Nothing Special   »   [go: up one dir, main page]

TWI771321B - 用於處理玻璃基板之設備及方法 - Google Patents

用於處理玻璃基板之設備及方法 Download PDF

Info

Publication number
TWI771321B
TWI771321B TW106131379A TW106131379A TWI771321B TW I771321 B TWI771321 B TW I771321B TW 106131379 A TW106131379 A TW 106131379A TW 106131379 A TW106131379 A TW 106131379A TW I771321 B TWI771321 B TW I771321B
Authority
TW
Taiwan
Prior art keywords
gas
glass
gas bearing
bearing
flow
Prior art date
Application number
TW106131379A
Other languages
English (en)
Other versions
TW201811688A (zh
Inventor
奧立維 佛紐
艾倫馬克 弗雷德赫姆
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW201811688A publication Critical patent/TW201811688A/zh
Application granted granted Critical
Publication of TWI771321B publication Critical patent/TWI771321B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/22Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal
    • C03B35/24Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal on a gas support bed
    • C03B35/246Transporting continuous glass ribbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • B65G49/065Transporting devices for sheet glass in a horizontal position supported partially or completely on fluid cushions, e.g. a gas cushion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/24Registering, tensioning, smoothing or guiding webs longitudinally by fluid action, e.g. to retard the running web
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/061Forming glass sheets by lateral drawing or extrusion
    • C03B17/062Forming glass sheets by lateral drawing or extrusion combined with flowing onto a solid or gaseous support from which the sheet is drawn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • C03B23/0352Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending by suction or blowing out for providing the deformation force to bend the glass sheet
    • C03B23/0355Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending by suction or blowing out for providing the deformation force to bend the glass sheet by blowing without suction directly on the glass sheet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • C03B25/08Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets
    • C03B25/093Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets being in a horizontal position on a fluid support, e.g. a gas or molten metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/183Construction of the conveyor rollers ; Materials, coatings or coverings thereof specially adapted for thermal adjustment of the rollers, e.g. insulating, heating, cooling thereof
    • C03B35/184Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/22Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal
    • C03B35/24Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal on a gas support bed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/22Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal
    • C03B35/24Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal on a gas support bed
    • C03B35/243Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal on a gas support bed having a non-planar surface, e.g. curved, for bent sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0214Articles of special size, shape or weigh
    • B65G2201/022Flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/06Air cushion support of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/10Means using fluid made only for exhausting gaseous medium
    • B65H2406/11Means using fluid made only for exhausting gaseous medium producing fluidised bed
    • B65H2406/111Means using fluid made only for exhausting gaseous medium producing fluidised bed for handling material along a curved path, e.g. fluidised turning bar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/10Means using fluid made only for exhausting gaseous medium
    • B65H2406/11Means using fluid made only for exhausting gaseous medium producing fluidised bed
    • B65H2406/112Means using fluid made only for exhausting gaseous medium producing fluidised bed for handling material along preferably rectilinear path, e.g. nozzle bed for web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/61Display device manufacture, e.g. liquid crystal displays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

本文揭露在氣體層上非接觸處理例如玻璃基板的基板的設備與方法。支撐設備包括配置在以加壓氣體供應的壓力盒上的複數個氣體軸承。某些實施例係針對支撐與運送軟化玻璃的方法。方法包括置放玻璃鄰近具有支撐表面的氣體軸承裝置,支撐表面中配置有複數個出口埠。某些實施例係針對包括氣體桌的玻璃處理設備,氣體桌設以連續地運送與支撐由支撐結構所支撐且配置於氣體桌上的玻璃流動與複數個模組裝置。某些實施例係針對利用兩側氣體軸承裝置或一側氣體軸承裝置平坦化黏性玻璃的方法。

Description

用於處理玻璃基板之設備及方法
本揭露內容大體而言關於處理基板的設備與方法,更特定言之,關於非接觸處理玻璃基板的設備與方法。
自玻璃帶形成玻璃片,且玻璃片在用於使用者介面、控制器、顯示器、建築裝置、家用電器與電子裝置後變得廣受歡迎。能夠在軟化狀態下處理與形成玻璃在多個應用中受到關注。
本文描述的設備包括在支撐設備上輸送玻璃基板時適合支撐玻璃基板的非接觸支撐設備。非接觸支撐設備特別良好地適合支撐已經足夠軟化的玻璃基板,已經足夠軟化的玻璃基板例如藉由在初步形成過程中或在初步形成後加熱,導致玻璃基板的表面可輕易地由傳統的非接觸支撐設備毀壞、扭曲或以其他方式破壞。舉例而言,傳統支撐設備可利用離散的埠(例如,點源)排出支撐設備與玻璃基板之間的氣體。該等離散的氣體排出埠通常在直接鄰接排出埠處產生強壓力抵靠軟化玻璃基板,但在圍繞離散的排出埠處為較小壓力。這會造成人造物(例如,微凹處)形成於玻璃基板的表面上而非視為光學失真。
根據本文所述的非接觸支撐設備,個別氣體軸承耦接至相同壓力盒,相同壓力盒以加壓氣體的供應器供應各個氣體軸承。氣體軸承係排列成壓力盒上的複數個列。氣體軸承包括自氣體軸承的表面切開且排列正交於玻璃基板輸送方向的複數個槽。槽透過一個或多個計量(阻抗)孔流體連通於氣體軸承中的氣室,一個或多個計量(阻抗)孔位於氣室與槽之間並相對於氣體軸承的表面上的各個槽的開口而配置,以致沿著槽的長度的氣體壓力係實質上均勻的。舉例而言,阻抗孔的離開孔洞與流體連通於阻抗孔之槽的開口(在氣體軸承的表面處)之間的氣體最短路徑長度係至少約5毫米,且在某些實施例中,最短路徑長度可等於或大於10毫米。此距離藉由氣體到達槽的開口的時間來確保排除離散分佈的阻抗孔所造成的沿著槽的壓力變化。
在某些實施例中,氣體軸承可包括大於1的長度比寬度的長寬比,以致氣體軸承的長度長於氣體軸承的寬度,氣體軸承經排列以致長度方向正交於輸送方向。因此,已知氣體軸承列的氣體軸承排列成首尾相連。此外,氣體軸承的端點可相對於輸送方向成非正交角度,以致可自氣體軸承端點間之間隙漏出的氣體並非排列於與輸送方向平行的線上,反之分散在由相鄰端點(例如,端點間之間隙)的角度決定的輸送玻璃基板時玻璃基板的表面積上。
因此,揭露支撐在輸送方向上移動的基板的設備,包括壓力盒,壓力盒封圍流體連通於加壓氣體源的腔室;及配置於壓力盒上的氣體軸承,氣體軸承包括:氣室,流體連通於腔室並延伸於氣體軸承的長度方向上;中間通道,透過阻抗孔流體連通於氣室,阻抗孔的尺寸係設以限制氣室與中間通道間的氣體流動;及槽,流體連通於中間通道並沿著氣體軸承的長度方向延伸,槽在氣體軸承的主要表面上開口並設以沿著槽的長度排出氣體。槽的寬度沿著槽的長度可為均勻的。氣體軸承進一步包括界定氣體軸承的主要表面的複數個邊緣,複數個邊緣包括第一對相反的平行邊緣,第一對相反的平行邊緣相對於輸送方向排列在角度α下,其中α係在約20度至約60度的範圍中。在某些實施例中,設備包括配置在壓力盒上的複數個氣體軸承,複數個氣體軸承排列成正交於輸送方向延伸的複數個列。
在某些實施例中,阻抗孔的離開孔洞與槽的開口之間的距離係等於或大於約5毫米,例如在約5毫米至約10毫米的範圍中或在約10毫米至約20毫米的範圍中。
在某些實施例中,阻抗孔的中心縱軸係正交於主要表面。
在某些實施例中,阻抗孔的中心縱軸係平行於主要表面。
壓力盒可包括流體連通於冷卻流體源的冷卻通道。
在另一個實施例中,描述支撐玻璃基板的設備,包括壓力盒,壓力盒封圍流體連通於加壓氣體源的腔室;及配置於壓力盒的表面上的複數個氣體軸承,複數個氣體軸承排列成延伸正交於玻璃基板的輸送方向的複數個列。複數個氣體軸承的各個氣體軸承可包括:氣室,流體連通於腔室並延伸於氣體軸承的長度方向上;中間通道,透過阻抗孔流體連通於氣室,阻抗孔的尺寸係設以限制內部氣室與中間通道間的氣體流動;及槽,流體連通於中間通道並沿著氣體軸承的長度延伸,槽在氣體軸承的主要表面上開口以致可自沿著槽的長度的槽開口排出氣體。槽的寬度沿著槽的長度可為均勻的。
藉由複數個邊緣界定氣體軸承的主要表面,複數個邊緣包括至少第一對平行邊緣,第一對平行邊緣相對於輸送方向排列在角度α下,其中α係在等於或大於20度至等於或小於60度的範圍中。
在某些實施例中,阻抗孔的離開孔洞與槽在主要表面的開口之間的距離d係等於或大於約5毫米,例如在約5毫米至約10毫米的範圍中,例如在約120毫米至約20毫米的範圍中。
在某些實施例中,阻抗孔的縱軸係正交於主要表面。
在某些實施例中,阻抗孔的縱軸係平行於主要表面。
在又另一個實施例中,揭露支撐玻璃基板的方法,方法包括在輸送方向中輸送支撐設備上的玻璃基板,非接觸支撐設備包括壓力盒,壓力盒封圍流體連通於加壓氣體源的腔室,壓力盒進一步包括配置在壓力盒上的複數個氣體軸承,複數個氣體軸承排列成延伸正交於輸送方向的複數個列,複數個氣體軸承的各個氣體軸承包括:氣室,流體流通延伸於氣體軸承的長度方向;中間通道,透過阻抗孔流體連通於氣室,阻抗孔的尺寸係設以限制氣室與中間通道間的氣體流動;及槽,流體連通於中間通道並沿著氣體軸承的長度延伸,槽在氣體軸承的主要表面上開口。槽的寬度沿著槽的長度可為均勻的。
方法進一步包括自槽沿著槽的長度排出氣體,藉此支撐玻璃基板於與氣體軸承的主要表面間隔的位置上,且其中氣體軸承的主要表面係由複數個邊緣所界定,複數個邊緣包括至少第一對平行邊緣,至少第一對平行邊緣相對於輸送方向排列在角度α下,其中α係在等於或大於20度至等於或小於60度的範圍中。
在某些實施例中,通過阻抗孔的壓力下降係等於或大於50倍的氣體軸承與玻璃基板間之氣體壓力,例如在約50至約100倍的氣體軸承與玻璃基板間之氣體壓力的範圍中。
方法可進一步包括當在支撐設備上輸送玻璃基板時加熱玻璃基板至大於玻璃基板的退火溫度的溫度。玻璃基板的寬度可至少1米,且在支撐設備輸送玻璃基板後,玻璃基板的主要表面的最大變化相對於參考平面不超過100微米。參考平面可例如為玻璃基板的平面。
在某些實施例中,玻璃基板係玻璃帶,方法進一步包括在以支撐設備支撐玻璃帶之前自成形主體拉引玻璃帶。在某些實施例中,方法可進一步包括在以支撐設備支撐玻璃基板之前自第一方向重新引導玻璃帶至不同於第一方向的第二方向。
在某些實施例中,自配置鄰近於玻璃基板邊緣部分的氣體軸承排出的氣體壓力可大於自配置於玻璃基板中心部分下方的氣體軸承排出的氣體壓力。
某些實施例係針對支撐軟化玻璃的方法。方法包括置放玻璃鄰近氣體軸承裝置。氣體軸承裝置具有支撐表面,支撐表面中配置有複數個出口埠。出口埠的密度係每平方米至少8,000個出口。方法亦包括透過出口埠噴出氣體流動以致玻璃不接觸支撐表面。
在某些實施例中,先前段落任一者的實施例可進一步包括:置放玻璃步驟亦包括自玻璃供給單元提供連續玻璃流動並置放玻璃鄰近氣體軸承裝置。
在某些實施例中,先前段落任一者的實施例可進一步包括:置放玻璃步驟包括提供玻璃片並維持玻璃片鄰近氣體軸承裝置持續一時間週期同時維持玻璃的黏性在約500至約1013 泊的範圍中。
在某些實施例中,先前段落任一者的實施例可進一步包括:透過配置於支撐表面中的複數個排氣埠釋出支撐玻璃的氣體的一部分。
在某些實施例中,先前段落任一者的實施例可進一步包括排氣埠形成陣列的密度小於出口埠的密度。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承裝置係空氣轉動軸承,而方法進一步包括在供給玻璃至空氣轉動軸承附近後,自第一方向重新引導玻璃流動至第二方向,且空氣轉動軸承不接觸玻璃。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承係氣體桌,而方法包括當連續玻璃流動橫跨水平面時,供給連續玻璃流動至氣體桌附近並支撐連續玻璃流動且氣體桌不接觸玻璃。
在某些實施例中,先前段落任一者的實施例可進一步包括:方法包括當連續玻璃流動橫跨水平面時,維持橫跨玻璃流動的張力。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承裝置係累積器,而方法包括當供給連續玻璃流動至累積器附近時,累積期望體積的玻璃並不接觸成形玻璃表面的至少一部分地以累積器成形體積玻璃的表面。
在某些實施例中,先前段落任一者的實施例可進一步包括:方法包括以累積器成形體積玻璃的表面,且累積器與成形玻璃表面之間沒有接觸。
在某些實施例中,先前段落任一者的實施例可進一步包括氣體軸承裝置係空氣模且玻璃包括玻璃片,方法包括置放玻璃鄰近氣體軸承裝置,這包括置放玻璃片於空氣模上。在某些實施例中,先前段落任一者的實施例可進一步包括:方法進一步包括下垂玻璃以成形玻璃的表面成為空氣模的形狀,且空氣模與成形玻璃表面的至少一部分之間沒有接觸。
在某些實施例中,先前段落任一者的實施例可進一步包括:方法包括下垂玻璃以成形玻璃的表面成為空氣模的形狀,且空氣模與成形玻璃表面之間沒有接觸。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承的最小面積係1 cm2
在某些實施例中,先前段落任一者的實施例可進一步包括:出口埠具有均勻的尺寸與間距。
在某些實施例中,先前段落任一者的實施例可進一步包括:出口埠的密度係每平方米至少10,000個出口埠。
在某些實施例中,出口埠形成間距最多3毫米的陣列。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承裝置包括複數個計量管,且各個計量管供應氣體島至少兩個出口埠。
在某些實施例中,先前段落任一者的實施例可進一步包括:方法包括當玻璃鄰近氣體軸承裝置時熱形成玻璃。
在某些實施例中,先前段落任一者的實施例可進一步包括:藉由循環溫度受控熱流體通過氣體軸承中的溫度控制通道來控制氣體軸承裝置的溫度。
在某些實施例中,先前段落任一者的實施例可進一步包括:藉由設以冷卻溫度受控流體的冷卻線路來控制熱流體。
在某些實施例中,先前段落任一者的實施例可進一步包括:加熱線路設以加熱溫度受控流體。
在某些實施例中,先前段落任一者的實施例可進一步包括:方法包括在噴出通過出口埠之前自氣體源傳送氣體至氣體軸承裝置並在氣體到達氣體軸承裝置之前預先加熱氣體。
某些實施例係針對包括氣體軸承裝置的玻璃處理設備,氣體軸承裝置具有支撐表面,支撐表面中配置有複數個出口埠。出口埠的密度系每平方米至少8,000個出口埠。氣體軸承裝置設以支撐黏性玻璃。
在某些實施例中,先前段落任一者的實施例可進一步包括:設備包括玻璃供給單元,玻璃供給單元設以供給連續玻璃流動至氣體軸承裝置,其中藉由玻璃供給單元供給玻璃時,玻璃係熔融的。
在某些實施例中,先前段落任一者的實施例可進一步包括:設備包括驅動傳送器,驅動傳送器設以自氣體軸承裝置接收連續玻璃流動,且驅動傳送器設以施加張力至藉由氣體軸承裝置支撐的玻璃流動。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承裝置係空氣轉動軸承,空氣轉動軸承設以不接觸玻璃地自第一方向轉動玻璃流動至不同於第一方向的第二方向。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承裝置係氣體桌,氣體桌設以不接觸玻璃地支撐玻璃流動。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承裝置係累積器,累積器設以接收並累積一體積的玻璃,並成形體積玻璃的表面,且累積器與成形玻璃表面的至少一部分之間沒有接觸。
在某些實施例中,先前段落任一者的實施例可進一步包括:累積器設以接收並累積一體積的玻璃,並成形體積玻璃的表面,且累積器與成形玻璃表面之間沒有接觸。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承裝置係空氣模,空氣模設以不接觸玻璃的至少一部分地下降玻璃片。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承裝置係空氣模,空氣模設以不接觸玻璃地下降玻璃片。
在某些實施例中,先前段落任一者的實施例可進一步包括:出口埠的密度係每平方米至少10,000個。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承裝置包括氣體歧管,氣體歧管流體連通於複數個出口埠。
在某些實施例中,先前段落任一者的實施例可進一步包括:設備包括複數個計量管,且各個計量管流體連通於歧管與至少四個出口埠。
在某些實施例中,先前段落任一者的實施例可進一步包括:出口埠形成間距最多3毫米的陣列。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承的最小面積係1 cm2
在某些實施例中,先前段落任一者的實施例可進一步包括:出口埠具有均勻尺寸與間距。
在某些實施例中,先前段落任一者的實施例可進一步包括:設備包括連接至氣體軸承裝置的熱控制系統,且熱控制系統設以藉由循環溫度受控流體通過氣體軸承中的溫度控制通道來控制氣體軸承的溫度。
在某些實施例中,先前段落任一者的實施例可進一步包括:熱控制系統設以維持玻璃的黏度在約500至約1013 泊的範圍中。
在某些實施例中,先前段落任一者的實施例可進一步包括:熱控制系統包括熱交換器。
在某些實施例中,先前段落任一者的實施例可進一步包括:溫度受控流體係冷卻流體。
在某些實施例中,先前段落任一者的實施例可進一步包括:溫度受控流體係預熱氣體。
在某些實施例中,先前段落任一者的實施例可進一步包括:熱控制系統包括至少一個電加熱元件。
某些實施例係針對包括氣體桌的玻璃處理設備,氣體桌設以連續地運送並支撐藉由支撐結構支撐的玻璃流動與複數個模組裝置。複數個模組裝置配置於氣體桌上。模組裝置的至少一個係模組熱管理裝置。
在某些實施例中,先前段落任一者的實施例可進一步包括:複數個模組裝置可移動地附接至支撐結構,且各個模組裝置係可獨立地移動的。
在某些實施例中,先前段落任一者的實施例可進一步包括:支撐結構包括可移動地附接至支撐結構的臂件,且複數個模組裝置附接至臂件。
在某些實施例中,先前段落任一者的實施例可進一步包括:至少一個模組熱管理裝置可移動地附接至支撐結構。
在某些實施例中,先前段落任一者的實施例可進一步包括:至少一個模組熱管理裝置係獨立地選自平坦面板加熱器、被動反射面板、邊緣加熱器、空氣刀組件、滾筒與上述之任何組合。
在某些實施例中,先前段落任一者的實施例可進一步包括:複數個模組裝置包括滾輪定位組件、平坦化滾輪組件與驅動滾筒的至少一個。
在某些實施例中,先前段落任一者的實施例可進一步包括:臂可移動於垂直方向中。
在某些實施例中,先前段落任一者的實施例可進一步包括:支撐結構包括供能舉昇件,供能舉昇件設以相對於直立件移動臂於垂直方向中。
在某些實施例中,先前段落任一者的實施例可進一步包括:臂可移動於較低位置與較高位置之間。
在某些實施例中,先前段落任一者的實施例可進一步包括:複數個模組裝置可沿著水平軸移動。
在某些實施例中,先前段落任一者的實施例可進一步包括:複數個模組裝置可沿著垂直軸移動。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體桌設以在水平線5度內的平面中支撐玻璃流動。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體桌包括氣體軸承模具。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體軸承模具係下降模具。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體桌進一步包括第一部分,第一部分設以不接觸玻璃流動地連續運送並支撐玻璃流動。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體桌進一步包括第二部分,第二部分包括設以藉由接觸玻璃流動而支撐玻璃流動的滾筒。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體桌的第二部分在玻璃流動移動方向上係配置在氣體桌滾筒的第一部分後方。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體桌包括複數個桌模組。
某些實施例係針對用於控制玻璃流動的熱輪廓的連續玻璃形成製程的方法。方法包括自玻璃供給單元供應熔融玻璃流動於第一方向中。方法包括傳送玻璃流動通過氣體軸承以不接觸玻璃流動地自第一方向重新引導玻璃流動至第二方向。方法包括不接觸玻璃地運送玻璃流動橫跨氣體桌的第一部分。方法亦包括在運送玻璃時以至少一個熱管理裝置控制玻璃流動的熱輪廓,至少一個熱管理裝置藉由支撐結構支撐以致模組熱管理裝置配置於玻璃流動上。
某些實施例係針對玻璃處理設備,玻璃處理設備包括具有第一主要表面的第一氣體軸承組件與具有第二主要表面的第二氣體軸承組件,其中第一主要表面藉由間隙分隔於第二主要表面。玻璃處理設備具有配置於第一主要表面中且流體連通於第一氣體源的第一複數個出口埠、孔隙或上述之組合。玻璃處理設備亦具有配置於第二組件支撐表面中且流體連通於第二氣體源的第二複數個出口埠、孔隙或上述之組合。玻璃處理設備亦具有配置用以供給連續黏性玻璃流動進入間隙的黏性玻璃源。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中黏性玻璃源設以在玻璃進入第一氣體軸承組件與第二氣體軸承組件間的間隙時提供黏性在107 至1010 泊範圍中的玻璃流動。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中第一氣體軸承組件進一步包括複數個第一氣體軸承,各個第一氣體軸承具有第一軸承支撐表面以致複數個第一氣體軸承的第一軸承支撐表面共同地形成第一主要表面;而第二氣體軸承組件進一步包括複數個第二氣體軸承,各個第二氣體軸承具有第二軸承支撐表面以致複數個第二氣體軸承的第二軸承支撐表面共同地形成第二主要表面。
在某些實施例中,先前段落任一者的實施例可進一步包括:將複數個第一氣體軸承彼此分隔的第一複數個排氣通道,以及將複數個第二氣體軸承彼此分隔的第二複數個排氣通道。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中各個第一軸承支撐表面包括第一多孔材料,且各個第二軸承支撐表面包括第二多孔材料。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中第一多孔材料與第二多孔材料皆為石墨。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中第二氣體軸承組件係配置於第一氣體軸承組件上,且其中複數個第二氣體軸承的各個第二氣體軸承由第一與第二氣體軸承間的一個或多個氣體膜所支撐。
在某些實施例中,先前段落任一者的實施例可進一步包括:連接至複數個第一氣體軸承的各個第一氣體軸承的第一支撐框架,其中第一支撐框架包括流體連通於冷卻流體源的冷卻通道。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中第一氣體軸承與第二氣體軸承設以施加150 Pa至1000 Pa的壓力至黏性玻璃流動。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中第二氣體軸承可相對於較低的氣體軸承移動。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中設備設以平坦化連續黏性玻璃流動。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體通道,配置於複數個第一氣體軸承的各個第一氣體軸承中。
某些實施例係針對平坦化黏性玻璃的方法,包括供給黏性在107 至1010 泊範圍中的連續玻璃流動至氣體軸承裝置。氣體軸承裝置包括具有第一主要表面的第一氣體軸承組件;及具有第二主要表面的第二氣體軸承組件。第一主要表面藉由間隙分隔於第二組件表面。氣體軸承裝置亦包括第一複數個出口埠、孔隙或上述之組合,配置於第一主要表面中且流體連通於第一氣體源;及第二複數個出口埠、孔隙或上述之組合,配置於第二主要表面中且流體連通於第二氣體源。方法亦包括藉由噴出氣體通過第一主要表面的出口埠或孔隙以產生第一氣體膜而施加壓力至玻璃的第一側;藉由噴出氣體通過第二主要表面的出口埠或孔隙以產生第二氣體膜而施加壓力至玻璃的第二側;及藉由在施加至玻璃的第一側與第二側的壓力之間產生壓力平衡而不接觸玻璃地平坦化玻璃。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中第一氣體軸承組件進一步包括複數個第一氣體軸承,各個第一氣體軸承具有第一軸承支撐表面以致複數個第一氣體軸承的第一軸承支撐表面共同地形成第一主要表面;且第二氣體軸承組件進一步包括複數個第二氣體軸承,各個第二氣體軸承具有第二軸承支撐表面以致複數個第二氣體軸承的第二軸承支撐表面共同地形成第二主要表面。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中第一氣體軸承組件進一步包括將複數個第一氣體軸承彼此分隔的第一複數個排氣通道,且第二氣體軸承組件進一步包括將複數個第二氣體軸承彼此分隔的第二複數個排氣通道。
在某些實施例中,先前段落任一者的實施例可進一步包括:維持第一氣體膜的厚度在50至500 µm並維持第二氣體膜的厚度在50至500 µm。
在某些實施例中,先前段落任一者的實施例可進一步包括:施加等於5至50倍的玻璃重量的壓力。
在某些實施例中,先前段落任一者的實施例可進一步包括:藉由調整第二氣體軸承組件相對於第一氣體軸承組件的位置來調整第一氣體膜的厚度與第二玻璃膜的厚度。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中第二氣體軸承組件係由第二氣體膜所支撐。
在某些實施例中,先前段落任一者的實施例可進一步包括:供給氣體通過與玻璃流動方向垂直的孔洞。
在某些實施例中,先前段落任一者的實施例可進一步包括:藉由流動冷卻流體通過冷卻通道來冷卻氣體軸承組件。
在某些實施例中,先前段落任一者的實施例可進一步包括:在維持玻璃的黏度在107 至1013 泊的範圍中時,維持玻璃鄰近第一氣體軸承組件與第二氣體軸承組件持續一時間週期。
某些實施例係針對玻璃處理設備,玻璃處理設備包括具有主要表面的氣體軸承組件;複數個出口埠、孔隙或上述之組合,配置於主要表面中;及複數個排氣孔,配置於主要表面中;及黏性玻璃源,配置以供給連續黏性玻璃流動至氣體軸承裝置。氣體軸承組件設以透過出口埠或孔隙施加正壓至玻璃片,並透過排氣孔施加負壓至玻璃片。出口埠或孔隙流體連通於氣體源,而當供給玻璃至氣體軸承裝置時,玻璃的黏度在107 至1013 泊的範圍中。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中氣體軸承組件進一步包括複數個氣體軸承,各個氣體軸承具有軸承支撐表面以致第一氣體軸承的軸承支撐表面共同地形成主要表面。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中氣體軸承組件進一步包括將複數個氣體軸承彼此分隔的複數個排氣通道。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中主要表面中包括複數個出口埠,其中出口埠的密度係每平方米至少8,000個出口埠。
在某些實施例中,先前段落任一者的實施例可進一步包括:複數個排氣埠配置於主要表面上,其中排氣埠的密度低於出口埠的密度。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中軸承支撐表面包括多孔材料。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中多孔材料係石墨。
在某些實施例中,先前段落任一者的實施例可進一步包括:支撐框架連接至複數個氣體軸承的各個氣體軸承,其中支撐框架包括流體連通於冷卻流體源的冷卻通道。
在某些實施例中,先前段落任一者的實施例可進一步包括:配置於玻璃上的熱管理裝置。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中氣體軸承設以施加等於2至25倍的玻璃重量的正壓。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中氣體軸承設以施加等於2至25倍的玻璃重量的負壓,其中負壓小於正壓。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中設備設以平坦化連續黏性玻璃流動。
在某些實施例中,先前段落任一者的實施例可進一步包括:氣體通道,配置於複數個氣體軸承的各個氣體軸承中。
某些實施例係針對平坦化黏性玻璃的方法,包括自源供給連續玻璃流動,當自源供給玻璃時玻璃的黏度在107 至1013 泊的範圍中;置放玻璃鄰近氣體軸承組件;藉由噴出氣體通過出口埠或孔隙而施加正壓至玻璃;藉由拉引真空通過排氣孔而施加負壓至玻璃;及藉由產生壓力平衡而不接觸玻璃地平坦化玻璃。在某些實施例中,氣體軸承組件包括主要表面;複數個出口埠、孔隙或上述之組合,配置於主要表面中;及複數個排氣孔,配置於主要表面中。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中氣體軸承組件進一步包括複數個氣體軸承,各個氣體軸承具有軸承支撐表面以致氣體軸承的軸承支撐表面共同地形成主要表面。
在某些實施例中,先前段落任一者的實施例可進一步包括:維持第一氣體膜的厚度在50至500 µm並維持第二氣體膜的厚度在50至500 µm。
在某些實施例中,先前段落任一者的實施例可進一步包括:施加等於2至25倍的玻璃重量的正壓。
在某些實施例中,先前段落任一者的實施例可進一步包括:施加等於2至25倍的玻璃重量的負壓。
在某些實施例中,先前段落任一者的實施例可進一步包括:供給氣體通過與玻璃流動方向垂直的孔洞。
在某些實施例中,先前段落任一者的實施例可進一步包括:藉由流動冷卻流體通過流體連通於冷卻流體源的冷卻通道來冷卻氣體軸承裝置。
在某些實施例中,先前段落任一者的實施例可進一步包括:進一步包括在維持玻璃的黏度在107 至1013 泊的範圍中時,維持玻璃鄰近氣體軸承組件持續一時間週期。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中氣體軸承裝置進一步包括熱管理裝置,配置於玻璃上且相反於支撐表面。
某些實施例係針對玻璃形成設備,包括設以供應熔融玻璃流動於第一方向中的玻璃供給單元。在某些實施例中,氣體軸承配置於玻璃供給單元下,且氣體軸承設以不接觸熔融玻璃流動地重新引導熔融玻璃流動至不同於第一方向的第二方向。在某些實施例中,玻璃形成設備包括至少一個熱管理裝置。在某些實施例中,熱管理裝置係下列之一者:氣體軸承中的流體冷卻劑通道;對流性冷卻系統,對流性冷卻系統包括噴嘴,噴嘴設以噴出迫使熔融玻璃流動朝向氣體軸承的氣體;及熱擋板,配置於玻璃供給單元與氣體軸承之間。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中玻璃形成設備包括流體冷卻劑通道、對流性冷卻系統與熱擋板。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中玻璃形成設備包括熱擋板。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中玻璃形成設備包括流體冷卻劑通道與對流性冷卻系統。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中對流性冷卻系統包括氣體腔室與流體連通於氣體腔室的複數個噴嘴,且複數個噴嘴的各個噴嘴設以自氣體腔室噴出氣體。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中複數個噴嘴的各個噴嘴包括末端與調節器,調節器設以控制氣體離開末端的流動速率。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中複數個噴嘴的各個噴嘴以持續方式供應氣體。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中第一方向係垂直方向而第二方向係水平方向。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中氣體軸承的半徑不大於8 cm。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中玻璃供給單元進一步包括加熱器且玻璃供給單元係形成容器。
在某些實施例中,先前段落任一者的實施例可進一步包括:支撐單元,設以不接觸熔融玻璃流動地支撐移動於第二方向中的熔融玻璃流動;及玻璃帶拉引單元,連接至支撐單元並設以自第二方向中的熔融玻璃流動拉引玻璃帶。
在某些實施例中,先前段落任一者的實施例可進一步包括:玻璃供給單元包括輸出路徑;氣體軸承,配置於玻璃供給單元下輸出路徑附近,氣體軸承進一步包括流體冷卻劑通道;對流性冷卻系統,包括引導朝向氣體軸承的噴嘴;及熱擋板,配置於玻璃供給單元與氣體軸承之間。
在某些實施例中,先前段落任一者的實施例可進一步包括:供應熔融玻璃流動於第一方向中;不接觸熔融玻璃流動地重新引導熔融玻璃流動至不同於第一方向的第二方向;並在重新引導熔融玻璃流動時,以傳熱係數至少150 W/m2 -K的冷卻設備在熔融玻璃流動的至少一個側上至少50 mm的距離上冷卻玻璃。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中熔融玻璃流動的至少一部分的黏度小於25,000泊。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中至少一部分的黏度小於10,000泊。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中至少一部分的黏度在熔融玻璃流動的輸送點與距離熔融玻璃流動的輸送點10 cm距離處之間提高至少50倍。
在某些實施例中,先前段落任一者的實施例可進一步包括:形成氣體膜於熔融玻璃流動的第一主要表面上,並施加強制對流至與第一主要表面相反的熔融玻璃流動的第二主要表面。
在某些實施例中,先前段落任一者的實施例可進一步包括:利用熱擋板降低熔融玻璃流動的溫度。
在某些實施例中,先前段落任一者的實施例可進一步包括:不接觸熔融玻璃流動地支撐移動於第二方向中的熔融玻璃流動,並自第二方向中的熔融玻璃流動拉引玻璃帶。
在某些實施例中,先前段落任一者的實施例可進一步包括:其中玻璃帶的厚度係至少0.1 mm。
本文揭露的實施例的額外特徵與優點將提出於下方詳細描述中,且部分將由熟習該項技術者自描述內容中輕易理解或藉由實施如本文所述的揭露實施例而理解,本文所述的揭露實施例包括下方詳細描述、申請專利範圍以及附圖。
將可理解上方綜述與下方詳細描述兩者皆提出試圖提供概述或框架以理解所請求實施例的性質與特性的實施例。包括附圖以提供進一步理解,且將附圖併入本說明書並作為說明書的一部分。圖式描繪揭露內容的多個實施例,且與描述內容一起用來解釋揭露內容的原理與操作。
現將詳細地參照本揭露內容的實施例,而其實例描繪於附圖中。儘可能在所有圖式中使用相同的元件符號來代表相同或相似部分。然而,此揭露內容可實施於多個不同形式中並不應建構為限制至本文提出的實施例。
玻璃基板的大尺寸製造(例如,用於製造顯示器裝置的玻璃片)開始於熔化原料材料以產生加熱的黏性團(此後稱為「熔融玻璃」或「熔體」),其可在下游形成製程中形成為玻璃物件。在多個應用中,玻璃物件係玻璃帶,而可自玻璃帶切割個別玻璃片。自玻璃帶切割玻璃片通常執行於當玻璃帶或即將移除玻璃片的玻璃帶的至少一部分處於彈性狀態時。因此,切割後的玻璃片係尺寸上穩定的。亦即,玻璃片的黏度大到足以在宏觀尺寸上讓玻璃片的塑性變形不發生。更簡單地說,舉例而言若玻璃片在力量下彎曲並接著自力量中釋放的話,玻璃片將不再永久性呈現新形狀。
在某些應用中,在玻璃基板處於黏性或黏彈性狀態時處理玻璃基板可能為必需的,舉例而言,帶製造製程的直接下游,其中玻璃基板仍處於帶形式,或在重新加熱彈性玻璃帶或玻璃片以用於後續重新構形之後。在某些實施例中,對玻璃片的熱回火而言,重新加熱玻璃片至大於玻璃片退火點的溫度可能為必需的。在上方示範性實例的各個實例中,搬運可能會汙損玻璃物件或以其他方式在玻璃物件中產生物理缺陷,在基板處於足夠黏性狀態時搬運玻璃帶及/或玻璃片可能為必需的。
為了提供大尺寸玻璃基板(例如,包括1米或更大的寬度)的穩定支撐,傳統氣體軸承包括分佈氣體洩漏開口。該等開口避免形成軟玻璃的不穩定形狀,其中玻璃基板的中心部分會因為氣體壓力的累積而形成大凸塊。上述傳統設計傾向於兩種主要配置:完整寬度設計,其中氣體供給裝置延伸連續地橫跨玻璃基板的完整寬度而不中斷,且其中氣體離開埠插於氣體出口埠之間;或包括離散的氣體供給通道的設計,離散的氣體供給通道直接供應氣體至排出埠。
設以支撐大尺寸玻璃基板的第一設計類型可為製造複雜的並在支撐基板於高溫下時傾向於熱負載導致的變形,這會影響基板平坦性。再者,排列不同的供給元件可具有挑戰性。第二設計類型可包括固定至空氣供給盒的個別氣體軸承,這確保準確的定位與排列。然而,供給盒的變形可能會發生,這會造成排列於玻璃基板輸送方向中的玻璃的光學失真,且這可能相關於氣體軸承上空氣入口的間距並亦相關於氣體軸承組件本身的間距。
因此,期望有操縱玻璃基板(例如,運送玻璃基板)且不汙損玻璃基板的表面或引起玻璃基板中的光學失真的設備與方法。 玻璃製造設備
第1圖中圖示的係玻璃製造設備10的實例。在某些實例中,玻璃製造設備10可包括玻璃熔化熔爐12,玻璃熔化熔爐12可包括熔化容器14。除了熔化容器14外,玻璃熔化熔爐12可選擇性地包括一個或多個額外部件,例如設以加熱原料材料並轉變原料材料成熔融玻璃的加熱元件(諸如,燃燒器及/或電極)。舉例而言,熔化熔爐12可為電促進熔化容器,其中透過燃燒器與藉由直接加熱兩者將能量添加至原料材料,其中傳送電流通過原料材料藉此透過原料材料的焦耳加熱添加能量。本文所用的電促進熔化容器係在運作過程中透過直接電傳導加熱(焦耳加熱)給予原料材料的能量數量係等於或大於約20%的熔化容器。
在進一步實例中,玻璃熔化熔爐12可包括降低自熔化容器熱損失的熱管理裝置(例如,絕緣部件)。在又進一步實例中,玻璃熔化熔爐12可包括促進原料材料熔化成玻璃熔體的電裝置及/或電化學裝置。又進一步,玻璃熔化熔爐12可包括支撐結構(諸如,支撐底盤、支撐件等等)或其他部件。
玻璃熔化容器14通常由耐火材料(例如,耐火陶瓷材料)所形成,舉例而言耐火陶瓷材料包括氧化鋁或氧化鋯,然則可應用其他耐火材料。在某些實例中,玻璃熔化容器14可由耐火陶瓷磚所建構。
在某些實例中,可將熔化熔爐12併入成為設以製造玻璃物件(例如,不定長度的玻璃帶)的玻璃製造設備的部件,雖然在進一步實施例中,玻璃製造設備可設以形成不具限制的其他玻璃物件,諸如玻璃桿、玻璃管、玻璃外殼(例如,照明裝置(例如,燈泡)的玻璃外殼)與玻璃透鏡。在某些實例中,可將熔化熔爐併入成為玻璃製造設備的部件,玻璃製造設備包括槽拉引設備、漂浮槽設備、向下拉引設備(例如,融合向下拉引設備)、向上拉引設備、壓制設備、滾筒設備、管拉引設備或任何其他可自本文揭露態樣受惠的玻璃製造設備。作為實例,第1圖示意性描繪作為融合向下拉引玻璃製造設備10的部件的玻璃熔化熔爐12,融合向下拉引玻璃製造設備10用於融合拉引玻璃帶以用於後續處理成個別玻璃片或滾動至捲軸上。
玻璃製造設備10(例如,融合向下拉引設備10)可選擇性包括上游玻璃製造設備16,配置在相對於玻璃熔化容器14的上游。在某些實例中,可將整個上游玻璃製造設備16的一部分併入作為玻璃熔化熔爐12的部分。
如描繪實施例中所示,上游玻璃製造設備16可包括原料材料儲存容器18、原料材料輸送裝置20與連接至原料材料輸送裝置的馬達22。儲存容器18可設以儲存一數量的原料材料24,如箭號26所示,可透過一個或多個供給埠將原料材料24供給進入玻璃熔化熔爐12的熔化容器14。原料材料24通常包括一個或多個玻璃形成金屬氧化物與一個或多個修飾劑。在某些實例中,原料材料輸送裝置20可藉由馬達22供能以致原料材料輸送裝置20自儲存容器18輸送預定數量的原料材料24至熔化容器14。在進一步實例中,基於自相對於熔融玻璃流動方向在下游的熔化容器14感測的熔融玻璃水平,馬達22可供能原料材料輸送裝置20以在受控速率下引導原料材料24。熔化容器14中的原料材料24可接著被加熱而形成熔融玻璃28。一般而言,在初步熔化步驟中,以顆粒形式添加原料材料至熔化容器,舉例而言包括多種「沙」。原料材料亦可包括來自先前操作的廢料玻璃(即,廢玻璃)。燃燒器係用來開始熔化製程。在電促進熔化製程中,一旦充分地降低原料材料的電阻抗(例如,當原料材料開始液化時),藉由在配置於接觸原料材料的電極之間發展電位而開始電促進,藉此建立通過原料材料的電流,原料材料通常在此時進入熔融狀態或處於熔融狀態。
玻璃製造設備10亦可選擇性包括下游玻璃製造設備30,配置在相對於玻璃熔化熔爐12的下游。在某些實例中,可將下游玻璃製造設備30的一部分併入作為玻璃熔化熔爐12的部分。然而,在某些實例中,可將下文論述的第一連接管道32或下游玻璃製造設備30的其他部分併入作為玻璃熔化熔爐12的部分。下游玻璃製造設備的元件(包括第一連接管道32)可由貴金屬所形成。適當的貴金屬包括選自由鉑、銥、銠、鋨、釕與鈀(例如,鉑族金屬)或上述之合金所構成之金屬群組的鉑族金屬。舉例而言,玻璃製造設備的下游部件可由包括約70%至約90%重量百分比的鉑與約10%至約30%重量百分比的銠之鉑-銠合金所形成。然而,其他適當金屬可包括鉬、錸、鉭、鈦、鎢與上述之合金。
下游玻璃製造設備30可包括第一調節(即,處理)容器,例如位在熔化容器14下游並藉由上方提及的第一連接管道32耦接至熔化容器14的澄清容器34。在某些實例中,可透過重力自熔化容器14供給熔融玻璃28通過第一連接管道32至澄清容器34。舉例而言,重力可驅動熔融玻璃28自熔化容器14通過第一連接管道32的內部路徑至澄清容器34。然而,應當理解有其他調節容器可配置在熔化容器14的下游,例如在熔化容器14與澄清容器34之間。在某些實施例中,可在熔化容器與澄清容器之間應用調節容器,其中來自主要熔化容器的熔融玻璃進一步加熱於輔助容器中以持續熔化製程,或冷卻至低於主要熔化容器中熔融玻璃進入澄清容器前之溫度的溫度。
在澄清容器34中,可藉由多種技術自熔融玻璃28移除氣泡。舉例而言,原料材料24可包括例如氧化錫的多價化合物(即,澄清劑),當多價化合物受熱時會經歷化學還原反應並釋放氧。其他適當的澄清劑包括(但不限於)砷、銻、鐵與鈰,雖然先前有提及,但在某些應用中為了環境因素並不樂見使用砷與銻。將澄清容器34加熱至大於熔化容器溫度的溫度,藉此加熱澄清劑。由一個或多個澄清劑的溫度引發化學還原所產生的氧氣泡上升通過澄清容器中的熔融玻璃,其中在熔化熔爐中產生的熔體中的氣體會聯合或擴散進入由澄清劑產生的氧氣泡。具有增強浮力的變大氣體氣泡接著可上升至澄清容器中熔融玻璃的自由表面並接著排出澄清容器。當氧氣泡上升通過熔體時,氧氣泡可進一步引發澄清容器中的熔融玻璃的機械式混合。
下游玻璃製造設備30可進一步包括另一個調節容器,例如混合澄清容器34下游流動的熔融玻璃的混合設備36。混合設備36可被用來提供均勻玻璃熔體組成物,藉此降低可用其他方式存在於離開澄清容器的經澄清熔融玻璃中的化學或熱不均勻。如圖所示,澄清容器34可藉由第二連接管道38耦接至混合設備36。在某些實例中,可透過重力自澄清容器34供給熔融玻璃28通過第二連接管道38至混合設備36。舉例而言,重力可自澄清容器34驅動熔融玻璃28通過第二連接管道38的內部路徑至混合設備36。應當注意,雖然圖示為混合設備36相對於熔融玻璃流動方向在澄清容器34的下游,但在其他實施例中混合設備36可配置在澄清容器34的上游。在某些實施例中,下游玻璃製造設備30可包括多個混合設備,例如澄清容器34上游的混合設備與澄清容器34下游的混合設備。該等多個混合設備可為相同設計,或者彼此為不同設計。在某些實施例中,容器及/或管道的一者或多者可包括配置於其中的靜止混合葉片以促進熔融材料的混合與後續的均勻性。
下游玻璃製造設備30可進一步包括另一調節容器,例如位於混合設備36下游的輸送容器40。輸送容器40可調節即將供給進入下游形成裝置的熔融玻璃28。舉例而言,輸送容器40可做為累積器及/或流動控制器以調節並提供一致流動的熔融玻璃28藉由離開管道44至成形主體42。如圖所示,混合設備36可藉由第三連接管道46耦接至輸送容器40。在某些實例中,可透過重力自混合設備36供給熔融玻璃28通過第三連接管道46至輸送容器40。舉例而言,重力可驅動熔融玻璃28自混合設備36通過第三連接管道46的內部路徑至輸送容器40。
下游玻璃製造設備30可進一步包括形成設備48,形成設備48包括上文提及的成形主體42、包括入口管道50。離開管道44可經配置以自輸送容器40輸送熔融玻璃28至形成設備48的入口管道50。由第2圖的幫助可最好地看見,融合向下拉引玻璃製造設備中的成形主體42可包括槽52以及匯聚形成表面54,槽52配置在成形主體的上表面中,而匯聚形成表面54匯聚於沿著成形主體的底部邊緣(根部)56的拉引方向中。透過輸送容器40、離開管道44與入口管道50輸送至成形主體槽的熔融玻璃溢出槽的壁並沿著匯聚形成表面54下降成分隔的熔融玻璃流。分隔的熔融玻璃流在根下方並沿著根結合以產生單一玻璃帶58,藉由施加張力至玻璃帶(諸如,藉由重力、邊緣滾筒與拉引滾筒(未圖示))而自根部56拉引單一玻璃帶58於拉引方向60中,以在玻璃冷卻且玻璃黏度提高時控制玻璃帶的尺寸。因此,玻璃帶58經歷黏彈性過渡期且需要給予玻璃帶58穩定尺寸特徵的機械性質。在某些實施例中,可藉由玻璃分隔設備(未圖示)在玻璃帶的彈性區域中將玻璃帶58分隔成個別玻璃片62,然而在進一步實施例中,可將玻璃帶捲繞至捲軸上並儲存以用於進一步處理,或直接自拉引操作以黏性或黏彈性帶處理。
第2圖係成形主體42的橫剖面圖,其中熔融玻璃28流入槽52中並溢出槽52,之後流動在匯聚形成表面54上並接著自成形主體的底部邊緣56拉引於向下方向中成為玻璃帶58。玻璃帶58可接著重新定向(例如,自拉引方向至不同於拉引方向的第二方向(例如,水平方向)),並接著如下文中所述般當輸送玻璃帶於第二方向中時由非接觸支撐設備100支撐玻璃帶58。由上文並參照下方描述應當理解,取決於特定製造方法的性質而具有重新定向或不具有重新定向皆可相似地支撐由其他設備與其他方法所拉引的玻璃帶(諸如,其他下拉方法、上拉方法與漂浮方法)。在某些實施例中,可自玻璃帶的捲軸而非直接自形成製程提供玻璃帶58。亦即,藉由先前示範性玻璃製造方法任一者事先拉引並滾動至捲軸(例如,第3圖中所示的供應捲軸70)上的玻璃帶可接著展開並由非接觸支撐設備100所支撐。在某些實施例中,展開的玻璃帶可經加熱(例如,重新加熱)以降低玻璃帶的黏度以用於進一步處理,例如重新形成(諸如,壓制、壓紋、模具形成等等)。在某些實施例中,在進一步處理後,玻璃帶可重新纏繞至卷取捲軸72上。然而,在進一步實施例中,在進一步處理之前或之後任一者,玻璃帶可用來產生玻璃片62。
因此,在某些實施例中,在非接觸支撐設備100上支撐及/或輸送時,可熱調節玻璃基板。舉例而言,如第2圖中所示,玻璃基板98(例如,玻璃帶58或玻璃片62)配置於非接觸支撐設備100與一個或多個熱元件64之間。熱元件64可為電阻抗加熱元件,其中在一個或多個阻抗加熱元件中建立電流,藉此加熱阻抗加熱元件與鄰近阻抗加熱元件的玻璃基板,然而在進一步實施例中,熱元件可包括例如電感加熱元件或產生足以熱調節玻璃基板的熱(例如,大於玻璃帶退火溫度的溫度)的任何其他元件。在某些實施例中,玻璃基板98可被加熱至適合模製(例如,藉由壓制玻璃基板於非接觸支撐設備100下游的模具(未圖示)中)玻璃基板成期望形狀的溫度。
在某些實施例中,熱元件64可包括冷卻元件,例如中空冷卻元件,其中冷卻流體流動通過冷卻元件中的通道。在某些實施例中,熱元件64可包括加熱元件與冷卻元件兩者。在某些實施例中,可藉由玻璃基板98上冷卻流體的直接衝擊(例如,藉由來自流體連通於流體源的一個或多個噴嘴的氣體噴出)而發生冷卻。舉例而言,在某些實施例中,可藉由第一組熱元件加熱玻璃基板,之後可發生上述的進一步處理。接著,可以第二組熱元件執行玻璃基板的冷卻。
本文所述的設備與方法可用於透過等於或大於約106 泊至約1010 泊黏度範圍離開的玻璃基板的非接觸支撐及/或運輸,黏度範圍諸如約106 泊至約109 泊的範圍、約106 泊至約108 泊的範圍、約106 泊至約107 泊的範圍、約107 泊至約1010 泊的範圍、約107 泊至約109 泊的範圍、約107 泊至約108 的範圍、約108 泊至約1010 泊的範圍、約108 泊至約109 泊的範圍或約109 泊至約1010 泊的範圍。藉由非接觸支撐設備100支撐時的玻璃基板98溫度可在約600℃至約1100℃的範圍中,諸如約600℃至約700℃的範圍中,例如約600℃至約800℃的範圍中,例如約600℃至約850℃的範圍中,例如在等於或大於約700℃的溫度,例如在約700℃至約1100℃的範圍中、在約800℃至約1100℃的範圍中、在約900℃至約1100℃的範圍中或在約1000℃至約1100℃的範圍中。在某些實施例中,當玻璃基板由支撐設備支撐時,玻璃基板的溫度可等於或大於包括玻璃基板的玻璃的退火溫度。然而,亦應當理解,雖然下文描述係關於呈現彈性性質以外(例如,呈現黏性或黏彈性性質)的玻璃基板的支撐及/或運輸,但本文所述的設備與方法可用於黏度大於1010 泊的玻璃基板,黏度諸如在約1010 泊至約1011 泊的範圍中、在約1010 泊至約1012 泊的範圍中、在1010 泊至約1013 泊的範圍中、在約1010 泊至約1014 泊的範圍中或甚至更高。在某些實施例中,玻璃基板98的溫度可在約23℃至約600℃的範圍中,例如在約23℃至約100℃的範圍中、在約23℃至約200℃的範圍中、在約23℃至約300℃的範圍中、在約23℃至約400℃的範圍中、或在約23℃至約500℃的範圍中。玻璃基板98可包括在下列範圍中的厚度:約0.1毫米至約10毫米,例如約0.2毫米至約8毫米、約0.3毫米至約6毫米、約0.3毫米至約1毫米、約0.3毫米至約0.7毫米、約0.3毫米至約0.7毫米或約0.3毫米至約0.6毫米。本文所述的設備與方法特別有用於支撐與輸送大玻璃基板,例如與輸送方向正交的方向中的寬度Wg(參見第5A圖)等於或大於1米的玻璃片或玻璃帶,寬度Wg諸如在約1米至約2米的範圍中,例如在約1米至約1.1米的範圍中、約1米至約1.2米的範圍中、約1米至約1.3米的範圍中、約1米至約1.4米的範圍中、約1米至約1.5米的範圍中、約1米至約1.6米的範圍中、約1米至約1.7米的範圍中、約1米至約1.8米的範圍中或約1米至約1.9米的範圍中,然而在進一步實施例中,玻璃基板98可包括小於1米的寬度,例如在約0.25米至小於1米的範圍中、在約0.25米至約0.75米的範圍中或在約0.25米至約0.5米的範圍中。
第4圖描繪用於支撐及/或輸送玻璃基板98(例如,玻璃片62或玻璃帶58)的示範性非接觸支撐設備100。非接觸支撐設備100包括壓力盒102,壓力盒102包括複數個連接側壁104、底壁106與頂壁108,複數個側壁、底壁與頂壁界定設以自加壓氣體112源(未圖示)接收加壓氣體112的內部腔室110,加壓氣體112源諸如壓縮器或儲存瓶。複數個連接側壁104可排列成適合支撐及/或輸送玻璃基板98的任何形狀,然而典型配置為矩形,其中壓力盒包括四個側壁104。舉例而言,可透過供應管114提供加壓氣體112至壓力盒102,供應管114提供流體連通於加壓氣體源與壓力盒102之間。加壓氣體112可為空氣,然而在進一步實施例中,加壓氣體可主要為其他氣體或氣體混合物,包括(但不限於)氮、氦及/或氬或上述之混合。
如藉由控制閥116通常地表示,有需要時可提供閥、計或其他控制部件。有需要時可遠端地控制控制閥116與其他控制部件,舉例而言藉由因應輸入而提供控制信號至例如控制閥116的控制器118。舉例而言,可藉由感測供應管114或壓力盒102中之氣體壓力的壓力計120提供輸入。控制器118可接著比較壓力盒102中的實際氣體壓力與設定(預定)氣體壓力,於是確定壓力差異並提供適當控制信號至適當部件(例如,控制閥116),以如所需般藉由打開或關閉控制閥來提高或降低氣體壓力以維持設定壓力。
側壁104及/或頂壁108可包括設以攜帶冷卻流體通過其中的冷卻通道122。舉例而言,冷卻通道122可嵌入各個壁或數個壁(諸如,壁104、106、108)中,然而在進一步實施例中,冷卻通道可接觸各個壁的表面。壓力盒壁的冷卻可特別有利於避免壓力盒的變形,壓力盒的變形係因為壓力盒鄰近來自高溫下輸送的玻璃基板的熱及/或熱元件64係加熱元件時的熱元件64加熱效應。冷卻流體可包括水,並可進一步包括添加劑(例如,挑選來避免壁104、106與108的腐蝕或增強熱傳導與熱移除的添加劑),諸如乙二醇、二伸乙甘醇、丙二醇與上述之混合,然而在進一步實施例中,水可能不存在於冷卻流體中。舉例而言,冷卻流體可徹底地為乙二醇、二伸乙甘醇、丙二醇與上述之混合或能夠冷卻壓力盒壁的其他流體。在某些實施例中,冷卻流體可為氣體(例如,空氣),然而在進一步實施例中,加壓氣體可主要為其他氣體或氣體混合物,包括(但不限於)氮、氦及/或氬或上述之混合。壁(諸如,壁104、106與108)可為金屬的,包括鈷-鉻合金或鎳合金(諸如Inconel 718或Inconel 625)。在某些實施例中,壁可包括陶瓷材料,諸如氧化鋁或氧化鋯,或在又其他實施例中的石墨。構成壁的材料舉例而言可在材料的熱傳導的基礎下經過選擇並可包括不同材料的混合物。舉例而言,當一個壁(例如,頂壁108)由一個材料形成時,側壁104可由不同材料所形成。
非接觸支撐設備100進一步包括耦接至壓力盒102的壁(例如,第4圖中所示的頂壁108)的複數個氣體軸承140。各個氣體軸承140透過一個或多個埠147流體連通於壓力盒102,一個或多個埠147延伸通過鄰近壁(例如,壓力盒102的頂壁108)。如第5A圖與第5B圖中所描繪,複數個氣體軸承140可排列成線性陣列,即平行於軸144延伸的個別氣體軸承的複數個列,軸144正交於玻璃基板98的輸送方向142,然而在其他實施例中,氣體軸承可排列成其他圖案。氣體軸承140可經排列以致一列相鄰氣體軸承間的間隙146與輸送方向中相鄰列中的間隙146在平行於軸144的方向中偏移。亦即,沒有一列中的間隙146線性連續於相鄰列中的任何間隙146。因此,氣體軸承自一列到下一列可為錯開的。
當沿著輸送方向142在支撐設備上輸送玻璃基板98時,複數個氣體軸承的各個氣體軸承140包括以相鄰玻璃基板98為定向的主要表面148。主要表面148可為實質平坦(平)表面,然而在其他實施例中,主要表面148可為彎曲表面。主要表面148由複數個周圍邊緣所界定,複數個周圍邊緣包括正交於輸送方向142的第一對平行邊緣149a、149b與連接第一對邊緣的第二對邊緣149c、149d,第二對邊緣相對於輸送方向142排列在角度α下且彼此互補。第一對與第二對邊緣代表氣體軸承的邊緣表面與主要表面148之間的相交線。邊緣表面可正交於主要表面148。有角度的邊緣149c、149d且特別是相關的有角度的邊緣表面可最小化(例如,排除)玻璃基板的運輸過程(例如,當玻璃基板98係本文所述黏度範圍中的黏性或黏彈性時)中玻璃基板98表面的縮進、波痕或其他實體汙損。基於先前描述內容將可理解在長度方向(平行於軸144)中的相鄰氣體軸承之間的介面或間隙相對於輸送方向142成角度α,例如在約20度至約60度的範圍中,例如在約30度至約50度的範圍中。可藉由傳統加工方法製造氣體軸承140,然而在進一步實施例中,可藉由3D列印以整體方式產生氣體軸承140。
現轉向第6圖與第7圖,描述的示範性氣體軸承140包括配置在氣體軸承的主體154的內部的氣室152,氣室152包括延伸於平行於氣體軸承長度方向的方向的細長腔。在某些實施例中,一個氣體軸承的氣室152並不直接連接於相鄰氣體軸承的氣室,且除非透過腔室110並不流體連通於任何相鄰的氣室。在某些實施例中,氣體軸承140可包括複數個氣室152,其中複數個氣室的各個氣室並不直接流體連通於相同氣體軸承主體中的相鄰氣室152。
氣室152透過分佈加壓氣體112至一個或多個槽150的中間通道156流體連通於一個或多個槽150,並進一步透過延伸通過頂壁108的通道147流體連通於腔室110。在第6圖與第7圖的實施例中,中間通道156的尺寸可導致中間通道156並不實質上限制氣室152與槽150之間的氣體流動。在本實施例中,圖示出延伸於兩個相鄰平行槽150之間並流體連通於兩個相鄰平行槽150的中間通道156。如圖所示,中間通道156可包括圓柱形狀,然而在其他實施例中,中間通道156可包括其他中空管狀形狀。中間通道156的中心縱軸138可平行於主要表面148,然而在進一步實施例中,縱軸138可相對於主要表面148處在其他角度下。
阻抗孔158配置於氣室152與中間通道156兩者之間並流體連通於氣室152與中間通道156兩者,且限制氣室152與中間通道156之間的加壓氣體流動。因此,阻抗孔158可在某些實施例中直接連接氣室152與中間通道156。在某些實施例中,阻抗孔158可為延伸於氣室152與中間通道156之間的大致圓柱孔,然而在進一步實施例中,阻抗孔158可具有其他形狀。阻抗孔158的縱軸170可排列成垂直於主要表面148,然而在其他實施例中,縱軸170可排列在相對於主要表面148的其他角度下。當玻璃基板98由非接觸支撐設備100支撐時,阻抗孔158的尺寸可導致橫跨阻抗孔的壓力下降在主要表面148與玻璃基板98之間空間中的壓力的約50至100倍範圍中。在示範實施例中,阻抗孔的尺寸可對10升/分(每分鐘0.35立方英尺)的氣體流動速率產生約15 mbar (0.218 psi)的壓力下降。雖然僅圖示單一個阻抗孔158,氣體軸承140可包括複數個阻抗孔延伸於複數個中間通道156與氣室152之間。
氣體軸承140進一步包括沿著氣體軸承的長度L(例如,氣體軸承的整個長度L)延伸的一個或多個槽150。在某些實施例中,一個或多個槽150的寬度Ws沿著槽的長度可為實質上均勻的。一個或多個槽150可延伸於平行於軸144且正交於輸送方向142的方向中。雖然第6圖與第7圖描繪包括兩個槽150的氣體軸承140,但氣體軸承140可包括超過兩個槽。
槽150開放於氣體軸承140的主要表面148,開口162係沿著氣體軸承長度延伸的連續槽形開口,且在氣體軸承的操作過程中氣體自開口處而自氣體軸承排出。根據本揭露內容的實施例,阻抗孔158的離開孔洞160可與槽150的開口162間隔至少約5毫米遠。舉例而言,參照第7圖(其為虛線與點線圓所標示的第6圖的部分A的近視圖),阻抗孔158的離開孔洞160分隔於槽150的開口162(即,主要表面148的平面處)至少距離d,其中距離d係主要表面148處開口與阻抗孔的離開孔洞160之間的最短流動路徑。在某些實施例中,距離d係等於或大於約10毫米,例如在約10毫米至約20毫米的範圍中,然而在進一步實施例中,距離d可大於20毫米。阻抗孔158的離開孔洞160與槽150的開口162的間隔有助於維持沿著槽150的長度的實質均勻氣體流動。
在某些實施例中,已知氣體軸承列中末端至末端排列的相鄰氣體軸承之間的間隙146可最小化到實質上沒有流動通過槽150的氣體自槽150與相鄰氣體軸承的槽之間的間隙洩漏。亦即,氣體軸承經配置以致第一氣體軸承的槽對齊於末端至末端相鄰的氣體軸承的槽,氣體可自一個氣體軸承的槽流動至另一氣體軸承的相鄰槽,除了透過槽的主要表面開口沒有實質體積的氣體自任一槽洩漏。因此,在效果上,兩個或更多個對齊的槽實質上如同一個連續槽般運行。在某些實施例中,可在間隙146中應用墊圈以避免氣體自相鄰氣體軸承之間洩漏。
第8圖係相似於第6圖與第7圖所示的氣體軸承140的氣體軸承240的另一實施例的橫剖面圖,氣體軸承240包括主體254,主體254包括透過通道157流體連通於腔室110的氣室252;及中間通道256,流體連通於槽250。如第8圖中所示,槽250可直接連接於中間通道256而無介於其間的通道。第8圖亦圖示中間通道256的體積可大於槽250的體積。第8圖中圖示兩個相鄰槽250,各個槽250流體連通於以平行方位延伸在氣體軸承的長度方向中的分隔中間通道256。因此,圖示兩個中間通道256,每個槽250有一個中間通道。然而,應當理解多個槽250可連接至個別的中間通道256。亦圖示出中間通道256透過阻抗孔258流體連通於氣室252,阻抗孔258延伸於中間通道256與氣室252之間並連接中間通道256與氣室252。氣體軸承240可包括延伸於氣室152與中間通道256之間的複數個阻抗孔258,或沿著氣體軸承140長度的複數個中間通道256。在第8圖的實施例中,將阻抗孔258描繪成包括中心縱軸270的大致圓柱孔,在某些實例中中心縱軸270可平行於主要表面248,然而在其他實施例中,阻抗孔可具有其他形狀而中心縱軸270不需要平行於主要表面248。
阻抗孔258限制氣室252與中間通道256之間的加壓氣體流動。在某些實施例中,氣室252並不直接連接於相鄰氣體軸承的氣室,且除非透過腔室110可不流體連通於相鄰氣室。舉例而言,在某些實施例中,各個氣體軸承可包括複數個氣室252,其中複數個氣室的各個氣室除了透過腔室110不直接流體連通於相鄰氣室252。當玻璃基板98由非接觸支撐設備100支撐時,阻抗孔258的尺寸可導致橫跨阻抗孔258的壓力下降在主要表面248與玻璃基板98之間空間中的壓力的約50至100倍範圍中。
槽250開放於氣體軸承240的主要表面248,開口係沿著氣體軸承長度延伸的連續槽形開口。根據本揭露內容的實施例,阻抗孔258的離開孔洞可與槽250的主要表面開口間隔至少約5毫米遠。舉例而言,阻抗孔258的離開孔洞分隔於槽250的開口(即,主要表面248的平面處)至少距離d,其中距離d係表面248處開口與阻抗孔258的離開孔洞之間的最短流動路徑。在某些實施例中,距離d係等於或大於約10毫米,例如在約10毫米至約20毫米的範圍中,然而在進一步實施例中,距離d可大於20毫米。
應當注意到,本文所述的非接觸支撐設備雖然有利於玻璃基板(且特別是高於玻璃基板退火溫度之溫度下的玻璃基板)的支撐及/或運輸,非接觸支撐設備可用於支撐及/或輸送包括其他材料的其他基板,其他材料諸如(但不限於)聚合物材料、金屬材料玻璃-陶瓷材料與陶瓷材料。
根據本揭露內容,揭露了支撐玻璃基板98的方法。方法可包括在上方文中所揭露的非接觸支撐設備100上輸送玻璃基板98於輸送方向中。非接觸支撐設備100包括壓力盒102,壓力盒102封圍流體連通於加壓氣體源(諸如,壓縮器或加壓氣體瓶或汽缸)的腔室110。壓力盒102進一步包括複數個氣體軸承140,複數個氣體軸承140配置於壓力盒上並排列成延伸正交於玻璃基板98的輸送方向118的複數個列。複數個氣體軸承的各個氣體軸承140包括氣室152,氣室152流體連通於腔室110並延伸於氣體軸承的長度方向中。氣體軸承進一步包括中間通道156,中間通道156透過阻抗孔158流體連通於氣室152,阻抗孔158的尺寸用以限制氣室152與中間通道156之間的氣體流動;及槽150,槽150流體連通於中間通道156並沿著氣體軸承的長度延伸,槽開放於氣體軸承的主要表面148並設以自此排出氣體以支撐玻璃基板98於加壓氣體層上。槽的寬度Ws沿著槽的長度可為均勻的。
方法進一步包括沿著槽的長度自槽150排出氣體,藉此支撐玻璃基板98於與氣體軸承140的主要表面148有所間隔的位置。在某些實施例中,通過阻抗孔158的壓力下降等於或大於氣體軸承140與玻璃基板98之間氣體壓力的50倍,舉例而言在氣體軸承與玻璃基板之間氣體壓力的約50至約100倍的範圍中。
方法可進一步包括當在支撐設備上輸送玻璃基板時加熱玻璃基板98至大於玻璃基板退火溫度的溫度。玻璃基板的寬度Wg至少1米,且在非接觸支撐設備100上輸送玻璃基板後,玻璃基板的主要表面相對於參考平面的最大變化不超過100微米。參考平面可例如為玻璃基板的平面。
在某些實施例中,玻璃基板係玻璃帶,方法進一步包括在以支撐設備支撐玻璃帶以前自成形主體拉引玻璃帶。在某些實施例中,方法可進一步包括在以支撐設備支撐玻璃基板以前自第一方向重新引導玻璃帶至不同於第一方向的第二方向。
在某些實施例中,自配置鄰近玻璃基板邊緣部分的氣體軸承排出的氣體壓力可大於自配置在玻璃基板中心部分下方的氣體軸承排出的氣體壓力,然而在其他實施例中,參考平面可為主要表面148。
在某些實施例中,自配置鄰近玻璃基板邊緣部分的氣體軸承排出的氣體壓力可大於自配置在玻璃基板中心部分下方的氣體軸承排出的氣體壓力。舉例而言,第二及/或第三複數個氣體軸承可沿著上方運輸玻璃基板98邊緣部分的壓力盒102的部分排列。第二及/或第三複數個氣體軸承的氣體軸承可使其阻抗孔的尺寸不同以致沿著玻璃基板的中心部分的運輸路徑排列的阻抗孔補償可能發生在支撐裝置邊緣附近的任何氣體壓力降低。
通常藉由流動熔融玻璃至成形主體來製造玻璃片,藉由多種帶形成製程在成形主體處形成玻璃帶,帶形成製程包括漂浮、下拉(例如,槽拉引與融合拉引)、上拉或任何其他形成製程。舉例而言,這可來自US20150099618所述的滾動製程。離散的氣體軸承
在多種情況下能夠在其軟化狀態下而不接觸玻璃地處理熱玻璃帶係受到關注的,舉例而言,在自基本上垂直定向轉動玻璃帶至基本上水平定向時,在仍處於黏性情況下水平地移動或輸送玻璃時,在避免接觸而藉由重力下降玻璃時,或在自玻璃流動累積一團熔融玻璃時。
來自該等製程任一者的玻璃帶接著可隨後分割以提供適合進一步處理成期望應用中的一個或多個玻璃片,應用包括(但不限於)顯示器應用。舉例而言,一個或多個玻璃片可用於多種顯示器應用中,包括液晶顯示器(LCD)、電泳顯示器(EPD)、有機發光二極體顯示器(OLED)、電漿顯示器面板(PDP)等等。強化玻璃片(諸如,經受離子交換處理的玻璃片或熱回火玻璃片)可在某些顯示器應用中作為蓋玻璃。可自一個位置運送玻璃片至另一個位置。可用設以固持玻璃片堆疊於定位的傳統支撐框架運送玻璃片。再者,可在各個相鄰玻璃片之間配置插入材料以助於避免相鄰玻璃片之間的接觸,並因此保持玻璃片的原始表面。
氣體軸承技術係習知的。然而,習知技術缺少本文所述的一個或多個特徵,包括(但不限於)整合式熱控制、細微氣體供給間距與高運作溫度能力。
在某些實施例中,包括離散出口埠且包括整合式熱控制系統(例如,冷卻流體的通道)的氣體軸承能夠在高溫(例如,高達800-1000℃)下運作。離散的出口埠包括小間距圖案(例如,每平方米至少8,000個出口埠)。內部氣體線路提供的小通道產生的背壓明顯高於即將被支撐、移動或轉動的玻璃所產生的壓力。
內部氣體線路透過舉例而言冷卻流體通過的內部通道、提高與環境熱交換的整合式鰭系統與插入電加熱器的通道而提供控制裝置的溫度範圍的能力。
在某些實施例中,可藉由3D印刷方法或熔模鑄造方法(例如,利用脫蠟技術)來製造氣體軸承裝置。
某些實施例的一個優點係細微離散的氣體軸承供應可支撐軟化材料(例如,熱玻璃)。粗糙離散的氣體軸承無法提供適當的支撐給軟化材料。氣體軸承亦提供期望的壓力比至軸承以加壓於氣體膜中。
相較於接觸軟化玻璃的氣體軸承,本文所述的某些實施例提供諸如下列的優點:沒有與接觸相關的傷害或表面缺陷;玻璃與工具之間熱傳送的明顯減少,這可延長玻璃的成形性;及支撐與熔融玻璃之間沒有磨擦。
如第17圖中所示,可應用氣體軸承將玻璃帶自垂直轉至水平。氣體軸承裝置界定轉彎過程中帶的形狀同時避免與玻璃的任何接觸。這確保沒有摩擦或傷害至玻璃表面。
如第18圖中所示,氣體軸承裝置亦可輸送或支撐玻璃於實質上水平面且氣體軸承與玻璃之間沒有接觸。在某些實施例中,在自形成區域輸送軟玻璃帶至滾軸輸送區域時在實質水平面上支撐軟玻璃帶。
如第19A圖與第19B圖中所示,氣體軸承裝置亦可為累積器。累積器可製成兩個或更多個部分,玻璃累積於累積器中而累積器與玻璃之間沒有接觸。當累積到期望體積的玻璃時兩個或更多個部分可分隔,而上述體積的玻璃直接落在模具上,玻璃可在模具中進一步形成或處理。氣體軸承可用於接收與累積熔融玻璃流動以預先成形熔融玻璃流動於熱控制條件中。這可避免此操作過程中玻璃的非常明顯冷卻。
如第20a圖與第20b圖中所示,氣體軸承裝置在玻璃處於重力下下垂時亦能夠支撐玻璃。這允許不接觸模具地變形玻璃片。在此設置中,首先在氣體軸承裝置上負載玻璃,接著氣體軸承裝置在玻璃下垂時支撐玻璃,且玻璃與氣體軸承裝置之間沒有接觸。
雖然第20圖描繪非接觸變形片成彎曲片,但可相似地變形其他形狀,諸如管與更複雜形狀。
氣體軸承裝置亦可具有氣體通道。氣體軸承裝置亦可具有整合式水冷卻線路。如第23圖中所示,氣體軸承裝置包括分佈在間距上的出口埠。以氣體供給出口埠。供給氣體通過計量管。各個計量管轉而供給至少一個出口埠。在特定實施例中,各個計量管供給4個出口埠而出口埠之間的間距係3 mm。舉例而言,如第23圖中所示,各個計量管2152供給4個出口埠2151,而各個出口埠之間的間距2170係3 mm。
如第31-34圖中所示,除了出口埠以外,氣體軸承裝置可具有配置在支撐表面上的排氣埠。排氣埠提供允許氣體自氣體膜洩漏的埠陣列。這在支撐顯著尺寸物件時受到關注,因為在支撐顯著尺寸物件時若僅存在有供應氣體的出口埠而不存在排氣埠會導致「氣泡效應」。
本文揭露的實施例包括能夠不接觸任何表面地支撐軟或熔融玻璃的裝置,特徵在於下列:
氣體軸承可具有如舉例而言第24圖中所示精細地離散的出口埠陣列,通過出口埠供應氣體。該等出口埠可為圓形通道,但亦有可能顯著地偏離圓形通道。特定態樣係在氣體到達出口埠之前提供較小橫剖面的計量管給氣體。計量管可為圓形管,但亦有可能顯著地偏離圓形。在某些實施例中,計量管可為槽。計量管可供給一個單一出口埠,但通常較佳地自一個計量管分散氣體流動至多個出口埠。
在某些實施例中,獨立於受支撐材料(例如,玻璃帶、玻璃片)所施加的壓力,氣體軸承提供氣體流動至氣體膜。這需要供給進入氣體軸承氣體入口的壓力顯著地大於受支撐材料所施加的壓力。計量管產生相應的壓力下降。
軸承效能的指數界定為:
Figure 02_image001
,單位為m-1 其中X係以米表示的計量管之間的平均間隔,或者X2 係用於非正方形分佈的計量管的相應面積,Z係以Pa.s/m3 表示的一個計量管的氣體線路的阻抗,而µ係以Pa.s表示的軸承氣體動態黏度。指數數值與計量管(X)之間的平均間隔與一個計量管(Z)的氣體線路的阻抗兩者成正比。指數數值與動態黏度(µ)成反比。因此,指數數值隨著X增加、Z增加或µ減少而增加。即便單位為m-1 ,具有較大數值的指數被視為「大」於具有較小數值的指數。在某些實施例中,大於2.5x106 m-1 的指數數值係可接受的。在較佳實施例中,指數數值大於5x106 m-1 。在某些實施例中,排氣埠的阻抗小於計量管的阻抗。
在某些實施例中,獨立通道或冷卻線路被用於循環熱流體。熱流體可為取得冷卻效應的氣體或液體或提供熱能至部分的預加熱流體。亦可使用插入電加熱元件的通道。
其亦可不接觸玻璃地用於移動、重新配置或支撐熔融玻璃流動。非精細地離散或粗糙地離散的氣體軸承裝置可提供適當支撐給剛性主體,但粗糙地離散的氣體軸承不提供適當支撐給軟化主體(例如,軟化玻璃)。此氣體軸承裝置包括供應氣體以產生薄氣體膜的精細地離散的出口埠。氣體軸承裝置可設以移動、重新配置或支撐玻璃而在裝置與玻璃之間沒有接觸,同時亦提供適當支撐給軟化主體。氣體軸承裝置亦包括整合式熱控制系統。氣體膜允許在高溫下處理玻璃而對玻璃的表面不造成來自接觸的任何傷害或缺陷。氣體膜亦降低來自玻璃的熱傳送,這可延長可形成玻璃的時間。再者,氣體膜支撐與玻璃之間沒有磨擦。
如第9圖中所示,在某些實施例中,玻璃製造設備10以下游玻璃製造設備30提供玻璃帶903,下游玻璃製造設備30諸如槽拉引設備、漂浮槽設備、下拉設備、上拉設備、壓制滾筒設備或其他玻璃帶製造設備(如進一步詳下描述於下文)。第9圖示意性地描繪示範性下游玻璃製造設備以拉引玻璃帶903,透過使用玻璃供給單元940以後續處理成玻璃帶。
下游玻璃製造設備30可進一步包括輸送容器40與離開管道44。輸送容器40可調節即將供給進入玻璃供給單元940的熔融材料。
如進一步所描繪般,離開管道44可經配置以輸送熔融玻璃28至下游玻璃製造設備30的玻璃供給單元940。如更完整論述於下,玻璃供給單元940可拉引熔融玻璃28成為離開形成容器943的根部945的玻璃帶903。在描繪實施例中,形成容器943可裝設有入口941,入口941經定向以自輸送容器40的離開管道44接收熔融玻璃28。
玻璃供給單元940可為可擴展的以輸送期望尺寸的玻璃帶903。在某些實施例中,玻璃帶903可具有50 mm至1.5米(m)的寬度。在某些實施例中,玻璃帶903可具有50 mm至500 mm的寬度。玻璃帶903可具有150 mm至300 mm的寬度。在某些實施例中,玻璃帶903的寬度可為20 mm至4,000 mm,例如50 mm至4,000 mm,例如100 mm至4,000 mm,例如500 mm至4,000 mm,例如1,000 mm至4,000 mm,例如2,000 mm至4,000 mm,例如3,000 mm至4,000 mm,例如20 mm至3,000 mm,例如50 mm至3,000 mm,例如100 mm至3,000 mm,例如500 mm至3,000 mm,例如1,000 mm至3,000 mm,例如2,000 mm至3,000 mm,例如2,000 mm至2,500 mm,與這之間的所有範圍與子範圍。
下游玻璃製造設備30可進一步包括供給後玻璃形成裝置950。供給後玻璃形成裝置950可接收由玻璃供給單元940供給的熔融玻璃流動並自熔融玻璃流動產生玻璃帶及/或玻璃片。在某些實施例中,示範性供給後玻璃形成裝置950詳細地描述於下文的第10-14圖中。
自在相當低黏度下脫玻化的玻璃組成物形成原始玻璃片係困難的。在傳統的融合拉引製程或槽拉引製程任一者中,限制係關於該等垂直製程中降低輸送位置處的黏度會導致拉引片時發展的黏性力量的降低。在某些實施例中,輸送位置係熔融玻璃流動在移動至自由落下前接觸固體表面的最後位置,諸如用於融合製程的成形主體的根或槽拉引製程中槽的末端。此拉引力量可變得小於片的重量。接著片不再處於張力下並將脫離平面移動,習知為「袋狀彎曲」。
在某些實施例中,本文所述的玻璃形成設備與方法允許自在相當低黏度下脫玻化的玻璃組成物製造薄玻璃片,舉例而言,玻璃的液態黏度低於25,000泊,例如低於10,000泊或自500泊至5,000泊,這非常難以藉由傳統的融合拉引製程或槽拉引製程達成。再者,製程可建立在中等規模而不需大規模漂浮線路的大量資本資出。
額外新穎特徵部分將提出於下方的描述內容中,部分將在熟習該項技術者檢驗下文與附圖後變得明顯或可藉由實例的生產或操作而學得。可藉由實施或使用下文論述的詳細實例中提出的方法學、工具與組合的多個態樣而理解與達成本揭露內容的新穎特徵。
第10圖係示範性玻璃形成設備1000的示意圖。玻璃形成設備1000可包括第9圖中所描述的玻璃供給單元940與供給後玻璃形成裝置950。玻璃供給單元940可供應熔融玻璃1002流動於第一方向(例如,垂直)中。供給後玻璃形成裝置950可在第一方向中接收熔融玻璃1002的流動並引導至第二方向(例如,水平方向)。在某些實施例中,供給後玻璃形成裝置950可快速地降低熔融玻璃1002的流動的溫度同時重新引導熔融玻璃1002的流動並在第二方向中自熔融玻璃1002的流動拉引玻璃帶。在此實施例中,供給後玻璃形成裝置950包括氣體軸承單元1010、對流性冷卻系統1020、熱擋板1030與支撐單元1040。
玻璃供給單元940可為形成容器。在某些示範性實施例中,玻璃供給單元940可為融合下拉設備中的成形主體。在某些示範性實施例中,玻璃供給單元940可為槽-拉引設備中的槽孔單元。本文所用之詞彙「孔」代表玻璃供給單元940設以傳送流體流動的部分中的開口。孔可包括由支撐件所分隔的一個孔洞或複數個孔洞。可理解玻璃供給單元940可為能供應熔融玻璃1002流動的任何其他類型的玻璃形成容器,例如魚尾單元。在某些實施例中,魚尾係允許自槽離開處輸送熔融玻璃流動的裝置。其可連接至入口管並接著自此初步管形狀分佈熔融玻璃流動至離開槽處的線性流動。
玻璃供給單元940可包括抵抗高溫與高壓下材料變形(即,潛變)的材料。舉例而言,玻璃供給單元940可包括在1,400攝氏度(℃)至1,700℃的溫度下輸送熔融玻璃的材料。在某些實施例中,玻璃供給單元940可包括鉑(例如,鉑-銠(PtRh)合金)以允許玻璃供給單元940相容於高溫與高壓以輸送高溫熔融玻璃。舉例而言,在某些實施例中,玻璃供給單元940可包括重量百分比至少80%鉑與高達20%銠,例如80/20 PtRh合金。在某些實施例中,玻璃供給單元940可包括重量百分比至少90%鉑與高達10%銠,例如90/10 PtRh合金。在某些實施例中,玻璃供給單元940可由基本上純鉑所製成。在某些實施例中,玻璃供給單元940可為摻雜鋯石的材料。玻璃供給單元940可具有在玻璃流動密度下供應熔融玻璃1002流動的輸出路徑。玻璃流動密度取決於玻璃供給單元940的離開寬度而有所變動。在某些實施例中,玻璃供給單元940設以供應連續玻璃流動至氣體軸承裝置。在某些實施例中,玻璃藉由玻璃供給單元供應時係熔融的。
在某些實施例中,流動通過玻璃供給單元940的熔融玻璃的黏度係低於25,000泊,例如自50泊至10,000泊。在某些實施例中,流動通過玻璃供給單元940的熔融玻璃的黏度係自500泊至5,000泊。在某些實施例中,可藉由調整下列的一者或多者來控制流動通過玻璃供給單元940的熔融玻璃的黏度:熔融玻璃供應的流動距離與壓力、熔融玻璃供應的溫度、孔的寬度與孔的開口距離。
可基於玻璃供給單元940在一位置處的溫度來確定在玻璃供給單元940中彼位置處的熔融玻璃1002流動的黏度。在某些實施例中,玻璃供給單元940可包括溫度感測器(未圖示)以確定沿著玻璃供給單元940的一個或多個位置處的溫度,以確定熔融玻璃在彼等位置處的黏度。在某些實施例中,玻璃供給單元940可包括加熱器(未圖示),加熱器可提主動熱量至玻璃供給單元940的較低部分以避免玻璃可能脫玻化的冷斑點存在於熔融玻璃1002流動中。舉例而言,成形主體的根或槽孔的底部會由玻璃供給單元940的幾何形狀而有所偏向,且無法併入良好的熱絕緣機制而顯著冷卻低於輸送熔融玻璃1002流動的期望溫度。加熱器可在輸送熔融玻璃1002流動至供給後玻璃形成裝置950前降低(例如,避免)熔融玻璃1002流動的局部冷卻。舉例而言,加熱器可透過玻璃供給單元940的貴金屬主體執行直接電加熱或感應加熱。在某些實施例中,加熱器可避免在通過熱擋板1030之前熔融玻璃202流動的溫度下降至低於500℃,例如低於600℃、低於700℃、低於800℃、低於900℃、低於1000℃、低於1100℃、低於1200℃、低於1300℃、低於1400℃、低於1500℃、或低於1600℃、1700℃、1800℃、1900℃、2000℃,該等數值任一者做作為下限的範圍中或該等數值任兩者界定的範圍中。舉例而言,加熱器可提高熔融玻璃1002流動的溫度至600℃至850℃以用於鹼石灰玻璃,或至800℃至1100℃以用於硬玻璃或玻璃陶瓷前驅物玻璃。在某些實施例中,加熱器亦可控制熔融玻璃1002流動離開玻璃供給單元940的溫度,以控制熔融玻璃1002流動的黏度。加熱器因此可助於保持熔融玻璃1002流動的黏度足夠低以避免玻璃供給單元940上的脫玻化。氣體軸承單元1010可配置在玻璃供給單元940下方並鄰近玻璃供給單元940的輸出路徑。氣體軸承單元1010可為使用在表面之間提供低摩擦介面的氣體薄膜的任何軸承。氣體軸承單元1010重新引導熔融玻璃1002的流動而在氣體軸承單元1010與熔融玻璃1002的流動之間沒有實體接觸。氣體軸承單元1010藉由在氣體軸承單元1010與熔融玻璃1002的流動之間產生「軸承區」中的氣體膜而在不接觸下完成此重新引導。
氣體軸承單元1010可包括複數個離開槽,自複數個離開槽供應氣體以產生氣體膜。由氣體軸承單元1010供應的氣體可在熔融玻璃1002的流動的第一主要表面1003上形成氣體膜(軸承區)。在某些實施例中,可藉由氣體軸承單元1010供應的氣體包括空氣與惰性氣體,諸如氮、氬、氦等等。如第11圖與第12圖中所示,離開槽1016係配置在氣體軸承單元1010的面向玻璃凸面側上,以致得到的軸承區匹配熔融玻璃1002的流動的第一主要表面1003的凹形。軸承區迫使熔融玻璃1002的流動自垂直轉向水平。在某些實施例中,氣體軸承單元1010可包括多孔材料,諸如石墨、不鏽鋼或陶瓷。在某些實施例中,氣體軸承單元1010可由離散的氣體供給所製成。舉例而言,由氣體軸承單元1010供應至軸承區的氣體包括複數個受限通道1014,受限通道1014引導阻抗抵抗氣體通道。該等限制可配置足夠遠離氣體洩漏的離開槽1016,以致此氣體洩漏沿著洩漏路徑係實際上均勻的。
氣體軸承單元1010可設以不接觸熔融玻璃1002的流動地自第一方向重新引導熔融玻璃1002的流動至第二方向。在某些實施例中,第二方向可為水平方向。在某些實施例中,氣體軸承單元1010足夠接近玻璃供給單元940的輸出路徑以自輸出路徑重新引導熔融玻璃1002的流動。在某些實施例中,氣體軸承單元1010可具有的半徑不大於8釐米(cm),諸如1 cm、2 cm、3 cm、5 cm、6 cm、7 cm、8 cm,在該等數值任一者做作為上限的範圍中或該等數值任兩者界定的範圍中,以致氣體軸承單元1010可在短距離上轉動熔融玻璃1002的流動至水平方向。舉例而言,氣體軸承單元1010可具有5 cm的半徑,以致可在大約5 cm高度上將熔融玻璃1002的流動自垂直轉向水平。
在某些實施例中,氣體軸承單元1010可包括一個或多個流體冷卻劑通道1012。流體冷卻劑通道1012可冷卻由氣體軸承單元1010供應的氣體。因此,由氣體軸承單元1010形成的軸承區的溫度可低於周遭溫度並顯著地低於熔融玻璃1002的流動的溫度以冷卻熔融玻璃1002的流動。任何適當流體冷卻劑(諸如,水、乙二醇、二伸乙甘醇、丙二醇或甜菜鹼(Betaine))可用於流體冷卻劑通道1012中。
在某些實施例中,對流性冷卻系統1020可配置在玻璃供給單元940下方並位於與氣體軸承單元1010相反的熔融玻璃1002的流動的另一側上。如下文詳細描述,對流性冷卻系統1020可包括指向氣體軸承單元1010的一個或多個噴嘴1024。在某些實施例中,噴嘴1024可設以噴出迫使熔融玻璃1002的流動朝向氣體軸承單元1010的氣體。在此實施例中,噴嘴1024可配置在對流性冷卻系統1020的凹面側上以匹配熔融玻璃1002的流動的第二主要表面1004的凸面形狀(相對於具有凹面形狀的第一主要表面1003)。由噴嘴1024噴出的氣體施加強制對流至第二主要表面1004以降低熔融玻璃1002的流動的溫度。另一方面,氣體亦推動熔融玻璃1002的流動以靠近氣體軸承單元1010,以致降低熔融玻璃1002的流動的第一主要表面1003與氣體軸承單元1010之間的軸承區,藉此進一步提高熔融玻璃1002的流動的第一主要表面1003上的冷卻。在某些實施例中,對流性冷卻系統1020的寬度係可根據熔融玻璃1002的流動的寬度調整的。
在某些實施例中,如第11圖與第12圖中所示,對流性冷卻系統1020包括氣體腔室1022與流體連通於氣體腔室1022的複數個噴嘴1024。氣體腔室1022儲存氣體在相同壓力下,而各個噴嘴1024設以自氣體腔室1022噴出氣體。在某些實施例中,各個噴嘴1024包括末端1026與調節器1028,末端1026連接至氣體腔室1022而調節器1028可相對於末端1026移動以控制氣體離開末端1026的流動速率。流動速率可自每小時1標準立方米(Nm3 /hr)至20 Nm3 /hr的氣體,例如自2 Nm3 /hr至10 Nm3 /hr的氣體。各個調節器1028可在朝向或離開各自末端1026的方向中移動以控制自氣體腔室1022進入末端1026的氣體體積。舉例而言,當調節器1028移動靠近相應的末端1026時,離開末端1026的氣體的流動速率降低直到調節器1028完全關閉氣體自氣體腔室1022進入末端1026。在某些實施例中,各個調節器1028可獨立地受到控制以致各個噴嘴1024的流動速率可有所變化。在某些實施例中,各個噴嘴1024以持續方式供應氣體。多個噴嘴1024可排列成例如第12圖中圖示的陣列的圖案。應理解,多個噴嘴1024的圖案在其他實施例中會有所變化。藉由設定多個噴嘴1024的獨特圖案及/或調整各個個別噴嘴1024的流動速率,可達成多種氣體噴出圖案,這可影響熔融玻璃1002的流動的形狀及/或尺寸。
在某些實施例中,熱擋板1030可配置在玻璃供給單元940與氣體軸承單元1010之間。如上所述,熱擋板1030上方且鄰近玻璃供給單元940的區域受到加熱,而熱擋板1030下方且鄰近氣體軸承單元1010與對流性冷卻系統1020的區域受到冷卻。因此,熱擋板1030可降低加熱上區域與冷卻下區域之間的熱交換,以致冷卻下區域中的熔融玻璃1002的流動的溫度進一步降低。
在此實施例中,玻璃形成設備1000可包括三個熱管理裝置–氣體軸承單元1010中的流體冷卻劑通道1012、對流性冷卻系統1020與熱擋板1030。在某些實施例中,玻璃形成設備可僅包括上述三個熱管理裝置的一個或兩個。在某些實施例中,玻璃形成設備可包括氣體軸承210中的流體冷卻劑通道1012與對流性冷卻系統1020。
在任何事件中,當正在改變熔融玻璃1002的流動的方向時熱管理裝置可提供快速冷卻至離開玻璃供給單元940的熔融玻璃1002的流動。舉例而言,在重新引導熔融玻璃1002的流動至第二方向的同時,可施加上述的一個或多個熱管理裝置至熔融玻璃1002的流動的至少一側上,以達成在至少50 mm的距離上至少150 W/m2 -K的傳熱係數的熱抽取。因此,熔融玻璃1002的流動在轉至水平後可快速地到達足夠高的黏度,以致可自熔融玻璃1002的流動拉引玻璃帶。傳熱係數(HTC)表示熱抽取的量級且界定如下: Q = HTC × (T-Tamb ), 其中Q係熔融玻璃1002的流動的一側上抽取的熱通量,T係在關注側上熔融玻璃1002的流動的主要表面處的局部溫度。熔融玻璃1002的流動的兩側可具有不同的表面溫度,而Tamb 係鄰近(例如,離開1或2吋)熔融玻璃1002的流動的周遭溫度。在某些實施例中,傳熱係數可為在50 mm距離上150 W/m2 -K、200 W/m2 -K、250 W/m2 -K、300 W/m2 -K、350 W/m2 -K、400 W/m2 -K、450 W/m2 -K、500 W/m2 -K、600 W/m2 -K、700 W/m2 -K、800 W/m2 -K、900 W/m2 -K、1,000 W/m2 -K、該等數值任一者做作為上限的範圍中或該等數值任兩者界定的範圍中。在某些實施例中,傳熱係數可為在100 mm的距離上150 W/m2 -K、200 W/m2 -K、250 W/m2 -K、300 W/m2 -K、350 W/m2 -K、400 W/m2 -K、450 W/m2 -K、500 W/m2 -K、600 W/m2 -K、700 W/m2 -K、800 W/m2 -K、900 W/m2 -K、1,000 W/m2 -K、該等數值任一者做作為上限的範圍中或該等數值任兩者界定的範圍中。
可依據熔融玻璃1002的流動的黏度來描述由熱管理裝置提供至熔融玻璃1002的流動的強烈冷卻效應。在某些實施例中,在熔融玻璃1002的流動的輸送點與沿著自熔融玻璃1002的流動拉引的玻璃帶離開輸送點10 cm距離處之間,熔融玻璃1002的流動的黏度提高至少50倍。輸送點可為玻璃供給單元940的出口,諸如成形主體的根或槽孔的底部。在某些實施例中,熔融玻璃1002的流動的黏度可提高50、60、70、80、90、100、150、200倍、該等數值任一者做作為上限的範圍中或該等數值任兩者界定的範圍中。
在某些實施例中,支撐單元1040設以不接觸熔融玻璃1002的流動地支撐第二方向中移動的熔融玻璃1002的流動。在此實施例中,熔融玻璃1002的流動移動於不同於第一方向的第二方向中,且支撐單元1040包括氣體軸承桌,氣體軸承桌相似於氣體軸承單元1010但具有鄰近熔融玻璃1002的流動的平坦上表面1042。因此可形成軸承區以支撐移動於第二方向中的熔融玻璃1002的流動,以確保熔融玻璃1002的流動的第一主要表面1003與第二主要表面1004係原始的。在某些實施例中,可提供連接至支撐單元1040的玻璃帶拉引單元(未圖示)以自熔融玻璃1002的流動拉引玻璃帶於第二方向中。玻璃帶拉引單元可在任何期望速度下拉引玻璃帶並將其分隔成離散的玻璃片。在某些實施例中,玻璃帶的厚度係至少0.5 mm,諸如0.5 mm、1 mm、1.5 mm、2 mm、2.5 mm、3 mm、3.5 mm、4 mm、該等數值任一者做作為下限的範圍中或該等數值任兩者界定的範圍中。
熔融玻璃1002的流動轉至第二方向後,完成所有處理後的玻璃帶的性質可能受到熔融玻璃1002的流動的溫度輪廓的影響。舉例而言,當熔融玻璃1002的流動橫跨支撐單元1040的氣體軸承桌時,熔融玻璃1002的流動的溫度輪廓可能影響玻璃性質。在某些實施例中,可藉由多種配置中的加熱器影響此溫度輪廓。
第13圖係另一示範性玻璃形成設備1300的示意圖。在此實施例中,供給後玻璃形成裝置950包括氣體軸承單元1310、對流性冷卻系統1320、熱擋板1030與支撐單元1340。在此實施例中,氣體軸承單元1310包括流體冷卻劑通道1312與對流性冷卻系統1320,相較於第10-12圖中描繪的氣體軸承單元1010與對流性冷卻系統1020,流體冷卻劑通道1312與對流性冷卻系統1320配置在熔融玻璃1002的流動的不同側上。亦即,氣體軸承單元1310包括上方配置有離開槽的凹面側,且其中軸承區形成於氣體軸承單元1310的凹面側與熔融玻璃1002的流動的第二主要表面1004(具有凸面形狀)之間。對流性冷卻系統1320包括上方配置有噴嘴的凸面側以匹配熔融玻璃1002的流動的第一主要表面1003(具有凹面形狀)。在某些實施例中,兩個氣體軸承可排列在熔融玻璃1002的流動的兩側上,且可在熔融玻璃1002的流動的第一主要表面1003與第二主要表面1004的各者上形成軸承區。氣體軸承的一者可具有離散的氣體軸承墊,離散的氣體軸承墊具有位置調整。在此實施例中,支撐單元1340包括複數個水平滾輪輸送器,複數個水平滾輪輸送器提供用來接收熔融玻璃1002的流動於第二方向中。
第14圖係又另一示範性玻璃形成設備1400的示意圖。在此實施例中,供給後玻璃形成裝置950包括氣體軸承單元1010、對流性冷卻系統1020、熱擋板1030與成形支撐單元1440。在此實施例中,成形支撐單元1440可用來接收熔融玻璃1002的流動於第二方向中並形成具有至少一個原始主要表面的成形玻璃物件。舉例而言,支撐單元1040的接收平面的至少部分可由一個或多個輸送器攜帶模具取代,以致成形玻璃物件可藉由真空下垂進入所述模具而形成。
第15圖描繪預測來自玻璃供給單元940的玻璃帶的形成的數值模式圖。圖示表示自熔融玻璃流動抽取的熱通量的強度。數值越高,抽舉越多熱量。在圖示中,描述三個冷卻強度區,包括高冷卻強度區、中等冷卻強度區與低冷卻強度區。圖示顯示由上述熱管理裝置所提供的顯著冷卻強度調整。
第16圖圖示對應由第10-14圖中玻璃形成設備1000、1300與1400執行製程的製程流程圖。製程可包括進一步步驟或可包括少於進一步實例中所描繪的所有步驟。如圖所示,製程開始於供應熔融玻璃流動的步驟1610。可在第一方向中供應熔融玻璃流動。在某些實施例中,第一方向係垂直的。在某些實施例中,熔融玻璃流動可受加熱以保持熔融玻璃流動的黏度足夠低以避免脫玻作用。本文所用之「脫玻作用」被理解用來表示非晶或熔融玻璃中晶體的成核。至少一部分的熔融玻璃流動可具有低於25,000泊的黏度,例如自50泊至10,000泊。如上所述,可藉由玻璃供給單元940供應熔融玻璃流動。
在供應後,步驟1620處重新引導熔融玻璃流動。可不接觸熔融玻璃流動地重新引導熔融玻璃流動至不同於第一方向的第二方向。在某些實施例中,第二方向可為水平的。如上所述,可藉由氣體軸承單元1010、1310重新引導熔融玻璃流動。
步驟1630處,在被重新引導至第二方向時,降低熔融玻璃流動的溫度。在某些實施例中,將具有至少150 W/m2 -K傳熱係數的冷卻設備施加至熔融玻璃流動的至少一側上至少50 mm距離上。舉例而言,冷卻設備可包括選自下列所構成之群組的一個或多個熱管理裝置:氣體軸承單元1010、1310中的流體冷卻劑通道1012、1312與對流性冷卻系統1020、1320。而熱管理裝置的熱擋板1030避免熱擋板下游的熔融玻璃加熱,這相反於主動地冷卻熔融玻璃流動而不被視為冷卻設備。在某些實施例中,至少部分可藉由形成氣體膜(軸承區)於熔融玻璃流動的第一主要表面上來達成熔融玻璃流動的冷卻。如上所述,亦可藉由氣體軸承單元1010、1310達成此效果。此外或替代地,至少部分可藉由施加強制對流至熔融玻璃流動的第二主要表面(相反於第一主要表面)來達成熔融玻璃流動的冷卻。如上所述,可藉由對流性冷卻系統1020、1320來達成此效果。此外或替代地,至少部分可藉由利用熱擋板(例如,熱擋板1030)來降低熔融玻璃流動的溫度來達成熔融玻璃流動的冷卻。
步驟1640處,自熔融玻璃流動拉引玻璃帶於第二方向中。在某些實施例中,在拉引玻璃帶之前,可不接觸地支撐移動於第二方向中的熔融玻璃流動以形成具有兩個原始主要表面的玻璃帶。如上所述,可藉由支撐單元1040達成此效果。在某些實施例中,可藉由成形支撐單元(例如,成形支撐單元640)支撐移動於第二方向中的熔融玻璃流動以形成具有至少一個原始主要表面的成形玻璃帶。在某些實施例中,玻璃帶的厚度係至少0.1 mm,諸如0.5 mm、1 mm、1.5 mm、2 mm、2.5 mm、3 mm、3.5 mm、4 mm、該等數值任一者做作為下限的範圍中或該等數值任兩者界定的範圍中。
第17圖係示範性氣體軸承裝置1710的示意圖。氣體軸承裝置1710可為空氣轉動軸承並可包括複數個出口埠。出口埠可具有每平方米至少8,000個埠的密度。在某些實施例中,出口埠可具有每平方米至少10,000個埠的密度。在某些實施例中,氣體膜1725支撐玻璃帶1703,而氣體軸承裝置1710與玻璃帶1703之間沒有接觸。如第17圖中所示,可在玻璃供給方向1790中供給玻璃帶1703並可在玻璃拉引方向1795中拉引玻璃。玻璃供給方向1790可不同於玻璃拉引方向1795。在某些實施例中,玻璃供給方向1790可與玻璃拉引方向1795為實質上相同方向。
如第17圖中所示,空氣轉動軸承裝置1710允許自第一方向重新引導玻璃帶1703至第二方向,而空氣轉動軸承裝置1710與玻璃帶1703之間沒有接觸。在某些實施例中,可自實質上垂直方向重新引導玻璃帶至實質上水平方向。在某些實施例中,空氣轉動軸承裝置1710可由合金所製成。在某些實施例中,合金係鎳合金。
第18圖係示範性氣體軸承裝置1810的示意圖。氣體軸承裝置1810可為氣體桌。氣體軸承裝置1810可包括複數個出口埠。出口埠可具有每平方米至少8,000個埠的密度。在某些實施例中,出口埠可具有每平方米至少10,000個埠的密度。在某些實施例中,氣體膜1825支撐玻璃帶1803,而氣體軸承裝置1810與玻璃帶1803之間沒有接觸。
在某些實施例中,氣體軸承裝置1810可為水平平面。將可理解水平平面包括實質上水平平面。在某些實施例中,氣體軸承裝置1810可具有角度或斜度。在某些實施例中,當在輸送方向1895上自一位置輸送玻璃帶至另一位置時,氣體軸承裝置1810支撐玻璃帶1803。舉例而言,當自形成區輸送玻璃帶至滾輪輸送區時,氣體軸承裝置1810可支撐玻璃帶。
第19A圖與第19B圖圖示示範性氣體軸承裝置1910的示意圖。氣體軸承裝置1910可為累積器。氣體軸承裝置1910可包括複數個出口埠。出口埠可具有每平方米至少8,000個埠的密度。在某些實施例中,出口埠可具有每平方米至少10,000個埠的密度。在某些實施例中,玻璃1903的流動累積以形成一體積的玻璃1904。在某些實施例中,氣體膜1925支撐一體積的玻璃1904,而氣體軸承裝置1910與一體積的玻璃1904之間沒有接觸。累積器可包括氣體軸承裝置1910的第一部分1911與氣體軸承裝置1910的第二部分1912。在某些實施例中,氣體軸承裝置1910的第一部分1911與第二部分1912分隔以允許一體積的玻璃1904下落進入模具1950中以模塑一體積的玻璃1904。
第20a圖與第20b圖圖示示範性氣體軸承裝置2010的示意圖。氣體軸承裝置2010可為氣體軸承模具。氣體軸承裝置2010可為下降模具。在某些實施例中,玻璃片2003配置於氣體軸承裝置2010上。氣體軸承裝置2010可包括複數個出口埠。出口埠可具有每平方米至少8,000個埠的密度。在某些實施例中,出口埠可具有每平方米至少10,000個埠的密度。在某些實施例中,氣體膜2025支撐玻璃片2003,而氣體軸承裝置2010與玻璃片2003之間沒有接觸。在某些實施例中,當玻璃片2003配置於氣體軸承裝置2010上時,重力下降玻璃片2003。在某些實施例中,氣體膜2025支撐玻璃片2003不接觸氣體軸承裝置2010。第20A圖圖示下降前的玻璃片2003。第20B圖圖示下降後的玻璃片2003。
在某些實施例中,玻璃形成設備可包括一個或多個氣體軸承裝置,包括氣體軸承裝置1710、1810、1910或2010的任何組合。
第21圖與第22圖圖示包括支撐表面2150的示範性氣體軸承裝置2110的示意圖。支撐表面可具有配置於支撐表面2150中的複數個出口埠2151。氣體軸承裝置2110可包括一個或多個冷卻線路2153與一個或多個氣體通道2154。氣體軸承裝置2110可包括歧管2155。氣體軸承裝置2110可包括氣體入口2160。第21圖與第22圖圖示相似於氣體軸承裝置1710的示範性氣體軸承裝置。將可理解,第21圖與第22圖中所示的配置可適應於氣體軸承裝置1710、1810、1910與2010的任一者。支撐表面2150可具有平坦、凹面或凸面形狀。舉例而言,如第18圖中所示,氣體軸承1810具有平坦形狀。作為另一個實例,如第19A-20B圖中所示,氣體軸承1910與2010具有凹面形狀。作為另一例,如第21圖與第22圖中所示,表面2150具有凸面形狀。
第23圖圖示示範性氣體軸承裝置2110的另一視圖。氣體軸承裝置2110可包括複數個計量管2152。在某些實施例中,以通過計量管2152的氣體供給出口埠2151。各個計量管2152供給氣體到至少一個出口埠2151。在某些實施例中,各個計量管連接到至少兩個出口埠。在某些實施例中,各個計量管連接到四個出口埠。
出口埠可分佈在間距上,間距理解為相鄰出口埠2151的中心至中心距離。在某些實施例中,間距最多3毫米。出口埠可具有均勻尺寸與間隔。本文所用的「均勻」尺寸與間隔理解成包括與製造相關的變動,例如±5%。
第24圖圖示示範性氣體軸承裝置2110的另一視圖。如第24圖中所示,氣體軸承裝置2110包括外蓋2165。第25圖圖示氣體軸承裝置2110在平面2190中的橫剖面。
第26–29圖圖示示範性累積器2610的多個角度。累積器2610可包括支撐表面2650、出口埠2651、計量管2652、冷卻線路2653與氣體入口2660。第26圖圖示四等分切的累積器2610。
第30圖圖示氣體流動通過示範性氣體軸承裝置的示意圖。玻璃3003可由氣體膜3025支撐。如圖所示,為了形成氣體膜3025,氣體自氣體通道3054流動至計量管3052而至出口埠3057。選擇性地且如第30圖中所示,氣體可透過排氣埠3055流動離開氣體膜。
第31圖圖示包括支撐表面3150的示範性下降模具3110。第32圖圖示支撐表面3250,其包括出口埠3251與複數個排氣埠3255。排氣埠3255分佈橫跨支撐表面3250。在某些實施例中,排氣埠提供允許氣體自氣體膜洩漏的埠的陣列。這在支撐會導致「氣泡效應」的顯著尺寸物件時受到關注。若僅存在有供應氣體的出口埠而不存在排氣埠,氣體僅能自側邊洩漏出去。對於較大物件而言,不存在排氣埠的情況下,此受限的氣體洩漏選項會導致問題。舉例而言,在某些實施例中,氣體自氣體通道流動至計量埠,接著由計量埠至出口埠。在某些實施例中,氣體可透過排氣埠流動離開氣體膜。
排氣埠更詳細地圖示於第33-34圖中。在某些實施例中,出口埠具有每平方米(m2 )至少8,000個出口埠的密度。在某些實施例中,出口埠可具有每平方米(m2 )至少10,000個出口埠的密度。在某些實施例中,排氣埠的密度小於出口埠3251的密度。在某些實施例中,排氣埠配置於氣體軸承裝置的支撐表面中以允許氣體自支撐表面與玻璃之間的氣體膜洩漏。在某些實施例中,排氣埠允許氣體在支撐表面的內部與支撐表面的邊緣處洩漏。將可理解,第30-34圖中所示的排氣埠與出口埠配置可適應於氣體軸承裝置1710、1810、1910、2010與2110的任一者。
第33圖圖示另一示範性氣體軸承裝置3310,其可為下降模具。氣體軸承裝置3310可包括氣體入口3360。在某些實施例中,氣體軸承裝置3310可包括出口埠3351。在某些實施例中,氣體軸承裝置3310可包括排氣埠3355。氣體通道3354提供氣體由氣體入口3360到達出口埠3351的路徑。
第34圖圖示氣體軸承裝置3410的支撐表面3450的另一視圖。氣體軸承裝置3410包括複數個出口埠3451與複數個排氣埠3455。
第35圖圖示支撐軟化玻璃的方法的製程流程圖。如圖所示,製程開始於步驟3500,步驟3500置放玻璃鄰近具有支撐表面的氣體軸承裝置。在某些實施例中,氣體軸承裝置可為如第17-34圖中所示的氣體軸承裝置的一者或多者。在置放玻璃步驟後,步驟3510處,噴射氣體通過氣體軸承裝置的出口埠以藉由氣體膜支撐玻璃,而玻璃與支撐表面之間沒有接觸。
在某些實施例中,在供給玻璃鄰近氣體軸承裝置後,由驅動輸送器接收連續玻璃流動。本文所用的「驅動輸送器」可為設以透過與玻璃帶的實體接觸而移動玻璃帶的任何機構。驅動輸送器的實例包括驅動滾筒的滾筒桌與輸送器帶。
在步驟3510後,步驟3520處,藉由循環溫度受控熱流體通過氣體軸承中的溫度控制通道而選擇性地控制氣體軸承裝置的溫度。
在步驟3520後,步驟3530處,在噴出氣體通過出口埠之前,可自氣體源傳輸氣體至氣體軸承裝置。在某些實施例中,在氣體到達氣體軸承裝置之前預先加熱氣體。支撐結構與氣體桌
如上所述,玻璃可經形成而用於多種應用,且上述應用可能需要多種處理步驟以形成適合上述應用的玻璃。支撐結構允許透過使用模組裝置來改變玻璃形成裝置的配置。可根據特定應用的需求添加或移除模組裝置。
相似於支撐結構,氣體桌亦允許透過使用氣體桌模組來改變配置。氣體桌亦可自運作位置縮回至縮回位置,這可改良氣體桌上與附近工作人士的安全。由於氣體桌的模組結構,氣體桌可併入模組的任何組合,其可包括氣體軸承、驅動輸送器等等。
改變支撐結構模組裝置與氣體桌模組的配置的能力能夠生產平滑玻璃並提供有效控制玻璃的熱輪廓的能力。當玻璃橫跨氣體桌或在支撐結構下移動時,玻璃可經歷自熔融狀態至堅固或彈性狀態的連續轉變。隨著玻璃轉變時,可藉由移動、添加或移除模組以適合特定製程需求而有效地控制玻璃的物理特徵與玻璃的熱輪廓。
第36圖圖示運作位置中的示範性支撐結構3600。在某些實施例中,支撐結構包括直立件3610、臂件3620與複數個模組裝置3630。在某些實施例中,模組裝置3630包括熱輻射擋板3640,熱輻射擋板3640可保護其他結構與機構免於來自熔融玻璃流動的加熱。在某些實施例中,支撐結構3600配置鄰近氣體桌3650。在某些實施例中,臂件3620在垂直方向中係可移動的。在某些實施例中,臂件3620利用供能舉昇件而可移動於上位置與下位置之間。在某些實施例中,氣體桌3650可包括氣體桌底盤3652。氣體桌3650可包括複數個氣體桌模組3660。氣體桌模組3660可配置於氣體桌底盤3652上。在某些實施例中,氣體桌模組3660與模組裝置3630具有相同寬度。在某些實施例中,氣體桌模組3660各自與模組裝置3630具有不同寬度。在某些實施例中,氣體桌模組皆具有相同寬度。在某些實施例中,氣體桌模組具有不同寬度。第37圖圖示在縮回位置中的氣體桌3650。
在某些實施例中,在置放玻璃鄰近支撐結構3600與氣體桌3650之前,氣體軸承被用來移動或轉動玻璃。在某些實施例中,氣體軸承係用於將玻璃自垂直轉向水平的金屬3D列印水冷式氣體軸承。
在某些實施例中,模組裝置的至少一者係熱管理裝置。直接接觸玻璃或相當接近玻璃的任何物將具有熱衝擊並可為熱管理裝置。在某些實施例中,熱管理裝置包括滾筒、水冷式石墨氣體軸承或水冷式驅動滾筒。第38圖圖示示範性支撐結構3600的另一視圖。支撐結構3600可包括氣動舉昇件3612。可藉由氣動舉昇件3612提高與降低臂件3620。如第38圖中所示,臂件3620實質上垂直於直立件3610。
第39圖圖示運作位置中示範性氣體桌3650的另一視圖。在某些實施例中,氣體桌3650包括氣體桌模組3920。
第40圖圖示示範性氣體桌模組4020。在某些實施例中,氣體桌模組4020係具有合金氣體軸承插入件的模組。在某些實施例中,合金係Inconel合金。「Inconel」指的是奧氏體鎳-鉻基超合金的家族。第41圖圖示示範性氣體桌模組4120。氣體桌模組4120可包括石墨氣體軸承模組。第42圖圖示示範性氣體桌模組4220。氣體桌模組4220可包括滾筒陣列模組。第43圖圖示示範性氣體桌模組4320。氣體桌模組4320可包括合金氣體軸承插入件4321與滾輪組件4322。在某些實施例中,滾輪組件4322由平坦化滾輪組件供能。
在某些實施例中,氣體桌模組4020包括氣體軸承組件4010。氣體軸承組件4010包括複數個氣體軸承4040。氣體軸承4040共同地形成氣體軸承組件4010。氣體軸承4040面向玻璃片的表面4041共同地形成主要表面4048。在某些實施例中,各個氣體軸承4040包括流體連通於氣體源的複數個出口埠、孔隙或上述之組合。氣體軸承4040可包括槽4050。氣體軸承4040的結構更詳細地圖示於第5A-8圖中。在某些實施例中,氣體軸承組件4010包括支撐框架4070。在某些實施例中,氣體軸承4040附接至支撐框架4070。支撐框架4070可包括冷卻支撐框架4070以避免彎曲的內部冷卻通道。在某些實施例中,第二氣體軸承組件配置於氣體軸承組件4010上。在某些實施例中,如關於第53圖所述,配置於氣體軸承組件4010上的第二氣體軸承組件可被用來平坦化玻璃。
處理過程中,黏性玻璃流動由氣體軸承組件4010所支撐。黏性玻璃的黏度與因此溫度係應加以選擇以取得期望玻璃性質的製程參數。氣體軸承組件4010相當接近黏性玻璃,並通常應當在主要表面4048處具有接近黏性玻璃溫度的溫度。達成期望黏度所需的溫度取決於特定玻璃,但通常足夠高而造成氣體軸承組件4010的某種彎曲。此彎曲可在具有兩個氣體軸承組件且主要表面由間隙所分隔的實施例中造成不均勻間隙尺寸,並在不具有上述間隙的實施例中造成偏離主要表面4048的期望形狀。
彎曲所造成的絕對位移係溫度與部件尺寸的函數–位移在較大部件上變得更明顯且造成更大的絕對位移。因此,若氣體軸承組件4010係單一大氣體軸承或數個大氣體軸承,彎曲可能造成主要表面4048的無法接受大位移,特別是邊緣處。但,藉由使用多個較小氣體軸承4040(具有共同地形成主要表面4048的較小表面4041),彎曲所致的氣體軸承4040的各個個別表面的位移明顯小於若主要表面4048係單一物理連續氣體軸承的表面所會發生的位移。
第40圖中所示的配置包括附接至支撐框架4070並由支撐框架4070所支撐的複數個較小氣體軸承4040。氣體軸承4040的相對小尺寸降低彎曲在個別氣體軸承上的效應,在某些實施例中,支撐框架4070固持氣體軸承4040於定位。支撐框架4070係大的,若加熱的話可能經歷顯著的彎曲。但,由於支撐框架4070比氣體軸承4040的表面4041更遠離黏性玻璃,支撐框架4070並未經歷如同氣體軸承4040般的相同溫度限制–支撐框架4070的溫度可明顯不同於黏性玻璃的溫度。且,支撐框架4070不需具有孔隙或氣體埠,這造成支撐框架4070相對於氣體軸承4040的更大設計可能性範圍。在某些實施例中,即便當氣體軸承4040處於適合處理熔融玻璃的溫度下,支撐框架4070亦可包括維持支撐框架4070的溫度在適當溫度下以避免或最小化彎曲的內部冷卻通道。在某些實施例中,因為諸如支撐框架4070的輻射性冷卻及/或優異結構性完整的其他因素,可不需要上述冷卻通道。
在某些實施例中,複數個模組裝置可包括加熱器、反射面板、滾輪組件、空氣刀、氣體軸承、滾輪定位組件或驅動滾筒的任一者或多者。第44圖圖示示範性模組裝置4440。模組裝置4440可包括平坦面板加熱器4450。第45圖圖示示範性模組裝置4540。模組裝置4540可包括被動反射面板4550。第46圖圖示示範性模組裝置4640。模組裝置4640可包括平坦化滾輪組件4650。第47圖圖示示範性模組裝置4740。模組裝置4740可包括邊緣加熱器與空氣刀組件4750。第48圖圖示示範性模組裝置4840。模組裝置4840可包括水冷式石墨氣體軸承4850。第49圖圖示示範性模組裝置4940。模組裝置4940可包括水冷式驅動滾筒4950。
第50圖圖示示範性支撐結構5000與示範性氣體桌5050。支撐結構5000可包括複數個模組裝置5030。氣體桌5050可包括複數個氣體桌模組5060。各個模組裝置5030可包括第44-49圖中所示的模組裝置的任一者。各個氣體桌模組5060可包括第40-43圖中所示的模組裝置的任一者。在某些實施例中,氣體桌模組5060可包括氣體軸承,諸如舉例而言第17-20B圖中所示的氣體軸承。在某些實施例中,各個模組裝置5030可獨立地移動。在某些實施例中,各個模組裝置5030可沿著水平軸及/或垂直軸移動。在某些實施例中,各個模組裝置5030係可自支撐結構移除的。
第51圖圖示支撐結構5000的另一視圖。在某些實施例中,支撐結構5000包括直立件5010與臂件5020。在某些實施例中,臂件5020包括實質上水平的兩個實質上平行臂。在某些實施例中,模組裝置5030可沿著臂件5020移動於水平方向中。在某些實施例中,模組裝置5030可沿著軌道5035移動於垂直方向中。 玻璃平坦化
在某些實施例中,當玻璃片處於彈性或黏彈性狀態時平坦化玻璃片以致玻璃片不具有顯著彎曲。未抽真空的一側氣體軸承組件或氣體軸承可提供玻璃片的有效非接觸支撐或運送;然而,彼等氣體軸承組件平坦化玻璃片的能力受限於玻璃片的低重量,以致朝向平坦化的驅動力量虛弱無力。
在某些實施例中,亦抽真空的兩側氣體軸承組件或一側氣體軸承組件允許黏彈性或黏性玻璃片達成高平坦性水平。在某些實施例中,已經考量過不可逆地影響玻璃帶的形狀,藉由施加熱機械處置至黏性條件或黏彈性時期中的玻璃片來平坦化玻璃。
在某些實施例中,利用兩側氣體軸承組件(例如舉例而言,第52圖與第53圖中所示的氣體軸承組件)平坦化玻璃片。兩側氣體軸承組件具有上氣體軸承與下氣體軸承,而玻璃片流動通過配置在玻璃片下方與配置在玻璃片上方之間的間隙。氣體軸承組件自上氣體軸承與下氣體軸承兩者施加壓力力量至玻璃片,而該等壓力力量迫使玻璃片朝向高平坦性水平,而在玻璃帶與兩側氣體軸承之間沒有實體接觸。
在兩側氣體軸承系統中,有可能使流動玻璃片受到遠超出維持玻璃片重量所需壓力的壓力。具有施加的壓力,玻璃片將到達上氣體軸承組件與下氣體軸承組件之間的壓力平衡,而彎曲形狀將經歷驅動朝向完美平坦的壓力力量。
在某些實施例中,利用一側氣體軸承組件(例如舉例而言,第54A圖與第54B圖中所示的氣體軸承組件)平坦化玻璃片。一側氣體軸承組件包括氣體供給通道與驅動排出系統兩者。氣體供給通道提供施加正壓至玻璃片的氣體。驅動排出系統藉由施加低於大氣壓力的壓力提供真空效應。施加正壓與低於大氣壓力的壓力兩者引導氣體軸承系統成為具有驅動朝向完美平坦的壓力力量的強烈自我調整間隙系統。
在需要高平坦性水平的應用中,具有不均勻表面的彎曲玻璃片可受惠於平坦化。在某些實施例中,當彎曲玻璃片越過或通過氣體軸承組件時,玻璃片將經歷強烈驅動朝向恆定間隙的壓力力量。隨著壓力力量施加至玻璃片,玻璃片與氣體軸承的表面之間的氣體膜達到平衡。在平衡時,平衡間隙形成於玻璃片與氣體軸承組件的表面之間。平衡間隙係玻璃片與氣體軸承的表面之間的距離。在某些實施例中,平衡間隙係25 µm、50 µm、100 µm、250 µm、500 µm或750 µm或該等端點任兩者界定的任何範圍。在某些實施例中,平衡間隙係50 µm至500 µm。在某些實施例中,平衡間隙係75 µm至250 µm。
在某些實施例中,兩側或一側氣體軸承組件提供橫跨玻璃片寬度的均勻熱傳送至玻璃。
兩側與一側氣體軸承組件的平坦化能力允許製造具有高平坦性水平與非當小彎曲的薄玻璃片。利用兩側或一側氣體軸承組件製造的玻璃片在達到高平坦性水平前需要極少的拋光或處理。
在某些實施例中,兩側與一側氣體軸承組件處理玻璃的連續片或帶。在某些實施例中,兩側與一側氣體軸承組件處理薄玻璃片的離散片段或部分。在某些實施例中,兩側與一側氣體軸承組件不接觸玻璃地平坦化黏性或黏彈性狀態下的玻璃。
作為實例,若玻璃片進入氣體軸承組件時玻璃片與氣體軸承的表面之間的間隙大於平衡間隙,施加至玻璃片的力量驅動玻璃片朝向平衡間隙,因此平坦化玻璃片。若玻璃片的部分處於平衡間隙而部分未在平衡間隙處,未在平衡間隙處的部分將感受朝向平坦的驅動力量。
將玻璃片暴露至氣體軸承組件持續足以確保玻璃片具有鬆弛應力的時間,以致玻璃片的平坦化形狀係不變的。影響時間的因素包括玻璃的厚度、玻璃移動通過氣體軸承組件的速度、進入的玻璃溫度與黏度、氣體軸承組件的長度與氣體軸承組件的熱設定(諸如組件的溫度、氣體的溫度與期望的平衡間隙)。
在某些實施例中,兩側氣體軸承組件具有對稱的平衡間隙。在某些實施例中,平衡間隙係90至120 µm。在某些實施例中,平衡間隙係約105 µm。作為實例並如第55圖中所示,當平衡間隙係105 µm時,氣體壓力比上玻璃重量的比例係約27。再者,如第56圖中所示,若玻璃片進入氣體軸承組件時,某些部分具有100 µm的間隙而某些部分具有110 µm的間隙(如第56圖中所示),玻璃帶將分別感受約31與24倍其本身重量的壓力。在該實例中,10 µm的形狀偏移導致7倍片重量的朝向平衡間隙的力量。
在某些實施例中,兩側氣體軸承組件可經設定以具有恆定的平衡間隙。在某些實施例中,平衡間隙係可調整的。在某些實施例中,上氣體軸承組件係固定的而下氣體軸承組件係可調整的,以致其施加恆定力量至系統。在某些實施例中,下氣體軸承組件係固定的而上氣體軸承組件係可調整的,以致其施加恆定力量至系統。
在某些實施例中,下氣體軸承組件係固定的。在某些實施例中,上氣體軸承組件係固定的。在某些實施例中,上氣體軸承組件可相對於下氣體軸承組件移動。上述移動可為增加或減少平衡間隙的氣體壓力變化的結果,或透過機械運作。
在某些實施例中,上氣體軸承組件係第一氣體軸承組件而下氣體軸承組件係第二氣體軸承組件。在某些實施例中,下氣體軸承組件係第一氣體軸承組件而上氣體軸承組件係第二氣體軸承組件。
在某些實施例中,一側氣體軸承組件可藉由施加100 Pa負壓至一側氣體軸承組件的出口來建立平坦化力量,這允許建立平坦化力量。作為實例,75 µm彎曲導致約2倍玻璃重量的間隙減少力量。
在某些實施例中,氣體軸承組件係由多孔材料(例如,石墨)所製成。在某些實施例中,一側氣體軸承組件具有主要表面,主要表面帶有配置於主要表面中的離散氣體通道。在某些實施例中,兩側與一側氣體軸承組件亦可包括提供受控氣體供應器、管理離開與熱控制系統的手段。舉例而言,氣體軸承系統可以受控制方式提供玻璃片的冷卻或提供主動加熱以避免溫度變化。
第52圖圖示示範性氣體軸承裝置5210。在某些實施例中,氣體軸承裝置5210包括下氣體軸承5211與上氣體軸承5212。在某些實施例中,氣體軸承裝置5210不接觸地平坦化玻璃片5203。在某些實施例中,玻璃片5203移動在下氣體軸承5211與上氣體軸承5212之間。在某些實施例中,玻璃片5203移動在下氣體軸承5211與上氣體軸承5212之間,而氣體軸承與玻璃片5203之間沒有接觸。下氣體軸承5211在箭號5227指示的方向中施加氣體壓力至玻璃片5203。上氣體軸承5212在箭號5228指示的方向中施加氣體壓力至玻璃片5203。
在兩個空氣軸承之間存在間隙(例如,下氣體軸承5211與上氣體軸承5212之間的間隙)的某些實施例中,可藉由支撐結構機械性地固定間隙。且,在某些實施例中,間隙可為可變動的並取決於空氣壓力。舉例而言,上氣體軸承5212可由氣體膜5226所支撐,以致氣體膜5226的尺寸取決於氣體壓力與上氣體軸承5212的重量。上氣體軸承5212可由氣體膜5226所支撐同時部分地由其他東西(諸如,提供空氣給氣體膜5226的軟管或彈簧組件)支撐。
第53圖圖示示範性氣體軸承組件5310。在某些實施例中,氣體軸承組件5310包括下氣體軸承組件5311與上氣體軸承組件5312。在某些實施例中,上氣體軸承組件5312與下氣體軸承組件5311各自具有主要表面。在某些實施例中,氣體軸承組件5310不接觸地平坦化玻璃片5303。在某些實施例中,玻璃片5303移動在下氣體軸承組件5311與上氣體軸承組件5312之間。在某些實施例中,玻璃片5303移動在下氣體軸承組件5311的主要表面與上氣體軸承組件5312的主要表面之間,而氣體軸承主要表面與玻璃片5303之間沒有接觸。在某些實施例中,第一氣體膜5325形成在下氣體軸承組件5311與玻璃片5303之間,而第二氣體膜5326形成在上氣體軸承組件5312與玻璃片5303之間。在某些實施例中,表面5320包括複數個氣體軸承,例如第5A圖中的複數個氣體軸承140。在某些實施例中,氣體軸承5320係由多孔石墨所製成。在某些實施例中,透過複數個氣體入口孔洞5360供給氣體至氣體軸承組件5310。
第54A圖圖示示範性氣體軸承組件5411的俯視圖。第54B圖示示範性氣體軸承組件5411的正視圖。在某些實施例中,氣體軸承組件5411係兩側氣體軸承裝置中的下氣體軸承。在某些實施例中,氣體軸承組件5411係兩側氣體軸承裝置中的上氣體軸承。在某些實施例中,氣體軸承組件5411係一側氣體軸承裝置。氣體軸承組件5411具有複數個入口通道5460。在某些實施例中,氣體軸承組件5411具有複數個排氣通道5465。在某些實施例中,透過複數個入口通道5460在箭號5475指示的方向中供給氣體至氣體軸承組件5411。
第55圖圖示示範性氣體軸承組件5510。在某些實施例中,氣體軸承組件5510不接觸地平坦化玻璃片5503。在某些實施例中,氣體軸承組件5510形成氣體膜5525。在某些實施例中,氣體軸承組件5510在箭號5527指示的方向中施加正向氣體壓力於玻璃片5503上,並在箭號5528指示的方向中抽真空於玻璃片5503上。在某些實施例中,氣體軸承組件5510藉由在氣體膜5525中產生壓力平衡平坦化玻璃片5503。
第56圖圖示兩側氣體軸承組件的平坦化驅動力量的實例。第56圖圖示膜壓力比上玻璃重量的比例於y-軸上,並圖示平衡間隙尺寸(µm)於x-軸上。作為實例,平坦化1 mm厚度的玻璃。在每平方米玻璃0.01 m3 /秒的流動下透過氣體軸承供給氣體。上氣體軸承組件施加650 Pa的負載,而對稱平衡間隙係105 µm。在某些實施例中,上氣體軸承組件僅利用其本身重量施加負載。在某些實施例中,上氣體軸承組件利用機械系統施加負載。 氣體軸承冷卻
在某些實施例中,上述氣體軸承裝置或組件的任一者可包括幫忙維持氣體軸承裝置整體溫度均勻性的冷卻通道。氣體軸承裝置可包括設以攜帶冷卻流體通過其中的冷卻通道。舉例而言,冷卻通道可嵌於氣體軸承裝置的壁中。在某些實施例中,冷卻通道可接觸各自壁的表面。氣體軸承裝置的冷卻可特別有利於避免氣體軸承的變形,氣體軸承的變形係因為氣體軸承鄰近來自高溫下運送、平坦化或處理玻璃基板及/或熱管理裝置係加熱元件時熱管理裝置的加熱效應的熱量。
在某些實施例中,冷卻流體可包括水,並可進一步包括添加劑,例如選擇用來避免氣體軸承裝置的部件的腐蝕或增強熱傳導與熱移除的添加劑,利用諸如乙二醇、二伸乙甘醇、丙二醇與上述之混合物的流體,然而在進一步實施例中,水可能不存在於冷卻流體中。舉例而言,冷卻流體可全部為乙二醇、二伸乙甘醇、丙二醇與上述之混合物或能夠冷卻氣體軸承裝置的其他流體。在某些實施例中,冷卻流體可為氣體(例如,空氣),然而在進一步實施例中,加壓氣體主要可為其他氣體或氣體的混合物,包括但不限於氮、氦及/或氬或上述之混合物。氣體軸承裝置可包括金屬部件,金屬部件包括鈷-鉻合金或諸如Inconel 718或Inconel 625的鎳合金。在某些實施例中,氣體軸承裝置可包括陶瓷材料,諸如,氧化鋁或氧化鋯或又其他實施例中的石墨。構成氣體軸承裝置的材料舉例而言可基於材料的熱傳導而挑選,並可包括不同材料的混合物。
雖然本文已經描述多個實施例,但僅藉由示例而非限制呈現該等實施例。應當理解,打算將基於本文呈現的教示與指導的改變與修飾視為在所揭露實施例的等效體的含義與範圍中。如熟習該項技術者可理解般,本文呈現的實施例的元件並非必然互不相交,反而可交換而滿足多種情況。
參照如附圖中所描繪的本揭露內容的實施例而於本文中詳細地描述本揭露內容的實施例,在附圖中使用相似的元件符號來表示相同或功能上相似的元件。提及「一個實施例」、「實施例」、「某些實施例」、「在某些實施例中」等等指的是所述的實施例可包括特定特徵、結構或特性,但每個實施例可能不必然包括特定特徵、結構或特性。再者,上述片語不必然指向相同實施例。進一步,當連結實施例描述特定特徵、結構或特性時,便提出了將上述特徵、結構或特性連結於其他實施例(不論是否明確描述)為熟習該項技術者的知識。
本文所用的詞彙「約」意指數量、尺寸、配方、參數與其他數目與特性非為且不須為準確的,反而可如期望般為大概及/或較大或較小,這反應了公差、轉換因子、捨入、量測誤差等等與熟習該項技術者習知的其他因子。
當使用詞彙「約」來描述數值或範圍的末端時,揭露內容應理解成包括提及的特定數值或末端。不論說明書中的數值或範圍的末端是否記載「約」,數值或範圍的末端意圖包括兩種實施例:一種為「約」所修飾的而一種未由「約」所修飾的。
本文表示的範圍可為自「約」一特定數值及/或至「約」另一特定數值。當表示上述範圍時,另一實施例包括自一特定數值及/或至另一特定數值。相似地,當藉由使用先行詞「約」以大約方式表示數值時,將可理解特定數值形成另一實施例。將進一步理解各個範圍的末端明顯有下列兩者:與另一末端相關與獨立於另一末端。
本文所用的方向性詞彙(諸如,上、下、右、左、正、反、頂、底)僅用於參照所繪製的圖式且並非意圖暗示絕對定向。
除非另有明示,否則絕非意圖將本文提出的任何方法建構成需要以特定順序執行方法的步驟,亦非意圖將本文提出的任何設備建構成需要特定定向。因此,當方法請求項並未實際記載其步驟依循的順序、或任何設備請求項並未實際記載個別部件的次序或定向、或未以其他方式明確地記載步驟受限於特定順序或並未記載設備的部件的特定次序或定向於申請專利範圍或描述內容中時,並無試圖在任何態樣中提及次序或定向。這有效於解釋的任何可能的非表示基礎,包括:關於步驟、運作流程、部件次序或部件定向的配置的事物邏輯;衍生自語法組織或標點符號的明顯含義;及說明書中所述實施例的數目或類型。
除非文中另有明示,否則本文所用的單一形式「一」與「該」包括複數個參照物。因此,舉例而言,除非文中另有明示,否則提及「一」部件所包括的實施例包括兩個或更多上述部件。
本文所用的互補特徵係彼此的鏡像影像且能夠彼此接合的特徵。舉例而言,若適當地調整尺寸以適合地以一表面抵靠另一表面且將近全接觸於表面的至少一者上(例如,球窩關節)時,凸面表面與凹面表面可為互補的。包括銳角的表面可互補於包括鈍角(等於180度扣去銳角)的另一表面,例如具有兩個相反平行主要表面的板在相對於平行表面的角度下切割將造成互補切割表面。熟習該項技術者由上方導論可充分地理解互補的意義。
熟習該項技術者將理解可對本揭露內容的實施例進行多個修飾與變化而不悖離揭露內容的精神與範圍。因此,若上述修飾與變化在隨附申請專利範圍及其等效物的範圍內,本揭露內容試圖覆蓋上述修飾與變化。
本文所用的詞彙「玻璃基板」、「玻璃帶」與「玻璃片」可交替地應用。舉例而言,用來支撐玻璃基板的氣體軸承亦可用於支撐玻璃帶或玻璃片。
本文所用的詞彙「排出埠」、「離散的埠」與「出口埠」可交替地應用。舉例而言,出口埠亦可為排出埠或離散的埠。
本文所用的詞彙「黏性玻璃」或「熔融玻璃」可意指黏度在50至1013 泊範圍中的玻璃。「熔融玻璃」的黏度充分低使其可如同液體般流動通過本文所述的玻璃處理裝置與相似裝置。「黏性玻璃」的黏度充分低使其可輕易地永久變形。亦可在本文將黏性玻璃稱為「軟化」玻璃。
本文所用的詞彙「或」係包容性;更明確地,片語「A或B」意指「A、B或A與B兩者」。本文藉由諸如「A或B任一者」與「A或B的一者」的詞彙來標示排除性「或」。除非在特定實例中以其他方式標示,否則不定冠詞「一」與定冠詞「該」描述元件或部件意指該等元件或部件的一者或至少一者存在。
本文所用的詞彙「由氣體膜所支撐」意指被支撐的物品至少部分由氣體膜所支撐。舉例而言,若玻璃帶通過無接觸式氣體軸承(其中氣體膜施加力量以支撐玻璃帶)上,即便玻璃帶後續供給至接觸玻璃帶的滾筒上,玻璃帶係「由氣體膜所支撐」的。且,氣體軸承可「由氣體膜所支撐」。
除非在特定情況下另有指示,否則當本文記載包括上與下數值的數值範圍時,此範圍試圖包括範圍的末端與範圍中的所有整數與分數。並不意圖將申請專利範圍的範圍限制在界定範圍時所記載的特定數值。進一步,當數量、濃度或其他數值或參數帶有範圍、一個或多個較佳範圍或較佳上數值與較佳下數值的列表時,將可理解這明確地揭露由任何範圍上限或較佳數值與任何範圍下限或較佳數值的任何組合所形成的所有範圍,不論是否分別地揭露上述組合。
本文所用的詞彙「玻璃」意指包括至少部分由玻璃所製成的任何材料,包括玻璃與玻璃-陶瓷。
將詞彙「其中」用作開放端連接詞以引導結構的連續特徵的記載。
本文所用的詞彙「附近」用於描述玻璃相對於氣體軸承的移動時意指包括「附近」、「通過」、「上方」、「下方」或「鄰近」。
本文所用的「包括」係開放端連接詞。連接詞「包括」後方的元件列表係非排除性列表,以致亦可存在列表中明確地記載的彼等元件以外的元件。
已經在描繪特定功能的實施及其關係的功能性構件的幫助下描述本揭露內容。已經在本文中任意地界定該等功能性構件的邊界以便描述。可界定替代的邊界,只要可適當地執行特定功能及其關係即可。
特定實施例的上方描述內容將如此完整地揭示揭露內容的一般性質,以致其他人無需過度實驗便可藉由應用技術技能內的知識輕易地修改及/或改編上述特定實施例的多種應用,而不悖離本揭露內容的一般概念。因此,根據本文提出的教示內容與導論,預期上述改編與修改位於揭露實施例等效物的意義與範圍中。將可理解本文的用語與術語係用來描述而非限制,以致熟悉技術者依照教示內容與導論來解釋本說明書的術語或用語。
本揭露內容的寬度與範圍不應受限於上述示範性實施例的任一者,而應僅依照下文的申請專利範圍及其等效範圍而界定。
10‧‧‧玻璃製造設備12‧‧‧玻璃熔化熔爐14‧‧‧玻璃熔化容器16‧‧‧上游玻璃製造設備18‧‧‧原料材料儲存容器20‧‧‧原料材料輸送裝置22‧‧‧馬達24‧‧‧原料材料26、5227、5228、5475、5527、5528‧‧‧箭號28、1002‧‧‧熔融玻璃30‧‧‧下游玻璃製造設備32‧‧‧第一連接管道34‧‧‧澄清容器36‧‧‧混合設備38‧‧‧第二連接管道40‧‧‧輸送容器42‧‧‧成形主體44‧‧‧離開管道46‧‧‧第三連接管道48‧‧‧形成設備50‧‧‧入口管道52‧‧‧槽54‧‧‧匯聚形成表面56、945‧‧‧根部58、903、1703、1803‧‧‧玻璃帶60‧‧‧拉引方向62、2003、5203、5303、5503‧‧‧玻璃片64‧‧‧熱元件70‧‧‧供應捲軸72‧‧‧卷取捲軸98‧‧‧玻璃基板100‧‧‧非接觸支撐設備102‧‧‧壓力盒104‧‧‧側壁106‧‧‧底壁108‧‧‧頂壁110‧‧‧腔室112‧‧‧加壓氣體114‧‧‧供應管116‧‧‧控制閥118‧‧‧控制器120‧‧‧壓力計122‧‧‧冷卻通道138‧‧‧縱軸140、240、4040、5320‧‧‧氣體軸承142‧‧‧輸送方向144‧‧‧軸146‧‧‧間隙147‧‧‧埠148、248、4048‧‧‧主要表面149a、149b‧‧‧第一對邊緣149c、149d‧‧‧第二對邊緣150、250、4050‧‧‧槽152、252‧‧‧氣室154、254‧‧‧主體156、256‧‧‧中間通道158、258‧‧‧阻抗孔160‧‧‧離開孔洞162‧‧‧開口170、270‧‧‧縱軸940‧‧‧玻璃供給單元941‧‧‧入口950‧‧‧供給後玻璃形成裝置1000‧‧‧玻璃形成設備1003‧‧‧第一主要表面1004‧‧‧第二主要表面1010、1310‧‧‧氣體軸承單元1012、1312‧‧‧流體冷卻劑通道1014‧‧‧受限通道1016‧‧‧離開槽1020、1320‧‧‧對流性冷卻系統1022‧‧‧氣體腔室1024‧‧‧噴嘴1026‧‧‧末端1028‧‧‧調節器1030‧‧‧熱擋板1040、1340‧‧‧支撐單元1042‧‧‧平坦上表面1440‧‧‧成形支撐單元1610、1620、1630、1640、3500、3510、3520、3535‧‧‧步驟1710、1810、1910、2010、2110、3310、3410、5210‧‧‧氣體軸承裝置1725、1825、1925、2025、3025、5225、5226、5525‧‧‧氣體膜1790‧‧‧玻璃供給方向1795‧‧‧玻璃拉引方向1895‧‧‧輸送方向1903、3003‧‧‧玻璃1904‧‧‧一體積的玻璃1911‧‧‧第一部分1912‧‧‧第二部分1950‧‧‧模具2150、2650、3150、3250、3450‧‧‧支撐表面2151、2651、3057、3251、3351、3451‧‧‧出口埠2152、2652、3052‧‧‧計量管2153、2653‧‧‧冷卻線路2154、3054、3354‧‧‧氣體通道2155‧‧‧歧管2160、2660、3360‧‧‧氣體入口2165‧‧‧外蓋2170‧‧‧間距2190‧‧‧平面2610‧‧‧累積器3055、3255、3355、3455‧‧‧排氣埠3110‧‧‧下降模具3600、5000‧‧‧支撐結構3610、5010‧‧‧直立件3612‧‧‧氣動舉昇件3620、5020‧‧‧臂件3630、4440、4540、4640、4740、4840、4940、5030‧‧‧模組裝置3640‧‧‧熱輻射擋板3650、5050‧‧‧氣體桌3652‧‧‧氣體桌底盤3660、3920、4020、4120、4220、4320、5060‧‧‧氣體桌模組4010、5411、5510‧‧‧氣體軸承組件4041‧‧‧表面4070‧‧‧支撐框架4321‧‧‧合金氣體軸承插入件4322‧‧‧滾輪組件4450‧‧‧平坦面板加熱器4550‧‧‧被動反射面板4650‧‧‧平坦化滾輪組件4750‧‧‧邊緣加熱器與空氣刀組件4850‧‧‧水冷式石墨氣體軸承4950‧‧‧水冷式驅動滾筒5035‧‧‧軌道5211‧‧‧下氣體軸承5212‧‧‧上氣體軸承5311‧‧‧下氣體軸承組件5312‧‧‧上氣體軸承組件5325‧‧‧第一氣體膜5326‧‧‧第二氣體膜5460‧‧‧入口通道5465‧‧‧排氣通道Wg‧‧‧寬度α‧‧‧角度Ws‧‧‧寬度d‧‧‧距離
併入本文中的附圖形成說明書的部分並描繪本揭露內容的實施例。圖式與描述內容一起進一步用來解釋揭露實施例的理論並讓熟悉相關技術人士可以製作與應用揭露實施例。這些圖式係用於描述性而非限制性。雖然揭露內容通常描述於該等實施例的內文中,但應當理解並非試圖限制揭露內容的範圍至該等特定實施例。在圖式中,相似元件符號標示相同或功能上相似的元件。
第1圖係製造玻璃帶的示範性玻璃製造設備的示意圖;
第2圖係根據第1圖的實施例自熔融玻璃形成玻璃帶的成形主體的橫剖面圖,其中根據本揭露內容的實施例藉由非接觸支撐設備支撐玻璃帶;
第3圖係自第一捲軸的玻璃帶解繞並由根據本揭露內容的實施例非接觸支撐設備所支撐的玻璃帶的橫剖面圖;
第4圖係根據本揭露內容的實施例的示範性非接觸支撐設備的橫剖面圖;
第5A圖係第4圖的非接觸支撐設備的俯視圖;
第5B圖係第5A圖的俯視圖的一部分的近視圖,描繪包括第5A圖的非接觸支撐設備的氣體軸承的末端邊緣的角度關係;
第6圖係根據本揭露內容的氣體軸承實施例的橫剖面透視圖;
第7圖係第6圖中所示的氣體軸承的一部分的橫剖面圖;及
第8圖係根據本揭露內容的氣體軸承另一個實施例的橫剖面圖。
第9圖係包括用以拉引玻璃帶的玻璃製造設備的示範性玻璃處理系統的示意圖。
第10圖係示範性玻璃形成設備的示意圖。
第11圖係第2圖的玻璃形成設備的一部分的側視圖。
第12圖係第2圖的玻璃形成設備的一部分的透視圖。
第13圖係另一個示範性玻璃形成設備的示意圖。
第14圖係又另一個示範性玻璃形成設備的示意圖。
第15圖描繪預測玻璃帶形成的數值模式圖。
第16圖圖示藉由第10-14圖的玻璃形成設備執行的製程對應的製程流程圖。
第17圖係示範性氣體軸承裝置的示意圖。
第18圖係示範性氣體軸承裝置的示意圖。
第19A圖係示範性氣體軸承裝置的示意圖。
第19B圖係第19A圖中所示的氣體軸承裝置的另一視圖。
第20A圖係示範性氣體軸承裝置的示意圖。
第20B圖係第20A圖中所示的氣體軸承裝置的示意圖。
第21圖圖示示範性氣體軸承裝置。
第22圖圖示第21圖中所示的氣體軸承裝置的另一視圖。
第23圖圖示第21圖中所示的氣體軸承裝置的另一視圖。
第24圖圖示具有圍繞氣體軸承裝置的蓋件的第21圖的氣體軸承裝置。
第25圖圖示第21圖中所示的氣體軸承裝置的橫剖面。
第26圖圖示示範性累積器氣體軸承裝置的四等分切圖。
第27圖圖示示範性累積器氣體軸承裝置的一半。
第28圖圖示第27圖中所示的累積器氣體軸承裝置的另一半。
第29圖圖示第27圖中所示的累積器氣體軸承裝置的另一視圖。
第30圖圖示氣體流動通過示範性氣體軸承裝置的示意圖。
第31圖圖示包括排氣埠的下降模具的示意圖。
第32圖圖示第31圖中所示的下降模具的表面的視圖。
第33圖圖示另一個下降模具的示意圖。
第34圖圖示第33圖中所示的下降模具的表面的視圖。
第35圖圖示支撐軟化玻璃方法的製程流程圖。
第36圖圖示處於運作位置中的示範性支撐結構與氣體桌。
第37圖圖示處於收回位置中的第36圖的支撐結構與氣體桌。
第38圖圖示示範性支撐結構的示意圖。
第39圖圖示處於運作位置中的氣體桌的示意圖。.
第40圖圖示示範性氣體桌模組。
第41圖圖示示範性氣體桌模組。
第42圖圖示示範性氣體桌模組。
第43圖圖示示範性氣體桌模組。
第44圖圖示示範性模組裝置。
第45圖圖示示範性模組裝置。
第46圖圖示示範性模組裝置。
第47圖圖示示範性模組裝置。
第48圖圖示示範性模組裝置。
第49圖圖示示範性模組裝置。
第50圖圖示示範性支撐結構與氣體桌。
第51圖圖示示範性支撐結構與氣體桌。
第52圖圖示示範性氣體軸承裝置。
第53圖圖示示範性氣體軸承裝置。
第54A圖與第54B圖圖示示範性氣體軸承裝置。
第55圖圖示示範性氣體軸承裝置。
第56圖圖示膜壓力比上玻璃重量的比例。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
940‧‧‧玻璃供給單元
950‧‧‧供給後玻璃形成裝置
1000‧‧‧玻璃形成設備
1002‧‧‧熔融玻璃
1003‧‧‧第一主要表面
1004‧‧‧第二主要表面
1010‧‧‧氣體軸承單元
1012‧‧‧流體冷卻劑通道
1020‧‧‧對流性冷卻系統
1030‧‧‧熱擋板
1040‧‧‧支撐單元
1042‧‧‧平坦上表面

Claims (43)

  1. 一種支撐一移動於一輸送方向中的基板的設備,包括:一壓力盒,封圍一流體連通於一加壓氣體源的腔室;一氣體軸承,配置於該壓力盒上,該氣體軸承包括:一氣室,流體連通於該腔室並延伸於該氣體軸承的一長度方向中,一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動,及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度方向延伸,該槽開口在該氣體軸承的一主要表面並設以沿著該槽的一長度排出一氣體,其中該阻抗孔的一離開孔洞與該槽的一開口間隔至少約5毫米。
  2. 如請求項1所述之設備,其中該氣體軸承包括界定該氣體軸承的一主要表面的複數個邊緣,該複數個邊緣包括一第一對相反的平行邊緣,該第一對相反的平行邊緣以一相對於該輸送方向的角度α排列,其中α係在一約20度至約60度的範圍中。
  3. 如請求項1所述之設備,其中該設備包括配 置在該壓力盒上的複數個氣體軸承,該複數個氣體軸承排列成正交於該輸送方向延伸的複數個列。
  4. 如請求項1所述之設備,其中該壓力盒包括流體連通於一冷卻流體源的數個冷卻通道。
  5. 一種支撐一玻璃基板的方法,包括以下步驟:在一支撐設備上輸送一玻璃基板於一輸送方向中,該非接觸支撐設備包括一壓力盒,該壓力盒封圍一流體連通於一加壓氣體源的腔室,該壓力盒進一步包括配置於該壓力盒上的複數個氣體軸承,該複數個氣體軸承排列成正交於該輸送方向延伸的複數個列,該複數個氣體軸承的各個氣體軸承包括:一氣室,延伸於該氣體軸承的一長度方向中,一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動,及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度延伸,該槽開口在該氣體軸承的一主要表面,其中該阻抗孔的一離開孔洞與該槽的一開口間隔至少約5毫米;沿著該槽的一長度自該槽排出一氣體,藉此支撐該玻璃基板於一與該氣體軸承的該主要表面間隔的位置; 及其中該氣體軸承的該主要表面由複數個邊緣所界定,該複數個邊緣包括至少第一對平行邊緣,該至少第一對平行邊緣以一相對於該輸送方向的角度α排列,其中α係在一等於或大於20度至等於或小於60度的範圍中。
  6. 如請求項5所述之方法,進一步包括以下步驟:在該支撐設備上輸送該玻璃基板時,加熱該玻璃基板至一大於該玻璃基板的一退火溫度的溫度。
  7. 如請求項5所述之方法,其中該玻璃基板的一寬度係至少1米,且在該支撐設備上輸送該玻璃基板之後,該玻璃基板的一主要表面相對於一平行於該主要表面的參考平面的一最大變化不超過100微米。
  8. 如請求項5所述之方法,其中該玻璃基板係一玻璃帶,該方法進一步包括在以該支撐設備支撐該玻璃帶之前,自一成形主體拉引該玻璃帶。
  9. 如請求項8所述之方法,進一步包括以下步驟:在以該支撐設備支撐該玻璃基板之前,自一第一方向重新引導該玻璃帶至一不同於該第一方向的第二方向。
  10. 如請求項5所述之方法,其中自配置於該玻璃基板的數個邊緣部分附近的數個氣體軸承排出的 一氣體壓力大於自配置在該玻璃基板的一中心部分下的數個氣體軸承排出的一氣體壓力。
  11. 一種支撐軟化玻璃的方法,包括以下步驟:放置該玻璃鄰近一具有一支撐表面的氣體軸承裝置,該支撐表面包括複數個出口埠,其中該氣體軸承裝置包括複數個氣體軸承,且該複數個氣體軸承的各個氣體軸承包括:一氣室,延伸於該氣體軸承的一長度方向中;一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動;及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度延伸,該槽開口在該氣體軸承的一主要表面,其中該等出口埠的密度係每平方米至少8,000個出口埠;透過該等出口埠噴出一氣體流動,以致該玻璃由該氣體支撐,且不接觸該支撐表面。
  12. 如請求項11所述之方法,其中該氣體軸承裝置係一空氣轉動軸承,該方法進一步包括以下步驟:在供給該玻璃流動鄰近該空氣轉動軸承後,自一第一方向重新引導該玻璃流動至一第二方向,且該空氣轉動軸承不接觸該玻璃。
  13. 如請求項11所述之方法,其中:該氣體軸承係一空氣桌;該玻璃包括一玻璃連續流動;該方法進一步包括以下步驟:在供給該玻璃連續流動鄰近該空氣桌後,在該玻璃連續流動橫跨一水平平面時,支撐該玻璃連續流動,且該空氣桌不接觸該玻璃。
  14. 如請求項11所述之方法,其中該氣體軸承裝置係一累積器,該方法進一步包括以下步驟:在供給該玻璃連續流動鄰近該累積器時,累積一期望體積的玻璃,並以該累積器成形該體積的玻璃的一表面,且該累積器與該成形玻璃表面的至少一部分之間沒有接觸。
  15. 如請求項11所述之方法,其中:該氣體軸承裝置係一空氣模;該玻璃進一步包括一玻璃片,放置該玻璃鄰近一氣體軸承裝置的步驟包括放置該玻璃片於該空氣模上;該方法進一步包括以下步驟:下垂該玻璃以成形該玻璃的一表面成為該空氣模的形狀,且該空氣模與該成形玻璃表面的至少一部分之間沒有接觸。
  16. 如請求項11所述之方法,進一步包括以下步驟:藉由循環一溫度受控熱流體通過該氣體軸承中的數個溫度控制通道來控制該氣體軸承的溫度。
  17. 一種玻璃處理設備,包括:一氣體軸承裝置,具有一支撐表面,該支撐表面包括複數個出口埠,其中該氣體軸承裝置包括複數個氣體軸承,且該複數個氣體軸承的各個氣體軸承包括:一氣室,延伸於該氣體軸承的一長度方向中;一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動;及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度延伸,該槽開口在該氣體軸承的一主要表面;其中該等出口埠的密度係每平方米至少8,000個;其中該氣體軸承裝置係設以支撐黏性玻璃。
  18. 如請求項17所述之玻璃處理設備,其中該氣體軸承裝置係一空氣轉動軸承,該空氣轉動軸承設以不接觸該玻璃地自一第一方向轉動該玻璃流動至一不同於該第一方向的第二方向。
  19. 如請求項17所述之玻璃處理設備,進一步包括一連接至該氣體軸承裝置的熱控制系統,該熱控制系統設以藉由循環一溫度受控流體通過該氣體軸承 中的數個溫度控制通道來控制該氣體軸承的溫度。
  20. 一種玻璃形成設備,包括:一玻璃供給單元,設以供應一玻璃流動於一第一方向中,其中該玻璃由該玻璃供給單元供應時係熔融的;一氣體軸承,配置於該玻璃供給單元下,該氣體軸承設以重新引導該玻璃流動至一不同於該第一方向的第二方向,且不接觸該玻璃流動,其中該氣體軸承包括:一氣室,延伸於該氣體軸承的一長度方向中;一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動;及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度延伸,該槽開口在該氣體軸承的一主要表面,其中該阻抗孔的一離開孔洞與該槽的一開口間隔至少約5毫米;一空氣桌,設以持續地輸送與支撐該玻璃流動;及複數個模組裝置,由一支撐結構所支撐且配置於該空氣桌上;其中該複數個模組裝置的至少一者係一模組熱管理裝置。
  21. 如請求項20所述之設備,其中該至少一個模組熱管理裝置係獨立地選自一平坦面板加熱器、一 被動反射面板、一邊緣加熱器、一空氣刀組件、一滾筒與上述之任何組合。
  22. 如請求項20所述之設備,其中該複數個模組裝置包括一滾輪定位組件、一平坦化滾輪組件與一驅動滾筒的至少一者。
  23. 一種連續玻璃形成製程,包括:自一玻璃供給單元供應一玻璃流動於一第一方向中,其中該玻璃由該玻璃供給單元供應時係熔融的;傳送該玻璃流動通過一氣體軸承以自該第一方向重新引導該玻璃流動至一第二方向,且不接觸該玻璃流動,其中該氣體軸承包括:一氣室,延伸於該氣體軸承的一長度方向中;一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動;及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度延伸,該槽開口在該氣體軸承的一主要表面,其中該阻抗孔的一離開孔洞與該槽的一開口間隔至少約5毫米;在傳送通過該氣體軸承後,不接觸該玻璃地傳送該玻璃流動橫跨一空氣桌的一第一部分;及在傳送該玻璃流動時,以至少一個模組熱管理裝置控制該玻璃流動的熱輪廓,該至少一個模組熱管理裝置由一支撐結構支撐,以致該模組熱管理裝置配置在 該玻璃流動上。
  24. 一種玻璃處理設備,包括:一第一氣體軸承組件,具有一第一主要表面,其中該第一氣體軸承組件包括複數個第一氣體軸承,各個第一氣體軸承具有一第一軸承支撐表面,以致該複數個第一氣體軸承的該等第一軸承支撐表面共同地形成該第一主要表面,其中各個第一氣體軸承包括:一第一氣室,延伸於該第一氣體軸承的一長度方向中;一第一中間通道,透過一第一阻抗孔流體連通於該第一氣室,該第一阻抗孔的尺寸經調整以限制該第一氣室與該第一中間通道之間的一氣體流動;及一第一槽,流體連通於該第一中間通道並沿著該第一氣體軸承的該長度延伸,該第一槽開口在該第一軸承支撐表面;一第二氣體軸承組件,具有一第二主要表面,其中該第二氣體軸承組件包括複數個第二氣體軸承,各個第二氣體軸承具有一第二軸承支撐表面,以致該複數個第二氣體軸承的該等第二軸承支撐表面共同地形成該第二主要表面,其中各個第二氣體軸承包括:一第二氣室,延伸於該第二氣體軸承的一長度方向中;一第二中間通道,透過一第二阻抗孔流體連通於該第二氣室,該第二阻抗孔的尺寸經調整以限制該第二氣室與該第二中間通道之間的一氣體流動;及一第二槽, 流體連通於該第二中間通道並沿著該第二氣體軸承的該長度延伸,該第二槽開口在該第二軸承支撐表面,其中該第一主要表面由一間隙分隔於該第二主要表面;一第一複數個出口埠、孔隙或上述之組合,配置於該第一主要表面中且流體連通於一第一氣體源;一第二複數個出口埠、孔隙或上述之組合,配置於該第二主要表面中且流體連通於一第二氣體源;一黏性玻璃源,經配置以供給一黏性玻璃連續流動進入該間隙。
  25. 如請求項24所述之設備,其中該黏性玻璃源係設以提供一玻璃流動,該玻璃流動在該玻璃進入該第一氣體軸承組件與該第二氣體軸承組件之間的該間隙時具有一在107至1010泊範圍中的黏度。
  26. 如請求項24所述之玻璃處理設備,進一步包括一分隔該複數個第一氣體軸承彼此的第一複數個排氣通道與一分隔該複數個第二氣體軸承彼此的第二複數個排氣通道。
  27. 如請求項24所述之玻璃處理設備,其中該第二氣體軸承組件配置於該第一氣體軸承組件上,且其中該複數個第二氣體軸承的各個第二氣體軸承係由該等第一與第二氣體軸承之間的一個或多個氣體膜所 支撐。
  28. 如請求項24所述之玻璃處理設備,進一步包括一第一支撐框架,連接至該複數個第一氣體軸承的各個第一氣體軸承,其中該第一支撐框架包括一流體連通於一冷卻流體源的冷卻通道。
  29. 一種平坦化黏性玻璃的方法,包括以下步驟:供給一黏度在107至1010泊範圍中的玻璃連續流動至一氣體軸承裝置,該氣體軸承裝置包括:一第一氣體軸承組件,具有一第一主要表面,其中該第一氣體軸承組件包括複數個第一氣體軸承,各個第一氣體軸承具有一第一軸承支撐表面,以致該複數個第一氣體軸承的該等第一軸承支撐表面共同地形成該第一主要表面,其中各個第一氣體軸承包括:一第一氣室,延伸於該第一氣體軸承的一長度方向中;一第一中間通道,透過一第一阻抗孔流體連通於該第一氣室,該第一阻抗孔的尺寸經調整以限制該第一氣室與該第一中間通道之間的一氣體流動;及一第一槽,流體連通於該第一中間通道並沿著該第一氣體軸承的該長度延伸,該第一槽開口在該第一軸承支撐表面;一第二氣體軸承組件,具有一第二主要表面,其 中該第二氣體軸承組件包括複數個第二氣體軸承,各個第二氣體軸承具有一第二軸承支撐表面,以致該複數個第二氣體軸承的該等第二軸承支撐表面共同地形成該第二主要表面,其中各個第二氣體軸承包括:一第二氣室,延伸於該第二氣體軸承的一長度方向中;一第二中間通道,透過一第二阻抗孔流體連通於該第二氣室,該第二阻抗孔的尺寸經調整以限制該第二氣室與該第二中間通道之間的一氣體流動;及一第二槽,流體連通於該第二中間通道並沿著該第二氣體軸承的該長度延伸,該第二槽開口在該第二軸承支撐表面,其中該第一主要表面由一間隙分隔於該第二組件表面;一第一複數個出口埠、孔隙或上述之組合,配置於該第一主要表面中且流體連通於一第一氣體源;一第二複數個出口埠、孔隙或上述之組合,配置於該第二主要表面中且流體連通於一第二氣體源;藉由噴出氣體通過該第一主要表面的該等出口埠或孔隙以產生一第一氣體膜而施加壓力至該玻璃的一第一側;藉由噴出氣體通過該第二主要表面的該等出口埠或孔隙以產生一第二氣體膜而施加壓力至該玻璃的一第二側,該第二側相反於該第一側;及 藉由在施加至該玻璃的該第一側與該第二側的該壓力之間產生一壓力平衡而不接觸該玻璃地平坦化該玻璃。
  30. 如請求項29所述之方法,進一步包括以下步驟:藉由流動冷卻流體通過數個冷卻通道來冷卻該氣體軸承組件。
  31. 如請求項29所述之方法,進一步包括以下步驟:維持該玻璃鄰近該第一氣體軸承組件與該第二氣體軸承組件持續一時間週期,同時維持該玻璃的該黏度於107至1013泊的範圍中。
  32. 一種玻璃處理設備,包括:一氣體軸承組件,具有一主要表面,其中該氣體軸承裝置包括複數個氣體軸承,各個氣體軸承具有一軸承支撐表面,以致該數個氣體軸承的該等軸承支撐表面共同地形成該主要表面,其中該複數個氣體軸承的各個氣體軸承包括:一氣室,延伸於該氣體軸承的一長度方向中;一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動;及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度延伸,該槽開口在該軸承支撐表面;複數個出口埠、孔隙或上述之組合,配置於該主要 表面中;及複數個排氣孔,配置於該主要表面中;及一黏性玻璃源,經配置以供給一黏性玻璃連續流動至該氣體軸承裝置;其中該氣體軸承組件係設以透過該等出口埠或孔隙施加一正壓至該玻璃片;其中該氣體軸承組件係設以透過該等排氣孔施加一負壓至該玻璃片,其中該等出口埠或孔隙流體連通於一氣體源,且其中當供給該玻璃至該氣體軸承裝置時,該玻璃的該黏度係處於107至1013泊的範圍中。
  33. 如請求項32所述之設備,其中該氣體軸承組件進一步包括一分隔該複數個氣體軸承彼此的複數個排氣通道。
  34. 一種平坦化黏性玻璃的方法,包括以下步驟:自一來源供給一玻璃的連續流動,當該玻璃由該來源所供給時,該玻璃具有一在107至1013泊範圍中的黏度,放置該玻璃鄰近一氣體軸承組件,該氣體軸承組件包括:一主要表面; 複數個出口埠、孔隙或上述之組合,配置於該主要表面中;複數個排氣孔,配置於該主要表面中;其中該氣體軸承組件包括複數個氣體軸承,各個氣體軸承具有一軸承支撐表面,以致該數個氣體軸承的該等軸承支撐表面共同地形成該主要表面,其中該複數個氣體軸承的各個氣體軸承包括:一氣室,延伸於該氣體軸承的一長度方向中;一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動;及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度延伸,該槽開口在該軸承支撐表面;及藉由噴出氣體通過該等出口埠或孔隙而施加一正壓至該玻璃;藉由拉引一真空通過該等排氣孔而施加一負壓至該玻璃;及藉由產生一壓力平衡而不接觸該玻璃地平坦化該玻璃。
  35. 如請求項34所述之方法,進一步包括以下步驟:藉由流動冷卻流體通過數個流體連通於一冷卻流體源的冷卻通道來冷卻該氣體軸承裝置。
  36. 如請求項34所述之方法,進一步包括以下步驟:維持該玻璃鄰近該氣體軸承組件持續一時間週期,同時維持該玻璃的該黏度於107至1013泊的範圍中。
  37. 一種玻璃形成設備,包括:一玻璃供給單元,設以供應一熔融玻璃流動於一第一方向中;一氣體軸承,配置於該玻璃供給單元下,該氣體軸承設以重新引導該熔融玻璃流動至一不同於該第一方向的第二方向,且不接觸該熔融玻璃流動,其中該氣體軸承包括:一氣室,延伸於該氣體軸承的一長度方向中;一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動;及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度延伸,該槽開口在該氣體軸承的一主要表面,其中該阻抗孔的一離開孔洞與該槽的一開口間隔至少約5毫米;及至少一個熱管理裝置,選自下列所構成之群組:一流體冷卻劑通道,在該氣體軸承中,一對流性冷卻系統,包括一噴嘴,該噴嘴設以噴出迫使該熔融玻璃流動朝向該氣體軸承的氣體,及一熱擋板,配置於該玻璃供給單元與該氣體軸承 之間。
  38. 如請求項37所述之設備,其中該玻璃形成設備包括該流體冷卻劑通道、該對流性冷卻系統與該熱擋板。
  39. 如請求項37所述之設備,其中該對流性冷卻系統包括:一氣體腔室;及複數個噴嘴,流體連通於該氣體腔室,該複數個噴嘴的各個噴嘴設以自該氣體腔室噴出氣體。
  40. 如請求項37所述之設備,其中該第一方向係一垂直方向而該第二方向係一水平方向。
  41. 如請求項37所述之設備,其中該玻璃供給單元進一步包括一加熱器;及該玻璃供給單元係一形成容器。
  42. 如請求項37所述之設備,進一步包括:一支撐單元,設以支撐該移動於該第二方向中的熔融玻璃流動,且不接觸該熔融玻璃流動;及一玻璃帶拉引單元,連接至該支撐單元並設以自該熔融玻璃流動拉引一玻璃帶於該第二方向中。
  43. 一種玻璃形成設備,包括:一玻璃供給單元,包括一輸出路徑;一氣體軸承,配置於該玻璃供給單元下且接近該輸 出路徑,該氣體軸承進一步包括一流體冷卻劑通道,其中該氣體軸承包括:一氣室,延伸於該氣體軸承的一長度方向中;一中間通道,透過一阻抗孔流體連通於該氣室,該阻抗孔的尺寸經調整以限制該氣室與該中間通道之間的一氣體流動;及一槽,流體連通於該中間通道並沿著該氣體軸承的該長度延伸,該槽開口在該氣體軸承的一主要表面,其中該阻抗孔的一離開孔洞與該槽的一開口間隔至少約5毫米;一對流性冷卻系統,包括一引導朝向該氣體軸承的噴嘴,及一熱擋板,配置於該玻璃供給單元與該氣體軸承之間。
TW106131379A 2016-09-13 2017-09-13 用於處理玻璃基板之設備及方法 TWI771321B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662393918P 2016-09-13 2016-09-13
US62/393,918 2016-09-13
US201662425308P 2016-11-22 2016-11-22
US62/425,308 2016-11-22
US201762524191P 2017-06-23 2017-06-23
US62/524,191 2017-06-23

Publications (2)

Publication Number Publication Date
TW201811688A TW201811688A (zh) 2018-04-01
TWI771321B true TWI771321B (zh) 2022-07-21

Family

ID=59901628

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106131379A TWI771321B (zh) 2016-09-13 2017-09-13 用於處理玻璃基板之設備及方法

Country Status (7)

Country Link
US (2) US11420895B2 (zh)
EP (2) EP3512789A1 (zh)
JP (3) JP7002824B2 (zh)
KR (2) KR102632509B1 (zh)
CN (2) CN109982950B (zh)
TW (1) TWI771321B (zh)
WO (1) WO2018052833A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038981A (ko) * 2018-08-29 2021-04-08 코닝 인코포레이티드 물체를 지지하기 위한 장치 및 방법
WO2020123204A2 (en) * 2018-12-13 2020-06-18 Corning Incorporated Conveying apparatus and methods for conveying ribbon
IT201900003553A1 (it) * 2019-03-12 2020-09-12 Gtk Timek Group Sa "barra di movimentazione di supporti laminati o in film"
CN111977375B (zh) * 2019-05-21 2022-01-18 晶彩科技股份有限公司 薄板输送装置及其方法
JP2022544409A (ja) * 2019-08-12 2022-10-18 コーニング インコーポレイテッド ガラス製造装置及び方法
US20220342123A1 (en) * 2019-09-25 2022-10-27 Arizona Board Of Regents On Behalf Of The University Of Arizona Apparatus and method for the manufacture of large glass lens arrays
JP2023531448A (ja) * 2020-06-19 2023-07-24 コーニング インコーポレイテッド ガラスリボンの製造方法
JP7319412B2 (ja) * 2021-03-29 2023-08-01 AvanStrate株式会社 ガラス基板製造装置、およびガラス基板の製造方法
CN118176169A (zh) * 2021-10-28 2024-06-11 康宁公司 具有可调节流体流量的输送设备和方法
CN114014015B (zh) * 2021-11-16 2022-09-06 秦皇岛玻璃工业研究设计院有限公司 一种平板玻璃冷端生产的输送线及输送方法
WO2023177539A1 (en) * 2022-03-15 2023-09-21 Corning Incorporated Methods and apparatus for manufacturing a ribbon
CN115159830B (zh) * 2022-08-24 2023-10-31 湖南邵虹特种玻璃股份有限公司 一种玻璃基板成型装置及方法
WO2024049727A1 (en) * 2022-09-02 2024-03-07 Corning Incorporated Methods and apparatus for manufacturing a ribbon
WO2024097124A1 (en) * 2022-11-03 2024-05-10 Corning Incorporated Methods and apparatus for manufacturing a glass ribbon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355275A (en) * 1963-05-24 1967-11-28 Pittsburgh Plate Glass Co Method of forming a glass ribbon on a gas support bed
CN1454186A (zh) * 2000-02-25 2003-11-05 利比-欧文斯-福特公司 玻璃运输系统
US20090205373A1 (en) * 2006-05-16 2009-08-20 Gen Kojima Roll forming manufacturing method and apparatus of plate glass and product thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE622746A (zh) * 1961-09-22
US3300291A (en) * 1964-06-11 1967-01-24 Pittsburgh Plate Glass Co Apparatus for producing sheet glass
IT1104849B (it) 1977-04-19 1985-10-28 Kloeckner Humboldt Deutz Ag Procedimento ed impianto per produrre vetro in lastre
US4767437A (en) * 1987-03-25 1988-08-30 Ppg Industries, Inc. Horizontal press bending using a splitting vacuum/pressure pickup
JPH0813537B2 (ja) * 1993-02-08 1996-02-14 株式会社ロプコ エアー膜を生ぜしめて成る液晶基板層の浮上・積層装置
US6253578B1 (en) 1996-04-12 2001-07-03 Praxair Technology, Inc. Glass melting process and apparatus with reduced emissions and refractory corrosion
TWI226303B (en) * 2002-04-18 2005-01-11 Olympus Corp Substrate carrying device
JP4218263B2 (ja) * 2002-06-24 2009-02-04 旭硝子株式会社 板硝子の製造方法
US20050178159A1 (en) * 2002-07-08 2005-08-18 Asahi Glass Company, Limited Apparatus for manufacturing sheet glass
US7136807B2 (en) 2002-08-26 2006-11-14 International Business Machines Corporation Inferencing using disambiguated natural language rules
EP1768921A1 (en) 2004-07-09 2007-04-04 OC Oerlikon Balzers AG Gas bearing substrate-loading mechanism process
EP1710212A1 (en) 2005-04-06 2006-10-11 Corning Incorporated process and device for manufacturing flat sheets of a glass-based material
EP1746076A1 (en) * 2005-07-21 2007-01-24 Corning Incorporated Method of making a glass sheet using rapid cooling
US20070130994A1 (en) 2005-12-08 2007-06-14 Boratav Olus N Method and apparatus for drawing a low liquidus viscosity glass
JP4811647B2 (ja) * 2006-01-17 2011-11-09 独立行政法人産業技術総合研究所 ガラス成形品の製造方法
EP2019786B1 (en) * 2006-05-08 2014-01-08 Stryker Corporation Air bearing pallet
US7722256B2 (en) * 2006-11-17 2010-05-25 Corning Incorporated Flat surface air bearing assembly
CN101678968A (zh) 2007-05-25 2010-03-24 康宁股份有限公司 用于搬运玻璃板的装置和系统
JP2009149389A (ja) 2007-12-19 2009-07-09 Myotoku Ltd 浮上ユニット及びそれを有する装置
US20090217705A1 (en) 2008-02-29 2009-09-03 Filippov Andrey V Temperature control of glass fusion by electromagnetic radiation
JP2011124342A (ja) 2009-12-09 2011-06-23 Tokyo Electron Ltd 基板処理装置、基板処理方法及びこの基板処理方法を実行させるためのプログラムを記録した記録媒体
FI126760B (fi) * 2010-01-11 2017-05-15 Glaston Services Ltd Oy Menetelmä ja laite lasilevyjen kannattamiseksi ja kuumentamiseksi kuumalla kaasutyynyllä
JP5998086B2 (ja) * 2012-04-03 2016-09-28 オイレス工業株式会社 浮上用エアプレート
KR20150035701A (ko) 2012-07-10 2015-04-07 아사히 가라스 가부시키가이샤 임프린트 방법, 및 임프린트 장치
WO2014013934A1 (ja) * 2012-07-18 2014-01-23 Hoya株式会社 ガラス成形品及びその製造方法、光学素子ブランク、並びに光学素子及びその製造方法
WO2014179422A1 (en) * 2013-05-03 2014-11-06 Corning Incorporated Methods and apparatus for conveying a glass ribbon
US10246365B2 (en) 2013-10-09 2019-04-02 Corning Incorporated Apparatus and method for forming thin glass articles
KR101772060B1 (ko) 2014-07-09 2017-08-28 주식회사 엘지화학 판유리 제조장치 및 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355275A (en) * 1963-05-24 1967-11-28 Pittsburgh Plate Glass Co Method of forming a glass ribbon on a gas support bed
CN1454186A (zh) * 2000-02-25 2003-11-05 利比-欧文斯-福特公司 玻璃运输系统
US20090205373A1 (en) * 2006-05-16 2009-08-20 Gen Kojima Roll forming manufacturing method and apparatus of plate glass and product thereof

Also Published As

Publication number Publication date
JP7331082B2 (ja) 2023-08-22
JP7002824B2 (ja) 2022-01-20
US11420895B2 (en) 2022-08-23
CN109982950A (zh) 2019-07-05
JP2022050486A (ja) 2022-03-30
US20210292221A1 (en) 2021-09-23
KR102450782B1 (ko) 2022-10-06
KR20220138016A (ko) 2022-10-12
EP4253334A2 (en) 2023-10-04
CN109982950B (zh) 2022-04-08
US20220332626A1 (en) 2022-10-20
CN114104735A (zh) 2022-03-01
WO2018052833A1 (en) 2018-03-22
JP7577805B2 (ja) 2024-11-05
TW201811688A (zh) 2018-04-01
JP2019529283A (ja) 2019-10-17
EP4253334A3 (en) 2024-03-06
KR20190055133A (ko) 2019-05-22
KR102632509B1 (ko) 2024-02-02
EP3512789A1 (en) 2019-07-24
JP2023159203A (ja) 2023-10-31

Similar Documents

Publication Publication Date Title
TWI771321B (zh) 用於處理玻璃基板之設備及方法
US11680006B2 (en) Apparatus and method for forming thin glass articles
JP4811647B2 (ja) ガラス成形品の製造方法
EP3589588A1 (en) Glass article with reduced thickness variation, method for making and apparatus therefor
KR101798292B1 (ko) 디스플레이용 글래스 기판의 제조 방법
US20190202729A1 (en) Antibody-coated nanoparticle vaccines
TW201536697A (zh) 玻璃基板之製造方法及玻璃基板之製造裝置
US10377654B2 (en) Apparatus and method of manufacturing composite glass articles
JP2019094245A (ja) フロートガラス製造方法、およびフロートガラス
JP2016124751A (ja) ディスプレイ用ガラス基板の製造方法および製造装置
TW202335982A (zh) 具有可調節流體流量的輸送設備和方法
TW202330380A (zh) 處理玻璃帶的方法及其設備