九 、發明說明: 【發明所屬之技術領域】 本發明係關於一種顯示器,特別是關於一種具高開口 率與高對比度的反射型或半穿半反型液晶顯示器。 【先前技術】 隨著科技進步,具有省電、無幅射、體積小、低耗電 量、平面直角、高解析度、晝質穩定等多項優勢的液晶顯 示器’為原先處獨佔地位之傳統映像管(簡稱CRT)帶來了 莫大的衝擊’尤其是現今各式資訊產品如:手機、筆記型 電腦、數位相機、PDA、液晶螢幕等產品越來越普及,亦 使得液晶顯示器(LCD)的需求量大大提升。 液晶顯示器依其光源機制又可分為穿透式、反射式以 及半穿半反式三類。其巾’穿透式液晶顯示雜由背光模 =提供光源’具有耗電量献以及魏光太強(如陽光下) 時顯示不料問題。反射歧晶顯示酬是以反射電極層 =翻電極層,主要藉由外界光線來提供絲,因此毋 =光模罐供絲,可朗於戶外大贿晶顯示看板或 =加可取電子產品於戶外的解析度等,㈣有反射光 均勻姐反射亮度不足的缺點,因此在環境光線不 的缺Γ兄下無法作用。為了避免上述兩種類型液晶顯示器 的半穿本^刀利用其優點,遂同時具有穿透區及反射區 技術2 轉示器成為當前首要發展的液晶顯示 另外,為挑戰液晶顯示 器整體的應用範圍,液晶顯示 器的顯示技術更是不斷地投人研發來改善。其巾,對於同 -種液晶分子的排列狀態、’在不同視角下有效光程差的不 同’在畫質方面,產業便極力投入發展廣視角技術。舉例 末4由田士通所發展出的MVA (Multi~Domain VerticalIX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a display, and more particularly to a reflective or transflective liquid crystal display having a high aperture ratio and a high contrast ratio. [Prior Art] With the advancement of science and technology, liquid crystal displays with many advantages such as power saving, no radiation, small size, low power consumption, plane right angle, high resolution, and stable quality are the original traditional image of exclusive status. The tube (CRT for short) has brought a big impact. Especially, today's various information products such as mobile phones, notebook computers, digital cameras, PDAs, LCD screens and other products are becoming more and more popular, which also makes the demand for liquid crystal displays (LCDs) The amount is greatly improved. According to the light source mechanism, liquid crystal displays can be divided into three types: transmissive, reflective, and semi-trans-trans. Its towel 'transparent liquid crystal display miscellaneous backlight mode = provide light source' has power consumption and Wei Guang is too strong (such as under sunlight) to show unexpected problems. The reflection of the crystal is the reflection electrode layer = the electrode layer, mainly by the external light to provide the wire, so the 毋 = optical mold can be supplied to the wire, can be used outdoors, large bridle display board or = plus electronic products for outdoor use The resolution, etc., (4) has the disadvantage that the reflected light is not reflected by the brightness of the sister, so it cannot function under the lack of ambient light. In order to avoid the advantages of the above-mentioned two types of liquid crystal displays, the utility model has the advantages of penetrating area and reflecting area technology. The second-transistor becomes the liquid crystal display which is currently the primary development. In addition, in order to challenge the application range of the liquid crystal display as a whole, The display technology of liquid crystal displays is constantly being researched and developed to improve. In the case of the quality of the same liquid crystal molecules and the difference in the effective optical path difference at different viewing angles, the industry has invested heavily in the development of wide viewing angle technology. For example, MVA (Multi~Domain Vertical) developed by Tian Shitong
Alignment)技術便能同時改善上下視角到12〇度左右。近年 來由於廣視角技術不斷被改善,並實際納入生產線生產, 此舉已讓液晶顯示器在視角上的改善絲毫不遜於傳統的 CRT。 在目前的液晶顯示器的技術發展上,以雙間隙(dual gap)的半穿半反MVA液晶顯示器為例。通常雙間隙的半穿 半反液晶顯示器會在反射區r設置一個調整層121,如第 1A圖所示,此調整層可以設置在彩色濾光片(cd〇rfilter ; CF)基板側或薄膜電晶體(thin fiim transister ; TFT)基板 側。第1A及IB圖係分別顯示目前將MVA技術應用於雙間 隙半穿半反液晶顯示器之上視圖及橫截面示意圖。如第1A 圖所示’雙間隙半穿半反MVA液晶顯示器之基本結構包括 一陣列基板11、一彩色濾光片基板12,以及一液晶層π。 其中’陣列基板11具有複數個次晝素區no,每一個次晝 素區100均設有一反射區R以及一穿透區τ。彩色濾光片基 板12亦具有複數個次晝素區12〇 ’該些次晝素區12〇分別與 陣列基板之複數個次畫素區110相對應,且每一個次晝素 區120在與反射區R相對應的位置處均設有一調整層12ι。 液晶層13則設於陣列基板11與彩色濾光片基板12之間。 請繼續參考第1A圖,陣列基板11的各個次晝素區u〇 内皆設有一薄膜電晶體(thin film transistor ; TFT)(未繪 1375839 示),以及一儲存電容lu於反射區R的下方。接著形成 一平坦層112於陣列基板η之上表面。然後在平坦層ιΐ2 上製作出凹凸的表面於反射區R,再錢上具有高反射率的 金屬(例如:鋁、銀…等)當作反射電極113,同時每一個次 畫素區110之穿透區T亦均設有一透明電極114 ^值得一 提的是’陣列基板Π之各次畫素區ll0之反射區R内更 具有-接觸孔115,用以電性連接反射電極113與儲存電 容m。另外,彩色濾光片基板12相對於陣列基板u之 反射區R肖穿透@ τ之位置上更設有一配向凸起物 122(pr〇tmsion ’簡稱PR)。由於配向凸起物122會改變電 力線的分佈,使得液晶分子往配向凸起物122的方向傾斜 以產生多區域液晶配向(multi_d〇mains)的效果,而達到廣 視角的技術’並改善單一區域液晶配向(single_d〇main)時所 存在的灰階反轉的問題。如第1B圖所示,通常在組立陣 列基板11與彩色遽光片基板12時,彩色渡光片基板12 更没有一間隙物123(photo spacer,簡稱ps)來固定面板的 間距(cell gap)。並在陣列基板側u設計複數個與間隙物 123相對應的平台116,使間隙物123能夠更穩定的維持面 板間距。 然而,請參考第1B圖,由於前述調整層121邊緣與 間隙物123附近的液晶分子會受到高度差的影響而使液晶 分子排列時係呈一角度狀態,造成暗態漏光之情況,使得 穿透對比降低。接觸孔115内之液晶分子也會受到凹洞地 形的景^響而排列不佳,同樣產生了反射暗態漏光的問題, 造成反射對比降低。而接觸孔115不會貢獻反射率,因此 7 接觸孔也是會使得開口率減少。又因為上述間隙物123的 暗態漏光問題’可以瞭解間隙物ί23的設計位置也必須相 當謹慎。以往都會將間隙物123設計在—些平坦的位置 上,且通常會設置-個平纟116 ’遮蔽間隙物123周圍液 晶的暗態漏光因此複數個平台J16也相對應地設置於每個 次畫素區110上。但此種設置平台116的方式反而降低了 開口率,且如第1Β圖所示’幾個常設計間隙物的位 置’也都產生浪費開口率的問題。 為了解決上述對比度與開口率降低的問題,在目前的 液晶顯示器製程中,往往會朝向調整配向凸起物122、間 隙物123或接觸孔115位置的方向嘗試。舉例而言,請參 考第ic圖。在美國專利公開號第2〇〇4〇189928號中曾揭 露:彩色遽光片基板12設置有一間隙物123,而陣列^板 π同樣設置有一接觸孔115,且間隙物123設置於接觸孔 115的正上方,並抵於接觸孔115開口的兩側平台。另外, ,間隙物I23上方更設有一遮光層m _〉,用以同 蔽間隙物123與接觸孔115的漏光,達到增加開口率以 提升對比度的目的。 【發明内容】 的係在於提供一種液晶顯示面板以 本發明之主要目 及其製造方法。 本發明之另一目的在於提升液晶顯示器之開口率。 本發明之再一目的在於提升液晶顯示器之影像對比 、本發明提供了一種具高開口率與高對比度的反射型或 半穿半反魏晶_示面板。以反射魏面板為例, 液曰曰顯示面板之第—基板的每-個次晝素區至少包括-共 通線、一閘極線、—開關元件結構、-資料線、-接觸孔、 -儲存電容結構、—平坦層、_反射電極以及—填充件。 除了上述元件外,更設有一遮光層於上述之接觸孔、填充 件、配向凸起物或間隙物的上方,且接觸孔與填充件係可 位於同一位置。 _根據本發明n酬卿成之反射式廣視角液晶 顯示面板,其巾’在第—基細彡成填充件之步驟依序為先 透,一光罩圖案化填充層,填充層舉例是-種有機材料。 ,著’於後續製程巾侧經曝光之層,並去除殘餘之 部分’以形成第—區塊於接觸孔中,可使凹洞的接觸孔經 由第一,塊填平此凹洞,並再形成第二區塊於第-區塊 上’使得在接觸孔的相對位置上形成配向凸起物或間隙 物最後id共第—基板與前述之第一基板組立,並形成 一液晶層於第—基板與第二基板之間。需特別注意的是, 間隙物之厚度約等於液晶層之厚度,用以作為間隙物,同 時亦可當作-配向凸触。其中,第二基板舉例更 數個配向凸起物。 —根據本發明之第二實施例卿成之反射式廣視角液晶 顯不面板。其巾’填充件触括帛—區塊彳嫌接觸孔内, 以及第二區塊位於第_區塊上,且第二區塊之厚度約等於 液晶層之厚度’用以作為—間隙物,同時亦可當作一配向 凸起物。需特別說明的是,根據第二實施例之方法所形成 =填充件係由-個微影步驟即可完成,與第—實齡)相 父’可減少-道間隙物的製程,也可同時填補接觸孔。 ’本判所提供敏晶顯示面板及其製造方法係 〜1、與配向凸起物設置於同—個位置上,即以間隙物 向6起物的魏,改變電力_分佈,使周圍液晶 在間隙物傾倒’囉㈣達顺視紐術之效果。另外, 本發明也將接觸孔設置於_物或配向凸起物的下方,且 因製程上通常會設置—遮光層在_物或配向凸起物之 上’用以遮蔽間隙物或配向凸起物的暗態漏光問題,進而 可同時遮蔽接觸孔、間隙物與配向凸起物的漏光。且接觸 孔係舉例以-有機材料填平,她f知技術中之平台或是 僅利用接觀_平台來固定_:物的綠,本發明不僅 可以增加液晶顯示面板之開口率,提升其影像對比度,更 可避免基板組立所可能發生的對準誤差問題。 【實施方式】 在第1C圖中’由於間隙物123必須剛好抵於接觸孔 115開σ的兩側,始能穩定地維持面板間距。如此,製程 上些微的誤差,例如:間隙物寬度、接觸孔開口寬度,以 及陣列基板與彩色壚光片在組立時的對準誤差等,均非常 容易造成面板cell gap的誤差導致於良率損失的情況。 有4α於此’為了改善習知液晶顯示器技術所造成之對 比度不佳以《口率降低關題,本發明提出—種新的設 計,透過該項新設計不僅可以增加液晶顯示器的開口率, 更可以進一步提升其影像對比度。 茲配合圖示詳述本發明,並列舉較佳實施例及其相關 應用說明如下: -月參’系第2A至2G ® ’其係為本發明之兩種實施例應 用於反射式廣視肢晶顯示面板的結構上視圖以及製程橫 截面示意圖。 首先’如第2A圖所示’其係為本發明之兩種實施例應 用於反射式廣視角液晶顯示面板的結構上視圖。其中,液 晶顯示面板的每一個次晝素區1〇〇至少包括一共通線 2B、-閘極線214、-開關元件結構(在本實施例中舉例為 薄膜電晶體(thin film transistor ; TFT))215、一資料線 220、 -接觸孔(未圖示)、-儲存電容結構219…反射電極 223、一凸起(舉例為一配向凸起物315)以及一填充件4^, 其中半導體層211係位於資料線22〇的下方,可彼此完全 重疊(overlap)或部份重叠。 除了上述元件外,更設有-遮光層3M(舉例為黑色矩 陣black matrix ; BM),位於上述之接觸孔(未圖示)、填充 件411與/或配向凸起物315上方,且接觸孔雖未顯示於本 圖中,但與填充件411重疊。另外,液晶顯示面板更包含 兩個導孔㈣2^(2^2^)。其中,導孔217a用以連接 資料線220與開關元件215 ’而導孔聽則用以連接開關 元件215與儲存電容結構219。本發明之_内容結合上述 元件之相對位置關係與顯示面板之結構特徵,大致上先以 第2A圖尹A_A’線之橫截面圖來做介紹如下。 請參照第2B至2D圖,其係顯示根據本發明之第一實 鈿例所形成之反射式廣視角液晶顯示面板的製程橫截面 1375839 圖其結構與製程方法將詳述如下:首先,如第圖所 不,係先提供-第-絲20。其中,第一基板2〇係包括·· 先提供一第-基底2K),第-基底21〇舉例係為一透明絕 緣基板,其材質可為玻璃、石英或塑膠等。接著形成一半 導體層扣於第一基底210 ±,再形成一第一絕緣層212 覆蓋於半導體層211以及整個第-基底210上方,半導體 層211之材質舉例為低溫多晶石夕嘴後,形成-金屬層於 第,’、邑緣層212上’然後圖案化金屬層以同時形成一共通 電極213與-閘極214於第—絕緣層212之上表面。=共 通電極Μ與閘極2M之材質可為導電單層或多層金屬或 合金,如鋁(A1)、鉻(Cr)、鈦(Ti)及鉬鎢合金(M〇w)等。一 第二絕緣層216係形成於第一絕緣層212、共通電極213 與閘極線214上。接著,一儲存電容電極218設置於第二 絕緣層216上方。如此一來,半導體層叫、第一絕緣層 212、閘極215,構成了開關元件215。而半導體層2ιι ' ^ 一絕緣層212、共通電極213、第二絕緣層216以及儲存電 谷電極218則構成了一儲存電容結構219。 另外’彳直付;主思的是’在形成儲存電容電極218之前, 更包含形成導孔217b於第二絕緣層216之步驟。上述導孔 217b係依序貫穿第二絕緣層216以及第一絕緣層212,儲 存電容電極218可藉由導孔雇與半導體層211接觸,用 以讓儲存電容電極218與半導體層211之電位相等,提高 儲存電容結構219之效能。 ° 接著,一平坦層221形成於開關元件215以及儲存電 容結構219上。其中,平坦層221可藉由旋轉塗佈㈣n 1375839Alignment) technology can simultaneously improve the upper and lower viewing angles to around 12 degrees. In recent years, as the wide viewing angle technology has been continuously improved and actually incorporated into the production line, this has made the improvement of the viewing angle of the liquid crystal display no less than the traditional CRT. In the current technological development of liquid crystal displays, a double-pass half-reverse MVA liquid crystal display with a dual gap is taken as an example. Generally, the double-gap half-transflective liquid crystal display is provided with an adjustment layer 121 in the reflection area r. As shown in FIG. 1A, the adjustment layer can be disposed on the color filter (CD) substrate side or the thin film. Crystal (thin fiim transister; TFT) substrate side. The 1A and IB diagrams respectively show the above view and cross-sectional view of the MVA technology applied to the double-gap transflective liquid crystal display. The basic structure of the double-gap half-transflective MVA liquid crystal display shown in Fig. 1A includes an array substrate 11, a color filter substrate 12, and a liquid crystal layer π. Wherein the array substrate 11 has a plurality of sub-quartine regions no, and each of the sub-tinogen regions 100 is provided with a reflective region R and a penetrating region τ. The color filter substrate 12 also has a plurality of sub-quartine regions 12〇 corresponding to the plurality of sub-pixel regions 110 of the array substrate, and each of the sub-quartz regions 120 is An adjustment layer 12ι is provided at a position corresponding to the reflection area R. The liquid crystal layer 13 is provided between the array substrate 11 and the color filter substrate 12. Referring to FIG. 1A, a thin film transistor (TFT) (not shown in 1375839) and a storage capacitor lu are disposed under the reflective region R in each sub-cell region 〇 of the array substrate 11. . A flat layer 112 is then formed on the upper surface of the array substrate η. Then, a concave-convex surface is formed on the flat layer ι2 in the reflective region R, and a metal having high reflectance (for example, aluminum, silver, etc.) is used as the reflective electrode 113, and each sub-pixel region 110 is worn. The transparent region 114 is also provided with a transparent electrode 114. It is worth mentioning that the reflective region R of each pixel region 11 of the array substrate has a contact hole 115 for electrically connecting the reflective electrode 113 and the storage capacitor. m. Further, the color filter substrate 12 is further provided with an alignment protrusion 122 (pr〇tmsion hereinafter referred to as PR) with respect to the reflection region R of the array substrate u. Since the alignment protrusions 122 change the distribution of the power lines, the liquid crystal molecules are tilted in the direction of the alignment protrusions 122 to produce a multi-region liquid crystal alignment (multi_d〇mains) effect, and a technique of wide viewing angle is achieved, and the single-region liquid crystal is improved. The problem of grayscale inversion when there is alignment (single_d〇main). As shown in FIG. 1B, when the array substrate 11 and the color filter substrate 12 are assembled, the color light-receiving substrate 12 has no spacers (photo spacers, ps for short) to fix the cell gap. . A plurality of platforms 116 corresponding to the spacers 123 are designed on the array substrate side u to enable the spacers 123 to maintain the panel spacing more stably. However, please refer to FIG. 1B, because the liquid crystal molecules in the vicinity of the edge of the adjustment layer 121 and the spacer 123 are affected by the height difference, and the liquid crystal molecules are arranged at an angle when the liquid crystal molecules are arranged, thereby causing dark light leakage and making penetration. The contrast is reduced. The liquid crystal molecules in the contact holes 115 are also poorly aligned by the shape of the pits, and the problem of reflecting dark light leakage is also caused, resulting in a decrease in reflection contrast. The contact hole 115 does not contribute to the reflectance, so the 7 contact hole also causes the aperture ratio to decrease. Also, because of the dark light leakage problem of the above-mentioned spacer 123, it can be understood that the design position of the spacer ί23 must also be cautious. In the past, the spacers 123 were designed in some flat positions, and a flat diaphragm 116' is usually disposed to shield the dark state of the liquid crystal around the spacers 123. Therefore, a plurality of platforms J16 are correspondingly disposed in each of the secondary paintings. On the prime area 110. However, this manner of setting the platform 116 reduces the aperture ratio, and the problem of "several design spacers" as shown in Fig. 1 also causes a problem of wasting aperture ratio. In order to solve the above problem of lowering the contrast ratio and the aperture ratio, in the current liquid crystal display process, it is often attempted to adjust the position of the alignment protrusion 122, the gap 123 or the contact hole 115. For example, please refer to the ic diagram. It is disclosed in the U.S. Patent No. 2,189,928, that the color filter substrate 12 is provided with a spacer 123, and the array plate π is also provided with a contact hole 115, and the spacer 123 is disposed at the contact hole 115. Directly above, and against the platform on both sides of the opening of the contact hole 115. In addition, a light shielding layer m _〉 is disposed above the spacer I23 for illuminating the light leakage between the spacer 123 and the contact hole 115 to increase the aperture ratio for improving the contrast. SUMMARY OF THE INVENTION A liquid crystal display panel is provided in view of the main object of the present invention and a method of manufacturing the same. Another object of the present invention is to increase the aperture ratio of a liquid crystal display. A further object of the present invention is to improve image contrast of a liquid crystal display. The present invention provides a reflective or transflective wafer with high aperture ratio and high contrast. Taking the reflective Wei panel as an example, each of the sub-dielectric regions of the first substrate of the liquid helium display panel includes at least a common line, a gate line, a switching element structure, a data line, a contact hole, and a storage. Capacitor structure, - flat layer, _ reflective electrode and - filler. In addition to the above components, a light shielding layer is further disposed above the contact hole, the filling member, the alignment protrusion or the spacer, and the contact hole and the filling member are located at the same position. According to the invention, the reflective wide viewing angle liquid crystal display panel is formed by the step of the first step of forming the filling member, and the reticle patterning the filling layer, and the filling layer is exemplified by Organic materials. , the layer on the side of the subsequent process towel is exposed, and the remaining portion is removed to form the first block in the contact hole, so that the contact hole of the cavity can fill the hole through the first block, and then Forming a second block on the first block to form an alignment protrusion or a spacer at a relative position of the contact hole, and finally forming a liquid crystal layer on the first substrate and forming a liquid crystal layer on the first substrate Between the substrate and the second substrate. It should be noted that the thickness of the spacer is approximately equal to the thickness of the liquid crystal layer, and is used as a spacer, and can also be regarded as a - alignment convex contact. Among them, the second substrate exemplifies a plurality of alignment protrusions. - A reflective wide viewing angle liquid crystal display panel according to a second embodiment of the present invention. The towel 'filling member touches the 帛 - the block is in the contact hole, and the second block is located on the _ block, and the thickness of the second block is approximately equal to the thickness of the liquid crystal layer' is used as the spacer. It can also be used as a matching protrusion. It should be particularly noted that the method according to the second embodiment is formed by a method of lithography, and the father of the first age can reduce the process of the channel spacer, or both. Fill the contact holes. The present invention provides a sensitized display panel and a method for manufacturing the same, and the directional protrusions are disposed at the same position, that is, the gaps are changed to 6 watts, and the power _distribution is changed to make the surrounding liquid crystals in the gap. The object dumps '啰 (4) to the effect of Shunshi New Art. In addition, the present invention also places the contact hole under the _ object or the aligning protrusion, and is usually disposed on the process - the light shielding layer is above the _ object or the aligning protrusion to shield the spacer or the aligning protrusion The dark state of the object leaks light, which in turn can block the light leakage of the contact hole, the spacer and the alignment protrusion. And the contact hole system is exemplified by - organic material filling, the platform in the technology or only using the _ platform to fix the _: object green, the invention can not only increase the aperture ratio of the liquid crystal display panel, enhance the image thereof Contrast, it can avoid the alignment error that may occur in the substrate assembly. [Embodiment] In Fig. 1C, the panel pitch can be stably maintained since the spacers 123 must be just opposite to the sides σ of the contact holes 115. In this way, slight errors in the process, such as the width of the spacer, the width of the contact opening, and the alignment error of the array substrate and the color filter when assembled, are very likely to cause the yield error of the panel cell gap. Case. In order to improve the contrast caused by the conventional liquid crystal display technology, the present invention proposes a new design, and the new design can not only increase the aperture ratio of the liquid crystal display, but also It can further enhance its image contrast. The present invention will be described in detail with reference to the drawings, and the preferred embodiments and related applications are described as follows: - Moon's '2A to 2G ® ' are two embodiments of the present invention applied to a reflective wide-limb limb A structural top view of the crystal display panel and a schematic cross-section of the process. First, as shown in Fig. 2A, it is a structural top view of the two embodiments of the present invention applied to a reflective wide viewing angle liquid crystal display panel. Wherein, each sub-tenon region 1 of the liquid crystal display panel includes at least a common line 2B, a gate line 214, and a switching element structure (in this embodiment, a thin film transistor (TFT) is exemplified. 215, a data line 220, a contact hole (not shown), a storage capacitor structure 219, a reflective electrode 223, a bump (for example, an alignment protrusion 315), and a filler member 4, wherein the semiconductor layer The 211 is located below the data line 22〇 and can overlap or partially overlap each other. In addition to the above-mentioned components, a light-shielding layer 3M (for example, a black matrix black matrix; BM) is provided, which is located above the contact hole (not shown), the filling member 411 and/or the alignment protrusion 315, and the contact hole. Although not shown in the figure, it overlaps with the filler 411. In addition, the liquid crystal display panel further includes two via holes (4) 2^(2^2^). The via hole 217a is used to connect the data line 220 and the switching element 215', and the via hole is used to connect the switching element 215 and the storage capacitor structure 219. The contents of the present invention, in combination with the relative positional relationship of the above elements and the structural features of the display panel, are generally described below in terms of a cross-sectional view of the line AA A'A' of Fig. 2A. Please refer to FIGS. 2B to 2D, which are diagrams showing a process cross section of a reflective wide viewing angle liquid crystal display panel formed according to the first embodiment of the present invention. The structure and process method will be described in detail as follows: First, as described If the figure does not, the first-filament 20 is provided first. The first substrate 2 includes a first substrate 2K, and the first substrate 21 is a transparent insulating substrate made of glass, quartz or plastic. Then, a semiconductor layer is formed on the first substrate 210±, and a first insulating layer 212 is formed over the semiconductor layer 211 and the entire first substrate 210. The material of the semiconductor layer 211 is exemplified by a low temperature polycrystalline stone. The metal layer is on the ', the edge layer 212' and then the metal layer is patterned to simultaneously form a common electrode 213 and a gate 214 on the upper surface of the first insulating layer 212. The material of the common electrode 闸 and the gate 2M may be a conductive single layer or a plurality of layers of a metal or an alloy such as aluminum (A1), chromium (Cr), titanium (Ti), and molybdenum-tungsten alloy (M〇w). A second insulating layer 216 is formed on the first insulating layer 212, the common electrode 213, and the gate line 214. Next, a storage capacitor electrode 218 is disposed above the second insulating layer 216. In this manner, the semiconductor layer, the first insulating layer 212, and the gate 215 constitute the switching element 215. The semiconductor layer 2 ιι ^ ^ an insulating layer 212, the common electrode 213, the second insulating layer 216, and the storage valley electrode 218 constitute a storage capacitor structure 219. In addition, the invention is directed to the step of forming the via hole 217b in the second insulating layer 216 before forming the storage capacitor electrode 218. The via hole 217b sequentially penetrates the second insulating layer 216 and the first insulating layer 212. The storage capacitor electrode 218 can be contacted with the semiconductor layer 211 through the via hole to make the storage capacitor electrode 218 and the semiconductor layer 211 have the same potential. To improve the performance of the storage capacitor structure 219. Then, a flat layer 221 is formed on the switching element 215 and the storage capacitor structure 219. Wherein, the flat layer 221 can be coated by spin coating (four) n 1375839
coating)或非旋轉塗佈(Spinless c〇ating)等方式形成,且平坦 層221係、可以一絕緣透明材質所製造。例如,壓克力系的 低介電係數光阻材料。隨後,圖案化平坦層221形成一接 觸孔222貫穿平坦層221與第二絕緣層216以暴露出儲存 電容電極218。並在此平坦層221表面製作出凹凸的表面 二構’並鏟上-反射電極223形成於凹凸表面結構上,並 藉由接觸洞222與儲存電容電極218電性連接。其中,反 射電極223之材質係為具有高反射率之金屬,如:銘、銀、 金或上述組合。至此為止,液晶顯示面板之第-基板2〇 的基本疋件已大致構築完成。 认亚1 w 不貫…W〈土 I筏術特徵乃在 2^2 = 221的上方形成一填充層410並填滿接觸孔 與扣明Γ是’填充層410之光感材料特性係舉例 221之;^a S因此’在—較佳實施例中,當平坦層 負光^二光阻材料時,填充層之材質即為一It is formed by a coating or a spin-less coating, and the flat layer 221 can be made of an insulating transparent material. For example, acrylic low dielectric photoresist materials. Subsequently, the patterned planarization layer 221 forms a contact hole 222 extending through the planarization layer 221 and the second insulation layer 216 to expose the storage capacitor electrode 218. A surface of the flat layer 221 is formed with a concave-convex surface. The scribing-reflecting electrode 223 is formed on the uneven surface structure, and is electrically connected to the storage capacitor electrode 218 via the contact hole 222. The material of the reflective electrode 223 is a metal having high reflectivity, such as: inscription, silver, gold or a combination thereof. Up to this point, the basic components of the first substrate 2 of the liquid crystal display panel have been substantially constructed.认 1 1 w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w ^a S Therefore, in the preferred embodiment, when the flat layer is negatively polarized, the material of the filling layer is
填充,質即為:二為-負光阻材料時’ —光罩Mask圖_充層仙以形成-,梅細1询略第心 口巧令专弟 層,並去除殘餘之部八 刻經曝光之填充 接觸孔222 t,用於谐^ ’叫成—第一區塊川績於 奶圖,再接觸孔222。接著,請參考第 用為間_ # —項4111}於第—區塊411aJl,以作 用為_、物。最後,提供—第二基板如與前述之第一 ^ 20組立,並形成-液晶層50於第一基板2〇與第二基板3〇 之間’液晶層50舉例而為係為魏型。需特別注意的是, 第-區塊411b之厚度約等於液晶層5〇之厚度,用以作為 間隙物,同時亦可當作一配向凸起物。 再者’形成第一基;30之方法係包括:提供一第二基 底310,隨後形成-彩色濾、光層311於第二基底31〇上。 再形成-覆蓋層312(〇vercoat)於彩色遽光層311上。然後, 形成-共用電極313位於覆蓋層312上。而第二基板3〇 更包括複數個凸起(舉例係為配向凸起物315),且設有遮光 層314,大體位於填充件411以及配向凸起物315的正上 方或是彼此重疊。g 2D圖的液晶分子制方式是在亮態 驅動下(共用電極313與反射電極223有一電壓差),液晶 分子會朝配向凸起物315及間隙物411b傾倒,達到廣視= 的表現。 由於本發明之主要技術特徵在於液晶顯示面板中間隙 物、凸出物以及接觸孔的位置,而設置於平坦層下方之開 關元件以及彩色濾光片侧之結構大致與前述之第一實施例 相同故後續之第一貫施例以及各相關應用之說明,不再 加以資述。 請參照第2E至2G圖,其係為根據本發明之第二實施 例所形成之反射式廣視角液晶顯示面板橫截面圖的製程流 私圖。首先,如第2E圖所示,在依序形成平坦層221、接 觸孔222、反射電極223以及填充層410後,透過一光罩 Mask施以微影技術於填充層41〇。接著,於後續製程中保 留經曝光之填充層410,並去除未曝光之部分,以形成一 14 填,件41卜如第2F圖所示。最後,請參考第2(}圖提 供第—基板30與如述之第一基板20、组立,並形成液晶層 50於第一基板20與第二基板30之間。 曰 ”中填充件411係包括一第一區塊41 ia位於接觸孔 222内,用於填滿接觸孔222,以及一第二區塊41比,位 於第區塊411a上,且第二區塊411b之厚度約等於液晶 層50之厚度,用以作為一間隙物,同時亦可當作一配向凸 起物,第-區塊411a以及第二區塊411b係為同時形成且 為-體的° ® 2G的液晶分子排财式是在紐驅動下(共 用電極313與反射電極223有一電壓差),液晶分子會朝配 向凸起物315及間隙物4lib傾倒,達到廣視角的表現。 在第二實施例卜係直接利用微影製程將間隙物製作 於接觸孔的位置。換句話說’填充件411係由一個微影步 驟即可完成,與第一實施例相較,不僅可以減少一道間隙 物的製程,也可以同時填補接觸孔,並減少組立第一基板 以及第二基板時所可能發生的對準誤差問題。 綜合以上所述,本發明之第一與第二實施例雖以反射 式廣視綠晶顯示面板為例來作—卿,但本發明之應用 範圍並不僅限於此。其更可應用於雙間隙細㈣)半穿半 反液晶顯柏板以及糊__ _半料反液晶顯示 面板之情況。接著,將逐—就上述之應祕關示作一詳 細說明如下: 請參照第3A圖至第3E圖,其係分別顯示根據本發明 之方法應用於半穿半反液晶顯示面板之一實施例之結構的 上視圖以及橫截面示意圖。 1375839 請參考第3A圖’其係為本實施例應用於雙間隙半穿半 反式廣視角液晶顯示面板的上視圖。第3A圖所顯示之結構 在反射電極223形成之前,也就是平坦層221以下之結構 大致上與第2A圖相同,其僅有之差異在於第3八圖中具有 -穿透電極224以及-調整層316。而上述兩者之 ^显 如下所述。 請參照第3B ®,係為根據本發明之第—實施例所形成 之雙間隙半穿半反廣視角液晶顯示面板的橫截面示意圖。 首先,如第3B圖所示’係為沿第3A _ A_A,線之賊 面示意圖。其中,每一個次畫素區具有-反射區R以及一 穿透區R。在平坦層221形成之後,反射電極223係設置 於平坦層221上’並位於於反射區R巾。而第一基板2〇 更包括穿透 224位於平坦層221上並位於穿透區丁 中’與反射電極223電性連接。且平坦層221中同樣具有 接觸孔222之結構特徵,用以使反射電極223與儲存電容 電極218電性連接。接莫,括^ ,丨 _ η 接填充件411設置於第一基板2〇 j二f反30之間,並填滿接航222,並形成液晶層50 於第一基板20與第二基板3〇之間。 其中’填充件411之形成方法參照第2b至2D圖之步 係依序先圖案化填充層41〇(本圖未顯示)以定義第一區 _ :位於接觸孔222内,隨後形成第二區塊411b於第 之二:上Λ第二區塊仙之厚度約等於液晶層50 子又,以作為一間隙物,同時亦可當作一配向凸起物。 於笛再述所提供之第二基板%於形成共用電極313 基底310上之步驟前,更包括形成-另-覆蓋層(未 16 1375839 圖不)於第二基底3i〇上,以及圖案化另一覆蓋層(未圖示) 以形成調整層316於第二基底310上。其中,調整層316 之厚度約為液晶層50最大厚度的45%至55%,其作用在 於調整液晶層50位於穿透區T和反射區R具有不同之厚 度。另外’第二基板31〇更包括複數個配向凸起物315, 設置在反射區R正上方。且設有遮光層314,大體位於接 觸孔222、填充件411以及配向凸起物315的正上方。 另外,請再比對第3C圖,係為沿第3A圖B_B,線之橫 截面示意圖。第二基板3〇之彩色濾光層311可再進一步細 分為紅色濾光單元311R、綠色濾光單元3UG以及藍色濾 光單元311B。上述之三種濾光單元係分別對應於第一基板 20上之各個次晝素區1〇〇。值得注意的是,以一最佳實施 例來說’填充件411之位置通常會設置於藍色遽光單元 311B 下。 請參照第3D圖,係為根據本發明之第二實施例所形成 之雙間隙半穿半反廣視角液晶顯示面板的橫截面示意圖。 第3B圖與第3D圖雌示之液晶顯示面板的差異在於填充 件之形成方法。在第3D圖中’係直接圖案化填充層41〇(本 圖未標示)以形成填充件411。其中,填充件41〗包括第一 區塊411a位於接觸孔222内,以及第二區塊4Ub於第一 區塊411a上,且第二區塊411b之厚度約等於液晶層5〇之 厚度,第一區塊411a以及第二區塊411b係為同時形成且 為一體的。 進一步來說,根據本發明第二實施例之方法,填充件 411之位置自不限於藍色濾光單元311B下方,亦可同時設 17 1375839 置於紅色渡光單元311R以及綠色遽光單元311G, 圖所示。 請參照第4A ®至第4E圖,其係分別顯示根據本實施 例之方法應用於雙間隙半穿半反液晶顯示面板之結構的上 視圖以及橫截面示意圖。 明參考第4A圖,其係為本發明應用於雙間隙半穿半 反式廣視角液晶顯示面板的上視圖。第4A圖 在平坦層221形成之前,也就是平坦層22=:= 致上與第3A圖相@,其唯一之差異在於調整層316設置位 置的不同。而上述之結構差異如下所述。 首先’如第4B圖所示,係為沿第4A圖A_A,線之橫截 面示意圖。其中,第一基板2〇同樣具有複數個次晝素區 刚’每-次晝素區100亦均具有反射區R以及穿透區τ, 且反射電極223係位於反射區R中,穿透電極224則位於 穿透區丁上並與反射電極223電性連接。然而,本圖與第 3B圖之差異在於形成平坦層221後,再施以一微影製程以 圖案化平坦層221。而圖案化平坦層221之步驟係依序為去 除位於穿透區T中之部分平坦層221,並保留位於反射區r 中之平坦層22卜且其厚度約為液晶層5〇之厚度的挪至 55%。特別說明的是,保留於反射區尺之平坦層卜其功 能等同於前述之調整層3丨6。 曰 ’、 至於,其他之結翻F徵大致與第3B圖_,即依序設 置接觸孔222、反射電極223卩及填充件41】#元件於第一 基底210上’以形成第一基板2〇。並提供第二基板%與第 一基板20組立,然後形成液晶層5〇於第一基板2〇與第二 18 C s >· 基板3〇之間。其t ’填充件4n之製造方法依序為定義第 -區塊411a位於接觸孔222内,隨後形成第二區塊川匕 於第-區塊411a上,且第二區塊之厚度約等於液晶 層50之厚度,第二區塊4Ub大體為上寬下窄之錐柱形。 請參照第4C圖’係為沿第4A ® B-B,線之橫截面示意 圖。第4C圖所顯示之結構特徵大致上與第3C圖相同,在 此不加贅述。其唯-之差異如前述係為調整層位置之不 同,即在第4C圖中調整層(即平坦層221)係設置於第一基 板20上。 1 請參照第4D圖’係為根據本發明之第二實施例所形成 之半穿半反廣視角液晶顯示面板的橫截面示意圖。其中, 第4D酿第4B圖所顯示之液晶顯示面板的差異在於填充 件之形成方法。在第4D圖中,係直接圖案化填充層41〇(本 圖未標示)以形成填充件411。其中,填充件411包括第一 區塊411a位於接觸孔222内,以及第二區塊411b於第一 區塊411a上,且第二區塊411b之厚度約等於液晶層5〇之 厚度,第二區塊411b之寬度大體為一致相同,呈圓柱形。 進一步來說,根據本發明第二實施例之方法,填充件 411之位置自不限於藍色濾光單元311B下方,亦可同時設 置於紅色濾光單元311R以及綠色濾光單元3UG,如第3e 圖所示。 請參照第5A圖至第5D圖,其係分別顯示根據本實施 例之方法應用於單間隙半穿半反液晶顯示面板之橫截面示 意圖。其中,本實施例之上視圖所顯示的結構特徵與第如 圖相同,故不需額外提供本實施例之上視圖。但值得注音 的是,由橫截面示意圖可以得知本圖與前述第3A至4E圖 =產異在=調整層的有無,亦即本圖所顯示驗晶顯示面 僅具有單一間距。因此,上述之結構差異大致上以第4A 圖中Α·Α’線與B-B’線之橫截面圖來做介紹如下。 請參考第Μ圖,係為沿第4A圖A_A,線之橫截面示意 ?:其中’第一基板2〇同樣具有複數個次畫素區⑽,‘ 带-人畫素區1GG亦均具有反龍R以及穿透區τ,且反射 =極223係位於反射區R中,穿透電極224則位於穿透區 上並與反射電極223電性連接。如圖所示,第5A圖同 具有接觸孔222以及填充件411之結構特徵,並提供第二 基板30與第—基板2G組立,雜職液晶層%於第—美 板20與第二基板3〇之間。其+,填充件4ιι之製造方^ 依序為絲第-區塊41 la位於接觸孔222内,隨後第 二區塊411b於第一區塊411a上,且第二區塊他之厚声 約荨於液晶層50之厚度。 又 如同上述,第5Α圖與第4Β圖之差異即在於,第5Α 圖中並不具有調整層316或其他等同於調整層加之結 構。因此’除了此-結構特徵的差異外,第5Β圖、第^ 圖以及第5D目之其他結構部分均分別與第4c目、第忉 圖以及弟4E圖相同,故不加以贅述。 根據上述之說明’可赠解本發日觸技術特徵在於: ⑴係整合間隙物與配向凸起物,將其設置於同一個 位置上,即以間隙物當作配向凸起物的功能,改變電 的分佈,使液晶往間隙物傾倒,_能夠達到廣視角 技術之效果。此時’本發明―併將_孔設置於間隙物或 20 1375839 配向凸起物的下方,且因製程上通常會設置一遮光層在間 隙物或,向凸起物之上,用以遮蔽間隙物或配向凸起物的 漏,問題’進而可同時遮蔽接觸孔的漏光。不僅可以增加 液晶顯示面板之開口率,更可進—步提升其影像對比度曰。17 (2)另外’在第—倾财細—填充材料填滿接觸 孔,用以讓㈤隙物可以直接站在接觸孔上方,維持了液曰曰 顯示面板間距的穩定β 本發明雖以較佳實例闡明如上,然其並非用以限定本 f明精神與發明實體僅止於上述實關。騎屬技術領域 中具有通常知識者’當可㈣了解並_其它元件或方 來產生相_功效。是以,在獨離本發明之精神與^ 内所作之修改’均應包含在下述之申請專利範圍内。 【圖式簡單說明】 第1A圖至帛ic圖係分別顯示習知技術之半穿半反廣 視角液錢示面板的上視圖以及橫截面示意圖; " 第2A圖係顯示依據本發明之方法,應用於反射 視角液晶顯示面板中的結構上視圖; 、 第2B圖至第2D圖係分別顯示依據本發明之第一實施 ,應用於反射式廣視角液晶顯示面板中的製程橫戴面示 意圖; 第2E圖至第2G圖係分別顯示依據本發明之第二實施 ’應用於反射式廣視角液晶顯示面板中的製程橫戴面示 意圖; 1375839 穿J二=示依據本發明之方法’應用於雙間隙半 牙反廣視角液曰曰顯示面板的結構上視圖; 第3B圖至第3C圖係分別顯示依據本發明第 ίϋι,應用於雙間隙半穿反廣視角液晶顯示面板中: 3Α圖剖面線Α-Α,與Β-Β’的橫截面示意圖; 。 f 3D圖至第3Ε圖係顯示依據本發明第二實 法,應用於雙間隙半穿反廣視角液晶顯示 ^ 圖剖面線Α-Α,與Β_β’的橫戴面示意圖; ^第从 穿反Ϊ二示依據本發明之方法,應用於雙間隙半 牙反廣視角液日曰顯示面板的結構上視圖; 、第4Β圖至第4C圖係顯示依據本發明第一實施方 法’應用於雙間隙半穿反廣視角液晶顯示面板中从 圖剖面線Α_Α’與Β_Β,的織面示_ ; 。 第仍圖至第4Ε圖係顯示依據本發明第二實 法’應用於雙間隙半穿反廣視角液晶顯示面板中沿^仏 圖剖面線Α·Α,與Β_Β,的鋪^示賴; ° 第5AS]骂5關係顯示依據本發· 半穿反廣視角液晶顯示面板之中= 圖。1面線Α·Α,與B_B,的橫截面示意圖;以及Filling, quality is: two for - negative photoresist material '--mask Mask map _ filling layer fairy to form -, Mei Xi 1 to ask the first heart to make the special brother layer, and remove the residual part of the eight engraved exposure The filling contact hole 222 t is used to harmonize the first block to the milk map and then to the hole 222. Next, please refer to the use of _# - item 4111} in the first block 411aJl, and the effect is _, object. Finally, a second substrate is provided, for example, in combination with the first one described above, and a liquid crystal layer 50 is formed between the first substrate 2 and the second substrate 3'. The liquid crystal layer 50 is exemplified by a Wei type. It is to be noted that the thickness of the first block 411b is approximately equal to the thickness of the liquid crystal layer 5's as a spacer and can also be regarded as an alignment protrusion. Further, the method of forming the first substrate; 30 includes: providing a second substrate 310, and then forming a color filter, the optical layer 311 on the second substrate 31. A capping layer 312 (〇vercoat) is formed on the color calender layer 311. Then, the formation-common electrode 313 is located on the cover layer 312. The second substrate 3 〇 further includes a plurality of protrusions (for example, the alignment protrusions 315), and is provided with a light shielding layer 314 substantially directly above the filling member 411 and the alignment protrusions 315 or overlapping each other. The liquid crystal molecular mode of the g 2D pattern is driven by the bright state (the voltage difference between the common electrode 313 and the reflective electrode 223), and the liquid crystal molecules are poured toward the alignment protrusion 315 and the spacer 411b to achieve the performance of the wide view =. Since the main technical feature of the present invention is the position of the spacers, the protrusions, and the contact holes in the liquid crystal display panel, the structure of the switching element and the color filter side disposed under the flat layer is substantially the same as that of the first embodiment described above. Therefore, the first follow-up example and the description of each related application are not to be accounted for. Referring to Figures 2E to 2G, which are process flow diagrams of a cross-sectional view of a reflective wide viewing angle liquid crystal display panel formed in accordance with a second embodiment of the present invention. First, as shown in Fig. 2E, after the flat layer 221, the contact hole 222, the reflective electrode 223, and the filling layer 410 are sequentially formed, a lithography technique is applied to the filling layer 41 through a mask. Next, the exposed fill layer 410 is retained in the subsequent process, and the unexposed portions are removed to form a 14 fill, as shown in Fig. 2F. Finally, please refer to FIG. 2 to provide a first substrate 30 and a first substrate 20 as described, and to form a liquid crystal layer 50 between the first substrate 20 and the second substrate 30. The first block 41 ia is located in the contact hole 222 for filling the contact hole 222, and the second block 41 is located on the first block 411a, and the thickness of the second block 411b is approximately equal to the liquid crystal. The thickness of the layer 50 serves as a spacer and can also serve as a matching protrusion. The first block 411a and the second block 411b are simultaneously formed and are - body liquid crystal molecular rows of ® 2G. In the second embodiment, the liquid crystal molecules are tilted toward the alignment protrusions 315 and the spacers 4lib to achieve a wide viewing angle. The lithography process creates the spacer at the position of the contact hole. In other words, the filling member 411 is completed by a lithography step, and compared with the first embodiment, not only can the process of one spacer be reduced, but also Fill the contact holes and reduce the number of the first substrate and In view of the above, the first and second embodiments of the present invention use a reflective wide-view green crystal display panel as an example, but the scope of application of the present invention It is not limited to this. It can be applied to the case of double-gap fine (4)) semi-transparent and semi-reciprocal liquid crystal display board and paste __ _ half-material anti-liquid crystal display panel. Next, it will show the above-mentioned secrets. A detailed description is as follows: Please refer to FIGS. 3A to 3E, which are respectively a top view and a cross-sectional view showing the structure of an embodiment applied to a transflective liquid crystal display panel according to the method of the present invention. 1375839 Please refer to 3A is a top view of the present embodiment applied to a double-gap transflective wide viewing angle liquid crystal display panel. The structure shown in FIG. 3A is before the formation of the reflective electrode 223, that is, the structure below the flat layer 221 Generally, it is the same as FIG. 2A, and the only difference is that there are a through electrode 224 and an adjustment layer 316 in the third figure. The above two are as follows. Please refer to section 3B®. According to the invention A cross-sectional view of a double-gap transflective wide viewing angle liquid crystal display panel formed by the first embodiment. First, as shown in FIG. 3B, 'is a schematic diagram of the thief along the line 3A_A_A. The sub-pixel region has a reflective region R and a transmissive region R. After the flat layer 221 is formed, the reflective electrode 223 is disposed on the flat layer 221 and located in the reflective region R. The first substrate 2 includes The penetration 224 is located on the flat layer 221 and is electrically connected to the reflective electrode 223. The flat layer 221 also has a structural feature of the contact hole 222 for electrically connecting the reflective electrode 223 and the storage capacitor electrode 218. Sexual connection. The filling member 411 is disposed between the first substrate 2 〇j 2 f and 30, and fills the navigation 222, and forms the liquid crystal layer 50 on the first substrate 20 and the second substrate 3. Between 〇. Wherein the method of forming the filling member 411 firstly patterns the filling layer 41〇 (not shown in the figure) with reference to the steps of the 2b to 2D drawings to define the first region _: located in the contact hole 222, and then forms the second region. Block 411b is the second one: the thickness of the second block of the upper layer is approximately equal to the thickness of the liquid crystal layer 50 as a spacer, and can also be regarded as a matching protrusion. Before the step of further providing the second substrate % on the substrate 310 for forming the common electrode 313, the method further comprises forming a cover layer (not 16 1375839) on the second substrate 3i, and patterning another A cover layer (not shown) is formed to form the adjustment layer 316 on the second substrate 310. The thickness of the adjustment layer 316 is about 45% to 55% of the maximum thickness of the liquid crystal layer 50, and the effect is that the adjustment liquid crystal layer 50 has different thicknesses in the penetration region T and the reflection region R. Further, the second substrate 31 further includes a plurality of alignment protrusions 315 disposed directly above the reflection region R. A light shielding layer 314 is disposed substantially directly above the contact hole 222, the filling member 411, and the alignment protrusion 315. In addition, please compare the 3C figure, which is a cross-sectional view of the line along the B_B of Figure 3A. The color filter layer 311 of the second substrate 3 can be further divided into a red filter unit 311R, a green filter unit 3UG, and a blue filter unit 311B. The three kinds of filter units described above correspond to the respective sub-halogen regions on the first substrate 20, respectively. It should be noted that in a preferred embodiment, the position of the filler 411 is typically disposed under the blue calender unit 311B. Referring to Fig. 3D, there is shown a cross-sectional view of a double-gap transflective wide viewing angle liquid crystal display panel formed in accordance with a second embodiment of the present invention. The difference between the liquid crystal display panel of Fig. 3B and Fig. 3D is the method of forming the filler. In the 3D diagram, the filling layer 41 is directly patterned (not shown in the drawing) to form a filling member 411. The filler member 41 includes a first block 411a located in the contact hole 222, and a second block 4Ub on the first block 411a, and the thickness of the second block 411b is approximately equal to the thickness of the liquid crystal layer 5, One block 411a and the second block 411b are simultaneously formed and integrated. Further, according to the method of the second embodiment of the present invention, the position of the filling member 411 is not limited to the lower side of the blue filter unit 311B, and the 17 1375839 may be disposed at the red light illuminating unit 311R and the green fluorescent unit 311G. The figure shows. Please refer to Figs. 4A to 4E, which are respectively a top view and a cross-sectional view showing the structure applied to the double gap transflective liquid crystal display panel according to the method of the present embodiment. Referring to FIG. 4A, it is a top view of the present invention applied to a double-gap transflective wide viewing angle liquid crystal display panel. Fig. 4A Before the flat layer 221 is formed, that is, the flat layer 22 =: = is in contact with the 3A map, the only difference is that the adjustment layer 316 is set to a different position. The structural differences described above are as follows. First, as shown in Fig. 4B, it is a cross-sectional view taken along line AA of Fig. 4A. Wherein, the first substrate 2 〇 also has a plurality of secondary halogen regions. The 'per-metamorphic region 100 also has a reflective region R and a transmissive region τ, and the reflective electrode 223 is located in the reflective region R, and the penetrating electrode 224 is located on the penetrating region and electrically connected to the reflective electrode 223. However, the difference between this figure and Fig. 3B is that after the flat layer 221 is formed, a lithography process is applied to pattern the flat layer 221. The step of patterning the planarization layer 221 is to remove a portion of the planarization layer 221 located in the transmissive region T, and to retain the flat layer 22 located in the reflective region r and have a thickness corresponding to the thickness of the liquid crystal layer 5 Up to 55%. Specifically, the flat layer remaining in the reflective area has the same function as the aforementioned adjustment layer 3丨6. 、', as for the other, the F-F signs are roughly the same as the 3B--, that is, the contact hole 222, the reflective electrode 223, and the filling member 41 are sequentially disposed on the first substrate 210 to form the first substrate 2 Hey. And providing a second substrate % to be assembled with the first substrate 20, and then forming a liquid crystal layer 5 between the first substrate 2 and the second 18 C s > The manufacturing method of the t'filler 4n is sequentially defined in the first block 411a in the contact hole 222, and then the second block is formed on the first block 411a, and the thickness of the second block is approximately equal to the liquid crystal. The thickness of the layer 50, the second block 4Ub is generally a cone-shaped column having an upper width and a lower width. Please refer to section 4C for a cross-sectional view along line 4A ® B-B. The structural features shown in Fig. 4C are substantially the same as those in Fig. 3C, and will not be further described herein. The difference is only the difference in the position of the adjustment layer, that is, the adjustment layer (i.e., the flat layer 221) is disposed on the first substrate 20 in Fig. 4C. 1 is a cross-sectional view showing a transflective wide viewing angle liquid crystal display panel formed in accordance with a second embodiment of the present invention. Among them, the difference in the liquid crystal display panel shown in Fig. 4B is the method of forming the filler. In Fig. 4D, the filling layer 41 (not shown) is directly patterned to form a filling member 411. The filler 411 includes a first block 411a in the contact hole 222, and a second block 411b on the first block 411a, and the second block 411b has a thickness equal to a thickness of the liquid crystal layer 5, and a second The width of the block 411b is substantially the same and is cylindrical. Further, according to the method of the second embodiment of the present invention, the position of the filling member 411 is not limited to the lower side of the blue filter unit 311B, and may be simultaneously disposed on the red filter unit 311R and the green filter unit 3UG, such as the 3e. The figure shows. Referring to Figs. 5A to 5D, respectively, cross-sectional views showing the application of the method according to the present embodiment to a single-gap transflective liquid crystal display panel are shown. The structural features shown in the upper view of the embodiment are the same as those in the first embodiment, so that the top view of the embodiment is not additionally provided. However, it is worth noting that the cross-sectional diagram shows that this figure and the above-mentioned 3A to 4E diagrams = production difference = presence or absence of the adjustment layer, that is, the crystal display surface shown in this figure has only a single pitch. Therefore, the above structural difference is roughly described as a cross-sectional view of the Α·Α' line and the B-B' line in Fig. 4A as follows. Please refer to the figure for the cross-section of the line along AA of Figure 4A: where 'the first substrate 2〇 also has a plurality of sub-pixel regions (10), and the band-human pixel region 1GG also has an inverse The dragon R and the penetration region τ, and the reflection=pole 223 are located in the reflection region R, and the penetration electrode 224 is located on the penetration region and electrically connected to the reflective electrode 223. As shown in the figure, FIG. 5A has the same structural features as the contact hole 222 and the filler member 411, and provides the second substrate 30 and the first substrate 2G, and the miscellaneous liquid crystal layer is on the first to the second board 20 and the second substrate 3. Between 〇. The +, the manufacturing of the filling member 4 ι ^ is sequentially the wire-block 41 la is located in the contact hole 222, then the second block 411b is on the first block 411a, and the second block is thicker The thickness of the liquid crystal layer 50 is used. As with the above, the difference between the fifth and fourth figures is that the fifth layer does not have the adjustment layer 316 or other structure equivalent to the adjustment layer. Therefore, in addition to the difference in the structural features, the fifth, fourth, and fifth structural components are the same as those of the fourth, fourth, and fourth views, respectively, and therefore will not be described again. According to the above description, the technical characteristics of the present invention are: (1) integrating the spacers and the alignment protrusions, and setting them at the same position, that is, using the spacers as a function of the alignment protrusions, changing the electric Distribution, so that the liquid crystal dumps into the interstitial, _ can achieve the effect of wide viewing angle technology. At this time, the present invention and the hole are disposed under the spacer or 20 1375839 alignment protrusion, and a light shielding layer is usually disposed on the spacer or on the protrusion to shield the gap. The leakage of the object or the alignment protrusion, the problem 'in turn can simultaneously shield the light leakage of the contact hole. Not only can the aperture ratio of the liquid crystal display panel be increased, but also the image contrast ratio can be further improved. 17 (2) In addition, the 'filling material-filling material fills the contact hole, so that the (5) gap can stand directly above the contact hole, maintaining the stability of the liquid-panel display panel spacing. The preferred example clarifies the above, but it is not intended to limit the spirit of the present invention and the inventive entity only to the above-mentioned realities. Those with ordinary knowledge in the field of riding technology can understand (and) other components or parties to produce phase_efficiency. Therefore, modifications made within the spirit and scope of the invention should be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 1 are respectively a top view and a cross-sectional view showing a conventional translucent and transflective liquid crystal display panel; " 2A shows a method according to the present invention. Applied to a structural top view in a reflective viewing angle liquid crystal display panel; 2B to 2D are respectively schematic diagrams showing a process transverse wearing surface applied to a reflective wide viewing angle liquid crystal display panel according to the first embodiment of the present invention; 2E to 2G are schematic views respectively showing a process transverse wearing surface applied to a reflective wide viewing angle liquid crystal display panel according to a second embodiment of the present invention; 1375839 wearing J 2 = indicating the method according to the present invention applied to the double A top view of the structure of the gap half-eye anti-wide viewing angle liquid helium display panel; FIGS. 3B to 3C are respectively shown in the double-gap semi-transparent wide-angle viewing angle liquid crystal display panel according to the present invention: 3ΑFig.横截-Α, and Β-Β' cross-sectional schematic; f 3D 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图2 shows a structural top view of a double-gap half-back anti-wide viewing angle liquid corona display panel according to the method of the present invention; and 4th to 4thth drawings show the application to the double gap according to the first embodiment of the present invention. In the half-through-wide viewing angle liquid crystal display panel, the woven surface of the cross-sectional line Α_Α' and Β_Β is shown as _; The fourth to fourth drawings show the second embodiment of the present invention applied to the double-gap transflective liquid crystal display panel along the cross-sectional line Α·Α, and Β_Β, The 5AS]骂5 relationship is displayed according to the present invention. 1 cross-sectional schematic view of the upper line Α·Α, and B_B;
第冗圖至第5D圖係顯示依據本發 圖剖面線A-A,與B_B,的橫截面示意圖。 ^弟4A 22 < S:> 1375839The second to fifth diagrams show cross-sectional views of the cross-sectional lines A-A and B_B according to the present invention. ^弟4A 22 <S:> 1375839
【主要元件符號說明】 11 陣列基板 110 陣列基板之次畫素區 111 儲存電容結構 112 平坦層 113 反射電極 114 穿透電極 115 接觸孔 12 彩色渡光片 120 彩色慮光片之次晝素區 121 調整層 122 配向凸起物 13 液晶層 100 陣列基板之次晝素區 20 第一基板 210 第一基底 211 半導體層 212 第一絕緣層 213 共通電極 214 閘極線 215 開關元件 216 第二絕緣層 217 導孔 218 儲存電容電極 219 儲存電容結構 220 資料線 221 平坦層 222 接觸孔 223 反射電極 224 穿透電極 30 第二基板 310 第二基底 311 彩色慮光片 312 覆蓋層 313 共用電極 314 遮光層 315 .配向凸起物 316 調整層 23 1375839 410 填充層 411 填充件 411a 第一區塊 411b第二區塊 50 液晶層[Description of main component symbols] 11 Array substrate 110 Array substrate sub-pixel area 111 Storage capacitor structure 112 Flat layer 113 Reflecting electrode 114 Penetrating electrode 115 Contact hole 12 Color light-emitting sheet 120 Color light-receiving sheet Adjustment layer 122 alignment protrusion 13 liquid crystal layer 100 secondary substrate region 20 of the array substrate first substrate 210 first substrate 211 semiconductor layer 212 first insulating layer 213 common electrode 214 gate line 215 switching element 216 second insulating layer 217 Via 218 storage capacitor electrode 219 storage capacitor structure 220 data line 221 flat layer 222 contact hole 223 reflective electrode 224 through electrode 30 second substrate 310 second substrate 311 color filter 312 cover layer 313 common electrode 314 light shielding layer 315. Alignment protrusion 316 adjustment layer 23 1375839 410 filling layer 411 filler 411a first block 411b second block 50 liquid crystal layer
C.S:> 24C.S:> 24