TW202115267A - Mold and method for producing mold having excellent wear resistance and erosion resistance to molten metal - Google Patents
Mold and method for producing mold having excellent wear resistance and erosion resistance to molten metal Download PDFInfo
- Publication number
- TW202115267A TW202115267A TW108136697A TW108136697A TW202115267A TW 202115267 A TW202115267 A TW 202115267A TW 108136697 A TW108136697 A TW 108136697A TW 108136697 A TW108136697 A TW 108136697A TW 202115267 A TW202115267 A TW 202115267A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- mold
- thickness
- nitrogen
- iron
- Prior art date
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
本發明係關於模具及模具之製造方法。 The present invention relates to molds and mold manufacturing methods.
使用由鋼材所形成模具的金屬加工法係有:鑄造、鍛造、及擠出等手法。該等金屬加工時所使用的模具,係對模具母材的表面施行各種表面處理。對模具母材施行的表面處理,係有如:對模具母材的表面施行滲碳、氮化及氧化等處理,而形成表面改質層的方法;利用化學性蒸鍍(Chemical Vapor Deposition;CVD)法及物理性蒸鍍(Physical Vapor Deposition;PVD)法等,將模具母材的表面利用氮化物、碳化物及硼化物等皮膜進行被覆的方法。 Metal processing methods that use molds made of steel include casting, forging, and extrusion. The molds used in such metal processing are subjected to various surface treatments on the surface of the mold base material. The surface treatment of the base material of the mold is as follows: the surface of the base material of the mold is treated by carburizing, nitriding and oxidation to form a surface modification layer; using chemical vapor deposition (CVD) Method and physical vapor deposition (Physical Vapor Deposition; PVD) method, etc., the surface of the mold base material is coated with a film such as nitrides, carbides, and borides.
例如對被加工材利用溫或熱施行鍛造時所使用的模具(溫熱鍛造用模具),影響模具壽命的原因大多係因磨損造成的損傷、或因熱疲勞造成的龜裂(熱裂),因而有就藉由施行表面處理,俾提升耐磨損性或耐熱裂性進行檢討。專利文獻1所提案的耐磨損性優異之溫熱鍛造用模具,其特徵係在模具表面部,存在以具有Si、Cr之1種或2種的濃度較基底濃厚之區域的鐵氧化物為主體、且厚度1~20μm的層。又,專利文獻2所提案的溫熱成形用模具,係藉由氮在表層部中擴散滲透,而在
距表面至少深100μm的深度,形成任一深度均成為硬度為900~1100Hv、且N濃度為1.5重量%以上的耐磨損層。
For example, the mold used in forging the material to be processed by warm or heat (warm forging mold), most of the factors that affect the life of the mold are damage caused by wear or cracks (hot cracks) caused by thermal fatigue. Therefore, it has been reviewed to improve the abrasion resistance or thermal cracking resistance by applying surface treatment. The hot forging mold with excellent wear resistance proposed in
再者,例如壓鑄用模具,因為影響模具壽命的原因大多係因熱疲勞造成龜裂(熱裂),或與金屬熔液(熔融金屬)相接的部分容易因金屬熔液而熔損,因而有就藉由施行表面處理,俾提升耐熱裂性或耐熔損性進行檢討。專利文獻3所提案的壓鑄用模具,係藉由具備有:鐵系模具母材、在模具母材之上層所設置的氮擴散層、在氮擴散層之上層所設置的氮化合物層、以及設置於氮化合物層之上層且成為最表層的特定厚度鋰鐵複合氧化物層,俾使對金屬熔液的耐熔損性優異。
In addition, for die-casting molds, most of the causes that affect the life of the mold are cracks (hot cracks) caused by thermal fatigue, or the parts that are in contact with the molten metal (molten metal) are easily melted by the molten metal, so Some reviews have been conducted to improve the resistance to thermal cracking or melting damage by applying surface treatment. The die-casting mold proposed in
[先前技術文獻] [Prior Technical Literature]
[專利文獻] [Patent Literature]
[專利文獻1]日本專利特開平9-279328號公報 [Patent Document 1] Japanese Patent Laid-Open No. 9-279328
[專利文獻2]日本專利特開2009-041063號公報 [Patent Document 2] Japanese Patent Laid-Open No. 2009-041063
[專利文獻3]日本專利特開2016-221542號公報 [Patent Document 3] Japanese Patent Laid-Open No. 2016-221542
上述專利文獻3揭示有:在鐵系模具母材的上層,形成氮擴散層、氮化合物層、及特定厚度鋰鐵複合氧化物層的壓鑄用模具,對金屬熔液呈現優異的耐熔損性。另一方面,在提升面壓較高之擠出用模具或鍛造用模具、以及部分壓鑄用模具的壽命時,除耐熔損性之外,耐磨損性亦屬重要。耐磨損性可認為係利用較深的硬化層便可獲得,但習
知方法為能獲得較深的硬化層而需要長時間處理,然而因長時間處理會有表層出現剝離等的顧慮。即,習知方法,難以在具有最佳厚度的鐵系氧化物層與氮化合物層的情況下,形成具有較深硬化層的組織,亦認為在對部分模具的應用上存在限制。
The above-mentioned
緣是,本發明在於提供:耐磨損性、及對金屬熔液之耐熔損性優異的模具。 The reason is that the present invention is to provide a mold having excellent wear resistance and resistance to melt loss in molten metal.
本發明者等在依高水準要求耐磨損性或耐面壓性的上述模具中,亦發現可高壽命化的模具表面之最佳組織,遂完成本發明。 The inventors of the present invention have also found the best structure on the surface of the mold that can increase the life of the mold in the above-mentioned mold that requires a high level of wear resistance or surface pressure resistance, and completed the present invention.
即,根據本發明所提供的模具,係具備有:鐵系模具母材、在上述模具母材之上層所設置的氮擴散層、在上述氮擴散層之上層所設置的氮化合物層、以及設置於上述氮化合物層之上層且成為最表層的鐵系氧化物層;其中,上述氮擴散層的厚度LN為100μm以上,且上述氮擴散層的最大維氏硬度HS為900HV以上;且,上述鐵系氧化物層的厚度LO為1μm以上且未滿10μm。 That is, the mold provided according to the present invention is provided with an iron-based mold base material, a nitrogen diffusion layer provided on the upper layer of the mold base material, a nitrogen compound layer provided on the upper layer of the nitrogen diffusion layer, and The iron-based oxide layer that is the outermost layer above the nitrogen compound layer; wherein the thickness L N of the nitrogen diffusion layer is 100 μm or more, and the maximum Vickers hardness H S of the nitrogen diffusion layer is 900 HV or more; and, The thickness L O of the iron-based oxide layer is 1 μm or more and less than 10 μm.
根據本發明可提供耐磨損性、及對金屬熔液之耐熔損性均優異的模具。 According to the present invention, it is possible to provide a mold excellent in both abrasion resistance and melting loss resistance to molten metal.
1:模具 1: Mould
2:模具母材 2: Mould base material
3:氮擴散層 3: Nitrogen diffusion layer
4:氮化合物層 4: Nitrogen compound layer
5:鐵系氧化物層 5: Iron-based oxide layer
100:試驗裝置 100: Test device
101:鐵製瓶 101: Iron Bottle
102:坩堝 102: Crucible
103:熔液 103: Melt
104:試驗片 104: test piece
圖1係本發明一實施形態之模具的表面側之層構造的示意剖視圖。 Fig. 1 is a schematic cross-sectional view of a layer structure on the surface side of a mold according to an embodiment of the present invention.
圖2係本實施形態之模具(成為最表層的鐵系氧化物層),距表面的厚度(深度)方向距離(橫軸)、與從氮擴散層至模具母材的維氏硬度(縱軸)間之關係之一例的示意圖。 Fig. 2 shows the thickness (depth) direction distance (horizontal axis) of the mold (the iron-based oxide layer that becomes the outermost layer) of the present embodiment, and the Vickers hardness (vertical axis) from the nitrogen diffusion layer to the base material of the mold. ) A schematic diagram of an example of the relationship between.
圖3係用於說明耐熔損性評價之試驗方法的概略圖。 Fig. 3 is a schematic diagram for explaining the test method of the melt loss resistance evaluation.
以下,針對本發明實施形態進行說明,惟,本發明並不侷限於以下實施形態。 Hereinafter, the embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
本發明一實施形態的模具,係具備有:鐵系模具母材、在模具母材之上層所設置的氮擴散層、在氮擴散層之上層所設置的氮化合物層、以及設置於氮化合物層之上層且成為最表層的鐵系氧化物層。氮擴散層的厚度LN係100μm以上,且氮擴散層的最大維氏硬度HS係900HV以上。又,鐵系氧化物層的厚度LO係1μm以上且未滿10μm。 藉由該等構成,該模具之耐磨損性、與對金屬熔液之耐熔損性均優異。 A mold according to an embodiment of the present invention is provided with: an iron-based mold base material, a nitrogen diffusion layer provided on the upper layer of the mold base material, a nitrogen compound layer provided on the upper layer of the nitrogen diffusion layer, and a nitrogen compound layer provided The upper layer becomes the outermost iron-based oxide layer. The maximum Vickers hardness H S L N line thickness based nitrogen diffusion layer above 100μm, and the nitrogen diffusion layer than 900HV. In addition, the thickness L O of the iron-based oxide layer is 1 μm or more and less than 10 μm. With these constitutions, the mold has excellent abrasion resistance and melt loss resistance to molten metal.
以下,參照圖1,詳述關於本實施形態模具的構成與製造方法等。圖1係用於說明本實施形態模具之構成的圖,且係本實施形態一例的模具1之截面的示意圖。模具1係具備有:鐵系模具母材2、氮擴散層3、氮化合物層4、及成為最表層的鐵系氧化物層5。
Hereinafter, referring to FIG. 1, the structure and manufacturing method of the mold of this embodiment will be described in detail. FIG. 1 is a diagram for explaining the structure of the mold of the present embodiment, and is a schematic diagram of a cross-section of the
鐵系氧化物層5係成為模具1最表面的層,形成於氮化合物層4之上層。鐵系氧化物層5係至少含有鐵元素(Fe)與氧元素(O)的氧化物
層。鐵系氧化物層5係可在製造模具1時能適當採用之後述製造方法的過程中形成。
The iron-based
鐵系氧化物層5的厚度LO係1μm以上且未滿10μm。該特定厚度的鐵系氧化物層5,係藉由設置於在特定氮擴散層3之上層所設置的氮化合物層4之上層,便可提升耐磨損性與耐熔損性。為能充分獲得耐熔損性的提升效果,鐵系氧化物層5的厚度LO係設為1μm以上、較佳係2μm以上、更佳係4μm以上、特佳係5μm以上。另一方面,為能充分獲得耐磨損性的提升效果,鐵系氧化物層5的厚度LO係設為未滿10μm、較佳係9.9μm以下、更佳係9.5μm以下、特佳係9μm以下。
The thickness L O of the iron-based
鐵系氧化物層5的厚度LO係藉由調整例如能適當採用於模具1之製造的氮化處理或氧化處理之處理溫度與處理時間等,便可決定。又,鐵系氧化物層5的厚度LO係藉由利用光學顯微鏡或電子顯微鏡觀察模具1的側面或截面便可測定,可採取3~10處左右的厚度平均值。該厚度LO的測定,於後述之其他層亦同。
The thickness L O of the iron-based
鐵系氧化物層5係可為氧化鐵層、及含有鐵以外之其他金屬元素的複合鐵氧化物層之任一者,較佳係複合鐵氧化物層。鐵系氧化物層5的構成元素,除含有鐵(Fe)與氧(O)之外,亦可含有模具母材2之組成元素,以及源自製造模具1時能適當採用之後述製造方法可使用之鹽浴的元素。模具母材2的組成元素係除Fe之外,亦可舉例如:Si、V、Cr、Mn、Mo、Ni、W、及S等。源自鹽浴的較佳元素係可舉例如Li等。鐵系氧化物層5的構成元素較佳係含有Fe與O,且含有從Si、V、
Cr、Mn、Mo、Ni、W、S、及Li所構成群組中選擇之1種或2種以上的元素。
The iron-based
鐵系氧化物層5較佳係含有作為其他金屬元素之鋰的鋰鐵複合氧化物層。鋰鐵複合氧化物更佳係形成為具有(Li,Fe)O、Li5Fe5O8、Li2Fe3O4、Li2Fe3O5、LiFe5O8、或LiFeO2之結晶構造的複合氧化物中之任一者或其混合物。鋰鐵複合氧化物層係例如藉由使用經添加Li+的熔融鹽浴施行鹽浴軟氮化處理便可形成。
The iron-based
氮化合物層4係形成於鐵系氧化物層5之下層,且形成於氮擴散層3之上層。氮化合物層4係至少含有氮元素(N)的化合物層。氮化合物層4係可在製造模具1時適當採用之後述製造方法的過程中形成。
The
氮化合物層4的厚度LC,從提升模具1之耐磨損性與耐熔損性的觀點,較佳係1μm以上且25μm以下、更佳係2μm以上且20μm以下、特佳係5μm以上且15μm以下。
The thickness L C of the
再者,關於前述鐵系氧化物層5與氮化合物層4的厚度之關係,鐵系氧化物層5的厚度LO相對於氮化合物層4的厚度LC的比(LO/LC),較佳係0.1以上且5.0以下。藉此,除提升模具1的耐磨損性與耐熔損性之外,亦可輕易抑制表面(鐵系氧化物層5的表面)的光澤不均。從此觀點,LO/LC更佳係0.2以上、特佳係0.5以上,且更佳係3.0以下、特佳係1.5以下。
Furthermore, regarding the relationship between the thickness of the iron-based
氮化合物層4的構成元素,除含有氮(N)之外,亦可含有碳(C)、模具母材2之組成元素、以及源自製造模具1時能適當採用之後述製造方法可使用之鹽浴的元素。模具母材2的組成元素,如前述,可舉例如:Fe、Si、V、Cr、Mn、Mo、Ni、W、及S等。源自鹽浴的較佳元素係可舉例如Li等。氮化合物層4的構成元素較佳係含有N與C,且含有從Fe、Si、V、Cr、Mn、Mo、Ni、W、S、及Li所構成群組中選擇之1種或2種以上的元素。
The constituent elements of the
氮擴散層3係形成於氮化合物層4之下層,且形成於模具母材2之上層。氮擴散層3係可在製造模具1時能適當採用之後述製造方法的過程中形成,至少藉由氮元素擴散而形成。氮擴散層3亦可依除含氮之外,尚含有作為擴散元素之碳及氧中之任一者或二者的方式形成。氮擴散層3的構成元素較佳係含有氮(N)與碳(C),且含有模具母材2的組成元素(Fe、Si、V、Cr、Mn、Mo、Ni、W、及S等)中之1種或2種以上的元素。
The
氮擴散層3的厚度LN係為能成為耐磨損性優異的模具,必需為100μm以上。從更加提升模具1之耐磨損性的觀點,氮擴散層3的厚度LN較佳係110μm以上、更佳係130μm以上、特佳係150μm以上。氮擴散層3的厚度LN之上限並無特別的限定,從模具1之生產性的觀點,較佳係500μm以下、更佳係400μm以下。
The thickness L N of the
再者,氮擴散層3的最大維氏硬度HS,係為能成為耐磨損性優異的模具,必需為900HV以上。氮擴散層3的維氏硬度係配合氮擴散層
3的厚度(深度)方向而有所不同,在氮擴散層3的厚度(深度)方向上,越靠近氮化合物層4則越高,越接近模具母材2則越低(參照後述圖2)。由此現象得知,將氮擴散層3中,在與氮化合物層4之界面附近(從該界面至氮擴散層3的深度10μm之區域內)的維氏硬度,視為氮擴散層3的維氏硬度之最大值,稱之為最大維氏硬度HS。又,將最大維氏硬度的位置設在從氮擴散層3與氮化合物層4的界面至氮擴散層3的深度10μm區域之內,係藉由假設可測定該界面附近之維氏硬度的位置。
In addition, the maximum Vickers hardness H S of the
從更加提升模具1之耐磨損性的觀點,氮擴散層3的最大維氏硬度HS較佳係920HV以上、更佳係950HV以上、特佳係980HV以上。氮擴散層3的最大維氏硬度HS之上限並無特別的限定,例如可設為1500HV以下。又,氮擴散層3的最大維氏硬度Hs較佳係較模具母材2芯部的維氏硬度HB高出300HV以上(HS-HB≧300)、更佳係高出400HV以上(HS-HB≧400)、特佳係高出420HV以上(HS-HB≧420)。另外,氮擴散層3的維氏硬度係利用根據JIS Z 2244:2009所記載「微小維氏硬度試驗」的方法、或根據JIS G 0562:1993所記載「擴散層深度測定方法」的方法,利用微小維氏硬度試驗機測定的值。
From the viewpoint of further improving the wear resistance of the
如前述,氮擴散層3的維氏硬度係依存於氮擴散層3的厚度(深度)方向。圖2係距模具1(成為最表層的鐵系氧化物層5)表面的厚度(深度)方向距離(圖2之橫軸)、與從氮擴散層3至模具母材2的維氏硬度(圖2之縱軸)間之關係之一例的示意圖。如圖2所示,氮擴散層3的維氏硬度係在氮擴散層3中越接近氮化合物層4側則越高。另一方面,氮擴
散層3的維氏硬度係在氮擴散層3中越接近模具母材2側則越低,成為與模具母材2的維氏硬度HB相同程度。
As described above, the Vickers hardness of the
從更加提升模具1的耐磨損性與耐熔損性之觀點,氮擴散層3中在與氮化合物層4的界面側,距模具1表面的厚度(深度)方向距離、與氮擴散層3的維氏硬度間之關係,最好存在有如以下所述之關係。首先,將從模具1最表層(鐵系氧化物層5)表面至氮擴散層3中呈現最大維氏硬度HS之位置的深度,設為DS(μm)。如前述,氮擴散層3的最大維氏硬度HS係氮擴散層3中從與氮化合物層4的界面至深度10μm之區域內的維氏硬度,因而上述深度DS(μm)係LO+LC(μm)≦DS≦LO+LC+10(μm)。又,將從模具1最表層(鐵系氧化物層5)表面至氮擴散層3中上述深度DS+30μm的深度,設為DX(μm),則(LO+LC+30(μm)≦DX≦LO+LC+40(μm)),將氮擴散層3中上述深度DX處的維氏硬度設為HX(HV)。於此情況,較佳係滿足下式(1)(參照圖2)。
From the viewpoint of further improving the wear resistance and melt loss resistance of the
0<(HS-HX)/(DX-DS)<4‧‧‧(1) 0<(H S -H X )/(D X -D S )<4‧‧‧(1)
上述「(HS-HX)/(DX-DS)」係表示氮擴散層3中從與氮化合物層4的界面至深度30~40μm之位置的區域內,氮擴散層3之深度與維氏硬度間的關係,且表示圖2中該區域的曲線斜率。(HS-HX)/(DX-DS)在依上式(1)所示特定範圍內,係表示氮擴散層3中從與氮化合物層4的界面至深度30μm之位置的維氏硬度變化(降低)緩和。(HS-HX)/(DX-DS)之值(HV/μm)更佳係3以下、特佳係2以下。
The above-mentioned "(H S -H X )/(D X -D S )" means the depth of the
再者,氮擴散層3的最大維氏硬度HS與模具母材2的維氏硬度
HB之差(HS-HB),以及氮擴散層3的厚度LN、氮化合物層4的厚度LC、及鐵系氧化物層5的厚度LO之合計(LN+LC+LO),較佳係滿足下式(2)之關係。
Furthermore, the difference between the maximum Vickers hardness H S of the nitrogen diffusion layer 3 and the Vickers hardness H B of the mold base material 2 (H S -H B ), the thickness L N of the
0.3<(HS-HB)/(LN+LC+LO)<4‧‧‧(2) 0.3<(H S -H B )/(L N +L C +L O )<4‧‧‧(2)
藉由(HS-HB)/(LN+LC+LO)的值(HV/μm)係藉由在依上式(2)所示特定範圍內,便可更加提高模具1的耐磨損性與耐熔損性。從此觀點,(HS-HB)/(LN+LC+LO)之值(HV/μm)較佳係0.5以上、更佳係3以下、特佳係2以下。
The value (HV/μm) of (H S -H B )/(L N +L C +L O ) is within the specific range shown in the above formula (2), which can further improve the
鐵系模具母材2係模具1的基材。模具母材2的材質係鐵系材料,具體而言係鋼材。較佳模具母材2的材質係可舉例如JIS規格(JIS G4404:2006)的熱模具用鋼。模具母材2的材質更佳係可舉例如:JIS規格的SKD4材、SKD5材、SKD6材、SKD61材、SKD62材、SKD7材、SKD8材、SKT3材、SKT4材、及SKT6材、以及相當於該等的鋼材等。所以,模具1較佳係溫熱成形用(例如溫熱鍛造用或溫熱擠出用等)、或鑄造用(例如壓鑄用等),更佳係溫熱鍛造用或壓鑄用。
The iron-based
模具1的製造方法並無特別的限定。藉由對模具母材2施行例如:伴隨氧化的鹽浴軟氮化處理;伴隨氧化的氣體氮化處理;以及氮化處理或軟氮化處理、與氧化處理、或伴隨氧化的氮化處理或者軟氮化處理之組合處理等任一項處理,便可製造模具1。該等製造方法中,較佳係氮化處理或軟氮化處理、與氧化處理、或伴隨氧化的氮化處理或者軟氮化處理之組合處理,更佳係下述製造方法。
The manufacturing method of the
本發明一實施形態的模具之製造方法,係包括有:對鐵系模具母材,使用氣體或熔融鹽浴施行氮化處理或軟氮化處理的第1步驟;以及在該第1步驟後,施行氧化處理、或伴隨氧化的氮化處理或者軟氮化處理的第2步驟。該製造方法中,利用第1步驟與第2步驟,在模具母材2上依序形成厚度LN為100μm以上且最大維氏硬度HS為900HV以上的氮擴散層3、氮化合物層4、及厚度LO為1μm以上且未滿10μm的鐵系氧化物層5。
A method of manufacturing a mold according to an embodiment of the present invention includes: a first step of nitriding or nitrocarburizing an iron-based mold base material using a gas or molten salt bath; and after the first step, The second step of oxidation treatment, nitridation treatment with oxidation, or nitrocarburizing treatment is performed. In this manufacturing method, by the first step and the second step, are sequentially formed on the die base material 2 L N of a thickness of 100μm or more and a maximum Vickers hardness of 900HV or more H S
根據包括有上述第1步驟與第2步驟的模具1之製造方法,針對模具母材2的表面,可利用第1步驟與第2步驟等二階段,施行氮化處理或軟氮化處理(以下包括軟氮化處理在內簡記為「氮化處理」)。所以,氮化處理的溫度與時間等條件之精密控制便容易化。即,利用上述第1步驟與第2步驟,便可輕易在模具母材2上,形成厚度LN為100μm以上且最大維氏硬度HS為900HV以上的氮擴散層3、氮化合物層4、及厚度LO為1μm以上且未滿10μm的鐵系氧化物層5。
According to the manufacturing method of the
第1步驟中氮化處理時可使用之氣體,係可使用自習知起便被使用於氣體氮化處理的任一氣體。較佳氣體係可舉例如:氨(NH3)氣、氮氣、及該等的混合氣體、以及NH3氣體、氮氣、氫氣、及二氧化碳氣體的混合氣體等。使用氣體的氮化處理時,處理溫度較佳係430~590℃、更佳係480~580℃。又,其處理時間較佳係60分鐘以上、更佳係600~6000分鐘。 The gas that can be used in the nitridation treatment in the first step can be any gas that has been used in gas nitridation treatment since the prior art. Preferable gas systems include, for example, ammonia (NH 3 ) gas, nitrogen, and mixed gases of these, and mixed gases of NH 3 gas, nitrogen, hydrogen, and carbon dioxide gas. When using gas for nitriding treatment, the treatment temperature is preferably 430 to 590°C, more preferably 480 to 580°C. In addition, the processing time is preferably 60 minutes or more, more preferably 600 to 6000 minutes.
第1步驟中氮化處理時可使用之熔融鹽浴,係可使用自習知起便使用於鹽浴軟氮化處理的任一熔融鹽浴。鹽浴軟氮化處理係可採用根據例如日本專利特開2002-226963號公報、及日本專利特開2004-91906號公報所揭示鹽浴軟氮化處理的方法。較佳的熔融鹽浴係可舉例如:含有氰酸鹽或碳酸鹽的熔融鹽浴。更佳係可舉例如:所含陽離子成分為Li+、Na+、及K+中之1種以上,且所含陰離子成分為CNO-、及CO3 2-中之1種以上的熔融鹽浴。使用熔融鹽浴的氮化處理時,處理溫度較佳係480~600℃、更佳係530~580℃。又,其處理時間較佳係30~600分鐘、更佳係60~180分鐘。 The molten salt bath that can be used in the nitriding treatment in the first step can be any molten salt bath that has been used in salt bath nitrocarburizing since the prior art. The salt bath nitrocarburizing treatment system can employ, for example, a salt bath nitrocarburizing method disclosed in Japanese Patent Laid-Open No. 2002-226963 and Japanese Patent Laid-Open No. 2004-91906. A preferable molten salt bath system includes, for example, a molten salt bath containing cyanate or carbonate. More preferably, for example, a molten salt bath containing one or more of Li + , Na + , and K + as a cationic component, and one or more of CNO - and CO 3 2- as an anion component . In the case of nitriding treatment using a molten salt bath, the treatment temperature is preferably 480 to 600°C, more preferably 530 to 580°C. Moreover, the processing time is preferably 30 to 600 minutes, more preferably 60 to 180 minutes.
第2步驟中氧化處理,較佳係在硝酸鈉及硝酸鉀等硝酸鹽、或氫氧化鈉及氫氧化鉀等鹼金屬的氫氧化物、碳酸鈉及碳酸鉀等碳酸鹽的熔融鹽浴中,使經第1步驟施行氮化處理完畢的模具母材2接觸之處理。該處理溫度較佳係280~600℃、更佳係350~500℃。處理時間較佳係10~180分鐘、更佳係20~120分鐘。
The oxidation treatment in the second step is preferably in a molten salt bath of nitrates such as sodium nitrate and potassium nitrate, hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide, and carbonates such as sodium carbonate and potassium carbonate. A process of contacting the
第2步驟中氧化處理時亦可使用氮化氣體,施行伴隨氧化的氣體氮化處理。該處理時可使用的氣體係可使用自習知起便使用於氣體氮化處理的任一氣體。較佳氣體係可舉例如:水蒸氣、氧氣、氮氣、氫氣、氨氣、及該等的混合氣體等。使用氣體的氧化處理時,處理溫度較佳係350~600℃、更佳係500~560℃。又,其處理時間較佳係30~600分鐘、更佳係30~120分鐘。 In the second step, a nitriding gas may be used during the oxidation treatment, and a gas nitriding treatment accompanied by oxidation may be performed. The gas system that can be used in this treatment can be any gas that has been used in gas nitriding treatment since the prior art. Preferable gas systems include, for example, water vapor, oxygen, nitrogen, hydrogen, ammonia, and mixed gases of these. In the oxidation treatment using gas, the treatment temperature is preferably 350 to 600°C, more preferably 500 to 560°C. Moreover, the processing time is preferably 30 to 600 minutes, more preferably 30 to 120 minutes.
再者,第2步驟中伴隨氧化的氮化處理(軟氮化處理),較佳係在含
有氰酸鹽、碳酸鹽、及鋰鹽的熔融鹽浴中,使經第1步驟的氮化處理完畢之模具母材2接觸的處理(軟氮化處理)。該軟氮化處理的處理溫度與處理時間,係可設定在前述第1步驟可採用氮化處理(軟氮化處理)所敘述的處理溫度與處理時間之範圍內。本實施形態更佳係包括有:使用前述氣體對模具母材2施行氮化處理的第1步驟;以及在該第1步驟後,施行伴隨氧化的軟氮化處理的第2步驟。
Furthermore, the nitriding treatment (soft nitriding treatment) accompanied by oxidation in the second step is preferably contained in
In a molten salt bath containing cyanate, carbonate, and lithium salt, the
以上所詳述本實施形態的模具1,因為在模具母材2上依序設置有:厚度100μm以上且最大維氏硬度900HV以上的氮擴散層3、氮化合物層4、以及厚度1μm以上且未滿10μm的鐵系氧化物層5,因而耐磨損性與耐熔損性均優異。所以,模具1呈高壽命,該結果有助於減少使用模具1所製造金屬製品的製造成本。
The
另外,本發明一實施形態的模具係可採用以下構成。 In addition, the mold system according to an embodiment of the present invention can adopt the following configuration.
[1]一種模具,係具備有:鐵系模具母材、在上述模具母材之上層所設置的氮擴散層、在上述氮擴散層之上層所設置的氮化合物層、以及設置於上述氮化合物層之上層且成為最表層的鐵系氧化物層;其中,上述氮擴散層的厚度LN係100μm以上,且上述氮擴散層的最大維氏硬度HS係900HV以上;且,上述鐵系氧化物層的厚度LO係1μm以上且未滿10μm。 [1] A mold comprising: an iron-based mold base material, a nitrogen diffusion layer provided on the upper layer of the mold base material, a nitrogen compound layer provided on the upper layer of the nitrogen diffusion layer, and the nitrogen compound provided on the the upper layer and the outermost layer becomes iron-based oxide layer; wherein the thickness of the above-described line L N of the nitrogen diffusion layer 100 m or more, and a maximum Vickers hardness H S is the above 900HV or more of the nitrogen diffusion layer; and the iron oxide The thickness L O of the material layer is 1 μm or more and less than 10 μm.
[2]如上述[1]所記載的模具,其中,上述氮化合物層的厚度LC係1μm以上且25μm以下。 [2] The mold according to the above [1], wherein the thickness L C of the nitrogen compound layer is 1 μm or more and 25 μm or less.
[3]如上述[1]或[2]所記載的模具,其中,上述鐵系氧化物層的厚度LO相對於上述氮化合物層的厚度LC的比(LO/LC),係0.1以上且5.0 以下。 [3] The mold described in [1] or [2] above, wherein the ratio (L O /L C ) of the thickness L O of the iron-based oxide layer to the thickness L C of the nitrogen compound layer is 0.1 or more and 5.0 or less.
[4]如上述[1]~[3]中任一項所記載的模具,其中,將從上述最表層表面至上述氮擴散層中呈現上述最大維氏硬度HS之位置的深度設為DS(μm),將從上述最表層表面至上述氮擴散層中上述DS+30μm的深度設為DX(μm),且將上述氮擴散層中上述DX處的維氏硬度設為HX(HV)時,滿足下式(1): Depth [4] The above [1] to [3] according to any one mold, wherein the outermost layer from said surface to a nitrogen diffusion layer is present above the position of the maximum of the Vickers hardness is defined as D H S S (μm), the depth from the surface of the outermost layer to the depth of D S +30 μm in the nitrogen diffusion layer is D X (μm), and the Vickers hardness at the D X in the nitrogen diffusion layer is H When X (HV), the following formula (1) is satisfied:
0<(HS-HX)/(DX-DS)<4‧‧‧(1) 0<(H S -H X )/(D X -D S )<4‧‧‧(1)
[5]如上述[1]~[4]中任一項所記載的模具,其中,上述氮擴散層的上述最大維氏硬度HS與上述模具母材的維氏硬度HB之差(HS-HB),與上述氮擴散層的厚度LN、上述氮化合物層的厚度LC、及上述鐵系氧化物層的厚度LO合計(LN+LC+LO),係滿足下式(2)關係: [5] above [1] mold to [4] according to any one of claims, wherein the Vickers hardness H S maximum nitrogen diffusion layer and the above-described difference between the Vickers hardness H B of the mold base material (H S -H B ), and the total of the thickness L N of the nitrogen diffusion layer, the thickness L C of the nitrogen compound layer, and the thickness L O of the iron-based oxide layer (L N +L C +L O ), which satisfies The relationship of the following formula (2):
0.3<(HS-HB)/(LN+LC+LO)<4‧‧‧(2) 0.3<(H S -H B )/(L N +L C +L O )<4‧‧‧(2)
[6]如上述[1]~[5]中任一項所記載的模具,其係溫熱成形用或鑄造用。 [6] The mold as described in any one of [1] to [5] above, which is used for warm forming or casting.
[7]一種模具之製造方法,係包括有:對鐵系模具母材使用氣體或熔融鹽浴,施行氮化處理或軟氮化處理的第1步驟;以及在上述第1步驟後,施行氧化處理、或伴隨氧化的氮化處理或者軟氮化處理的第2步驟;其中,利用上述第1步驟與上述第2步驟,在上述模具母材上,依序形成厚度LN為100μm以上且最大維氏硬度HS為900HV以上的氮擴散層、氮化合物層、及厚度LO為1μm以上且未滿10μm的鐵系氧化物層。 [7] A method of manufacturing a mold, comprising: applying a gas or molten salt bath to the iron-based mold base material, and performing a first step of nitriding treatment or soft nitriding treatment; and after the first step, performing oxidation The second step of treatment, or nitriding treatment or nitrocarburizing accompanied by oxidation; wherein, using the first step and the second step, the mold base material is sequentially formed with a thickness L N of 100 μm or more and a maximum A nitrogen diffusion layer having a Vickers hardness H S of 900 HV or more, a nitrogen compound layer, and an iron-based oxide layer having a thickness L O of 1 μm or more and less than 10 μm.
[實施例] [Example]
以下,針對本發明所產生的效果,根據試驗例進行具體說明,惟, 本發明並不侷限於該等試驗例。另外,試驗例中的「%」,在無特別聲明的前提下,係指質量基準(質量%)。 Hereinafter, the effects produced by the present invention will be specifically explained based on test examples, but, The present invention is not limited to these test examples. In addition, the "%" in the test example refers to the quality standard (% by mass) unless otherwise stated.
<試驗例1~13> <Test Examples 1-13>
假設模具母材的鋼材係使用對相當於SKD61的鋼(含有:C:0.37%、Si:0.97%、Mn:0.43%、Cr:5.30%、Mo:1.22%、及V:0.81%,其餘係實質上由鐵構成的鋼材),施行調質處理(淬火與回火),使維氏硬度(HB)成為480HV的鋼材。將由該鋼材加工成直徑16mm、高度100mm的圓柱狀母材試驗片A,使用於熔損試驗,將加工成直徑32mm、高度3mm的圓板狀母材試驗片B,使用於磨損試驗等。 Assuming that the steel system of the base material of the mold uses steel equivalent to SKD61 (containing: C: 0.37%, Si: 0.97%, Mn: 0.43%, Cr: 5.30%, Mo: 1.22%, and V: 0.81%, the rest is A steel material that is substantially made of iron) is subjected to quenching and tempering treatment (quenching and tempering) so that the Vickers hardness (H B) becomes 480HV. A cylindrical base material test piece A with a diameter of 16 mm and a height of 100 mm processed from this steel material was used for a melt loss test, and a disc-shaped base material test piece B processed with a diameter of 32 mm and a height of 3 mm was used for abrasion tests and the like.
試驗例1~13係分別針對上述母材試驗片A與B,施行以下表1所示氮化處理等,而製作試驗片1~13(試驗片A-1~13及試驗片B-1~13)。表1中的「氣體氮化處理」係將上述母材試驗片在氨氣、氮氣及氫氣的混合氣體環境中加熱,而施行的氮化處理。「鹽浴軟氮化處理」係將上述母材試驗片浸漬於含有氰酸鹽、碳酸鹽、及鋰鹽的熔融鹽浴中,而施行的軟氮化處理。「無添加Li的鹽浴軟氮化處理」係將上述母材試驗片浸漬於未含鋰鹽,但含有氰酸鹽與碳酸鹽的熔融鹽浴中,而施行的軟氮化處理。「後氧化處理」係在氮化處理後,使經氮化處理完畢的試驗片浸漬於鈉與鉀等之硝酸鹽、以及鈉與鉀等之鹼氫氧化物的熔融鹽浴中,而施行的氧化處理。又,試驗例8~11係在第1步驟依表1所記載條件施行「氣體氮化處理」後,在第2步驟依同表所記載條件施行「鹽浴軟氮化處理」。
Test examples 1 to 13 were performed on the above-mentioned base material test pieces A and B, respectively, and subjected to the nitriding treatment shown in Table 1 below, to prepare
(表面處理層之種類與厚度(深度)) (Type and thickness (depth) of surface treatment layer)
就所製作的試驗片B-1~13,分別針對試驗片的截面利用X射線繞射裝置(XRD)施行測定與分析。利用該XRD測定,針對各試驗片確認利用氮化處理等所形成表面處理層的種類。又,利用光學顯微鏡觀察,針對各試驗片測定鐵系氧化物層的厚度(深度)LO(μm)、氮化合物層的厚度(深度)LC(μm)、及氮擴散層的厚度(深度)LN(μm)。各層的厚度測定係在各層中隨機選擇3個地方實施,並取該等的平均值。該等結果與LO/LC示於表2。另外,表2中,厚度(深度)為「0.0μm」的地方,係表示並沒有確認到與其符合的層。 For the test pieces B-1 to 13 produced, the cross-sections of the test pieces were measured and analyzed by X-ray diffraction device (XRD). By this XRD measurement, the type of surface treatment layer formed by nitriding treatment or the like was confirmed for each test piece. In addition, the thickness (depth) L O (μm) of the iron-based oxide layer, the thickness (depth) L C (μm) of the nitrogen compound layer, and the thickness (depth) of the nitrogen diffusion layer were measured for each test piece by observation with an optical microscope. )L N (μm). The thickness measurement of each layer is carried out at three places randomly selected in each layer, and the average value of these is taken. These results and L O /L C are shown in Table 2. In addition, in Table 2, where the thickness (depth) is "0.0 μm", it means that no layer conforming to it has been confirmed.
(氮擴散層之最大維氏硬度) (Maximum Vickers hardness of nitrogen diffusion layer)
針對所製作的試驗片B-1~13,分別切斷試驗片後製作試驗片的截面,針對該截面測定氮擴散層的最大維氏硬度HS(HV)、氮擴散層中深度DX(μm)處的維氏硬度HX(HV)。氮擴散層的最大維氏硬度HS係在氮擴散層的深度方向上,從氮擴散層最表層側至深度10μm之區域內(距試驗片最表層表面的深度DS(LO+LC(μm)≦DS≦LO+LC+10(μm))之位置)施行測定。又,維氏硬度HX係在氮擴散層的深度方向上,從測到最大維氏硬度HS的位置至深度30μm的位置(距試驗片最表層表面的深度DX(DX=DS+30μm)之位置)施行測定。維氏硬度的測定係根據JIS Z 2244:2009所記載「微小維氏硬度試驗」的方法,使用維氏硬度試驗機(MITUTOYO公司製、商品名「微小維氏硬度試驗機HM-103」),依試驗力0.980N的條件實施。最大維氏硬度HS(HV)的測定值、與「(HS-HX)/(DX-DS)」的值、及「(HS-HB)/(LN+LC+LO)」的值示於表2。 For the prepared test specimens B-1 to 13, cut the test specimens and prepare the cross sections of the test specimens, and measure the maximum Vickers hardness H S (HV) of the nitrogen diffusion layer and the depth of the nitrogen diffusion layer D X ( μm) Vickers hardness H X (HV). The maximum Vickers hardness H S of the nitrogen diffusion layer is in the depth direction of the nitrogen diffusion layer, from the outermost surface of the nitrogen diffusion layer to a depth of 10 μm (the depth from the outermost surface of the test piece D S (L O +L C) (μm)≦D S ≦L O +L C +10 (μm)) position). In addition, the Vickers hardness H X is in the depth direction of the nitrogen diffusion layer, from the position where the maximum Vickers hardness H S is measured to a depth of 30 μm (the depth from the outermost surface of the test piece D X (D X = D S +30μm)) to perform the measurement. The measurement of Vickers hardness is based on the method of "micro Vickers hardness test" described in JIS Z 2244:2009, using a Vickers hardness tester (manufactured by MITUTOYO, trade name "micro Vickers hardness tester HM-103"), Implemented under the conditions of a test force of 0.980N. The measured value of the maximum Vickers hardness H S (HV), and the value of "(H S -H X )/(D X -D S )", and "(H S -H B )/(L N +L C) +L O )" is shown in Table 2.
(表面不均) (Uneven surface)
分別針對所製作的試驗片B-1~13,利用目視確認最表層,而確認有無表面光澤不均(表層的剝離或微細組織的差異),將沒有確認到不均者評為良好(○),將有確認到不均者評為不良(×)。其結果示於表2。 For each of the test pieces B-1 to 13 produced, the outermost layer was visually confirmed, and the unevenness of the surface gloss (peeling of the surface layer or the difference in the fine structure) was confirmed, and those with no unevenness were rated as good (○) , And those who have confirmed unevenness will be rated as bad (×). The results are shown in Table 2.
(熔損率) (Melting loss rate)
針對所製作的試驗片A-1~13,分別施行對鋁合金熔液之耐熔損性的評價試驗。該試驗係使用如圖3所示之試驗裝置100,在鐵製瓶101中所收容的內徑約90mm與深度約200mm的氧化鋁製坩堝102中,將鋁合金之Al-Si-Cu系合金的JIS規格ADC12(Si:11.4%、Cu:1.9%、
其餘:Al),於680℃加熱熔解,在該熔液103中,將2條一組的各試驗片104在浸漬約30mm的狀態下,一邊依約200rpm旋轉,一邊保持120分鐘。各試驗片的熔損量(熔損率)係測定試驗片試驗前後的質量,再從式:(W0-W1)/W0×100(%)(W0:試驗前的試驗片質量;W1:試驗後的試驗片質量)所計算出的值。該結果示於表2。另外,針對沒有施行任何氮化處理等的上述母材試驗片A,同樣地測定熔損率,結果母材試驗片A的熔損率係11.667%。
For the prepared test pieces A-1 to 13, respectively, an evaluation test of the melting loss resistance of the aluminum alloy melt was performed. The test system uses the
(耐磨損性) (Wear resistance)
分別針對所製作試驗片B-1~13施行耐磨損性的評價試驗。具體而言,使用球對盤式摩擦磨損試驗機(RHESCA公司製、型式「FPR-2100」),依乾式、對象材:鋁球(A1050)、荷重:50g、速度:0.1m/s、及試驗時間:1小時的條件施行試驗後,測定圓盤側(各試驗片)的磨損量(m3)。該結果示於表2。 The abrasion resistance evaluation test was performed on the prepared test pieces B-1 to 13 respectively. Specifically, a ball-to-disc friction and wear tester (manufactured by RHESCA, model "FPR-2100"), based on the dry type, object material: aluminum ball (A1050), load: 50g, speed: 0.1m/s, and Test time: After the test was performed under the condition of 1 hour, the amount of wear (m 3 ) on the disc side (each test piece) was measured. The results are shown in Table 2.
由表2確認到試驗例6~10所獲得試驗片6~10(特別係試驗例7~10所獲得試驗片7~10),相較於該等以外的其他試驗例所獲得試驗片之下,熔損率低、磨損量少。所以,可確認藉由在母材試驗片上設置厚度LN為100μm以上且最大維氏硬度HS為900HV以上的氮擴散層、氮化合物層、及厚度LO為1μm以上且未滿10μm的鐵系氧化物層,便可提升耐磨損性與耐熔損性。所以,確認到藉由採用此種構成,便可提供耐磨損性與耐熔損性均優異的模具。 It is confirmed from Table 2 that the test pieces 6-10 obtained in test examples 6-10 (special test pieces 7-10 obtained in test examples 7-10) are below the test pieces obtained in other test examples , Low melting loss rate and less wear. Therefore, confirmed by a thickness L N on a base material of the test piece is 100μm or more and a maximum Vickers hardness of 900HV or more H S nitrogen diffusion layer, a nitrogen compound layer, and a thickness of 1μm or more L O iron and less than 10μm The oxide layer can improve abrasion resistance and melt loss resistance. Therefore, it was confirmed that by adopting such a structure, a mold excellent in both abrasion resistance and melt loss resistance can be provided.
1:模具 1: Mould
2:模具母材 2: Mould base material
3:氮擴散層 3: Nitrogen diffusion layer
4:氮化合物層 4: Nitrogen compound layer
5:鐵系氧化物層 5: Iron-based oxide layer
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108136697A TW202115267A (en) | 2019-10-09 | 2019-10-09 | Mold and method for producing mold having excellent wear resistance and erosion resistance to molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108136697A TW202115267A (en) | 2019-10-09 | 2019-10-09 | Mold and method for producing mold having excellent wear resistance and erosion resistance to molten metal |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202115267A true TW202115267A (en) | 2021-04-16 |
Family
ID=76604365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108136697A TW202115267A (en) | 2019-10-09 | 2019-10-09 | Mold and method for producing mold having excellent wear resistance and erosion resistance to molten metal |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202115267A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115319034A (en) * | 2022-08-18 | 2022-11-11 | 攀钢集团攀枝花钢铁研究院有限公司 | Ferrovanadium alloy casting ingot mold and preparation method thereof |
-
2019
- 2019-10-09 TW TW108136697A patent/TW202115267A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115319034A (en) * | 2022-08-18 | 2022-11-11 | 攀钢集团攀枝花钢铁研究院有限公司 | Ferrovanadium alloy casting ingot mold and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102037159B (en) | Iron and steel material having quenched surface layer part, process for producing the iron and steel material, and quenched component | |
US20090314448A1 (en) | Method for production of metal material | |
JP5865487B2 (en) | Casting member and method for manufacturing the same, die casting sleeve, and die casting apparatus | |
TWI679289B (en) | Repair-welding material for die | |
JP3979502B1 (en) | Method of nitriding / oxidizing and re-oxidizing metal member | |
TW202115267A (en) | Mold and method for producing mold having excellent wear resistance and erosion resistance to molten metal | |
JP5378715B2 (en) | Steel surface treatment method and surface treatment apparatus | |
JPH09263906A (en) | Iron-nickel-chrome-alum. ferritic alloy and its production | |
JP3608546B2 (en) | Mold for casting and manufacturing method thereof | |
CN108431286B (en) | Hot press molded article with suppressed microcrack and process for producing the same | |
TW200424364A (en) | Iron based part and production method for the same | |
JP2010222648A (en) | Carbon steel material manufacturing method and carbon steel material | |
JP5833982B2 (en) | Mold for casting and manufacturing method thereof | |
WO2021070344A1 (en) | Die and method for producing die | |
JP2001025843A (en) | Manufacture of forged part and die for forging using the same | |
JP2020001056A (en) | Mold and mold manufacturing method | |
JP4789141B2 (en) | Manufacturing method of iron parts | |
JP2007056368A (en) | Surface treatment method for aluminum extruding die, and aluminum extruding die | |
JP2010222649A (en) | Carbon steel material manufacturing method and carbon steel material | |
JP2005028398A (en) | Material with erosion-resistance to aluminum and its producing method | |
JP4929093B2 (en) | High hardness, wear resistant parts and method of manufacturing the same | |
JPH1190611A (en) | Die for die casting and manufacture thereof | |
JP6236031B2 (en) | Die casting mold | |
JP2013053342A (en) | Surface treatment method of steel member and treated article of steel member | |
CN108754410A (en) | The preparation method of gradient coating for blanking die surface peening |