RU2704106C1 - Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата - Google Patents
Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата Download PDFInfo
- Publication number
- RU2704106C1 RU2704106C1 RU2019109691A RU2019109691A RU2704106C1 RU 2704106 C1 RU2704106 C1 RU 2704106C1 RU 2019109691 A RU2019109691 A RU 2019109691A RU 2019109691 A RU2019109691 A RU 2019109691A RU 2704106 C1 RU2704106 C1 RU 2704106C1
- Authority
- RU
- Russia
- Prior art keywords
- cathode
- thermionic
- anode
- heat
- metal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J45/00—Discharge tubes functioning as thermionic generators
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА). Согласно изобретению в термоэмиссионном преобразователе с цилиндрическими коаксиальными катодом и анодом, содержащим металлокерамические узлы для взаимной изоляции катода и анода и сильфонные узлы, компенсирующие различие тепловых расширений этих электродов, катод выполнен в виде трубы из тугоплавкого металла, обтекаемой в поперечном направлении гиперзвуковым воздушным потоком, снабженной жаростойким покрытием по всей наружной поверхности и слоем теплоизоляции на участке этой поверхности, не обтекаемом потоком. Анод, расположенный внутри катода, выполнен в виде металлического стержня, снабженного входным и выходным газовыми коллекторами в виде внутренних полостей с противоположных концов этого стержня, соединенных продольными микроканалами для охлаждающего газа, подаваемого во входной газовый коллектор и выпускаемого наружу из выходного газового коллектора. При этом сильфонный узел, вместе с одним из двух металлокерамических узлов, расположенным со стороны входного газового коллектора, размещен внутри ВЛА, а второй металлокерамический узел размещен внутри обтекателя из жаростойкого материала, содержащего внутренний слой теплоизоляции. Технический результат - разработка конструкции ТЭП, встраиваемого в кромку с малым радиусом закругления крыла ВЛА в качестве термоэмиссионной тепловой защиты этой кромки. 3 з.п. ф-лы, 1 ил.
Description
Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА).
Среди элементов конструкции ВЛА наиболее интенсивному аэродинамическому нагреву гиперзвуковым набегающим потоком подвергаются передние кромки крыльев ВЛА, рулевых поверхностей и т.д. Известна схема термоэмиссионной тепловой защиты (ТЭТЗ) таких кромок, основанная на ТЭП с полуцилиндрическими коаксиальными электродами, встроенном в кромку (А.В. Колычев. «Активная тепловая защита элементов конструкции гиперзвукового летательного аппарата на новых физических принципах при аэродинамическом нагреве». Электронный журнал «Труды МАИ», выпуск №51, УДК 629.782, www.mai.ru/science/trudy). Изменение тока в электрической цепи такого ТЭП позволяет управлять интенсивностью электронного охлаждения его катода, подвергаемого аэродинамическому нагреву, причем вырабатываемая при этом электроэнергия используется для бортовых нужд.
Однако такая схема технически не реализуема из-за проблемы обеспечения герметизации межэлектродного зазора ТЭП по периметру электродов полуцилиндрической формы при их тепловой и электрической развязке. В связи с этой проблемой в технически реализованных и перспективных конструкциях ТЭП используются только цилиндрические коаксиальные, либо плоско-параллельные электроды. В частности, известен термоэмиссионный преобразователь с коаксиальными цилиндрическими электродами, с внешним расположением эмиттера, нагреваемого пламенем (Ушаков В.А., Никитин В.Д., Емельянов И.Я. Основы термоэмиссионного преобразования энергии. М, Атомиздат, 1974, стр. 131-132). Цилиндрические электроды этого ТЭП выполнены в виде стаканов с полусферическим днищем, вставленных один в другой при их взаимной электрической и тепловой развязке с помощью гермоввода, содержащего металлокерамический узел. Нагрев катода, изготовленного из вольфрама, осуществляется со стороны его днища, а коллектор охлаждается с противоположной стороны тепловой трубой.
Однако подобное устройство не может быть интегрировано в кромку с малым радиусом закругления крыла ВЛА из-за несоответствия геометрии нагреваемой поверхности эмиттера и взаимного расположения составных частей ТЭП форме этой кромки.
Наиболее близким по важнейшим конструктивным признакам к заявляемому изобретению является термоэмиссионный электрогенерирующий канал/тепловыделяющий элемент (ЭГК/твэл) для российско-американского проекта комбинированной энергодвигательной установки, разрабатывавшийся на основе одноэлементного электрогенерирующего канала (ЭГК) термоэмиссионной ядерной энергетической установки (ЯЭУ) «ТОПАЗ-2» (Ponomarev-Stepnoi N.N., Nikolaev Y.V., Gontar A.S., at al. Conceptual design of the bimodal nuclear power and propulsion system based on the "TOPAZ-2" type thermionic reactor-converter with the modernized single-cell thermionic fuel elements. 12th Symposium on space nuclear power and propulsion. Albuquerque, New Mexico, 1995, pp. 755-758.). Этот ЭГК представлял собой ТЭП с цилиндрическими коаксиальными электродами в виде труб, внутренняя из которых, изготовленная из монокристаллического вольфрамового сплава, являлась катодом и содержала сердечник ядерного топлива со сквозными продольными микроканалами, а наружная - анодом, охлаждаемым жидкометаллическим теплоносителем. В режиме ядерного ракетного двигателя (ЯРД) в катодную трубу с одной стороны подавался водород, который нагревался, проходя через микроканалы в топливном сердечнике, и выбрасывался с противоположной стороны трубы в реактивное сопло.
Однако, это устройство, взятое в качестве прототипа, не может быть использовано в составе ТЭТЗ кромки крыла ВЛА по следующим причинам:
- его катод расположен внутри анода и обогревается ядерным топливом изнутри, а не в результате обтекания гиперзвуковым воздушным потоком снаружи;
- в режиме ЯРД газоохлаждаемым электродом является катод, а не анод, для охлаждения которого, как в этом режиме, так и в режиме ЯЭУ, требуется жидкометаллический теплоноситель, отсутствующий на ВЛА;
- катодная труба из тугоплавкого металла в гиперзвуковом воздушном потоке будет подвергаться значительно более интенсивному разрушению высокотемпературной газовой коррозией, чем в потоке водорода;
- габариты ЭГК/твэл в радиальном направлении (радиус ~13 мм), определяемые в соответствии нейтронно-физическими характеристиками ядерного реактора, не соответствуют условиям размещения ТЭП в кромке крыла ВЛА.
Задачей изобретения является разработка конструкции ТЭП, встраиваемого в кромку с малым радиусом закругления крыла ВЛА, в качестве ТЭТЗ этой кромки.
Поставленная задача решается за счет того, что в термоэмиссионном преобразователе с цилиндрическими коаксиальными катодом и анодом, содержащем металлокерамические узлы для взаимной изоляции катода и анода и сильфонные узлы компенсирующие различие тепловых расширений этих электродов, катод выполнен в виде трубы из тугоплавкого металла, обтекаемой в поперечном направлении гиперзвуковым воздушным потоком, снабженной жаростойким покрытием по всей наружной поверхности и слоем теплоизоляции на участке этой поверхности, не обтекаемом потоком, а анод расположен внутри катода и выполнен в виде металлического электропроводного стержня, снабженного входным и выходным газовыми коллекторами в виде внутренних полостей с противоположных концов этого стержня, соединенных продольными микроканалами для охлаждающего газа, подаваемого во входной газовый коллектор и выпускаемого наружу из выходного газового коллектора. При этом сильфонный узел, вместе с одним из двух металлокерамических узлов, расположенным со стороны входного газового коллектора размещен внутри высокоскоростного летательного аппарата, а второй металлокерамический узел размещен внутри обтекателя из жаростойкого материала, содержащего внутренний слой теплоизоляции.
В частных случаях осуществления изобретения:
- в качестве материала катода выбран вольфрам, при этом катод снабжен наружным жаростойким покрытием из дисилицида вольфрама;
- в качестве материала катода выбран молибден или ниобий, при этом катод снабжен наружным жаростойким покрытием соответственно из их дисилицидов и внутренним покрытием из вольфрама;
- в качестве материала анода выбрана нержавеющая сталь с наружным покрытием из никеля или вольфрама, либо ниобия.
При этом внутреннее покрытие из вольфрама для катодов из молибдена или ниобия и наружное покрытие из никеля, вольфрама или ниобия для анода из нержавеющей стали служит для улучшения их эмиссионных характеристик (что повышает эффективность термоэмиссионного преобразования энергии), а использование в качестве материала анода корозионно-стойкой нержавеющей стали дает возможность применять в качестве охлаждающего анод газа атмосферный воздух, предварительно охлажденный на борту ВЛА.
Сущность изобретения поясняется чертежом, представленными на фиг. 1.
На этом чертеже схематично показана конструкция ТЭП с цилиндрическими коаксиальными электродами и с внешним расположением катода, выполняющего функцию передней кромки крыла 1 ВЛА. При этом катод 2 в виде трубы из тугоплавкого металла с наружным жаростойким покрытием 3 нагревается торможением набегающего на кромку гиперзвукового воздушного потока до температуры >1300°C. Направление этого потока условно показано стрелкой. На обратной по отношению к воздушному потоку стороне жаростойкого покрытия имеется слой теплоизоляции 4 катода от конструкции крыла. Анод 5 ТЭП в виде металлического стержня расположен внутри катода и снабжен входным 6 и выходным 7 коллекторами для охлаждающего газа, представляющими собой полости внутри стержня, расположенные у его торцов и образованные торцевыми проточками в стержне, соединенными с патрубками 8 и 9 для подвода и отвода газа, охлаждающего анод до температуры 600÷700°C. Полости коллекторов соединены продольными сквозными микроканалами 10 в стержне для прохода этого газа. Электрическая и тепловая развязка электродов, герметизация полости межэлектродного зазора (МЭЗ) 11, обеспечиваемого в радиальном и осевом направлениях соответственно дистанционаторами 12 и 13, а также компенсация разницы термических расширений осуществляется металлокерамическими гермоузлами 14 и сильфонным узлом 15. При этом сильфонный узел и металокерамический гермоузел, распоженные со стороны входного газового коллектора анода, размещены внутри ВЛА, стенка 16 которого условно показана на чертеже, а второй гермоузел, расположенный со стороны выходного газового коллектора защищен от воздействия воздушного потока обтекателем 17 из жаростойкогого материала, имеющим внутреннюю теплоизоляционную вставку 18 и сопло 19 для выхода охлаждающего анод газа. При этом катод ТЭП находится под электрическим потенциалом корпуса ВЛА 20, а анод снабжен отрицательным токовыводом 21.
Решение поставленной задачи обеспечивается выбранным расположением и конструкцией составных частей рассматриваемого ТЭП. В частности, расположение металлокерамических узлов и сильфонного узла, определяющих радиальные габариты ТЭП с коаксиальными цилиндрическими электродами, внутри корпуса ВЛА и обтекателя на конце его крыла, а также наличие микроканалов в аноде для прохода газа позволяет поддерживать необходимую интенсивность охлаждения на всей его длине позволяет встраивать такой преобразователь в кромку крыла относительно малого радиуса.
Сведения, подтверждающие возможность осуществления изобретения.
Катод ТЭП выполнен в виде трубы из монокристаллического вольфрама, силицированной снаружи для образования защитного жаростойкого покрытия и имеет с тыльной (по отношению к направлению полета ВЛА) дополнительное теплоизоляционное покрытие из окиси циркония, которая имеет сравнительно малую теплопроводность. Анод выполнен в виде стержня из нержавеющей стали с никелевым покрытием его цилиндрической поверхности. На торцах стержня сделаны проточки, которые вместе двумя вваренными в них патрубками образуют полости входного и выходного газовых коллекторов, соединенные множеством сквозных осевых отверстий диаметром 0,5÷1,0 мм в стержне, через которые прокачивается охлаждающий анод газ (хранится на борту ВЛА, либо забирается из атмосферы с последующим охлаждением в теплообменниках). Металлокерамические гермоузлы и сильфонный узел установлены коаксиально с вышеупомянутыми патрубками. При этом металлокерамический гермоузел, установленный со стороны выходного патрубка защищен от воздействия воздушного потока сферическим обтекателем диаметром ~30 мм из углеграфитового материала с цилиндрической вставкой из окиси циркония, а сильфонный узел вместе со вторым из двух гермоузлов размещаются внутри корпуса ВЛА. Применение такой конструкции позволило уменьшить радиус наружной поверхности ТЭТЗ до ~7 мм, т.е. примерно вдвое. Таким образом, указанная совокупность новых признаков позволяет решить задачу изобретения.
Claims (4)
1. Термоэмиссионный преобразователь с цилиндрическими коаксиальными катодом и анодом, содержащий металлокерамические узлы для взаимной изоляции катода и анода и сильфонные узлы, компенсирующие различие тепловых расширений этих электродов, отличающийся тем, что катод выполнен в виде трубы из тугоплавкого металла, обтекаемой в поперечном направлении гиперзвуковым воздушным потоком, снабженной жаростойким покрытием по всей наружной поверхности и слоем теплоизоляции на участке этой поверхности, не обтекаемом потоком, а анод, расположенный внутри катода, выполнен в виде металлического стержня, снабженного входным и выходным газовыми коллекторами в виде внутренних полостей с противоположных концов этого стержня, соединенных продольными микроканалами для охлаждающего газа, подаваемого во входной газовый коллектор и выпускаемого наружу из выходного газового коллектора, причем сильфонный узел, вместе с одним из двух металлокерамических узлов, расположенным со стороны входного газового коллектора, размещен внутри высокоскоростного летательного аппарата, а второй металлокерамический узел размещен внутри обтекателя из жаростойкого материала, содержащего внутренний слой теплоизоляции.
2. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что в качестве материала катода выбран вольфрам, при этом катод снабжен наружным жаростойким покрытием из дисилицида вольфрама.
3. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что в качестве материала катода выбран молибден или ниобий, при этом катод снабжен наружным жаростойким покрытием соответственно из их дисилицидов и внутренним покрытием из вольфрама.
4. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что в качестве материала анода выбрана нержавеющая сталь с наружным покрытием из никеля или вольфрама, либо ниобия.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019109691A RU2704106C1 (ru) | 2019-04-02 | 2019-04-02 | Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019109691A RU2704106C1 (ru) | 2019-04-02 | 2019-04-02 | Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2704106C1 true RU2704106C1 (ru) | 2019-10-24 |
Family
ID=68318281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019109691A RU2704106C1 (ru) | 2019-04-02 | 2019-04-02 | Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2704106C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4506183A (en) * | 1980-11-30 | 1985-03-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes |
WO2007008059A2 (en) * | 2005-07-08 | 2007-01-18 | Innovy | Energy converting apparatus, generator and heat pump provided therewith and method of production thereof |
RU2430857C2 (ru) * | 2009-12-01 | 2011-10-10 | Государственное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") | Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева |
RU2572009C1 (ru) * | 2014-11-05 | 2015-12-27 | Владимир Андреевич Керножицкий | Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева |
-
2019
- 2019-04-02 RU RU2019109691A patent/RU2704106C1/ru active IP Right Revival
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4506183A (en) * | 1980-11-30 | 1985-03-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes |
WO2007008059A2 (en) * | 2005-07-08 | 2007-01-18 | Innovy | Energy converting apparatus, generator and heat pump provided therewith and method of production thereof |
RU2430857C2 (ru) * | 2009-12-01 | 2011-10-10 | Государственное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") | Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева |
RU2572009C1 (ru) * | 2014-11-05 | 2015-12-27 | Владимир Андреевич Керножицкий | Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева |
Non-Patent Citations (1)
Title |
---|
12th Symposium on space nuclear power and propulsion. Albuquerque, New Mexico, 1995, pp. 755-758. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8127555B2 (en) | Flowpath heat exchanger for thermal management and power generation within a hypersonic vehicle | |
US8453456B2 (en) | Fuel-cooled flexible heat exchanger with thermoelectric device compression | |
JP2007024045A (ja) | 熱電生成を伴うエンジン熱交換器 | |
US3016693A (en) | Electro-thermal rocket | |
US9222439B2 (en) | Rocket engine with cryogenic propellants | |
US6037697A (en) | Thermionic converter and method of making same | |
RU2704106C1 (ru) | Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата | |
US11695131B2 (en) | Fuel cell and fuel cell system for an aircraft | |
RU2506199C1 (ru) | Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева | |
RU2707557C1 (ru) | Термоэмиссионный преобразователь, встраиваемый в конструкцию высокоскоростных летательных аппаратов | |
JPH08329970A (ja) | 燃料電池 | |
US20230406529A1 (en) | An aircraft assembly | |
RU2686815C1 (ru) | Ядерный турбореактивный двигатель | |
US20230130672A1 (en) | Glow plug for a fuel cell system | |
CN112738938B (zh) | 一种高热效率管式电弧加热器 | |
USH1753H (en) | Pin and cermet hybrid bimodal reactor | |
RU2583511C1 (ru) | Термоэмиссионный способ тепловой защиты частей летательных аппаратов | |
CN112133456A (zh) | 一种用于双模式反应堆的热管式燃料元件 | |
RU2703272C1 (ru) | Термоэмиссионный преобразователь с пассивным охлаждением для бортового источника электроэнергии высокоскоростного летательного аппарата с прямоточным воздушно-реактивным двигателем | |
RU2129740C1 (ru) | Космическая ядерная энергетическая установка | |
RU2707192C1 (ru) | Термоэмиссионный преобразователь для бортового источника электрической энергии | |
RU2538768C1 (ru) | Термоэмиссионый электрогенерирующий канал | |
RU139811U1 (ru) | Термоэмиссионный электрогенерирующий канал | |
CN219145658U (zh) | 一种高效率分段电弧加热器 | |
RU2760079C1 (ru) | Ядерный ракетный двигатель многоразового использования |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210403 |
|
NF4A | Reinstatement of patent |
Effective date: 20211215 |