TWI628443B - Measuring structure - Google Patents
Measuring structure Download PDFInfo
- Publication number
- TWI628443B TWI628443B TW106144812A TW106144812A TWI628443B TW I628443 B TWI628443 B TW I628443B TW 106144812 A TW106144812 A TW 106144812A TW 106144812 A TW106144812 A TW 106144812A TW I628443 B TWI628443 B TW I628443B
- Authority
- TW
- Taiwan
- Prior art keywords
- ring body
- end portion
- dielectric layer
- measuring structure
- measuring
- Prior art date
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
一種量測結構,其於介電層上形成一具有兩圈環體之震盪量測組,以於單一次量測介電常數之作業中,能量測出兩個頻率峰值。 A measuring structure is formed on the dielectric layer by a oscillating measuring group having two rings of the ring, so that in the operation of measuring the dielectric constant in a single measurement, the energy measures two frequency peaks.
Description
本發明係關於一種量測結構,特別是關於一種用以量測介電常數之量測結構。 The present invention relates to a measuring structure, and more particularly to a measuring structure for measuring a dielectric constant.
因應下一世代電訊傳輸頻率之第五代移動通信系統(5th generation mobile networks或5th generation wireless systems,簡稱5G),其傳輸頻率係介於23至40GHz之間,故對於半導體封裝件之線路結構之佈設中,其所用之介電材之介電常數之準確性要求極高,否則製得的半導體封裝件無法達到傳輸頻率介於23至40GHz之間的需求,亦即該半導體封裝件無法達到5G電子產品的需求。 5th generation mobile networks (5th generation mobile systems or 5th generation wireless systems, 5G for short), the transmission frequency is between 23 and 40 GHz, so the circuit structure of the semiconductor package In the layout, the accuracy of the dielectric constant of the dielectric material used is extremely high, otherwise the fabricated semiconductor package cannot meet the requirement of a transmission frequency between 23 and 40 GHz, that is, the semiconductor package cannot reach 5G. The demand for electronic products.
此外,目前封裝廠於使用介電材料時,一定會考量該介電材料之特性,如介電常數,且該介電材料之特性均由材料供應商定義,而該定義係僅為該介電材料於特定溫度下的數值(如該介電材料於液態時之介電常數),並未呈現該介電材料於其它溫度下之數值(如該介電材料於固態時之介電常數)。 In addition, when a dielectric material is used in a packaging factory, the characteristics of the dielectric material, such as a dielectric constant, must be considered, and the characteristics of the dielectric material are defined by the material supplier, and the definition is only the dielectric. The value of the material at a particular temperature (e.g., the dielectric constant of the dielectric material in a liquid state) does not exhibit a value for the dielectric material at other temperatures (e.g., the dielectric constant of the dielectric material in the solid state).
然而,於製作半導體封裝件之過程中,該介電材料會從液態(或熔融態)轉變成固態,其介電常數之數值會大 幅變動,故若參考該材料供應商所定義之液態介電常數,則製作出之半導體封裝件之線路結構之傳輸頻率容易受干擾而無法有效傳輸訊號,進而導致5G電子產品無法符合高頻之需求。 However, in the process of fabricating a semiconductor package, the dielectric material changes from a liquid state (or a molten state) to a solid state, and the dielectric constant value thereof is large. The amplitude varies, so if the liquid dielectric constant defined by the material supplier is referenced, the transmission frequency of the circuit structure of the fabricated semiconductor package is easily disturbed and the signal cannot be effectively transmitted, thereby causing the 5G electronic product to fail to meet the high frequency. demand.
因此,封裝廠通常會自行量測該介電材料於固態時之介電常數,再依據該自行量測之介電常數判斷該介電材料是否符合需求。 Therefore, the packaging factory usually measures the dielectric constant of the dielectric material in the solid state, and judges whether the dielectric material meets the requirements according to the dielectric constant of the self-measurement.
如第1A至1B圖所示,封裝廠將欲判斷是否符合需求之介電材料來模擬欲製之線路結構1a(如第1C圖所示之產品介電層10a與線路層11a),而製作出一仿製結構1(不含第1C圖所示之線路層11a),其包括至少一量測介電層10及一設於該量測介電層10上之震盪量測部11,該量測介電層10之材質特性係同於該產品介電層10a之材質特性,且該震盪量測部11係具有一圓形環線111及兩傳輸線113,114。具體地,該圓形環線111係間隔地位於該兩傳輸線113,114之間,使該圓形環線111與該兩傳輸線113,114之間具有間隙e,且令該圓形環線111與該兩傳輸線113,114能產生電性耦合,其中,該圓形環線111對應該間隙e之周面範圍L係可定義該電性耦合的耦合量之大小,而該震盪量測部11之預設傳輸頻率(如28GHz)係可定義出該圓形環線111之周長(或該圓形環線111之外徑R),即該預設傳輸頻率之波長可為該圓形環線111之周長(如1/28奈米)。 As shown in FIGS. 1A to 1B, the packaging factory will determine whether or not the required dielectric material is to be simulated to simulate the desired wiring structure 1a (such as the product dielectric layer 10a and the wiring layer 11a shown in FIG. 1C). An imitation structure 1 (excluding the circuit layer 11a shown in FIG. 1C) includes at least one measurement dielectric layer 10 and an oscillation measuring portion 11 disposed on the measurement dielectric layer 10, the amount The material property of the dielectric layer 10 is the same as that of the dielectric layer 10a of the product, and the oscillation measuring portion 11 has a circular loop line 111 and two transmission lines 113, 114. Specifically, the circular loop line 111 is spaced between the two transmission lines 113, 114 so that the circular loop line 111 and the two transmission lines 113, 114 have a gap e, and the circular loop line 111 and the two transmission lines 113, 114 can be generated. Electrical coupling, wherein the circular ring line 111 corresponds to the circumferential surface range L of the gap e, and the coupling amount of the electrical coupling can be defined, and the predetermined transmission frequency (such as 28 GHz) of the oscillation measuring unit 11 is The circumference of the circular loop line 111 (or the outer diameter R of the circular loop line 111) may be defined, that is, the wavelength of the predetermined transmission frequency may be the circumference of the circular loop line 111 (eg, 1/28 nm). .
此外,於製作該線路結構1a前,會先量測該仿製結構 1之量測介電層10於固態時之介電常數,以判斷該產品介電層10a是否能採用。具體地,於量測該量測介電層10於固態時之介電常數時,先調整環境溫度,使該量測介電層10維持固體狀態,再將一量測儀器(圖未示)之電流依序耦合通過其中一傳輸線113、圓形環線111及另一傳輸線114,以得到該預設傳輸頻率(如28GHz)之峰值,之後電腦藉由該峰值依據習知物理公式演算出該量測介電層10(即該產品介電層10a)於固態時之介電常數之數值。 In addition, the dummy structure is measured before the line structure 1a is fabricated. The dielectric constant of the dielectric layer 10 in the solid state is measured to determine whether the dielectric layer 10a of the product can be used. Specifically, when measuring the dielectric constant of the dielectric layer 10 in the solid state, the ambient temperature is first adjusted to maintain the solid state of the dielectric layer 10, and then a measuring instrument (not shown) is provided. The current is sequentially coupled through one of the transmission line 113, the circular loop line 111 and the other transmission line 114 to obtain a peak value of the preset transmission frequency (such as 28 GHz), and then the computer calculates the quantity according to the conventional physical formula by the peak value. The value of the dielectric constant of the dielectric layer 10 (i.e., the dielectric layer 10a of the product) is measured in the solid state.
因此,封裝廠可將該量測介電層10於固態時介電常數之數值輸入模擬軟體中,以進行半導體封裝件1’(如第1D圖所示,其包含半導體晶片12、線路結構1a及封裝材13)之模擬作業,藉此判斷該產品介電層10a是否符合該線路結構1a之需求,亦即當符合需求時,才會開始進行該線路結構1a之製作。 Therefore, the packaging factory can input the value of the dielectric constant of the dielectric layer 10 in the solid state into the analog software to perform the semiconductor package 1' (as shown in FIG. 1D, which includes the semiconductor wafer 12 and the line structure 1a). And the simulation operation of the package material 13), thereby judging whether the product dielectric layer 10a meets the requirements of the line structure 1a, that is, when the line structure 1a is met, the line structure 1a is started.
惟,習知仿製結構1之量測震盪部11,其傳輸線113,114之端部係為直線端,因而該圓形環線111僅於極小之周面範圍L之處產生電性耦合,致使於進行量測作業時,該電流之耦合量極小,因而量測訊號容易受雜訊干擾,特別是當量測儀器的動態範圍不足時,其所得的量測訊號大多為雜訊,故將影響所擷取之峰值或頻帶的準確度。 However, in the conventional oscillating portion 11 of the pseudo-structure 1, the end portions of the transmission lines 113, 114 are linear ends, and thus the circular loop 111 is electrically coupled only at the extremely small circumferential surface range L, resulting in an amount of progress. During the measurement operation, the coupling amount of the current is extremely small, so the measurement signal is easily interfered by noise. Especially when the dynamic range of the equivalent measuring instrument is insufficient, the measurement signals obtained by the measurement signal are mostly noise, so it will affect the acquisition. The accuracy of the peak or band.
再者,習知仿製結構1之量測震盪部11僅能用於量測單一頻帶(該預設傳輸頻率)的介電常數,若需量測多個頻帶(如預設傳輸頻率為38GHz及23.75GHz)的介電常數,則需設計多組該仿製結構1(不同之量測震盪部11之 圓形環線111之周長),因而耗時及耗成本。 Furthermore, the oscillating portion 11 of the conventional pseudo structure 1 can only be used to measure the dielectric constant of a single frequency band (the predetermined transmission frequency), and if multiple frequency bands are to be measured (eg, the preset transmission frequency is 38 GHz and For the dielectric constant of 23.75 GHz), it is necessary to design a plurality of sets of the dummy structure 1 (different measurement of the oscillating portion 11) The circumference of the circular loop 111) is time consuming and costly.
因此,如何克服上述習知技術中之種種問題,實已成目前亟欲解決的課題。 Therefore, how to overcome the various problems in the above-mentioned prior art has become a problem that is currently being solved.
鑑於上述習知技術之缺失,本發明遂提供一種量測結構,係包括:介電層;第一導線,係設於該介電層上且具有第一端部;第二導線,係設於該介電層上且具有對應該第一端部之第二端部;第一環體,係設於該介電層上並間隔地位於該第一端部與該第二端部之間,且電性耦合該第一端部與該第二端部;以及第二環體,係設於該介電層上並間隔地環繞於第一環體外,且間隔地包圍該第一端部與該第二端部,並與該第一端部及該第二端部電性耦合。 In view of the above-mentioned deficiencies of the prior art, the present invention provides a measuring structure comprising: a dielectric layer; a first wire disposed on the dielectric layer and having a first end; and a second wire disposed on The dielectric layer has a second end portion corresponding to the first end portion; the first ring body is disposed on the dielectric layer and spaced between the first end portion and the second end portion, And electrically coupling the first end portion and the second end portion; and the second ring body is disposed on the dielectric layer and spaced around the first ring body at intervals, and circumferentially surrounding the first end portion and The second end is electrically coupled to the first end and the second end.
前述之量測結構中,該第一端部之形狀係對應該第一環體或第二環體之側面輪廓。 In the aforementioned measuring structure, the shape of the first end portion corresponds to the side profile of the first ring body or the second ring body.
前述之量測結構中,該第二端部之形狀係對應該第一環體或第二環體之側面輪廓。 In the aforementioned measuring structure, the shape of the second end portion corresponds to the side profile of the first ring body or the second ring body.
前述之量測結構中,該第一端部與第二端部係構成一框體,使該第一環體位於該框體中。例如,該框體之形狀係對應該第一環體之側面輪廓。 In the above measuring structure, the first end portion and the second end portion form a frame, and the first ring body is located in the frame body. For example, the shape of the frame corresponds to the side profile of the first ring.
前述之量測結構中,該第一環體對應該間隙之側面範圍係定義該第一環體所產生之電性耦合之耦合量。 In the foregoing measuring structure, the side range of the first ring body corresponding to the gap defines the coupling amount of the electrical coupling generated by the first ring body.
前述之量測結構中,該第二環體對應該間隙之側面範圍係定義該第二環體所產生之電性耦合之耦合量。 In the foregoing measuring structure, the side range corresponding to the gap of the second ring body defines the coupling amount of the electrical coupling generated by the second ring body.
前述之量測結構中,該量測結構係用以量測該介電層 之介電常數,且該介電常數係對應訊號之傳輸頻率。例如,該第一環體或該第二環體之邊長係對應該傳輸頻率之波長。 In the foregoing measuring structure, the measuring structure is used for measuring the dielectric layer The dielectric constant, and the dielectric constant corresponds to the transmission frequency of the signal. For example, the length of the side of the first ring or the second ring corresponds to the wavelength of the transmission frequency.
由上可知,本發明之量測結構,主要藉由兩環體(第一環體與第二環體)之設計,以於單一次量測介電常數之作業中,能量測出兩個頻率峰值,故相較於習知仿製結構,若使用本發明之量測結構量測多個頻帶的介電常數時,能減少製作該量測結構之數量,因而能減少材料成本,且能大幅縮短量測作業之時間。 It can be seen from the above that the measuring structure of the present invention mainly adopts the design of the two ring bodies (the first ring body and the second ring body) to measure the two frequencies in the operation of measuring the dielectric constant in a single measurement. The peak value, so compared with the conventional imitation structure, if the dielectric constant of the plurality of frequency bands is measured by using the measuring structure of the present invention, the number of the measuring structures can be reduced, thereby reducing the material cost and greatly shortening The time of the measurement operation.
再者,該導線之端部形狀對應該環體之側面輪廓,以增加該環體用以產生電性耦合之側面範圍,故相較於習知技術,於進行量測作業時,能增加該電流之耦合量,以避免雜訊干擾,且即使該量測儀器的動態範圍不足,能大幅減少所得的雜訊,因而能提高所擷取之頻率峰值或頻帶的準確度。 Moreover, the shape of the end of the wire corresponds to the side profile of the ring body to increase the side range of the ring body for generating electrical coupling, so that the measuring operation can be increased compared to the prior art. The amount of current coupling prevents noise interference, and even if the dynamic range of the measuring instrument is insufficient, the resulting noise can be greatly reduced, thereby improving the accuracy of the frequency peak or frequency band captured.
1‧‧‧仿製結構 1‧‧‧Fake structure
1’‧‧‧半導體封裝件 1'‧‧‧Semiconductor package
1a‧‧‧線路結構 1a‧‧‧Line structure
10‧‧‧量測介電層 10‧‧‧Measurement dielectric layer
10a‧‧‧產品介電層 10a‧‧‧Product dielectric layer
11‧‧‧震盪量測部 11‧‧‧Vibration Measurement Department
11a,31‧‧‧線路層 11a, 31‧‧‧ circuit layer
111‧‧‧圓形環線 111‧‧‧Circular loop
113,114‧‧‧傳輸線 113,114‧‧‧ transmission line
12‧‧‧半導體晶片 12‧‧‧Semiconductor wafer
13‧‧‧封裝材 13‧‧‧Package
2‧‧‧量測結構 2‧‧‧Measurement structure
2a‧‧‧震盪量測組 2a‧‧‧Shock Measurement Group
2b‧‧‧承載體 2b‧‧‧Carrier
20‧‧‧介電層 20‧‧‧Dielectric layer
21‧‧‧第一環體 21‧‧‧First ring
22‧‧‧第二環體 22‧‧‧Second ring
22a,22b‧‧‧環部 22a, 22b‧‧‧ Ring
23‧‧‧第一導線 23‧‧‧First wire
230‧‧‧第一端部 230‧‧‧ first end
24‧‧‧第二導線 24‧‧‧second wire
240‧‧‧第二端部 240‧‧‧second end
25‧‧‧接地層 25‧‧‧ Grounding layer
3‧‧‧實際封裝基板 3‧‧‧The actual package substrate
30‧‧‧實際介電層 30‧‧‧ Actual dielectric layer
A‧‧‧框體 A‧‧‧ frame
a,d1,d2,t1,t2,e‧‧‧間隙 a, d1, d2, t1, t2, e‧‧ ‧ gap
f1,f2‧‧‧頻率點 F1, f2‧‧‧ frequency point
h‧‧‧厚度 H‧‧‧thickness
L‧‧‧周面範圍 L‧‧‧Week range
L1,L2‧‧‧側面範圍 L1, L2‧‧‧ side range
R‧‧‧外徑 R‧‧‧ outside diameter
R1‧‧‧第一外徑 R1‧‧‧ first outer diameter
R2‧‧‧第二外徑 R2‧‧‧ second outer diameter
W‧‧‧線寬 W‧‧‧Line width
第1A圖為習知仿製結構之平面示意圖;第1B圖為習知仿製結構之剖面示意圖;第1C圖為習知線路結構之剖面示意圖;第1D圖為習知半導體封裝件之剖面示意圖;第2A圖為本發明之量測結構之平面示意圖;第2B圖為第2A圖之B-B剖面線之剖面示意圖;第3圖係為對應第2A圖之實際封裝基板之剖面示意圖;以及 第4圖係為第2A圖之量測結構於量測作業中所測得之頻率點之圖表。 1A is a schematic plan view of a conventional imitation structure; FIG. 1B is a schematic cross-sectional view of a conventional imitation structure; FIG. 1C is a schematic cross-sectional view of a conventional circuit structure; FIG. 1D is a schematic cross-sectional view of a conventional semiconductor package; 2A is a schematic plan view of the measuring structure of the present invention; FIG. 2B is a schematic cross-sectional view of the BB section line of FIG. 2A; and FIG. 3 is a schematic cross-sectional view of the actual package substrate corresponding to FIG. 2A; Figure 4 is a graph of the frequency points measured by the measurement structure of Figure 2A in the measurement operation.
以下藉由特定的具體實施例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。 The other embodiments of the present invention will be readily understood by those skilled in the art from this disclosure.
須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「上」、「第一」、「第二」及「一」等之用語,亦僅為便於敘述之明瞭,而非用以限定本發明可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,當亦視為本發明可實施之範疇。 It is to be understood that the structure, the proportions, the size, and the like of the present invention are intended to be used in conjunction with the disclosure of the specification, and are not intended to limit the invention. The conditions are limited, so it is not technically meaningful. Any modification of the structure, change of the proportional relationship or adjustment of the size should remain in this book without affecting the effects and the objectives that can be achieved by the present invention. The technical content disclosed in the invention can be covered. In the meantime, the terms "upper", "first", "second" and "one" are used in the description, and are not intended to limit the scope of the invention. Changes or adjustments in the relative relationship are considered to be within the scope of the present invention.
請參閱第2A及2B圖,係為本發明之量測結構2之示意圖,所述之量測結構2係包括:一包含至少一介電層20及其它選擇性配件之承載體2b、以及設於同一層介電層20上之震盪量測組2a,其中,該震盪量測組2a係包含一第一導線23、一第二導線24、一第一環體21及一第二環體22。 Please refer to FIGS. 2A and 2B , which are schematic diagrams of the measuring structure 2 of the present invention. The measuring structure 2 includes: a carrier 2b including at least one dielectric layer 20 and other optional components, and The oscillating measuring group 2a on the same dielectric layer 20, wherein the oscillating measuring group 2a comprises a first wire 23, a second wire 24, a first ring body 21 and a second ring body 22 .
於本實施例中,該量測結構2係為仿製目標成品之結 構,如簡易基板結構(其可佈設介電層20而未佈設線路層),其中,該目標成品係如第3圖所示之實際封裝基板3(其佈設有實際介電層30與複數線路層31),且該量測結構2係用於量測一參數(如介電常數),以令電腦藉由該參數演算出所需之目標值。 In this embodiment, the measuring structure 2 is a knot of the imitation target product. a simple substrate structure (which can be provided with a dielectric layer 20 without a wiring layer), wherein the target product is an actual package substrate 3 as shown in FIG. 3 (which is provided with an actual dielectric layer 30 and a plurality of lines) Layer 31), and the measuring structure 2 is used to measure a parameter (such as dielectric constant), so that the computer calculates the desired target value by using the parameter.
換言之,欲得知該實際封裝基板3之實際介電層30之介電常數時,不會直接量測該實際封裝基板3之實際介電層30,以避免破壞該線路層31,故藉由仿照該實際封裝基板3但不佈設線路層31之量測結構2作為量測物,因而只要量測該量測結構2之介電層20之介電常數,即可得知該實際介電層30之介電常數。 In other words, when the dielectric constant of the actual dielectric layer 30 of the actual package substrate 3 is to be known, the actual dielectric layer 30 of the actual package substrate 3 is not directly measured to avoid damaging the circuit layer 31. The measurement structure 2 is modeled on the actual package substrate 3 but without the wiring layer 31. Therefore, the actual dielectric layer can be known by measuring the dielectric constant of the dielectric layer 20 of the measurement structure 2. 30 dielectric constant.
再者,該實際封裝基板3係例如為具有核心層與線路結構之基板(substrate)或無核心層(core1ess)之線路結構,其係於介電材上形成線路層31,如扇出(fan out)型重佈線路層(redistribution layer,簡稱RDL)。 Furthermore, the actual package substrate 3 is, for example, a substrate structure having a core layer and a circuit structure, or a core layer, which is formed on the dielectric material to form a wiring layer 31, such as a fan. Out) type redistribution layer (RDL).
所述之介電層20之材質組成與厚度h係等於該實際介電層30之材質組成與厚度h。於本實施例中,該介電層20係作為量測目標物,使經由該量測結構2所測得之傳輸頻率作為該參數,再令電腦藉由該參數進行演算後,可得到一目標值(即該介電層20之介電常數或該實際介電層30之介電常數)。 The material composition and thickness h of the dielectric layer 20 are equal to the material composition and thickness h of the actual dielectric layer 30. In this embodiment, the dielectric layer 20 is used as a measurement target, and the transmission frequency measured by the measurement structure 2 is used as the parameter, and then the computer calculates the target by using the parameter to obtain a target. The value (i.e., the dielectric constant of the dielectric layer 20 or the dielectric constant of the actual dielectric layer 30).
所述之第一導線23係設於該介電層20上且具有一第一端部230。 The first wire 23 is disposed on the dielectric layer 20 and has a first end portion 230.
於本實施例中,該第一導線23係為圖案化製程所製 之金屬線(如銅線),其作為輸入埠(即測試訊號之輸入端),且該第一導線23之線寬W等於該線路層31之線寬W。 In this embodiment, the first wire 23 is made by a patterning process. A metal wire (such as a copper wire) is used as an input port (ie, an input end of the test signal), and a line width W of the first wire 23 is equal to a line width W of the circuit layer 31.
再者,該第一端部230之形狀係對應該第一環體21部分外側面輪廓,如弧形圈或半圓圈。 Moreover, the shape of the first end portion 230 corresponds to the outer side contour of the first ring body 21, such as a curved circle or a half circle.
所述之第二導線24係設於該介電層20上且具有對應該第一端部230之第二端部240。 The second wire 24 is disposed on the dielectric layer 20 and has a second end 240 corresponding to the first end portion 230.
於本實施例中,該第二導線24係為圖案化製程所製之金屬線(如銅線),其作為輸出埠(即測試訊號之輸出端),且該第二導線24之線寬W等於該線路層31之線寬W。 In this embodiment, the second wire 24 is a metal wire (such as a copper wire) made by a patterning process, and is used as an output port (ie, an output end of the test signal), and the line width W of the second wire 24 is W. It is equal to the line width W of the circuit layer 31.
再者,該第二端部240之形狀係對應該第一環體21部分外側面輪廓,如弧形圈或半圓圈。 Moreover, the shape of the second end portion 240 corresponds to the outer side contour of the first ring body 21, such as an arc circle or a half circle.
所述之第一環體21係設於該介電層20上並間隔地設於該第一端部230與該第二端部240之間,使該第一環體21與該第一端部230之間及該第二端部240之間分別形成間隙d1,d2,並令該第一環體21得以分別電性耦合該第一端部230與該第二端部240。 The first ring body 21 is disposed on the dielectric layer 20 and spaced apart between the first end portion 230 and the second end portion 240 to make the first ring body 21 and the first end portion A gap d1, d2 is formed between the portions 230 and the second end portion 240, and the first ring body 21 is electrically coupled to the first end portion 230 and the second end portion 240, respectively.
於本實施例中,該第一環體21係為圖案化製程所製之金屬線(如銅線),其為圓形環,且該第一環體21之線寬W等於該線路層31之線寬W。 In the present embodiment, the first ring body 21 is a metal wire (such as a copper wire) made by a patterning process, which is a circular ring, and the line width W of the first ring body 21 is equal to the circuit layer 31. The line width is W.
再者,該第一端部230與第二端部240係相對配置(如分離式面對面)以構成一具有間隙a之框體A,使該第一環體21位於該框體A中。應可理解地,該第一環體21可 為其它幾何形狀之環體,且該第一端部230與第二端部240(即該框體A)之形狀可依據該第一環體21之外側面輪廓作變化(即該框體之形狀係對應該第一環體21之側面輪廓)。 Furthermore, the first end portion 230 and the second end portion 240 are disposed opposite each other (eg, separated face to face) to form a frame body A having a gap a, and the first ring body 21 is located in the frame body A. It should be understood that the first ring body 21 can be The shape of the first end portion 230 and the second end portion 240 (ie, the frame body A) may be changed according to the outer side contour of the first ring body 21 (ie, the frame body) The shape corresponds to the side profile of the first ring body 21).
又,該第一環體21對應該間隙d1,d2之側面範圍L1係定義該第一環體21所產生之電性耦合之耦合量的大小。 Further, the first ring body 21 corresponds to the side surface range L1 of the gaps d1 and d2, and defines the amount of coupling of the electrical coupling generated by the first ring body 21.
所述之第二環體22係設於該介電層20上並間隔地同心環繞於第一環體21外,且間隔地包圍該第一端部230與該第二端部240,使該第二環體22與該第一端部230之間及該第二端部240之間分別形成間隙t1,t2,且令該第二環體22得以分別電性耦合該第一端部230與該第二端部240。 The second ring body 22 is disposed on the dielectric layer 20 and is concentrically surrounded by the first ring body 21 at intervals, and surrounds the first end portion 230 and the second end portion 240 at intervals. A gap t1, t2 is formed between the second ring body 22 and the first end portion 230 and the second end portion 240, respectively, and the second ring body 22 is electrically coupled to the first end portion 230, respectively. The second end 240.
於本實施例中,該第二環體22係為圖案化製程所製之金屬線(如銅線),且該第二環體22之線寬W等於該線路層31之線寬W。 In the present embodiment, the second ring body 22 is a metal wire (such as a copper wire) made by a patterning process, and the line width W of the second ring body 22 is equal to the line width W of the circuit layer 31.
再者,該第二環體22因與該第一環體21之間配置有該第一導線23與該第二導線24,而呈現兩段式(不連續)的環體,如包含兩個相分離之弧形環部22a,22b。 Furthermore, the second ring body 22 is provided with the first wire 23 and the second wire 24 between the first ring body 21, and presents a two-stage (discontinuous) ring body, such as two The arcuate ring portions 22a, 22b are separated.
又,該些環部22a,22b係相對配置(如分離式面對面),使該框體A與該第一環體21位於該第二環體22中。應可理解地,該第二環體22可為其它幾何形狀之環體,且該第二環體22之形狀可依據該第一環體21或該框體A之外側面輪廓作變化。 Moreover, the ring portions 22a, 22b are disposed opposite each other (eg, separated face to face) such that the frame body A and the first ring body 21 are located in the second ring body 22. It should be understood that the second ring body 22 can be a ring body of other geometric shapes, and the shape of the second ring body 22 can be changed according to the outer side contour of the first ring body 21 or the frame body A.
另外,該第二環體22對應該間隙t1,t2之側面範圍L2 係定義該第二環體22所產生之電性耦合的耦合量。 In addition, the second ring body 22 corresponds to the side surface range L2 of the gap t1, t2 The coupling amount of the electrical coupling generated by the second ring body 22 is defined.
另一方面,於第2A圖之圓形環體用於5G頻率之實施例中,該第一環體21之周長(由該第一環體21之第一外徑R1定義)係對應第一傳輸頻率(預設傳輸頻率)之波長之長度,且該第二環體22之周長(由該第二環體22之第二外徑R2定義)係對應第二傳輸頻率(預設傳輸頻率)之波長之長度。例如,該第一傳輸頻率係例如為39吉赫(GHz)(38×109赫茲),其波長之長度為1/39奈米,使該第一環體21之周長為4.608mm(第一外徑R1為0.733mm);及該第二傳輸頻率係例如為28吉赫,其波長之長度為1/28奈米,使該第二環體22之周長為6.428mm(第二外徑R2為1.023mm)。應可理解地,該環體之傳輸頻率越小,其波長越大,則其周長越大。 On the other hand, in the embodiment in which the circular ring of FIG. 2A is used for the 5G frequency, the circumference of the first ring body 21 (defined by the first outer diameter R1 of the first ring body 21) corresponds to the first The length of the wavelength of a transmission frequency (predetermined transmission frequency), and the circumference of the second ring body 22 (defined by the second outer diameter R2 of the second ring body 22) corresponds to the second transmission frequency (preset transmission) The length of the wavelength of the frequency). For example, the first transmission frequency is, for example, 39 GHz (38 × 10 9 Hz), and the length of the wavelength is 1/39 nm, so that the circumference of the first ring 21 is 4.608 mm (the first An outer diameter R1 is 0.733 mm); and the second transmission frequency is, for example, 28 GHz, the length of the wavelength is 1/28 nm, and the circumference of the second ring 22 is 6.428 mm (second external The diameter R2 is 1.023 mm). It should be understood that the smaller the transmission frequency of the ring body, the larger its wavelength, the larger its circumference.
所述之量測結構2可依需求於另一介電層20上形成一接地層25。 The measuring structure 2 can form a ground layer 25 on the other dielectric layer 20 as needed.
當進行量測該介電層20於成品狀態(固態)時之介電常數時,先將一量測儀器(圖未示)之電流通過該第一導線23,使該第一導線23之第一端部230同時與該第一環體21及該第二環體22產生電性耦合,令該電流導通至該第一環體21及該第二環體22,之後,該第一環體21及該第二環體22會先後與該第二導線24之第二端部240產生電性耦合,令該電流導通至該第二導線24而回流至該量測儀器,使該量測儀器先後得到兩組頻率峰值,如第4圖所示之第一傳輸頻率(38GHz)之頻率點f1(其數值為 -6.02)及第二傳輸頻率(23.75GHz)之頻率點f2(其數值為-8.85)。 When measuring the dielectric constant of the dielectric layer 20 in the finished state (solid state), first pass a current of a measuring instrument (not shown) through the first wire 23 to make the first wire 23 The first end portion 230 is electrically coupled to the first ring body 21 and the second ring body 22 to electrically conduct the current to the first ring body 21 and the second ring body 22, and then the first ring body 21 and the second ring body 22 are electrically coupled to the second end portion 240 of the second wire 24, and the current is conducted to the second wire 24 to be returned to the measuring instrument to make the measuring instrument. Two sets of frequency peaks are obtained successively, as shown in Fig. 4, the frequency point f1 of the first transmission frequency (38 GHz) (the value is -6.02) and the frequency point f2 of the second transmission frequency (23.75 GHz) (the value is -8.55).
之後,將第4圖所得之頻率峰值(即頻率點f1,f2)輸入電腦(圖未示)中進行演算,以得到對應各頻率峰值之介電常數。 Thereafter, the frequency peaks obtained in FIG. 4 (ie, frequency points f1, f2) are input into a computer (not shown) for calculation to obtain a dielectric constant corresponding to each frequency peak.
於本實施例中,該電腦內係建置該真實封裝基板3之模型,以進行參數的量測(如頻率點f1,f2,即頻率峰值)及相關尺寸的量測(如該實際介電層30的厚度h、該線路層31之線寬W、及該第一與第二環體21,22之周長等)等。 In this embodiment, the model of the real package substrate 3 is built in the computer to measure the parameters (such as the frequency point f1, f2, that is, the frequency peak) and the measurement of the relevant size (such as the actual dielectric The thickness h of the layer 30, the line width W of the wiring layer 31, the circumference of the first and second ring bodies 21, 22, and the like.
再者,該電腦係依據如下所示之物理公式(1)及(2):
最後,將該介電層20於固態時介電常數之數值輸入模擬軟體(如HFSS、ADS等)中,以進行一配置該實際封裝基板3之半導體封裝件模型之模擬作業,藉此判斷該介電層30是否符合該實際封裝基板3之需求,亦即當符合需求時,才會開始進行該實際封裝基板3之製作。換言之,於製作該實際封裝基板3前,會先量測該介電層20於固態時之介電常數,以判斷該實際介電層30是否能採用。 Finally, the value of the dielectric constant of the dielectric layer 20 in the solid state is input into an analog software (such as HFSS, ADS, etc.) to perform a simulation operation of arranging the semiconductor package model of the actual package substrate 3, thereby judging the Whether the dielectric layer 30 meets the requirements of the actual package substrate 3, that is, when the requirements are met, the fabrication of the actual package substrate 3 is started. In other words, before the actual package substrate 3 is fabricated, the dielectric constant of the dielectric layer 20 in the solid state is measured to determine whether the actual dielectric layer 30 can be used.
因此,本發明之量測結構2係依據該實際封裝基板3之結構設計出該介電層20之材質組成與厚度h等於該實際介電層30之材質組成與厚度h,且該震盪量測組2a之線寬W等於該線路層31之線寬W,以計算出符合特定阻抗(如50歐姆(Ohm)阻抗)的線寬W,使量測作業之訊號傳遞更加順暢。 Therefore, the measuring structure 2 of the present invention is designed according to the structure of the actual package substrate 3, and the material composition and thickness h of the dielectric layer 20 are equal to the material composition and thickness h of the actual dielectric layer 30, and the oscillation measurement is performed. The line width W of the group 2a is equal to the line width W of the circuit layer 31 to calculate a line width W conforming to a specific impedance (e.g., 50 ohm (Ohm) impedance), so that the signal transmission of the measurement operation is smoother.
再者,該第一導線23之第一端部230之形狀(如半圓形)與該第二導線24之第二端部240之形狀(如半圓形)係對應該第一環體21之外側面輪廓或該第二環體22之內側面輪廓,以增加該第一環體21或第二環體22用以產生電性耦合之側面範圍L1,L2,故相較於習知技術,於進行量測作業時,能增加該電流之耦合量,以避免雜訊干擾,且即使該量測儀器的動態範圍不足,能大幅減少所得的雜訊,因而能提高所擷取之頻率峰值(即頻率點f1,f2)或頻帶的準確度。 Furthermore, the shape of the first end portion 230 of the first wire 23 (such as a semicircular shape) and the shape of the second end portion 240 of the second wire 24 (such as a semicircular shape) correspond to the first ring body 21 The outer side profile or the inner side profile of the second ring body 22 increases the side range L1, L2 of the first ring body 21 or the second ring body 22 for generating electrical coupling, so that compared to the prior art In the measurement operation, the coupling amount of the current can be increased to avoid noise interference, and even if the dynamic range of the measuring instrument is insufficient, the obtained noise can be greatly reduced, thereby improving the frequency peak value captured. (ie frequency point f1, f2) or the accuracy of the frequency band.
又,該量測結構2之震盪量測組2a係包含內圈第一環 體21與外圈第二環體22,且該第一環體21之第一外徑R1(周長或邊長)係對應第一傳輸頻率之波長之長度,而該第二環體22之第二外徑R2(周長或邊長)係對應第二傳輸頻率之波長之長度,以於單一次量測作業,能量測出兩個頻率峰值(即頻率點f1,f2),故相較於習知仿製結構之量測震盪部,若使用本發明之量測結構2量測多個頻帶的介電常數時,能減少製作該量測結構2之數量,因而能減少材料成本,且能大幅縮短量測作業之時間。 Moreover, the oscillation measurement group 2a of the measurement structure 2 includes the first ring of the inner ring The body 21 and the outer ring second ring body 22, and the first outer diameter R1 (perimeter or side length) of the first ring body 21 corresponds to the length of the wavelength of the first transmission frequency, and the second ring body 22 The second outer diameter R2 (circumference or side length) corresponds to the length of the wavelength of the second transmission frequency, so that for a single measurement operation, the energy measures two frequency peaks (ie, frequency points f1, f2), so When measuring the oscillating portion of the conventional imitation structure, if the dielectric constant of the plurality of frequency bands is measured by using the measuring structure 2 of the present invention, the number of the measuring structures 2 can be reduced, thereby reducing the material cost and enabling Significantly reduce the time required for measurement operations.
上述實施例係用以例示性說明本發明之原理及其功效,而非用於限制本發明。任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修改。因此本發明之權利保護範圍,應如後述之申請專利範圍所列。 The above embodiments are intended to illustrate the principles of the invention and its effects, and are not intended to limit the invention. Any of the above-described embodiments may be modified by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as set forth in the appended claims.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106144812A TWI628443B (en) | 2017-12-20 | 2017-12-20 | Measuring structure |
CN201711472179.0A CN109950229B (en) | 2017-12-20 | 2017-12-29 | Measuring structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106144812A TWI628443B (en) | 2017-12-20 | 2017-12-20 | Measuring structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI628443B true TWI628443B (en) | 2018-07-01 |
TW201928370A TW201928370A (en) | 2019-07-16 |
Family
ID=63640316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106144812A TWI628443B (en) | 2017-12-20 | 2017-12-20 | Measuring structure |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109950229B (en) |
TW (1) | TWI628443B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2372377A2 (en) * | 2010-03-30 | 2011-10-05 | Raytheon Company | Method for characterizing dielectric loss tangent |
CN102445649B (en) * | 2010-10-13 | 2015-08-12 | 台湾积体电路制造股份有限公司 | The test structure of semi-conductor chip and be applied to the method measuring dielectric characteristic |
CN204613305U (en) * | 2015-02-11 | 2015-09-02 | 嘉兴佳利电子有限公司 | A kind of LTCC resonant ring for the test of LTCC material dielectric constant |
TWI502669B (en) * | 2008-02-27 | 2015-10-01 | Scanimetrics Inc | Method and apparatus for interrogating electronic components |
TW201627675A (en) * | 2015-01-27 | 2016-08-01 | 索泰克公司 | Method, device and system for measuring an electrical characteristic of a substrate |
US9846130B2 (en) * | 2014-02-24 | 2017-12-19 | Applied Materials, Inc. | Ceramic ring test device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006038703A (en) * | 2004-07-28 | 2006-02-09 | Kyocera Corp | Dielectric constant measuring method and transmission line design method |
WO2006101145A1 (en) * | 2005-03-23 | 2006-09-28 | Nec Corporation | Resonator, printed board, and method for measuring complex dielectric constant |
JP4540596B2 (en) * | 2005-03-29 | 2010-09-08 | 京セラ株式会社 | Ring resonator and dielectric property measurement method of dielectric thin film using the same |
CN102721707B (en) * | 2011-03-30 | 2014-08-06 | 南京邮电大学 | Device for measuring LTCC shrinkage and dielectric constant |
-
2017
- 2017-12-20 TW TW106144812A patent/TWI628443B/en active
- 2017-12-29 CN CN201711472179.0A patent/CN109950229B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI502669B (en) * | 2008-02-27 | 2015-10-01 | Scanimetrics Inc | Method and apparatus for interrogating electronic components |
EP2372377A2 (en) * | 2010-03-30 | 2011-10-05 | Raytheon Company | Method for characterizing dielectric loss tangent |
CN102445649B (en) * | 2010-10-13 | 2015-08-12 | 台湾积体电路制造股份有限公司 | The test structure of semi-conductor chip and be applied to the method measuring dielectric characteristic |
US9846130B2 (en) * | 2014-02-24 | 2017-12-19 | Applied Materials, Inc. | Ceramic ring test device |
TW201627675A (en) * | 2015-01-27 | 2016-08-01 | 索泰克公司 | Method, device and system for measuring an electrical characteristic of a substrate |
CN204613305U (en) * | 2015-02-11 | 2015-09-02 | 嘉兴佳利电子有限公司 | A kind of LTCC resonant ring for the test of LTCC material dielectric constant |
Also Published As
Publication number | Publication date |
---|---|
CN109950229A (en) | 2019-06-28 |
TW201928370A (en) | 2019-07-16 |
CN109950229B (en) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI605564B (en) | Package structure and method for fabricating the same | |
WO2019174007A1 (en) | Connecting plate, circuit board assembly, and electronic device | |
CN105304582A (en) | Package structure and method for fabricating the same | |
JP2010166276A (en) | Substrate and package for high frequency | |
TWI509444B (en) | Methods for evaluating the effect of routing metal lines on passive devices and calibration kits of passive devices | |
WO2018118262A1 (en) | Fine-featured traces for integrated circuit package support structures | |
TWI489694B (en) | Loop antenna | |
TWI628443B (en) | Measuring structure | |
CN103500736A (en) | Chip packaging structure and chip packaging method | |
CN105785299A (en) | Coplanar waveguide reflection amplitude etalon of on-chip measurement system and design method thereof | |
CN102956605B (en) | A kind of semiconductor device and preparation method thereof | |
CN110045171B (en) | Radio frequency voltage current composite probe | |
Wu et al. | Circuit model of parallel corrugated transmission lines for differential signal propagating in microwave band | |
TWI655741B (en) | Electronic package | |
JP3217312U (en) | Probe card | |
JP7188643B2 (en) | Semiconductor device, method for manufacturing semiconductor device | |
TWI730847B (en) | Inductive device having electromagnetic radiation shielding mechanism and manufacturing method of the same | |
TW546881B (en) | Connection structure of coaxial cable to electric circuit substrate | |
Huang et al. | Comparative study on electrical performance of eWLB, M-series and fan-out chip last | |
JP2005032154A (en) | Printed circuit board manufacturing method, printed circuit board, and device, method, and program for characteristic impedance calculation | |
CN101924054B (en) | Method for measuring change of resistance of high-resistance semiconductor substrate with change of thermal budgets | |
Yamada et al. | 2.4 GHz Slot Antenna Integrated in Small Shielded Module | |
EP2784815B1 (en) | Semiconductor device | |
CN105050320A (en) | Circuit structure for high-density printed circuit board (PCB) | |
Maierna et al. | Packaging Solution for RF SiP with on-top Integrated Antenna |