1323910 玖、發明說明: 【發明所屬之技術領域】 本發明主要是關於一種半導體的製造系統,特別是關於整 體保養的排程系統。 【先前技術】 在半導體生產行業中使用的設備是極其昂貴和複雜的。工 程師們爲了確保生產設備的穩定性和可靠性,必須依循標準操 作程序(SOPS)進行預防保養(PM)。由於設備的數量和種類很 多,所以利用人工管理設備保養的效率很低。而且,人工管理 容易發生人爲疏失,而發生設備應保養而未保養的情況,導致 設備的損壞、影嚮生產進度,進而降低了企業的競爭力。。 爲了對所有的設備執行各種定期或不定期的保養計畫,管 理人員常利用紙本或個人電腦上的應用軟體進行排程規劃。同 時,工程師根據保養計畫進行保養。保養時工程師會依標準操 作程序上所定義的保養項目與表格進行保養。當工程師完成保 養後,他將在PM表上記錄資料,並將PM表送給管理人員檢 查和簽名。最後,工程師將PM表放到文件夾中儲存並做爲曰 後的參考記錄。當保養項目的結果失敗時,工程師將塡寫一份 PM 0CAP表進行異常處理的追蹤與處置。 許多不想要的特徵和上述人工過程有關。沒有和其他電腦 處理資訊的系統結合,很容易得到影響保養品質的矛盾資料。 而且,人工過程很費時間。大部分設備有一個介面,pc使用者 能夠用該介面和設備交互得到設備的參數。設備的參數是決定 是否進行保養的關鍵因素。保養設備需要工程師接近設備、記 錄參數的時間,而且進一步需要校正人工資料錯誤的時間’比 如,這些錯誤可能是工程師在記錄時造成的。而且,當保養的 5 1323910 周期和保養項目的規定發生了變化’管理人員就需要更新保養 §十畫和PM表,否則,保養§十晝上的資料和pM表可能相互矛 盾。對於管理人員來說,因這樣一個變化重新人工制定所有保 養計畫的效率也疋很低的。E午多時間和精力由於生產的需要被 投入到人工調整新的保養中。例如,當一個管理人員想執行— 個新的保養計畫時’所有的工程師們必須在進行保養時立即更 新保養狀況。人工管理會在原始計畫和實際結果間引起矛盾^ 爲了確保所有保養都被執行’任何需要不定期保養的設備 必須有效的進行管理。保養可能被遺忘,並且保養計畫可能沒 有被執行。在這些情況下,設備的可靠性和穩定性是得不到保 證的。 而且’人工管理和書面工作浪費了人力和紙張。用人工管 理的職工在記錄保養資料時花費了太多的精力,浪費了太多的 紙張。而且,紙本文件難以保存,查詢和分析。紙本文件資料 不能有效的用來改進以後的保養參數。一個工具被檢測後,檢 測者得到參數,並判斷該工具是否需要保養。因此,這種不規 則的工具保養是沒有排程(Schedule)的。 在現有技術中存在著根據不規則工具即時參數的變化決 定保養日期的需求。參數資訊收集的自動控制、保養日期的計 算和將保養日期登入到保養時程中的進一步的需求也存在。 【發明目的】 爲了解決上述問題,本發明的目的是提供一種預測保養曰 期的方法以及系統,其中一個以網路爲基礎的、使用者介面友 好的、強大的全設備管理系統(TEMS)已經被發明。該系統和其 他電腦資訊系統結合’簡化了保養的過程。透過電子化的保養 流程控管與跨資訊系統間的整合,落實保養的實施與獲得最佳 6 1323910 的保養品質;依設備保養特性的不同,建立完整的保養管理機 制’使設備達到最佳的可靠性、穩定性。藉由該系統的應用, 設備的非週期性保養日期可以藉由每天或幾天一次的檢測中 進行預測與調整。 本發明的另一目的是提供一種預測保養日期的方法以及 系統,其中爲了降低保養的問題,一個關於預防保養的強大 的、使用者介面友好的管理系統得到了發展。該系統結合其他 資訊系統的資料,應用專業的知識和手法。該系統提供預防保 養的動態預測與自動預警的方式來改善管理效率,使所有的設 備保養均能落實,確保設備的可靠性和穩定性。透過電子化的 保養管理與資料儲存,簡化保養作業流程,減少人力與紙張的 耗費;並藉由系統的整合與分析,提供管理報表與預警機制, 提昇保養資料的應用價値。與自動化連線系統連結,自動地收 集相關設備參數,工程師不需特地前往工廠紀錄設備相關參 數,而能節省抄表時間的浪費與避免資料抄寫錯誤發生。與設 備保養作業規範系統連結,即時獲得正確的設備預防保養資訊 (〇1、保養表格),確保資料的一致性與達到最佳的保養品質。 本發明提供了兩種預測保養日期的方法,以及利用上述方 法的系統。第一種方法是在保養排程程序中引進了一個變動 量,該變動量是藉由在幾天內獲得的一個工具的參數計算得到 的,或者是使用者自己輸入的。然後該方法即可根據目前獲得 的參數和變動量,應用統計的方法,預測及調整設備的非週期 性保養日期。 除了不止一個參數追蹤決定保養日期外’第二種方法與第 —種方法相似。每個參數有自己的變動量。保養日期藉由與每 個參數的變動量計算而確定。 7 1323910 本發明的第三實施例提供了一個自動化系統以獲得工亘 的資訊和使用該資訊對保養日期進行最好的預測。自動化系統 係應用本發明弟一貫施例與弟一實施例中所述的方法計算保 養日期。自動化系統由一連接單元,一控制器和一資料庫組成。 此處敍述的任何特徵或綜合特徵,如果該特徵包括在任何 綜合特徵中並不相互矛盾,以及該特徵從上下文、本說明書與 熟悉此技藝者的知識中是明顯的,則都包括在本發明的範圍 內。爲了槪述本發明,此處敍述了本發明的某些特點、優點和 新穎性特徵。當然,並不能理解爲本發明的任何特定的實施例 都必須包含這些特點、優點和新穎性特徵。在下述的詳細說明 和申請專利範圍中,本發明的獨特的優點和特點是很明顯的。 【實施方式】 現在詳細敍述本發明的較佳實施例和相應圖式中顯示的 實例。在本文的其他地方,相近或相同的標號在圖式和說明書 中用來指示相同或相近的部分。需要指出的是,圖式是簡化的 形式,而不是精確的比例。關於此處的公開,僅僅是爲了方便 和簡單明瞭’方向性的辭彙(如頂部,底部,左邊,右邊,向上 的’向下的,上面的,在…之上,下面的,在…下面,後面和 前面)與相應的圖式結合運用。這些方向性辭彙不應該以任何方 式解釋爲對本發明範圍的限制。 儘管此處公開的是特定的實施例,但其應該理解爲是藉由 實例描述這些實施例,而不是對實施例進行限制。儘管是論述 可仿效的實施例,下述詳細敍述的目的應該理解爲包含所有實 施例的修正,替代物和可能落入到附屬的權利要求定義的發明 的範圍和精神的等價物。其應該理解和鑒別爲此時描述的方法 步驟和結構沒有包含半導體生產設備排程保養的完整的製程 1323910 流程。本發明可以與現有技術中應用的不同排程和統計技術進 行結合使用’此處包括很多現有成熟的方法步驟對理解本發明 很有必要。通常’本發明在綜合保養排程系統的領域中具有實 用性。然而,爲了例舉的需要,下述說明是關於半導體生產 設備的綜合保養排程系統。特別是請參照圖式,第1圖爲根據 本發明第一實施例預測保養日期的方法的簡短的流程圖,下述 實例1列表說明了該方法的簡單應用。在實施例的第1圖中, 得到了參數的保養値與參數的探測値之間的差値(S100),其中 參數的探測値從一個工具上得到。參數可能是迴圈晶片的數量 或RF功率-小時(RF watt-hours)的數量,但是並不限定於此。 該工具是可能需要保養的任一設備。該差値等於保養値減去探 測値。差値算出後,進行比較(Sl〇2)以決定差値是否大於或等 於預設値。現在,在實例1中,2〇〇3/4/2上的差値(S100)取決 於1100減去100得到1000,該値不小於或等於零。同樣, 2003/4/3上的800的差値不小於或等於零。 實例1 :預測一不定期保養 目前値型式:累計形式 參數最大値:1100 參數最小値:900 保養項目:1000片的迴圈晶片 日期 參數値(a) 目前値⑼ 變動量(C) 預測PM日(d) 備註 2003/4/1 10000 0 NA ΝΑ 保養曰 2003/4/2 10100 100 100 2003/4/10 2003/4/3 10300 300 150 2003/4/7 (900-300)/150=4 2003/4/4 1 10450 450 150 2003/4/7 (900-450)/150=3 1^23910 2003/4/5 10550 137.5 2003/4/7 (900-550)/137.5=2.5 2U03/4/6 10750 75〇~^ 150 2003/4/7 (900-750)/150=1 2003/4/7 10900 9〇〇 150 2003/4/7 (900-900)/150=0 2003/4/8 11050 1050 150 2003/4/8 在這種情況下,目前値< 最大値,預測日爲今天。 2003/4/9 11090 0 保養日 公式1—1 :變動量= [Σ(目前値(n)_目前値(n_1))]/(日期⑴一日 期⑺); η = 1 — 7 公式1 —2 :預測日==日期+ [(最小參數値-目前値}/變動 量] 公式1-3:目前値(η)=參數値⑷_參數値(iastpM) 比如’當差値小於或等於預設値時,保養程序(sl〇6)需要 AI即進行。比如’如果預設値是零,一旦參數的探測値達到了 保養値’工具就需要進行保養。如果差値大於預設値,則進行 保養日期計算(Sl〇4) ’其中所述的保養日期是藉由將差値除以 多樣性或變動量値後加到目前的日期中來進行預測的。由於在 列舉的貫施例中’差値是除以變動量値的,變動量的値表示的 是每單位時間參數的變化。變動量値最少可以藉由兩種方式的 其中一種設定。一種方式包括從相應的參數探測値的資料計算 變動量値’其中參數的探測値是從保養日期預測前的經過一段 時間的工具中獲得的。由於目前較佳的資料是儲存資料,時間 的週期爲幾天。儲存的資料可以從上述幾天的工具中所得的參 數中獲得,和/或從先前保養的日期預測中所得的參數中獲得。 另一種方法包括從使用者立即輸入的資料中計算變動量値。另 一種方法包括從與使用者立即輸入的資料相關聯的儲存資料 1323910 中曰十算變動量値。一個統計方法用於上述所有決定變動量値的 方法。例如,如果保養沒有立即進行,保養日期可以儲存在保 養時程中。在實例i中,用公式丨—i計算變動量値(C欄),用 公式1 — 2計算預測的保養日期(d攔),用公式i — 3計算目前値 (b 欄)。 根據本發明的第二實施例,第丨圖也應用於一種藉由追蹤 多項參數以預測保養日期的方法。當應用多個參數時,每個參 數有自己的相關的探測値、保養値、預設値和變動量値。探測 値是從工具中獲取的參數値。保養値通常是不允許超過探測値 的參數値。參數的保養値和參數的探測値之間的差値(sl〇〇)由 所有被追蹤的參數計算得到。預設値決定差値的中斷點。進行 比較(S102)用來決定預先設定的差値的數量是否少於或等於其 相應的預設値。在列舉的實施例中,預先設定的數是一個因此 比較(S102)用來決定每個差値是否少於或等於其預設値。如果 這些差値中的任何一個小於或等於其相應的預設値,保養程序 (S106)就儘快執行。如果所有的差値大於它們各自的預設値, 於是根據各個參數的差値和變動量値來運行保養日期計算 (S104)以預測保養日期。差値除以變動量値,其中每個變動量 値表示的是每單位時間相應參數的變化。 變動量値可能由上述設定所決定,但是應用在多參數的上 下文中。如本發明所述,變動量値由考慮先前之測量參數的統 計方法所決定,其中該參數是來自於儲存的資料和/或輸入的目 前値。每個變動量値都可以藉由相應的參數的探測値計算,這 些參數從S104預測保養日期的計算前、經過一段時間後的工 具上所獲得。正如目前較佳的資料是儲存的資料,時間的週期 爲幾天。儲存的資料可以從上述經過幾天後的工具上獲得的參 11 1323910 數而獲得和/或從先前保養日期計算中獲得的參數中而獲得。對 於輸入的目前値,使用者即刻輸入的資料可以用於計算變動量 値。測量的値可能包括由使用者輸入的目前的探測値以及先前 測量的儲存的資料的綜合。變動量値也可以從與使用者即刻輸 入的資料結合的儲存的資料計算得到。一旦計算出保養日期, 最好保存在保養時程中。 執行本發明的全設備管理系統TEMS(如第27圖所示)的製 程流程代替保養的人工過程(如第26圖所示)有多個優點。第一 個優點是與TEMS結合的其他電腦資訊系統可以確保資料的一 致性和獲得高品質的保養。和設備的自動化系統結合,該系統 可以直接從設備的本身獲得參數。這節約了工程師的時間,否 則其必須到設備處記錄設備的參數;同時消除了人工傳輸資料 的錯誤。 和標準操作程序(SOP)系統結合,該系統可以確保PM表上 資料和SOP資料的一致性,由此達到了保養的品質。動態的預 測和管理保養計畫可以改善管理的效率和確保保養被執行。專 業的方法和設備的參數的自動收集結合後,TEMS能夠提供一 個解決方案以進行動態預測和管理保養計畫,並能夠改善管理 的效率。 執行TEMS可以改善設備的生產效率。和定期保養、不定 期保養、異常保養 '設備維修、日常保養以及設備的記錄參數 結合’保養管理系統可以監測和管理保養的狀態,因此降低了 設備的損壞’藉由擴展生產的最大量改善了設備的生產效率。 保養的電腦管理和資料儲存降低了紙本的應用,節約了員 工的時間° TEMS支援監測報告和警告報告的結合和分析儲存 在管理系統的保養資料的特徵,因此改善了保養資料的應用 12 13239101323910 发明, INSTRUCTION DESCRIPTION: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to a semiconductor manufacturing system, and more particularly to a scheduling system for overall maintenance. [Prior Art] Equipment used in the semiconductor manufacturing industry is extremely expensive and complicated. In order to ensure the stability and reliability of the production equipment, engineers must follow the Standard Operating Procedures (SOPS) for preventive maintenance (PM). Due to the large number and variety of equipment, the use of manual management equipment is inefficient. Moreover, manual management is prone to human error, and the equipment should be maintained without maintenance, resulting in equipment damage and production progress, which reduces the competitiveness of the enterprise. . In order to perform a variety of regular or irregular maintenance programs on all equipment, managers often use the application software on paper or personal computers for scheduling. At the same time, the engineer performs maintenance according to the maintenance plan. During maintenance, the engineer will maintain the maintenance items and forms as defined in the standard operating procedures. When the engineer completes the maintenance, he will record the data on the PM form and send the PM form to the management for inspection and signature. Finally, the engineer puts the PM table in a folder and stores it as a reference record. When the result of the maintenance project fails, the engineer will write a PM 0CAP table to track and dispose of the exception handling. Many of the unwanted features are related to the artificial process described above. Without the combination of other computer processing information, it is easy to get contradictory information that affects the quality of maintenance. Moreover, manual processes are time consuming. Most devices have an interface that allows the pc user to interact with the device to get the device's parameters. The parameters of the equipment are the key factors in determining whether or not to perform maintenance. Maintaining the equipment requires the engineer to access the equipment, record the time of the parameters, and further the need to correct the time of the manual data error. For example, these errors may be caused by the engineer during the recording. Moreover, when the maintenance of the 5 1323910 cycle and the maintenance project has changed the regulations, the manager needs to update the maintenance § 10 paintings and PM tables. Otherwise, the maintenance of the § 10 资料 data and pM tables may contradict each other. For managers, the efficiency of re-manufacturing all maintenance plans for such a change is also very low. E-time and energy are invested in manual adjustment of new maintenance due to the need of production. For example, when a manager wants to perform a new maintenance program, all engineers must update their maintenance as soon as they are performing maintenance. Manual management creates conflicts between the original plan and the actual results. ^ To ensure that all maintenance is performed. 'Every equipment that requires occasional maintenance must be managed effectively. Maintenance may be forgotten and maintenance plans may not be performed. In these cases, the reliability and stability of the equipment are not guaranteed. And 'manpower management and paperwork waste manpower and paper. Manually managed employees spend too much energy on recording maintenance materials and waste too much paper. Moreover, paper documents are difficult to save, query and analyze. Paper documentation cannot be used effectively to improve future maintenance parameters. After a tool is detected, the tester gets the parameters and determines if the tool requires maintenance. Therefore, this irregular tool maintenance is not scheduled. There is a need in the prior art to determine the date of maintenance based on changes in the instantaneous parameters of the irregular tool. Further requirements for the automatic control of the parameter information collection, the calculation of the maintenance date and the entry of the maintenance date into the maintenance schedule also exist. [Object of the Invention] In order to solve the above problems, an object of the present invention is to provide a method and system for predicting a maintenance schedule, in which a network-based, user-friendly, powerful full device management system (TEMS) has been Invented. The system, combined with other computer information systems, simplifies the maintenance process. Through the integration of electronic maintenance process control and cross-information systems, the implementation of maintenance and the maintenance quality of the best 6 1323910; the establishment of a complete maintenance management mechanism to achieve the best equipment Reliability and stability. With the application of the system, the non-periodic maintenance date of the device can be predicted and adjusted by daily or several days of testing. Another object of the present invention is to provide a method and system for predicting a maintenance date in which a powerful, user-friendly management system for preventive maintenance has been developed in order to reduce maintenance problems. The system combines the knowledge of other information systems and applies professional knowledge and techniques. The system provides preventive maintenance dynamic prediction and automatic warning to improve management efficiency, enabling all equipment maintenance to be implemented, ensuring equipment reliability and stability. Through electronic maintenance management and data storage, the maintenance process is simplified, and the labor and paper consumption is reduced. Through the integration and analysis of the system, the management report and early warning mechanism are provided to enhance the application price of the maintenance data. Linked to the automated wiring system to automatically collect relevant equipment parameters, engineers do not need to go to the factory to record equipment related parameters, but can save the waste of meter reading time and avoid data transcription errors. Connect with the equipment maintenance work specification system to get the correct equipment preventive maintenance information (〇1, maintenance form) in real time, to ensure the consistency of the data and to achieve the best maintenance quality. The present invention provides two methods for predicting maintenance dates, as well as systems utilizing the above methods. The first method is to introduce a variation in the maintenance scheduler that is calculated from the parameters of a tool obtained in a few days, or by the user. The method then uses statistical methods to predict and adjust the non-periodic maintenance date of the equipment based on the currently obtained parameters and variations. Except for more than one parameter tracking to determine the date of maintenance, the second method is similar to the first method. Each parameter has its own variation. The maintenance date is determined by calculation with the amount of change in each parameter. 7 1323910 A third embodiment of the present invention provides an automated system for obtaining information on the work order and using the information to best predict the date of maintenance. The automated system calculates the date of maintenance using the method described in the present invention and the method described in the first embodiment. The automation system consists of a connection unit, a controller and a database. Any feature or comprehensive feature recited herein is included in the present invention if it is not contradicted in any comprehensive feature, and the feature is apparent from the context, the description and the knowledge of those skilled in the art. In the range. In the interest of the invention, certain features, advantages and novel features of the invention are described herein. Of course, it is not understood that any of the specific embodiments of the invention must include such features, advantages and novel features. The unique advantages and features of the present invention are apparent from the following detailed description and claims. [Embodiment] The preferred embodiment of the present invention and the examples shown in the corresponding drawings will now be described in detail. Elsewhere in the text, the same or similar reference numerals are used in the drawings and the description to indicate the same or similar parts. It should be noted that the schema is a simplified form, not an exact scale. The disclosure here is only for the convenience and simplicity of the 'directional vocabulary (such as top, bottom, left, right, up' down, above, above, below, below... , back and front) combined with the corresponding schema. These directional vocabulary should not be construed as limiting the scope of the invention in any way. Although specific embodiments are disclosed herein, it is understood that the embodiments are described by way of example, and not limitation. The present invention is to be construed as being limited by the scope of the invention and the scope of the invention as defined by the appended claims. It should be understood and identified that the method steps and structures described at this time do not include the complete process 1323910 process for scheduling maintenance of semiconductor manufacturing equipment. The present invention can be used in conjunction with different scheduling and statistical techniques applied in the prior art. There are many existing well-established method steps that are necessary to understand the present invention. Generally, the present invention is practical in the field of integrated maintenance scheduling systems. However, for illustrative purposes, the following description is directed to an integrated maintenance scheduling system for semiconductor manufacturing equipment. In particular, please refer to the drawings. Fig. 1 is a short flow chart showing a method of predicting the maintenance date according to the first embodiment of the present invention. The following example 1 shows a simple application of the method. In the first diagram of the embodiment, the difference 値 between the maintenance parameter of the parameter and the detection 値 of the parameter is obtained (S100), wherein the detection of the parameter is obtained from a tool. The parameter may be the number of loop wafers or the number of RF power watt-hours, but is not limited thereto. This tool is any device that may require maintenance. This difference is equal to the maintenance 値 minus the detection 値. After the difference is calculated, a comparison (S1〇2) is made to determine whether the difference is greater than or equal to the preset threshold. Now, in the example 1, the difference 〇〇(S100) on 2〇〇3/4/2 depends on 1100 minus 100 to obtain 1000, which is not less than or equal to zero. Similarly, the difference of 800 on 2003/4/3 is not less than or equal to zero. Example 1: Predicting an Unscheduled Maintenance Current 値 Type: Cumulative Formal Parameter Maximum 値: 1100 Minimum Parameter 値: 900 Maintenance Item: 1000 Chip Loop Date Parameter 値 (a) Current 値(9) Variation (C) Forecast PM Day (d) Remarks 2003/4/1 10000 0 NA 曰 Maintenance 曰 2003/4/2 10100 100 100 2003/4/10 2003/4/3 10300 300 150 2003/4/7 (900-300)/150=4 2003/4/4 1 10450 450 150 2003/4/7 (900-450)/150=3 1^23910 2003/4/5 10550 137.5 2003/4/7 (900-550)/137.5=2.5 2U03/4 /6 10750 75〇~^ 150 2003/4/7 (900-750)/150=1 2003/4/7 10900 9〇〇150 2003/4/7 (900-900)/150=0 2003/4/ 8 11050 1050 150 2003/4/8 In this case, the current 値<maximum 値, forecast day is today. 2003/4/9 11090 0 Maintenance Day Formula 1-1: Variation = [Σ (current 値(n)_current 値(n_1))]/(date(1)-date(7)); η = 1 — 7 Equation 1 — 2: Forecast day == date + [(minimum parameter 値-current 値}/variable amount] Equation 1-3: Current 値(η)=parameter 値(4)_parameter 値(iastpM) For example, 'When the difference is less than or equal to the preset In case of maintenance, the maintenance program (sl〇6) needs to be performed by AI. For example, if the preset 値 is zero, once the parameter has been detected, the tool needs maintenance. If the difference is greater than the preset 値, proceed Maintenance date calculation (Sl〇4) 'The maintenance date described is predicted by dividing the rate by the diversity or variation and adding it to the current date. As in the example of the enumeration' The difference is divided by the amount of change, and the amount of change indicates the change of the parameter per unit time. The amount of change can be set by at least one of two ways. One way includes detecting the data from the corresponding parameter. Calculate the amount of change 値 'where the parameter's detection 値 is a period of time before the maintenance date is predicted Obtained in the tool. Since the current preferred data is stored data, the time period is several days. The stored data can be obtained from the parameters obtained from the tools of the above-mentioned days, and/or from the date forecast of the previous maintenance. Another method involves calculating the amount of change from the data entered by the user immediately. Another method includes calculating the amount of change from the stored data 1323910 associated with the data entered immediately by the user. The method is used for all of the above methods for determining the amount of change 。. For example, if the maintenance is not performed immediately, the maintenance date can be stored in the maintenance schedule. In the example i, the variation 値 (column C) is calculated using the formula 丨-i. Equation 1-2 calculates the predicted maintenance date (d block), and calculates the current 値 (column b) using the formula i-3. According to the second embodiment of the present invention, the second map is also applied to predict by tracking a plurality of parameters. Method of maintenance date. When multiple parameters are applied, each parameter has its own associated detection, maintenance, preset and variable amount. The parameter 値 obtained from the tool. Maintenance 値 is usually not allowed to exceed the parameter of the detection 値. The difference between the maintenance 参数 of the parameter and the detection 参数 of the parameter (sl〇〇) is calculated from all the parameters being tracked. Setting a break point for determining a difference. A comparison (S102) is used to determine whether the number of preset rates is less than or equal to its corresponding preset value. In the illustrated embodiment, the preset number is one. The comparison (S102) is used to determine whether each of the rates is less than or equal to its default value. If any of these rates is less than or equal to its corresponding preset, the maintenance program (S106) is executed as soon as possible. The difference is greater than their respective presets, and the maintenance date calculation (S104) is run based on the difference and variation amount of each parameter to predict the maintenance date. The rate is divided by the amount of change, where each variable 値 represents the change in the corresponding parameter per unit time. The amount of variation 値 may be determined by the above settings, but applied in the context of multi-parameters. As described herein, the amount of variation is determined by a statistical method that takes into account previous measurement parameters, where the parameter is from the current data of the stored data and/or input. Each variation 値 can be calculated by the detection of the corresponding parameter, which is obtained from the tool before and after the calculation of the maintenance date in S104. Just as the current best data is stored data, the time period is a few days. The stored data can be obtained from the number of reference numbers obtained from the above-mentioned tools after several days and/or obtained from the parameters obtained from the previous maintenance date calculation. For the current input of the input, the data entered by the user immediately can be used to calculate the amount of change 値. The measured flaws may include a combination of the current probes entered by the user and the previously measured stored data. The amount of change can also be calculated from stored data combined with data that the user immediately inputs. Once the maintenance date has been calculated, it is best to keep it in the maintenance schedule. The process flow for performing the full equipment management system TEMS (shown in Figure 27) of the present invention instead of the maintenance manual process (as shown in Figure 26) has several advantages. The first advantage is that other computer information systems combined with TEMS ensure data consistency and high quality maintenance. Combined with the automation system of the device, the system can obtain parameters directly from the device itself. This saves the engineer's time, otherwise it must record the parameters of the device at the device; it also eliminates the error of manually transferring the data. In combination with the Standard Operating Procedure (SOP) system, the system ensures the consistency of the data and SOP data on the PM meter, thus achieving the quality of the maintenance. Dynamic predictive and managed maintenance programs improve management efficiency and ensure that maintenance is performed. When combined with the automatic collection of specialized methods and equipment parameters, TEMS can provide a solution for dynamic forecasting and management of maintenance plans and improve management efficiency. Performing TEMS can improve the productivity of the equipment. Combined with regular maintenance, unscheduled maintenance, abnormal maintenance 'equipment maintenance, daily maintenance and equipment recording parameters' maintenance management system can monitor and manage the state of maintenance, thus reducing equipment damage' by improving the maximum amount of production Equipment production efficiency. Maintenance of computer management and data storage reduces the use of paper and saves staff time. TEMS supports the combination of monitoring reports and warning reports and analyzes the characteristics of maintenance data stored in the management system, thus improving the application of maintenance data. 12 1323910
本發明提出的全設備管理系統能夠監測和控制所有設備 的狀態和保持設備一直運行良好。由於激烈的競爭,半導體生 產設備被迫確保有效、經濟的製程工具的排程、使用和保養。 由於TEMS的代替,審核保養行爲和快速查詢設備中所有工具 的所有保養歷史紀錄成爲可能。快速的將管理系統複製到新設 備也成爲可能,其中較舊設備的管理資料可以被新設備利用。 從較賽的設備上獲取的資料可以使新工廠快速、更有效的啓 動。 如第3圖所示’ TEMS的子系統包括一個設備管理系統 (EMS),預防保養管理(PMM),零件管理系統(PMS),統計的程 序控制(SPC)系統’警報監測系統(AMS),攝像監視器系統 (CMS),故障排除管理系統(TMS),關鍵性能指示器(KPI)系統 和成本分析系統(CAS)。如第4圖所示,TEMS也可以快速的獲 得規範(OI)資訊和從其他01系統(如製造資訊主導裝置(FIM)) 獲取預防保養(PM)項目資訊,以確保保養的有效性。藉由有效 的執行和管理的預防保養以確保設備的可靠性和穩定性,這 樣降低了意外的錯誤發生和從而保證了產品的品質。 設備管理系統(EMS)的功能包括管理和設定設備的基本資 料,如設備的名稱,設備的位置等等。這個子系統也設定與設 備相關的資料,如設定特殊設備的保養極値(tolerance)或停止/ 開始設備保養的排定的計畫。 預防保養管理(PMM)系統具有很多功能。其藉由修正和顯 示設備的保養的排程計畫以管理保養的排程計畫。其也記錄和 顯示定期保養(如第17圖所示),不定期保養(如第18圖所 示),異常保養、設備維修、日常保養以及失去控制的行爲程序 1323910 (OCAP)。PMM不但適用於記錄或查詢不定期保養的設備參 數,而且適用於每周或每月查詢設備的保養的報告。比如,PM 表能夠從PDA上傳或下載。設備的規範(〇1)也可以進行查詢, 如同在資訊主導裝置-設備資訊主導裝置(FIM-EIM)系統上一 樣。許多工具需要定期保養。定期保養有一個保養的固定週期 (如每周,每月等等。)和應進行的保養的極値。第5圖顯示了 用於自動排程定期保養的製程流程。隨著保養的週期和極値, 該TEMS系統可以預測需要下一次保養的設備指定部分。在列 舉的實施例中,預測定期保養的公式如下‘: 公式2:預測的PM日=最後一次的PM日+極値+使用者 的標準 ' 其中極値在FIM-EIM系統和TEMS系統中進行定義。 FIM-EIM系統中的極値對於全公司是標準値,TEMS系統中的 極値較FIM-EIM系統中的極値嚴格。使用者的標準包括特別 對於指定使用者的項目。例如,如果預測日指向周末,系統就 將依據EQ·設定功能的“假期設定”的値安排周五或周一爲保 養日。 第6圖顯示了加入新的定期保養的TEMS功能的螢幕截 圖。如果新設備加到需要保養的FIM-EIM(製造資訊主導裝置-設備資訊主導裝置)系統中,該系統會發送一封電子郵件通知管 理人員將定期保養加到TEMS系統,並設定保養的起始日期。 如果設備的型式從需要保養的FIM-EIM(製造資訊主導裝置-設備資訊主導裝置)系統中移走,TEMS會自動除去保養日期。 第29圖顯示了 ADT-13的按季的PM2從FIM-EIM系統中移走 的情況,TEMS系統自動的在PM排程的計畫中停止預測時程。 第7圖顯示了定期保養修改排程的TEMS的螢幕截圖,而 14 1323910 第8圖顯示了定期保養的排程顯示。當管理人員由於例如是生 產需要而修改或取消已排定保養時,TEMS系統的“修改排程 功能”將自動檢測修改的保養日期,看看其是否在允許的極値 內,並如同第24圖相關論述的一樣決定會簽的級別。第24 圖顯示了“會簽級別的設定”功能,其用於定義各種會簽級 別(如,對理事會經理、理事會領導的會簽等等…)。如果會簽 的事件發生,該系統將爲每個功能在指定一會簽者 (assigning-cosigner)螢幕上顯示會簽的級(該指定一會簽者 (assigning-cosigner)螢幕可以在第30圖的步驟3中看到)。第9 圖顯示了 PM排程的設備配置,使用者可以設定這些値;該系 統將藉由這些設定値預測和重新安排下一次PM日。使用者可 以臨時停止PM排程和重新啓動PM(臨時停止PM的例子在第 30圖中進行了闡述)。當設備需要花時間修理或由於其他問題 需要停止時,管理人員也可以停止已排定的保養,當問題解決 後,再重新啓動已排定的保養。 第10圖顯示了 TEMS記錄保養日期的螢幕截圖。TEMS會 自動連接到FIM-EIM系統,以得到供工程師保養和記錄的保養 項目。工程師記錄保養資料後,TEMS利用該資料決定工具性 能是否可接受。如果保養結果顯示不可接受的工具性能,TEMS 會產生一個PM OCAP的記錄,用於工程師通知使用者和管理 人員如同第24圖所論述的進行會簽。第31圖顯示了有一個失 敗項目的執行的PM表,該系統爲這個PM表產生了 PM 0CAP 記錄。 TEMS可以根據指定給系統的規則預測下一次保養日期。 第32圖顯示了該系統如何從ΠΜ-ΕΙΜ以及TEMS中決定週期 天數和極値的値。第11圖爲顯示了這樣一個預防保養預測規則 15 1323910 的TEMS螢幕截圖。TEMS也根據上一次的保養日期和週期預 測下一次保養日期。期間的資料可以來自TEMS預防保養管理 (PMM)系統中的使用者設定,來自FIM-EIM系統的使用者設 定,或FIM-EIM系統的預定設定(請參閱第32圖)。 然而對於一些工具,例如,由於工具使用的變化,保養不 能以定期的方式排程。於是,不定期保養的執行可以根據設備 的監測參數是否超過第12圖所示的流程表中其規範(OI)的規 格。第33圖顯示了 FIM-EIM系統和TEMS系統之間不定期項 目的關係。監測參數(如第33圖中的目前値)可以藉由電腦中運 行的程式或使用者更新。該〇1儲存在FIM-EIM系統中。 第13圖顯示了設定不定期保養的配置的TEMS。不定期保 養的過程包括收集設備的參數,預測不定期保養的日期',以及 記錄保養資料。和定期保養執行一樣,TEMS也可以管理列舉 在FIM-EIM系統中從不定期設備保養中加入或移走的工具 族。管理人員能夠設定關於不定期保養的基本資訊,如每天的 變化,變化的方向,設備參數收集的型式。 第14圖顯示了記錄和顯示不定期保養參數目前値的TEMS 執行。如果收集型式設定爲“自動”,與設備相連的TEMS 可以藉由每天運行的程式自動的收集和保存設備的參數。對於 其他收集型式,使用者可以人工記錄或使用個人數位助理(PDA) 記錄設備參數的目前値,計算不定期保養,並更新TEMS-PMM 資料庫。輸入的參數値可有三種型式的目前値:1)累計的型式, 其中設備參數的値不能重設至零;這種情況下,設備參數的所 有歷史紀錄資料收集在資料庫內,目前値在資料庫中計算並儲 存。(請參照例1)目前値=參數値(last PM) -參數値 (current) ° 2)轉 換的型式,其中設備參數的目前値必須藉由預計算轉換;在這 16 1323910 種型式中,從設備收集的列資料必須與工程値進行計算。比 如,可以將溫度M°F轉換到°c。目前値=設備參數的値乘以工 程値。3)重設的型式,其中設備參數的目前値須重設至零。在 這種型式中,設備參數在執行的保養後須重設至零。目前値= 設備的參數的値。如果收集的型式是“自動”,於是自動收集 設備參數的程式將根據上述目前値的型式將實際値轉換到 TEMS。 第15圖顯示了爲不定期保養的預測規則的TEMS執行的 螢幕截圖·。每個不定期保養日期的預測係在ΠΜ-ΕΙΜ系統中藉 由使用設備參數的目前値計算保養日期的日常運行程式更 新,以及基於參數的定義的較上限和較下限規格計算保養日 期。當資料傾向於參數變化的方向時,如參數每天增加,而參 數在下一天下降,保養已被執行,設備參數的目前値已被重置。 第16圖顯示了不定期保養的顯示時程的TEMS功能。 TEMS藉由回顧日常參數和找出兩個最接近目前時間之間的期 間參數的變化方向。TEMS將自動連接到FIM-EIM系統,獲得 給工程師進行保養和記錄的保養項目。與定期保養相似,TEMS 利用工程師記錄的保養資料決定工具性能是否可接受。如果保 養結果顯示不可接受的工具性能,TEMS會產生PM OCAP(預 防保養失去控制作業程序)記錄,用於工程師通知使用者和管理 人員進行會簽。TEMS於是根據指定給該系統的規則預測下一 次保養日期。 其他的保養型式包括異常保養,維修保養,日常保養,以 及PMOCAP保養。第I9圖顯示了異常保養記錄中的TEMS實 施例的螢幕截圖。當設備發生不同於正常的情況,就進行異常 保養,這就是工程師需要藉由定義在FIM-EIM系統中的下述過 17 1323910 程和記錄的維修日期以修理設備。第22圖顯示了修復保養記 錄的TEMS螢幕截圖的實施例。如果下述異常保養的標準過程 不能解決問題,工程師必須記錄保養的全過程和在修正保養記 錄描述遇到的問題。修正的保養資料係被儲存作爲以後的參 考。 第20圖顯示了日常保養記錄的TEMS執行的螢幕截圖。 曰常保養不同於定期保養,因爲日常保養需要每天進行,而定 期保養在保養可能進行的範圍內有一天或多天的極値。在一個 保養記錄中,日常保養結合特定部門所有設備的所有項目。第 21圖顯示了下載保養項目文件的TEMS執行的螢幕截圖。日常 保養記錄可以藉由下載到PDA或以網路爲基礎的介面存取。完 成記錄後,資料將送到管理人員進行會簽。第23圖顯示了失 去控制作業程序(OCAP)的執行。如果任何預防保養的結果失 敗,TEMS會自動建立新的PM的OCAP,並將失敗的項目儲存 到PM的OCAP中。TEMS通知工程師保養失敗項目的設備, 並將任何矯正的行爲資料記錄到PM的OCAP中。 TEMS也包括會簽的過程,以確保該管理部門確認所有行 爲。在一個較佳的實施例中,每個行爲在TEMS中有一個會簽 的過程。使用者可以會簽文件和查詢文件的會簽歷史紀錄。第 24圖顯示了同意會簽者之層級的設定的TEMS窗口執行。爲了 滿足每個工廠的需求,TEMS支援依據使用者需求之會簽過程 的設定。設定完會簽過程的流程後,該系統在接下來的會簽過 程的流程中會詢問使用者設定合適的會簽者。TEMS從歷史紀 錄資料中產生一系列可能的簽名者,且該歷史紀錄資料對於每 一個使用者相關的以前的會簽者和請求者而言是獨一無一 的。使用者也可以保存每次選擇的會簽者的設定時間。第25 18 1323910 圖顯示了當其他使用者在等待他或她的同意時,通知登錄系統 中的使用者的TEMS執行的螢幕截圖。使用者每次登錄到TEMS 中’ TEMS會藉由友好的操作介面通知任何會簽文件狀態的使 用者。除此以外,會簽的子系統可以追蹤和查詢PM表的歷史 紀錄。 TEMS也可以結合在pC伺服器中執行每天/周/月報告的 程式將提供總結資訊的電子郵件送給管理人員。當設備保養日 期遲緩或當保養日期很快將過期,程式也會將通知送給合適的 管理人員。保養狀態的資訊也會送給管理人員。當會簽者花太 多的時間簽署送給的文件時,該資訊也會送去通知會簽者。 TEMS的另一功能支援兩種型式的可以下載的保養項目的 文件:1)保養的日常項目和2)不定期保養的參數。工程師利用 這個功能下載所需的保養項目到PDA以保持和記錄資料,並且 將保養資料上傳到網路伺服器的資料庫中。除此以外,在 FIM-EIM系統中敍述了保養表格和保養項目。工程師也須追蹤 這些保養項目並記錄結果。 第2圖是有標準元件的圖表,表示的是根據本發明的第三 實施例預測保養日期的系統。該系統由一連接單元206 ’ 一資 料庫204,一 FIM-EIM(製造資訊主導裝置一設備資訊主導裝置) 單元202,以及控制器200組成,其可以設定爲至少與一個工 具相連。爲了獲得參數的探測値,連接單元206將一個工具連 接到系統。參數的探測値也可以包括多數的參數探測値’在這 種情況下,連接單元2〇6將允許從工具中獲得多數的探測値。 同時,該至少一個工具也可以由多數的工具組成。在列舉的實 施例中,連接單元206是系統自動連接設備,通過的設備參數 可以自動的收集和儲存到第28圖所示的TEMS系統中。 19 1323910 資料庫204儲存了表示工具每單位時間參數變化的變動量 値。當許多參數被監測時,變動量値可能由多數的變動量値組 成,其中每個參數與自己的變動量値相對應以及多數的變動量 値儲存在資料庫204內。資料庫204也儲存了工具的至少一個 參數的探測値。如果只有一個參數用於保養的追蹤,資料庫204 將保存對於該參數的一部分或所有探測値,其中此參數具有對 於該工具之已記錄的歷史紀錄。如果多個參數用於衡量保養, 資料庫204將會對已追蹤的參數包含一個探測値的歷史紀錄。 資料庫204也可能含有每個參數的預設値。每個參數的保養値 也儲存在資料庫204內。 控制器200根據資料庫2〇4中的變動量値和示例中與第1 圖結合描述的探測値和保養値之間的差値爲工具預測保養曰 期。例如,如果保養値減去探測値小於或等於預設値,工具就 需要保養。當多數參數爲保養目的而被追蹤時,差値可能包括 多數的差値。控制器200利用差値或多數差値來預測保養曰 期。對於這個過程,控制器200從連接單元206獲得探測値和 從資料庫204獲得儲存的探測値來計算保養日期。控制器200 也從連接單元206獲取新的探測値並儲存在資料庫204中。 FIM-EIM(製造資訊主導裝置-設備資訊主導裝置)單元 爲定義保養日期和表格提供了幾個規則,如預先設定的保 養日期和保養表格。FIM-EIM單元202有一個樹形子系統,該 子系統包括一個設備資訊系統,一個預防保養規範(PM 01)和 PM表格系統。FIM-EIM單元2〇2與控制器200相連以將保養 日期儲存到保養時程中。FIM-EIM單元202也可以尋找出從控 制器200處接收的預測日期的矛盾排程,並盡力有效的安排保 養曰期和次數。本發明根據已知的參數利用統計方法預測工具 20 1323910 上發生的變化。因此,保養日期可以被預測,因而保養時程可 以相應的被制定。 綜上所述,本領域的技術人員將能夠理解本發明的方法可 以容易保養排程的形成'特別是對於半導體生產設備的保養排 程的形成。上述實施例已藉由實例提供,本發明並不侷限於這 些實例。考慮到上述的描述對於本領域的技術人員來說,公開 實施例的一定程度上的多種變化和修正不是相互排斥的。而 且,鑒於此處的公開,其他的結合,省略,替代和修正對於本 領域的技術人員是明顯的。相應的,本發明不僅僅侷限於公開 的實施例,而是藉由相關附屬的申請專利範圍去定義。 【圖式簡單說明】 第1圖爲依照本發明的預測保養日期的方法的縮略的流程 圖。 第2圖爲依照本發明的預測保養日期的系統的標準元件的 圖表。 第3圖爲本發明全設備管理系統(TEMS)結構的標準元件 的圖表。 第4圖爲表示製造資訊主導裝置(FI]y[)系統和TEMS之連 結的圖表。 第5 11爲藉由TEMS自動安排定期保養的處理流程。 第6圖爲加入新的定期保養的TEMS功能的螢幕截圖 (Screenshot) ° 第7圖爲修改定期保養時程的TEMS功能的螢幕截圖。 第8圖爲安排定期保養的TEMS執行的螢幕截圖。 第9圖爲PM排程的設備配置。 第圖爲記錄保養日期的TEMS執行的螢幕截圖。 21 1323910 第11圖爲顯示定期保養的預測規則的TEMS執行的螢幕 截圖。 第12圖爲藉由TEMS自動預測不定期保養時程的製程流 程。 第13圖爲設定不定期保養配置的TEMS執行的螢幕截圖。 第I4圖爲記錄和顯示不定期保養的參數目前値的TEMS 執行的螢幕截圖。 第15圖爲不定期保養預測,規則的TEMS執行的螢幕截圖。 第'16圖爲不定期保養的顯示時程的TEMS執行的螢幕截 圖。 第17圖爲由管理保養記錄的定期保養系統產生的TEMS 執行的螢幕截圖。The full device management system proposed by the present invention is capable of monitoring and controlling the status of all devices and keeping the device operating at all times. Due to fierce competition, semiconductor production equipment is forced to ensure the scheduling, use and maintenance of efficient and economical process tools. Due to the replacement of TEMS, it is possible to review maintenance activities and quickly query all maintenance history records for all tools in the equipment. It is also possible to quickly copy the management system to a new device, where the management data of the older device can be utilized by the new device. The information obtained from the competition equipment allows the new plant to start up quickly and efficiently. As shown in Figure 3, the TEMS subsystem includes an Equipment Management System (EMS), Preventive Maintenance Management (PMM), Parts Management System (PMS), and Statistical Program Control (SPC) System 'Alarm Monitoring System (AMS), Camera Monitor System (CMS), Troubleshooting Management System (TMS), Key Performance Indicator (KPI) system and Cost Analysis System (CAS). As shown in Figure 4, TEMS can also quickly obtain specification (OI) information and obtain preventive maintenance (PM) project information from other 01 systems (such as manufacturing information masters (FIM)) to ensure the effectiveness of maintenance. With effective implementation and management of preventive maintenance to ensure the reliability and stability of the equipment, this reduces accidental errors and thus the quality of the product. The functions of the Equipment Management System (EMS) include the management and setting of basic information about the equipment, such as the name of the equipment, the location of the equipment, and so on. This subsystem also sets up device-related information, such as scheduling maintenance for special equipment or scheduling for stopping/starting equipment maintenance. The Preventive Maintenance Management (PMM) system has many features. It manages the maintenance schedule by manipulating and displaying the schedule of maintenance of the equipment. It also records and displays periodic maintenance (as shown in Figure 17), irregular maintenance (as shown in Figure 18), abnormal maintenance, equipment repair, routine maintenance, and loss of control behavior procedures 1323910 (OCAP). PMM is not only suitable for recording or querying equipment parameters for unscheduled maintenance, but also for weekly or monthly reports on the maintenance of equipment. For example, a PM meter can be uploaded or downloaded from a PDA. The device specification (〇1) can also be queried as it is on the Information Master-Device Information Master (FIM-EIM) system. Many tools require regular maintenance. Regular maintenance has a fixed period of maintenance (eg weekly, monthly, etc.) and the extremes of maintenance that should be performed. Figure 5 shows the process flow for automatic scheduled periodic maintenance. With the maintenance cycle and extremes, the TEMS system can predict the part of the equipment that will require the next maintenance. In the illustrated embodiment, the formula for predicting regular maintenance is as follows: [Formula 2: Predicted PM Day = Last PM Day + Extreme 値 + User's Standard] where the 値 is performed in the FIM-EIM system and the TEMS system definition. The extremes in the FIM-EIM system are standard for the entire company, and the extremes in the TEMS system are more stringent than those in the FIM-EIM system. User criteria include items that are specific to a given user. For example, if the forecast day points to a weekend, the system will schedule Friday or Monday as the date of maintenance based on the “holiday setting” of the EQ setting function. Figure 6 shows a screenshot of the TEMS function with the addition of a new scheduled maintenance. If a new device is added to the FIM-EIM (manufacturing information master-device information master) system that requires maintenance, the system will send an email to the management to add regular maintenance to the TEMS system and set the start of maintenance. date. If the type of equipment is removed from the FIM-EIM (manufacturing information master-device information master) system that requires maintenance, TEMS will automatically remove the maintenance date. Figure 29 shows the seasonal removal of ADT-13 from the FIM-EIM system. The TEMS system automatically stops predicting the time course in the PM schedule. Figure 7 shows a screenshot of the TEMS for regular maintenance and modification schedules, while Figure 14 1323910 shows the schedule display for regular maintenance. When the manager modifies or cancels the scheduled maintenance due to, for example, production needs, the TEMS system's “Modify Schedule Function” will automatically detect the modified maintenance date to see if it is within the allowed pole and is like the 24th The figure determines the level of the signing in the same way as the discussion. Figure 24 shows the “Setting Level Settings” feature, which is used to define various levels of signing (eg, for board managers, council leaders, etc...). If a signing event occurs, the system will display the level of the signing on the screen for each function on the assigning-cosigner screen (the assigning-cosigner screen can be in step 3 of Figure 30). see). Figure 9 shows the device configuration for the PM schedule, which the user can set; the system will use these settings to predict and reschedule the next PM day. The user can temporarily stop the PM scheduling and restart the PM (an example of temporarily stopping the PM is illustrated in Figure 30). When the equipment takes time to repair or needs to stop due to other problems, the manager can also stop the scheduled maintenance and restart the scheduled maintenance when the problem is solved. Figure 10 shows a screenshot of the TEMS record maintenance date. TEMS automatically connects to the FIM-EIM system for maintenance and documentation for maintenance and documentation by engineers. After the engineer records the maintenance data, TEMS uses this data to determine if the tool's performance is acceptable. If the maintenance results show unacceptable tool performance, TEMS will generate a PM OCAP record for the engineer to notify the user and the manager to sign the agreement as discussed in Figure 24. Figure 31 shows the PM table for the execution of a failed project that generated a PM 0CAP record for this PM table. TEMS can predict the next maintenance date based on the rules assigned to the system. Figure 32 shows how the system determines the number of days and extremes from ΠΜ-ΕΙΜ and TEMS. Figure 11 shows a screenshot of the TEMS screen for such a preventive maintenance prediction rule 15 1323910. TEMS also predicts the next maintenance date based on the last maintenance date and period. The data for the period can be from user settings in the MEMS Preventive Maintenance Management (PMM) system, user settings from the FIM-EIM system, or scheduled settings for the FIM-EIM system (see Figure 32). However, for some tools, for example, due to changes in tool usage, maintenance cannot be scheduled in a regular manner. Thus, the execution of the unscheduled maintenance may be based on whether the monitoring parameters of the equipment exceed the specifications of the specification (OI) in the flow chart shown in Fig. 12. Figure 33 shows the relationship between the FIM-EIM system and the TEMS system. The monitoring parameters (such as the current one in Figure 33) can be updated by programs or users running on the computer. This cassette 1 is stored in the FIM-EIM system. Figure 13 shows the TEMS for a configuration that sets up unscheduled maintenance. The process of non-scheduled maintenance includes collecting parameters of equipment, predicting the date of unscheduled maintenance, and recording maintenance data. As with regular maintenance, TEMS can also manage the family of tools that are added or removed from the maintenance of non-scheduled equipment in the FIM-EIM system. Managers can set basic information about unscheduled maintenance, such as daily changes, direction of change, and type of equipment parameter collection. Figure 14 shows the current TEMS implementation of recording and displaying unscheduled maintenance parameters. If the collection type is set to "Automatic", the TEMS connected to the device can automatically collect and save the parameters of the device by running the program every day. For other collection types, the user can manually record or use the personal digital assistant (PDA) to record the current parameters of the device parameters, calculate irregular maintenance, and update the TEMS-PMM database. The input parameter 値 can have three types of current 値: 1) cumulative type, where the parameter of the device parameter cannot be reset to zero; in this case, all historical data of the device parameter is collected in the database, currently Calculated and stored in the database. (Refer to Example 1) Current 値 = parameter 値 (last PM) - parameter current (current) ° 2) The type of conversion, where the current parameter of the device parameter must be converted by precomputation; in this 16 1323910 type, from The column data collected by the device must be calculated with the engineer. For example, the temperature M°F can be converted to °c. Currently 値 = the parameter of the device parameter is multiplied by the process 値. 3) Reset type, in which the device parameters do not need to be reset to zero at present. In this version, the equipment parameters must be reset to zero after the maintenance performed. Currently 値 = the parameter of the device's parameters. If the type collected is "automatic", then the program that automatically collects the device parameters will convert the actual 値 to TEMS according to the current 値 type. Figure 15 shows a screenshot of TEMS execution for predictive rules for unscheduled maintenance. The prediction of each unscheduled maintenance date is calculated in the ΠΜ-ΕΙΜ system by using the current daily calculation of the maintenance date of the equipment parameter, and the maintenance date based on the upper and lower limits of the parameter definition. When the data tends to change direction of the parameter, if the parameter increases every day, and the parameter drops on the next day, the maintenance has been performed and the current parameter of the device parameter has been reset. Figure 16 shows the TEMS function of the display schedule for unscheduled maintenance. TEMS reviews the daily parameters and finds the direction of change between the two parameters that are closest to the current time. TEMS will automatically connect to the FIM-EIM system for maintenance and documentation of the engineer's maintenance and documentation. Similar to regular maintenance, TEMS uses the maintenance data recorded by the engineer to determine whether the tool performance is acceptable. If the maintenance results show unacceptable tool performance, TEMS generates a PM OCAP (Preventive Maintenance Loss Control Program) record for the engineer to notify the user and the manager of the signing. The TEMS then predicts the next maintenance date based on the rules assigned to the system. Other maintenance types include abnormal maintenance, maintenance, daily maintenance, and PMOCAP maintenance. Figure I9 shows a screenshot of the TEMS embodiment in the abnormal maintenance record. When the equipment is different from normal, abnormal maintenance is performed. This is the engineer's need to repair the equipment by defining the following date and the recorded repair date defined in the FIM-EIM system. Figure 22 shows an embodiment of a TEMS screen shot of the repair maintenance record. If the standard procedure for abnormal maintenance described below does not solve the problem, the engineer must document the entire process of maintenance and the problems described in the revised maintenance record. The revised maintenance data is stored for future reference. Figure 20 shows a screenshot of the TEMS execution of the daily maintenance record.曰 Regular maintenance is different from regular maintenance, because daily maintenance needs to be carried out on a daily basis, and regular maintenance is one or more days within the scope of possible maintenance. In a maintenance record, routine maintenance combines all items of all equipment in a particular department. Figure 21 shows a screenshot of the TEMS execution of the download maintenance project file. Daily maintenance records can be accessed by downloading to a PDA or a web-based interface. After the record is completed, the information will be sent to the management for the signing. Figure 23 shows the execution of the Loss Control Job Program (OCAP). If any preventive maintenance results fail, TEMS automatically creates a new PM OCAP and stores the failed project in the PM's OCAP. TEMS informs the engineer to maintain the equipment for the failed project and records any corrected behavioral data into the PM's OCAP. The TEMS also includes a process of signing up to ensure that the management confirms all actions. In a preferred embodiment, each behavior has a process of signing in the TEMS. The user can sign the file and check the history of the signing of the file. Figure 24 shows the TEMS window execution of the settings agreed to the level of the signer. In order to meet the needs of each factory, TEMS supports the setting of the signing process based on user needs. After setting the process of the signing process, the system will ask the user to set the appropriate signer in the process of the next signing process. TEMS generates a series of possible signers from historical records, and this historical record is unique to each user-related previous signer and requester. The user can also save the set time of the selected signer each time. Figure 25 18 1323910 shows a screenshot of the TEMS execution of the user in the login system while other users are waiting for his or her consent. Each time the user logs into the TEMS, TEMS will notify any users of the status of the signed file through a friendly interface. In addition, the signed subsystem can track and query the history of the PM table. TEMS can also send an email with summary information to the administrator in conjunction with a program that performs daily/weekly/monthly reporting on the pC server. The program will also send notifications to the appropriate manager when the equipment maintenance date is slow or when the maintenance date will expire soon. Information on the maintenance status is also sent to the manager. When the signer spends too much time signing the submitted document, the information will also be sent to notify the signer. Another feature of TEMS supports two types of downloadable maintenance items: 1) daily maintenance items and 2) unscheduled maintenance parameters. Engineers use this feature to download the required maintenance items to the PDA to maintain and record the data, and upload the maintenance data to the network server's database. In addition to this, maintenance forms and maintenance items are described in the FIM-EIM system. Engineers must also track these maintenance items and record the results. Fig. 2 is a chart with standard components showing a system for predicting the maintenance date according to the third embodiment of the present invention. The system consists of a connection unit 206', a repository 204, a FIM-EIM (manufacturing information master device-device information master) unit 202, and a controller 200, which can be configured to be connected to at least one tool. In order to obtain the detection of the parameters, the connection unit 206 connects a tool to the system. The detection of the parameter 値 may also include a majority of the parameter detections 値 'in this case, the connection unit 2 〇 6 will allow a majority of the detection 从 to be obtained from the tool. At the same time, the at least one tool can also be composed of a plurality of tools. In the illustrated embodiment, the connection unit 206 is a system automatic connection device, and the passed device parameters can be automatically collected and stored in the TEMS system shown in Fig. 28. 19 1323910 The database 204 stores the amount of change in the parameter change per unit time of the tool. When many parameters are monitored, the variation 値 may consist of a majority of the variation ,, where each parameter corresponds to its own variation 値 and most of the variation 値 is stored in the database 204. The database 204 also stores probes for at least one parameter of the tool. If there is only one parameter for maintenance tracking, the repository 204 will save some or all of the probes for that parameter, which has a recorded history for the tool. If multiple parameters are used to measure maintenance, database 204 will include a history of probes for the tracked parameters. The database 204 may also contain default parameters for each parameter. The maintenance 每个 of each parameter is also stored in the database 204. The controller 200 predicts the maintenance period based on the difference between the amount of change 资料 in the database 2〇4 and the probe 値 and the maintenance 描述 described in conjunction with the first figure in the example. For example, if the maintenance 値 minus detection 値 is less than or equal to the preset 値, the tool needs maintenance. When most parameters are tracked for maintenance purposes, rates may include most of the rates. The controller 200 utilizes rates or majority rates to predict maintenance intervals. For this process, the controller 200 obtains the probe from the connection unit 206 and the stored probe from the database 204 to calculate the maintenance date. The controller 200 also acquires a new probe from the connection unit 206 and stores it in the repository 204. FIM-EIM (Manufacturing Information Master - Equipment Information Master) unit provides several rules for defining maintenance dates and forms, such as pre-set maintenance dates and maintenance forms. The FIM-EIM unit 202 has a tree-shaped subsystem that includes a device information system, a preventive maintenance specification (PM 01), and a PM form system. The FIM-EIM unit 2〇2 is connected to the controller 200 to store the maintenance date in the maintenance schedule. The FIM-EIM unit 202 can also find out the contradictory schedule of the predicted dates received from the controller 200 and try to effectively schedule the maintenance period and number of times. The present invention utilizes statistical methods to predict changes occurring on tool 20 1323910 based on known parameters. Therefore, the maintenance date can be predicted, so the maintenance schedule can be formulated accordingly. In summary, those skilled in the art will appreciate that the method of the present invention facilitates the formation of maintenance schedules, particularly for the maintenance of semiconductor manufacturing equipment. The above embodiments have been provided by way of example, and the invention is not limited to these examples. In view of the foregoing description, many variations and modifications of the disclosed embodiments are not mutually exclusive. Further, other combinations, omissions, substitutions and modifications will be apparent to those skilled in the art in view of the disclosure herein. Accordingly, the invention is not limited to the disclosed embodiments, but is defined by the scope of the accompanying claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic flow chart showing a method of predicting a maintenance date according to the present invention. Figure 2 is a diagram of the standard components of a system for predicting maintenance dates in accordance with the present invention. Figure 3 is a diagram of the standard components of the Full Equipment Management System (TEMS) architecture of the present invention. Figure 4 is a graph showing the connection between the manufacturing information master device (FI]y[) system and the TEMS. Section 5 11 is a process for automatically scheduling regular maintenance by TEMS. Figure 6 is a screenshot of the new regular maintenance TEMS function. (Screenshot) ° Figure 7 is a screenshot of the TEMS function for modifying the regular maintenance schedule. Figure 8 is a screenshot of the TEMS execution scheduled for regular maintenance. Figure 9 shows the device configuration for PM scheduling. The picture shows a screenshot of the TEMS execution of the maintenance date. 21 1323910 Figure 11 is a screenshot of the TEMS execution showing the forecasting rules for regular maintenance. Figure 12 shows the process flow for automatically predicting the unscheduled maintenance schedule by TEMS. Figure 13 is a screenshot of the TEMS execution for setting up an unscheduled maintenance configuration. Figure I4 is a screenshot of the current TEMS execution of the parameters for recording and displaying the unscheduled maintenance. Figure 15 is a screenshot of the regular TEMS execution of the irregular maintenance forecast. Figure 16 shows a screenshot of the TEMS execution of the time course of the unscheduled maintenance. Figure 17 is a screenshot of the TEMS execution generated by the regular maintenance system that manages the maintenance records.
第18圖爲由管理保養記錄的不定期保養系統產生的TEMS 執行的螢幕截圖。 第19圖爲異常保養記錄的TEMS實施例的螢幕截圖。 第20圖爲日常保養記錄的TEMS執行的螢幕截圖。 第21圖爲下載保養項目文件的TEMS執行的螢幕截圖。 第22圖爲修復保養記錄的TEMS執行的螢幕截圖。 第23圖爲失去控制行爲程序(OCAP)的TEMS執行的螢幕 截圖。 第24圖爲同意會簽之各層級的設定的TEMS執行的螢幕 截圖。 第25圖爲通知系統中的使用者登錄上網當其他使用者在 等待他或她的同意時的TEMS執行的螢幕截圖。 第26圖爲現有的保養執行的人工管理的製程流程。 第27圖爲藉由TEMS對保養進行自動管理的製程流程。 22 1323910 第28圖爲TEMS系統的結構。 第29圖爲FIM-EIM和TEMS之間在定期保養中的連接 的螢幕截圖。 第30圖爲在TEMS系統中臨時停止一次保養的完整的製 程流程。 第31圖爲PM表和PM OCAP表之間的關係。 第32圖爲從FIM-EIM系統和TEMS系統中如何決定保養 日期的天數和極値。 第33圖爲FIM-EIM和TEMS之間在不定期保養中的連 接的螢幕截圖。 【圖式標示說明】 S100、S102、S104、S106 :步驟 200 :控制器 202 :製造資訊主導裝置-設備資訊主導裝置 204 :資料庫 206 :連接單元 23Figure 18 is a screenshot of the TEMS execution generated by the unscheduled maintenance system that manages the maintenance records. Figure 19 is a screenshot of a TEMS embodiment of an abnormal maintenance record. Figure 20 is a screenshot of the TEMS execution of the daily maintenance record. Figure 21 is a screenshot of the TEMS execution of the download maintenance project file. Figure 22 is a screenshot of the TEMS execution of the repair maintenance record. Figure 23 shows a screenshot of the TEMS execution of the Loss of Control Behavior Program (OCAP). Figure 24 is a screenshot of the TEMS execution of the settings for each level of the agreement. Figure 25 is a screenshot of the TEMS execution when the user in the notification system logs into the Internet while other users are waiting for his or her consent. Figure 26 shows the process flow of the manual management of the existing maintenance execution. Figure 27 shows the process flow for automatic maintenance of maintenance by TEMS. 22 1323910 Figure 28 shows the structure of the TEMS system. Figure 29 is a screenshot of the connection between the FIM-EIM and the TEMS during regular maintenance. Figure 30 shows the complete process flow for temporarily stopping a maintenance in a TEMS system. Figure 31 shows the relationship between the PM table and the PM OCAP table. Figure 32 shows how the days and peaks of the maintenance date are determined from the FIM-EIM system and the TEMS system. Figure 33 is a screenshot of the connection between FIM-EIM and TEMS during unscheduled maintenance. [Description of Patterns] S100, S102, S104, S106: Step 200: Controller 202: Manufacturing Information Master Device - Device Information Master Device 204: Database 206: Connection Unit 23