Nothing Special   »   [go: up one dir, main page]

JP3608546B2 - Mold for casting and manufacturing method thereof - Google Patents

Mold for casting and manufacturing method thereof Download PDF

Info

Publication number
JP3608546B2
JP3608546B2 JP2001349928A JP2001349928A JP3608546B2 JP 3608546 B2 JP3608546 B2 JP 3608546B2 JP 2001349928 A JP2001349928 A JP 2001349928A JP 2001349928 A JP2001349928 A JP 2001349928A JP 3608546 B2 JP3608546 B2 JP 3608546B2
Authority
JP
Japan
Prior art keywords
less
oxide film
mold
mass
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349928A
Other languages
Japanese (ja)
Other versions
JP2003154437A (en
Inventor
知暁 瀬羅
正英 海野
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001349928A priority Critical patent/JP3608546B2/en
Publication of JP2003154437A publication Critical patent/JP2003154437A/en
Application granted granted Critical
Publication of JP3608546B2 publication Critical patent/JP3608546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低圧鋳造、重力鋳造等の非鉄金属鋳造に用いられる金型およびその製造方法に関する。
【0002】
【従来の技術】
Al、Mg、Znの各単体金属またはこれらの合金等の非鉄金属製品の成形方法の一つに金型鋳造法があるが、このような鋳造用金型には、鋳造時の溶損に対する抵抗性が要求される。特に、溶融Alは、ほとんどの金属材料との反応性が高いため、溶融Alを金型鋳造によって成型する場合には、金型の内面側が溶損を受けやすい。
【0003】
このような鋳造用金型の溶損を防止する種々の技術が提案されている。例えば、特開平6−179045号公報には、鋳造空間の狭隘部を形成する部分にセラミック溶射を施した鋳造金型が提案されている。しかし、セラミックス系の材料は、金属材料と比較して価格が高く、セラミック溶射によって金型が歪む場合もある。
【0004】
特開平8−144039号公報には、所定の化学成分を有し、表面に浸炭処理を施すか、更に窒化処理、硼化処理を施した鋳造用金型または接溶湯部材が提案されている。これにより耐溶損性は向上するが、更なる向上が求められている。
【0005】
特開平9−111417号公報には、Cr:25〜35%、Al:4〜8%を含む鋼材の表面にAlを主体とする被膜を形成させた金属溶湯接触部材が提案されている。しかし、この鋼材ではAlを多量に含有させる必要があるため、金型製造時に地きずが発生しやすい。また、鋼材表面にAlを主体とする被膜を形成させるために1000〜1300℃の酸化雰囲気中で加熱保持する必要があり、このような高温下では金型が歪むおそれがある。
【0006】
特開2000−219954号公報では、Si:2〜10%を含有する鉄基合金材または鉄基合金材肉盛層の表面を酸化させて、珪素酸化物を多量に含む酸化被膜が2〜20μmである溶融アルミニウム用耐食性部材が提案されている。しかし、Si:2〜10%を含有するため、高温強度および靱性が低いという問題がある。
【0007】
【発明が解決しようとする課題】
本発明の目的は、複雑な熱処理工程を伴うことなく、金型が歪まない600℃以下という低温で酸化処理を施すだけで製造できる耐溶損性に優れた鋳造用金型およびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は下記の鋳造用金型およびその製造方法を要旨とする。
【0009】
(a) 質量%で、C:0.1〜0.6%、Mn:0.1〜2%、Cr:1〜7%およびMo:0.1〜4%を含有し、Si含有量が下記の(1)式で示される範囲内にあり、残部が Fe および不純物からなる化学組成を有する鋼からなる鋳造用金型であって、少なくとも溶融金属と接触する表面に厚さ0.2〜30μmのスピネル構造の酸化被膜を備える鋳造用金型。ただし、(1)式中の[Cr]は、(2)式によって求められるマトリックス中の固溶Cr量(質量%)であり、(2)式中の各元素記号は、それぞれの元素の含有量(質量%)を示す。
Si≦(2.7/[Cr])−0.43 …(1)
[Cr]=−0.68C+0.72Cr+0.35C+0.020Cr−0.38C×Cr+0.76 …(2)
【0010】
(b) 質量%で、C:0.1〜0.6%、Mn:0.1〜2%、Cr:1〜6%およびMo:0.1〜4%を含有し、Si含有量が下記の(3)式で示される範囲内にあり、残部が Fe および不純物からなる化学組成を有する鋼からなる鋳造用金型であって、少なくとも溶融金属と接触する表面に厚さ0.2〜30μmのスピネル構造の酸化被膜を備える鋳造用金型。ただし、(3)式中の[Cr]は、上記の(2)式によって求められるマトリックス中の固溶Cr量(質量%)である。
0.1≦Si≦(2.7/[Cr])−0.43 …(3)
【0011】
なお、上記の(a)または(b)の鋳造用金型は、Fe の一部に代えて、Cu:2%以下およびNi:2%以下から選択される一種または二種、または/ならびに、W:2%以下、Nb:1%以下、Co:4%以下、V:1.5%以下、Zr:1%以下およびTi:1%以下から選択される一種以上を含むのが望ましい。
【0012】
(c)上記の(a)または(b)に記載の化学組成を有する鋼に金型の形状とする加工を施した後、500〜600℃の加熱処理を施すことにより、少なくとも溶融金属と接触する表面に厚さ0.2〜30μmのスピネル構造の酸化被膜を形成させることを特徴とする上記の(a)または(b)に記載の鋳造用金型の製造方法。
【0013】
【発明の実施の形態】
まず、本発明の鋳造用金型の化学成分の範囲およびその限定理由を述べる。以下の説明において、各成分の含有量の%は質量%を意味する。
【0014】
(A)C:0.1〜0.6%
Cは、鋼の軟化抵抗を上げるのに有効な元素である。この効果を得るためには、その含有量を0.1%以上とする必要がある。しかし、その含有量が0.6%を超えると、炭化物が過剰に形成し、靱性の低下を引き起こす。従って、Cの含有量を0.1〜0.6%とした。
【0015】
(B)Mn:0.1〜2%
Mnは、鋼の焼入性を向上させて靱性を高めるのに有効な元素である。この効果を得るためには、その含有量を0.1%以上とする必要がある。しかし、その含有量が2%を超えると、偏析して靱性の低下や高温強度の低下を招く。従って、Mnの含有量を0.1〜2%とした。
【0016】
(C)Cr:1〜7%
Crは、金型表面にスピネル構造〔(Fe、Cr)、以下同じ。〕の酸化被膜を形成させる元素である。スピネル構造の酸化被膜は、Feの酸化被膜と比較して母材との密着性に優れる。このようなスピネル構造の酸化被膜を金型表面に形成させるためには、Cr含有量を1%以上とする必要がある。一方、その含有量が7%を超えると、金型表面に形成される酸化被膜がCr主体のものとなり、スピネル構造の酸化被膜を得ることができない。Cr主体の酸化被膜は、金型表面に形成されてもその膜厚が薄いため、溶融金属による溶損を防止する効果が得られない。従って、Crの含有量を1〜7%とした。望ましくは、1〜6%である。
【0017】
(D)Mo:0.1〜4%
Moは、炭化物を形成して金型の高温強度を向上させるのに有効な元素である。この効果を得るためには、その含有量を0.1%以上とする必要がある。しかし、その含有量が4%を超えると、炭化物が過剰に生成して靱性の低下を招く。従って、Moの含有量を0.1〜4%とした。望ましいのは0.2〜3%である。
【0018】
(E)Si含有量が下記の(1)式で示される範囲内にあること
一般に、Siの含有量を増加させると、酸化被膜の密着性が向上するといわれているが、本発明者らの研究によって、表面にスピネル構造の酸化被膜を形成させる場合には、Siの含有量は、むしろ低減させた方が母材と酸化被膜の密着性を向上できることが明らかとなった。下記の(1)および(2)は、母材とその表面に形成されたスピネル構造の酸化被膜の密着性について検討を重ねた結果得られたものである。ただし、(1)式中の[Cr]は、(2)式によって求められるマトリックス中の固溶Cr量(質量%)であり、(2)式中の各元素記号は、それぞれの元素の含有量(質量%)を示す。
Si≦(2.7/[Cr])−0.43 …(1)
[Cr]=−0.68C+0.72Cr+0.35C+0.020Cr−0.38C×Cr+0.76 …(2)
【0019】
本発明においては、後述するように、金型が歪まない低温域(600℃以下)の加熱処理によって、鋳造用金型の表面、特に、溶融金属と接触する表面に、所定の厚さのスピネル構造の酸化被膜を形成させる。低温域の加熱処理によってもスピネル構造の酸化被膜の厚さを増加させるためには、マトリックス中の固溶Cr量、即ち、上記の(2)式で示される[Cr]を減少させることが重要である。しかし、Siの含有量が多いと金型の母材表面にSiOが形成されるので、スピネル構造の酸化被膜は、形成されにくくなり、その厚さを所望の厚さとすることができなくなる。また、スピネル構造の酸化被膜中にSiOが多量に含まれると、金型母材とスピネル構造の酸化被膜との熱膨張率の差が大きくなり、非鉄金属材料の鋳造時に酸化被膜が剥離しやすくなる。
【0020】
従って、上記の(2)式で示される[Cr]量を減少させて、スピネル構造の酸化被膜を厚くしやすい状態にすれば、ある程度の含有量のSiを許容できるが、[Cr]量が増加した場合には、酸化被膜を厚くし難い状態となるので、Si含有量を極限まで低減する必要がある。即ち、Si含有量は、上記の(1)式で示される範囲内に制限することとした。
【0021】
ただし、金型中のSi含有量を低減しすぎると、金型の被削性を劣化させる。従って、切削等の加工により成形される鋳造用金型の場合には、Cr含有量を1〜6%の範囲とし、さらに、Si含有量を0.1%以上含有させるのが望ましい。即ち、Si含有量は、下記の(3)式で示される範囲内であるのが望ましい。ただし、(3)式中の[Cr]は、前記の(2)式によって求められるマトリックス中の固溶Cr量(質量%)である。
0.1≦Si≦(2.7/[Cr])−0.43 …(3)
【0022】
(F)本発明の鋳造用金型は、上記の(A)〜(E)に示す化学組成を有し、残部は Fe および不純物からなる鋼からなるものである。本発明の鋳造用金型には、靱性を向上させることを目的として、Fe の一部に代えて、Cu:2%以下およびNi:2%以下から選択される一種または二種を含有させてもよい。
【0023】
CuおよびNiはいずれも、金型の靱性を向上させるのに有効な元素である。従って、本発明の鋳造用金型に含有させてもよい。その場合、Cuは0.6%以上、Niは0.3%以上とするのが望ましい。しかし、いずれの元素も、その含有量が2%を超えると、高温強度を低下させる。特に、Niは酸化しにくい元素であるため、その含有量が2%を超える場合には、金型の母材表面に濃化すると酸化被膜の形成を阻害する。従って、Cu、Niを含有させる場合の含有量をいずれも2%以下とした。なお、CuおよびNiの両方を含有させる場合にはCuチェッキングを抑制する観点からNi≧0.25Cuとなるようにそれぞれの含有量を調整するのが望ましく、Ni≧0.5Cuとなるように調整するのが最も望ましい。
【0024】
(G)本発明の鋳造用金型には、高温強度を向上させることを目的として、Fe の一部に代えて、W:2%以下、Nb:1%以下、Co:4%以下、V:1.5%以下、Zr:1%以下およびTi:1%以下から選択される一種以上を含有させてもよい。
【0025】
W、Nb、Co、V、ZrおよびTiは、いずれも炭化物を形成して、金型の高温強度を向上させるのに有効な元素である。従って、これらの元素の内から選択される一種以上を本発明の鋳造用金型に含有させてもよい。その場合、Wは0.4%以上、Nbは0.2%以上、Coは0.2%以上、Zrは0.2%以上、Tiは0.05%以上とするのが望ましい。しかし、これらの元素の含有量が過剰な場合には、炭化物の量が多くなりすぎて、靱性を低下させる。従って、これらの元素を含有させる場合の含有量の上限をそれぞれ上記のように定めた。望ましくは、W:1%以下、Nb:0.5%、Co:2%、V:1%以下である。
【0026】
なお、Vは、Crよりも酸化しやすい元素であるため、上記の効果に加え、Crが酸化されて金型表面にCrが生成するのを抑制する効果を有する。従って、Vは0.4%以上含有させるのが望ましい。しかし、Vが不純物中のNと窒化物を形成すると焼入れ加熱時の固溶V量が減少する。固溶V量が少ないと焼戻し時に2次析出するV炭窒化物の量が減少して、高温強度を低下させる。これを防止するためにはBを含有させるのが有効であるが、0.0100%を超えて含有させると靱性を低下させる。従って、本発明の鋳造用金型にBを含有させてもよいが、その含有量は0.0100%以下とするのが望ましい。
【0027】
本発明の鋳造用金型を構成する鋼の不純物中のPは0.02%以下、Sは0.003%以下、Nは0.1%以下およびAlは0.2%以下に制限するのが望ましい。
【0028】
(H)本発明の鋳造用金型は、少なくとも溶融金属と接触する表面に存在する酸化被膜がスピネル構造の酸化被膜であることが必要である。
「酸化被膜がスピネル構造の酸化被膜であること」とは、酸化被膜が(Fe、Cr)を主体とする酸化被膜であることをいう。これは、上述したとおり、溶融金属と接触する表面に形成される酸化被膜がFe主体のものである場合には、金型と酸化被膜との密着性が悪く、Cr主体のものである場合には、溶損を防止するのに有効な厚さの酸化被膜とはならないからである。また、スピネル構造の酸化被膜は、低温の加熱処理によって生成するので、酸化被膜を形成させる過程において金型が歪むことはない。従って、本発明の鋳造用金型においては、溶融金属と接触する表面にスピネル構造の酸化被膜を形成させることとした。
【0029】
なお、溶融金属と接触しない表面には、スピネル構造の酸化被膜を形成させても良いし、形成させなくても良い。これは、溶融金属と接触しない表面には、溶損が発生しにくいからである。また、金型表面に形成させたスピネル構造の酸化被膜の上に、更に、Fe等の酸化被膜が生成していても良い。
【0030】
(I)スピネル構造の酸化被膜の厚さは、0.2〜30μmでなければならない。溶融金属と接触する表面に存在するスピネル構造の酸化被膜の厚さが0.2μm未満の場合には、溶損を防止する被膜としては薄すぎるので、金型表面に溶融金属による溶損が進行する。一方、その厚さが30μmを超えると、酸化被膜自体が剥離しやすくなり、金型表面に溶融金属による溶損が進行するおそれがある。従って、溶融金属と接触する表面に存在するスピネル構造の酸化被膜の厚さは、0.2〜30μmの範囲内とした。望ましいのは、0.5〜20μmである。
【0031】
(J)本発明の鋳造用金型の製造方法について
本発明の鋳造用金型は、所定の化学成分に調整した鋼を通常の条件で溶解、鍛造(例えば、鍛造温度:900〜1300℃)した後、これを切削加工、放電加工等により金型の形状に加工し、これに所定の硬さ、強度を持たせるべく焼入れ焼戻し処理を施し、仕上げ加工を行った後に、低温加熱処理を実施することによって作製する。焼入れ焼戻し処理は、例えば、金型を880〜1060℃の温度で0.5〜3時間保持した後、放冷、油冷またはガス冷し、その後、500〜650℃の温度で焼戻し処理を行えばよい。
【0032】
ここで、「低温加熱処理」とは、所定の厚さの酸化被膜を形成でき、かつ金型が歪むことがない程度の低温で行う大気加熱処理または水蒸気雰囲気加熱処理をいう。具体的には、500〜600℃の温度範囲で行うのがよい。これは、加熱処理の温度が500℃未満の場合には、スピネル構造の酸化被膜を形成するのに長時間を要し、加熱処理の温度が600℃を超える場合には、加熱処理の最中に金型が歪むおそれがあるからである。加熱時間は、金型表面に十分な厚さのスピネル構造の酸化被膜を形成させるためには、3時間以上であるのが望ましい。また、硬質層を形成させるために、前処理として窒化処理を行ってもよい。
【0033】
【実施例】
表1に示す化学組成を有する合金150kgを真空溶解炉で溶製し、得られた鋳塊を機械加工によって所定の形状に加工して供試材とした。この供試材に1050℃×1時間の焼入れ処理および500℃×4時間の焼戻処理を施した後、比較例6および本発明例2については、530℃×6時間のガス窒化処理および560℃×16時間の大気中加熱処理を施し、その他の実施例については、550℃×3時間の大気中加熱処理を施した。
【0034】
【表1】

Figure 0003608546
【0035】
加熱処理後の各供試材から外径20mm、長さ100mmの試験片を採取し、この質量を測定した(この質量をM1とする)。更に、この試験片をAl−7%Si−0.3%Mgの溶湯(温度:720℃)中で、移動速度を4.4m/minとして5時間移動させた後、付着した溶湯をNaOHで除去した後の試験片の質量を測定した(この質量をM2とする)。これらの測定値を下記の式に代入して溶損率を計算した。これを表2に示す。
(溶損率)={(M1−M2)/M1}×100(%)
【0036】
続いて、比較例6および本発明例1〜6については、下記の要領で酸化被膜の耐剥離性試験を実施した。即ち、上記の試験片を550℃に保持した電気炉で3秒間加熱した後に水冷により室温まで冷却(室温になるまでの所要時間4秒)するのを1サイクルとし、これを5サイクル繰り返した後に、酸化被膜が剥離した部分の長さを測定し、比較例6の剥離量を1としたときの本発明例1〜6のそれぞれの剥離量を表2に併記した。
【0037】
【表2】
Figure 0003608546
【0038】
表2に示すように、本発明例1〜6は、比較例1〜5と比較して、スピネル構造の酸化被膜が厚く、溶損率が低い。比較例6は、本発明例1〜6と同様の耐溶損性を示したが、本発明例1〜6と比較して酸化被膜が剥離し易いため、繰り返しの使用に耐えるものではない。これは、比較例6は、窒化処理および長時間の酸化加熱処理によって、その表面に厚い酸化被膜を形成したため、溶損率は低かったが、Si含有量が本発明で規定される範囲を超えるため、母材と酸化被膜との熱膨張率の差が大きく、これによって、酸化被膜が剥離しやすくなったからである。
【0039】
【発明の効果】
本発明の鋳造用金型は、耐溶損性に優れるので、耐久寿命を向上させることができる。また、スピネル構造の酸化被膜は、低温の加熱処理によって形成させることができるので、製造時に金型が歪むという問題は発生しない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold used for non-ferrous metal casting such as low pressure casting and gravity casting, and a method for manufacturing the same.
[0002]
[Prior art]
One of the methods for molding non-ferrous metal products such as single metals of Al, Mg and Zn or their alloys is a mold casting method. Such a casting mold has resistance to melting damage during casting. Sex is required. In particular, since molten Al is highly reactive with most metal materials, when the molten Al is molded by mold casting, the inner surface side of the mold is easily damaged.
[0003]
Various techniques for preventing such a casting mold from being melted have been proposed. For example, Japanese Patent Laid-Open No. 6-179045 proposes a casting mold in which ceramic spraying is performed on a portion forming a narrow portion of a casting space. However, ceramic materials are more expensive than metal materials, and the mold may be distorted by ceramic spraying.
[0004]
Japanese Patent Application Laid-Open No. 8-144039 proposes a casting mold or a molten metal member having a predetermined chemical component and subjected to carburizing treatment or nitriding treatment and boriding treatment on the surface. This improves the melt resistance, but further improvements are required.
[0005]
Japanese Patent Laid-Open No. 9-111417 proposes a molten metal contact member in which a coating mainly composed of Al 2 O 3 is formed on the surface of a steel material containing Cr: 25 to 35% and Al: 4 to 8%. Yes. However, since it is necessary to contain a large amount of Al in this steel material, there is a tendency to generate a bruise during mold manufacturing. In addition, in order to form a film mainly composed of Al 2 O 3 on the surface of the steel material, it is necessary to heat and hold in an oxidizing atmosphere of 1000 to 1300 ° C., and the mold may be distorted at such a high temperature.
[0006]
In Japanese Patent Laid-Open No. 2000-219954, the surface of an iron-base alloy material or an iron-base alloy material overlay layer containing Si: 2 to 10% is oxidized, and an oxide film containing a large amount of silicon oxide is 2 to 20 μm. A corrosion-resistant member for molten aluminum is proposed. However, since Si: 2 to 10% is contained, there is a problem that high temperature strength and toughness are low.
[0007]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a casting mold excellent in melt resistance and a manufacturing method thereof that can be manufactured only by performing an oxidation treatment at a low temperature of 600 ° C. or less without causing a distortion of the mold without complicated heat treatment steps. There is to do.
[0008]
[Means for Solving the Problems]
The gist of the present invention is the following casting mold and manufacturing method thereof.
[0009]
(a) By mass%, C: 0.1 to 0.6%, Mn: 0.1 to 2%, Cr: 1 to 7% and Mo: 0.1 to 4%, and Si content is shown by the following formula (1) range near that is, the balance being a casting mold made of steel having a chemical composition consisting of Fe and impurities, comprising an oxide film of spinel structure having a thickness of 0.2~30μm the surface in contact with at least the molten metal Mold for casting. However, [Cr] in the formula (1) is the amount of solute Cr (mass%) in the matrix obtained by the formula (2), and each element symbol in the formula (2) is the content of each element. Amount (mass%) is shown.
Si ≦ (2.7 / [Cr]) − 0.43 (1)
[Cr] = − 0.68C + 0.72Cr + 0.35C 2 + 0.020Cr 2 −0.38C × Cr + 0.76 (2)
[0010]
(b) By mass%, C: 0.1 to 0.6%, Mn: 0.1 to 2%, Cr: 1 to 6% and Mo: 0.1 to 4%, and Si content is shown by the following formula (3) range near that is, the balance being a casting mold made of steel having a chemical composition consisting of Fe and impurities, comprising an oxide film of spinel structure having a thickness of 0.2~30μm the surface in contact with at least the molten metal Mold for casting. However, [Cr] in the formula (3) is the amount of solute Cr (mass%) in the matrix determined by the above formula (2).
0.1 ≦ Si ≦ (2.7 / [Cr]) − 0.43 (3)
[0011]
The casting mold (a) or (b) above is replaced with a part of Fe , one or two selected from Cu: 2% or less and Ni: 2% or less, and / or It is desirable to include one or more selected from W: 2% or less, Nb: 1% or less, Co: 4% or less, V: 1.5% or less, Zr: 1% or less, and Ti: 1% or less.
[0012]
(c) After processing the steel having the chemical composition described in the above (a) or (b) into a mold shape, it is subjected to a heat treatment at 500 to 600 ° C., thereby contacting at least a molten metal The method for producing a casting mold as described in (a) or (b) above, wherein an oxide film having a spinel structure having a thickness of 0.2 to 30 μm is formed on the surface to be formed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
First, the range of chemical components of the casting mold of the present invention and the reasons for the limitation will be described. In the following description,% of the content of each component means mass%.
[0014]
(A) C: 0.1 to 0.6%
C is an element effective for increasing the softening resistance of steel. In order to obtain this effect, the content needs to be 0.1% or more. However, if its content exceeds 0.6%, carbides are excessively formed, causing a decrease in toughness. Therefore, the content of C is set to 0.1 to 0.6%.
[0015]
(B) Mn: 0.1 to 2%
Mn is an element effective in improving the hardenability of steel and increasing toughness. In order to obtain this effect, the content needs to be 0.1% or more. However, if its content exceeds 2%, it segregates, leading to a decrease in toughness and a decrease in high temperature strength. Therefore, the Mn content is set to 0.1 to 2%.
[0016]
(C) Cr: 1 to 7%
Cr has a spinel structure on the mold surface [(Fe, Cr) 3 O 4 , the same shall apply hereinafter. ] Is an element that forms an oxide film. An oxide film having a spinel structure is excellent in adhesion to a base material as compared with an oxide film of Fe 3 O 4 . In order to form an oxide film having such a spinel structure on the mold surface, the Cr content needs to be 1% or more. On the other hand, if the content exceeds 7%, the oxide film formed on the mold surface is mainly Cr 2 O 3 , and an oxide film having a spinel structure cannot be obtained. Even if the oxide film mainly composed of Cr 2 O 3 is formed on the surface of the mold, the film thickness is thin, so that the effect of preventing melting damage due to the molten metal cannot be obtained. Therefore, the Cr content is set to 1 to 7%. Desirably, it is 1 to 6%.
[0017]
(D) Mo: 0.1 to 4%
Mo is an element effective for forming carbides and improving the high temperature strength of the mold. In order to obtain this effect, the content needs to be 0.1% or more. However, if its content exceeds 4%, carbides are generated excessively, leading to a decrease in toughness. Therefore, the Mo content is set to 0.1 to 4%. Desirable is 0.2 to 3%.
[0018]
(E) It is said that the Si content is in the range represented by the following formula (1). Generally, increasing the Si content improves the adhesion of the oxide film. Research has shown that when an oxide film having a spinel structure is formed on the surface, it is possible to improve the adhesion between the base material and the oxide film if the Si content is rather reduced. The following (1) and (2) are obtained as a result of repeated investigations on the adhesion between the base material and the spinel oxide film formed on the surface thereof. However, [Cr] in the formula (1) is the amount of solute Cr (mass%) in the matrix obtained by the formula (2), and each element symbol in the formula (2) contains the content of each element. Amount (mass%) is shown.
Si ≦ (2.7 / [Cr]) − 0.43 (1)
[Cr] = − 0.68C + 0.72Cr + 0.35C 2 + 0.020Cr 2 −0.38C × Cr + 0.76 (2)
[0019]
In the present invention, as will be described later, a spinel having a predetermined thickness is applied to the surface of the casting mold, particularly the surface in contact with the molten metal, by heat treatment in a low temperature range (600 ° C. or less) where the mold does not distort. An oxide film having a structure is formed. In order to increase the thickness of the oxide film having a spinel structure even by heat treatment in a low temperature region, it is important to reduce the amount of solute Cr in the matrix, that is, [Cr] represented by the above formula (2). It is. However, if the Si content is large, SiO 2 is formed on the surface of the base material of the mold, and therefore, an oxide film having a spinel structure is hardly formed, and the thickness cannot be set to a desired thickness. In addition, if the spinel structure oxide film contains a large amount of SiO 2 , the difference in thermal expansion coefficient between the mold base material and the spinel structure oxide film becomes large, and the oxide film peels off when casting the non-ferrous metal material. It becomes easy.
[0020]
Accordingly, if the amount of [Cr] expressed by the above formula (2) is decreased to make the oxide film having a spinel structure easy to thicken, a certain amount of Si can be tolerated. When it increases, it becomes difficult to thicken the oxide film, so it is necessary to reduce the Si content to the limit. That is, the Si content is limited to the range represented by the above formula (1).
[0021]
However, if the Si content in the mold is reduced too much, the machinability of the mold is deteriorated. Therefore, in the case of a casting mold formed by processing such as cutting, it is desirable that the Cr content is in the range of 1 to 6% and that the Si content is 0.1% or more. That is, the Si content is desirably within the range represented by the following formula (3). However, [Cr] in the formula (3) is the amount of solute Cr (mass%) in the matrix determined by the formula (2).
0.1 ≦ Si ≦ (2.7 / [Cr]) − 0.43 (3)
[0022]
(F) The casting mold of the present invention has the chemical composition shown in the above (A) to (E), and the balance is made of steel composed of Fe and impurities. For the purpose of improving toughness, the casting mold of the present invention contains one or two selected from Cu: 2% or less and Ni: 2% or less in place of part of Fe. Also good.
[0023]
Both Cu and Ni are effective elements for improving the toughness of the mold. Therefore, you may make it contain in the metal mold | die for casting of this invention. In that case, it is desirable that Cu is 0.6% or more and Ni is 0.3% or more. However, when the content of any element exceeds 2%, the high temperature strength is lowered. In particular, since Ni is an element that is difficult to oxidize, when its content exceeds 2%, the concentration on the surface of the base metal of the mold inhibits the formation of an oxide film. Therefore, the content when Cu and Ni are contained is set to 2% or less. When both Cu and Ni are contained, it is desirable to adjust the respective contents so that Ni ≧ 0.25Cu from the viewpoint of suppressing Cu checking, so that Ni ≧ 0.5Cu. It is most desirable to adjust.
[0024]
(G) In the casting mold of the present invention , W: 2% or less, Nb: 1% or less, Co: 4% or less, V in place of a part of Fe for the purpose of improving high temperature strength : 1.5% or less, Zr: 1% or less, and Ti: 1% or less selected from 1% or less.
[0025]
W, Nb, Co, V, Zr and Ti are all effective elements for forming carbides and improving the high temperature strength of the mold. Accordingly, one or more selected from these elements may be contained in the casting mold of the present invention. In that case, it is desirable that W is 0.4% or more, Nb is 0.2% or more, Co is 0.2% or more, Zr is 0.2% or more, and Ti is 0.05% or more. However, when the content of these elements is excessive, the amount of carbide is excessively increased and the toughness is lowered. Therefore, the upper limit of the content when these elements are contained is determined as described above. Desirably, W is 1% or less, Nb is 0.5%, Co is 2%, and V is 1% or less.
[0026]
In addition, since V is an element that is more easily oxidized than Cr, in addition to the above effects, V has an effect of suppressing the formation of Cr 2 O 3 on the mold surface due to oxidation of Cr. Therefore, it is desirable to contain V by 0.4% or more. However, when V forms a nitride with N in the impurity, the amount of solute V during quenching heating decreases. If the amount of solute V is small, the amount of V carbonitride that is secondarily precipitated during tempering decreases and the high-temperature strength is lowered. In order to prevent this, it is effective to contain B, but if it exceeds 0.0100%, the toughness is lowered. Accordingly, B may be contained in the casting mold of the present invention, but the content is preferably 0.0100% or less.
[0027]
P in the impurities of the steel constituting the casting mold of the present invention is 0.02% or less, S is 0.003% or less, N is 0.1% or less, and Al is limited to 0.2% or less. Is desirable.
[0028]
(H) In the casting mold of the present invention, it is necessary that at least the oxide film present on the surface in contact with the molten metal is an oxide film having a spinel structure.
“The oxide film is an oxide film having a spinel structure” means that the oxide film is an oxide film mainly composed of (Fe, Cr) 3 O 4 . This is because, as described above, when the oxide film formed on the surface in contact with the molten metal is mainly composed of Fe 2 O 3 , the adhesion between the mold and the oxide film is poor, and the main component is Cr 2 O 3. This is because an oxide film having a thickness effective for preventing melting damage cannot be obtained. Further, since the spinel-structured oxide film is generated by heat treatment at a low temperature, the mold is not distorted in the process of forming the oxide film. Therefore, in the casting mold of the present invention, an oxide film having a spinel structure is formed on the surface in contact with the molten metal.
[0029]
Note that an oxide film having a spinel structure may or may not be formed on the surface that is not in contact with the molten metal. This is because melting damage hardly occurs on the surface that does not come into contact with the molten metal. Further, an oxide film such as Fe 2 O 3 may be further formed on the spinel structure oxide film formed on the mold surface.
[0030]
(I) The thickness of the spinel structure oxide film must be 0.2 to 30 μm. If the thickness of the spinel-structured oxide film on the surface in contact with the molten metal is less than 0.2 μm, the film is too thin to prevent melting damage, so that the molten metal is melted on the mold surface. To do. On the other hand, when the thickness exceeds 30 μm, the oxide film itself tends to be peeled off, and there is a possibility that the molten metal is melted on the mold surface. Accordingly, the thickness of the oxide film having a spinel structure existing on the surface in contact with the molten metal is set in the range of 0.2 to 30 μm. Desirable is 0.5 to 20 μm.
[0031]
(J) About the manufacturing method of the casting mold of the present invention The casting mold of the present invention melts and forges steel adjusted to a predetermined chemical composition under normal conditions (for example, forging temperature: 900 to 1300 ° C.). After that, this is processed into a mold shape by cutting, electric discharge machining, etc., and subjected to quenching and tempering treatment to give it the prescribed hardness and strength, and after finishing processing, low temperature heating treatment is carried out To make it. The quenching and tempering treatment is performed, for example, by holding the mold at a temperature of 880 to 1060 ° C. for 0.5 to 3 hours, and then allowing to cool, oil cooling or gas cooling, and thereafter performing a tempering treatment at a temperature of 500 to 650 ° C. Just do it.
[0032]
Here, the “low temperature heat treatment” refers to an air heat treatment or a steam atmosphere heat treatment performed at a low temperature such that an oxide film having a predetermined thickness can be formed and the mold is not distorted. Specifically, it is good to carry out in the temperature range of 500-600 degreeC. This is because it takes a long time to form an oxide film having a spinel structure when the temperature of the heat treatment is less than 500 ° C., and during the heat treatment when the temperature of the heat treatment exceeds 600 ° C. This is because the mold may be distorted. The heating time is preferably 3 hours or longer in order to form an oxide film having a spinel structure with a sufficient thickness on the mold surface. Moreover, in order to form a hard layer, you may perform nitriding as pre-processing.
[0033]
【Example】
An alloy having a chemical composition shown in Table 1 was melted in a vacuum melting furnace, and the resulting ingot was processed into a predetermined shape by machining to obtain a test material. After subjecting this specimen to quenching treatment at 1050 ° C. × 1 hour and tempering treatment at 500 ° C. × 4 hours, for Comparative Example 6 and Invention Example 2, 530 ° C. × 6 hour gas nitriding treatment and 560 A heat treatment was performed in the air at a temperature of 16 ° C. for 16 hours, and in the other examples, a heat treatment was performed in the air at a temperature of 550 ° C. for 3 hours.
[0034]
[Table 1]
Figure 0003608546
[0035]
A test piece having an outer diameter of 20 mm and a length of 100 mm was taken from each specimen after the heat treatment, and this mass was measured (this mass is referred to as M1). Furthermore, after moving this test piece in a molten Al-7% Si-0.3% Mg (temperature: 720 ° C.) at a moving speed of 4.4 m / min for 5 hours, the adhered molten metal was washed with NaOH. The mass of the test piece after removal was measured (this mass is referred to as M2). These measured values were substituted into the following equation to calculate the erosion rate. This is shown in Table 2.
(Fraction rate) = {(M1-M2) / M1} × 100 (%)
[0036]
Then, about the comparative example 6 and this invention examples 1-6, the peeling resistance test of the oxide film was implemented in the following way. That is, after heating the test piece in an electric furnace maintained at 550 ° C. for 3 seconds and then cooling to room temperature by water cooling (required time of 4 seconds until reaching room temperature) is one cycle, The length of the portion where the oxide film was peeled was measured, and the peel amounts of Invention Examples 1 to 6 when the peel amount of Comparative Example 6 was set to 1 are also shown in Table 2.
[0037]
[Table 2]
Figure 0003608546
[0038]
As shown in Table 2, Examples 1 to 6 of the present invention have a thicker spinel oxide film and a lower melting loss rate than Comparative Examples 1 to 5. Comparative Example 6 showed the same flaw resistance as Inventive Examples 1-6, but the oxide film was more easily peeled off than Inventive Examples 1-6, so it was not resistant to repeated use. This is because Comparative Example 6 formed a thick oxide film on the surface by nitriding treatment and long-time oxidation heat treatment, so the melting loss rate was low, but the Si content exceeded the range specified in the present invention. Therefore, the difference in the coefficient of thermal expansion between the base material and the oxide film is large, which makes it easier for the oxide film to be peeled off.
[0039]
【The invention's effect】
Since the casting mold of the present invention is excellent in resistance to melting, the durability life can be improved. In addition, since the spinel structure oxide film can be formed by a low-temperature heat treatment, there is no problem that the mold is distorted during manufacturing.

Claims (6)

質量%で、C:0.1〜0.6%、Mn:0.1〜2%、Cr:1〜7%およびMo:0.1〜4%を含有し、Si含有量が下記の(1)式で示される範囲内にあり、残部が Fe および不純物からなる化学組成を有する鋼からなる鋳造用金型であって、少なくとも溶融金属と接触する表面に厚さ0.2〜30μmのスピネル構造の酸化被膜を備える鋳造用金型。ただし、(1)式中の[Cr]は、(2)式によって求められるマトリックス中の固溶Cr量(質量%)であり、(2)式中の各元素記号は、それぞれの元素の含有量(質量%)を示す。
Si≦(2.7/[Cr])−0.43 …(1)
[Cr]=−0.68C+0.72Cr+0.35C+0.020Cr−0.38C×Cr+0.76 …(2)
In mass%, C: 0.1 to 0.6%, Mn: 0.1 to 2%, Cr: 1 to 7% and Mo: 0.1 to 4%, and Si content within the range represented by the following formula (1) near is, the balance being a casting mold made of steel having a chemical composition consisting of Fe and impurities, casting gold with an oxide film of spinel structure having a thickness of 0.2~30μm the surface in contact with at least the molten metal Type. However, [Cr] in the formula (1) is the amount of solute Cr (mass%) in the matrix obtained by the formula (2), and each element symbol in the formula (2) is the content of each element. Amount (mass%) is shown.
Si ≦ (2.7 / [Cr]) − 0.43 (1)
[Cr] = − 0.68C + 0.72Cr + 0.35C 2 + 0.020Cr 2 −0.38C × Cr + 0.76 (2)
質量%で、C:0.1〜0.6%、Mn:0.1〜2%、Cr:1〜6%およびMo:0.1〜4%を含有し、Si含有量が下記の(3)式で示される範囲内にあり、残部が Fe および不純物からなる化学組成を有する鋼からなる鋳造用金型であって、少なくとも溶融金属と接触する表面に厚さ0.2〜30μmのスピネル構造の酸化被膜を備える鋳造用金型。ただし、(3)式中の[Cr]は、(2)式によって求められるマトリックス中の固溶Cr量(質量%)であり、(2)式中の各元素記号は、それぞれの元素の含有量(質量%)を示す。
0.1≦Si≦(2.7/[Cr])−0.43 …(3)
[Cr]=−0.68C+0.72Cr+0.35C+0.020Cr−0.38C×Cr+0.76 …(2)
In mass%, C: 0.1 to 0.6%, Mn: 0.1 to 2%, Cr: 1 to 6% and Mo: 0.1 to 4%, and Si content within the range represented by the following formula (3) near is, the balance being a casting mold made of steel having a chemical composition consisting of Fe and impurities, casting gold with an oxide film of spinel structure having a thickness of 0.2~30μm the surface in contact with at least the molten metal Type. However, [Cr] in equation (3) is the amount of solute Cr (mass%) in the matrix determined by equation (2), and each element symbol in equation (2) is the content of each element. Amount (mass%) is shown.
0.1 ≦ Si ≦ (2.7 / [Cr]) − 0.43 (3)
[Cr] = − 0.68C + 0.72Cr + 0.35C 2 + 0.020Cr 2 −0.38C × Cr + 0.76 (2)
Fe の一部に代えて、さらに、質量%で、Cu:2%以下およびNi:2%以下から選択される一種または二種を含む化学組成を有する鋼からなる請求項1または請求項2のいずれかに記載の鋳造用金型。Claim 1 or Claim 2 which consists of steel which has a chemical composition containing 1 type or 2 types selected from Cu: 2% or less and Ni: 2% or less by mass% instead of a part of Fe. The casting mold according to any one of the above. Fe の一部に代えて、さらに、質量%で、W:2%以下、Nb:1%以下、Co:4%以下、V:1.5%以下、Zr:1%以下およびTi:1%以下から選択される一種以上を含む化学組成を有する鋼からなる請求項1または請求項2のいずれかに記載の鋳造用金型。 In place of a part of Fe , further, by mass, W: 2% or less, Nb: 1% or less, Co: 4% or less, V: 1.5% or less, Zr: 1% or less, and Ti: 1% or less The casting mold according to claim 1, wherein the casting mold is made of steel having a chemical composition including one or more selected. Fe の一部に代えて、さらに、質量%で、Cu:2%以下およびNi:2%以下から選択される一種または二種、ならびにW:2%以下、Nb:1%以下、Co:4%以下、V:1.5%以下、Zr:1%以下およびTi:1%以下から選択される一種以上を含む化学組成を有する鋼からなる請求項1または請求項2のいずれかに記載の鋳造用金型。 In place of a part of Fe , further, by mass%, Cu: 2% or less and Ni: 2% or less, and W: 2% or less, Nb: 1% or less, Co: 4 3. The casting according to claim 1 , comprising a steel having a chemical composition containing at least one selected from the group consisting of 1% or less, V: 1.5% or less, Zr: 1% or less, and Ti: 1% or less. Mold. 請求項1から5までのいずれかに記載の化学組成を有する鋼に金型の形状とする加工を施した後、500〜600℃の加熱処理を施すことにより、少なくとも溶融金属と接触する表面に厚さ0.2〜30μmのスピネル構造の酸化被膜を形成させることを特徴とする請求項1から5までのいずれかに記載の鋳造用金型の製造方法。A steel having a chemical composition according to any one of claims 1 to 5 is subjected to a process for forming a mold shape, and then subjected to a heat treatment at 500 to 600 ° C, so that at least a surface in contact with the molten metal is applied. 6. The method for producing a casting mold according to claim 1, wherein an oxide film having a spinel structure having a thickness of 0.2 to 30 [mu] m is formed.
JP2001349928A 2001-11-15 2001-11-15 Mold for casting and manufacturing method thereof Expired - Fee Related JP3608546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349928A JP3608546B2 (en) 2001-11-15 2001-11-15 Mold for casting and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349928A JP3608546B2 (en) 2001-11-15 2001-11-15 Mold for casting and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003154437A JP2003154437A (en) 2003-05-27
JP3608546B2 true JP3608546B2 (en) 2005-01-12

Family

ID=19162527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349928A Expired - Fee Related JP3608546B2 (en) 2001-11-15 2001-11-15 Mold for casting and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3608546B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492537B2 (en) * 2003-06-10 2010-06-30 住友金属工業株式会社 Steel material for hydrogen gas environment, structural equipment member and manufacturing method thereof
AU2003292572A1 (en) * 2003-12-19 2005-07-14 Daido Steel Co., Ltd Hot work tool steel and mold member excellent in resistance to melting
JP5942119B2 (en) * 2011-01-31 2016-06-29 栃木県 Melting resistant casting, method for producing the same and molten metal contact member
JP5942118B2 (en) * 2011-01-31 2016-06-29 栃木県 Melting resistant casting, method for producing the same, and molten metal contact member
CN104204269B (en) * 2012-04-03 2016-07-06 日立金属工具钢株式会社 Casting component and manufacture method, die casting sleeve and die casting equipment
JP6647771B2 (en) * 2014-05-23 2020-02-14 大同特殊鋼株式会社 Mold steel and mold
JP2015224363A (en) * 2014-05-27 2015-12-14 大同特殊鋼株式会社 Steel for metallic mold and metallic mold
CN104190859A (en) * 2014-06-26 2014-12-10 芜湖市鸿坤汽车零部件有限公司 Alcohol-based casting coating for lost foam casting and manufacturing method thereof
CN104399871A (en) * 2014-11-08 2015-03-11 芜湖市鸿坤汽车零部件有限公司 Asphalt/plant ash composite alcohol-based casting paint and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003154437A (en) 2003-05-27

Similar Documents

Publication Publication Date Title
JP3608546B2 (en) Mold for casting and manufacturing method thereof
US2768915A (en) Ferritic alloys and methods of making and fabricating same
JP4369416B2 (en) Spring steel wire rod with excellent pickling performance
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JP5273952B2 (en) Hot forging die and manufacturing method thereof
JP2000144334A (en) Steel for aluminum diecasting die excellent in erosion resistance
JP5090257B2 (en) Tool steel suitable for aluminum machining dies and aluminum machining dies
EP0931844B1 (en) Cobalt-free maraging steel
WO2001092587A1 (en) Hardened fe-ni alloy for making integrated circuit grids and method for making same
JP3029642B2 (en) Casting molds or molten metal fittings with excellent erosion resistance to molten metal
JP2004019001A (en) Tool steel for hot-working superior in erosion resistance, and die member
JPH06256886A (en) Ti alloy member having excellent wear resistance and method for producing the same
JP2005028398A (en) Material with erosion-resistance to aluminum and its producing method
JP5942118B2 (en) Melting resistant casting, method for producing the same, and molten metal contact member
JPS624849A (en) Die for hot working al and al alloy
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JP2004291079A (en) Erosion resistant member for non-ferrous molten metal
JPH08225887A (en) Seamless pipe manufacturing plug
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JP3983502B2 (en) Mold with excellent resistance to aluminum erosion and its processing method
JPH06279944A (en) Alloy for glass mold
JPH10158793A (en) Member for cutting tool and its production
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture
JP6236031B2 (en) Die casting mold
JPH09111417A (en) Molten metal contacting member excellent in erosion resistance and its production

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees