特殊應用積體電路(ASIC)、可程式化邏輯裝置(PLD)等,且積體電路係用於各種電子裝置,如手機、平板、智慧型手機、電腦、筆記型電腦、網路設備等中。
下電極與上電極316的每一者係由金屬(如鋁、鋁合金、銅等)所製成。夾頭314可為靜電夾頭(ESC)或磁性夾頭。
工具UI系統306包含能產生時脈訊號(如數位脈動訊號、TTL1訊號等)的時脈源,時脈訊號係藉由纜線313而供給予x MHz RF產生器的DSPx。文中所指的處理器可以是中央處理單元(CPU)、微處理器、ASIC、PLD、控制器等。工具UI系統306亦藉由纜線314將時脈訊號TTL1供給予y MHz RF產生器的DSP(DSPy)。纜線313與314的每一者皆包含通用序列匯流排(USB)纜線、串接纜線、平行纜線、乙太網纜線等。
工具UI系統306將包含了效能參數的配方(如數據檔案等)提供予x與y MHz RF產生器的每一者,效能參數例如是一狀態的工作週期、佔據存在的持續時間區間、功率位準、頻率位準等。例如,工具UI系統306將用以操作x MHz RF產生器的配方提供予DSPx、並將用以操作y MHz RF產生器的配方提供予DSPy。配方係儲存在DSPx與DSPy每一者中。
DSPx接收時脈訊號TTL1並自時脈訊號TTL1產生數位脈動訊號如TTL3訊號。例如,DSPx接收時脈訊號TTL1並修改狀態S1期間的時脈訊號TTL1、以在TTL1訊號的狀態S1期間增加次脈動。又例如,DSPx接收時脈訊號TTL1並修改狀態S1期間的時脈訊號TTL1、以增加狀態S1期間之時脈訊號TTL1的頻率而產生數位脈動訊號TTL3。在此實例中,DSPx不會修改狀態S0期間的時脈訊號TTL1。又更例如,DSPx接收時脈訊號TTL1並包含可產生時脈訊號TTL2的時脈源。時脈訊號TTL2所具有的頻率係與數位脈動訊號TTL3在狀態S1期間所具有的頻率相同。又,時脈訊號TTL1所具有的頻率係與時脈訊號TTL3在狀態S0 期間所具有的頻率相同。DSPx將時脈訊號TTL1乘以時脈訊號TTL2而產生時脈訊號TTL3。
在數個實施例中,DSPx包含能產生時脈訊號TTL1的時脈源,而非自工具UI系統306接收時脈訊號TTL1。在各種實施例中,x MHz RF產生器包含能產生時脈訊號TTL1的時脈源,而非自工具UI系統306接收時脈訊號TTL1。
在各種實施例中,時脈訊號TTL2係由位於工具UI系統306內的時脈源所接收。在某些實施例中時脈訊號TTL2係由x MHz RF產生器內的時脈源所產生。
在狀態S1b期間,自DSPx將針對次狀態S1b的數位脈動訊號TTL3與時脈訊號TTL1提供予功率控制器PWRS1bx、並將針對次狀態S1b的數位脈動訊號TTL3與時脈訊號TTL1提供予自動頻率調整器(AFT)AFTS1bx。例如,自DSPx將TTL3訊號具有次狀態S1b的部分提供予功率控制器PWRS1bx及調整器AFTS1bx。
在某些實施例中,RF產生器的功率控制器及RF產生器的AFT皆為RF產生器之DSP的部件。例如,x MHz RF產生器的自動頻率調整器AFTS0x、AFTS1ax與AFTS1bx及功率控制器PWRS1ax、PWRS1bx與PWRS0x皆為被整合至DSPx之電路內的電路。又例如,調整器AFTS0x、AFTS1ax與AFTS1bx及功率控制器PWRS1ax、PWRS1bx與PWRS0x皆為DSPx所執行之電腦程式的一部分。
功率控制器PWRS1bx接收針對次狀態S1b的數位脈動訊號TTL3並接收針對狀態S1的時脈訊號TTL1,並決定或辨識欲被x MHz RF產生器產生並供給的RF訊號的功率位準。欲被x MHz RF產生器產生並供給的RF訊號的功率位準所具有的頻率係與數位脈動訊號TTL3在次狀態S1b期間的頻率相同。在某些實 施例中,對應至、映射至、連結至TTL3訊號之次狀態S1b及對應至TTL1時脈訊號之狀態S1的功率位準係儲存在功率控制器PWRS1bx之記憶體裝置中。記憶體裝置的實例包含唯讀記憶體(ROM)、隨機存取記憶體(RAM)、或其組合。在某些實施例中,記憶體裝置為快閃記憶體、獨立磁碟冗餘陣列(RAID)、硬碟等。
在各種實施例中,TTL3訊號之次狀態S1b及TTL1訊號的狀態S1的功率位準係基於欲達到的處理速率(如欲達到的蝕刻率、欲達到的沉積率、欲達到的清理率、欲達到的濺射率等)所決定。蝕刻率為晶圓318的蝕刻率。沉積率為在晶圓318上沉積如聚合物、光遮罩、單體等材料的沉積率。清理率為例如藉由蝕刻、藉由沉積、藉由沉積與蝕刻等清理晶圓318的清理率。濺射率為濺射晶圓318或濺射沉積在晶圓318上之材料的濺射率。
又,調整器AFTS1bx接收針對次狀態S1b的數位脈動訊號TTL3並接收針對狀態S1的時脈訊號TTL1,並決定或辨識欲被x MHz RF產生器產生的RF訊號的一射頻頻率的量或一系列射頻頻率的複數量。在某些實施例中,對應至TTL3訊號之次狀態S1b及對應至TTL1時脈訊號之狀態S1的一射頻頻率的量或一系列射頻頻率的複數量係儲存在調整器AFTS1bx的記憶體裝置中。
對應至TTL3訊號之次狀態S1b及TTL1時脈訊號之狀態S1的功率位準係自功率控制器PWRS1bx提供至x MHz RF產生器的RF電源322。又,一射頻頻率的量或一系列射頻頻率的複數量係由調整器AFTS1bx提供至RF電源322。在接收到TTL3訊號之次狀態S1b與TTL1時脈訊號之狀態S1的功率位準以及一射頻頻率的量或一系列射頻頻率之複數量後,RF電源322產生具有該功率位準以及該射頻頻率的量或該系列射頻頻率之複數量的RF訊號。RF電源322所產生之RF訊號係藉由RF纜線308而供給至阻抗匹配電路302。
又,在TTL1訊號的狀態S1期間,y MHz RF產生器的DSPy將時脈訊號TTL1提供予y MHz RF產生器的功率控制器PWRS1y。又,y MHz RF產生器的DSPy將時脈訊號TTL1提供予y MHz RF產生器的調整器AFTS1y。在接收到時脈訊號TTL1後,功率控制器PWRS1y決定或辨識y MHz RF產生器欲產生之RF訊號的功率位準。例如,時脈訊號TTL1之一狀態與y MHz RF產生器欲產生之RF訊號之一功率位準之間的對應(如匹配、連結、一對一關係等)係儲存在功率控制器PWRS1y的記憶體裝置中。
又,在接收到時脈訊號TTL1後,調整器AFTS1y決定或辨識y MHz RF產生器欲產生之RF訊號的一射頻頻率的量或一系列射頻頻率的複數量。例如,時脈訊號TTL1之一狀態與y MHz RF產生器欲產生之RF訊號的一射頻頻率的量或一系列射頻頻率的複數量之間的對應係儲存在調整器AFTS1y的記憶體裝置中。
對應至狀態S1的功率位準係自功率控制器PWRS1y提供至y MHz RF產生器的RF電源324。又,一射頻頻率的量或一系列射頻頻率的複數量係由調整器AFTS1y提供至RF電源324。在接收到狀態S1的功率位準以及該射頻頻率的量或該系列射頻頻率的複數量之後,RF電源324產生具有該功率位準以及該射頻頻率的量或該系列射頻頻率的複數量的RF訊號。RF電源324所產生的RF訊號係藉由RF纜線310而供給至阻抗匹配電路302。
應注意,在某些實施例中DSPx藉由一纜線將TTL3訊號提供至DSPy。在狀態S1期間,DSPy基於TTL3訊號決定自次狀態S1a轉換至次狀態S1b的轉換時間以及自次狀態S1b轉換至次狀態S1a的轉換時間。又,在狀態S1期間,DSPy發送一訊號至功率控制器PWRS1y,以調整在自次狀態S1a轉換至次狀態 S1b的轉換時間處或自次狀態S1b轉換至次狀態S1a的轉換時間處由功率控制器PWRS1y所決定的功率。所決定的功率係基於x MHz RF產生器所輸送或供給之功率在次狀態S1a與S1b之間轉換時所發生的電漿阻抗變化來進行調整。為了補償x MHz RF產生器所輸送或供給之功率在次狀態S1a與S1b之間轉換時的調整,自DSPx發送TTL3訊號至DSPy。x MHz RF產生器所輸送或供給的功率的調整會造成電漿阻抗的變化。
又,在狀態S1期間,DSPy發送一訊號至調整器AFTS1y以調整在自次狀態S1a轉換至次狀態S1b的轉換時間處或自次狀態S1b轉換至次狀態S1a的轉換時間處由調整器AFTS1y所決定的頻率。所決定的頻率係基於x MHz RF產生器所供給之功率在次狀態S1a與S1b之間轉換時所發生的電漿阻抗變化來進行調整。為了補償x MHz RF產生器所產生之RF訊號之頻率在次狀態S1a與S1b之間轉換時的調整,自DSPx發送TTL3訊號至DSPy。x MHz RF產生器所產生之RF訊號的頻率的調整會造成電漿阻抗的變化。
更應注意,在某些實施例中工具UI系統306藉由纜線314或和纜線314類似的另一纜線將和TTL3訊號相關的資訊(如TTL3訊號的頻率、TTL3訊號在狀態S1期間的工作週期、在TTL3訊號中次狀態S1a出現的時間、在TTL3訊號中次狀態S1b出現的時間等)提供至DSPy,而非自DSPx發送TTL3訊號至DSPy。另一纜線將工具UI系統306連接至DSPy。例如,自工具UI系統306將內含和TTL3訊號相關之資訊的資料檔案提供至DSPy。DSPy包含虛擬鎖相迴路,虛擬鎖相迴路所產生的一訊號係鎖定至TTL3訊號的頻率、且用以調整功率控制器PWRS1y所決定的功率及/或用以調整調整器AFTS1y所決定的頻率。
阻抗匹配電路302匹配負載與源的阻抗,以從在TTL3訊號的次狀態S1b與TTL1時脈訊號的狀態S1期間自x MHz RF產生器所接收的RF訊號以及從在狀態S1期間自y MHz RF產生器所接收的RF訊號產生經修改的RF訊號。例如,阻抗匹配電路302在TTL3訊號的次狀態S1b與TTL1時脈訊號的狀態S1期間產生對應至TTL3訊號之次狀態S1b與TTL1時脈訊號之狀態S1之部分經修改的RF訊號。在TTL3訊號的次狀態S1b與TTL1時脈訊號的狀態S1期間所產生之經修改的RF訊號係藉由RF傳輸線312而發送至夾頭314的下電極。上電極316包含一或多個耦合至中央氣體饋送件(未顯示)的氣體入口(如孔洞等)。中央氣體饋送件自氣體儲槽(未顯示)接收一或多種製程氣體。製程氣體的實例包含含氧氣體,如O2。製程氣體的其他實例包含含氟氣體,如四氟甲烷、六氟化硫、六氟乙烷(C2F6)等。上電極316係接地。夾頭314係藉由RF傳輸線312、阻抗匹配電路302及RF纜線308耦合至x MHz RF產生器。又,夾頭314係藉由RF傳輸線312、阻抗匹配電路302及RF纜線310耦合至y MHz RF產生器。
在某些實施例中,當在上電極316與夾頭314之間供給製程氣體且當x MHz RF產生器及/或y MHz RF產生器藉由阻抗匹配電路302與RF傳輸線312將次狀態S1b的RF訊號提供至夾頭314時,電漿室304內電漿的阻抗會受到影響,如增加、減少等。在TTL3訊號的次狀態S1b與TTL1時脈訊號的狀態S1期間受到影響的電漿具有電漿離子的離子能量。在TTL3訊號的次狀態S1b與TTL1時脈訊號的狀態S1期間的離子能量係用以增加相較於狀態S0或次狀態S1a期間之沉積率的沉積率、或用以在狀態S0期間進行蝕刻而非進行沉積、或用以在狀態S0期間蝕刻晶圓318而非不處理晶圓318、或用以降低相較於次狀態S1a期間之蝕刻率的蝕刻率、或用以在次狀態S1a期間進行沉積相較於進行蝕刻。
又,在TTL3訊號的次狀態S1a與TTL1訊號的狀態S1期間,DSPx將數位脈動訊號TTL3與時脈訊號TTL1提供予x MHz RF產生器的功率控制器PWRS1ax。例如,DSPx將針對次狀態S1a之一部分數位脈動訊號TTL3及針對狀態S1的時脈訊號TTL1提供予功率控制器PWRS1ax。在接收到次狀態S1a的數位脈動訊號TTL3與狀態S1的時脈訊號TTL1後,功率控制器PWRS1ax決定或辨識欲被x MHz RF產生器所產生之RF訊號的功率位準。對應至TTL3訊號之次狀態S1a與時脈訊號TTL1之狀態S1之RF訊號的功率位準係儲存在功率控制器PWRS1ax的記憶體裝置中。在數位脈動訊號TTL3的次狀態S1a與時脈訊號TTL1的狀態S1期間將功率位準提供予RF電源322。
又,在TTL3訊號的次狀態S1a與TTL1訊號的狀態S1期間,DSPx將數位脈動訊號TTL3與時脈訊號TTL1提供至x MHz RF產生器的調整器AFTS1ax。在接收到次狀態S1a的數位脈動訊號TTL3與狀態S1的時脈訊號TTL1後,頻率控制器AFTS1ax決定或辨識對應至數位脈動訊號TTL3之次狀態S1a與時脈訊號TTL1之狀態S1之一射頻頻率的量或一系列射頻頻率的複數量。例如,數位脈動訊號TTL3之次狀態S1a、時脈訊號TTL1之狀態S1與一射頻頻率的量或一系列射頻頻率之複數量之間的對應係儲存在調整器AFTS1ax的記憶體裝置中。
調整器AFTS1ax將該射頻頻率的量或該系列射頻頻率的複數量提供予RF電源322。在接收到數位脈動訊號TTL3之次狀態S1a與時脈訊號TTL1之狀態S1的該功率位準以及在接收到數位脈動訊號TTL3之次狀態S1a與時脈訊號TTL1之狀態S1的該射頻頻率的量或該系列射頻頻率的複數量之後,RF電源322產生具有數位脈動訊號TTL3之次狀態S1a與時脈訊號TTL1之狀態S1的該功率位準以及該射頻頻率的量或該系列射頻頻率的複數量的RF訊號。
阻抗匹配電路302接收x MHz RF產生器針對數位脈動訊號TTL3之次狀態S1a與時脈訊號TTL1之狀態S1所產生的RF訊號並接收y MHz RF產生器針對狀態S1所產生的RF訊號,並且匹配次狀態S1a期間負載與源的阻抗以從次狀態S1a的RF訊號產生經修改的RF訊號。例如,阻抗匹配電路302在次狀態S1a期間產生對應至TTL3訊號之次狀態S1a與TTL1時脈訊號的狀態S1之部分經修改的RF訊號。與數位脈動訊號TTL3的次狀態S1a與時脈訊號TTL1的狀態S1相關之經修改的RF訊號係藉由RF傳輸線312而發送至夾頭314。
在接收到對應至數位脈動訊號TTL3之次狀態S1a與時脈訊號TTL1之狀態S1之經修改的RF訊號後,電漿室304內的電漿離子受到激發以進行處理,如增加相較於狀態S0或次狀態S1b期間之蝕刻率的蝕刻率、減少相較於狀態S0或次狀態S1b期間之沉積率的沉積率、增加相較於狀態S0或次狀態S1b期間之清理率的清理率、增加相較於狀態S0或次狀態S1b期間在晶圓318上之濺射率的濺射率。
在狀態S0期間,DSPx提供數位脈動訊號TTL3予x MHz RF產生器的功率控制器PWRS0x。例如,DSPx將對應至狀態S0的一部分數位脈動訊號TTL3發送至功率控制器PWRS0x。應注意,在狀態S0期間,TTL3訊號係與TTL1訊號相同。在接收到與狀態S0相關之數位脈動訊號TTL3後,功率控制器PWRS0x決定或辨識狀態S0的功率位準。例如,對應至狀態S0的功率位準係儲存在功率控制器PWRS0x的記憶體裝置中並自記憶體裝置受到辨識。功率位準係由功率控制器PWRS0x提供予RF電源322。在接收到狀態S0的功率位準後,RF電源322產生具有和狀態S0相關之功率位準的RF訊號。
又,在狀態S0期間,DSPx將數位脈動訊號TTL3提供予x MHz RF產生器的調整器AFTS0x。例如,DSPx將具有狀態S0的一部分數位脈動訊號TTL3提供予調整器AFTS0x。在接收到對應至狀態S0的數位脈動訊號TTL3後,調整器AFTS0x決定或辨識一射頻頻率的量或一系列射頻頻率的複數量。例如,調整器AFTS0x自調整器AFTS0x的記憶體裝置辨識該射頻頻率的量或該系列射頻頻率的複數量。調整器AFTS0x將該射頻頻率的量或該系列射頻頻率的複數量提供予RF電源322。
在狀態S0期間,在接收到與狀態S0相關之該功率的量以及該射頻頻率的量或該系列射頻頻率的複數量後,RF電源322產生對應至狀態S0的RF訊號。對應至狀態S0的RF訊號具有與狀態S0相關之該功率位準以及該射頻頻率的量或該系列射頻頻率的複數量。
又,在狀態S0期間,DSPy提供時脈訊號TTL1予y MHz RF產生器的功率控制器PWRS0y及調整器AFTS0y。例如,DSPy發送具有狀態S0的一部分時脈訊號TTL1予功率控制器PWRS0x及調整器AFTS0y。在接收到和狀態S0相關的時脈訊號TTL1之後,功率控制器PWRS0y決定或辨識y MHz RF產生器欲產生之RF訊號的功率位準,且調整器AFTS0y決定或辨識RF訊號的一射頻頻率的量或一系列射頻頻率的複數量。功率控制器PWRS0y將和狀態S0相關的功率位準提供予RF電源324,且調整器AFTS0y將該射頻頻率的量或該系列射頻頻率的複數量提供予RF電源324。在自功率控制器PWRS0y接收到狀態S0的功率位準並自調整器AFTS0y接收到該射頻頻率的量或該系列射頻頻率的複數量之後,RF電源324產生具有該功率位準及該射頻頻率之量或該系列射頻頻率之複數量的RF訊號。
阻抗匹配電路302接收RF電源322在狀態S0期間藉由RF纜線308所供給之RF訊號、並接收RF電源324在狀態S0期間藉由RF纜線310所供給之RF訊號,且基於此些RF訊號匹配負載與源的阻抗以產生狀態S0之經修改的RF訊號。與狀態S0相關之經修改的RF訊號係藉由RF傳輸線312而提供予夾頭304。
在某些實施例中,相較於次狀態S1a或次狀態S1b期間晶圓318上的沉積率,對應至狀態S0之經修改的RF訊號能增加在晶圓318上沉積材料的沉積率。在各種實施例中,相較於次狀態S1a或次狀態S1b期間晶圓318之膜層或晶圓318上之膜層的蝕刻率,對應至狀態S0之經修改的RF訊號能減少晶圓318之膜層或晶圓318上之膜層的蝕刻率。在數個實施例中,對應至狀態S0之經修改的RF訊號係用以在晶圓318上沉積材料,在次狀態S1a期間所產生之經修改的RF訊號或在次狀態S1b期間所產生之經修改的RF訊號係用以蝕刻晶圓318的膜層或晶圓318上的膜層。在某些實施例中,在狀態S0期間所產生之一部分經修改的RF訊號係用以在電漿室304內產生如擊發電漿等。例如,當將製程氣體供給至電漿室304且由x與y MHz RF產生器中的一或多者供給一或多個RF訊號時,製程氣體會受到點燃而在電漿室304內產生電漿。
在各種實施例中,x MHz RF產生器的功率控制器PWRS0x、PWRS1ax與PWRS1bx係藉由開關(如多工器等)而連接至DSPx的單一相同輸出,而非將x MHz RF產生器的每一功率控制器PWRS0x、PWRS1ax與PWRS1bx耦合至DSPx的不同輸出。開關在狀態S0期間將DSPx連接至功率控制器PWRS0x,在次狀態S1a期間將DSPx連接至功率控制器PWRS1ax,在次狀態S1b期間將DSPx連接至功率控制器PWRS1bx。
類似地,在數個實施例中,y MHz RF產生器的功率控制器PWRS0y與PWRS1y係藉由開關而連接至DSPy的單一相同輸出,而非將y MHz RF產生器的每一功率控制器PWRS0y與PWRS1y耦合至DSPy的不同輸出。開關在狀態S0期間將DSPy連接至功率控制器PWRS0y,在狀態S1期間將DSPy連接至功率控制器PWRS1y。
又,在各種實施例中,x MHz RF產生器的調整器AFTS0x、AFTS1ax與AFTS1bx係藉由開關(如多工器等)而連接至DSPx的單一相同輸出而非將x MHz RF產生器的每一調整器AFTS0x、AFTS1ax與AFTS1bx耦合至DSPx的不同輸出。開關在狀態S0期間將DSPx連接至調整器AFTS0x,在次狀態S1a期間將DSPx連接至調整器AFTS1ax,在次狀態S1b期間將DSPx連接至調整器AFTS1bx。
類似地,在數個實施例中,y MHz RF產生器的調整器AFTS0y與AFTS1y係藉由開關而連接至DSPy的單一相同輸出,而非將y MHz RF產生器的每一調整器AFTS0y與AFTS1y耦合至DSPy的不同輸出。開關在狀態S0期間將DSPy連接至調整器AFTS0y,在狀態S1期間將DSPy連接至調整器AFTS1y。
圖3B為系統350之一實施例,系統350係用以控制狀態S1期間的離子能量。系統350包含x MHz RF產生器、y MHz RF產生器、阻抗匹配電路302、電漿室304及工具UI系統307。除了在系統350中DSPx產生時脈訊號TTL1與數位脈動訊號TTL3外,系統350以類似於系統300(圖3A)的方式操作。x MHz RF產生器為主RF產生器而y MHz RF產生器為副RF產生器。時脈訊號TTL1與TTL3訊號係自x MHz RF產生器的DSPx藉由纜線而送至y MHz RF產生器的DSPy。
工具UI系統307將包含效能參數的對應配方提供予x與y MHz RF產生器每一者。對應的配方係儲存在DSPx與DSPy每一者中。
在某些實施例中,x MHz RF產生器所供給之RF訊號的功率的頻率係與訊號202(圖2A)或訊號212(圖2B)或訊號222(圖2C)或訊號232(圖2D)的頻率相同。
在各種實施例中,將和TTL3訊號相關的訊息自DSPx藉由將DSPx連接至DSPy的纜線提供予DSPy、而非將TTL3訊號自DSPx藉由纜線發送至DSPy。例如,自DSPx將一資料檔案內和TTL3訊號相關的訊息提供予DSPy。DSPy包含虛擬鎖相迴路而可產生鎖定至TTL3訊號之頻率的訊號,此訊號係用以調整功率控制器PWRS1y所決定的功率及/或調整器AFTS1y所決定的頻率。
圖4A為圖400的一實施例,圖400係用以例示操作在兩狀態S1與S0的x MHz RF產生器及操作在狀態S1、次狀態S0a與次狀態S0b的y MHz RF產生器。圖400包含自x MHz RF產生器所供給之RF訊號所產生的經輸送的功率訊號402及自y MHz RF產生器所供給之RF訊號所產生的經輸送的功率訊號404。圖400繪示經輸送的功率對時間的關係。經輸送的功率訊號404所具有的頻率係與數位脈動訊號TTL3所具有的頻率相同。
在經輸送的功率訊號402處於狀態S0的時間期間,經輸送的功率訊號404在次狀態S0a與S0b之間轉換,例如交替。在經輸送的功率訊號402處於狀態S1的時間期間,經輸送的功率訊號404不會在兩狀態之間轉換。在經輸送的功率訊號402處於狀態S1的時間期間,經輸送的功率訊號404亦處於狀態S1。
經輸送的功率訊號402在狀態S0期間的功率位準(如零功率位準、小於5瓦的功率位準等)能促進沉積率的增加、或蝕刻率的減少、或濺射率的減 少等。經輸送的功率訊號402在狀態S0期間的功率位準係小於經輸送的功率訊號402在狀態S1期間的功率位準。
又,在經輸送的功率訊號402的狀態S0期間經輸送的功率訊號404在次狀態S0a與S0b之間的轉換能促進對電漿室304(圖3A)中所產生之電漿的阻抗的控制(如增加、減少等)。阻抗的控制能增加電漿的穩定度。例如,當x MHz RF產生器產生RF訊號以更進一步地將經輸送的功率訊號402提供予電漿室304以達到粗略的蝕刻率時,y MHz RF產生器產生RF訊號以更進一步地提供在次狀態S0a與S0b之間轉換的經輸送的功率訊號404。藉著進行經輸送的功率訊號404在次狀態S0a與S0b之間的轉換可達到精細的蝕刻率。又例如,當x MHz RF產生器產生RF訊號以更進一步地將經輸送的功率訊號402提供至電漿室304以達到粗略的沉積率時,y MHz RF產生器產生RF訊號以更進一步地提供在次狀態S0a與S0b之間轉換的經輸送的功率訊號404。藉著進行經輸送的功率訊號404在次狀態S0a與S0b之間的轉換可達到精細的沉積率。又例如,當x MHz RF產生器產生RF訊號以更進一步地將經輸送的功率訊號402提供至電漿室304以達到粗略的濺射率時,y MHz RF產生器產生RF訊號以更進一步地提供在次狀態S0a與S0b之間轉換的經輸送的功率訊號404。藉著進行經輸送的功率訊號404在次狀態S0a與S0b之間的轉換可達到精細的濺射率。
在某些實施例中,粗略的速率比精細的速率具有更大的範圍。例如,粗略的蝕刻率具有介於D埃/分鐘至E埃/分鐘之間的蝕刻率範圍,而精細的蝕刻率具有介於F埃/分鐘至G埃/分鐘之間的蝕刻率範圍。介於F埃/分鐘至G埃/分鐘之間的範圍係落在介於D埃/分鐘至E埃/分鐘之間的範圍內。在各種實施例中, 介於F埃/分鐘至G埃/分鐘之間的範圍係小於介於D埃/分鐘至E埃/分鐘之間的範圍。
在各種實施例中,在經輸送的功率訊號404的次狀態S0b期間,電漿室304(圖3A)內之離子能量的量係少於在經輸送的功率訊號404之次狀態S0a期間電漿室304內之離子能量的量。y MHz RF產生器所產生之RF訊號所產生之較少量的離子能量能促進對電漿室304內電漿的控制,以更進一步地達到速率(蝕刻率、沉積率、清理率、濺射率等)的重覆性並達到電漿的穩定度。又,在經輸送的功率訊號402處於狀態S0之時間期間內產生較少量的離子能量,使x與y MHz RF產生器所產生之RF訊號所供給的大部分能量能朝向產生器反射。大部分功率的反射能改善電漿室304內的電漿穩定度。
圖4B為圖410的一實施例,圖410係用以例示基於y MHz RF產生器所產生之RF訊號所衍生之經輸送的功率訊號412的位準。圖410繪示經輸送之功率對時間的關係。在次狀態S0a期間經輸送的功率訊號412所具有的位準係高於在次狀態S0b期間經輸送的功率訊號404(圖4A)的位準。經輸送的功率訊號412所具有的頻率係與數位脈動訊號TTL3的頻率相同。
在各種實施例中,在次狀態S0a期間經輸送的功率訊號412所具有的位準係高於經輸送的功率訊號404的位準。在各種實施例中,在次狀態S0a期間經輸送的功率訊號412的位準係低於經輸送的功率訊號404的位準。
圖4C為圖420的一實施例,圖420係用以例示基於y MHz RF產生器所產生之RF訊號所衍生之經輸送的功率訊號422的位準。圖420繪示經輸送之功率對時間的關係。在次狀態S0b期間經輸送的功率訊號422所具有的位準係低於經輸送的功率訊號404(圖4A)在次狀態S0a期間所具有的位準。又,在次狀態S0a 期間經輸送的功率訊號422所具有的位準係低於經輸送的功率訊號422在狀態S1期間所具有的位準。經輸送的功率訊號422所具有的頻率係與數位脈動訊號TTL3的頻率相同。
圖4D為圖430的一實施例,圖430係用以例示對比於圖400(圖4A)中所示的位準使用具有不同位準之經輸送的功率訊號432。經輸送的功率訊號432所具有的頻率係與TTL3的頻率相同。經輸送的功率訊號432為下列者的函數:y MHz RF產生器所供給之RF訊號以及自電漿室304藉由RF傳輸線312、阻抗匹配電路302與RF纜線310(圖3A)朝向y MHz RF產生器反射的RF訊號。經輸送的功率訊號432在次狀態S0a期間的功率位準係低於經輸送的功率訊號404(圖4A)在次狀態S0a期間的功率位準。又,經輸送的功率訊號432在次狀態S0a期間的功率位準係低於經輸送的功率訊號402在狀態S1期間的功率位準。又,經輸送的功率訊號432在次狀態S0b期間的功率位準係高於經輸送的功率訊號402在次狀態S0b期間的功率位準。經輸送的功率訊號432在次狀態S0b期間的功率位準係低於經輸送的功率訊號402在狀態S1期間的功率位準並高於經輸送的功率訊號402在狀態S0期間的功率位準。
在各種實施例中,經輸送的功率訊號402在狀態S0期間的功率位準係高於經輸送的功率訊號432在次狀態S0b期間的功率位準。在某些實施例中,經輸送的功率訊號402在狀態S1期間的功率位準係低於經輸送的功率訊號432在次狀態S0a期間的功率位準。
在某些實施例中,狀態S1佔據的時間期間係與次狀態S0a與S0b兩者佔據的時間期間相同。例如,狀態S1佔據時脈訊號TTL1的半個時脈週期,次狀態S0a與S0b佔據剩下的半個時脈週期。在數個實施例中,狀態S1佔據的時間 期間係小於或大於時脈訊號TTL1之半個時脈週期,次狀態S0a與S0b佔據時脈週期的剩餘期間。
圖4E為圖440的一實施例,圖440係用以例示狀態S0期間的工作週期係不同於50%的工作週期。圖440繪示60MHz RF產生器所輸送之功率對時間t的關係。經輸送的功率係顯示為脈動訊號442。應注意,訊號442在狀態S0期間的工作週期係大於50%,且狀態S1期間所佔據的時間係等於狀態S0期間所佔據的時間。例如,訊號442在次狀態S0a期間所佔據的時間係多於在次狀態S0b期間所佔據的時間。在某些實施例中,訊號442在狀態S0期間的工作週期係小於50%。例如,經輸送之訊號在次狀態S0a期間所佔據的時間係少於在次狀態S0b期間所佔據的時間。
更應注意,每一訊號404、412、422與432(圖4A至4D)在狀態S0期間的工作週期為50%。
在數個實施例中,y MHz RF產生器所輸送之功率的狀態S0佔據時間係少於或多於y MHz RF產生器所輸送之功率的狀態S1佔據時間。在此些實施例中,經輸送的功率在狀態S0期間的工作週期為50%。
在各種實施例中,y MHz RF產生器所輸送之功率的狀態S0佔據時間係少於或多於y MHz RF產生器所輸送之功率的狀態S1佔據時間。在此些實施例中,經輸送的功率在狀態S0期間的工作週期係大於或小於50%。
在某些實施例中,TTL訊號所具有之頻率係等於脈動訊號442所具有的頻率。TTL訊號係由產生TTL3訊號的裝置所產生。例如,DSPx自TTL1訊號及調變訊號產生TTL訊號。調變訊號調變TTL1訊號以產生TTL訊號。
圖5A顯示系統500的一實施例,系統500係用以例示y MHz RF產生器產生具有狀態S1、及次狀態S0a與S0b之RF訊號。系統500包含電漿室304、x MHz RF產生器、y MHz RF產生器及工具UI系統306。工具UI系統306的時脈源將時脈訊號TTL1提供予x MHz RF產生器的DSPx及y MHz RF產生器的DSPy。DSPx基於時脈訊號TTL1產生數位脈動訊號TTL3訊號並將TTL3訊號提供予DSPy。例如,DSPx將具有次狀態S0b之一部分數位脈動訊號TTL3提供予DSPy。
在某些實施例中,DSPy基於時脈訊號TTL1產生TTL3訊號,而非DSPx產生TTL3訊號並將TTL3訊號提供予DSPy。例如,DSPy自時脈訊號產生TTL3訊號,時脈訊號係自工具UI系統306的時脈源所接收或自DSPx內部的時脈源所接收。又例如,DSPy自時脈訊號TTL1產生TTL3訊號,時脈訊號TTL1係由DSPy內部的時脈源所產生。又更例如,DSPy自時脈訊號TTL1產生TTL3訊號,時脈訊號TTL1係由y MHz RF產生器內部的時脈源所產生。
在次狀態S0b期間,DSPx藉由纜線將數位脈動訊號TTL3提供予DSPy。DSPy在次狀態S0b期間將數位脈動訊號TTL3及時脈訊號TTL1提供予y MHz RF產生器的功率控制器PWRS0by。例如,DSPy提供具有次狀態S0b的一部分數位脈動訊號TTL3以及具有狀態S0的時脈訊號TTL1。功率控制器PWRS0by決定或辨識y MHz RF產生器欲產生之RF訊號的功率位準以回應數位脈動訊號TTL3與時脈訊號TTL1的接收。例如,功率控制器PWRS0by辨識功率控制器PWRS0by之記憶體裝置內的一功率位準,此功率位準係映射至數位脈動訊號TTL3的次狀態S0b以及時脈訊號TTL1的狀態S0。功率控制器PWRS0by將功率位準發送至RF電源324。
又,在TTL3訊號的次狀態S0b與TTL1訊號的狀態S0期間,DSPy將數位脈動訊號TTL3與時脈訊號TTL1提供予y MHz RF產生器的調整器AFTS0by。調整器AFTS0by決定或辨識y MHz RF產生器欲產生之RF訊號的頻率位準以回應數位脈動訊號TTL3及時脈訊號TTL1的接收。例如,調整器AFTS0by自調整器AFTS0by的記憶體裝置辨識一頻率位準,此頻率位準係映射至數位脈動訊號TTL3的次狀態S0b及時脈訊號TTL1的狀態S0。調整器AFTS0by將該頻率位準提供予RF電源324。在接收到來自功率控制器PWRS0by在數位脈動訊號TTL3之次狀態S0b期間之功率位準以及來自調整器AFTS0by在數位脈動訊號TTL3之次狀態S0b期間以及時脈訊號TTL1之狀態S0期間之頻率位準之後,RF電源324產生具有該頻率位準與該功率位準的RF訊號。
在數位脈動訊號TTL3之次狀態S0b期間以及時脈訊號TTL1之狀態S0期間之功率位準與頻率位準係關於達成一製程率,如蝕刻率、或沉積率、或清理率、或濺射率等。例如,在數位脈動訊號TTL3之次狀態S0b期間以及時脈訊號TTL1之狀態S0期間,y MHz RF產生器所產生的RF訊號能協助在蝕刻晶圓318或於晶圓318上沉積材料的精細調整期間達到複數蝕刻率之間的平衡。複數蝕刻率中的一者係與次狀態S0b相關而複數蝕刻率中的另一者係與次狀態S0a相關。
又,在y MHz RF產生器的次狀態S0b期間,x MHz RF產生器操作於狀態S0。在狀態S0期間,DSPx將時脈訊號TTL1發送至x MHz RF產生器的功率控制器PWRS0x及調整器AFTS0x。在接收到時脈訊號TTL1後,功率控制器PWRS0x決定或辨識一功率位準。此功率位準係自功率控制器PWRS0x的記憶體裝置所辨識。此功率位準係提供至RF電源322。
又,在接收到時脈訊號TTL1後,調整器AFTS0x決定或辨識一頻率位準。該頻率位準係自調整器AFTS0x的記憶體裝置所辨識。調整器AFTS0x將該頻率位準提供予RF電源322。在接收到狀態S0期間的功率位準與頻率位準後,RF電源322產生具有該頻率位準與該功率位準的RF訊號。
應注意,在x MHz RF產生器所產生之RF訊號之狀態S0期間的頻率位準與功率位準能協助達到一製程率,如沉積率、蝕刻率、清理率、濺射率等。例如,在狀態S0期間,x MHz RF產生器產生具有該功率位準的RF訊號,該功率位準係映射至一粗略蝕刻位準及/或映射至一粗略頻率位準。
阻抗匹配電路302接收x MHz RF產生器在狀態S0期間所產生的RF訊號、並接收y MHz RF產生器在次狀態S0b期間所產生的RF訊號,並且匹配負載與源的阻抗以產生經修改的RF訊號。經修改的RF訊號係由阻抗匹配電路302提供予夾頭314,以產生或修改電漿而處理晶圓318以達到一製程率。
又,在次狀態S0a期間,DSPx藉由纜線將數位脈動訊號TTL3提供予DSPy、並藉由纜線將時脈訊號TTL1提供予DSPy。DSPy在次狀態S0a期間將數位脈動訊號TTL3與時脈訊號TTL1提供予y MHz RF產生器的功率控制器PWRS0ay。例如,DSPy提供具有次狀態S0a的一部分數位脈動訊號TTL3並提供具有狀態S0的時脈訊號TTL1。功率控制器PWRS0ay決定或辨識y MHz RF產生器欲產生之RF訊號的功率位準以回應數位脈動訊號TTL3及時脈訊號TTL1的接收。例如,功率控制器PWRS0ay辨識功率控制器PWRS0ay之記憶體裝置內的一功率位準,此功率位準係映射至數位脈動訊號TTL3的次狀態S0a及時脈訊號TTL1的狀態S0。功率控制器PWRS0ay將該功率位準發送至RF電源324。
又,在TTL3訊號的次狀態S0a與TTL1訊號的狀態S0期間,DSPy將數位脈動訊號TTL3提供予y MHz RF產生器的調整器AFTS0ay。調整器AFTS0ay決定或辨識y MHz RF產生器欲產生之RF訊號的頻率位準以回應具有次狀態S0a之數位脈動訊號TTL3及具有狀態S0之時脈訊號TTL1的接收。調整器AFTS0ay自調整器AFTS0ay的記憶體裝置辨識一頻率位準,此頻率位準係映射至數位脈動訊號TTL3的次狀態S0a及時脈訊號TTL1的狀態S0。調整器AFTS0ay將該頻率位準提供予RF電源324。在接收到來自功率控制器PWRS0ay在次狀態S0a期間之功率位準以及來自調整器AFTS0ay在次狀態S0a期間的頻率位準之後,RF電源324產生具有該頻率位準與該功率位準的RF訊號。
在數位脈動訊號TTL3之次狀態S0a期間以及時脈訊號TTL1之狀態S0期間之功率位準與頻率位準係關於達成一製程率,如蝕刻率、或沉積率、或清理率、或濺射率等。例如,在數位脈動訊號TTL3之次狀態S0a期間以及時脈訊號TTL1之狀態S0期間,y MHz RF產生器所產生的RF訊號能協助在蝕刻晶圓318或於晶圓318上沉積材料的精細調整期間達到平衡。在數位脈動訊號TTL3之次狀態S0a期間以及時脈訊號TTL1之狀態S0期間,y MHz RF產生器所產生的RF訊號能協助增加蝕刻晶圓318或蝕刻沉積在晶圓318上之材料的蝕刻率,以更進一步地在次狀態S0b期間達到增加蝕刻率與減少蝕刻率之間的平衡。
又,在y MHz RF產生器的次狀態S0a期間,x MHz RF產生器操作於狀態S0。x MHz RF產生器在狀態S0期間的操作已於前面敘述。阻抗匹配電路302接收x MHz RF產生器在狀態S0期間所產生的RF訊號、並接收y MHz RF產生器在次狀態S0a期間所產生的RF訊號,並且匹配負載與源的阻抗以產生經修改的RF訊號。經修改的RF訊號係由阻抗匹配電路302提供予夾頭314以修改電漿而處 理晶圓318,如蝕刻晶圓318、將材料沉積至晶圓318上、或處理沉積在晶圓318上的材料。
在狀態S1期間,DSPy將TTL3訊號提供予功率控制器PWRS1y。例如,DSPy將具有狀態S1的一部分TTL3訊號提供予功率控制器PWRS1y。應注意在狀態S1期間,TTL3訊號係與TTL1訊號相同。在接收到TTL3訊號後,功率控制器PWRS1y決定或辨識一功率位準並將該功率位準提供予RF電源324。又,在狀態S1期間,DSPy將TTL3訊號提供予調整器AFTS1y。在接收到TTL3訊號後,調整器AFTS1y決定或辨識一頻率位準並將該頻率位準提供予RF電源324。RF電源324產生具有狀態S1期間之該功率位準與該頻率位準的RF訊號、並將此RF訊號提供予阻抗匹配電路302。
又,在狀態S1期間,DSPx將TTL3訊號提供予功率控制器PWRS1x及調整器AFTS1x。在接收到TTL3訊號後,功率控制器PWRS1x決定或辨識與狀態S1相關的功率位準。例如,功率控制器PWRS1x辨識儲存在功率控制器PWRS1x之記憶體裝置中的一功率位準。功率控制器PWRS1x將該功率位準提供予RF電源322。又,在接收到TTL3訊號後,調整器AFTS1x決定或辨識與狀態S1相關的一頻率位準。例如,調整器AFTS1x辨識一頻率位準,此頻率位準係映射至狀態S1且係儲存在調整器AFTS1x的記憶體裝置中。該頻率位準係自調整器AFTS1x提供至電源322。在狀態S1期間,電源322產生具有與狀態S1相關之該頻率位準與該功率位準的RF訊號。
阻抗匹配電路302在狀態S1期間自RF電源322與324接收RF訊號,並匹配負載與源的阻抗以產生經修改的RF訊號。在某些實施例中,源的阻抗係基於阻抗匹配電路302自產生一或多個RF訊號之對應的一或多個RF產生器所接 收的一或多個RF訊號。自阻抗匹配電路302藉由RF傳輸線312將在狀態S1期間所產生之經修改的RF訊號發送至夾頭314。
在各種實施例中,在狀態S1期間所達到的蝕刻率係高於在狀態S0期間所達到的蝕刻率,或在狀態S1期間所達到的沉積率係低於在狀態S0期間所達到的沉積率,或在狀態S1期間所達到的濺射率係高於在狀態S0期間所達到的濺射率,或在狀態S1期間所達到的清理率係高於在狀態S0期間所達到的清理率。
應注意,在某些實施例中,y MHz RF產生器的功率控制器與調整器為DSPy的部件。例如,功率控制器PWRS0ay、PWRS0by與PWRS1y及調整器AFTS1y、AFTS0ay與AFTS0by皆為DSPy所執行之電腦程式的一部分。又例如,功率控制器PWRS0ay、PWRS0by與PWRS1y及調整器AFTS1y、AFTS0ay與AFTS0by皆為整合至DSPy之電路內的電路。
在各種實施例中,y MHz RF產生器的功率控制器PWRS0ay、PWRS0by與PWRS1y係藉由開關(如多工器)而連接至DSPy的單一相同輸出,而非將y MHz RF產生器的每一功率控制器PWRS0ay、PWRS0by與PWRS1y耦合至DSPy的不同輸出。開關在狀態S1期間將DSPy連接至功率控制器PWRS1y,在次狀態S0a期間將DSPy連接至功率控制器PWRS0ay,在次狀態S0b期間將DSPy連接至功率控制器PWRS0by。
類似地,在數個實施例中,x MHz RF產生器的功率控制器PWRS0x與PWRS1x係藉由開關而連接至DSPx的單一相同輸出,而非將x MHz RF產生器的每一功率控制器PWRS0x與PWRS1x耦合至DSPx的不同輸出。開關在狀態S0期間將DSPx連接至功率控制器PWRS0x,在狀態S1期間將DSPx連接至功率控制器PWRS1x。
在各種實施例中,y MHz RF產生器的調整器AFTS1y、AFTS0ay與AFTS0by係藉由開關(如多工器等)而連接至DSPy的單一相同輸出,而非將y MHz RF產生器的每一調整器AFTS1y、AFTS0ay與AFTS0by耦合至DSPy的不同輸出。開關在狀態S1期間將DSPy連接至調整器AFTS1y,在次狀態S0a期間將DSPy連接至調整器AFTS0ay,在次狀態S0b期間將DSPy連接至調整器AFTS0by。
類似地,在數個實施例中,x MHz RF產生器的調整器AFTS0x與AFTS1x係藉由開關而連接至DSPx的單一相同輸出,而非將x MHz RF產生器的每一調整器AFTS0x與AFTS1x耦合至DSPx的不同輸出。開關在狀態S0期間將DSPx連接至調整器AFTS0x,在狀態S1期間將DSPx連接至調整器AFTS1x。
圖5B顯示系統510的一實施例,系統510係用以例示x MHz RF產生器之DSPx產生TTL1與TTL3訊號。時脈訊號TTL1係由DSPx內部的時脈源所產生,而非自工具UI系統306的時脈源接收時脈訊號TTL1。時脈訊號TTL1係用於藉由DSPx產生數位脈動訊號TTL3。TTL3訊號與時脈訊號TTL1係由DSPx提供予DSPy。又,工具UI系統307將與x MHz RF產生器相關的配方提供予DSPx、並將與y MHz RF產生器相關的配方提供予DSPy。
例如,y MHz RF產生器所供給之RF訊號的功率所具有的頻率係與訊號404(圖4A)、或訊號412(圖4B)、或訊號432(圖4C)、或訊號432(圖4D)的頻率相同。
圖6A顯示圖600之一實施例,圖600係用以例示x MHz RF產生器所產生之RF訊號在狀態S1與S0兩狀態期間的脈動。x MHz RF產生器所產生之RF訊號的脈動會在狀態S1期間造成兩個次狀態S1a與S1b、並在狀態S0期間造成兩 個次狀態S0a與S0b。圖600繪示經輸送之RF訊號602的功率位準對時間的關係,此功率位準為x MHz RF產生器所產生且朝向RF產生器反射之RF訊號的函數。
在TTL1訊號的狀態S0期間,RF訊號602在次狀態S0a與S0b之間變動。又,在TTL1訊號的狀態S1期間,RF訊號602在次狀態S1a與S1b之間變動。
在某些實施例中,RF訊號602在次狀態S0b期間的功率位準係低於RF訊號602在次狀態S1b期間的功率位準。
應注意,使用RF訊號602的次狀態S0a與S0b能協助粗略調整在TTL1訊號的狀態S0期間的製程率,如蝕刻率、沉積率、濺射率、或清理率等。
圖6B顯示圖610之一實施例,圖610係用以例示使用y MHz RF產生器以及協同使用產生具有四個次狀態S0a、S0b、S1a與S1b之RF訊號602的x MHz RF產生器。當x MHz RF產生器產生RF訊號以更進一步地提供具有次狀態S0a與S0b的RF訊號602時,y MHz RF產生器產生RF訊號以更進一步地提供具有狀態S0之經輸送的功率RF訊號604。在某些實施例中,當製程率的精細控制為恆定或實質上恆定時,使用x MHz RF產生器所產生之RF訊號602的次狀態S0a與S0b可粗略控制製程率,如蝕刻率、沉積率、濺射率等。在某些實施例中,當y MHz RF產生器係操作在對應至狀態S0的功率位準時,製程率的精細控制係實質上恆定。又,當x MHz RF產生器協助提供具有次狀態S1a與S1b之RF訊號602時,y MHz RF產生器協助提供具有狀態S1的RF訊號604。
圖6C顯示圖620的一實施例,圖620係用以例示在TTL1訊號之狀態S0期間之工作週期係不同於在TTL1訊號之狀態S1期間的工作週期。圖620繪示2MHz RF產生器所輸送之功率對時間的關係。經輸送的功率係顯示為脈動訊號622。應注意,脈動訊號622在狀態S0期間的工作週期係大於50%且狀態S1的佔 據期間係等於狀態S0的佔據期間。例如,訊號622在次狀態S0a期間的佔據時間大於在次狀態S0b期間的佔據期間。應注意,經輸送的功率訊號622在狀態S1期間的工作週期為50%。
在某些實施例中,訊號622在狀態S0期間的工作週期係小於50%。例如,輸送訊號在次狀態S0a期間的佔據時間係少於在次狀態S0b期間的佔據時間。
更應注意,訊號602在狀態S0與S1每一者的工作週期(圖6A至6B)皆為50%。例如,訊號622在次狀態S0a期間的佔據時間係等於其在次狀態S0b期間的佔據時間。
在某些實施例中,2MHz RF產生器在狀態S1期間所輸送之脈動功率訊號的工作週期係大於或小於50%,經輸送的脈動功率訊號在狀態S0期間的工作週期係等於50%。
在各種實施例中,2MHz RF產生器在狀態S1期間所輸送之脈動功率訊號的工作週期係大於或小於50%,經輸送的脈動功率訊號在狀態S0期間的工作週期係大於或小於50%。
在數個實施例中,x MHz RF產生器所輸送之功率的狀態S0佔據時間係少於x MHz RF產生器所輸送之功率的狀態S1佔據時間。在此些實施例中,經輸送的功率在每一狀態S0與S1期間的工作週期為50%。
在各種實施例中,x MHz RF產生器所輸送之功率的狀態S0佔據時間係少於或多於x MHz RF產生器所輸送之功率的狀態S1佔據時間。在此些實施例中,經輸送的功率在狀態S0期間的工作週期係大於或小於50%,且經輸送的功率在狀態S1期間的工作週期係等於50%。
在某些實施例中,x MHz RF產生器所輸送之功率的狀態S0佔據時間係少於或多於x MHz RF產生器所輸送之功率的狀態S1佔據時間。在此些實施例中,經輸送的功率在狀態S0期間的工作週期係等於50%,且經輸送的功率在狀態S1期間的工作週期係大於或小於50%。
在各種實施例中,x MHz RF產生器所輸送之功率的狀態S0佔據時間係少於或多於x MHz RF產生器所輸送之功率的狀態S1佔據時間。在此些實施例中,經輸送的功率在狀態S0期間的工作週期係大於或小於50%,且經輸送的功率在狀態S1期間的工作週期係大於或小於50%。
在某些實施例中,TTL訊號所具有之頻率係等於脈動訊號622所具有的頻率。TTL訊號係由產生TTL5訊號的裝置所產生。例如,DSPx自TTL1訊號與調變訊號產生TTL訊號。調變訊號調變TTL1訊號以產生TTL訊號。
圖7A顯示系統700之一實施例,系統700係用以例示在x MHz RF產生器中使用四個次狀態S0a、S0b、S1a與S1b。系統700包含電漿室304、x MHz RF產生器、y MHz RF產生器及工具UI系統306。工具UI系統306的時脈源產生時脈訊號TTL1並藉由纜線313將時脈訊號TTL1提供予DSPx及DSPy。
在次狀態S0a期間,DSPx自TTL1訊號產生TTL5訊號、並將TTL5訊號提供予DSPy。例如,DSPx藉著利用TTL4訊號調變TTL1訊號而產生TTL5訊號。又例如,DSPx藉著將時脈訊號TTL1的邏輯位準乘以TTL4訊號的邏輯位準而產生TTL5訊號。在各種實施例中,RF訊號602(圖6A與6B)所具有之頻率係與TTL5訊號所具有之頻率相同。在某些實施例中RF訊號602所具有之頻率係與TTL4訊號所具有之頻率相同。
在次狀態S0b期間,DSPx將TTL5訊號及TTL1訊號提供予x MHz RF產生器的功率控制器PWRS0bx及調整器x MHz RF產生器的AFTS0bx。例如,在次狀態S0b期間,DSPx將具有次狀態S0b之一部分TTL5訊號及具有狀態S0的時脈訊號TTL1提供予功率控制器PWRS0bx及調整器AFTS0bx。功率控制器PWRS0bx在接收到TTL5訊號後決定或辨識對應至與TTL5訊號之次狀態S0b與時脈訊號TTL1之狀態S0的功率位準。例如,功率控制器PWRS0bx自功率控制器PWRS0bx之記憶體裝置辨識一功率位準,此功率位準係映射至訊號TTL5的次狀態S0b以及時脈訊號TTL1的狀態S0。功率控制器PWRS0bx將和TTL5訊號之次狀態S0b與時脈訊號TTL1之狀態S0相關的功率位準提供予RF電源322。
又,在TTL5訊號的次狀態S0b與TTL1訊號的狀態S0期間,調整器AFTS0bx在接收到TTL5訊號與TTL1訊號後決定或辨識一頻率位準。例如,調整器AFTS0bx自調整器AFTS0bx的記憶體裝置辨識該頻率位準,此頻率位準係映射至TTL5訊號的次狀態S0b與TTL1訊號的狀態S0。調整器AFTS0bx將該頻率位準提供予RF電源322。
在接收到對應至TTL5訊號的次狀態S0b與TTL1訊號的狀態S0之該功率位準與該頻率位準後,RF電源322針對次狀態S0b產生具有該功率位準與該頻率位準的RF訊號。在TTL5訊號的次狀態S0b與TTL1訊號的狀態S0期間所產生的RF訊號係藉由RF纜線308供給至阻抗匹配電路302。
應注意,在某些實施例中,在TTL5訊號的次狀態S0b與TTL1訊號的狀態S0期間的該功率位準及/或該頻率位準係用以粗略控制製程率,如在晶圓318上沉積材料的沉積率、或蝕刻晶圓318或蝕刻晶圓318上之材料的蝕刻率、或 濺射晶圓318或濺射沉積在晶圓318上之材料的濺射率、或清理晶圓318或清理沉積在基板上之材料的清理率等。
又,在狀態S0期間,DSPy自工具UI系統306接收TTL1訊號並將TTL1訊號提供至功率控制器PWRS0y。y MHz RF產生器的剩餘操作係類似於上面參考用以產生RF訊號之圖3A的說明。
在y MHz RF產生器的狀態S0與x MHz RF產生器的次狀態S0b期間,阻抗匹配電路302藉由RF纜線308與310自x與y MHz RF產生器接收RF訊號,然後匹配負載與源的阻抗以產生經修改的RF訊號。經修改的RF訊號係藉由RF傳輸線312提供予夾頭314。在某些實施例中,在次狀態S0b期間所產生之經修改的RF訊號能控制製程率,如在晶圓318上沉積材料的沉積率、或蝕刻晶圓318或蝕刻晶圓318上之材料的蝕刻率、或濺射晶圓318或濺射沉積在晶圓318上之材料的濺射率、或清理晶圓318或清理沉積在基板上之材料的清理率等。
又,在次狀態S0a期間,DSPx將TTL5訊號與TTL1訊號提供至x MHz RF產生器的功率控制器PWRS0ax並提供至x MHz RF產生器的調整器AFTS0ax。例如,在次狀態S0a期間,DSPx將具有次狀態S0a的一部分TTL5訊號及具有狀態S0的TTL1訊號提供予功率控制器PWRS0ax及調整器AFTS0ax。功率控制器PWRS0ax在接收到TTL5訊號與TTL1訊號後決定或辨識一功率位準。例如,功率控制器PWRS0ax自功率控制器PWRS0ax的記憶體裝置辨識該功率位準,該功率位準係映射至TTL5訊號的次狀態S0a與時脈訊號TTL1的狀態S0。功率控制器PWRS0ax將該功率位準提供予RF電源322。
又,在TTL5訊號的次狀態S0a與時脈訊號TTL1的狀態S0期間,調整器AFTS0ax在接收到TTL5訊號後決定或辨識一頻率位準。例如,調整器 AFTS0ax自調整器AFTS0ax的記憶體裝置辨識該頻率位準,該頻率位準係映射至TTL5訊號的次狀態S0a與時脈訊號TTL1的狀態S0。調整器AFTS0ax將該頻率位準提供予RF電源322。
在接收到對應至次狀態S0a的該功率位準與該頻率位準後,RF電源322針對TTL5訊號的次狀態S0a與時脈訊號TTL1的狀態S0產生具有該功率位準與該頻率位準的RF訊號。在TTL5訊號的次狀態S0a與時脈訊號TTL1的狀態S0期間所產生的RF訊號係藉由RF纜線308而供給至阻抗匹配電路302。
應注意,在某些實施例中在TTL5訊號的次狀態S0a與時脈訊號TTL1的狀態S0期間的功率位準及/或頻率位準係用以粗略控制製程率,如在晶圓318上沉積材料的沉積率、或蝕刻晶圓318或蝕刻晶圓318上之材料的蝕刻率、或濺射晶圓318或濺射沉積在晶圓318上之材料的濺射率、或清理晶圓318或清理沉積在晶圓318上之材料的清理率等。
又,y MHz RF產生器在狀態S0期間的操作已於上面說明。
在y MHz RF產生器的狀態S0與x MHz RF產生器的次狀態S0a期間,阻抗匹配電路302藉由RF纜線308與310自x與y MHz RF產生器接收RF訊號,然後匹配負載與源的阻抗以產生經修改的RF訊號。經修改的RF訊號係藉由RF傳輸線312提供予夾頭314。在某些實施例中,在次狀態S0b期間所產生之經修改的RF訊號能控制在晶圓318上沉積材料的沉積率、或蝕刻晶圓318或蝕刻晶圓318上之材料的蝕刻率、或濺射晶圓318或濺射沉積在晶圓318上之材料的濺射率。
在狀態S0期間,DSPy發送一訊號至功率控制器PWRS0y以調整在x MHz RF產生器自次狀態S0a轉換至次狀態S0b的轉換時間處或x MHz RF產生器 自次狀態S0b轉換至次狀態S0a的轉換時間處由功率控制器PWRS0y所決定的功率。所決定的功率係基於x MHz RF產生器所輸送之功率在次狀態S0a與S0b之間轉換時所發生的電漿阻抗變化來進行調整。為了補償x MHz RF產生器所輸送之功率在次狀態S0a與S0b之間轉換時的調整,自DSPx發送TTL5訊號至DSPy。x MHz RF產生器所輸送的功率的調整會造成電漿阻抗的變化。
又,在狀態S1期間,DSPy發送一訊號至調整器AFTS0y以調整在x MHz RF產生器自次狀態S0a轉換至次狀態S0b的轉換時間處或x MHz RF產生器自次狀態S0b轉換至次狀態S0a的轉換時間處由調整器AFTS0y所決定的頻率。所決定的頻率係基於x MHz RF產生器的頻率在次狀態S0a與S0b之間轉換時所發生的電漿阻抗變化來進行調整。為了補償x MHz RF產生器所產生之RF訊號之頻率在次狀態S0a與S0b之間轉換時的調整,自DSPx發送TTL5訊號至DSPy。x MHz RF產生器所供給之RF訊號的頻率的調整會造成電漿阻抗的變化。
更應注意,在某些實施例中工具UI系統306藉由纜線314或和纜線314類似的另一纜線將和TTL5訊號相關的資訊(如TTL5訊號在狀態S1期間的頻率、TTL5訊號在狀態S1期間的工作週期、在TTL5訊號中次狀態S1a出現的時間、在TTL5訊號中次狀態S1b出現的時間、TTL5訊號在狀態S0期間的頻率、TTL5訊號在狀態S0期間的工作週期、在TTL5訊號中次狀態S0a出現的時間、在TTL5訊號中次狀態S0b出現的時間等)提供至DSPy,而非自DSPx發送TTL5訊號至DSPy。例如,自工具UI系統306將內含和TTL5訊號相關之資訊的資料檔案提供至DSPy。DSPy包含虛擬鎖相迴路,虛擬鎖相迴路所產生的一訊號係鎖定至TTL5訊號的頻率且用以調整功率控制器PWRS0y所決定的功率及/或用以調整調整器AFTS0y所決定的頻率。
又,x MHz RF產生器在次狀態S1a與S1b期間的操作以及y MHz RF產生器在狀態S1期間的操作係類似於參考圖3A所述之內容。
圖7B顯示系統710之一實施例,在系統710中,由DSPx產生時脈訊號TTL1而非工具UI系統306(圖7A)。系統710包含工具UI系統307。DSPx包含能產生時脈訊號TTL1的時脈源並將時脈訊號TTL1與TTL5訊號提供予y MHz RF產生器的DSPy。系統710的剩餘操作係類於圖7A的系統700。
在某些實施例中,x MHz RF產生器所供給之RF訊號在次狀態S1a、S1b、S0a與S0b期間的功率的頻率係與訊號602(圖6A)的頻率相同。
在各種實施例中,與TTL5訊號相關的資訊係自DSPx藉由將DSPx連接至DSPy的纜線提供予DSPy,而非自DSPx藉由纜線將TTL5訊號發送至DSPy。例如,自DSPx將內含有與TTL5訊號相關之資訊的資料檔案提供予DSPy。DSPy包含虛擬鎖相迴路,虛擬鎖相迴路所產生的一訊號係鎖定至TTL5訊號的頻率且用以調整功率控制器PWRS0y所決定的功率及/或用以調整調整器AFTS0y所決定的頻率。
圖8A顯示圖800之一實施例,圖800係用以例示y MHz RF產生器所產生之RF訊號在狀態S1與S0兩狀態期間的脈動。y MHz RF產生器所產生之RF訊號的脈動會在狀態S1期間造成兩個次狀態S1a與S1b、並在狀態S0期間造成兩個次狀態S0a與S0b。圖800繪示RF訊號802之經輸送的功率(如一功率位準)對時間的關係,此功率位準為y MHz RF產生器所產生之RF訊號及朝向y MHz RF產生器反射之RF訊號的函數。
在TTL1訊號的狀態S0期間,RF訊號802在次狀態S0a與S0b之間交替。又,在TTL1訊號的狀態S1期間,RF訊號802在次狀態S1a與S1b之間交替。
在某些實施例中,RF訊號802在次狀態S0b期間的功率位準係低於或高於RF訊號802在次狀態S1b期間的功率位準。
應注意,在TTL1訊號的狀態S1期間使用RF訊號802的次狀態S1a與S1b能協助精細調整在狀態S1期間的蝕刻率、沉積率、濺射率、或清理率。
圖8B顯示圖810的一實施例,圖810係用以例示使用x MHz RF產生器並協同使用產生具有四個次狀態S0a、S0b、S1a與S1b之RF訊號802的y MHz RF產生器。當y MHz RF產生器產生具有次狀態S1a與S1b之RF訊號802時,x MHz RF產生器產生具有狀態S1的RF訊號812。在某些實施例中,當製程率的粗略控制為恆定或實質上恆定時,使用y MHz RF產生器所產生之RF訊號802的次狀態S1a與S1b可精細控制製程率,如蝕刻率、清理率、沉積率、濺射率等。在某些實施例中,當x MHz RF產生器係操作在對應至狀態S1的功率位準時,製程率的粗略控制係實質上恆定。又,當y MHz RF產生器產生具有次狀態S0a與S0b之RF訊號802時,x MHz RF產生器產生具有狀態S0的RF訊號812。
圖8C顯示圖820的一實施例,圖820係用以例示在TTL1訊號的狀態S0期間之工作週期係不同於在TTL1訊號的狀態S1期間之工作週期。圖820繪示60MHz RF產生器所輸送之功率對時間t的關係。經輸送的功率係顯示為脈動訊號822。應注意,脈動訊號822在狀態S1期間的工作週期係大於50%,且在狀態S1期間所佔據的時間係等於在狀態S0期間所佔據的時間。例如,訊號822在次狀態S1a期間所佔據的時間係多於在次狀態S1b期間所佔據的時間。應注意,經輸送的功率訊號822在狀態S0期間的工作週期為50%。
在某些實施例中,訊號822在狀態S1期間的工作週期係小於50%。例如,經輸送的功率訊號在次狀態S1a期間所佔據的時間係少於在次狀態S1b期間所佔據的時間。
更應注意,訊號802(圖8A至8B)在狀態S0與S1每一者期間的工作週期為50%。
在某些實施例中,60MHz RF產生器所產生的脈動經輸送的功率訊號在狀態S0期間的工作週期係大於或小於50%,且脈動經輸送的功率訊號在狀態S1期間的工作週期為50%。
在各種實施例中,60MHz RF產生器所產生的脈動經輸送的功率訊號在狀態S0期間的工作週期係大於或小於50%,且脈動經輸送的功率訊號在狀態S1期間的工作週期係大於或小於50%。
在數個實施例中,y MHz RF產生器所輸送之功率的狀態S1佔據時間係少於y MHz RF產生器所輸送之功率的狀態S0佔據時間。在此些實施例中,經輸送的功率在狀態S0與S1每一者期間的工作週期皆為50%。
在各種實施例中,y MHz RF產生器所輸送之功率的狀態S1佔據時間係少於或多於y MHz RF產生器所輸送之功率的狀態S0佔據時間。在此些實施例中,經輸送的功率在狀態S1期間的工作週期係大於或小於50%且經輸送的功率在狀態S0期間的工作週期係等於50%。
在某些實施例中,y MHz RF產生器所輸送之功率的狀態S1佔據時間係少於或多於y MHz RF產生器所輸送之功率的狀態S0佔據時間。在此些實施例中,經輸送的功率在狀態S1期間的工作週期係等於50%且經輸送的功率在狀態S0期間的工作週期係大於或小於50%。
在各種實施例中,y MHz RF產生器所輸送之功率的狀態S1佔據時間係少於或多於y MHz RF產生器所輸送之功率的狀態S0佔據時間。在此些實施例中,經輸送的功率在狀態S1期間的工作週期係大於或小於50%且經輸送的功率在狀態S0期間的工作週期係大於或小於50%。
在某些實施例中,TTL訊號所具有之頻率係等於脈動訊號822所具有的頻率。TTL訊號係由產生TTL5訊號的裝置所產生。例如,DSPx自TTL1訊號及調變訊號產生TTL訊號。調變訊號調變TTL1訊號以產生TTL訊號。
圖9A顯示系統900之一實施例,系統900係用以例示在y MHz RF產生器中使用四個次狀態S0a、S0b、S1a與S1b。系統900包含電漿室304、x MHz RF產生器、y MHz RF產生器及工具UI系統306。工具UI系統306的時脈源產生時脈訊號TTL1、並藉由纜線313將時脈訊號TTL1提供予DSPx及DSPy。
在次狀態S1b期間。DSPx自TTL1訊號產生TTL5訊號。在各種實施例中,RF訊號802(圖8A與8B)的頻率係與TTL5訊號的頻率相同。在某些實施例中,RF訊號802所具有的頻率係與TTL4訊號的頻率相同。
又,在次狀態S1b期間,DSPx將TTL5訊號提供予DSPy。DSPy將收到的TTL5訊號與TTL1訊號提供予y MHz RF產生器的功率控制器PWRS1by及y MHz RF產生器的調整器AFTS1by。例如,在次狀態S1b期間,DSPy將具有次狀態S1b的部分TTL5訊號及具有狀態S1的TTL1訊號提供予功率控制器PWRS1by及調整器AFTS1by。功率控制器PWRS1by在接收到TTL5訊號與TTL1訊號後決定或辨識功率位準。例如,功率控制器PWRS1by自功率控制器PWRS1by之記憶體裝置辨識一功率位準,此功率位準係映射至訊號TTL5的次狀態S1b以及時脈訊號TTL1的狀態S1。功率控制器PWRS1by將此功率位準提供予RF電源324。
又,在TTL5訊號的次狀態S1b與TTL1訊號的狀態S1期間,調整器AFTS1by在接收到TTL5訊號後決定或辨識一頻率位準。例如,調整器AFTS1by自調整器AFTS1by的記憶體裝置辨識該頻率位準,此頻率位準係映射至TTL5訊號的次狀態S1b與TTL1訊號的狀態S1。調整器AFTS1by將此頻率位準提供予RF電源324。
在接收到對應至TTL5訊號的次狀態S1b與TTL1訊號的狀態S1之該功率位準與該頻率位準後,RF電源324針對次狀態S1b產生具有該功率位準與該頻率位準的RF訊號。在TTL5訊號的次狀態S1b與TTL1訊號的狀態S1期間所產生的RF訊號係藉由RF纜線310供給至阻抗匹配電路302。
應注意,在某些實施例中在TTL5訊號的次狀態S1b與TTL1訊號的狀態S1期間的該功率位準及/或該頻率位準係用以精細控制製程率,如在晶圓318上沉積材料的沉積率、或蝕刻晶圓318或蝕刻晶圓318上之材料的蝕刻率、或濺射晶圓318或濺射沉積在晶圓318上之材料的濺射率、或清理晶圓318或清理晶圓318上之材料的清理率等。
又,在狀態S1期間,DSPx自工具UI系統306接收TTL1訊號、並將TTL1訊號提供予功率控制器PWRS1x。x MHz RF產生器的剩餘操作係類似於上面參考用以產生RF訊號之圖5A的說明。
在x MHz RF產生器的狀態S1與y MHz RF產生器的次狀態S1b期間,阻抗匹配電路302藉由RF纜線308與310自x與y MHz RF產生器接收RF訊號,然後匹配負載與源的阻抗以產生經修改的RF訊號。經修改的RF訊號係藉由RF傳輸線312提供予夾頭314。在某些實施例中,在次狀態S1b期間所產生之經修改的RF訊號能控制製程率,如在晶圓318上沉積材料的沉積率、或蝕刻晶圓318或蝕 刻晶圓318上之材料的蝕刻率、或濺射晶圓318或濺射沉積在晶圓318上之材料的濺射率、或清理晶圓318或清理晶圓318上之材料的清理率等。
又,在TTL5訊號的次狀態S1a及TTL1訊號的狀態S1期間,DSPy將接收到的TTL5訊號與TTL1訊號提供予y MHz RF產生器的功率控制器PWRS1ay及y MHz RF產生器的調整器AFTS1ay。例如,在TTL5訊號的次狀態S1a及TTL1訊號的狀態S1期間,DSPy將具有次狀態S1a的一部分TTL5訊號及具有狀態S1的TTL1訊號提供予功率控制器PWRS1ay及調整器AFTS1ay。功率控制器PWRS1ay在接收到TTL5訊號與TTL1訊號後決定或辨識一功率位準。例如,功率控制器PWRS1ay自功率控制器PWRS1ay的記憶體裝置辨識該功率位準,該功率位準係映射至TTL5訊號的次狀態S1a與時脈訊號TTL1的狀態S1。功率控制器PWRS1ay將該功率位準提供予RF電源324。
又,在TTL5訊號的次狀態S1a與時脈訊號TTL1的狀態S1期間,調整器AFTS1ay在接收到TTL5訊號後決定或辨識一頻率位準。例如,調整器AFTS1ay自調整器AFTS1ay的記憶體裝置辨識該頻率位準,該頻率位準係映射至TTL5訊號的次狀態S1a與時脈訊號TTL1的狀態S1。調整器AFTS1ay將該頻率位準提供予RF電源324。
在接收到對應至TTL5訊號的次狀態S1a與時脈訊號TTL1的狀態S1的該功率位準與該頻率位準後,RF電源324針對次狀態S1a產生具有該功率位準與該頻率位準的RF訊號。在TTL5訊號的次狀態S1a與時脈訊號TTL1的狀態S1期間所產生的RF訊號係藉由RF纜線310而供給至阻抗匹配電路302。
應注意,在某些實施例中在TTL5訊號的次狀態S1a與時脈訊號TTL1的狀態S1期間的功率位準及/或頻率位準係用以精細控制與晶圓318相關的 製程率,如在晶圓318上沉積材料的沉積率、或蝕刻晶圓318或蝕刻晶圓318上之材料的蝕刻率、或濺射晶圓318或濺射沉積在晶圓318上之材料的濺射率、或清理晶圓318或清理晶圓318上之材料的清理率等。
又,x MHz RF產生器在狀態S1期間的操作已於上面說明。
在x MHz RF產生器的狀態S1與y MHz RF產生器的次狀態S1a期間,阻抗匹配電路302藉由RF纜線308與310自x與y MHz RF產生器接收RF訊號,然後匹配負載與源的阻抗以產生經修改的RF訊號。經修改的RF訊號係藉由RF傳輸線312提供予夾頭314。在某些實施例中,在次狀態S1b期間所產生之經修改的RF訊號能控制製程率,如在晶圓318上沉積材料的沉積率、或蝕刻晶圓318或蝕刻沉積在晶圓318上之材料的蝕刻率、或濺射晶圓318或濺射沉積在晶圓318上之材料的濺射率、或清理晶圓318或清理晶圓318上之材料的清理率等。
又,y MHz RF產生器在次狀態S0a與S0b期間的操作以及x MHz RF產生器在狀態S0期間的操作係類似於參考圖5A所述之內容。
圖9B顯示系統910的一實施例,在系統910中係由DSPx產生時脈訊號TTL1,而非工具UI系統306(圖7A)。系統910包含工具UI系統307。DSPx包含能產生時脈訊號TTL1的時脈源。DSPx自時脈訊號TTL1產生數位脈動訊號TTL5,藉由纜線將數位脈動訊號TTL5提供予y MHz RF產生器的DSPy、並藉由纜線將TTL1訊號提供予DSPy。系統910的剩餘操作係類似於圖9A的系統900。
在某些實施例中,y MHz RF產生器所供給之RF訊號在次狀態S1a、S1b、S0a與S0b期間的功率的頻率係與訊號802(圖8A)的頻率相同。
圖10A顯示圖1000的一實施例,圖1000係用以例示x與y MHz RF產生器兩者的多個次狀態。圖1000繪示經輸送的功率對時間的關係。x與y MHz RF產生器所輸送的功率係顯示於圖1000中。當x MHz RF產生器在TTL1訊號的狀態S1期間自次狀態S1bx轉換至次狀態S1ax時,y MHz產生器自次狀態S1by轉換至次狀態S1ay。又,當x MHz RF產生器在TTL1訊號的狀態S1期間自次狀態S1ax轉換至次狀態S1bx時,y MHz產生器自次狀態S1ay轉換至次狀態S1by。又,當x MHz RF產生器在TTL1訊號的狀態S1期間處於次狀態S1ax時,y MHz RF產生器係處於次狀態S1ay。又,當x MHz RF產生器在TTL1訊號的狀態S1期間處於次狀態S1bx時,y MHz RF產生器係處於次狀態S1by。
當x MHz RF產生器在TTL1訊號的狀態S0期間自次狀態S0bx轉換至次狀態S0ax時,y MHz產生器自次狀態S0by轉換至次狀態S0ay。又,當x MHz RF產生器在TTL1訊號的狀態S0期間自次狀態S0ax轉換至次狀態S0bx時,y MHz產生器自次狀態S0ay轉換至次狀態S0by。又,當x MHz RF產生器在TTL1訊號的狀態S0期間處於次狀態S0ax時,y MHz RF產生器係處於次狀態S0ay。又,當x MHz RF產生器在TTL1訊號的狀態S0的期間處於次狀態S0bx時,y MHz RF產生器係處於次狀態S0by。
應注意,y MHz RF產生器在次狀態S1ay期間所輸送之訊號1002之功率之經輸送的功率位準係大於次狀態S1by期間的。又,x MHz RF產生器在次狀態S1ax期間所輸送之訊號1004之功率之經輸送的功率位準係大於次狀態S1bx期間的。
又,應注意,y MHz RF產生器在次狀態S0ay期間所輸送之訊號1002之功率之經輸送的功率位準係大於次狀態S0by期間的。又,x MHz RF產生器在次狀態S0ax期間所輸送之訊號1004之功率之經輸送的功率位準係大於次狀態S0bx期間的。
在某些實施例中,y MHz RF產生器在次狀態S0by期間所輸送之訊號1002之功率之經輸送的功率位準係小於x MHz RF產生器在次狀態S0bx期間所輸送之訊號1004之功率之經輸送的功率位準。
在數個實施例中,y MHz RF產生器在次狀態S1by期間所輸送之訊號1002之功率之經輸送的功率位準係小於x MHz RF產生器在次狀態S1bx期間所輸送之訊號1004之功率之經輸送的功率位準。
圖10B顯示圖1010的一實施例,圖1010係用以例示x與y MHz RF產生器兩者的多個次狀態。圖1010繪示經輸送的功率對時間的關係。x與y MHz RF產生器所輸送之功率係顯示於圖1010中。當x MHz RF產生器在TTL1訊號的狀態S1期間自次狀態S1bx轉換至次狀態S1ax時,y MHz產生器自次狀態S1ay轉換至次狀態S1by。又,當x MHz RF產生器在TTL1訊號的狀態S1期間自次狀態S1ax轉換至次狀態S1bx時,y MHz產生器自次狀態S1by轉換至次狀態S1ay。又,當x MHz RF產生器在TTL1訊號的狀態S1期間處於次狀態S1ax時,y MHz RF產生器係處於次狀態S1by。又,當x MHz RF產生器在TTL1訊號的狀態S1期間處於次狀態S1bx時,y MHz RF產生器係處於次狀態S1ay。
當x MHz RF產生器在TTL1訊號的狀態S0期間自次狀態S0bx轉換至次狀態S0ax時,y MHz產生器自次狀態S0ay轉換至次狀態S0by。又,當x MHz RF產生器在TTL1訊號的狀態S0期間自次狀態S0ax轉換至次狀態S0bx時,y MHz產生器自次狀態S0by轉換至次狀態S0ay。又,當x MHz RF產生器在TTL1訊號的狀態S0期間處於次狀態S0ax時,y MHz RF產生器係處於次狀態S0by。又,當x MHz RF產生器在TTL1訊號的狀態S0期間處於次狀態S0bx時,y MHz RF產生器係處於次狀態S0ay。
應注意,y MHz RF產生器在次狀態S1ay期間所產生之經輸送的功率訊號1012之經輸送的功率位準係大於次狀態S1by期間的。又,x MHz RF產生器在次狀態S1ax期間所產生之經輸送的功率訊號1014之經輸送的功率位準係大於次狀態S1bx期間的。
又,應注意,y MHz RF產生器在次狀態S0ay期間所產生之經輸送的功率訊號1012之經輸送的功率位準係大於次狀態S0by期間的。又,x MHz RF產生器在次狀態S0ax期間所產生之經輸送的功率訊號1014之經輸送的功率位準係大於次狀態S0bx期間的。
在某些實施例中,y MHz RF產生器在次狀態S0by期間所產生之經輸送的功率訊號1012之經輸送的功率位準係小於x MHz RF產生器在次狀態S0bx期間所產生之經輸送的功率訊號1014之經輸送的功率位準。
在數個實施例中,y MHz RF產生器在次狀態S1by期間所產生之經輸送的功率訊號1012之經輸送的功率位準係小於x MHz RF產生器在次狀態S1bx期間所產生之經輸送的功率訊號1014之經輸送的功率位準。
圖11A顯示系統1100的一實施例,系統1100係用以例示在x與y MHz RF產生器兩者中同時使用次脈動。工具UI系統306包含能產生TTL1訊號的時脈源並藉由對應的纜線將TTL1訊號提供予DSPx及DSPy。DSPx在接收到時脈訊號TTL1時產生TTL5訊號並將時脈訊號提供予DSPy。x MHz RF產生器的剩餘操作係類似於參考圖7A所述的內容。又,y MHz RF產生器的剩餘操作係類似於參考圖9A所述的內容。
圖11B顯示系統1110的一實施例,系統1110係用以例示當x MHz RF產生器作為主產生器時,在x與y MHz RF產生器兩者中同時使用次脈動。DSPx 產生TTL1與TTL5訊號,並藉由對應的纜線將訊號TTL1及TTL5兩者提供予DSPy。x MHz RF產生器的剩餘操作係類似於圖7B的對應敘述。又,y MHz RF產生器的剩餘操作係類似於圖9B的對應敘述。
圖12顯示系統1200的一實施例,系統1200係用以例示在x MHz RF產生器或y MHz RF產生器中使用開關1202選擇四個次狀態S1a、S1b、S0a與S0b中的一者。開關1202的一實例包含一多工器。在某些實施例中開關1202係以DSP(如DSPx或DSPy)內的電腦程式或硬體實施之。開關1202係連接至DSP。例如,當開關1202係位於x MHz RF產生器內時,開關1202係連接至DSPx,當開關1202係位於y MHz RF產生器內時,開關1202係連接至DSPy。
當TTL訊號(如數位脈動訊號TTL3、數位脈動訊號TTL5等)的一狀態為S0a時,DSP產生位元"00",當TTL訊號的一狀態為S0b時,DSP產生位元"01",當TTL訊號的一狀態為S1a時,DSP產生位元"10",當TTL訊號的一狀態為S1b時,DSP產生位元"11"。TTL訊號係由DSP所產生或由DSP所接收。例如,DSPx產生數位脈動訊號TTL3或TTL訊號TTL5,而DSPy接收數位脈動訊號TTL3或數位脈動訊號TTL5。
當RF產生器的開關1202接收位元"00"時,開關1202發送訊號至RF產生器的參數控制器PRS0a,如功率控制器、自動頻率調整器等。在自開關1202接收到指示位元"00"的訊號後,參數控制器PRS0a自位元"00"與參數位準之間的映射辨識一參數位準,如頻率位準、功率位準等。
類似地,當RF產生器的開關1202接收位元"01"時,開關1202發送訊號至RF產生器的參數控制器PRS0b。在自開關1202接收到指示位元"01"的訊號後,參數控制器PRS0b自位元"01"與參數位準之間的映射辨識一參數位準。
又,當RF產生器的開關1202接收位元"10"時,開關1202發送訊號至RF產生器的參數控制器PRS1a。在自開關1202接收到指示位元"10"的訊號後,參數控制器PRS1a自位元"10"與參數位準之間的映射辨識一參數位準。
又,當RF產生器的開關1202接收位元"11"時,開關1202發送訊號至RF產生器的參數控制器PRS1b。在自開關1202接收到指示位元"11"的訊號後,參數控制器PRS1b自位元"11"與參數位準之間的映射辨識一參數位準。
圖13A顯示DSP 1300的一實施例,DSP 1300係用以例示TTL3數位脈動訊號的產生。DSP 1300包含內部時脈源1302及處理邏輯1104,如電腦程式、ASIC、PLD等。在某些實施例中,DSP 1300包含用以儲存處理器邏輯1104的記憶體裝置。
TTL1訊號係由一外部時脈源(如工具UI系統306(圖3A)的時脈源、工具UI系統306外部的另一時脈源等)所產生。又,TTL2訊號係由內部時脈源1302所產生。例如,TTL2訊號的頻率係高於TTL1訊號的頻率。
處理邏輯1104接收TTL1時脈訊號與TTL2訊號,將訊號TTL1與TTL2相乘以產生TTL3訊號,將所得的TTL3訊號供給予DSP 1300所在的RF產生器,如x MHz RF產生器、y MHz RF產生器等的參數控制器或另一RF產生器如y MHz RF產生器、x MHz RF產生器等的參數控制器。
在各種實施例中,DSP 1300包含能基於TTL1訊號之狀態而在TTL1訊號與TTL2訊號之間選擇的開關。例如,當TTL1訊號係處於狀態S0時,開關選擇TTL1訊號以提供DSP 1300所在之RF產生器的參數控制器或提供另一RF產生器的參數控制器。又,在此實例中,當TTL1訊號處於狀態S1,開關選擇TTL2訊號以提供DSP 1300所在之RF產生器的參數控制器或提供另一RF產生器 的參數控制器。在此實例中,在TTL1訊號的狀態S1期間選擇具有次狀態S1a與S1b的一部分TTL2訊號。
圖13B為用以產生TTL5訊號之DSP 1320的一實施例。DSP 1320包含內部時脈源1302、反相器1322、另一內部時脈源1324、處理邏輯1326及加法器1328。
在某些實施例中,加法器1328、處理邏輯1326及反相器1322係以例如使用邏輯閘等的硬體所實施。在各種實施例中,加法器1328、處理邏輯1326及反相器1322係作為一電腦程式(例如處理邏輯等)來實施而可被DSP 1320所執行。
內部時脈源1302產生TTL4-2訊號,如TTL2訊號等的時脈訊號。處理邏輯1326處理TTL4-2訊號及時脈訊號TTL1以產生TTL3訊號。例如,處理邏輯1326使TTL4-2訊號與時脈訊號TTL1相乘以產生TTL3數位脈動訊號。數位脈動訊號TTL3被提供予加法器1328。
又,反相器1322接收TTL1訊號並將TTL1訊號的邏輯位準反相。例如,TTL1訊號的邏輯位準1被反相為邏輯位準0、且TTL1訊號的邏輯位準0被反相為邏輯位準1。處理邏輯1326接收反相器1322所產生之已經反相的TTL1訊號。又,內部時脈源1324產生時脈訊號TTL4-1並將其提供予處理邏輯1326。處理邏輯1326處理時脈訊號TTL4-1與TTL1時脈訊號以產生TTL訊號,加法器1328將TTL訊號加至TTL3訊號以產生TTL5訊號。
應注意,在某些實施例中,每一TTL4-1訊號與TTL4-2訊號的頻率係大於TTL1訊號的頻率。在各種實施例中,TTL4-1訊號的頻率係等於TTL4-2訊號的頻率。
在某些實施例中,DSP 1320包含時脈源,此時脈源的頻率係與脈動訊號602(圖6A)或脈動訊號802(圖8A)的頻率相同。
圖14顯示DSP 1400的一實施例,DSP 1400使用調變訊號1203來決定是否產生多個次狀態Sna與Snb或產生狀態Sm。DSPx與DSPy中的每一者皆為DSP 1400的實例。DSP 1400接收具有狀態Sm與Sn的時脈訊號Clk,如TTL1訊號等。在某些實施例中,狀態Sm為高邏輯位準狀態而狀態Sn為低邏輯位準狀態。高邏輯位準係高於低邏輯位準。
DSP 1400亦接收具有三個邏輯位準(即高邏輯位準、中邏輯位準與低邏輯位準)的調變訊號1203。中邏輯位準係高於低邏輯位準、且高邏輯位準係高於中邏輯位準。又,中邏輯位準係藉由低位準轉換而達到,低位準轉換至中位準的時間係長於自中邏輯位準轉換至高邏輯位準的時間。
DSP 1400判斷出調變訊號1203對於時脈訊號Clk之自狀態Sn轉換至狀態Sm的轉換慢於時脈訊號Clk之自狀態Sm轉換至狀態Sn。又,DSP 1400判斷出調變訊號1203在時脈訊號Clk的狀態Sm期間已達到中邏輯位準。DSP 1400產生時脈1訊號Clk1,如TTL3訊號等,當判斷出時脈訊號Clk之自狀態Sn轉換至狀態Sm的轉換係慢於時脈訊號Clk之自狀態Sm轉換至狀態Sn的轉換、且判斷出調變訊號1203在時脈訊號Clk的狀態Sm期間已達到中邏輯位準之時,訊號Clk1具有狀態Sm。
又,DSP 1400判斷出調變訊號1203具有時脈訊號Clk之自狀態Sm轉換至狀態Sn的轉換係快於時脈訊號Clk之自狀態Sn轉換至狀態Sm的轉換。又,DSP 1400判斷出調變訊號1203在時脈訊號Clk的狀態Sn期間已達到高邏輯位準。當判斷出時脈訊號Clk之自狀態Sm轉換至狀態Sn的轉換係快於時脈訊號Clk之自 狀態Sn轉換至狀態Sm的轉換且判斷出調變訊號1203在時脈訊號Clk的狀態Sn期間已達到高邏輯位準之時,DSP 1400產生具有複數次狀態Sna與Snb的Clk1訊號。
更應注意,圖14的說明中使用單一時脈源如產生時脈訊號Clk的時脈源。
在各種實施例中,文中所用的「位準」一詞包含一範圍。例如,一功率位準包含一個範圍的功率量如介於1950瓦與2050瓦之間的範圍、介於1900瓦與2100瓦之間的範圍、介於950瓦與1050瓦之間的範圍、介於900瓦與1300瓦之間的範圍等。而另一位準即頻率位準包含一個範圍的頻率如介於1.9MHz與2.1MHz之間的範圍、介於1.7MHz與2.3MHz之間的範圍、介於58MHz與62MHz之間的範圍、介於55MHz與65MHz之間的範圍、介於25MHz與29MHz之間的範圍、介於23MHz與31MHz之間的範圍。
又,在各種實施例中,自控制器之記憶體裝置或自調整器之記憶體裝置辨識的一位準係關於如映射、連結等至一製程率如蝕刻率、或沉積率、或濺射率等或處理晶圓318。
更應注意,雖然上述操作係參考平行板電漿室如電容耦合式電漿室等說明,但在某些實施例中,上述操作可應用至其他類型的電漿室如包含感應耦合電漿(ICP)反應器的電漿室、包含變壓器耦合電漿(TCP)反應器的電漿室、包含介電工具的電漿室、包含電子迴旋共振(ECR)反應器之電漿室等。例如,x MHz RF產生器與y MHz RF產生器係耦合至ICP電漿室內的電感器。
亦應注意,雖然上述操作係由DSP執行,但在某些實施例中此些操作可由工具UI系統306(圖3A)的一或多個處理器、或複數工具UI系統的複數處理器、或工具UI系統306之RF產生器的DSP與處理器的組合所執行。
應注意,雖然上述實施例係關於提供一或多個RF訊號予電漿室304之夾頭314的下電極和接地電漿室304的上電極316,但在數個實施例中,該一或多個RF訊號係提供予上電極316但下電極係接地。
文中所述之實施例可利用各種電腦系統組態實施,包含手持硬體單元、微處理器系統、微處理器系或可程式化之消費電子產品、迷你電腦、主機電腦等。此些實施例亦可在分散的計算環境中實施,在此方式下任務係藉著經由網路連結的遠端處理硬體單元進行。
在某些實施例中,控制器為系統的一部分,其為上述實例的一部分。此類系統包含半導體處理設備,半導體處理設備包含處理工具或複數工具、製程室或複數製程室、處理平臺或複數平臺、及/或特定的處理元件(晶圓座臺、氣體流動系統等)。此些系統係與一些電子裝置整合,此些電子裝置係用以在半導體晶圓或基板處理之前、期間及之後控制系統的操作。此些電子裝置係稱為「控制器」,其可控制系統或複數系統的各種元件或子部件。取決於處理需求及/或系統類型,控制器被程式化以控制文中所揭露的任何處理包含輸送製程氣體、溫度設定(如加熱及/或冷卻)、壓力設定、真空設定、流率設定、流體輸送設定、位置與操作設定、晶圓傳輸進入或離開設備與連接至系統或與系統具有界面的其他傳輸設備及/或裝載互鎖機構。
概括地說,在各種實施例中,控制器被定義為具有各種積體電路、邏輯、記憶體及/或軟體的電子裝置,其可接收指令、發佈指令、控制操作、致能清理操作、致能終點量測等。積體電路包含儲存了程式指令之具有韌體形式的晶片、數位訊號處理器(DSP)、被定為ASIC、PLD的晶片及/或能執行程式指令(如軟體)的一或多個微處理器或微控制器。程式指令為與控制器通訊之具有各種獨 立設定(或程式檔案)形式的指令,其定義為了在半導體晶圓上或針對半導體晶圓進行特定處理或對系統進行特定處理所用的操作參數。在某些實施例中,操作參數為製程工程師為了完成一或多膜層、材料、金屬、氧化物、矽、二氧化矽、表面、電路及/或晶圓之晶粒之製造期間的一或多個製程步驟所定義之配方的一部分。
在某些實施例中控制器為整合至、耦合至、藉由網路連接至、或其組合至系統的電腦的一部分。例如,控制器係位於雲端或工廠主機電腦系統的全部或部分係位於雲端,這允許使用者遠端接取晶圓處理。電腦致能遠端接取系統以監控製造操作的目前進展、檢視過去製造操作的歷程、自複數製造操作檢視效能驅勢、改變現有處理的參數、設定處理步驟以符合現有處理、或開始一新的製程。
在某些實施例中,遠端電腦(或伺服器)經由網路對系統提供製程配方,網路包含區域網路或網際網路。遠端電腦包含使用者介面,使用者介面讓使用者能進入或程式化參數及/或設定,然後自遠端電腦與系統通訊。在某些實例中,控制器接收數據形式的指令,指令指出在一或多個操作期間欲施行之每一製程步驟的參數。應瞭解,參數係特別針對欲施行之製程的類型及控制器用以交界或控制之設備的類型。因此如上所述,可分散控制器如藉著包含一或多個藉由網路互連並朝向共同目的如文中所述之製程及控制工作的離散控制器。為了此類目的的分散控制器包含製程室上的一或多個積體電路,其係與一或多個位於遠端(例如位於平臺位準或遠端電腦的一部分)的積體電路通訊而共同控制製程室上的製程。
不受限地,在各種實施例中,例示性的系統包含電漿蝕刻室或模組、沉積室或模組、旋轉沖洗室或模組、金屬鍍室或模組、清理室或模組、邊緣蝕刻室或模組、物理氣相沉積(PVD)室或模組、化學氣相沉積(CVD)室或模組、原子層沉積(ALD)室或模組、原子層蝕刻(ALE)室或模組、離子植入室或模組、軌道室或模組、及和半導體晶圓之製造相關或用於製造的任何其他半導體製程系統。
如上所述,取決於設備所進行的製程步驟或複數步驟,控制器可與下列的一或多者通訊交流:其他設備的電路或模組、其他設備的元件、叢集設備、其他設備的界面、相鄰設備、鄰近設備、位於工廠內的設備、主電腦、另一控制器、或半導體製造工廠中用以將晶圓容器載入與載出設備位置及/或裝載接口的材料運輸用設備。
考慮到上述實施例,應瞭解,實施例可進行涉及儲存在電腦系統中之數據的各種電腦施行操作。此些操作需要實質操控物理數量。形成實施例之一部分之所述之任何操作皆為有用的機械操作。
某些實施例亦關於執行此些操作的硬體單元或設備。可針對專門用途的電腦專門建構設備。當一電腦被定義為專門用途之電腦時,此電腦除了能夠針對專門用途運行之外,亦可進行其他處理、程式執行或其他非屬特別用途的子程式。
在某些實施例中,操作可由儲存在電腦記憶體、快取記憶體或自網路所獲得的一或多個電腦程式所選擇性活化或配置的電腦所執行。當數據係自電腦網路獲得時,該數據可由電腦網路上的其他電腦如電端計算資源所處理。
可將一或多個實施例製作成非瞬變電腦可讀媒體上的電腦可讀碼。非瞬變電腦可讀媒體是可儲存數據且後續可被電腦系統讀取的任何數據儲存硬體單元如記憶體裝置等。非瞬變電腦可讀媒體的實例包含硬碟、網路附加儲存(NAS)、ROM、RAM、光碟-ROM(CD-ROM)、可錄CD(CD-R)、可重覆寫入之CD(CD-RW)、磁帶及其他光學式與非光學式數據儲存硬體單元。在某些實施例中,非瞬變電腦可讀媒體可包含分散於網路耦合電腦系統的電腦可讀實質媒體,因此電腦可讀碼係以分散方式儲存及執行。
雖然以特定的順序說明前述方法操作,但應瞭解,在各種實施例中可在操作之間可進行其他閒雜操作或者可調整方法操作使其發生的時間略有不同,或者可將方法操作分配至允許方法操作以各種間隔進行或允許方法操作以不同於前述順序之順序進行的系統中。
更應注意在一實施例中,在不脫離本文所述之各種實施例的範圍的情況下,來自任何實施例的一或多個特徵可與任何其他實施例的一或多個特徵結合。
雖然為了能清楚瞭解本發明的目的,已詳細說明了前面的實施例,但應明白,在隨附之申請專利範圍的範疇內可進行某些變化與修改。因此,此些實施例應被視為是說明性而非限制性的,且實施例並不限於文中所述的細節,在隨附申請範圍的範疇與等效物內可修改此些實施例。
100:RF產生器
Sm:狀態
Sna:狀態
Snb:狀態

Claims (56)

  1. 一種射頻(RF)產生器,包含:一處理器,用於:自一時脈源接收一時脈訊號,該時脈訊號具有兩狀態;自該時脈訊號產生一脈動訊號,該脈動訊號在該等狀態其中一者內具有複數次狀態,該複數次狀態具有大於該等狀態之頻率的頻率;及提供該脈動訊號以控制藉由一RF訊號的功率,該功率係受到控制以與該脈動訊號同步;以及一RF電源,耦合至該處理器,其中該RF電源用於產生具有功率的該RF訊號,其中該RF電源用以將該RF訊號經由一阻抗匹配電路供給至一電漿室。
  2. 如申請專利範圍第1項之射頻(RF)產生器,更包含:一功率控制器,耦合至該處理器,其中該功率控制器係用以基於該複數狀態與複數功率位準之間的映射並基於該複數次狀態與該複數功率位準之間的映射來辨識一功率位準;及一頻率調整器,耦合至該處理器,其中該頻率調整器係用以基於該複數狀態與複數頻率位準之間的映射及該複數次狀態與該複數頻率位準之間的映射來辨識一頻率位準。
  3. 如申請專利範圍第1項之射頻(RF)產生器,其中該電漿室包含一上電極與一夾頭,該夾頭面對該上電極,該RF訊號之該功率具有該複數功率位準,每一該功率位準係映射至一蝕刻率或一沉積率。
  4. 如申請專利範圍第1項之射頻(RF)產生器,其中受到控制以與該脈動訊號同步的該功率具有與該脈動訊號之頻率相同的頻率。
  5. 如申請專利範圍第1項之射頻(RF)產生器,其中該兩狀態包含一高狀態及一低狀態,該高狀態具有比該低狀態更高的邏輯位準。
  6. 如申請專利範圍第1項之射頻(RF)產生器,其中該脈動訊號自該兩狀態的一狀態轉換至該兩次狀態的一第一次狀態,接著自該第一次狀態轉換至該兩次狀態的一第二次狀態,然後自該第二次狀態轉換至該第一次狀態,接著自該第一次狀態轉換至該第二次狀態,然後自該第二次狀態轉換至該兩狀態的該一狀態。
  7. 如申請專利範圍第1項之射頻(RF)產生器,其中該複數次狀態包含一第一次狀態、一第二次狀態、一第三次狀態與一第四次狀態,其中該RF訊號的該功率具有複數功率位準,其中該複數功率位準的一第一功率位準自該第一次狀態轉換至該第二次狀態中該複數功率位準的一第二功率位準,其中該第二功率位準接著轉換至該第一次狀態中的該第一功率位準,其中該第一功率位準接著轉換至該第二次狀態中的該第二功率位準,其中該第二功率位準接著轉換至該第三次狀態中的該複數功率位準的一第三功率位準,其中該第三功率位準接著轉換至該複數功率位準之一第四功率位準以達成該第四次狀態,其中該第四功率位準接著轉換至該第三功率位準以達到該第三次狀態,其中該第三功率位準接著轉換至該第四功率位準。
  8. 一種電漿系統,包含: 一處理器,用於:自一時脈源接收一時脈訊號,該時脈訊號具有兩狀態;自該時脈訊號產生一脈動訊號,該脈動訊號在該等狀態之一狀態內具有複數次狀態,該複數次狀態具有大於該等狀態之頻率的頻率;及提供該脈動訊號以控制一射頻(RF)訊號的功率,該功率係受到控制以與該脈動訊號同步;一RF電源,用以產生具有該功率的該RF訊號;一RF纜線,耦合至該RF電源;一阻抗匹配電路,耦合至該RF電源,其中該阻抗匹配電路用以經由該RF纜線接收該RF訊號,其中該阻抗匹配電路係用以匹配耦合至該阻抗匹配電路之一負載的阻抗與耦合至該阻抗匹配電路之一源的阻抗,以自該RF訊號產生一經修改的RF訊號;及一電漿室,耦合至該阻抗匹配電路,其中該電漿室用以接收該經修改的RF訊號而改變一電漿的阻抗。
  9. 如申請專利範圍第8項之電漿系統,更包含將該電漿室耦合至該阻抗匹配電路的一RF傳輸線,其中該負載包含該電漿室與該RF傳輸線,其中該源包含該RF纜線與該RF產生器。
  10. 如申請專利範圍第8項之電漿系統,其中該脈動訊號自該兩狀態的一狀態轉換至該兩次狀態的一第一次狀態,接著自該第一次狀態轉換至該兩次狀態的一第二次狀態,然後自該第二次狀態轉換至該第一次狀態,接著自該第一次狀態轉換至該第二次狀態,然後自該第二次狀態轉換至該兩狀態的該一狀態。
  11. 如申請專利範圍第8項之電漿系統,其中該時脈源包含一石英振盪器或與一鎖相迴路耦合的一石英振盪器。
  12. 如申請專利範圍第8項之電漿系統,其中受到控制以與該脈動訊號同步的該功率具有與該脈動訊號之頻率相同的頻率。
  13. 如申請專利範圍第8項之電漿系統,其中該兩狀態包含一高狀態及一低狀態,該高狀態具有比該低狀態更高的邏輯位準。
  14. 如申請專利範圍第8項之電漿系統,其中該複數次狀態包含一第一次狀態、一第二次狀態、一第三次狀態與一第四次狀態,其中該RF訊號的該功率具有複數功率位準,其中該複數功率位準的一第一功率位準自該第一次狀態轉換至該第二次狀態中該複數功率位準的一第二功率位準,其中該第二功率位準接著轉換至該第一次狀態中的該第一功率位準,其中該第一功率位準接著轉換至該第二次狀態中的該第二功率位準,其中該第二功率位準接著轉換至該第三次狀態中的該複數功率位準的一第三功率位準,其中該第三功率位準接著轉換至該複數功率位準之一第四功率位準以達成該第四次狀態,其中該第四功率位準接著轉換至該第三功率位準以達到該第三次狀態,其中該第三功率位準接著轉換至該第四功率位準。
  15. 一種射頻(RF)產生器,包含: 一處理器,用以產生具有複數狀態其中一者內之複數次狀態的脈動訊號,該等次狀態以大於該等狀態之頻率的頻率相對於彼此交替;及一RF電源,耦合至該處理器,該RF電源用以產生與該脈動訊號同步的一RF訊號,其中該RF訊號在一時脈週期的一時間期間具有該等狀態其中一者,且在該時脈週期的剩餘時間期間具有該等次狀態,其中該RF電源係用以經由一阻抗匹配電路將該RF訊號供給至一電漿室的一電極。
  16. 如申請專利範圍第15項之射頻(RF)產生器,其中該脈動訊號自該兩狀態之一者轉換至該複數次狀態之一第一次狀態,接著自該第一次狀態轉換至該複數次狀態之一第二次狀態,然後在該第一次狀態與該第二次狀態之間週期性地轉換,且然後自該第二次狀態轉換至該兩狀態之該一者。
  17. 如申請專利範圍第15項之射頻(RF)產生器,其中該處理器係用以將該脈動訊號供給至一額外RF產生器,其中該額外RF產生器用以產生與該脈動訊號同步的一額外RF訊號。
  18. 如申請專利範圍第15項之射頻(RF)產生器,其中該阻抗匹配電路基於該RF訊號產生一經修改的RF訊號,其中該阻抗匹配電路藉由匹配該電漿室及一RF傳輸線之阻抗與該RF產生器及一RF纜線的阻抗而產生該經修改的RF訊號,其中該RF傳輸線將該電漿室耦合至該阻抗匹配電路,其中該RF纜線將該RF產生器耦合至該阻抗匹配電路。
  19. 如申請專利範圍第15項之射頻(RF)產生器,其中該複數次狀態之一者期間的該RF訊號之功率位準與該等狀態之一者期間的該RF訊號之功率 位準相同,其中該複數次狀態之另一者期間的該RF訊號之功率位準與該等狀態之另一者期間的該RF訊號之功率位準相同。
  20. 如申請專利範圍第15項之射頻(RF)產生器,其中該複數次狀態包含一第一次狀態、一第二次狀態、一第三次狀態與一第四次狀態,其中該RF訊號的該功率具有複數功率位準,其中該複數功率位準的一第一功率位準自該第一次狀態轉換至該第二次狀態中該複數功率位準的一第二功率位準,其中該第二功率位準接著轉換至該第一次狀態中的該第一功率位準,其中該第一功率位準接著轉換至該第二次狀態中的該第二功率位準,其中該第二功率位準接著轉換至該第三次狀態中的該複數功率位準的一第三功率位準,其中該第三功率位準接著轉換至該複數功率位準之一第四功率位準以達成該第四次狀態,其中該第四功率位準接著轉換至該第三功率位準以達到該第三次狀態,其中該第三功率位準接著轉換至該第四功率位準。
  21. 一種在一狀態期間中的次脈動用之方法,包含:基於和一脈動訊號相關的資訊產生該脈動訊號,該脈動訊號具有一第一狀態內的複數次狀態且具有一第二狀態內的複數次狀態,該第一狀態的該複數次狀態以大於該第一及第二狀態之頻率的頻率相對於彼此交替,且該第二狀態的該複數次狀態以大於該第一及第二狀態之頻率的頻率相對於彼此交替; 提供該脈動訊號,以控制由一第一射頻(RF)產生器產生的一第一RF訊號之功率,該功率受到控制以與該脈動訊號同步;將該第一RF訊號供給至一阻抗匹配電路,該第一RF訊號具有該第一狀態的該複數次狀態且具有該第二狀態的該複數次狀態。
  22. 如申請專利範圍第21項之在一狀態期間中的次脈動用之方法,其中和該脈動訊號有關的該資訊包含該第一狀態的該複數次狀態之頻率、該第一狀態的該複數次狀態之工作週期、該第一狀態出現的時間、該第二狀態的該複數次狀態之頻率、該第二狀態的該複數次狀態之工作週期、及該第二狀態出現的時間。
  23. 如申請專利範圍第21項之在一狀態期間中的次脈動用之方法,更包含:從一主機電腦或一第二RF產生器接收和該脈動訊號有關的該資訊。
  24. 如申請專利範圍第21項之在一狀態期間中的次脈動用之方法,其中該第一狀態的該複數次狀態包含一第一次狀態及一第二次狀態,其中該第一RF訊號具有複數功率位準,其中在該第一次狀態期間,該第一RF訊號具有該複數功率位準的一第一功率位準,且在該第二次狀態期間,該第一RF訊號具有該複數功率位準的一第二功率位準,其中在該第一狀態期間,該第一及第二次狀態重複複數次,且其中該第一功率位準與該第二功率位準不同。
  25. 如申請專利範圍第21項之在一狀態期間中的次脈動用之方法,更包含藉由一第二RF產生器,將具有該第一狀態而無該第一狀態之該複數 次狀態、且具有該第二狀態而無該第二狀態之該複數次狀態的一第二RF訊號提供至該阻抗匹配電路。
  26. 如申請專利範圍第21項之在一狀態期間中的次脈動用之方法,其中在該第一狀態期間,一蝕刻操作係於一基板上執行,且在該第二狀態期間,另一蝕刻操作係於該基板上執行。
  27. 如申請專利範圍第21項之在一狀態期間中的次脈動用之方法,其中在該第一及第二狀態期間,相同類型的處理操作係於一基板上執行。
  28. 一種在一狀態期間中的次脈動用之方法,包含:藉由一第一射頻(RF)產生器之一數位訊號處理器產生一脈動訊號,該脈動訊號具有一第一狀態內的複數次狀態且具有一第二狀態內的複數次狀態,該第一狀態及該第二狀態之各者的該複數次狀態以大於該第一及第二狀態之頻率的頻率相對於彼此交替;藉由該第一RF產生器的一RF電源,產生與該脈動訊號同步的一第一RF訊號,其中該第一RF訊號在該脈動訊號之一週期的一第一時間期間具有該第一狀態的該複數次狀態,且在該脈動訊號之該週期的一第二時間期間具有該第二狀態的該複數次狀態;及將該第一RF訊號提供至連接到一電漿室之一電極的一阻抗匹配電路。
  29. 如申請專利範圍第28項之在一狀態期間中的次脈動用之方法,更包含藉由一第二RF產生器,將具有該第一狀態而無該第一狀態之該複數次狀態、且具有該第二狀態而無該第二狀態之該複數次狀態的一第二RF訊號提供至連接到該電極的該阻抗匹配電路,其中該第二RF訊號的該第一狀 態係於該第一時間期間產生,且該第二RF訊號的該第二狀態係於該第二時間期間產生。
  30. 如申請專利範圍第28項之在一狀態期間中的次脈動用之方法,其中產生該脈動訊號係自和該脈動訊號有關的資訊執行。
  31. 如申請專利範圍第30項之在一狀態期間中的次脈動用之方法,其中和該脈動訊號有關的該資訊包含該第一狀態的該複數次狀態之頻率、該第一狀態的該複數次狀態之工作週期、該第一狀態出現的時間、該第二狀態的該複數次狀態之頻率、該第二狀態的該複數次狀態之工作週期、及該第二狀態出現的時間。
  32. 如申請專利範圍第30項之在一狀態期間中的次脈動用之方法,更包含從一主機電腦或一第二RF產生器接收和該脈動訊號有關的該資訊。
  33. 如申請專利範圍第28項之在一狀態期間中的次脈動用之方法,其中該複數次狀態包含一第一次狀態及一第二次狀態,其中該第一RF訊號具有複數功率位準,其中在該第一次狀態期間,該第一RF訊號具有該複數功率位準的一第一功率位準,且在該第二次狀態期間,該第一RF訊號具有該複數功率位準的一第二功率位準,其中在該第一狀態期間,該第一及第二次狀態重複複數次,且其中該第一功率位準與該第二功率位準不同。
  34. 如申請專利範圍第28項之在一狀態期間中的次脈動用之方法,其中在該第一狀態期間,一蝕刻操作係於一基板上執行,且在該第二狀態期間,另一蝕刻操作係於該基板上執行。
  35. 如申請專利範圍第28項之在一狀態期間中的次脈動用之方法,其中在該第一及第二狀態期間,相同類型的處理操作係於一基板上執行。
  36. 一種在一狀態期間中的次脈動用之方法,包含:自一時脈源接收一時脈訊號,該時脈訊號具有包含一第一狀態及一第二狀態的兩狀態;基於該時脈訊號的該等狀態產生一脈動訊號,該脈動訊號具有該第一狀態內的複數次狀態,且具有該第二狀態內的複數次狀態,該第一狀態及該第二狀態之各者的該複數次狀態以大於該第一及第二狀態之頻率的頻率相對於彼此交替;提供該脈動訊號以控制藉由一第一射頻(RF)產生器所產生之一第一RF訊號的功率,該第一RF訊號具有該第一狀態的該複數次狀態及該第二狀態的該複數次狀態,且該第一RF訊號的該功率係配置成與該脈動訊號同步;及經由一阻抗匹配電路將該第一RF訊號供給至一電漿室的一電極。
  37. 如申請專利範圍第36項之在一狀態期間中的次脈動用之方法,更包含從一第二RF產生器供給一第二RF訊號至連接到該電極的該阻抗匹配電路,該第二RF訊號具有該第一狀態而無該複數次狀態、且具有該第二狀態而無該複數次狀態。
  38. 如申請專利範圍第36項之在一狀態期間中的次脈動用之方法,其中在該第一狀態期間,一蝕刻操作係於一基板上執行,且在該第二狀態期間,另一蝕刻操作係於該基板上執行。
  39. 如申請專利範圍第36項之在一狀態期間中的次脈動用之方法,其中在該第一及第二狀態期間,相同類型的處理操作係於一基板上執行。
  40. 如申請專利範圍第36項之在一狀態期間中的次脈動用之方法,其中該脈動訊號自該第一狀態轉換至該第二狀態之該兩次狀態之一第一次狀態,接著自該第一次狀態轉換至該第二狀態之該兩次狀態之一第二次狀態,然後自該第二狀態之該第二次狀態轉換至該第二狀態之該第一次狀態,接著自該第二狀態之該第一次狀態轉換至該第二狀態之該第二次狀態,且然後自該第二狀態之該第二次狀態轉換至該第一狀態。
  41. 一種控制器,包含:一處理器,用以產生一脈動訊號,該脈動訊號具有一第一狀態內的複數次狀態且具有一第二狀態內的複數次狀態,該第一狀態的該複數次狀態以大於該第一及第二狀態之頻率的頻率相對於彼此交替,且該第二狀態的該複數次狀態以大於該第一及第二狀態之頻率的頻率相對於彼此交替,其中該處理器係用以提供該脈動訊號以控制由一射頻(RF)產生器產生的一RF訊號之功率,其中該RF訊號的該功率受到控制以與該脈動訊號同步、且具有該第一狀態之該複數次狀態及該第二狀態之該複數次狀態;及一記憶體裝置,耦合至該處理器。
  42. 如申請專利範圍第41項之控制器,其中該脈動訊號係基於該第一狀態的該複數次狀態之頻率、該第一狀態的該複數次狀態之工作週期、該第一狀態出現的時間、該第二狀態的該複數次狀態之頻率、該第二狀態的該複數次狀態之工作週期、及該第二狀態出現的時間而產生。
  43. 如申請專利範圍第41項之控制器,其中該第一狀態的該複數次狀態包含一第一次狀態及一第二次狀態,其中該RF訊號具有該功率之複數功率位準, 其中在該第一次狀態期間,該RF訊號具有該複數功率位準的一第一功率位準,且在該第二次狀態期間,該RF訊號具有該複數功率位準的一第二功率位準,其中在該第一狀態期間,該第一及第二次狀態重複複數次,且其中該第一功率位準與該第二功率位準不同。
  44. 如申請專利範圍第41項之控制器,其中該第二狀態的該複數次狀態包含一第一次狀態及一第二次狀態,其中該RF訊號具有複數功率位準,其中在該第一次狀態期間,該RF訊號具有該複數功率位準的一第一功率位準,且在該第二次狀態期間,該RF訊號具有該複數功率位準的一第二功率位準,其中在該第二狀態期間,該第一及第二次狀態重複複數次,且其中該複數功率位準的該第一功率位準與該複數功率位準的該第二功率位準不同。
  45. 如申請專利範圍第41項之控制器,其中在該第一及第二狀態期間,相同類型的處理操作係於一基板上執行。
  46. 如申請專利範圍第41項之控制器,其中該RF訊號在一時脈訊號之一週期的一第一時間期間具有該第一狀態的該複數次狀態,且在該時脈訊號之該週期的一第二時間期間具有該第二狀態的該複數次狀態。
  47. 如申請專利範圍第41項之控制器,其中該脈動訊號自該第一狀態轉換至該第二狀態之該複數次狀態之一第一次狀態,接著自該第二狀態之該第一次狀態轉換至該第二狀態之該複數次狀態之一第二次狀態,然後自該 第二狀態之該第二次狀態轉換至該第二狀態之該第一次狀態,接著自該第二狀態之該第一次狀態轉換至該第二狀態之該第二次狀態,且然後自該第二狀態之該第二次狀態轉換至該第一狀態。
  48. 如申請專利範圍第41項之控制器,其中該脈動訊號自該第二狀態轉換至該第一狀態之該複數次狀態之一第一次狀態,接著自該第一狀態之該第一次狀態轉換至該第一狀態之該複數次狀態之一第二次狀態,然後自該第一狀態之該第二次狀態轉換至該第一狀態之該第一次狀態,接著自該第一狀態之該第一次狀態轉換至該第一狀態之該第二次狀態,且然後自該第一狀態之該第二次狀態轉換至該第二狀態。
  49. 一種電漿工具,包含:一射頻(RF)產生器,用以產生一RF訊號;一匹配部,耦合至RF電源,以接收該RF訊號並從該RF訊號產生一經修改的訊號;一電漿室,耦合至該匹配部,以接收該經修改的訊號;及一控制器,耦合至該RF產生器,其中該控制器係用以產生一脈動訊號,該脈動訊號具有一第一狀態內的複數次狀態、且具有一第二狀態內的複數次狀態,該第一狀態的該複數次狀態以大於該第一及第二狀態之頻率的頻率相對於彼此交替,且該第二狀態的該複數次狀態以大於該第一及第二狀態之頻率的頻率相對於彼此交替;其中該控制器係用以提供該脈動訊號,以控制由該RF產生器產生的該RF訊號之功率,其中該RF訊號之該功率受到控制以與該脈動訊號同步、且具有該第一狀態的該複數次狀態及該第二狀態的該複數次狀態。
  50. 如申請專利範圍第49項之電漿工具,其中該脈動訊號係基於該第一狀態的該複數次狀態之頻率、該第一狀態的該複數次狀態之工作週期、該第一狀態出現的時間、該第二狀態的該複數次狀態之頻率、該第二狀態的該複數次狀態之工作週期、及該第二狀態出現的時間而產生。
  51. 如申請專利範圍第49項之電漿工具,其中該第一狀態的該複數次狀態包含一第一次狀態及一第二次狀態,其中該RF訊號具有該功率之複數功率位準,其中在該第一次狀態期間,該RF訊號具有該複數功率位準的一第一功率位準,且在該第二次狀態期間,該RF訊號具有該複數功率位準的一第二功率位準,其中在該第一狀態期間,該第一及第二次狀態重複複數次,且其中該第一功率位準與該第二功率位準不同。
  52. 如申請專利範圍第49項之電漿工具,其中該第二狀態的該複數次狀態包含一第一次狀態及一第二次狀態,其中該RF訊號具有複數功率位準,其中在該第一次狀態期間,該RF訊號具有該複數功率位準的一第一功率位準,且在該第二次狀態期間,該RF訊號具有該複數功率位準的一第二功率位準,其中在該第二狀態期間,該第一及第二次狀態重複複數次,且其中該第一功率位準與該第二功率位準不同。
  53. 如申請專利範圍第49項之電漿工具,其中在該第一及第二狀態期間,相同類型的處理操作係於一基板上執行。
  54. 如申請專利範圍第49項之電漿工具,其中該RF訊號在一時脈訊號之一週期的一第一時間期間具有該第一狀態的該複數次狀態,且在該時脈訊號之該週期的一第二時間期間具有該第二狀態的該複數次狀態。
  55. 如申請專利範圍第49項之電漿工具,其中該脈動訊號自該第一狀態轉換至該第二狀態之該複數次狀態之一第一次狀態,接著自該第二狀態之該第一次狀態轉換至該第二狀態之該複數次狀態之一第二次狀態,然後自該第二狀態之該第二次狀態轉換至該第二狀態之該第一次狀態,接著自該第二狀態之該第一次狀態轉換至該第二狀態之該第二次狀態,且然後自該第二狀態之該第二次狀態轉換至該第一狀態。
  56. 如申請專利範圍第49項之電漿工具,其中該脈動訊號自該第二狀態轉換至該第一狀態之該複數次狀態之一第一次狀態,接著自該第一狀態之該第一次狀態轉換至該第一狀態之該複數次狀態之一第二次狀態,然後自該第一狀態之該第二次狀態轉換至該第一狀態之該第一次狀態,接著自該第一狀態之該第一次狀態轉換至該第一狀態之該第二次狀態,且然後自該第一狀態之該第二次狀態轉換至該第二狀態。
TW108124594A 2014-08-22 2015-08-21 在一狀態期間中的次脈動用之電漿系統、電漿工具、射頻產生器、控制器、及方法 TWI735912B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/466,724 US9390893B2 (en) 2012-02-22 2014-08-22 Sub-pulsing during a state
US14/466,724 2014-08-22

Publications (2)

Publication Number Publication Date
TW201941254A TW201941254A (zh) 2019-10-16
TWI735912B true TWI735912B (zh) 2021-08-11

Family

ID=55423317

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108124594A TWI735912B (zh) 2014-08-22 2015-08-21 在一狀態期間中的次脈動用之電漿系統、電漿工具、射頻產生器、控制器、及方法
TW104127257A TWI673753B (zh) 2014-08-22 2015-08-21 一狀態期間中的次脈動方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104127257A TWI673753B (zh) 2014-08-22 2015-08-21 一狀態期間中的次脈動方法

Country Status (3)

Country Link
KR (1) KR102421846B1 (zh)
CN (2) CN110474621B (zh)
TW (2) TWI735912B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9287113B2 (en) 2012-11-08 2016-03-15 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10395894B2 (en) * 2017-08-31 2019-08-27 Lam Research Corporation Systems and methods for achieving peak ion energy enhancement with a low angular spread
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
WO2019112849A1 (en) * 2017-12-07 2019-06-13 Lam Research Corporation Rf pulsing within pulsing for semiconductor rf plasma processing
CN114127890A (zh) 2019-05-01 2022-03-01 朗姆研究公司 调整的原子层沉积

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504799A (en) * 1980-07-23 1985-03-12 Itt Industries, Inc. Digital frequency/phase locked loop
US20110031216A1 (en) * 2009-08-07 2011-02-10 Applied Materials, Inc. Synchronized radio frequency pulsing for plasma etching
US20110139748A1 (en) * 2009-12-15 2011-06-16 University Of Houston Atomic layer etching with pulsed plasmas
US20130122711A1 (en) * 2011-11-10 2013-05-16 Alexei Marakhtanov System, method and apparatus for plasma sheath voltage control
TW201427496A (zh) * 2012-09-14 2014-07-01 Lam Res Corp 根據三個或更多狀態之功率及頻率調整

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306237A (en) * 1980-02-25 1981-12-15 The Bendix Corporation Pulsed solid state device having a preheat circuit to improve pulse shape and chirp
KR0183824B1 (ko) * 1995-08-16 1999-04-15 김광호 자기기록장치 및 방법
DE102005009819A1 (de) * 2005-03-01 2006-09-07 Polyic Gmbh & Co. Kg Elektronikbaugruppe
US20080230008A1 (en) * 2007-03-21 2008-09-25 Alexander Paterson Plasma species and uniformity control through pulsed vhf operation
US8659335B2 (en) * 2009-06-25 2014-02-25 Mks Instruments, Inc. Method and system for controlling radio frequency power
CN102063150B (zh) * 2009-11-16 2013-07-03 瑞昱半导体股份有限公司 时钟产生器
US8675725B2 (en) * 2010-04-29 2014-03-18 Mediatek Singapore Pte. Ltd. Integrated circuit, communication unit and method for improved amplitude resolution of an RF-DAC
JP2012249236A (ja) * 2011-05-31 2012-12-13 Renesas Mobile Corp 半導体集積回路装置、電子装置、及び無線通信端末
JP2013093565A (ja) * 2011-10-07 2013-05-16 Semiconductor Energy Lab Co Ltd 半導体装置
US9390893B2 (en) * 2012-02-22 2016-07-12 Lam Research Corporation Sub-pulsing during a state
US8773019B2 (en) * 2012-02-23 2014-07-08 Mks Instruments, Inc. Feedback control and coherency of multiple power supplies in radio frequency power delivery systems for pulsed mode schemes in thin film processing
CN103873017B (zh) * 2012-12-10 2018-09-25 北京普源精电科技有限公司 一种提高脉冲边沿时间分辨率的装置及方法
KR20140105932A (ko) * 2013-02-25 2014-09-03 삼성전자주식회사 전압 레벨 변환 회로 및 이를 포함하는 디스플레이 장치
JP6374647B2 (ja) * 2013-11-05 2018-08-15 東京エレクトロン株式会社 プラズマ処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504799A (en) * 1980-07-23 1985-03-12 Itt Industries, Inc. Digital frequency/phase locked loop
US20110031216A1 (en) * 2009-08-07 2011-02-10 Applied Materials, Inc. Synchronized radio frequency pulsing for plasma etching
US20110139748A1 (en) * 2009-12-15 2011-06-16 University Of Houston Atomic layer etching with pulsed plasmas
CN102934208A (zh) * 2009-12-15 2013-02-13 休斯敦大学体系 用脉冲等离子体进行的原子层蚀刻
US20130122711A1 (en) * 2011-11-10 2013-05-16 Alexei Marakhtanov System, method and apparatus for plasma sheath voltage control
TW201427496A (zh) * 2012-09-14 2014-07-01 Lam Res Corp 根據三個或更多狀態之功率及頻率調整

Also Published As

Publication number Publication date
TW201631617A (zh) 2016-09-01
TWI673753B (zh) 2019-10-01
CN110474621B (zh) 2024-04-09
TW201941254A (zh) 2019-10-16
CN105391427A (zh) 2016-03-09
CN110474621A (zh) 2019-11-19
KR20160023606A (ko) 2016-03-03
CN105391427B (zh) 2019-06-21
KR102421846B1 (ko) 2022-07-15

Similar Documents

Publication Publication Date Title
TWI735912B (zh) 在一狀態期間中的次脈動用之電漿系統、電漿工具、射頻產生器、控制器、及方法
US10256077B2 (en) Sub-pulsing during a state
TWI840373B (zh) 徑向蝕刻均勻度的主動控制之方法及系統
JP2023062052A (ja) 小さい角発散でピークイオンエネルギ増強を達成するためのシステムおよび方法
US9583357B1 (en) Systems and methods for reverse pulsing
JP7504240B2 (ja) 基板を処理するための周波数同調と整合同調とを重複させずに適用するためのシステムおよび方法
JP2017199649A (ja) 直流パルス式プラズマシステム
US12119232B2 (en) Etching isolation features and dense features within a substrate
JP7195810B2 (ja) イオンの方向性を増大させるためのマルチレジームプラズマウエハ処理
JP2023505782A (ja) 反り制御とマスク選択比とのバランスを達成するための多状態パルス化
US20240331976A1 (en) Synchronization of rf generators