201027203 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種包含液晶顯示面板之影像顯示 系統’特別有關於一種垂直配向型液晶顯示面板之電極結 構。 【先前技術】 垂直配向型(vertical alignment,簡稱VA)液晶顯示器 是一種可以達到高對比及廣視角的液晶顯示器,傳統上為 了使垂直配向型液晶顯示器(VA-LCD)具有穩定且對稱的 ❹ 多象限區(multi-domain),通常係將VA-LCD的一個次畫素 再進一步分割成2至3個更小的次畫素區,使得一個次晝 素内具有2至3個多象限區,其係利用陣列基板上圖案化 的透明電極層,例如銦錫氧化物(indium tin oxide,簡稱 ITO),或者彩色濾光片基板上透明電極層,例如銦錫氧化 物的圖案而達成。 請參閱第1Α圖,其係顯示傳統垂直配向型液晶顯示 器的一個次晝素内,陣列基板上透明電極層的平面示意 參 圖,在一個次晝素内的陣列基板上透明電極層1〇具有2個 狹縫(slit)ll。接著,請參閱第1Β圖,其係顯示傳統垂直配 向型液晶顯示器的一個次晝素内,彩色濾光片基板上透明 電極層的平面示意圖’在一個次晝素内的彩色濾光片基板 上透明電極20具有3個開口 21。 請參閱第1C圖,其係顯示傳統垂直配向型液晶顯示 器的一個次晝素内,陣列基板上透明電極層10與彩色濾光 0773-A34028TWF P2008051 4 201027203 片基板上透明電極20重疊之平面示意圖,其中次晝素16 係由兩個相鄰的掃描線12以及兩個相鄰的資料線14所定 義,陣列基板上透明電極層10的狹縫11與彩色濾光片基 板上透明電極層20的開口 21互相搭配,使得一個次晝素 16劃分成3個多象限區域,而接觸孔30則設置於彩色濾 光片基板上透明電極層20的一個開口中。藉由增加陣列基 板上透明電極層10的狹缝寬度以及/或增加彩色濾光片基 板上透明電極20的開口尺寸,可提升垂直配向型液晶顯示 器的應答速度,但是陣列基板上透明電極層的狹缝以及彩 色濾光片基板上透明電極層的開口越大,當其應用於觸控 面板時,會使得觸控面板於觸碰時產生的顯示不均(push mura)現象越明顯。此外,陣列基板上透明電極層的狹缝以 及彩色濾光片基板上透明電極層的開口越大還會降低顯示 器的穿透度,並增加顯示器的驅動電壓。 有鑑於此,業界亟需一種垂直配向型液晶顯示器,其 可以符合提升應答速度、減少觸控面板的顯示不均、提高 穿透度以及降低驅動電壓之需求。 【發明内容】 本發明提供一種包含液晶顯示面板之影像顯示系 統,該液晶顯示面板包括:第一基板,其上具有複數條互 相垂直之貢料線和掃描線’任兩條相鄰的資料線和任兩條 相鄰的掃描線之間定義一次晝素;第一透明電極層設置於 第一基板上且位於次晝素内;第二基板與第一基板對向設 置,具有一内面;第二透明電極層設置於第二基板之内面 0773-A34028TWF P2008051 5 201027203 之上,且對應於次晝素,其中位於次晝素内的第二透明電 極層僅具有一偭圖樣;以及液晶層設置於第一基板與第二 基板之間,其中液晶層内的複數個液晶分子係垂直於第一 基板和第二基板排列。 為了讓本發明之上述目的、特徵、及優點能更明顯易 懂,以下配合所附圖式,作詳細說明如下: 【實施方式】 本發明係藉由垂直配向型液晶顯示面板(VA-LCD)的 電極結構設計,提升顯示器的應答速度、減少觸控面板的 顯示不均、提高穿透度以及降低驅動電壓。此外,本發明 還可以應用於多象限垂直配向型(multi-domain vertical alignment,簡稱MVA)液晶顯示面板。 請參閱第2A圖’其係顯示依據本發明一實施例之 VA-LCD的陣歹基板侧透明電極層之平面示意圖,在一個 次晝素内,陣列基板側的透明電極層100為平面結構,意 即透明電極層100中不具有開口、狹縫、或是突起等圖樣。 接著,請參閱第2B圖’其係顯示依據本發明一實施例之 VA-LCD的彩色濾光片基板側透明電極層之平面示意圖, 在一個次畫素内,彩色渡光片基板側的透明電極層2〇〇僅 具有一個圖樣,例如僅具有一個開口 202,或者僅具有― 個突起物202 ’此突起物可以是感光性樹脂材料。陣列 (Array)基板側與彩色濾光片(color filter,簡稱CF)基板侧的 透明電極層100和200例如為銦錫氧化物或銦鋅氧化物 (indium zinc oxide,簡稱 IZO)。 0773-A34028TWF P2008051 6 201027203 請參閱第2C圖,其係顯示依據本發明—實施例之 VA-LCD,於一個次晝素内,陣列基板側透明電極層1〇〇 與彩色濾光片基板侧透明電極層200的重疊平面示意圖。 任兩個相鄰的知描線102與任兩個相鄰的資料線1 之間 定義一個次晝素(SUb-pixel)ll6,例如為紅、綠或藍色(R、 G或B)次晝素。由於本發明之陣列基板側透明電極層ι〇〇 為平面結構,且彩色濾光片基板側透明電極層2〇〇僅具有 一個開口或突起物,因此在一個次晝素内只形成一個多象 0 限(multi_domain)區’其可降低本發明之VA-LCD的驅動電 壓,減少功率耗損。此外,根據本發明之彩色濾光片基板 侧透明電極層200的開口或突起物還可以控制液晶分子, 提升顯示器的應答速度。另外,根據本發明之VA-LCD的 電極結構没计’當其應用於觸控面板時,還可以避免觸控 面板於觸碰時產生顯示不均(push mura)。除此之外,由於 本發明之電極結構簡單,因此可簡化製程並節省成本。 在本發明一實施例之VA-LCD中,係將接觸孔(c〇ntact φ hole)204、儲存電容(storage capacitance,簡稱 Cst)206、薄 膜電晶體(TFT)208以及其他會遮光的元件設置成與彩色滅 光片基板侧透明電極層200的開口 202重疊,因此可提高 顯示器的穿透率。上述遮光元件例如為感光間隙物(ph〇t〇 spacer),以及對應於感光間隙物的遮光層,例如金屬層或 黑色矩陣(black matrix)。此外,掃描線的配置也可與開口 202重疊’以提升顯示器的穿透率。 接著’請參閱第2D圖’其係顯示沿著第2C圖中線 2D-2D’之液晶顯示面板300的剖面示意圖。在第一基板 0773-A34028TWF_P2008051 7 201027203 106 ’例如陣列基板上具有複數條互相垂直的掃描線及資料 線(未顯示)’於陣列基板106上依序形成半導體層21〇、絕 緣層212及第一導電層214,以構成儲存電容2〇6及薄膜 電晶體208。接著,在第一導電層214上形成絕緣層213, 並在絕緣層212和213中形成孔洞216,暴露出半導體層 210’於孔洞216中填入導電材料’形成接觸孔(c〇ntact hole)204,然後在接觸孔上方形成第二導電層218,第一及 第二導電層214和218例如為金屬層。接著,在第二導電 層218上形成絕緣層215 ’並於絕緣層215上形成透明電 極層100。其中,於半導體層210、第一導電層214、第二 導電層218和透明電極層100之間設置的各絕緣層212、 213和215可以是氮化矽、氧化矽或前述之組合。而半導 體層210可以是非晶矽或多晶矽。 接著,於透明電極層100上形成第一高分子層110, 例如為聚亞酿胺(polyimide,簡稱PI)。高分子層no可以 是不經刷膜配向(rubbing)處理的配向層,其表面上可不具 有刷膜配向痕跡,且第一高分子層110具有預傾角(pretilt angle)介於約80至90度之間。 第二基板108例如為彩色濾光片基板,其與第一基板 106對向設置’於第二基板108上形成透明電極層200,透 明電極層200之開口 202的位置與儲存電容206及接觸孔 204重疊。接著,在透明電極層200上形成第二高分子層 112,其材料可以與第一高分子層11〇相同,且可以是不經 刷膜配向處理的配向層,表面上不具有刷膜配向痕跡,第 二高分子層112的預傾角(pretilt angle)介於約80至90度 0773-A34028TWF_P2008051 201027203 之間。接著,在第一基板106與第二基板108之間夾設液 晶層114,液晶層Π4可為負型液晶,在一實施例中,可 使用局分子穩定型垂直配向(polymer stabilized vertical alignment ’簡稱pSVA)液晶層。當不施加電場時,液晶層 114内的複數個液晶分子係垂直於第一和第二基板排列。 此外’液晶顯示面板300還可包含一對偏光片(未顯示)分 別設置於第一基板106和第二基板108外侧,此對偏光片 可以是線性或圓形偏光片。 ♦ 接著,請參閱第3圖,其係顯示依據本發明各實施例 之彩色濾光片基板側透明電極層的平面示意圖。除了第2B 圖的橢圓形開口 202之外,彩色濾光片基板側透明電極層 的圖樣(例如開口或突起物)之形狀還可以是十字形(如第 3A圖所示)、X字形(如第3B圖所示)、長條形(如第3C、 3D圖所示)、矩形(如第3F圖所示)、圓形(如第3E圖所示) 或其他合適的形狀’其在一個次晝素内為連續的圖案,且 上述開口或突起物的尺寸可依據需求調整。 • 接著請參閱第4圖,其為依據本發明之影像顯示系統 600的配置示意圖,其中包含顯示器400,例如為穿透型或 半反穿型液晶顯示器’其具有根據本發明之液晶顯示面板 3〇〇,顯示器400可為電子裝置的一部份。〆般而言,影像 顯示系統600包含顯示器4〇〇及控制單元500,控制單元 與顯示器400耦接,以傳輸訊號至顯示器,使顯示器顯示 影像。上述之電子裝置可為行動電話、數位相機、個人數 位助理(PDA)、筆記型電腦、桌上型電腦、電視、車用顯示 器或可攜式DVD播放機。 〇773-A34028TWF_P2008051 〇 201027203 雖然本發明已揭露較佳實施例如上,然其並非用以限 定本發明,任何熟悉此項技藝者,在不脫離本發明之精神 和範圍内’當可做些許更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定為準。 【圖式簡單說明】 第1 A圖係顯示傳統VA-LCD的一個次晝素内,陣列 基板側透明電極層的平面示意圖。 第1B圖係顯示傳統VA-LCD的一個次畫素内,彩色 濾光片基板侧透明電極層的平面示意圖。 ❹ 第1C圖係顯示傳統VA-LCD的一個次晝素内,陣列 基板側透明電極層與彩色濾光片基板側透明電極層重疊之 平面示意圖。 第2A圖係顯示依據本發明一實施例之VA-LCD的一 個次畫素内’陣列基板側透明電極層的平面示意圖。 第2B圖係顯示依據本發明一實施例之va_lcD的一 個次晝素内,彩色濾光片基板侧透明電極層的平面示意圖。 第2C圖係顯示依據本發明一實施例之VA_LCD的一參 個次晝素内,陣列基板側透明電極層與彩色濾光片基板側 透明電極層重疊的平面示意圖。 第2D圖係顯示沿著第2C圖的線2D-2D,之剖面示意 圖。 第3A-3F圖係顯示依據本發明各實施例之彩色濾光片 基板側透明電極層的平面示意圖。 第4圖係顯示依據本發明一實施例之包含液晶顯示面 0773-A34028TWF P2008051 10 201027203 板的影像顯示系統之配置示意圖。 【主要元件符號說明】 10、100〜陣列基板側透明電極層; 11〜狹缝; 12、102〜掃描線; 14、104〜資料線; 16、116〜次晝素; 20、 200〜彩色濾光片基板侧透明電極層; 21、 202〜開口; 30、204〜接觸孔; 106〜第一基板; 108〜第二基板; 110〜第一高分子層; 112〜第二高分子層; 114〜液晶層; • 206〜儲存電容; 208〜薄膜電晶體; 210〜半導體層; 212、213、215〜絕緣層; 214〜第一導電層; 216〜孔洞; 218〜第二導電層; 300/〜1液晶顯不面板, 400〜顯示器; 0773-A34028TWF P2008051 11 201027203 500〜控制單元; 600〜影像顯示系統。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image display system including a liquid crystal display panel, and more particularly to an electrode structure of a vertical alignment type liquid crystal display panel. [Prior Art] A vertical alignment (VA) liquid crystal display is a liquid crystal display capable of achieving high contrast and wide viewing angle, and is conventionally designed to make a vertical alignment type liquid crystal display (VA-LCD) stable and symmetrical. The multi-domain usually divides a sub-pixel of the VA-LCD into 2 to 3 smaller sub-pixel regions, so that there are 2 to 3 multi-quadrant regions in a sub-quartz. This is achieved by using a patterned transparent electrode layer on the array substrate, such as indium tin oxide (ITO), or a transparent electrode layer on a color filter substrate, such as a pattern of indium tin oxide. Please refer to FIG. 1 , which is a schematic diagram showing a transparent electrode layer on an array substrate in a sub-decene of a conventional vertical alignment type liquid crystal display, and the transparent electrode layer 1 on the array substrate in a sub-quartz has 2 slits ll. Next, please refer to FIG. 1 , which is a schematic diagram showing a planar view of a transparent electrode layer on a color filter substrate in a sub-decant of a conventional vertical alignment type liquid crystal display. The transparent electrode 20 has three openings 21. Please refer to FIG. 1C, which is a schematic diagram showing the plane of the transparent electrode layer 10 on the array substrate and the transparent filter 20 on the substrate of the color filter 0773-A34028TWF P2008051 4 201027203 in a sub-single of the conventional vertical alignment type liquid crystal display. The secondary halogen 16 is defined by two adjacent scan lines 12 and two adjacent data lines 14, the slit 11 of the transparent electrode layer 10 on the array substrate and the transparent electrode layer 20 on the color filter substrate. The openings 21 are matched to each other such that one secondary pixel 16 is divided into three multi-quadrant regions, and the contact holes 30 are disposed in one opening of the transparent electrode layer 20 on the color filter substrate. The responsiveness of the vertical alignment type liquid crystal display can be improved by increasing the slit width of the transparent electrode layer 10 on the array substrate and/or increasing the opening size of the transparent electrode 20 on the color filter substrate, but the transparent electrode layer on the array substrate The larger the opening of the transparent electrode layer on the slit and the color filter substrate, the more obvious the display sensation caused by the touch panel when it is applied to the touch panel. In addition, the larger the opening of the transparent electrode layer on the array substrate and the opening of the transparent electrode layer on the color filter substrate, the lower the transmittance of the display and the higher the driving voltage of the display. In view of this, there is a need in the industry for a vertical alignment type liquid crystal display that can meet the requirements of improving the response speed, reducing the display unevenness of the touch panel, increasing the transmittance, and lowering the driving voltage. SUMMARY OF THE INVENTION The present invention provides an image display system including a liquid crystal display panel, the liquid crystal display panel including: a first substrate having a plurality of mutually perpendicular tributary lines and scan lines 'two adjacent data lines And defining a primary pixel between the two adjacent scanning lines; the first transparent electrode layer is disposed on the first substrate and located in the secondary halogen; the second substrate is disposed opposite to the first substrate and has an inner surface; The second transparent electrode layer is disposed on the inner surface of the second substrate 0773-A34028TWF P2008051 5 201027203, and corresponds to the secondary halogen, wherein the second transparent electrode layer located in the secondary halogen has only one pattern; and the liquid crystal layer is disposed on Between the first substrate and the second substrate, wherein a plurality of liquid crystal molecules in the liquid crystal layer are aligned perpendicular to the first substrate and the second substrate. In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, the following description will be described in detail with reference to the accompanying drawings: [Embodiment] The present invention is directed to a vertical alignment type liquid crystal display panel (VA-LCD). The electrode structure design improves the response speed of the display, reduces the display unevenness of the touch panel, improves the penetration, and lowers the driving voltage. Furthermore, the present invention is also applicable to a multi-domain vertical alignment (MVA) liquid crystal display panel. Referring to FIG. 2A, FIG. 2 is a plan view showing a transparent substrate layer of a matrix substrate side of a VA-LCD according to an embodiment of the present invention. In a secondary pixel, the transparent electrode layer 100 on the array substrate side has a planar structure. That is, the transparent electrode layer 100 does not have a pattern such as an opening, a slit, or a protrusion. Next, referring to FIG. 2B, which is a plan view showing a color filter substrate side transparent electrode layer of a VA-LCD according to an embodiment of the present invention, in a sub-pixel, the color of the color filter substrate side is transparent. The electrode layer 2 has only one pattern, for example, has only one opening 202, or has only one protrusion 202'. This protrusion may be a photosensitive resin material. The transparent electrode layers 100 and 200 on the Array substrate side and the color filter (CF) substrate side are, for example, indium tin oxide or indium zinc oxide (IZO). 0773-A34028TWF P2008051 6 201027203 Please refer to FIG. 2C, which shows a VA-LCD according to the present invention, in which a transparent substrate layer 1 on the array substrate side and a side of the color filter substrate are transparent. Schematic diagram of the overlapping plane of the electrode layer 200. A sub-single (SUb-pixel) ll6 is defined between any two adjacent lines 102 and any two adjacent data lines 1, for example, red, green or blue (R, G or B) times. Prime. Since the array substrate side transparent electrode layer ι 本 of the present invention has a planar structure, and the color filter substrate side transparent electrode layer 2 〇〇 has only one opening or protrusion, only one multi-image is formed in one sub-halogen. A 0 (multi_domain) area which reduces the driving voltage of the VA-LCD of the present invention and reduces power consumption. Further, the opening or protrusion of the color filter substrate side transparent electrode layer 200 according to the present invention can also control liquid crystal molecules to increase the response speed of the display. Further, the electrode structure of the VA-LCD according to the present invention does not count when the touch panel is applied to the touch panel, thereby preventing the touch panel from being printed unevenly when it is touched. In addition, since the electrode structure of the present invention is simple, the process can be simplified and the cost can be saved. In the VA-LCD according to an embodiment of the present invention, a contact hole (c〇ntact φ hole) 204, a storage capacitance (Cst), a thin film transistor (TFT) 208, and other components that shield light are disposed. It overlaps with the opening 202 of the color extinction substrate side transparent electrode layer 200, so that the transmittance of the display can be improved. The light shielding member is, for example, a photosensitive spacer, and a light shielding layer corresponding to the photosensitive spacer, such as a metal layer or a black matrix. In addition, the configuration of the scan lines can also overlap with the opening 202 to increase the transmittance of the display. Next, please refer to Fig. 2D, which shows a schematic cross-sectional view of the liquid crystal display panel 300 along the line 2D-2D' in Fig. 2C. The first substrate 0773-A34028TWF_P2008051 7 201027203 106' has a plurality of mutually perpendicular scan lines and data lines (not shown) on the array substrate, and sequentially forms a semiconductor layer 21, an insulating layer 212, and the first on the array substrate 106. Conductive layer 214 to form storage capacitor 2〇6 and thin film transistor 208. Next, an insulating layer 213 is formed on the first conductive layer 214, and holes 216 are formed in the insulating layers 212 and 213, exposing the semiconductor layer 210' to fill the hole 216 with a conductive material to form a contact hole (c〇ntact hole). 204. A second conductive layer 218 is then formed over the contact holes, and the first and second conductive layers 214 and 218 are, for example, metal layers. Next, an insulating layer 215' is formed on the second conductive layer 218 and a transparent electrode layer 100 is formed on the insulating layer 215. The insulating layers 212, 213, and 215 disposed between the semiconductor layer 210, the first conductive layer 214, the second conductive layer 218, and the transparent electrode layer 100 may be tantalum nitride, tantalum oxide, or a combination thereof. The semiconductor layer 210 may be amorphous or polycrystalline. Next, a first polymer layer 110 is formed on the transparent electrode layer 100, for example, polyimide (PI). The polymer layer no may be an alignment layer without rubbing treatment, and may have no brush film alignment marks on the surface thereof, and the first polymer layer 110 has a pretilt angle of about 80 to 90 degrees. between. The second substrate 108 is, for example, a color filter substrate, and is disposed opposite to the first substrate 106 to form a transparent electrode layer 200 on the second substrate 108. The position of the opening 202 of the transparent electrode layer 200 and the storage capacitor 206 and the contact hole are formed. 204 overlap. Next, a second polymer layer 112 is formed on the transparent electrode layer 200, and the material thereof may be the same as that of the first polymer layer 11〇, and may be an alignment layer that is processed without a brush film alignment, and has no trace of the film alignment on the surface. The second polymer layer 112 has a pretilt angle of between about 80 and 90 degrees 0773-A34028TWF_P2008051 201027203. Next, a liquid crystal layer 114 is interposed between the first substrate 106 and the second substrate 108, and the liquid crystal layer Π4 may be a negative liquid crystal. In one embodiment, a polymer stabilized vertical alignment may be used. pSVA) liquid crystal layer. When no electric field is applied, the plurality of liquid crystal molecules in the liquid crystal layer 114 are aligned perpendicular to the first and second substrates. Further, the liquid crystal display panel 300 may further include a pair of polarizers (not shown) disposed outside the first substrate 106 and the second substrate 108, respectively, and the pair of polarizers may be linear or circular polarizers. ♦ Next, referring to Fig. 3, there is shown a plan view showing a color filter substrate side transparent electrode layer according to various embodiments of the present invention. In addition to the elliptical opening 202 of FIG. 2B, the pattern of the transparent filter layer on the color filter substrate side (for example, an opening or a protrusion) may be in the shape of a cross (as shown in FIG. 3A) or an X shape (eg, Figure 3B), long strips (as shown in Figures 3C and 3D), rectangles (as shown in Figure 3F), circles (as shown in Figure 3E) or other suitable shapes 'in one The secondary halogen is a continuous pattern, and the size of the above openings or protrusions can be adjusted according to requirements. • Referring now to FIG. 4, which is a schematic diagram of the configuration of an image display system 600 according to the present invention, including a display 400, such as a transmissive or semi-transflective liquid crystal display, having a liquid crystal display panel 3 according to the present invention. That is, display 400 can be part of an electronic device. In general, the image display system 600 includes a display 4 and a control unit 500. The control unit is coupled to the display 400 to transmit signals to the display to cause the display to display images. The above electronic device can be a mobile phone, a digital camera, a personal digital assistant (PDA), a notebook computer, a desktop computer, a television, a car display, or a portable DVD player. 〇 773-A34028TWF_P2008051 〇201027203 Although the present invention has been disclosed in a preferred embodiment, it is not intended to limit the invention, and any one skilled in the art can make a few changes without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a plan view showing a transparent electrode layer on the array substrate side in a sub-halogen of a conventional VA-LCD. Fig. 1B is a plan view showing a transparent electrode layer on the side of a color filter substrate in a sub-pixel of a conventional VA-LCD. ❹ The 1C figure shows a plan view in which a transparent substrate layer on the array substrate side and a transparent electrode layer on the side of the color filter substrate overlap each other in a sub-small element of a conventional VA-LCD. Fig. 2A is a plan view showing a sub-pixel internal array side transparent electrode layer of a VA-LCD according to an embodiment of the present invention. Fig. 2B is a plan view showing a color filter substrate-side transparent electrode layer in a sub-halogen of va_lcD according to an embodiment of the present invention. Fig. 2C is a plan view showing the overlapping of the array substrate side transparent electrode layer and the color filter substrate side transparent electrode layer in a sub-element of the VA_LCD according to an embodiment of the present invention. Fig. 2D is a schematic cross-sectional view taken along line 2D-2D of Fig. 2C. 3A-3F are plan views showing a color filter substrate-side transparent electrode layer according to various embodiments of the present invention. Fig. 4 is a view showing the configuration of an image display system including a liquid crystal display surface 0773-A34028TWF P2008051 10 201027203 according to an embodiment of the present invention. [Major component symbol description] 10, 100~ array substrate side transparent electrode layer; 11~ slit; 12, 102~ scan line; 14, 104~ data line; 16, 116~次昼素; 20, 200~ color filter Light plate substrate side transparent electrode layer; 21, 202~ opening; 30, 204~ contact hole; 106~ first substrate; 108~ second substrate; 110~ first polymer layer; 112~ second polymer layer; ~ liquid crystal layer; • 206~ storage capacitor; 208~ thin film transistor; 210~ semiconductor layer; 212, 213, 215~ insulating layer; 214~ first conductive layer; 216~ hole; 218~ second conductive layer; ~1 LCD display panel, 400~ display; 0773-A34028TWF P2008051 11 201027203 500~ control unit; 600~ image display system.
0773-A34028TWF P2008051 120773-A34028TWF P2008051 12