Nothing Special   »   [go: up one dir, main page]

TW523837B - Resistor trimming with small uniform spot from solid-state UV laser - Google Patents

Resistor trimming with small uniform spot from solid-state UV laser Download PDF

Info

Publication number
TW523837B
TW523837B TW091101638A TW91101638A TW523837B TW 523837 B TW523837 B TW 523837B TW 091101638 A TW091101638 A TW 091101638A TW 91101638 A TW91101638 A TW 91101638A TW 523837 B TW523837 B TW 523837B
Authority
TW
Taiwan
Prior art keywords
substrate
patent application
item
resistor
laser
Prior art date
Application number
TW091101638A
Other languages
Chinese (zh)
Inventor
Edward J Swenson
Yun-Long Sun
Richard S Harris
Original Assignee
Electro Scient Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Scient Ind Inc filed Critical Electro Scient Ind Inc
Application granted granted Critical
Publication of TW523837B publication Critical patent/TW523837B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/08Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by electric discharge, e.g. by spark erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/242Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Laser Beam Processing (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

A uniform laser spot, such as from an imaged shaped Gaussian-output (118) or a clipped Gaussian spot, that is less than 20 μm in diameter can be employed for both thin and thick film resistor trimming to substantially reduce microcracking. These spots can be generated in an ablative, nonthermal, UV laser wavelength to reduce the HAZ and/or shift in TCR.

Description

523837 A7 ___B7___ 五、發明說明(/ ) 相關申請案交互參照 · 本專利申請案導自於西元2001年2月1日所申請之 美國臨時專利申請案第60/266,172號,以及於西元2001 年6月28日所申請之美國臨時專利申請案第60/301706號 等案件之優先權。 發明之領域 本發明係關於雷射微修技術,且尤其是關於以源自固 態雷射之均勻點來對厚型或薄型薄膜電阻器進行雷射微修 〇 發明背景 通常會運用傳統的雷射系統來處理一些像是被動式電 子元件架構之電性阻抗或導電薄膜的目標物,即如在陶瓷 或其他基板上所構成之電路裡的薄膜電阻器、電感器或電 容器。用以微修薄膜電阻器的電阻値的雷射處理可包括被 動性、功能性或主動性雷射微修技術,諸如Sun等人著作 之美國專利第5,685,995號案文中所詳述者。 下文將說明其背景,然在此僅以厚型薄膜電阻器爲例 。圖1爲一工件10之立體圖,像是先前技藝厚膜電阻器 10a,可構成混合積體電路裝置的一部份,而圖2係一截面 圖,其中描繪一接收傳統雷射輸出脈衝12的厚膜電阻器 10a。現請參考圖1及2,傳統式厚膜電阻器l〇a通常會包 含具有釕鹽或是氧化釕材質,且延伸其間並沉積於金屬接 觸點16之頂部表面局部上的厚膜層14。在此,會將該膜 層14及該金屬接觸點16支撐在像是鋁質的陶瓷基板18上 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 0 n ι_ϋ n n n n n->、· n n i_i— n n ϋ n I ' 523837 A7 ____B7 ___— . —__ 五、發明說明(77) 。目前的釕基厚膜糊狀物既已經最佳化處理,可於在,經具 1.047 微米(//m)之 Nd : YLF 雷射或是 之 Nd : YAG雷射的雷射f诚調後保持穩疋。現請特別注意圖1,言亥 電阻器的電阻値槪爲該電阻器材質之阻抗性,以及其幾何 性’包括長度22、寬度24與筒度26,的函數。由於不易 舖選以精確定出容忍誤差,因此會故意過濾該厚膜電阻器 ,以減少電阻低於標稱値,並微修成爲所欲數値。多個具 有大約相同電阻値的電阻器10a是按相當大量的方式成批 製造,然後再加微修作業以移除電阻器材料的餘增量,直 到電阻提昇爲所欲數値。 現請特別參考圖2,其一或更多雷射脈衝12可大致移 除掉在該雷射輸出脈衝12光點維度28之內的電阻器材料 整個局度26 ’並且暨覆光點維度28構成一截口 3〇。可透 過電阻器l〇a的電阻器材料而微修出簡易或複雜的樣式, 藉此對其電阻値加以微調。通常是會施用雷射脈衝12,直 到該電阻器l〇a符合一預定電阻値爲止。 圖3係一先前技藝電阻器1〇局部的立體圖,圖中簡糸金 出在兩個金屬接觸點16之間的兩個共用樣式微修路徑^ 與34(由虛線所區隔)。「L-切型」路徑π描述一典型的 雷射導引之修飾作業。在一 L切型路徑32裡,會按^直 於兩個接觸點間之直線的方向,來移除該電阻器材料的第 一移除帶36,以得槪略調整爲該電阻値。然後,可將養= 於該第一移除帶36之鄰接第二移除帶38移除,以得更力口 細緻調整成該電阻値。「蛇狀切型」路徑34則描彌:〇 ’、^乃〜種 4 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂----------線 523837 A7 __ B7 —__— _ 五、發明說明(5) 常見的雷射調整作業方式。在~蛇狀切型路徑34裡,會沿 著移除帶40而移除電阻器材料,以增加薄膜路徑42的長 度。在此,會增加該移除帶40的長度,一直到獲得所欲電 阻値爲止。該移除帶36、38和40通常就是單一截口 3〇的 覓度’且代表一連串暨覆雷射脈衝12的累積r微夾量」, 可移除掉在預設樣式裡幾乎所有的電阻器材料。如此,當 微修作業進行完畢時’該等截口 30會是「淨除」,而在^ 等底部大致並無電阻器材料,從而可完全曝出該基板18。 然不幸地,爲構成出傳統的潔淨截口 30,將會需要對該基 板18的表面產生輕微的雷射侵害。 隨著薄膜電阻器愈來愈微小,像是較新式的〇4〇2與 0201晶片電阻器,會需要更小的光點尺寸。以i.〇47//m及 1.064 “m雷射波長來獲得較小光點尺寸,而同時採用傳統 光元件並維持標準工作距離(爲避免燒蝕殘渣並爲淸除探針 所需者)與適當的場深度(例如陶瓷並非平坦者),將會是一 項日益艱難的挑戰。而希望獲得更爲精確電阻値,也必導 致更爲緊緻的微修容忍度要求。 由 Albin 及 Swenson 所著,刊登於 IEEE Transactions on parts,Hybirds,and Packaging,Vol· PHP-8,Νο·2,June 1972 內之”Laser Resistance Trimming from the Measurement Pomt of View”乙文中即描述利用一種固態雷射以微修薄膜 電阻器的各項測量課題與優點。 NEC指示手冊的第7章即描述當利用一紅外線(IR)高 斯射束以微修電阻器,尤其是厚膜電阻器時所將面臨的挑 5 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁)523837 A7 ___B7___ V. Description of the invention (/) Cross-reference to related applications. This patent application is derived from US Provisional Patent Application No. 60 / 266,172, filed on February 1, 2001, and in June 2001, Priority of US Provisional Patent Application No. 60/301706 filed on May 28. FIELD OF THE INVENTION The present invention relates to laser trimming techniques, and more particularly to laser trimming of thick or thin film resistors with uniform points derived from solid-state lasers. BACKGROUND OF THE INVENTION Conventional lasers are often used The system handles targets such as electrical impedances or conductive films of passive electronic component architecture, that is, thin film resistors, inductors, or capacitors in circuits constructed on ceramic or other substrates. Laser processing for microtrimming thin film resistors may include passive, functional or active laser microtrimming techniques such as those detailed in the text of U.S. Patent No. 5,685,995 by Sun et al. The background will be described below, but here only a thick film resistor is taken as an example. FIG. 1 is a perspective view of a workpiece 10, such as the thick film resistor 10a of the prior art, which can form part of a hybrid integrated circuit device, and FIG. 2 is a cross-sectional view depicting a conventional laser output pulse 12 receiving Thick film resistor 10a. Referring now to FIGS. 1 and 2, a conventional thick film resistor 10a generally includes a thick film layer 14 having a ruthenium salt or a ruthenium oxide material that extends therebetween and is deposited on a portion of the top surface of the metal contact 16. Here, the film layer 14 and the metal contact point 16 will be supported on a ceramic substrate 18 such as aluminum. 3 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) (Please read first Note on the back, please fill out this page again) 0 n ι_ϋ nnnn n- >, · nn i_i— nn ϋ n I '523837 A7 ____B7 ___—. —__ 5. Description of the invention (77). The current ruthenium-based thick-film paste has been optimized, and can be adjusted with a Nd: YLF laser or a Nd: YAG laser with a thickness of 1.047 microns (// m). Stay steady. Please pay special attention to Figure 1. The resistance of the resistor is a function of the resistivity of the resistor material and its geometry, including the length 22, the width 24, and the cylinder 26. Because it is not easy to select to accurately determine the tolerance error, the thick film resistor will be deliberately filtered to reduce the resistance below the nominal value, and trim it to the desired value. A plurality of resistors 10a having approximately the same resistance 値 are manufactured in a batch in a relatively large amount, and then a micro-repair operation is performed to remove the remaining increment of the resistor material until the resistance is increased to a desired number 値. With particular reference to FIG. 2, one or more laser pulses 12 can substantially remove the entire local size 26 ′ of the resistor material within the laser output pulse 12 light point dimension 28 and cover light point dimension 28 Form a cut 30. A simple or complicated pattern can be fine-tuned through the resistor material of the resistor 10a to fine-tune its resistance. Usually, a laser pulse 12 is applied until the resistor 10a meets a predetermined resistance 値. FIG. 3 is a perspective view of a part of the resistor 10 of the prior art. In the figure, two common pattern micro-repair paths ^ and 34 (separated by dashed lines) between two metal contact points 16 are shown. The "L-cut" path π describes a typical laser guided modification operation. In an L-cut path 32, the first removing strip 36 of the resistor material will be removed in a direction that is perpendicular to the straight line between the two contact points so as to be slightly adjusted to the resistor. Then, the second removing belt 38 adjacent to the first removing belt 36 can be removed to adjust the resistance 値 more carefully. "Snake-cut" path 34 traces: 0 ', ^ 乃 ~ 4 kinds of paper sizes Applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) (Please read the precautions on the back before filling (This page) Order ---------- line 523837 A7 __ B7 —__— _ V. Description of the invention (5) Common laser adjustment operations. In the ~ snake-shaped path 34, the resistor material is removed along the strip 40 to increase the length of the thin film path 42. Here, the length of the removal tape 40 is increased until the desired resistance is obtained. The removal bands 36, 38, and 40 are usually a single cut of 30 degrees and represent a series of cumulative r micro-clamps of the laser pulse 12 ", which can remove almost all the resistors in the preset pattern器 材料。 Material. In this way, when the micro-repair operation is completed, the cutouts 30 will be “cleaned out”, and there is almost no resistor material at the bottom such as ^, so that the substrate 18 can be completely exposed. Unfortunately, to form a conventional clean cut 30, a slight laser attack on the surface of the substrate 18 will be required. As thin film resistors become smaller and smaller, such as the newer 0402 and 0201 chip resistors, smaller spot sizes will be required. Use i.〇47 // m and 1.064 "m laser wavelength to obtain smaller spot size, while using traditional optical elements and maintain standard working distance (to avoid ablation residue and to eliminate probes) With proper field depth (for example, ceramics are not flat), it will be an increasingly difficult challenge. The desire to obtain more accurate resistance 値 will also lead to tighter micro trim tolerance requirements. By Albin and Swenson The author, published in IEEE Transactions on parts, Hybirds, and Packaging, Vol · PHP-8, Νο · 2, June 1972, describes "Laser Resistance Trimming from the Measurement Pomt of View". Various measurement issues and advantages of micro-repairing thin-film resistors. Chapter 7 of the NEC Instruction Manual describes the challenges faced when micro-repairing resistors, especially thick-film resistors, using an infrared (IR) Gaussian beam. 5 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page)

--------訂·-------I 523837 A7 ___B7__ 五、發明說明(f) 戰。熱影響區域(Η AZ)、碎裂與漂移會是所針對的一些問 題項目。-------- Order · ------- I 523837 A7 ___B7__ V. Description of Invention (f) War. Heat-affected areas (ΗAZ), chipping, and drifting are some of the issues that are targeted.

Swenson等人所著刊載於1978年I2月之IEEE Transactions on Components, Hybrids and ManufacturingSwenson et al. IEEE Transactions on Components, Hybrids and Manufacturing

Technology,標題”Reducing Post Trim Drift of Thin Film Resistors by Optimizing YAG Laser Output Characteristics” 乙文裡,即描述利用綠光(532奈米)固態雷射高斯輸出以微 修薄膜電阻器,俾減少HAZ及後微修漂移。Technology, titled "Reducing Post Trim Drift of Thin Film Resistors by Optimizing YAG Laser Output Characteristics" In the second article, it describes the use of green light (532 nm) solid-state laser Gaussian output to fine-tune thin film resistors, reducing HAZ and later Minor repair drift.

Sim與Swenson所擁有之美國專利案第5,569,398、 5,685,995及5,808,272號中說明一種應用非傳統性雷射波 長,如1.3 #m,之方法,藉以微修薄膜或裝置,來避免 損害到矽質基板及/或減少在功能性微修過程裡的置設時間 〇 , Sim與Swenson所著,1999年8月12日出版之US Patent Nos. 5,569,398, 5,685,995, and 5,808,272 owned by Sim and Swenson describe a method of applying non-traditional laser wavelengths, such as 1.3 #m, to micro-repair the film or device to avoid damage to the silicon substrate and / Or reduce the set-up time during the functional micro-repair process, by Sim and Swenson, published on August 12, 1999

International Publication,W0 99/40591 文章中即弓[介一種 以紫外線(UV)高斯雷射輸出來進行電阻器微修的槪念。請 參考圖4,可運用UV高斯雷射輸出以燒蝕薄膜電阻器表 面上的區域44,來維持彼等表面區域並保留彼等的高頻響 應特徵。藉由故意地在該微修區域44內保有電阻器膜的深 度46,該等可避免必須要潔淨該截口底部48,並大幅地消 除雷射輸出與該基板18之間的互動作用,藉以去除任何或 將因該互動作用所肇生的問題。不幸地,表面燒蝕微修會 是相當緩慢的處理作業,這是因爲必須要審慎地遞減及控 制各項雷射參數,方可避免將電阻器薄膜完全移除。 6 本紙張尺度國國家標準(CNS)A4規格(21〇 x 297公楚)" —- (請先閱讀背面之注意事項再填寫本頁)International Publication, WO 99/40591 in the article, Bow [Introduces the idea of resistor trimming with ultraviolet (UV) Gauss laser output. Referring to Figure 4, UV Gaussian laser output can be used to ablate the area 44 on the surface of the thin film resistor to maintain their surface areas and retain their high frequency response characteristics. By intentionally maintaining the depth 46 of the resistor film in the micro-repaired area 44, these can avoid the need to clean the bottom portion 48 of the cutout and greatly eliminate the interaction between the laser output and the substrate 18, thereby Eliminate any issues that may arise from the interaction. Unfortunately, surface ablation micro-repair can be a fairly slow processing operation, because the laser parameters must be carefully decremented and controlled to avoid the complete removal of the resistor film. 6 National Paper Standard (CNS) A4 Specifications (21 × 297 mm) of this paper size " —- (Please read the precautions on the back before filling this page)

523837 A7 __B7_____ 五、發明說明(f ) 微型碎裂是另一項與利用固態高斯雷射射束來進行電 阻器微修相關的挑戰。微碎裂,經常是出現在基板上的截 口 30中央處,或將會延伸到讀阻器膜內,造成潛在的漂移 問題。微碎裂也會引發與電阻性溫度係數(TCR)有關的漂 移結果。在新型而於更薄基板18上所製得的0402和0201 晶片電阻器裡,相較於如傳統電阻器者,其典型高度或厚 度約爲100到200//m,這種微碎裂問題更爲顯著。在這些 更薄基板電阻器裡的微碎裂會擴散,並在後續處置的過程 中造成該電阻器的災難性失效結果或甚至實體破損,尤其 是沿著該微修截口 30。微碎裂也會產生比起在折板中預定 破折線之所欲破折更加明顯的「較可能」破折線。 從而,確需一種經改良之電阻器微修技術。 [發明槪要] 因此,本發明之一目的在於提供一種經改良的固態雷 射微修系統及/或方法。 本發明之另一目的在於提供一種小於20/zm的光點尺 寸,以微修較小的晶片電阻器,像是0402和0201晶片電 阻器。 有些微碎裂或因高斯射束光點的高強度中心所造成, 即類似於如同在雷射鑽鑿作業裡高斯射束或需對損害一盲 點中心負責(雖然目標物及基板或屬不同材料)。Dunsky等 人所著,2000 年 12 月 7 日出版之 International Publication W〇00/73013乙文中即說明一種用以產生並運用影像構型 之高斯射束,俾以提供特別是適用於鑽鑿作業之均勻雷射 7 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂---------線 A7 523837 _____ Β7____ 五、發明說明(L ) 光點的方法。523837 A7 __B7_____ 5. Description of the Invention (f) Microfragmentation is another challenge related to the use of solid Gaussian laser beams for resistor trimming. Microcracking, which often occurs at the center of the cutout 30 on the substrate, or will extend into the reader film, causing potential drift problems. Microcracking can also cause drift results related to the resistive temperature coefficient (TCR). In the new type of 0402 and 0201 chip resistors made on a thinner substrate 18, compared to traditional resistors, the typical height or thickness is about 100 to 200 // m. This kind of micro-cracking problem More significant. Microcracking in these thinner substrate resistors can spread and cause catastrophic failure or even physical damage to the resistor during subsequent disposal, especially along the micro-trim cutout 30. Microfragmentation also produces "more probable" broken lines than the intended break in the broken line. Therefore, there is a need for an improved resistor trimming technique. [Summary of the Invention] Therefore, an object of the present invention is to provide an improved solid-state laser micro-repair system and / or method. Another object of the present invention is to provide a spot size of less than 20 / zm to fine-tune smaller chip resistors such as 0402 and 0201 chip resistors. Some micro-fractures are caused by the high intensity center of the Gaussian beam spot, which is similar to that in a laser drilling operation. The Gaussian beam may be responsible for damage to a blind spot center (although the target and the substrate may be different materials) ). Dunsky et al., International Publication WO00 / 73013, published on December 7, 2000, describes a Gaussian beam used to generate and use image configurations to provide a particular application for drilling operations. Uniform laser 7 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) Order --------- line A7 523837 _____ Β7 ____ V. Method of Invention (L) Light Spot.

Swenson、Sun 及 Dunsky 於 2000 年 7 月 30 日至 8 月 4 曰 SPIE 45 週年會議 The International Symposium on Optical Seicence and Technology 中’戶斤者之標題爲「Laser Machining in Electronics Manufacturing: A Historical Overview」乙文中,即描述一種利用由Dickey等人於美國 專利第5,864,430號案文載述之鏡片而構成的40//m均勻光 點所進行的表面掃描改良方法。 較佳地,本發明係運用一種像是影像構型高斯光點或 經裁切之高斯光點的均勻光點爲佳,此者直徑小於20//m ,且可越於截口 30的底部上傳播出均勻能量,藉以將微碎 裂的量値與嚴重度最小化。可視適當情況,可按一燒蝕性 、非熱性UV雷射波長來產生這些光點,以降低HAZ及/ 或TCR漂移。這些技術可運用在薄型或厚型兩種薄膜電阻 器的處理作業。 / 根據後載之本發明較佳實施例詳細說明並參酌其隨附 圖式,本發明其他目的及優點即爲顯而易見。 [圖式簡單說明] 圖1爲厚膜電阻器的局部立體圖; 圖2爲接收雷射輸出之厚型薄膜電阻器截面側視圖, 此雷射輸出可將該電阻器材料的整個厚度移除; 圖3爲一電阻器的局部立體圖,圖中顯示兩種常見的 先前技藝微修路徑; 圖4爲一厚膜電阻器立體圖,具有表面燒蝕微修型式 8 ^紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公爱) --- 一 (請先閱讀背面之注意事項再填寫本頁)Swenson, Sun and Dunsky in the International Symposium on Optical Seicence and Technology's 45th Anniversary Conference July 30-August 2000 titled "Laser Machining in Electronics Manufacturing: A Historical Overview" That is, a surface scanning improvement method using a 40 // m uniform light spot formed by the lens described by Dickey et al. In US Patent No. 5,864,430 is described. Preferably, the present invention uses a uniform light spot such as a Gaussian light spot or a cropped Gaussian light spot. The diameter of the light spot is less than 20 // m, and it can exceed the bottom of the cut 30. Uniform energy spreads up to minimize the amount and severity of microfracture. As appropriate, these light spots can be generated at an ablation, non-thermal UV laser wavelength to reduce HAZ and / or TCR drift. These technologies can be applied to the processing of thin or thick thin film resistors. / Other objects and advantages of the present invention will be apparent from the detailed description of the preferred embodiment of the present invention and the accompanying drawings. [Brief description of the drawings] Figure 1 is a partial perspective view of a thick film resistor; Figure 2 is a cross-sectional side view of a thick film resistor that receives a laser output, and the laser output can remove the entire thickness of the resistor material; Figure 3 is a partial perspective view of a resistor, showing two common micro-repair paths of the prior art; Figure 4 is a perspective view of a thick film resistor with a surface ablation micro-repair type 8 ^ Paper dimensions are applicable to Chinese national standards (CNS ) A4 specification (21〇X 297 public love) --- 1 (Please read the precautions on the back before filling this page)

523837 A7 ___B7 五、發明說明(1 ) 圖5 —根據本發明用以進行薄膜微修之雷射系統實施 例的簡化側視及部分示意圖; 圖6A-6C爲一序列經簡化之雷射射束發光型式圖式 ,然彼等可因圖5之雷射系統內各款系統元件而改變; 圖7A-7D示範性實質屬均勻方形或圓形之發光型式 圖式; 圖8爲在各項不範性雷射處理參數下,按多種典型的 傳輸水準,對於影像構型之高斯輸出及裁切高斯輸出,在 孔洞平面處的理想流量分布比較圖式; 圖9係相對於該標稱影像平面,作爲工作表面位置的 函數之通道錐細比率圖; 圖10係相對於該標稱影像平面,作爲工作表面位置的 函數之通道直徑圖; 圖11爲截口之電子顯微圖,其中顯示在由一高斯射束 所微修之電阻器基板內構成的微碎裂; 圖12爲截口之電子顯微圖,其中顯示在一由均勻光點 所微修之電阻器的基板內,並未構成出顯著的無碎裂現象 〇 [元件符號說明] 10 工件 l〇a 厚膜電阻器 12 雷射脈衝 14 厚型膜層 9 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公餐) 一"" """ (請先閱讀背面之注意事項再填寫本頁) --------訂---------線 523837 A7 B7 五、發明說明( 16 金屬接觸點 18 陶瓷基板 22 長度 ‘ 24 寬度 26 高度 28 光點維度 30 截口 30a 截口 32 樣式微修路徑 34 樣式微修路徑 36 第一移除帶 38 第二移除帶 40 移除帶 42 薄膜路徑 44 微修區域 46 電阻器膜深度 48 截口底部 50. 本發明之雷射系統 52 Q切換、二極體浦汲(DP)式固態(SS) UV雷射 54 雷射脈衝或輸出 56 射束擴大器 58 上行準光管鏡片元件 60 準光脈衝 70 塑型及/或成像系統 10 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 1AV--------訂 *-------- 523837 A7 __B7 五、發明說明) 72 均勻脈衝或輸出 74 射束定位系統 80 -H4- Δρ: ί市描1¾斤 82 雷射目標位置 90 光學元件 92 簡化發光型式 94 經塑型輸出 94b 經塑型之發光型式 94a 經塑型之發光型式 94c 經塑型之發光型式 96 簡化發光型式 98 孔洞遮罩 102 簡化發光型式 112 準光管鏡片集組 114 雷射系統輸出 118 塑型輸出 140 微碎裂 150a 顯著寬度截口邊緣 (請先閱讀背面之注意事項再填寫本頁) [較佳實施例詳細說明] 現請參照圖5,此爲本發明之雷射系統50較佳實施例 ,其中含有Q-切換、二極體浦汲(DP)式固態(SS)UV雷射 52,該者最好是含有一固態雷射源,像是Nd : YAG、Nd :YLF或Nd : YV04。該雷射52最好是可提供具主要係 TEMoo空間模式型式,而按像是355 nm(三倍頻率之Nd ·· 11 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A7 523837 ____B7___ 五、發明說明) YAG)、266 nm (四倍頻率之Nd : YAG)或213 nm (五倍頻 率之Nd : YAG)之波長,並以諧振方式所產出之UV雷射 脈衝或輸出54爲佳。熟習本項技藝之人士確得知悉可依其 他的雷射源而採行另型波長及其諧波。例如,較佳之YLF 波長包括349 nm與262 nm。熟習本項技藝之人士亦應知 悉多數的雷射52並無法發射出完美的高斯輸出54 ;然而 ,爲便於說明,在此仍採用高斯乙詞俾描述該高斯輸出54 光發之現象型式。對於熟習本項技藝之人士,雷射空腔排 置、諧波產生與Q -切換作業等皆屬廣知者。示範性雷射 52的各項細節可如Sun與Swenson所著之International Publication W〇 99/40591 乙文說明。 雖然亦可採用其他的固態雷射波長,像是綠光(如532 nm)或是IR (如1.06/zm或1.32//m),UV雷射對於爲修作 業會是較佳選擇,這是因爲此者具有燒蝕性、相對非熱性 的性質,可降低後微修漂移現象。而比起運用相同的場深 度之IR或綠光雷射波長所能提供者,此UV雷射波長也可 內含地在工件10表面上提供較小的光點尺寸。 UV雷射脈衝54可經各式已知光學元件所傳通,包括 像是沿射束路徑所置放之射束擴大器及/或上行準光管鏡片 元件56與58。然後,較佳地,將該uv雷射脈衝54導向 行經一塑型及/或成像系統7〇以產生一均勻脈衝或輸出72 ,接著最好是以一射束定位系統74對此者導向,俾令該均 勻輸出72經一掃描鏡片80 (此掃描鏡片也被通稱爲「第二 成像」、聚焦、裁切或物鏡)而標定至一所欲之雷射目標位 _ 12 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ----- (請先閱讀背面之注意事項再填寫本頁)523837 A7 ___B7 V. Description of the invention (1) Figure 5—Simplified side view and partial schematic diagram of an embodiment of a laser system for thin film repair according to the present invention; Figures 6A-6C are a series of simplified laser beams emitting light Type diagrams, but they can be changed due to various system components in the laser system of Fig. 5; Figs. 7A-7D are exemplary light-emitting pattern diagrams that are substantially uniform square or round; Under the typical laser processing parameters, according to a variety of typical transmission levels, for the Gaussian output and cropped Gaussian output of the image configuration, the ideal flow distribution comparison chart at the hole plane; Figure 9 is relative to the nominal image plane, Diagram of the channel cone fine ratio as a function of the position of the working surface; Figure 10 is a diagram of the diameter of the channel as a function of the position of the working surface relative to the nominal image plane; Figure 11 is an electron micrograph of the section, shown in Micro-fragmentation in the resistor substrate micro-repaired by a Gaussian beam; Figure 12 is a cut-away electron micrograph showing a substrate of a resistor micro-repaired by a uniform light spot, which does not constitute a significant No chipping 〇 [Element symbol description] 10 Work piece 10a Thick film resistor 12 Laser pulse 14 Thick film layer 9 This paper size applies to China National Standard (CNS) A4 specification (210 X 297 meals)-" " " " " (Please read the notes on the back before filling out this page) -------- Order --------- line 523837 A7 B7 V. Description of the invention (16 Metal contact point 18 Ceramic substrate 22 Length '24 Width 26 Height 28 Light spot dimension 30 Section 30a Section 32 Pattern minor repair path 34 Pattern minor repair path 36 First removal band 38 Second removal band 40 Removal band 42 Thin film path 44 Micro-repair area 46 Resistor film depth 48 Section bottom 50. Laser system 52 of the present invention, Q-switched, diode-type solid-state (SS) UV laser 54 laser pulse or output 56 Beam expander 58 Upgoing collimator lens element 60 Collimated light pulse 70 Shaping and / or imaging system 10 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the note on the back first (Please fill in this page for matters) 1AV -------- Order * -------- 523837 A7 __B7 V. Description of the invention) 72 Uniform pulse or output 74 Beam positioning system 80 -H4- Δρ: ί City description 1¾ kg 82 Laser target position 90 Optical element 92 Simplified light emission type 94 Shaped output 94b Shaped light emission Type 94a Shaped light emitting pattern 94c Shaped light emitting pattern 96 Simplified light emitting pattern 98 Hole mask 102 Simplified light emitting pattern 112 Collimator tube lens set 114 Laser system output 118 Shaping output 140 Microfracture 150a Significant width Cut edge (please read the precautions on the back before filling this page) [Detailed description of the preferred embodiment] Now refer to FIG. 5, which is a preferred embodiment of the laser system 50 of the present invention, which includes Q-switching, A diode-type solid state (SS) UV laser 52, which preferably contains a solid-state laser source, such as Nd: YAG, Nd: YLF, or Nd: YV04. The laser 52 is best to provide the main TEMoo space mode type, and the size is 355 nm (three times the frequency of Nd ·· 11) This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) ) A7 523837 ____B7___ 5. Explanation of the invention) YAG), 266 nm (Nd: YAG with four times the frequency) or 213 nm (Nd: YAG with five times the frequency), and the UV laser pulse produced by resonance Or output 54 is better. Those who are familiar with this technique do know that alternative wavelengths and their harmonics can be used depending on other laser sources. For example, preferred YLF wavelengths include 349 nm and 262 nm. Those familiar with this technique should also be aware that most lasers 52 do not emit perfect Gaussian output 54; however, for the sake of illustration, the Gaussian word 俾 is still used to describe the phenomenon of light emission of this Gaussian 54. For those who are familiar with this technique, laser cavity arrangement, harmonic generation and Q-switching operations are well known. Details of the exemplary laser 52 can be found in the International Publication WO 99/40591 by Sun and Swenson. Although other solid-state laser wavelengths can also be used, such as green light (such as 532 nm) or IR (such as 1.06 / zm or 1.32 // m), UV lasers are a better choice for repair operations. This is Because this one has ablative and relatively non-thermal properties, it can reduce the post-trim drift phenomenon. This UV laser wavelength can also implicitly provide a smaller spot size on the surface of the workpiece 10 than can be provided by an IR or green laser wavelength using the same field depth. The UV laser pulse 54 can be transmitted through various known optical elements, including, for example, a beam expander and / or upward collimator lens elements 56 and 58 placed along the beam path. Then, preferably, the uv laser pulse 54 is guided through a shaping and / or imaging system 70 to produce a uniform pulse or output 72, and then preferably directed to this by a beam positioning system 74, Order the uniform output 72 to be calibrated to a desired laser target position via a scanning lens 80 (this scanning lens is also commonly referred to as "second imaging", focusing, cutting or objective lens) 12 This paper size applies to China National Standard (CNS) A4 Specification (210 X 297 mm) ----- (Please read the precautions on the back before filling this page)

523837 A7 ____B7_____ 五、發明說明((() (請先閱讀背面之注意事項再填寫本頁) 置82處,此處係位在像是厚膜電阻器l〇a或薄膜電阻器之 工件10影像平面上。該均勻輸出72最好是含有計經切截( 裁切)、聚焦與分割、塑型、或是塑型與分割之雷射輸出。 該成像系統70最好是在該光學元件90與準光管鏡片 集組112之間,和由該光學元件90所產生之射束腰部焦點 處或附近’採用一'孔洞遮罩9 8爲佳。此孔洞遮罩9 8最好 是可阻隔該射束裡任何的非所欲側瓣,以呈現圓形或其他 形狀的光點型式,而接著將其投影於該工件表面上。此外 ,改變孔洞大小可控制該光點型式的邊緣銳度,以產生較 小、邊緣銳利的強度型式,而得能夠強化其校準精確性。 同時,孔洞形狀可爲正圓形,然亦可改變爲四方形、橢圓 形或是其他適用於該電阻器微修作業之非圓形狀。 •線 遮罩98可含有一適合於應用在雷射輸出54之波長的 材料。如雷射輸出54係爲UV,則該遮罩98可爲例如含 有UV反射性或UV吸收性材料,但亦最好是按諸如uv 等級之熔融石英之介電性材料,或是經鍍以多膜層高UV 反射性鍍層或其他UV阻抗性鍍層之藍寶石所製成。該遮 罩98的孔洞可視需要在其光存側爲向外擴出者。 光學元件90可包含聚焦光學元件或射束塑型元件,即 如非球表面光學兀件、折射性二兀光學元件,偏射性二元 先學兀件或繞射性一兀光學兀件。部份或所有的該等元件 可倂用或不併用孔洞遮罩98。在一較佳實施例裡,射束塑 型元件含有繞射性光學元件(DOE),可以高效率性及高精 確性的方式來執行複雜的射束塑型作業。該射束塑型元件 __ 13 本紙張尺^^?中國國家標準(CNS)A4規格(210 X 297公爱) --— - 523837 a7 __B7____ 五、發明說明(丨L) 不僅會將如圖6A所示之高斯發光型式轉換成如圖6B所繪 之近似均勻發光型式,更可將經塑型輸出94聚焦爲可命定 或特定的光點尺寸。在此,係將經塑型之發光型式94b與 預設光點尺寸兩者設計爲出現在該光學元件90光行下游的 設定距離Z〇處。雖然單一元件DOE可爲較佳,不過對於 熟習本項技藝之人士,應可知悉該DOE可包含複數個個別 元件,像是Dickey等所擁有之美國專利第5,864,430號案 文中所述的相位板與轉換元,該文中亦揭示用以設計DOE 以供射束塑型的各項技術。 圖6A - 6C (總稱爲圖6)顯示一序列的雷射射束之簡化 發光型式92、96及102圖式,此爲當該者透過雷射系統 50的各式系統元件而變化時所顯現者。圖6Ba- 6Bc顯示 該經塑型輸出94 (分別爲94a、94b及94c)的發光型式96a -96c簡化圖,此係依相對於ZQ’之距離z的函數。Z〇’是 該經塑型輸出94於該發光型式96b內顯示出具有最爲平坦 之發光型式的距離。在一較佳實施例裡,該Z〇,會近似或等 於該距離Ζ0。 現請參考圖5與6,此爲一塑型影像系統7〇之較佳實 施例,其中包含一或更多翻射束塑型元件,其可將亘有原 始高斯發光型式92的平行的光脈衝60,轉換成在射束塑 型元件的孔洞遮罩98下行附近會具有一近似均勻「頂蓋」 型式,或特別是超高斯發光型式,之經塑型(且經聚焦)脈 衝或輸出94b。圖6Ba顯示一種示範性發光型式94a,其中 Z < ZG’,而圖6Bc顯示一種示範性發光型式9乜,其中z〉 14 木纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -- (請先閱讀背面之注意事項再填寫本頁) 訂: •線 523837 A7 ___B7__ 五、發明說明(丨> ) z〇’。在此實施例中,鏡片112含有適用於斥除繞射光環的 成像光學元件。對於熟習本項技藝之人士,應可知悉可選 用單一成像鏡片元件或是多重個鏡片元件。 前載之塑形與成像技術可如2000年12月7日公告之 International Publication WO 00/73013 號乙文所詳述。在此 ,亦倂入Dunsky等人於2000年5月26所申請的申請中 美國專利申請第09/580,396號案文揭示其內各相關局部, 以作爲本文參考。 圖7A - 7B (總稱爲圖7)顯示一如美國專利第 5,864,430號案文所述,由傳播通過一 DOE之高斯射束所 產生的實質性均勻發光型式範例。圖7A- 7C顯示長方體 發光型式,而圖7D顯示圓柱體發光型式。圖7C的發光型 式係經「反相」,顯示出比起朝向於中央,在其邊緣處會 爲較高強度。對於熟習本項技藝之人士,應知悉可設計該 射束塑形元件90,俾以供應或適用於特定應用之各種其他 發光型式,且這些發光型式通常會是按其相對於ZQ’之距離 的函數而改變。對於熟習本項技藝之人士,應可知悉該圓 柱體發光型式,如圖7D所繪者,可較佳適用於圓形孔洞 98 ;長方體發光型式可較佳適用於方形孔洞;同時,可將 其他射束塑型元件90的性質裁適於其他孔洞的形狀。例如 ’對於許多直線前向通道微修應用來說,可採行在遮罩98 內具有方形孔洞之經反置長方體發光型式。 射束定位系統74最好是採行一種用於雷射微修系統的 傳統式定位器。這種定位系統74通常是具有一或更多個階 15 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱㈣ 一 " (請先閱讀背面之注意事項再填寫本頁)523837 A7 ____B7_____ V. Description of the invention ((() (Please read the precautions on the back before filling out this page) Place 82, here is the image of workpiece 10 such as thick film resistor 10a or thin film resistor On a plane, the uniform output 72 is preferably a laser output that includes cutting (cutting), focusing and dividing, shaping, or shaping and dividing. The imaging system 70 is preferably on the optical element 90. A hole mask 9 8 is preferably used between the collimator tube lens set 112 and at or near the focal point of the beam waist generated by the optical element 90. The hole mask 9 8 is preferably Block any unwanted side lobes in the beam to present a circular or other shaped light spot pattern, and then project it onto the surface of the workpiece. In addition, changing the hole size can control the sharp edge of the light spot pattern In order to produce a small, sharp-edged strength pattern, the calibration accuracy can be enhanced. At the same time, the hole shape can be a perfect circle, but it can also be changed to a square, oval, or other suitable for this resistor Non-circular shapes for minor repairs. • Line mask 98 may contain a material suitable for the wavelength of the laser output 54. If the laser output 54 is UV, the mask 98 may, for example, contain a UV reflective or UV absorbing material, but it is also preferred to Dielectric materials such as uv-grade fused silica, or sapphire coated with a multi-layer high UV reflective coating or other UV resistive coating. The holes of this mask 98 can be on the light storage side as required The optical element 90 may include a focusing optical element or a beam shaping element, such as an aspherical surface optical element, a refractive element, a polarizing element or a diffraction element. Optical element. Some or all of these elements can be used with or without hole mask 98. In a preferred embodiment, the beam shaping element contains a diffractive optical element (DOE), which can A highly efficient and accurate way to perform complex beam shaping tasks. The beam shaping element __ 13 paper ruler ^^ Chinese National Standard (CNS) A4 specification (210 X 297 public love)- -—-523837 a7 __B7____ 5. The description of the invention (丨 L) will not only show as shown in Figure 6A The light emitting pattern is converted into an approximately uniform light emitting pattern as shown in FIG. 6B, and the shaped output 94 can be focused to a predeterminable or specific light spot size. Here, the shaped light emitting pattern 94b and the preset are used. The light spot size is both designed to appear at a set distance Z0 downstream of the 90th line of the optical element. Although a single element DOE may be better, for those skilled in this art, it should be known that the DOE may include multiple Individual components, such as the phase plate and converter described in US Patent No. 5,864,430 owned by Dickey and others, also disclose various techniques for designing DOEs for beam shaping. Figures 6A-6C ( Figure 6) shows a series of simplified light emission patterns 92, 96, and 102 of the laser beam, which are shown when the person changes through various system components of the laser system 50. Figs. 6Ba-6Bc show simplified diagrams of the light emitting patterns 96a-96c of the shaped output 94 (94a, 94b, and 94c, respectively), which are a function of the distance z relative to ZQ '. Z0 'is the distance that the warped output 94 has the flattest light emitting pattern in the light emitting pattern 96b. In a preferred embodiment, the Z0, will be approximately equal to or equal to the distance Z0. Please refer to FIGS. 5 and 6. This is a preferred embodiment of a plastic imaging system 70, which includes one or more retro-beam shaping elements that can collimate parallel light with the original Gaussian light emitting pattern 92. Pulse 60, converted into a shaped (and focused) pulse or output 94b with an approximately uniform "top cover" pattern, or particularly a super-Gaussian light emission pattern, near the downside of the hole mask 98 of the beam shaping element . Fig. 6Ba shows an exemplary light emitting pattern 94a, where Z < ZG ', and Fig. 6Bc shows an exemplary light emitting pattern 9 乜, where z> 14 wood paper size is applicable to Chinese National Standard (CNS) A4 specification (210 X 297 Mm)-(Please read the notes on the back before filling this page) Order: • Line 523837 A7 ___B7__ V. Description of the invention (丨 >) z〇 '. In this embodiment, the lens 112 contains an imaging optical element adapted to repel a diffraction ring. For those skilled in the art, they should know whether to use a single imaging lens element or multiple lens elements. The pre-loaded shaping and imaging technology can be described in detail in International Publication WO 00/73013, published on December 7, 2000. Here, also incorporated in the application filed by Dunsky et al. On May 26, 2000 is the US Patent Application No. 09 / 580,396, which discloses relevant parts therein for reference herein. Figures 7A-7B (collectively referred to as Figure 7) show an example of a substantially uniform luminous pattern produced by a Gaussian beam propagating through a DOE, as described in the text of U.S. Patent No. 5,864,430. Figures 7A-7C show the cuboid light emission pattern, and Figure 7D shows the cylinder light emission pattern. The light-emitting pattern of Fig. 7C is "inverted" and shows a higher intensity at its edges than when it is directed toward the center. For those who are familiar with this technique, they should know that the beam shaping element 90 can be designed to supply or be suitable for a variety of other light-emitting types, and these light-emitting types will usually be based on their distance from ZQ ' Function. For those who are familiar with this technique, they should know the light emitting pattern of the cylinder, as shown in Figure 7D, which is better suited for circular holes 98; the light emitting pattern of rectangular parallelepiped is better suited for square holes; The properties of the beam shaping element 90 are adapted to the shapes of other holes. For example, ‘for many linear forward channel micro-repair applications, an inverted rectangular parallelepiped light pattern with square holes in the mask 98 may be used. The beam positioning system 74 preferably employs a conventional positioner for a laser micro-repair system. This positioning system 74 usually has one or more steps. 15 This paper size is applicable to China National Standard (CNS) A4 specifications (210 X 297 public love ㈣ a " (Please read the precautions on the back before filling this page).

523837 A7 ___ Β7_ 五、發明說明(/Υ) 段以移動工件1〇。該定位系統74可被用來以疊覆方式移 動塑型輸出Π8的雷射光點,俾沿著微修路徑32或34而 構成截口 30。較佳之射束定位系統可爲ESI 2300型、4370 型或即將問世的2370型「雷射微修系統」,可向美國奧瑞 岡州波特蘭市的Electro Scientific Industries公司洽購。可 按其他定位系統替代之,而此確屬業界所廣知者。 較佳且含有上述系統元件之雷射定位系統5〇之一個範 例,係採用美國奧瑞岡州波特蘭市Electro Scientific Industries公司所製造的5200型雷射系統或其他系列之uv 雷射(355 nm或是266 nm)。然對於熟習本項技藝之人士, 應知悉其他任何具有高斯射束強度型式(在如前述之成像或 塑型處理前)、其他如IR之波長,或是不同射束擴張因數 之雷射亦可採用。 該雷射系統50能夠產生具有較適之典型電阻器微修透 窗參數的雷射系統輸出114,其可包括:紫外線波長,最 好是180 - 400 nm之間、高於約1〇〇 mw的平均功率密度 ’且最好是大於300 mW、光點尺寸直徑或空間主軸,約5 至大於約50//m、重複速率,大於約1 kHz,而最好是 大於約5 kHz或甚至大於約50 kHz、時間脈衝寬度,短於 約100 ns,且最好是從約40 - 90 ns或更短、一掃描速度 ’約 1 - 200 mm/sec 或更快,最好是約 1〇 — 1〇〇 mm/sec, 而以10 - 50 mm/sec爲最佳、切截大小,約〇·ι - 20 vm, 最好是0·1 - 10gm,且以〇·ΐ - 5/zm爲佳。可選定該雷射 系統輸出114的較佳參數,以嘗試克服對於基板18之熱性 16 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) · -線- A7 523837 _____B7___ 五、發明說明 或其他的非所欲損害。對於熟習本項技藝之人士,應知悉 這些輸出脈衝參數互屬獨立者,且按所需效能而指定之。 對於熟習本項技藝之人士,應可知悉該雷射系統輸出 114的光點區域會最好是爲圓形或方形,然確得藉選取適 當光學元件90且倂合遮罩98內之所欲孔洞形狀,而採行 其他像是橢圓及長方的簡易圖形’甚或爲複雜射束形狀。 用於雷射微修之較佳光點區域,尤其是對於UV雷射微修 ,會最好是直徑小於約4〇/^m,而以直徑小於約20//m爲 宜,而又以直徑小於約15^m爲最佳。對於熟習本項技藝 之人士,應可知悉由於UV雷射輸出的光點尺寸小於傳統 式雷射微修輸出的光點尺寸,同時因爲均勻輸出72可讓該 截口 30具有直線均勻截壁或邊緣並從而一較窄的HAZ之 故,因此可將電阻器l〇a微修至相較於傳統式截口微修技 術之可能容忍値更爲緊緻之容忍範圍。 高斯輸出54與成像塑型輸出118之間的其一差異, 在於該脈衝94可均勻地在所有點處上照亮該遮罩98的孔 洞,而該高斯輸出54會在其中央處具有較高的能量密度, 或「熱點」’而這或會對該陶瓷基板18提高微碎裂及其他 所不欲見的損害。從而,該成像塑型輸出118有助於在該 陶瓷基板18處或之內,構成一具極爲平坦且均勻底部48 之截口 30,而未加修飾之高斯輸出54是無法達到這種平 坦度與均勻度。此外,該成像塑型輸出118也可從該截口 3〇的底部邊緣處更爲完整地淸除掉電阻器材料,而無須冒 著對該陶瓷基板18造成並不樂見之損害的風險,這是因爲 17 (請先閱讀背面之注意事項再填寫本頁) . -線 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -!- A7 523837 ____B7______ 五、發明說明(/‘) 脈衝94的均勻形狀幾已消除掉在該截口 30的底部中心處 產生熱點之可能性,從而可將微碎裂的量値與嚴重性降至 最低。並且,也可相對於按未加修飾之高斯輸出54所得:獲 取之微修速度,藉該成像塑型輸出118予以提昇。由於可 避免潛在的「熱點」損害,從而可相較於高斯輸出而按更 高的雷射功率來施用該成像塑型輸出118,因此可有利地 調整切截大小、重複速率、及射束移動速度俾進行更快速 的微修作業。 在此,雖可另運用經裁切之高斯光點而優於高斯輸出 54,然比起該成像塑型輸出118確需耗用顯著較多的能量 ,方能取得所欲之均勻性。而比起經裁切之高斯輸出,成 像塑型輸出118也可提供較爲潔淨的底部邊緣與更快的微 修速度。圖8顯示對於塑型輸出94b及裁切高斯輸出,在 典型的雷射處理參數下,根據多種示範性傳輸水準,而於 孔洞平面處的理想流量型式比較圖表。工件10上的流量水 準會等於該孔洞流量水準乘上該成像解放大因數的平方。 即以一例,對於塑型輸出94b及裁切高斯輸出,在孔洞邊 緣處的流量分別會是約1.05焦耳/cm2與〇.60焦耳/cm2或 更低。如此,在工件10處,對於該成像塑型輸出Π8與經 裁切之高斯輸出,在成像光點邊緣處(截口邊緣)的流量約 爲7·4及4.3 J/cm。典型的電阻器材料可被燒餽之速率一 般會是在中央及邊緣流量水準之間變動。因此,可藉該成 像塑型輸出118,而以較少的脈衝、較快的掃描速度或以 更大的切截大小(或較小的雷射疊覆)來完成各個截口 3〇的 18 t紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)- -n I 111 An - I n §i t— n n n · ϋ n (請先閱讀背面之注意事項再填寫本頁) . -線 A7 523837 ______B7^___ 五、發明說明(’7) 處理作業,由此提高處理產量。 一根據本發明各項考量而藉成像塑型輸出118以進行 微修之策略範例可如後文所述。可將越於整個成像光點的 流量維持在會出現不可接受陶瓷穿透或損害之數値的例如 90%處。例如,蝕入該厚膜電阻器的可接受陶瓷穿透度通 常爲低於10/zm,而最好是低於5/zm爲宜。然後,在不會 造成像是顯著微碎裂之損害的條件下,對該電阻器材料進 行燒蝕。相對地,以T = 50%的經裁切之高斯輸出,可將 光點中央維持在此流量,於此情況下,邊緣會僅有45%的 Fdamage。或另者’將光點邊緣維持在90%的Fdamage,於此情 況下,該中央處約爲損害門檻流量的180%,造成實質性的 _害結果。將成像光點的邊緣維持在局流量,由於各個脈 衝可移除更多的材料之故,因此可藉較少的雷射脈衝,將 電阻器材料從截口邊緣處淸除掉。從而,成像塑型輸出 118的微修產量將遠高於經裁切之高斯輸出者。 除了能夠如前述般以更快速度從該截口 30的底部邊緣 處淸除電阻器材料以外,該成像塑型輸出118也可以從該 截口 30的底部邊緣處更完整地淸除電阻器材料,而無須冒 者損舍底層陶瓷陶瓷基板18的風險,因爲脈衝94的均勻 形狀,幾可消除在該截口 30底部中央處產生熱點的可能性 〇 關於截口品質,本發明之成像塑型輸出118也可提供 極爲精確的雷射光點幾何性,並且能夠以比起高斯或經裁 切高斯輸出爲高的產量速率,來提供更佳的錐微最小化效 _____ 19 本紙張尺度適用中國國家標準(CNS)A4規格⑽x 297公餐1 -- « n nv n n Λ— n n IV— n m n I— I · n n (請先閱讀背面之注意事項再填寫本頁) · -線 523837 A7 __ B7____ 五、發明說明(if) 能,藉此提供相較高斯輸出54更爲明晰的邊緣。越於該截 口 30底部上的均勻能量以及構成更加精確的邊緣,將能提 供包含經強化的可重覆性和更小目標區域的定位正確性在 內的更具可預測性之微修結果。 圖9顯示按以相對於標稱影像平面’即z = 0,之工作 表面位置的函數,該截口底部寬度對該截口頂部寬度的比 例値。根據圖9,該標稱影像平面係該截口 30最爲離於微 尖的位置,屬最爲尖銳定義之頂部邊緣。z的正値表示低 於該名目影像平面的平面,即將該工件1〇置放離於系統光 學元件的距離,會比起z = 0的分隔距離還要遠。圖所示 之3σ的誤差橫棒係供參考,因爲不易可靠地測出該底部 寬度的測量結果。最大的底部/頂部比例會是在ζ = 0的影 像平面上所獲得者。在整個a 土 400/zm的範圍裡,按高產 通量此底部/頂部比値將總是高於75%。 圖10顯示相對於z = 0的標稱影像平面,按以工作表 表面位置的函數的截口寬度。當該工件10被進一步移到高 於該標稱影像平面處時,平均截口頂部寬度會穩定地增加 。而對低於z = 0的位置,頂部寬度會在該影像平面下方 維持相當地固定400 //m。而除了 z = +300 //m及z = - 300 //m之外,該3σ寬度一般會被保持在該平均値的d:3/zm內 。相對地,對於底部寬度,平均値會從較高位置到低於該 標稱影像平面的位置處而持續遞減。由於截口底部的寬度 會相較於截口頂部大小而明顯地更爲不易控制,因此本圖 中所示之底部寬度僅屬參考。從而,能夠施用於雷射系統 20 $紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) ' - β 0 HI n I n Λ·1 n 1»· I n i :1 I · an 1 (請先閱讀背面之注意事項再填寫本頁) 訂· 線 A7 523837 ___B7_ 五、發明說明(if ) 50的統計處理控制技術將可適於該截□頂部的特徵。 圖9及10內的資料列出多種爲管理對於處理強固性之 焦點項目深度的建議方式。如欲於變動材料厚度與加工條 件下,仍維持固定的截口頂部寬度,則最好是將處理程序 設定在略低於該標稱影像平面處’如z。+2〇〇 ,可屬有 利。這會產生土 200 "m的z値變異區域,可容納之而僅對 該頂部直徑造成極微影響。然另一方表面,倘若較希望是 維持固定的截口底邰/頂邰比例,則最好是將該處理程序設 定爲此工件10正好位於該標稱影像平面處。如此,可確保 該截口底部/頂部比例在至少士 200//111的/値範圍裡不致遞 減超過5%。這些方式的可用性係依照當該工件10被移離 於該名目影像平面時,其他的截口特徵是否仍維持在可接 受限制之內而定。 此外,可選取各射束塑型元件90以產生具有如圖7所 示之反置發光型式的脈衝,被裁切於該虛線130之外,以 利沿該截口 30的外部邊緣該來移除電阻器材料,並藉此進 一步改善微尖。本發明可供按最高產量爲高於80%的微尖 比,而不致對該陶瓷基板18造成並不樂見的損害,且也可 高於95%的微尖比(對於低深寬比的截口 30),而不致對該 陶瓷基板18造成並不樂見的損害。對於最深截口 30的最 小截口寬度,在截口頂部處約爲5- 18/zm寬度,按以傳統 光學元件亦甚有可能優於75%的微尖比。雖然除了會對小 型電阻器l〇a的截口寬度造成影響之範圍外,在許多微修 作業裡通常微尖比並不是一項關鍵考量’然本發明可獲達 21 ^紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公爱^ ' -- (請先閱讀背面之注意事項再填寫本頁) . · -線 A7 523837 _________B7________ 五、發明說明(^) 之高微尖比値,確爲該截口底部均勻度的進一步證據。 I n n 1 r— I» n If u ϋ n n I n (請先閱讀背面之注意事項再填寫本頁) -線 本文所揭示之微修技術可適用於薄型或厚型兩種膜電 阻器的處理應用,即如前文發明背景乙節中所纂列之任一 參考文件載述者,包括部分深度微修作業。對於厚膜電阻 器,尤其是在陶瓷材料上的二氧化釕,包括具有薄於200 //m高度或厚度之二氧化釕的0402與0201晶片電阻器, 會是按爲移除該截口 30內所有的釕質物而侵入該陶瓷基板 18之最小穿透量,來作爲較佳微修作業的評定標準。這些 所欲截口 30會屬潔淨者,以令均勻地曝出陶瓷材料,且該 截口 30的底部會爲「白淨」。這種潔淨作業經常會伴隨故 意性的芽透’進入陶瓷材料內至約0 · 1 — 5 // m,通常是至少 l//m,的深度。該成像塑型輸出118可提供這些潔皙或白 淨截口 30,而不致造成顯著的微碎裂問題。uv會特別適 合用於處理陶瓷上的電阻器材料;然而,確亦可運用其他 波長者。 在此,雖可採用UV波長,然IR波長,且尤以按約 1.32//m者,對於運用均勻光點以進行在矽質基板上如 NiCr、SiCi:或TaN等之材料的微修作業,特別是爲微修主 動性或電光裝置以及牽涉到功能性爲微修作業的應用項目 而言,該者確爲較佳波長。 對於熟習本項技藝之人士,應可知悉本揭之均勻光點 微修技術確可運用在單一電阻器、電阻器陣列(包括彼等位 在折板上者)、電壓調整器、電容器、電感器或是任何其他 要求微修作業之裝置。此外,本均勻光點微修技術可適用 ____ 22 本紙張尺度適用中國國家標準(CNS)A4規;X 297公爱^-------- 523837 a7 - ------B7_______-_ 五、發明說明) 於其中該成像®型輸出118並不需穿透該基板18的表面燒 蝕微修作業或其他應用,以及希望需穿透該基板的各項應 用。 圖11與12爲電子顯微圖,其中顯示由UV高斯射束 所微修之電阻器10a (圖11),以及由UV均勻(成像塑型)射 束所微修之電阻器l〇a (圖12)兩者間微碎裂的差異。梦照 於圖11,電阻器10a先前既經具有平均功率0_6 W,按重 複速率14.29 kHz,以30 mm/sec的微修速度,且其截切大 小爲2.l〇^m之UV高斯輸出54所微修。其產得截口 30a 可展現出各種微碎裂,如顯著微碎裂140、一顯著寬度截 口邊緣150a ’且在該截口 30a的中央處深度穿透進入該陶 瓷基板18。現參照圖12,電阻器i〇a既經具有平均功率爲 2·86 W,以重複速率8 kHz,依32mm/sec的微修速度而截 切大小爲4//m之UV成像塑型輸出us所微修。其產得截 口 30b並未顯示出所不樂見的損害,即便有亦僅爲少數微 碎裂。截口邊緣150b相當狹窄,且顯著穿透亦爲淺薄而大 致屬均勻者。 對於熟習本項技藝之人士,應顯知可對前揭本發明實 施例中的各項細節著手進行多種變化,而仍無虞惇離於其 基礎原理。從而,本發明範圍實應僅由後載之申請專利範 圍所界定。 23 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 請 先 閱- 讀 背 面523837 A7 ___ Β7_ 5. The description of the invention (/ Υ) moves the workpiece 10. The positioning system 74 can be used to move the laser light spot of the shaped output Π8 in an overlapping manner, and to form the cutout 30 along the micro-repair path 32 or 34. The preferred beam positioning system can be ESI Model 2300, Model 4370 or the upcoming Model 2370 "Laser Micro Repair System", which can be purchased from Electro Scientific Industries, Portland, Oregon, USA. It can be replaced by other positioning systems, and this is well known in the industry. An example of a laser positioning system 50 that is preferred and contains the above system components is a Model 5200 laser system manufactured by Electro Scientific Industries of Portland, Oregon, USA, or other series of UV lasers (355 nm or 266 nm). However, for those who are familiar with this technique, they should know that any other type with Gaussian beam intensity (before imaging or shaping as described above), other wavelengths such as IR, or lasers with different beam expansion factors can also be used. use. The laser system 50 is capable of generating a laser system output 114 with suitable parameters for a typical micro-transparent window of a resistor, which may include: ultraviolet wavelengths, preferably between 180-400 nm, above about 100 mw Average power density 'and preferably greater than 300 mW, spot size diameter or spatial major axis, about 5 to greater than about 50 // m, repetition rate, greater than about 1 kHz, and preferably greater than about 5 kHz or even greater than About 50 kHz, time pulse width, shorter than about 100 ns, and preferably from about 40-90 ns or less, a scan speed 'about 1-200 mm / sec or faster, preferably about 10- 10mm / sec, with 10-50 mm / sec as the optimal cut size, about 0-20m, preferably 0.1-10gm, and 0 · ΐ-5 / zm as good. The better parameters of the laser system output 114 can be selected to try to overcome the thermal properties of the substrate 18 16 The paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before (Fill in this page) · -line- A7 523837 _____B7___ 5. Description of invention or other undesired damage. For those who are familiar with this technique, they should know that these output pulse parameters are independent of each other and specified according to the required performance. For those who are familiar with this technique, it should be known that the light spot area of the laser system output 114 will preferably be round or square. However, it is necessary to choose the appropriate optical element 90 and fit it in the mask 98. Hole shapes, while other simple shapes like ovals and rectangles are used, or even complex beam shapes. The preferred light spot area for laser micro-trimming, especially for UV laser micro-trimming, will preferably be less than about 40 / ^ m in diameter, and preferably less than about 20 // m in diameter, and Less than about 15 ^ m is best. For those who are familiar with this technique, it should be known that the size of the light spot output by the UV laser is smaller than that of the traditional laser micro-repair, and because the uniform output 72 allows the cut 30 to have a straight and uniform cut wall or The edge and thus a narrower HAZ, therefore, the resistor 10a can be trimmed to a tighter tolerance range compared to the possible tolerances of traditional cut-off micro-repair techniques. One difference between the Gaussian output 54 and the imaging shaping output 118 is that the pulse 94 can evenly illuminate the holes of the mask 98 at all points, while the Gaussian output 54 has a higher center Energy density, or "hot spots", which may increase microfragmentation and other undesired damage to the ceramic substrate 18. Therefore, the imaging shaping output 118 helps to form a cutout 30 with a very flat and uniform bottom 48 at or within the ceramic substrate 18, whereas the unmodified Gaussian output 54 cannot achieve this flatness With evenness. In addition, the imaging molding output 118 can also remove the resistor material more completely from the bottom edge of the cutout 30 without risking undesired damage to the ceramic substrate 18, This is because 17 (please read the notes on the back before filling this page).-The paper size of the thread is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm)-!-A7 523837 ____B7______ 5. Description of the invention ( / ') The uniform shape of the pulse 94 has almost eliminated the possibility of generating a hot spot at the bottom center of the cutout 30, thereby minimizing the amount and severity of microfracture. Moreover, it can also be obtained by using the unmodified Gaussian output 54: the obtained micro-repair speed can be improved by the imaging shaping output 118. Since the potential "hot spot" damage can be avoided, the imaging shaping output 118 can be applied at a higher laser power than the Gaussian output, so the cut size, repetition rate, and beam movement can be advantageously adjusted Speed 俾 for faster fine-tuning. Here, although the cropped Gaussian light point can be used to be superior to the Gaussian output 54, it does require significantly more energy than the imaging shaping output 118 to achieve the desired uniformity. Compared with the cropped Gaussian output, the image forming output 118 can also provide a cleaner bottom edge and faster repair speed. Fig. 8 shows a comparison chart of the ideal flow pattern at the plane of the hole according to a variety of exemplary transmission levels for the typical output 94b and the cut Gaussian output under typical laser processing parameters. The flow level on the workpiece 10 will be equal to the hole flow level multiplied by the square of the imaging liberation factor. That is, for example, for the shaping output 94b and the cut Gaussian output, the flow rates at the edge of the hole will be about 1.05 Joules / cm2 and 0.60 Joules / cm2 or less, respectively. In this way, at the workpiece 10, for the imaging shaping output Π8 and the cropped Gaussian output, the flow rate at the edge of the imaging light spot (cut edge) is approximately 7.4 and 4.3 J / cm. The rate at which typical resistor materials can be burned in will generally vary between the center and edge flow levels. Therefore, the imaging shaping output 118 can be used to complete each section 30 by 18 with fewer pulses, faster scanning speeds, or with a larger cutting size (or smaller laser overlay). t The paper size applies to the Chinese National Standard (CNS) A4 (210 X 297 mm)--n I 111 An-I n §it— nnn · ϋ n (Please read the precautions on the back before filling this page).- Line A7 523837 ______ B7 ^ ___ 5. Description of the invention ('7) Processing operation, thereby increasing processing yield. An example of a strategy for using the imaging shaping output 118 for micro-repairing according to various considerations of the present invention can be described later. The flow rate across the entire imaging light spot can be maintained at, for example, 90% of the amount where unacceptable ceramic penetration or damage occurs. For example, acceptable ceramic penetration into this thick film resistor is usually less than 10 / zm, and preferably less than 5 / zm. The resistor material is then ablated without causing damage such as significant microcracking. In contrast, with a cropped Gaussian output of T = 50%, the center of the light spot can be maintained at this flow. In this case, the edge will only have 45% Fdamage. Or another ’, the edge of the light spot is maintained at 90% Fdamage. In this case, the central point is about 180% of the damage threshold flow, causing substantial harm. The edge of the imaging spot is maintained at a local flow. Because more material can be removed from each pulse, the resistor material can be removed from the edge of the cut by fewer laser pulses. Therefore, the micro-repair output of the imaging shaping output 118 will be much higher than the cropped Gaussian output. In addition to being able to remove the resistor material from the bottom edge of the cutout 30 at a faster speed as described above, the imaging molding output 118 can also remove the resistor material more completely from the bottom edge of the cutout 30. Without the risk of damaging the bottom ceramic ceramic substrate 18, because the uniform shape of the pulse 94 can almost eliminate the possibility of hot spots at the bottom center of the cut 30. Regarding the quality of the cut, the imaging molding of the present invention Output 118 also provides extremely precise laser spot geometry and can provide better cone minimization at a higher output rate than Gaussian or cropped Gaussian output. _____ 19 This paper is for China National Standard (CNS) A4 Specification ⑽x 297 Meal 1-«n nv nn Λ— nn IV— nmn I— I · nn (Please read the precautions on the back before filling this page) · -line 523837 A7 __ B7____ 5 Inventive (if) can provide a sharper edge with a higher Gaussian output 54. The more uniform the energy on the bottom of the cut 30 and the more precise the edges are, the more predictable micro-retouch results will be provided including enhanced repeatability and correct positioning of smaller target areas. . Figure 9 shows the ratio of the width of the bottom of the cut to the width of the top of the cut as a function of the position of the working surface relative to the nominal image plane, i.e. z = 0. According to Fig. 9, the nominal image plane is the position where the cutout 30 is most distant from the micro-point, which is the most sharply defined top edge. The positive z of z indicates a plane lower than the image plane of the title, that is, the distance that the workpiece 10 is placed from the optical element of the system will be farther than the separation distance of z = 0. The 3σ error bar shown in the figure is for reference, because it is not easy to reliably measure the width of the bottom. The largest bottom / top ratio will be the one obtained on the image plane with ζ = 0. Throughout the range of a 400 / zm, this bottom / top ratio 値 will always be higher than 75% at high throughput. Figure 10 shows the width of the cutout as a function of the surface position of the sheet relative to the nominal image plane at z = 0. When the workpiece 10 is moved further above the nominal image plane, the average width of the top of the section will steadily increase. For locations below z = 0, the top width will remain fairly fixed 400 / m below the image plane. Except for z = +300 // m and z = -300 // m, the 3σ width is generally kept within d: 3 / zm of the average 値. In contrast, for the width of the bottom, the average chirp continues to decrease from a higher position to a position below the nominal image plane. Since the width of the bottom of the cutout is significantly more difficult to control than the size of the top of the cutout, the bottom width shown in this figure is for reference only. Therefore, it can be applied to the laser system 20 $ Paper size Applicable to China National Standard (CNS) A4 specification (210 X 297 public love) '-β 0 HI n I n Λ · 1 n 1 »· I ni: 1 I · an 1 (Please read the notes on the back before filling out this page) Order · Line A7 523837 ___B7_ V. Description of the Invention (if) The statistical processing control technology of 50 will be suitable for the features at the top of this section. The data in Figures 9 and 10 list a number of suggested ways to manage the depth of focus items for handling robustness. If you want to maintain a constant width of the top of the cut under varying material thickness and processing conditions, it is best to set the processing program slightly below the nominal image plane ', such as z. + 2〇〇, can be beneficial. This creates a z 値 variation area of 200 m, which can be accommodated with only a slight impact on the diameter of the top. However, on the other side, if it is more desirable to maintain a constant cut bottom / top ratio, it is best to set the processing program so that the workpiece 10 is located exactly at the nominal image plane. In this way, it can be ensured that the bottom / top ratio of the section does not decrease by more than 5% in the range of at least ± 200 // 111 / 値. The availability of these methods depends on whether the other cutting features remain within acceptable limits when the workpiece 10 is moved away from the image plane of the item. In addition, each beam shaping element 90 may be selected to generate a pulse having an inverted light emitting pattern as shown in FIG. 7, which is cut out of the dotted line 130 to facilitate movement along the outer edge of the cutout 30. Remove the resistor material and use this to further improve the microtip. The present invention can provide a micro-tip ratio higher than 80% without causing undesired damage to the ceramic substrate 18, and can also be higher than 95% micro-tip ratio (for low aspect ratio). Section 30) without causing undesired damage to the ceramic substrate 18. For the smallest cut width of the deepest cut 30, the width at the top of the cut is about 5-18 / zm, and according to the traditional optics, it is likely to be better than 75% of the micro-tip ratio. Although in addition to the range that will affect the width of the small resistor 10a, the micro-tip ratio is usually not a key consideration in many micro-repair operations. However, the present invention can achieve 21 ^ paper size applicable to China Standard (CNS) A4 specification (210 x 297 public love ^ '-(Please read the precautions on the back before filling out this page). · -Line A7 523837 _________B7________ 5. The high micro-tip ratio of the invention description (^), It is indeed further evidence of the uniformity of the bottom of the cut. I nn 1 r— I »n If u ϋ nn I n (Please read the precautions on the back before filling this page)-The micro-revision technique disclosed in this article is applicable For thin or thick film resistor processing applications, that is, as described in any of the reference documents compiled in section B of the background of the invention, including some deep micro-repair operations. For thick film resistors, especially in Ruthenium dioxide on ceramic materials, including 0402 and 0201 chip resistors with ruthenium dioxide thinner than 200 // m in height or thickness, will invade the ceramic in order to remove all ruthenium in the cutout 30 Minimum penetration of substrate 18 Evaluation criteria for better micro-repair work. These desired cuts 30 will be clean, so that the ceramic material will be exposed uniformly, and the bottom of the cut 30 will be "white." This clean operation is often accompanied by intentional Sexual shoots penetrate into the ceramic material to a depth of about 0 · 1-5 // m, usually at least 1 // m. The imaging shaping output 118 can provide these clean or white cuts 30 without Causes significant micro-fragmentation problems. UV will be particularly suitable for processing resistor materials on ceramics; however, other wavelengths can be used. Here, although UV wavelengths can be used, but IR wavelengths, especially according to 1.32 // m, for the use of uniform light spot to perform micro-repair operations on materials such as NiCr, SiCI: or TaN on silicon substrates, especially for micro-remediation of active or electro-optical devices and the functionality involved For the application of repair work, this one is indeed a better wavelength. For those who are familiar with this technology, you should know that the uniform light spot micro-repair technology of this disclosure can be applied to a single resistor, resistor array (including other Those on the folding plate), voltage adjustment Device, capacitor, inductor, or any other device that requires micro-repair work. In addition, this uniform light spot micro-repair technology is applicable ____ 22 This paper size applies to Chinese National Standard (CNS) A4; X 297 public love ^ -------- 523837 a7------- B7 _______-_ V. Description of the invention) In which the imaging® type output 118 does not need to penetrate the surface of the substrate 18 to perform ablative micro-repair work or other Applications, and applications that need to penetrate the substrate. Figures 11 and 12 are electron micrographs showing the resistor 10a (Figure 11) micro-trimmed by a UV Gaussian beam and the resistor 10a (Figure 12) micro-trimmed by a UV uniform (imaging) beam ) The microfragmentation difference between the two. According to the dream in Figure 11, the resistor 10a previously had an average power of 0_6 W, a repetition rate of 14.29 kHz, a trimming speed of 30 mm / sec, and a UV Gaussian output with a cut-off size of 2.10 m 54 minor repairs. The resulting cut 30a can exhibit various micro-cracks, such as a significant micro-crack 140, a significant width of the cut edge 150a ', and penetrate deeply into the ceramic substrate 18 at the center of the cut 30a. Referring now to FIG. 12, the resistor i0a has an average output power of 2.86 W, a repetition rate of 8 kHz, and a cut-off size of 4 // m of the UV imaging molding output at a fine repair speed of 32mm / sec. us repaired slightly. The resulting cut 30b did not show undesired damage, and even if it did, it was only slightly fragmented. The cutting edge 150b is rather narrow, and the significant penetration is shallow and almost uniform. For those skilled in the art, it should be apparent that various changes in the details of the previously disclosed embodiments of the present invention can be undertaken without departing from its basic principles. Therefore, the scope of the present invention should only be defined by the scope of patent applications set out below. 23 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) Please read-read back

項 再 填 寫 本 頁Refill this page

I m 訂 線I m order

Claims (1)

523837 A8 B8 C8 D8 申請專利範圍 ι.~種雷射微調膜電阻器之方法’甩以從初始數値改 變爲標稱數値,該標稱數値係一含有經支架於〜其板上的 月吴電阻器材料之電阻器之參數,而此膜電阻器材料可供決 定該參數的初始數値,該方法包含: 」 產生至少一 UV輻射之雷射脈衝的高斯射束,此輻射 具有槪爲高斯形狀之能量密度空間形狀; 沿一光學路徑來傳播該高斯射束,以經一射束塑型元 件而將該高斯射束轉換成爲經轉換而具更實質均勻能 度空間形狀之射束; —〃 傳播該經轉換射賴主要齡,穿越一孔洞,以將其 麵成爲—目標觀,其·顔有㈣的能量密度= 間形狀的目標光點;以及 = 將該目標射束導引朝向該膜電阻器的目標區域,以燒 蝕在該電阻器目標區域內的膜電阻器材料,俾將其初始g 値改變爲標稱數値,並穿入該基板以透過該膜電阻器材料 來構成一截口,並且均勻地曝出在該目標區域內該基板的 主要部分,該目標光點的實質均勻能量密度空間形狀具有 一有效能量密度値,可將該基板內微碎裂的形成情況最小 化。 2·如申請專利範圍第1項之方法,其中該基板係被穿 透至一小於l〇^m的深度。 3·如申請專利範圍第i項之方法,其中該基板係被穿 透至一至少爲〇·1 的深度。 4·如申請專利範圍第3項之方法,其中該基板係被穿 (請先閲讀背面之注意事項再塡寫本頁} 、-·& 線 本紙張尺度適用中國國g標準(cns)A4規格(21〇x2^^· 523837 6·如申請專利範圍第5項之方法, 陶瓷材料。 7·如申請專利範圍第1項之方法, 一 0402或0201晶片電阻器。 8·如申請專利範圍第3項之方法, 一 0402或0201晶片電阻器。 9·如申請專利範圍第1項之方法, A8 B8 C8 __ D8 ^ ~^ ^------— 六、申請專利範圍 透至一小於5 // m的深度。 5·如申騎·_丨項之方法,糾_膜賴器 材料包括含有二氧化釕之厚膜電阻器材料。 其中該基板包含一 其中該電阻器包含 其中該電阻器包含 其中該基板包含一 陶瓷材料且該薄膜電阻器材料包括薄膜電阻器材^斗。 10.如申請專利範圍第9項之方法,其中該薄膜電阻器 材料包含一鉻化鎳化合物或一氮化钽化合物。 11·如申請專利範圍第1項之方法,其中該薄膜電阻器 材料組成多個類似範圍之電阻器薄膜材料中之S,胃#彼 此間互爲空間隔置,並受支撐於一基板上,且由構^於該 基板內之預鑄刻線所隔離,俾以隔開該等多個類似範圍; 該等多個類似範圍的薄膜材料之每一個係具有設置於金屬 導體之間的相對端;並且該目標光點的實質上均句能量密 度空間形狀具有一有效能量密度値,可令該基板內^碎二 之大小與深度構成情況最小化,而該等會導致該基板內不 同於該等預鑄刻線之近似破折線。 i I2.如申請專利範圍第1項之方法,其中該截口具有一 底部中央,並且該目標光點的實質上均勻能鼇密度空間形 __ 2 本紙張尺度適$"^國家標準(CNS)A4規格(21〇 χ 297公爱) —^ (請先閱讀背面之注意事項再塡寫本頁)523837 A8 B8 C8 D8 patent application scope. ~ A method of laser trimming film resistors' to change from the initial number to the nominal number, the nominal number is a package containing ~ The parameter of the resistor of the Yue Wu resistor material, and the film resistor material can be used to determine the initial number of the parameter, the method includes: "generating a Gaussian beam of laser pulses of at least one UV radiation, this radiation has Is a Gaussian shaped energy density space shape; the Gaussian beam is propagated along an optical path to transform the Gaussian beam into a beam with a substantially substantially uniform spatial shape through a beam shaping element ; 〃 propagate the main age of the converted shot, pass through a hole to make its surface into a target view, whose energy density of Yan Youzhen = target light spot with a shape; and = guide the target beam Towards the target area of the film resistor to ablate the film resistor material in the target area of the resistor, 俾 change its initial g 为 to a nominal number 値, and penetrate into the substrate to penetrate the film resistor materialTo form a cut, and expose the main part of the substrate uniformly in the target area. The substantially uniform energy density space shape of the target light spot has an effective energy density 値, which can form micro-fractures in the substrate. The situation is minimized. 2. The method according to item 1 of the patent application range, wherein the substrate is penetrated to a depth of less than 10 m. 3. The method according to item i of the patent application, wherein the substrate is penetrated to a depth of at least 0.1. 4 · If the method of applying for the third item of the patent scope, where the substrate is worn (please read the precautions on the back before writing this page),-· & thread paper size is applicable to China g standard (cns) A4 Specifications (21〇x2 ^^ · 523837 6 · Ceramic materials such as the method of applying for the scope of the patent No.5. 7 · As the method of the scope of applying for the patents No.1, a 0402 or 0201 chip resistor. The method of item 3, a 0402 or 0201 chip resistor. 9. If the method of item 1 of the scope of patent application, A8 B8 C8 __ D8 ^ ~ ^ ^ ---------- 6. The scope of patent application is transparent to one Depth of less than 5 // m. 5. As described in the method of item _ 丨, the material of the rectifying film includes a thick film resistor material containing ruthenium dioxide. The substrate includes a resistor including the resistor. The resistor comprises a substrate comprising a ceramic material and the thin film resistor material comprises a thin film resistor device. 10. The method according to item 9 of the patent application scope, wherein the thin film resistor material comprises a nickel chromate compound or a nitrogen Tantalum compounds 11. If applying for a patent The method of item 1, wherein the thin film resistor material composes S in a plurality of resistor film materials of a similar range, and the stomach # are mutually spaced apart from each other, and are supported on a substrate, and are composed of The engraved lines in the substrate are isolated to separate the plurality of similar ranges; each of the plurality of similar range of thin film materials has opposite ends disposed between the metal conductors; and the target light The substantially uniform sentence energy density space shape of the dots has an effective energy density 可, which can minimize the size and depth formation of ^ 2 in the substrate, which will cause the substrate to be different from the engraved lines. I I2. The method according to item 1 of the scope of patent application, wherein the cutout has a bottom center, and the target light spot is substantially uniform in energy density space shape __ 2 This paper is suitable for a scale of $ " ^ National Standard (CNS) A4 Specification (21〇χ 297 公 爱) — ^ (Please read the precautions on the back before writing this page) 523837 SI 六、申請專利範園 狀具有一有效能量密度値,可令該基板內在該截口底部中 央處微碎裂形成情況最小化。 u.如申請專利範圍第i項之方法,其中該目標光點的 實質上均勻扣里岔度空間型式具有一有效能量密度値,可 令該基板內或薄膜材料內微碎裂之大小與深度的構成情況 最小化,而該等會造成參數値漂移離於標稱値。 H.如申請專利範園第1項之方法,其中該截口具有至 少lOO^m的深度’及按最高產量時可展現至少乃%微尖比 的側壁。 15.如申請專利範園第1項之方法,其中該具有實質上 均勻能量密度空間形狀的目標光點擁有一短於或等於20 β m的主軸。 16·如申請專利範圍第1項之方法,其中更包含: 從Q-切換、二極體浦汲(DP)式的固態(SS)雷射產生 出一高斯射束。 17·如申請專利範圍第1項之方法,其中該高斯射束塑 型兀件含有一繞射光學元件。 18·如申請專利範圍第1項之方法,其中該高斯射束含 有約 355 nm、349 nm、266 nm 或 262 nm 的波長。 19·如申請專利範圍第1項之方法,其中該高斯射束具 有一能量,且該目標射束具有大於該高斯射束能量的50% 的孔洞塑型能量。 20·如申請專利範圍第丨項之方法,其中該孔洞具有方 形形狀。 3 本紙張尺度it財類家鮮(CNS)A4»C 297公g ' (請先閲讀背面之注意事項再塡寫本頁) ,0 098895 ABCD 523837 六、申請專利範圍 21 —種用以從初始數値改變爲標稱數値之方法,其具 有長期穩定性,其係一個其中含有經架設於基板上一範圍 之薄fe材料的微電子電路元件之參數,而該範圍定義出一 體積空間’可供以決定該參數的初始値,該方法包含: 產生具有大致上爲高斯形狀之能量密度空間形狀的雷 射射束; 將此具有能量密度空間形狀的雷射射束轉換成爲可形 成一具有實質上均勻能量密度空間形狀之目標光點的目標 射束;以及 將該目標射束導引朝向該薄膜材料之範圍上,以燒蝕 一數量的薄膜材料,藉以將其初始數値改變爲名目數値, 該目標光點的實質上均勻能量密度空間形狀具有一有效能 量密度値,可將該基板內或膜材料內微碎裂大小及深度的 开夕成丨胃況最小化,其會導致於基板內構成出近似破折線。 22.如申請專利範圍第以項之方法,其中該基板包括 一陶瓷材料,而該薄膜材料包含厚膜電阻器材料。 , 23·如申請專利範圍第22項之方法,其中該厚膜電阻 器材料包括二氧化釘。 24.如申請專利範圍第21項之方法,其中該基板包括 一陶瓷材料,而該膜材料包含薄膜電阻器材料。 25·如申請專利範圍第24項之方法,其中該薄膜電阻 器材料包含一鉻化鎳化合物或一氮化鉅化合物。 2 6 ·如申g靑專利範圍第21項之方法,其中該膜材料範 圍組成多個類似範圍之薄膜材料之一,其彼此間互爲 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ^ --- (請先閱讀背面之注意事項再塡寫本頁) 、言 線 Λ 523837 SI -- _---- 六、申請專利範圍 隔置,並受支撐於一基板上,且該多個類似範圍的膜 之每一個係具有設置於金屬導體之間的相對端。 大料 27·如申請專利範圍第26項之方法’其中該多個類 範圍之膜材料係藉該基板內的預鑄刻線所相隔。 、 28. 如申請專利範圍第26項之方法,其中該基板包+ 一陶瓷材料,而該薄膜材料包含厚膜電阻器材料。 ^ § 29. 如申請專利範圍第21項之方法,其中該膜材 圍組成多個電性互接元件之陣列的元件,且進〜步包含$ 個電性互接元件之多重陣列,該等陣列互爲空間隔置,^ 受支撐於該基板上。 30. 如申請專利範圍第29項之方法,其中該等多個電 性互接元件之多重陣列係藉該基板內的預鑄刻線所相隔。 31. 如申請專利範圍第21項之方法,其中該微電子元 件係一電阻器,該參數爲電阻値,而該基板包括陶瓷材料 〇 32·如申請專利範圍第21項之方法,其中該具有實質 上均勻能量密度空間形狀的目標光點擁有一短於或等於20 //m的主軸。 33.如申請專利範圍第21項之方法,其中更包含: 從Q-切換、二極體浦汲(DP)式的固態(SS)雷射產生 出一 1¾斯射束。 34·如申請專利範圍第21項之方法,其中將高斯射束 轉換成爲目標射束,包含將該射束傳射通過一用以裁切該 高斯射束之環周部份的孔洞遮罩。 5 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) f! (請先閲讀背面之注意事項再塡寫本頁) 、-口 線 523837 A8 B8 C8 D8 六、申請專利範圍 35.如申請專利範圍第34項之方法,其中將雷射射束 轉換成爲目標射束,包含將該射束傳射通過一置放在該孔 洞遮罩的上游處之射束塑型元件,俾以對該雷射射束;_行 塑型。 3 6.如申g靑專利圍弟3 5項之方法’其中該射束塑型 元件包含一繞射光學元件。 37·如申請專利範圍第36項之方法,其中將雷射射束 轉換成爲目標射束,包含將該射束傳射通過一置放在該孔 洞遮罩的上游處之聚焦元件,俾以對該雷射射束進行塑型 〇 38. 如申請專利範圍第21項之方法,其中該目標光點 的實質上均勻能量密度空間形狀具有一有效能量密度値, 可令該基板內或膜材料內微碎裂之大小與深度的構成情況 最小化,而其會造成參數値漂移離於該名目數値。 39. 如申請專利範圍第21項之方法,其中該微電子元 件包含一 0402或0201晶片電阻器。 40. 如申請專利範圍第21項之方法,其中該基板係被 穿透小於l〇Vm的深度。 41. 如申請專利範圍第40項之方法,其中更包含: 形成一截口,而在該截口的底部處會具有均勻曝出的 基板。 42·如申請專利範圍第21項之方法,其中.該基板係被 穿透至少爲0.1 //m的深度。 43·如申請專利範圍第21項之方法,其中該基板會被 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 、1T·· 線 523837 A8 B8 C8 D8 六、申請專利範圍 穿透小於5//m的深度。 (請先閲讀背面之注意事項再填寫本頁) 44. 如申請專利範圍第21項之方法,其中將雷射射束 轉換成爲目標射束,包含將該射束傳射通過一射束塑型元 件。 45. 如申請專利範圍第21項之方法,其中該雷射射束 包含UV波長。 46. 如申請專利範圍第35項之方法,其中該雷射射束 包含IR波長。 47. 如申請專利範圍第46項之方法,其中該目標光點 含有1.32的波長,而該基板含有矽質。 48. 如申請專利範圍第21項之方法,其中僅該薄膜材 料之體積空間的頂部量値會被燒蝕,使得該基板保持爲未 曝出。 49. 如申請專利範圍第35項之方法,其中該雷射射束 包含可見光波長。 50. 如申請專利範圍第21項之方法,其中該微電子元 件包含一電容器或一電感器。 7 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)523837 SI VI. The patent application Fanyuan has an effective energy density 値, which can minimize the micro-fracture formation in the substrate at the center of the bottom of the section. u. The method according to item i in the scope of the patent application, wherein the substantially uniform buckling point space pattern of the target light spot has an effective energy density 値, which can make the size and depth of the microfracture in the substrate or the thin film material The composition of is minimized, and these will cause the parameter 値 to drift away from the nominal 値. H. The method according to item 1 of the patent application park, wherein the cutout has a depth of at least 100 m and a side wall that can exhibit at least a% micro-tip ratio at the highest yield. 15. The method of claim 1, wherein the target light spot having a substantially uniform energy density spatial shape has a major axis shorter than or equal to 20 β m. 16. The method according to item 1 of the patent application scope, further comprising: generating a Gaussian beam from a Q-switched, diode-pumped (DP) -type solid-state (SS) laser. 17. The method of claim 1 in which the Gaussian beam shaping element contains a diffractive optical element. 18. The method of claim 1, wherein the Gaussian beam contains a wavelength of about 355 nm, 349 nm, 266 nm, or 262 nm. 19. The method according to item 1 of the scope of patent application, wherein the Gaussian beam has an energy, and the target beam has a hole shaping energy greater than 50% of the energy of the Gaussian beam. 20. The method according to the first item of the patent application, wherein the hole has a square shape. 3 This paper size It is a family of fresh food (CNS) A4 »C 297g g (Please read the precautions on the back before writing this page), 0 098895 ABCD 523837 6. Application for patent scope 21 — a kind of The method of changing 为 to the nominal number 値 has long-term stability. It is a parameter of a microelectronic circuit element containing a range of thin fe materials erected on a substrate, and the range defines a volume space. To determine the initial chirp of the parameter, the method includes: generating a laser beam having an energy density spatial shape that is substantially Gaussian; transforming the laser beam having the energy density spatial shape into a material having a substantial A target beam with a target light spot of uniform energy density space shape; and directing the target beam toward a range of the thin film material to ablate a quantity of the thin film material, thereby changing its initial number to a nominal number値, the substantially uniform energy density space shape of the target light spot has an effective energy density 値, and the size and depth of the micro-fracture in the substrate or the film material can be opened. Xicheng 丨 Stomach condition is minimized, which will cause an approximate broken line in the substrate. 22. The method of claim 1, wherein the substrate comprises a ceramic material and the thin film material comprises a thick film resistor material. 23. The method of claim 22 in the scope of patent application, wherein the thick film resistor material includes a nail. 24. The method of claim 21, wherein the substrate comprises a ceramic material and the film material comprises a thin film resistor material. 25. The method of claim 24, wherein the thin film resistor material comprises a nickel chromate compound or a nitrided macro compound. 2 6 · The method according to item 21 of the patent scope, wherein the film material range constitutes one of a plurality of similar range of thin film materials, which are 4 to each other. This paper size is applicable to China National Standard (CNS) A4 specifications ( 210 x 297 mm) ^ --- (Please read the precautions on the back before writing this page), speech line Λ 523837 SI-_---- VI. The scope of patent application is separated and supported by The substrate, and each of the plurality of films of similar range has opposite ends disposed between the metal conductors. Aniseed 27. The method according to item 26 of the scope of patent application, wherein the film materials of the plurality of types are separated by the engraved lines in the substrate. 28. The method according to item 26 of the application, wherein the substrate package + a ceramic material, and the thin film material comprises a thick film resistor material. ^ § 29. If the method of claim 21 is applied, the film material surrounds the elements that form an array of multiple electrical interconnection elements, and further includes a multiple array of $ electrical interconnection elements. The arrays are spaced from each other and are supported on the substrate. 30. The method according to item 29 of the patent application, wherein the multiple arrays of the plurality of electrical interconnection elements are separated by a scribe line in the substrate. 31. If the method according to item 21 of the patent application, wherein the microelectronic element is a resistor, the parameter is resistance 値, and the substrate includes a ceramic material. 32. If the method according to item 21 of the patent application, which has The target light spot with a substantially uniform energy density spatial shape has a major axis shorter than or equal to 20 // m. 33. The method of claim 21, further comprising: generating a 1¾ beam from a Q-switched, diode-pumped (DP) -type solid-state (SS) laser. 34. The method of claim 21, wherein transforming a Gaussian beam into a target beam includes transmitting the beam through a hole mask for cutting a peripheral portion of the Gaussian beam. 5 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) f! (Please read the precautions on the back before writing this page) 、 -line 523837 A8 B8 C8 D8 6. Scope of patent application 35. The method of claim 34, wherein converting the laser beam into a target beam includes transmitting the beam through a beam shaping element placed upstream of the hole mask, Take the laser beam; shape the line. 36. The method of claim 3 of item 5 in the patent application, wherein the beam shaping element includes a diffractive optical element. 37. The method of claim 36, wherein converting the laser beam into a target beam includes transmitting the beam through a focusing element placed upstream of the hole mask to The laser beam is shaped. 38. For example, the method of claim 21 in the patent application range, wherein the substantially uniform energy density space shape of the target light spot has an effective energy density 値, which can make the inside of the substrate or the film material The composition of the size and depth of the microfractures is minimized, and it will cause the parameter 値 to drift away from the number of heads 値. 39. The method of claim 21, wherein the microelectronic device includes a 0402 or 0201 chip resistor. 40. The method of claim 21, wherein the substrate is penetrated to a depth of less than 10Vm. 41. The method according to item 40 of the patent application, further comprising: forming a notch, and the substrate at the bottom of the notch will be uniformly exposed. 42. The method according to item 21 of the patent application scope, wherein the substrate is penetrated to a depth of at least 0.1 // m. 43. If the method of applying for the scope of the patent No. 21, in which the substrate will be 6 paper sizes applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) (Please read the precautions on the back before filling this page) 1T ·· Line 523837 A8 B8 C8 D8 VI. Patent application scope penetrates to a depth of less than 5 // m. (Please read the precautions on the back before filling this page) 44. For the method of applying for the scope of patent application No. 21, which converts the laser beam into a target beam, including transmitting the beam through a beam shape element. 45. The method of claim 21, wherein the laser beam includes a UV wavelength. 46. The method of claim 35, wherein the laser beam includes an IR wavelength. 47. The method of claim 46, wherein the target light spot contains a wavelength of 1.32 and the substrate contains silicon. 48. The method of claim 21 in which only the top volume of the volume space of the thin film material is ablated, so that the substrate remains unexposed. 49. The method of claim 35, wherein the laser beam includes a wavelength of visible light. 50. The method of claim 21, wherein the microelectronic component includes a capacitor or an inductor. 7 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW091101638A 2001-02-01 2002-01-31 Resistor trimming with small uniform spot from solid-state UV laser TW523837B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26617201P 2001-02-01 2001-02-01
US30170601P 2001-06-28 2001-06-28

Publications (1)

Publication Number Publication Date
TW523837B true TW523837B (en) 2003-03-11

Family

ID=26951663

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091101638A TW523837B (en) 2001-02-01 2002-01-31 Resistor trimming with small uniform spot from solid-state UV laser

Country Status (8)

Country Link
JP (1) JP2004519095A (en)
KR (1) KR100894025B1 (en)
CN (1) CN1232379C (en)
CA (1) CA2434969A1 (en)
DE (1) DE10295946B4 (en)
GB (1) GB2389555A (en)
TW (1) TW523837B (en)
WO (1) WO2002060633A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629132B (en) * 2013-02-13 2018-07-11 日商住友化學股份有限公司 Manufacturing apparatus of optical member affixed body

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358157B2 (en) * 2002-03-27 2008-04-15 Gsi Group Corporation Method and system for high-speed precise laser trimming, scan lens system for use therein and electrical device produced thereby
KR100826633B1 (en) * 2002-03-28 2008-05-02 지에스아이 루모닉스 코포레이션 Method and system for high-speed, precise micromachining an array of devices
JP4664269B2 (en) * 2006-12-05 2011-04-06 住友重機械工業株式会社 Laser processing apparatus and laser processing method
KR100858674B1 (en) * 2007-06-08 2008-09-16 주식회사 이오테크닉스 Method for trimming resistor using laser
DE102009020272B4 (en) * 2009-05-07 2014-09-11 Tyco Electronics Amp Gmbh Laser welding system
US8742288B2 (en) * 2011-06-15 2014-06-03 Asm Technology Singapore Pte Ltd Laser apparatus for singulation, and a method of singulation
CN103441102B (en) * 2013-08-23 2015-08-26 华东光电集成器件研究所 Ceramic thick film resistor device unit is utilized to repair the method for thick film hybrid integrated circuit
CN104091664B (en) * 2014-06-12 2016-10-26 北京锋速精密设备有限公司 A kind of novel function curve follows resistor repair and carving method
LT6428B (en) * 2015-10-02 2017-07-25 Uab "Altechna R&D" Method and device for laser processing of transparent materials
CN109903943B (en) * 2019-04-29 2021-06-22 深圳市杰普特光电股份有限公司 Resistance value adjusting method and device, storage medium and equipment

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226005A (en) 1987-03-13 1988-09-20 松下電器産業株式会社 Laser trimming of film resistor
JPH0484686A (en) * 1990-07-27 1992-03-17 Advantest Corp Laser beam machine
US5104480A (en) * 1990-10-12 1992-04-14 General Electric Company Direct patterning of metals over a thermally inefficient surface using a laser
US5233327A (en) * 1991-07-01 1993-08-03 International Business Machines Corporation Active resistor trimming by differential annealing
JPH05347205A (en) * 1992-06-15 1993-12-27 Tdk Corp Electronic component and manufacture thereof
JP3304130B2 (en) * 1992-07-27 2002-07-22 松下電器産業株式会社 Method of manufacturing rectangular thin film chip resistor
US5265114C1 (en) * 1992-09-10 2001-08-21 Electro Scient Ind Inc System and method for selectively laser processing a target structure of one or more materials of a multimaterial multilayer device
JPH06251914A (en) * 1993-02-27 1994-09-09 Taiyo Yuden Co Ltd Manufacturing method of circuit board having trimming resistance
DE4336482A1 (en) * 1993-10-26 1995-04-27 Bosch Gmbh Robert Method of trimming a magnetoresistive sensor
JPH0864407A (en) * 1994-08-26 1996-03-08 Matsushita Electric Ind Co Ltd Manufacture of resistance part
US5685995A (en) * 1994-11-22 1997-11-11 Electro Scientific Industries, Inc. Method for laser functional trimming of films and devices
US5675310A (en) * 1994-12-05 1997-10-07 General Electric Company Thin film resistors on organic surfaces
US5753391A (en) * 1995-09-27 1998-05-19 Micrel, Incorporated Method of forming a resistor having a serpentine pattern through multiple use of an alignment keyed mask
JPH09232520A (en) * 1996-02-28 1997-09-05 Matsushita Electric Works Ltd Semiconductor device and manufacturing method thereof
JPH09246023A (en) * 1996-03-14 1997-09-19 Rohm Co Ltd Resistance value adjusting method of thin film resistor, adjusting method of resistance value of heating element of thin film type thermal print head, and thin film type thermal print head
US5864430A (en) * 1996-09-10 1999-01-26 Sandia Corporation Gaussian beam profile shaping apparatus, method therefor and evaluation thereof
JPH10149908A (en) * 1996-11-19 1998-06-02 Rohm Co Ltd Method for adjusting resistance of thin film resistor, method for adjusting resistance of heat generating section of thin film thermal print head, and thin film thermal print head
JPH11162702A (en) 1997-11-25 1999-06-18 Taiyo Yuden Co Ltd Chip parts
WO1999040591A1 (en) * 1998-02-06 1999-08-12 Electro Scientific Industries, Inc. Passive resistive component surface ablation trimming technique using q-switched, solid-state ultraviolet wavelength laser
JPH11320134A (en) * 1998-05-06 1999-11-24 Canon Inc Laser trimming processing device and processing method
JP3334684B2 (en) * 1999-06-29 2002-10-15 松下電器産業株式会社 Electronic components and wireless terminals
TW482705B (en) * 1999-05-28 2002-04-11 Electro Scient Ind Inc Beam shaping and projection imaging with solid state UV Gaussian beam to form blind vias

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629132B (en) * 2013-02-13 2018-07-11 日商住友化學股份有限公司 Manufacturing apparatus of optical member affixed body

Also Published As

Publication number Publication date
WO2002060633A1 (en) 2002-08-08
GB2389555A (en) 2003-12-17
CA2434969A1 (en) 2002-08-08
CN1489504A (en) 2004-04-14
CN1232379C (en) 2005-12-21
KR20030079981A (en) 2003-10-10
JP2004519095A (en) 2004-06-24
DE10295946T5 (en) 2004-04-22
GB0317857D0 (en) 2003-09-03
DE10295946B4 (en) 2013-09-26
KR100894025B1 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
US6534743B2 (en) Resistor trimming with small uniform spot from solid-state UV laser
JP7404316B2 (en) Laser processing apparatus, method for laser processing a workpiece, and related configurations
TW528636B (en) Micromachining with high-energy, intra-cavity Q-switched CO2 laser pulses
TW523837B (en) Resistor trimming with small uniform spot from solid-state UV laser
TW482705B (en) Beam shaping and projection imaging with solid state UV Gaussian beam to form blind vias
US6559412B2 (en) Laser processing
TW498007B (en) Method and apparatus using ultrashort laser pulses to make an array of microcavity holes
KR100735532B1 (en) A photomask including expansion region in substrate and method for flating the surface of a photomask
TW525240B (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
TW200804023A (en) Micromachining with short-pulsed, solid-state UV laser
JP2014176901A (en) Laser processing apparatus and laser processing method
TW202216333A (en) Method and apparatus for laser drilling blind vias
JP2013157454A (en) Laser processing method, semiconductor device manufacturing method and laser processing device
US20160352070A1 (en) Laser ablation process for manufacturing submounts for laser diodes and laser diode units
US20070145024A1 (en) Laser via drilling apparatus and methods
CN111684550A (en) Direct printing of embedded resistors
US20170285351A9 (en) Laser via drilling apparatus and methods
JP2003290959A (en) Laser beam machining method
US9440312B2 (en) Laser ablation process for manufacturing submounts for laser diode and laser diode units
JP2003236690A (en) Laser beam machining method
Toenshoff et al. Speed-rate improvement for microcutting of thin silicon with femtosecond laser pulses
JP2002331378A (en) Laser beam machining method
JP3978152B2 (en) Laser processing method
Gu High-precision small geometry laser trimming for emerging microelectronics devices
JP2003243839A (en) Laser machining method and multilayer printed wiring board

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees