RU2701850C2 - Конструирование систем, способы и оптимизированные направляющие композиции для манипуляции с последовательностями - Google Patents
Конструирование систем, способы и оптимизированные направляющие композиции для манипуляции с последовательностями Download PDFInfo
- Publication number
- RU2701850C2 RU2701850C2 RU2015128098A RU2015128098A RU2701850C2 RU 2701850 C2 RU2701850 C2 RU 2701850C2 RU 2015128098 A RU2015128098 A RU 2015128098A RU 2015128098 A RU2015128098 A RU 2015128098A RU 2701850 C2 RU2701850 C2 RU 2701850C2
- Authority
- RU
- Russia
- Prior art keywords
- sequence
- crispr
- tracr
- cas system
- guide
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 79
- 239000000203 mixture Substances 0.000 title description 12
- 108091033409 CRISPR Proteins 0.000 claims abstract description 135
- 239000013598 vector Substances 0.000 claims abstract description 114
- 230000014509 gene expression Effects 0.000 claims abstract description 109
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 104
- 239000002773 nucleotide Substances 0.000 claims abstract description 79
- 210000003527 eukaryotic cell Anatomy 0.000 claims abstract description 71
- 108091092236 Chimeric RNA Proteins 0.000 claims abstract description 70
- 230000001105 regulatory effect Effects 0.000 claims abstract description 58
- 230000030648 nucleus localization Effects 0.000 claims abstract description 24
- 102000040430 polynucleotide Human genes 0.000 claims description 101
- 108091033319 polynucleotide Proteins 0.000 claims description 101
- 239000002157 polynucleotide Substances 0.000 claims description 101
- 230000004048 modification Effects 0.000 claims description 75
- 238000012986 modification Methods 0.000 claims description 75
- 108091028113 Trans-activating crRNA Proteins 0.000 claims description 60
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 58
- 238000003776 cleavage reaction Methods 0.000 claims description 57
- 230000007017 scission Effects 0.000 claims description 57
- 241000193996 Streptococcus pyogenes Species 0.000 claims description 30
- 150000001413 amino acids Chemical class 0.000 claims description 26
- 238000005457 optimization Methods 0.000 claims description 19
- 101710163270 Nuclease Proteins 0.000 claims description 13
- 230000004927 fusion Effects 0.000 claims description 12
- 238000009396 hybridization Methods 0.000 claims description 12
- 230000002829 reductive effect Effects 0.000 claims description 8
- 238000004132 cross linking Methods 0.000 claims description 7
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 claims description 5
- AGFIRQJZCNVMCW-UAKXSSHOSA-N 5-bromouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 AGFIRQJZCNVMCW-UAKXSSHOSA-N 0.000 claims description 5
- OGHAROSJZRTIOK-KQYNXXCUSA-O 7-methylguanosine Chemical compound C1=2N=C(N)NC(=O)C=2[N+](C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OGHAROSJZRTIOK-KQYNXXCUSA-O 0.000 claims description 5
- 101710172824 CRISPR-associated endonuclease Cas9 Proteins 0.000 claims description 5
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 claims description 5
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 claims description 5
- 229930010555 Inosine Natural products 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- 229930185560 Pseudouridine Natural products 0.000 claims description 5
- PTJWIQPHWPFNBW-UHFFFAOYSA-N Pseudouridine C Natural products OC1C(O)C(CO)OC1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-UHFFFAOYSA-N 0.000 claims description 5
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 claims description 5
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 claims description 5
- WGDUUQDYDIIBKT-UHFFFAOYSA-N beta-Pseudouridine Natural products OC1OC(CN2C=CC(=O)NC2=O)C(O)C1O WGDUUQDYDIIBKT-UHFFFAOYSA-N 0.000 claims description 5
- 229960003786 inosine Drugs 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 5
- 239000010452 phosphate Substances 0.000 claims description 5
- PTJWIQPHWPFNBW-GBNDHIKLSA-N pseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-GBNDHIKLSA-N 0.000 claims description 5
- 241000589876 Campylobacter Species 0.000 claims description 4
- 241000588653 Neisseria Species 0.000 claims description 3
- 230000000087 stabilizing effect Effects 0.000 claims description 3
- 241000589941 Azospirillum Species 0.000 claims description 2
- 241000032681 Gluconacetobacter Species 0.000 claims description 2
- 241000135938 Nitratifractor Species 0.000 claims description 2
- 241001386753 Parvibaculum Species 0.000 claims description 2
- 241000605947 Roseburia Species 0.000 claims description 2
- 241000191940 Staphylococcus Species 0.000 claims description 2
- 241000194017 Streptococcus Species 0.000 claims description 2
- 101000910035 Streptococcus pyogenes serotype M1 CRISPR-associated endonuclease Cas9/Csn1 Proteins 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 60
- 239000000126 substance Substances 0.000 abstract 1
- 102000004190 Enzymes Human genes 0.000 description 163
- 108090000790 Enzymes Proteins 0.000 description 163
- 229940088598 enzyme Drugs 0.000 description 163
- 108090000623 proteins and genes Proteins 0.000 description 148
- 210000004027 cell Anatomy 0.000 description 146
- 102000004169 proteins and genes Human genes 0.000 description 71
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 68
- 235000018102 proteins Nutrition 0.000 description 68
- 150000007523 nucleic acids Chemical class 0.000 description 54
- 201000010099 disease Diseases 0.000 description 50
- 102000039446 nucleic acids Human genes 0.000 description 44
- 108020004707 nucleic acids Proteins 0.000 description 44
- 108020004414 DNA Proteins 0.000 description 41
- 230000035772 mutation Effects 0.000 description 39
- 239000012634 fragment Substances 0.000 description 29
- 241000196324 Embryophyta Species 0.000 description 28
- 230000000875 corresponding effect Effects 0.000 description 27
- 125000006850 spacer group Chemical group 0.000 description 27
- 241000282414 Homo sapiens Species 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 25
- 230000000295 complement effect Effects 0.000 description 25
- 238000004458 analytical method Methods 0.000 description 24
- 239000013604 expression vector Substances 0.000 description 24
- 229920002401 polyacrylamide Polymers 0.000 description 23
- 102100039087 Peptidyl-alpha-hydroxyglycine alpha-amidating lyase Human genes 0.000 description 22
- 241000194020 Streptococcus thermophilus Species 0.000 description 21
- 230000027455 binding Effects 0.000 description 21
- 238000003780 insertion Methods 0.000 description 21
- 230000037431 insertion Effects 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 20
- 102100023823 Homeobox protein EMX1 Human genes 0.000 description 18
- 101001048956 Homo sapiens Homeobox protein EMX1 Proteins 0.000 description 18
- 229940024606 amino acid Drugs 0.000 description 18
- 208000035475 disorder Diseases 0.000 description 18
- 238000002744 homologous recombination Methods 0.000 description 18
- 230000006801 homologous recombination Effects 0.000 description 18
- 210000004940 nucleus Anatomy 0.000 description 18
- 238000004422 calculation algorithm Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 17
- 230000035897 transcription Effects 0.000 description 17
- 238000013518 transcription Methods 0.000 description 17
- 230000001404 mediated effect Effects 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- 230000003612 virological effect Effects 0.000 description 16
- 108091026890 Coding region Proteins 0.000 description 15
- 108020004705 Codon Proteins 0.000 description 15
- 241000699666 Mus <mouse, genus> Species 0.000 description 15
- 241000320123 Streptococcus pyogenes M1 GAS Species 0.000 description 15
- 210000004962 mammalian cell Anatomy 0.000 description 15
- 239000013612 plasmid Substances 0.000 description 15
- 208000011580 syndromic disease Diseases 0.000 description 15
- 238000012217 deletion Methods 0.000 description 14
- 230000037430 deletion Effects 0.000 description 14
- 230000009870 specific binding Effects 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 13
- 241000700605 Viruses Species 0.000 description 13
- 238000011161 development Methods 0.000 description 13
- 230000018109 developmental process Effects 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 13
- 230000002068 genetic effect Effects 0.000 description 12
- 230000009261 transgenic effect Effects 0.000 description 12
- 241000702421 Dependoparvovirus Species 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 11
- 102100030856 Myoglobin Human genes 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 238000009825 accumulation Methods 0.000 description 10
- 108010025678 empty spiracles homeobox proteins Proteins 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- 230000008685 targeting Effects 0.000 description 10
- 230000007018 DNA scission Effects 0.000 description 9
- 101000706121 Homo sapiens Parvalbumin alpha Proteins 0.000 description 9
- 241000124008 Mammalia Species 0.000 description 9
- 238000000636 Northern blotting Methods 0.000 description 9
- 239000000872 buffer Substances 0.000 description 9
- -1 for example Chemical group 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 241000701161 unidentified adenovirus Species 0.000 description 9
- 239000013603 viral vector Substances 0.000 description 9
- 238000003556 assay Methods 0.000 description 8
- 230000011559 double-strand break repair via nonhomologous end joining Effects 0.000 description 8
- 102000037865 fusion proteins Human genes 0.000 description 8
- 108020001507 fusion proteins Proteins 0.000 description 8
- 238000001415 gene therapy Methods 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000004806 packaging method and process Methods 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- 108091093088 Amplicon Proteins 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 7
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 7
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 244000052769 pathogen Species 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 210000001236 prokaryotic cell Anatomy 0.000 description 7
- 230000006798 recombination Effects 0.000 description 7
- 238000005215 recombination Methods 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 6
- 241000238631 Hexapoda Species 0.000 description 6
- 101000635854 Homo sapiens Myoglobin Proteins 0.000 description 6
- 201000008266 amyotrophic lateral sclerosis type 2 Diseases 0.000 description 6
- 210000004899 c-terminal region Anatomy 0.000 description 6
- 239000003623 enhancer Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 208000032799 juvenile amyotrophic lateral sclerosis type 2 Diseases 0.000 description 6
- 230000008439 repair process Effects 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 241001430294 unidentified retrovirus Species 0.000 description 6
- 102100033312 Alpha-2-macroglobulin Human genes 0.000 description 5
- 102220605874 Cytosolic arginine sensor for mTORC1 subunit 2_D10A_mutation Human genes 0.000 description 5
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 5
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 108010015078 Pregnancy-Associated alpha 2-Macroglobulins Proteins 0.000 description 5
- 102100030547 Serotonin N-acetyltransferase Human genes 0.000 description 5
- 108010021188 Superoxide Dismutase-1 Proteins 0.000 description 5
- 102100038836 Superoxide dismutase [Cu-Zn] Human genes 0.000 description 5
- 108010073925 Vascular Endothelial Growth Factor B Proteins 0.000 description 5
- 102100038217 Vascular endothelial growth factor B Human genes 0.000 description 5
- 208000021841 acute erythroid leukemia Diseases 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000000536 complexating effect Effects 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 230000005847 immunogenicity Effects 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000001177 retroviral effect Effects 0.000 description 5
- 230000003007 single stranded DNA break Effects 0.000 description 5
- 239000004055 small Interfering RNA Substances 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 102100035923 4-aminobutyrate aminotransferase, mitochondrial Human genes 0.000 description 4
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 4
- 241000282693 Cercopithecidae Species 0.000 description 4
- 241000195493 Cryptophyta Species 0.000 description 4
- 108010070675 Glutathione transferase Proteins 0.000 description 4
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 4
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 4
- 108020005004 Guide RNA Proteins 0.000 description 4
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 4
- 101000891092 Homo sapiens TAR DNA-binding protein 43 Proteins 0.000 description 4
- 208000026350 Inborn Genetic disease Diseases 0.000 description 4
- 108700020796 Oncogene Proteins 0.000 description 4
- 102100033616 Phospholipid-transporting ATPase ABCA1 Human genes 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 4
- 102100040347 TAR DNA-binding protein 43 Human genes 0.000 description 4
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 4
- 102000009520 Vascular Endothelial Growth Factor C Human genes 0.000 description 4
- 108010073923 Vascular Endothelial Growth Factor C Proteins 0.000 description 4
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000009287 biochemical signal transduction Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 206010015037 epilepsy Diseases 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 208000016361 genetic disease Diseases 0.000 description 4
- 238000010362 genome editing Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000001638 lipofection Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 239000013607 AAV vector Substances 0.000 description 3
- 102100024378 AF4/FMR2 family member 2 Human genes 0.000 description 3
- 102100024401 Alpha-1D adrenergic receptor Human genes 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 3
- 108010074515 Arylalkylamine N-Acetyltransferase Proteins 0.000 description 3
- 102000007370 Ataxin2 Human genes 0.000 description 3
- 108010032951 Ataxin2 Proteins 0.000 description 3
- 108700010070 Codon Usage Proteins 0.000 description 3
- 101150074775 Csf1 gene Proteins 0.000 description 3
- 101710177611 DNA polymerase II large subunit Proteins 0.000 description 3
- 101710184669 DNA polymerase II small subunit Proteins 0.000 description 3
- 241000252212 Danio rerio Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 101000756842 Homo sapiens Alpha-2A adrenergic receptor Proteins 0.000 description 3
- 101000720032 Homo sapiens Alpha-2C adrenergic receptor Proteins 0.000 description 3
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 3
- 101000755630 Homo sapiens Peripheral-type benzodiazepine receptor-associated protein 1 Proteins 0.000 description 3
- 101001135385 Homo sapiens Prostacyclin synthase Proteins 0.000 description 3
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 description 3
- 102000004388 Interleukin-4 Human genes 0.000 description 3
- 108090000978 Interleukin-4 Proteins 0.000 description 3
- 241000713666 Lentivirus Species 0.000 description 3
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 3
- 208000036626 Mental retardation Diseases 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 102100022397 Nitric oxide synthase, brain Human genes 0.000 description 3
- 102000002488 Nucleoplasmin Human genes 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 102100022033 Presenilin-1 Human genes 0.000 description 3
- 102100022036 Presenilin-2 Human genes 0.000 description 3
- 102100033075 Prostacyclin synthase Human genes 0.000 description 3
- 206010039491 Sarcoma Diseases 0.000 description 3
- 108020004459 Small interfering RNA Proteins 0.000 description 3
- 108091027544 Subgenomic mRNA Proteins 0.000 description 3
- 102100037346 Substance-P receptor Human genes 0.000 description 3
- 108700009124 Transcription Initiation Site Proteins 0.000 description 3
- 102100037160 Ubiquitin-like modifier-activating enzyme 1 Human genes 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 108020004102 alpha-1 Adrenergic Receptor Proteins 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 108091005948 blue fluorescent proteins Proteins 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 108060005597 nucleoplasmin Proteins 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 3
- 230000005030 transcription termination Effects 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 2
- 101710094518 4-aminobutyrate aminotransferase Proteins 0.000 description 2
- 101150092476 ABCA1 gene Proteins 0.000 description 2
- 108700005241 ATP Binding Cassette Transporter 1 Proteins 0.000 description 2
- 102100036618 ATP-binding cassette sub-family A member 13 Human genes 0.000 description 2
- 102100033618 ATP-binding cassette sub-family A member 2 Human genes 0.000 description 2
- 102100033092 ATP-binding cassette sub-family G member 8 Human genes 0.000 description 2
- 108010051457 Acid Phosphatase Proteins 0.000 description 2
- 102000013563 Acid Phosphatase Human genes 0.000 description 2
- 102100036732 Actin, aortic smooth muscle Human genes 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 102100022815 Alpha-2A adrenergic receptor Human genes 0.000 description 2
- 102100025983 Alpha-2C adrenergic receptor Human genes 0.000 description 2
- 208000026833 Alzheimer disease 4 Diseases 0.000 description 2
- 102000002659 Amyloid Precursor Protein Secretases Human genes 0.000 description 2
- 108010043324 Amyloid Precursor Protein Secretases Proteins 0.000 description 2
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 2
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 2
- 102100032187 Androgen receptor Human genes 0.000 description 2
- 108010048154 Angiopoietin-1 Proteins 0.000 description 2
- 102000009088 Angiopoietin-1 Human genes 0.000 description 2
- 102100029470 Apolipoprotein E Human genes 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 2
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 2
- 101000909256 Caldicellulosiruptor bescii (strain ATCC BAA-1888 / DSM 6725 / Z-1320) DNA polymerase I Proteins 0.000 description 2
- 241000589875 Campylobacter jejuni Species 0.000 description 2
- 108090000712 Cathepsin B Proteins 0.000 description 2
- 102000004225 Cathepsin B Human genes 0.000 description 2
- 108090000625 Cathepsin K Proteins 0.000 description 2
- 102000004171 Cathepsin K Human genes 0.000 description 2
- 102000000018 Chemokine CCL2 Human genes 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 238000007400 DNA extraction Methods 0.000 description 2
- 241000450599 DNA viruses Species 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 102100031939 Erythropoietin Human genes 0.000 description 2
- 108700024394 Exon Proteins 0.000 description 2
- 102000003869 Frataxin Human genes 0.000 description 2
- 108090000217 Frataxin Proteins 0.000 description 2
- 208000024412 Friedreich ataxia Diseases 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 101150106478 GPS1 gene Proteins 0.000 description 2
- 102100033713 Gamma-secretase subunit APH-1B Human genes 0.000 description 2
- 102100028260 Gamma-secretase subunit PEN-2 Human genes 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108091027305 Heteroduplex Proteins 0.000 description 2
- 101001000686 Homo sapiens 4-aminobutyrate aminotransferase, mitochondrial Proteins 0.000 description 2
- 101000833172 Homo sapiens AF4/FMR2 family member 2 Proteins 0.000 description 2
- 101000929660 Homo sapiens ATP-binding cassette sub-family A member 13 Proteins 0.000 description 2
- 101000801645 Homo sapiens ATP-binding cassette sub-family A member 2 Proteins 0.000 description 2
- 101000733778 Homo sapiens Gamma-secretase subunit APH-1B Proteins 0.000 description 2
- 101000579663 Homo sapiens Gamma-secretase subunit PEN-2 Proteins 0.000 description 2
- 101000974009 Homo sapiens Nitric oxide synthase, brain Proteins 0.000 description 2
- 101000801684 Homo sapiens Phospholipid-transporting ATPase ABCA1 Proteins 0.000 description 2
- 101000801643 Homo sapiens Retinal-specific phospholipid-transporting ATPase ABCA4 Proteins 0.000 description 2
- 101000904787 Homo sapiens Serine/threonine-protein kinase ATR Proteins 0.000 description 2
- 101000652292 Homo sapiens Serotonin N-acetyltransferase Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 208000023105 Huntington disease Diseases 0.000 description 2
- 108010073807 IgG Receptors Proteins 0.000 description 2
- 102000009490 IgG Receptors Human genes 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- 208000029462 Immunodeficiency disease Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102000000589 Interleukin-1 Human genes 0.000 description 2
- 108010002352 Interleukin-1 Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 102100036600 Kynurenine/alpha-aminoadipate aminotransferase, mitochondrial Human genes 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 102100022745 Laminin subunit alpha-2 Human genes 0.000 description 2
- 101710128836 Large T antigen Proteins 0.000 description 2
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 101150083522 MECP2 gene Proteins 0.000 description 2
- 241001599018 Melanogaster Species 0.000 description 2
- 108700011259 MicroRNAs Proteins 0.000 description 2
- 108020005196 Mitochondrial DNA Proteins 0.000 description 2
- 101100219625 Mus musculus Casd1 gene Proteins 0.000 description 2
- 108010062374 Myoglobin Proteins 0.000 description 2
- 108010052185 Myotonin-Protein Kinase Proteins 0.000 description 2
- 102100022437 Myotonin-protein kinase Human genes 0.000 description 2
- 102100028719 NEDD8-activating enzyme E1 catalytic subunit Human genes 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 108010040718 Neurokinin-1 Receptors Proteins 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 102100022369 Peripheral-type benzodiazepine receptor-associated protein 1 Human genes 0.000 description 2
- 108010036933 Presenilin-1 Proteins 0.000 description 2
- 108010036908 Presenilin-2 Proteins 0.000 description 2
- 208000024777 Prion disease Diseases 0.000 description 2
- 102100034180 Protein AATF Human genes 0.000 description 2
- 101710155502 Protein AATF Proteins 0.000 description 2
- 101000902592 Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1) DNA polymerase Proteins 0.000 description 2
- 102000003890 RNA-binding protein FUS Human genes 0.000 description 2
- 108090000292 RNA-binding protein FUS Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 102100033617 Retinal-specific phospholipid-transporting ATPase ABCA4 Human genes 0.000 description 2
- 102000003661 Ribonuclease III Human genes 0.000 description 2
- 108010057163 Ribonuclease III Proteins 0.000 description 2
- 108010005173 SERPIN-B5 Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 102100023921 Serine/threonine-protein kinase ATR Human genes 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 102000039471 Small Nuclear RNA Human genes 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 102000005157 Somatostatin Human genes 0.000 description 2
- 108010056088 Somatostatin Proteins 0.000 description 2
- 241000205101 Sulfolobus Species 0.000 description 2
- 102100023532 Synaptic functional regulator FMR1 Human genes 0.000 description 2
- 102100036407 Thioredoxin Human genes 0.000 description 2
- 208000035317 Total hypoxanthine-guanine phosphoribosyl transferase deficiency Diseases 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 101710191412 Ubiquitin-like modifier-activating enzyme 1 Proteins 0.000 description 2
- 102100039066 Very low-density lipoprotein receptor Human genes 0.000 description 2
- 108010091383 Xanthine dehydrogenase Proteins 0.000 description 2
- 102000005773 Xanthine dehydrogenase Human genes 0.000 description 2
- 108010093894 Xanthine oxidase Proteins 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 108010080146 androgen receptors Proteins 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 239000002551 biofuel Substances 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 101150055766 cat gene Proteins 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 201000006815 congenital muscular dystrophy Diseases 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 241001493065 dsRNA viruses Species 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 108091006047 fluorescent proteins Proteins 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 238000012268 genome sequencing Methods 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000007813 immunodeficiency Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229940028885 interleukin-4 Drugs 0.000 description 2
- 210000003292 kidney cell Anatomy 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002679 microRNA Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 239000003471 mutagenic agent Substances 0.000 description 2
- 230000009826 neoplastic cell growth Effects 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 108091027963 non-coding RNA Proteins 0.000 description 2
- 102000042567 non-coding RNA Human genes 0.000 description 2
- 239000002853 nucleic acid probe Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 208000001749 optic atrophy Diseases 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 201000000980 schizophrenia Diseases 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 2
- 229960000553 somatostatin Drugs 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- WWJZWCUNLNYYAU-UHFFFAOYSA-N temephos Chemical compound C1=CC(OP(=S)(OC)OC)=CC=C1SC1=CC=C(OP(=S)(OC)OC)C=C1 WWJZWCUNLNYYAU-UHFFFAOYSA-N 0.000 description 2
- 108060008226 thioredoxin Proteins 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 2
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 1
- 101150028074 2 gene Proteins 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- 102100024959 5-hydroxytryptamine receptor 2C Human genes 0.000 description 1
- 101150020052 AADAT gene Proteins 0.000 description 1
- 108091022885 ADAM Proteins 0.000 description 1
- 101150046889 ADORA3 gene Proteins 0.000 description 1
- 102000017907 ADRA1D Human genes 0.000 description 1
- 102000017906 ADRA2A Human genes 0.000 description 1
- 102000017904 ADRA2C Human genes 0.000 description 1
- 101710184468 AF4/FMR2 family member 2 Proteins 0.000 description 1
- 101150037123 APOE gene Proteins 0.000 description 1
- 102000000872 ATM Human genes 0.000 description 1
- 102100024643 ATP-binding cassette sub-family D member 1 Human genes 0.000 description 1
- 208000034012 Acid sphingomyelinase deficiency Diseases 0.000 description 1
- 241000589291 Acinetobacter Species 0.000 description 1
- 241001502050 Acis Species 0.000 description 1
- 101710192004 Actin, aortic smooth muscle Proteins 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 108010060261 Adenosine A3 Receptor Proteins 0.000 description 1
- 102000008161 Adenosine A3 Receptor Human genes 0.000 description 1
- 102100036006 Adenosine receptor A3 Human genes 0.000 description 1
- 201000011452 Adrenoleukodystrophy Diseases 0.000 description 1
- 241000567147 Aeropyrum Species 0.000 description 1
- 101150029691 Aff2 gene Proteins 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 208000000363 Agenesis of Corpus Callosum Diseases 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 208000011403 Alexander disease Diseases 0.000 description 1
- 208000006829 Allan-Herndon-Dudley syndrome Diseases 0.000 description 1
- 208000023434 Alpers-Huttenlocher syndrome Diseases 0.000 description 1
- 208000029602 Alpha-N-acetylgalactosaminidase deficiency Diseases 0.000 description 1
- 102100026882 Alpha-synuclein Human genes 0.000 description 1
- 206010068783 Alstroem syndrome Diseases 0.000 description 1
- 201000005932 Alstrom Syndrome Diseases 0.000 description 1
- 241000192542 Anabaena Species 0.000 description 1
- 208000009575 Angelman syndrome Diseases 0.000 description 1
- 102100034594 Angiopoietin-1 Human genes 0.000 description 1
- 101710095339 Apolipoprotein E Proteins 0.000 description 1
- 241000207208 Aquifex Species 0.000 description 1
- 241000205046 Archaeoglobus Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 101150018431 Arx gene Proteins 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 101150054444 Atp7a gene Proteins 0.000 description 1
- 206010003805 Autism Diseases 0.000 description 1
- 208000020706 Autistic disease Diseases 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010048409 Brain malformation Diseases 0.000 description 1
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 1
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 208000010482 CADASIL Diseases 0.000 description 1
- 108091008927 CC chemokine receptors Proteins 0.000 description 1
- 102000005674 CCR Receptors Human genes 0.000 description 1
- 101150083327 CCR2 gene Proteins 0.000 description 1
- 101150017501 CCR5 gene Proteins 0.000 description 1
- 101150008656 COL1A1 gene Proteins 0.000 description 1
- 101150069031 CSN2 gene Proteins 0.000 description 1
- 101100205787 Caenorhabditis elegans timm-17B.1 gene Proteins 0.000 description 1
- 240000001432 Calendula officinalis Species 0.000 description 1
- 235000005881 Calendula officinalis Nutrition 0.000 description 1
- 208000022526 Canavan disease Diseases 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102100021633 Cathepsin B Human genes 0.000 description 1
- 102100024940 Cathepsin K Human genes 0.000 description 1
- 206010008025 Cerebellar ataxia Diseases 0.000 description 1
- 208000033221 Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy Diseases 0.000 description 1
- 208000033935 Cerebral autosomal dominant arteriopathy-subcortical infarcts-leukoencephalopathy Diseases 0.000 description 1
- 206010053684 Cerebrohepatorenal syndrome Diseases 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000588881 Chromobacterium Species 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 102000002734 Collagen Type VI Human genes 0.000 description 1
- 108010043741 Collagen Type VI Proteins 0.000 description 1
- 102100033601 Collagen alpha-1(I) chain Human genes 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- 102100027826 Complexin-1 Human genes 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010010411 Congenital central nervous system anomaly Diseases 0.000 description 1
- 208000029011 Copper metabolism disease Diseases 0.000 description 1
- 201000009343 Cornelia de Lange syndrome Diseases 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 230000005971 DNA damage repair Effects 0.000 description 1
- 102100022286 DNA repair-scaffolding protein Human genes 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 208000003471 De Lange Syndrome Diseases 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 241000605716 Desulfovibrio Species 0.000 description 1
- 208000004986 Diffuse Cerebral Sclerosis of Schilder Diseases 0.000 description 1
- 102100022825 Disintegrin and metalloproteinase domain-containing protein 22 Human genes 0.000 description 1
- 241000004297 Draba Species 0.000 description 1
- 101100118093 Drosophila melanogaster eEF1alpha2 gene Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 102100027723 Endogenous retrovirus group K member 6 Rec protein Human genes 0.000 description 1
- 108010041308 Endothelial Growth Factors Proteins 0.000 description 1
- 108010013369 Enteropeptidase Proteins 0.000 description 1
- 102100029727 Enteropeptidase Human genes 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 206010053177 Epidermolysis Diseases 0.000 description 1
- 102100033176 Epithelial membrane protein 2 Human genes 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000186394 Eubacterium Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 101150107205 FCGR2 gene Proteins 0.000 description 1
- 101150061264 FXR1 gene Proteins 0.000 description 1
- 208000024720 Fabry Disease Diseases 0.000 description 1
- 208000035126 Facies Diseases 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 101150114401 Fcer1g gene Proteins 0.000 description 1
- 108010032606 Fragile X Mental Retardation Protein Proteins 0.000 description 1
- 102100036334 Fragile X mental retardation syndrome-related protein 1 Human genes 0.000 description 1
- 102100036336 Fragile X mental retardation syndrome-related protein 2 Human genes 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- 241000611205 Fusarium oxysporum f. sp. lycopersici Species 0.000 description 1
- 241000605909 Fusobacterium Species 0.000 description 1
- 208000017462 Galactosialidosis Diseases 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 208000031448 Genomic Instability Diseases 0.000 description 1
- 241001135750 Geobacter Species 0.000 description 1
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 1
- 208000032007 Glycogen storage disease due to acid maltase deficiency Diseases 0.000 description 1
- 206010053185 Glycogen storage disease type II Diseases 0.000 description 1
- 102100022975 Glycogen synthase kinase-3 alpha Human genes 0.000 description 1
- 102100038104 Glycogen synthase kinase-3 beta Human genes 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 241000204988 Haloferax mediterranei Species 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 208000036066 Hemophagocytic Lymphohistiocytosis Diseases 0.000 description 1
- 101001023784 Heteractis crispa GFP-like non-fluorescent chromoprotein Proteins 0.000 description 1
- 102000016871 Hexosaminidase A Human genes 0.000 description 1
- 108010053317 Hexosaminidase A Proteins 0.000 description 1
- 208000032672 Histiocytosis haematophagic Diseases 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 108700005087 Homeobox Genes Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000761348 Homo sapiens 5-hydroxytryptamine receptor 2C Proteins 0.000 description 1
- 101000800430 Homo sapiens ATP-binding cassette sub-family G member 8 Proteins 0.000 description 1
- 101000929319 Homo sapiens Actin, aortic smooth muscle Proteins 0.000 description 1
- 101000783645 Homo sapiens Adenosine receptor A3 Proteins 0.000 description 1
- 101000775498 Homo sapiens Adenylate cyclase type 10 Proteins 0.000 description 1
- 101000689696 Homo sapiens Alpha-1D adrenergic receptor Proteins 0.000 description 1
- 101000924552 Homo sapiens Angiopoietin-1 Proteins 0.000 description 1
- 101000898449 Homo sapiens Cathepsin B Proteins 0.000 description 1
- 101000761509 Homo sapiens Cathepsin K Proteins 0.000 description 1
- 101000859600 Homo sapiens Complexin-1 Proteins 0.000 description 1
- 101000825159 Homo sapiens DNA repair-scaffolding protein Proteins 0.000 description 1
- 101000756722 Homo sapiens Disintegrin and metalloproteinase domain-containing protein 22 Proteins 0.000 description 1
- 101000619542 Homo sapiens E3 ubiquitin-protein ligase parkin Proteins 0.000 description 1
- 101000938351 Homo sapiens Ephrin type-A receptor 3 Proteins 0.000 description 1
- 101000851002 Homo sapiens Epithelial membrane protein 2 Proteins 0.000 description 1
- 101100335685 Homo sapiens FXR2 gene Proteins 0.000 description 1
- 101000930945 Homo sapiens Fragile X mental retardation syndrome-related protein 1 Proteins 0.000 description 1
- 101000930952 Homo sapiens Fragile X mental retardation syndrome-related protein 2 Proteins 0.000 description 1
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 1
- 101000903717 Homo sapiens Glycogen synthase kinase-3 alpha Proteins 0.000 description 1
- 101000843809 Homo sapiens Hydroxycarboxylic acid receptor 2 Proteins 0.000 description 1
- 101001033249 Homo sapiens Interleukin-1 beta Proteins 0.000 description 1
- 101000929733 Homo sapiens Kynurenine/alpha-aminoadipate aminotransferase, mitochondrial Proteins 0.000 description 1
- 101100127663 Homo sapiens LAMA2 gene Proteins 0.000 description 1
- 101000917826 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-a Proteins 0.000 description 1
- 101000917824 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-b Proteins 0.000 description 1
- 101001057159 Homo sapiens Melanoma-associated antigen C3 Proteins 0.000 description 1
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 1
- 101000837517 Homo sapiens NEDD8-activating enzyme E1 catalytic subunit Proteins 0.000 description 1
- 101001108436 Homo sapiens Neurexin-1 Proteins 0.000 description 1
- 101001108433 Homo sapiens Neurexin-1-beta Proteins 0.000 description 1
- 101001109698 Homo sapiens Nuclear receptor subfamily 4 group A member 2 Proteins 0.000 description 1
- 101000801640 Homo sapiens Phospholipid-transporting ATPase ABCA3 Proteins 0.000 description 1
- 101000617536 Homo sapiens Presenilin-1 Proteins 0.000 description 1
- 101000617546 Homo sapiens Presenilin-2 Proteins 0.000 description 1
- 101001001272 Homo sapiens Prostatic acid phosphatase Proteins 0.000 description 1
- 101000600434 Homo sapiens Putative uncharacterized protein encoded by MIR7-3HG Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000785063 Homo sapiens Serine-protein kinase ATM Proteins 0.000 description 1
- 101000605835 Homo sapiens Serine/threonine-protein kinase PINK1, mitochondrial Proteins 0.000 description 1
- 101000600903 Homo sapiens Substance-P receptor Proteins 0.000 description 1
- 101000828537 Homo sapiens Synaptic functional regulator FMR1 Proteins 0.000 description 1
- 101000892398 Homo sapiens Tryptophan 2,3-dioxygenase Proteins 0.000 description 1
- 101000830742 Homo sapiens Tryptophan 5-hydroxylase 1 Proteins 0.000 description 1
- 101000851865 Homo sapiens Tryptophan 5-hydroxylase 2 Proteins 0.000 description 1
- 101000807306 Homo sapiens Ubiquitin-like modifier-activating enzyme 1 Proteins 0.000 description 1
- 206010020460 Human T-cell lymphotropic virus type I infection Diseases 0.000 description 1
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 208000025500 Hutchinson-Gilford progeria syndrome Diseases 0.000 description 1
- 102100030643 Hydroxycarboxylic acid receptor 2 Human genes 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102100039065 Interleukin-1 beta Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 101150089565 LAMA2 gene Proteins 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 108010020246 Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 Proteins 0.000 description 1
- 102100032693 Leucine-rich repeat serine/threonine-protein kinase 2 Human genes 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 101150034680 Lis-1 gene Proteins 0.000 description 1
- 206010048911 Lissencephaly Diseases 0.000 description 1
- 102100029204 Low affinity immunoglobulin gamma Fc region receptor II-a Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102100026001 Lysosomal acid lipase/cholesteryl ester hydrolase Human genes 0.000 description 1
- 102100033448 Lysosomal alpha-glucosidase Human genes 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 208000030162 Maple syrup disease Diseases 0.000 description 1
- 108010049137 Member 1 Subfamily D ATP Binding Cassette Transporter Proteins 0.000 description 1
- 108010090822 Member 8 Subfamily G ATP Binding Cassette Transporter Proteins 0.000 description 1
- 208000008948 Menkes Kinky Hair Syndrome Diseases 0.000 description 1
- 208000012583 Menkes disease Diseases 0.000 description 1
- 201000011442 Metachromatic leukodystrophy Diseases 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 241000202974 Methanobacterium Species 0.000 description 1
- 241000203353 Methanococcus Species 0.000 description 1
- 241000204675 Methanopyrus Species 0.000 description 1
- 241000205276 Methanosarcina Species 0.000 description 1
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 1
- 102100039124 Methyl-CpG-binding protein 2 Human genes 0.000 description 1
- 201000002169 Mitochondrial myopathy Diseases 0.000 description 1
- 208000034819 Mobility Limitation Diseases 0.000 description 1
- 208000033180 Monosomy 22q13.3 Diseases 0.000 description 1
- 208000008955 Mucolipidoses Diseases 0.000 description 1
- 206010072928 Mucolipidosis type II Diseases 0.000 description 1
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 1
- 101000981253 Mus musculus GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 241000863420 Myxococcus Species 0.000 description 1
- PJKKQFAEFWCNAQ-UHFFFAOYSA-N N(4)-methylcytosine Chemical class CNC=1C=CNC(=O)N=1 PJKKQFAEFWCNAQ-UHFFFAOYSA-N 0.000 description 1
- 108700037255 NEDD8-activating enzyme E1 catalytic subunit Proteins 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 102000048238 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 102100021582 Neurexin-1-beta Human genes 0.000 description 1
- 108010088373 Neurofilament Proteins Proteins 0.000 description 1
- 101100058191 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) bcp-1 gene Proteins 0.000 description 1
- 101100385413 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) csm-3 gene Proteins 0.000 description 1
- 108010008858 Nitric Oxide Synthase Type I Proteins 0.000 description 1
- 241000605122 Nitrosomonas Species 0.000 description 1
- 208000035544 Nonketotic hyperglycinaemia Diseases 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 102100022676 Nuclear receptor subfamily 4 group A member 2 Human genes 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 208000019851 Opitz G/BBB syndrome Diseases 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 101150075879 PLA2G6 gene Proteins 0.000 description 1
- 101150082519 PLP1 gene Proteins 0.000 description 1
- 101150078890 POLG gene Proteins 0.000 description 1
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 201000004316 Perry syndrome Diseases 0.000 description 1
- 201000006880 Phelan-McDermid syndrome Diseases 0.000 description 1
- 102100032543 Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN Human genes 0.000 description 1
- 102100033623 Phospholipid-transporting ATPase ABCA3 Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000204826 Picrophilus Species 0.000 description 1
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 1
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 1
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 108010035004 Prephenate Dehydrogenase Proteins 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 208000007932 Progeria Diseases 0.000 description 1
- 208000033063 Progressive myoclonic epilepsy Diseases 0.000 description 1
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 102000007659 Protein Deglycase DJ-1 Human genes 0.000 description 1
- 108010032428 Protein Deglycase DJ-1 Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 229940096437 Protein S Drugs 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 241000567197 Puccinia graminis f. sp. tritici Species 0.000 description 1
- 102100037401 Putative uncharacterized protein encoded by MIR7-3HG Human genes 0.000 description 1
- 241000205226 Pyrobaculum Species 0.000 description 1
- 241000205160 Pyrococcus Species 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 102100038188 RNA binding protein fox-1 homolog 1 Human genes 0.000 description 1
- 101710199540 RNA binding protein fox-1 homolog 1 Proteins 0.000 description 1
- 101100240886 Rattus norvegicus Nptx2 gene Proteins 0.000 description 1
- 101100047461 Rattus norvegicus Trpm8 gene Proteins 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 1
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 1
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 201000001718 Roberts syndrome Diseases 0.000 description 1
- 101100170553 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) DLD2 gene Proteins 0.000 description 1
- 208000021811 Sandhoff disease Diseases 0.000 description 1
- 101100023124 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mfr2 gene Proteins 0.000 description 1
- 102100020824 Serine-protein kinase ATM Human genes 0.000 description 1
- 102100038376 Serine/threonine-protein kinase PINK1, mitochondrial Human genes 0.000 description 1
- 102100030333 Serpin B5 Human genes 0.000 description 1
- 241000949716 Sphaerochaeta Species 0.000 description 1
- 108010055297 Sterol Esterase Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 238000010459 TALEN Methods 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 241000186339 Thermoanaerobacter Species 0.000 description 1
- 241000204667 Thermoplasma Species 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 241000283907 Tragelaphus oryx Species 0.000 description 1
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 1
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 102100040653 Tryptophan 2,3-dioxygenase Human genes 0.000 description 1
- 102100024971 Tryptophan 5-hydroxylase 1 Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 101150044377 UBA1 gene Proteins 0.000 description 1
- 101150035006 UBA3 gene Proteins 0.000 description 1
- 108010005656 Ubiquitin Thiolesterase Proteins 0.000 description 1
- 102000005918 Ubiquitin Thiolesterase Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 101710177612 Very low-density lipoprotein receptor Proteins 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 102100028885 Vitamin K-dependent protein S Human genes 0.000 description 1
- 101150115477 Vldlr gene Proteins 0.000 description 1
- 108091093126 WHP Posttrascriptional Response Element Proteins 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 208000006254 Wolf-Hirschhorn Syndrome Diseases 0.000 description 1
- 241000605941 Wolinella Species 0.000 description 1
- 210000001766 X chromosome Anatomy 0.000 description 1
- 206010048215 Xanthomatosis Diseases 0.000 description 1
- 101000678336 Xenopus laevis Actin, alpha skeletal muscle 2 Proteins 0.000 description 1
- 101000678338 Xenopus tropicalis Actin, alpha cardiac muscle 2 Proteins 0.000 description 1
- 206010048218 Xeroderma Diseases 0.000 description 1
- 201000004525 Zellweger Syndrome Diseases 0.000 description 1
- 208000036813 Zellweger spectrum disease Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 201000009628 adenosine deaminase deficiency Diseases 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 102000009899 alpha Karyopherins Human genes 0.000 description 1
- 108010077099 alpha Karyopherins Proteins 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 108090000185 alpha-Synuclein Proteins 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 201000008333 alpha-mannosidosis Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 208000029560 autism spectrum disease Diseases 0.000 description 1
- 208000036556 autosomal recessive T cell-negative B cell-negative NK cell-negative due to adenosine deaminase deficiency severe combined immunodeficiency Diseases 0.000 description 1
- 208000005980 beta thalassemia Diseases 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- 230000008436 biogenesis Effects 0.000 description 1
- 238000001369 bisulfite sequencing Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 108020001778 catalytic domains Proteins 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 208000025434 cerebellar degeneration Diseases 0.000 description 1
- 208000016886 cerebral arteriopathy with subcortical infarcts and leukoencephalopathy Diseases 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 208000017568 chondrodysplasia Diseases 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 208000003536 colpocephaly Diseases 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 101150055601 cops2 gene Proteins 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 208000028329 epileptic seizure Diseases 0.000 description 1
- 230000002449 erythroblastic effect Effects 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 108010021843 fluorescent protein 583 Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 201000008049 fucosidosis Diseases 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 201000011205 glycine encephalopathy Diseases 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 201000004502 glycogen storage disease II Diseases 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 208000014752 hemophagocytic syndrome Diseases 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 102000057382 human EPHA3 Human genes 0.000 description 1
- 102000049240 human PVALB Human genes 0.000 description 1
- 210000005119 human aortic smooth muscle cell Anatomy 0.000 description 1
- 206010021198 ichthyosis Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000023692 inborn mitochondrial myopathy Diseases 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000019143 inherited prion disease Diseases 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 101150044508 key gene Proteins 0.000 description 1
- 210000001985 kidney epithelial cell Anatomy 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 201000010260 leiomyoma Diseases 0.000 description 1
- 208000014817 lissencephaly spectrum disease Diseases 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000000415 mammalian chromosome Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 201000011540 mitochondrial DNA depletion syndrome 4a Diseases 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 208000020460 mucolipidosis II alpha/beta Diseases 0.000 description 1
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 102000045222 parkin Human genes 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000003976 plant breeding Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 201000001204 progressive myoclonus epilepsy Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 208000002320 spinal muscular atrophy Diseases 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 108020003113 steroid hormone receptors Proteins 0.000 description 1
- 102000005969 steroid hormone receptors Human genes 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000018405 transmission of nerve impulse Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 230000005760 tumorsuppression Effects 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 208000037997 venous disease Diseases 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 239000000277 virosome Substances 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/01—Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1082—Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/30—Detection of binding sites or motifs
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/50—Mutagenesis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
- G16B30/10—Sequence alignment; Homology search
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/10—Applications; Uses in screening processes
- C12N2320/11—Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Computational Biology (AREA)
- Medical Informatics (AREA)
- Evolutionary Biology (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Mycology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Изобретение относится к биотехнологии. Описана система CRISPR-Cas для редактирования генома в эукариотической клетке, содержащая: белок Cas9, содержащий по меньшей мере одну последовательность ядерной локализации, и химерную РНК (chiRNA) системы CRISPR-Cas, содержащую: (a) направляющую последовательность, способную гибридизироваться с целевой последовательностью в эукариотической клетке, (b) парную tracr-последовательность, способную гибридизоваться с tracr-последовательностью, и (c) tracr-последовательность, где (a), (b) и (c) расположены в 5’-3’ ориентации, где одна или несколько из направляющей, tracr- и парной tracr-последовательностей модифицированы для повышения стабильности и где необязательно белок Cas9 образует комплекс с химерной РНК (chiRNA) системы CRISPR-Cas. Представлена векторная система CRISPR-Cas для модификации целевой последовательности в эукариотической клетке, содержащая один или несколько векторов, содержащих: I. первый регуляторный элемент, функционально связанный с нуклеотидной последовательностью, кодирующей химерную РНК (chiRNA) системы CRISPR-Cas, содержащую: (a) направляющую последовательность, способную гибридизироваться с целевой последовательностью в эукариотической клетке, (b) парную tracr-последовательность, способную гибридизоваться с tracr-последовательностью, и (c) tracr-последовательность, где (a), (b) и (c) расположены в 5’-3’ ориентации, и II. второй регуляторный элемент, функционально связанный с нуклеотидной последовательностью, кодирующей белок Cas9, содержащий по меньшей мере одну последовательность ядерной локализации, где компоненты I и II находятся в одном и том же или в разных векторах системы, где одна или несколько из направляющей, tracr- и парной tracr-последовательностей модифицированы для повышения стабильности. Изобретение расширяет арсенал средств, контролирующих экспрессию. 2 н. и 47 з.п. ф-лы, 23 ил., 4 табл., 8 пр.
Description
Родственные заявки и включение при помощи ссылки
Данная заявка заявляет приоритет предварительной заявки на патент США 61/836127, озаглавленной "КОНСТРУИРОВАНИЕ СИСТЕМ, СПОСОБЫ И ОПТИМИЗИРОВАННЫЕ КОМПОЗИЦИИ ДЛЯ МАНИПУЛЯЦИИ С ПОСЛЕДОВАТЕЛЬНОСТЯМИ" (ENGINEERING OF SYSTEMS, METHODS AND OPTIMIZED COMPOSITIONS FOR SEQUENCE MANIPULATION), поданной 17 июня 2013 г. Данная заявка также заявляет приоритет предварительных заявок на патент США 61/758468; 61/769046; 61/802174; 61/806375; 61/814263; 61/819803 и 61/828130, каждая из которых озаглавлена "КОНСТРУИРОВАНИЕ И ОПТИМИЗАЦИЯ СИСТЕМ, СПОСОБЫ И КОМПОЗИЦИИ ДЛЯ МАНИПУЛЯЦИИ С ПОСЛЕДОВАТЕЛЬНОСТЯМИ" (ENGINEERING AND OPTIMIZATION OF SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION), поданных 30 января 2013 г.; 25 февраля 2013 г.; 15 марта 2013 г.; 28 марта 2013 г.; 20 апреля 2013 г.; 6 мая 2013 г. и 28 мая 2013 г., соответственно. Также заявляется приоритет предварительных заявок на патент США 61/736527 и 61/748427, обе из которых озаглавлены "СИСТЕМЫ, СПОСОБЫ И КОМПОЗИЦИИ ДЛЯ МАНИПУЛЯЦИИ С ПОСЛЕДОВАТЕЛЬНОСТЯМИ" (SYSTEMS METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION), поданных 12 декабря 2012 г. и 2 января 2013 г., соответственно. Также заявляется приоритет предварительных заявок на патент США 61/791409 и 61/835931, обе из которых озаглавлены BI-2011/008/44790.02.2003 и BI-2011/008/44790.03.2003, поданных 15 марта 2013 г. и 17 июня 2013 г., соответственно.
Также делается ссылка на предварительные заявки на патент США 61/835936, 61/836101, 61/836080, 61/836123 и 61/835973, каждая из которых подана 17 июня 2013 г.
Вышеприведенные заявки и все документы, цитируемые в них или во время их рассмотрения ("цитируемые документы заявки"), и все документы, цитируемые или упомянутые в цитируемых документах заявки, и все документы, цитируемые или упомянутые в данном документе ("документы, цитируемые в данном документе"), и все документы, цитируемые или упомянутые в документах, цитируемых в данном документе, совместно с любыми инструкциями изготовителя, описаниями, характеристиками продукта и технологическими картами для любых продуктов, упомянутых в данном документе или в любом документе, включенном с помощью ссылки в данный документ, таким образом, включены в данный документ с помощью ссылки и могут быть использованы в практическом осуществлении настоящего изобретения. Более конкретно, все документы, на которые ссылаются, включены при помощи ссылки в такой же мере, как если бы конкретно и отдельно было указано, что каждый отдельный документ включен при помощи ссылки.
Область техники
Настоящее изобретение в целом относится к системам, способам и композициям, применяемым для контроля экспрессии генов, включающего целенаправленное воздействие на последовательность, такое как внесение изменений в геном или редактирование гена, при котором можно использовать векторные системы, близкие к коротким палиндромным повторам, регулярно расположенным группами, (CRISPR) и их компонентам.
Утверждение касательно финансируемого из федерального бюджета исследования Настоящее изобретение было разработано при правительственной поддержке, выданной Национальными институтами здравоохранения, NIH Pioneer Award DP1MH100706. Правительство обладает определенными правами на настоящее изобретение.
Предпосылки изобретения
Недавние достижения в технологиях секвенирования генома и способах анализа значительно ускорили возможность каталогизации и картирования генетических факторов, ассоциированных с широким разнообразием биологических функций и заболеваний. Технологии точного целенаправленного воздействия на геном необходимы для обеспечения систематичного обратного конструирования казуальных генетических изменений путем обеспечения возможности селективного внесения изменений в отдельные генетические элементы, а также для продвижения применений в области синтетической биологии, биотехнологии и медицины. Несмотря на то, что технологии редактирования генома, такие как конструктор доменов "цинковые пальцы", подобные транскрипционным активаторам эффекторы (TALE) или хоминг мегануклеазы, доступны для осуществления внесений изменений в целевой геном, все еще существует необходимость в новых технологиях конструирования генома, которые являются доступными, простыми в осуществлении, масштабируемыми и характеризуются возможностью целенаправленного воздействия на несколько положений в эукариотическом геноме.
Краткое описание изобретения
Существует актуальная необходимость в альтернативных и функциональных системах и технологиях для целенаправленного воздействия на последовательность с широким спектром применений. Настоящее изобретение удовлетворяет этой необходимости и предусматривает связанные с этим преимущества. CRISPR/Cas или система CRISPR-Cas (оба выражения используют взаимозаменяемо по всей данной заявке) не предусматривает получение индивидуализированных белков для целенаправленного воздействия на конкретные последовательности, но скорее один фермент Cas может быть запрограммирован короткой молекулой РНК для узнавания специфичной ДНК-мишени, другими словами, фермент Cas может связываться со специфичной ДНК-мишенью при помощи указанной короткой молекулы РНК. Добавление системы CRISPR-Cas к спектру технологий секвенирования генома и способов анализа может значительно упростить методику и ускорить возможность каталогизации и картирования генетических факторов, ассоциированных с широким разнообразием биологических функций и заболеваний. Для того чтобы эффективно использовать систему CRISPR-Cas для редактирования генома без вредного действия, важно понимать аспекты конструирования и оптимизации этих средств для конструирования генома, которые являются аспектами заявленного изобретения.
В одном аспекте настоящее изобретение предусматривает векторную систему, содержащую один или несколько векторов. В некоторых вариантах осуществления система содержит (а) первый регуляторный элемент, функционально связанный с парной tracr-последовательностью и одним или несколькими сайтами встраивания для встраивания одной или нескольких направляющих последовательностей выше парной tracr-последовательности, где при экспрессии направляющая последовательность управляет специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью в клетке, к примеру, эукариотической клетке, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с (1) направляющей последовательностью, которая гибридизируется с целевой последовательностью, и (2) парной tracr-последовательностью, которая гибридизируется с tracr-последовательностью; и (b) второй регуляторный элемент, функционально связанный с кодирующей фермент последовательностью, кодирующей указанный фермент CRISPR, содержащий последовательность ядерной локализации; где компоненты (а) и (b) находятся в одном и том же или в разных векторах системы. В некоторых вариантах осуществления компонент (а) дополнительно содержит tracr-последовательность ниже парной tracr-последовательности под контролем первого регуляторного элемента. В некоторых вариантах осуществления компонент (а) дополнительно содержит две или более направляющие последовательности, функционально связанные с первым регуляторным элементом, где при экспрессии каждая из двух или более направляющих последовательностей управляет специфичным к последовательности связыванием комплекса CRISPR со своей целевой последовательностью в эукариотической клетке. В некоторых вариантах осуществления система содержит tracr-последовательность под контролем третьего регуляторного элемента, такого как промотор полимеразы III. В некоторых вариантах осуществления tracr-последовательность характеризуется по меньшей мере 50%, 60%, 70%, 80%, 90%, 95% или 99% комплементарности последовательности по длине парной tracr-последовательности при оптимальном выравнивании. В некоторых вариантах осуществления комплекс CRISPR содержит одну или несколько последовательностей ядерной локализации, достаточно эффективных, чтобы управлять накоплением указанного комплекса CRISPR в обнаруживаемом количестве в ядре эукариотической клетки. Не желая быть связанными теорией, полагают, что последовательность ядерной локализации не является необходимой для активности комплекса CRISPR у эукариот, но что включение таких последовательностей повышает активность системы, особенно в отношении нацеливания на молекулы нуклеиновых кислот в ядре. В некоторых вариантах осуществления фермент CRISPR является ферментом системы CRISPR II типа. В некоторых вариантах осуществления фермент CRISPR является ферментом Cas9. В некоторых вариантах осуществления фермент Cas9 представляет собой Cas9 S. pneumoniae, S. pyogenes или S. thermophilus и может включать мутированный Cas9, полученный из этих организмов. Фермент может быть гомологом или ортологом Cas9. В некоторых вариантах осуществления фермент CRISPR кодон-оптимизирован для экспрессии в эукариотической клетке. В некоторых вариантах осуществления фермент CRISPR управляет расщеплением одной или двух нитей в определенной точке целевой последовательности. В некоторых вариантах осуществления у фермента CRISPR отсутствует активность для расщепления нитей ДНК. В некоторых вариантах осуществления первый регуляторный элемент является промотором полимеразы III. В некоторых вариантах осуществления второй регуляторный элемент является промотором полимеразы II. В некоторых вариантах осуществления направляющая последовательность составляет по меньшей мере 15, 16, 17, 18, 19, 20, 25 нуклеотидов, или от 10 до 30, или от 15 до 25, или от 15 до 20 нуклеотидов в длину. В целом и по всему данному описанию выражение "вектор" относится к молекуле нуклеиновой кислоты, способной переносить другую нуклеиновую кислоту, с которой она была связана. Векторы включают, без ограничения, молекулы нуклеиновых кислот, которые являются одноцепочечными, двухцепочечными или частично двухцепочечными; молекулы нуклеиновых кислот, которые содержат один или несколько свободных концов, не содержат свободных концов (к примеру, кольцевые); молекулы нуклеиновых кислот, которые содержат ДНК, РНК или и ту, и другую; и другие разновидности полинуклеотидов, известных в уровне техники. Одним типом вектора является "плазмида", которая означает кольцевую петлю двухцепочечной ДНК, в которую можно встраивать дополнительные сегменты ДНК, как, например, при помощи стандартных технологий молекулярного клонирования. Другим типом вектора является вирусный вектор, где полученные из вируса последовательности ДНК или РНК присутствуют в векторе для упаковки в вирус (к примеру, ретровирусы, ретровирусы с дефективной системой репликации, аденовирусы, аденовирусы с дефективной системой репликации и аденоассоциированные вирусы). Вирусные векторы также включают полинуклеотиды, переносимые вирусами для трансфекции клетки-хозяина. Определенные векторы способны к саморегулируемой репликации в клетке-хозяине, в которую они введены (к примеру, бактериальные векторы с бактериальной точкой начала репликации и эписомные векторы для млекопитающих). Другие векторы (к примеру, векторы для млекопитающих, отличные от эписомных) интегрируются в геном клетки-хозяина после введения в клетку- хозяина и, таким образом, реплицируются наряду с геномом хозяина. Более того, определенные векторы способны управлять экспрессией генов, с которыми они функционально связаны. Такие векторы в данном документе называют "векторами экспрессии". Общепринятые пригодные в технологиях рекомбинантной ДНК векторы экспрессии часто находятся в форме плазмид.
Рекомбинантные векторы экспрессии могут содержать нуклеиновую кислоту согласно настоящему изобретению в форме, подходящей для экспрессии нуклеиновой кислоты в клетке-хозяине, что означает, что рекомбинантные векторы экспрессии включают один или несколько регуляторных элементов, которые могут быть выбраны с учетом клеток-хозяев, которые предполагается использовать для экспрессии, которые функционально связаны с последовательностью нуклеиновой кислоты, экспрессия которой предполагается. В контексте рекомбинантного вектора экспрессии выражение "функционально связанный" предназначено означать, что представляющая интерес нуклеотидная последовательность связана с регуляторным(и) элементом(ами) таким образом, при котором обеспечивается экспрессия нуклеотидной последовательности (к примеру, в in vitro системе транскрипции/трансляции или в клетке-хозяине, когда вектор вводят в клетку-хозяина).
Выражение "регуляторный элемент" предназначено включать промоторы, энхансеры, участки внутренней посадки рибосомы (IRES) и другие контролирующие экспрессию элементы (к примеру, сигналы терминации транскрипции, такие как сигналы полиаденилирования и поли-U-последовательности). Такие регуляторные элементы описаны, например, в Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Регуляторные элементы включают такие, которые управляют конститутивной экспрессией нуклеотидной последовательности во многих типах клеток-хозяев, и такие, которые управляют экспрессией нуклеотидной последовательности только в определенных клетках-хозяевах (к примеру, тканеспецифичные регуляторные последовательности). Тканеспецифичный промотор может управлять экспрессией преимущественно в представляющей интерес целевой ткани, такой как мышца, нейрон, кость, кожа, кровь, конкретных органах (к примеру, печени, поджелудочной железе) или определенных типах клеток (к примеру, лимфоцитах). Регуляторные элементы также могут управлять экспрессией зависимым от времени образом, как, например, зависимым от клеточного цикла или зависимым от стадии развития образом, который может быть или может не быть также тканеспецифичным или специфичным к типу клеток. В некоторых вариантах осуществления вектор содержит один или несколько промоторов pol III (к примеру, 1, 2, 3, 4, 5 или более промоторов pol III), один или несколько промоторов pol II (к примеру, 1, 2, 3, 4, 5 или более промоторов pol II), один или несколько промоторов pol I (к примеру, 1, 2, 3, 4, 5 или более промоторов pol I) или их комбинации. Примеры промоторов pol III включают без ограничения промоторы U6 и H1. Примеры промоторов pol II включают без ограничения ретровирусный промотор LTR вируса саркомы Рауса (RSV) (необязательно с энхансером RSV), промотор цитомегаловируса (CMV) (необязательно с энхансером CMV) [см., например, Boshart et al, Cell, 41: 521-530 (1985)], промотор SV40, промотор дигидрофолатредуктазы, промотор β-актина, промотор глицерофосыаткиназы (PGK) и промотор EF1α. Также выражением "регуляторный элемент" охвачены энхансерные элементы, такие как WPRE; энхансеры CMV; сегмент R-U5' в LTR HTLV-I (Mol. Cell. Biol., Vol.8(1), p.466-472, 1988); энхансер SV40; и интронная последовательность между экзонами 2 и 3 β-глобина кролика (Proc. Natl. Acad. Sci. USA., Vol.78(3), p.1527-31, 1981). Специалистам в данной области будет понятно, что структура вектора экспрессии может зависеть от таких факторов, как выбор клетки хозяина, подлежащей трансформации, желательный уровень экспрессии и т.п. Вектор можно вводить в клетки-хозяева с получением, таким образом, транскриптов, белков или пептидов, в том числе слитых белков или пептидов, кодируемых нуклеиновыми кислотами, которые описаны в данном документе (к примеру, транскриптов коротких палиндромных повторов, регулярно расположенных группами (CRISPR), белков, ферментов, их мутантных форм, их слитых белков и т.п.).
Преимущественные векторы включают лентивирусы и аденоассоциированные вирусы, и типы таких векторов также могут быть выбраны для целенаправленного воздействия на определенные типы клеток.
В одном аспекте настоящее изобретение предусматривает вектор, содержащий регуляторный элемент, функционально связанный с кодирующей фермент последовательностью, кодирующей фермент CRISPR, содержащий одну или несколько последовательностей ядерной локализации. В некоторых вариантах осуществления указанный регуляторный элемент управляет транскрипцией фермента CRISPR в эукариотической клетке, так что указанный фермент CRISPR накапливается в обнаруживаемом количестве в ядре эукариотической клетки. В некоторых вариантах осуществления регуляторный элемент является промотором полимеразы II. В некоторых вариантах осуществления фермент CRISPR является ферментом системы CRISPR II типа. В некоторых вариантах осуществления фермент CRISPR является ферментом Cas9. В некоторых вариантах осуществления фермент Cas9 представляет собой Cas9 S. pneumoniae, S. pyogenes или S. thermophilus и может включать мутированный Cas9, полученный из этих организмов. В некоторых вариантах осуществления фермент CRISPR кодон-оптимизирован для экспрессии в эукариотической клетке. В некоторых вариантах осуществления фермент CRISPR управляет расщеплением одной или двух нитей в определенной точке целевой последовательности. В некоторых вариантах осуществления у фермента CRISPR отсутствует активность для расщепления нитей ДНК.
В одном аспекте настоящее изобретение предусматривает фермент CRISPR, содержащий одну или несколько последовательностей ядерной локализации, достаточно эффективных, чтобы управлять накоплением указанного фермента CRISPR в обнаруживаемом количестве в ядре эукариотической клетки. В некоторых вариантах осуществления фермент CRISPR является ферментом системы CRISPR II типа. В некоторых вариантах осуществления фермент CRISPR является ферментом Cas9. В некоторых вариантах осуществления фермент Cas9 представляет собой Cas9 S. pneumoniae, S. pyogenes или S. thermophilus и может включать мутированный Cas9, полученный из этих организмов. Фермент может быть гомологом или ортологом Cas9. В некоторых вариантах осуществления у фермента CRISPR отсутствует способность расщеплять одну или несколько нитей целевой последовательности, с которой он связывается.
В одном аспекте настоящее изобретение предусматривает эукариотическую клетку-хозяина, содержащую (а) первый регуляторный элемент, функционально связанный с парной tracr-последовательностью и одним или несколькими сайтами встраивания для встраивания одной или нескольких направляющих последовательностей выше парной tracr-последовательности, где при экспрессии направляющая последовательность управляет специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью в эукариотической клетке, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с (1) направляющей последовательностью, которая гибридизируется с целевой последовательностью, и (2) парной tracr-последовательностью, которая гибридизируется с tracr-последовательностью; и/или (b) второй регуляторный элемент, функционально связанный с кодирующей фермент последовательностью, кодирующей указанный фермент CRISPR, содержащий последовательность ядерной локализации. В некоторых вариантах осуществления клетка-хозяин содержит компоненты (а) и (b). В некоторых вариантах осуществления компонент (а), компонент (b) или компоненты (а) и (b) стабильно интегрируются в геном эукариотической клетки-хозяина. В некоторых вариантах осуществления компонент (а) дополнительно содержит tracr-последовательность ниже парной tracr-последовательности под контролем первого регуляторного элемента. В некоторых вариантах осуществления компонент (а) дополнительно содержит две или более направляющие последовательности, функционально связанные с первым регуляторным элементом, где при экспрессии каждая из двух или более направляющих последовательностей управляет специфичным к последовательности связыванием комплекса CRISPR со своей целевой последовательностью в эукариотической клетке. В некоторых вариантах осуществления эукариотическая клетка-хозяин дополнительно содержит третий регуляторный элемент, такой как промотор полимеразы III, функционально связанный с указанной tracr- последовательностью. В некоторых вариантах осуществления tracr-последовательность характеризуется по меньшей мере 50%, 60%, 70%, 80%, 90%, 95% или 99% комплементарности последовательности по длине парной tracr-последовательности при оптимальном выравнивании. В некоторых вариантах осуществления фермент CRISPR содержит одну или несколько последовательностей ядерной локализации, достаточно эффективных, чтобы управлять накоплением указанного фермента CRISPR в обнаруживаемом количестве в ядре эукариотической клетки. В некоторых вариантах осуществления фермент CRISPR является ферментом системы CRISPR II типа. В некоторых вариантах осуществления фермент CRISPR является ферментом Cas9. В некоторых вариантах осуществления фермент Cas9 представляет собой Cas9 S. pneumoniae, S. pyogenes или S. thermophilus и может включать мутированный Cas9, полученный из этих организмов. Фермент может быть гомологом или ортологом Cas9. В некоторых вариантах осуществления фермент CRISPR кодон-оптимизирован для экспрессии в эукариотической клетке. В некоторых вариантах осуществления фермент CRISPR управляет расщеплением одной или двух нитей в определенной точке целевой последовательности. В некоторых вариантах осуществления у фермента CRISPR отсутствует активность для расщепления нитей ДНК. В некоторых вариантах осуществления первый регуляторный элемент является промотором полимеразы III. В некоторых вариантах осуществления второй регуляторный элемент является промотором полимеразы II. В некоторых вариантах осуществления направляющая последовательность составляет по меньшей мере 15, 16, 17, 18, 19, 20, 25 нуклеотидов, или от 10 до 30, или от 15 до 25, или от 15 до 20 нуклеотидов в длину. В одном аспекте настоящее изобретение предусматривает отличный от человека эукариотический организм, предпочтительно многоклеточный эукариотический организм, содержащий эукариотическую клетку-хозяина согласно любому из описанных вариантов осуществления. В других аспектах настоящее изобретение предусматривает эукариотический организм, предпочтительно многоклеточный эукариотический организм, содержащий эукариотическую клетку-хозяина согласно любому из описанных вариантов осуществления. Организм в некоторых вариантах осуществления данных аспектов может быть животным, например, млекопитающим. Также организмом может быть членистоногое, как, например, насекомое. Организмом также может быть растение. Кроме того, организмом может быть гриб.
В одном аспекте настоящее изобретение предусматривает набор, содержащий один или несколько компонентов, описанных в данном документе. В некоторых вариантах осуществления набор содержит векторную систему и инструкции по применению набора. В некоторых вариантах осуществления векторная система содержит (а) первый регуляторный элемент, функционально связанный с парной tracr-последовательностью и одним или несколькими сайтами встраивания для встраивания одной или нескольких направляющих последовательностей выше парной tracr-последовательности, где при экспрессии направляющая последовательность управляет специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью в эукариотической клетке, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с (1) направляющей последовательностью, которая гибридизируется с целевой последовательностью, и (2) парной tracr-последовательностью, которая гибридизируется с tracr-последовательностью; и/или (b) второй регуляторный элемент, функционально связанный с кодирующей фермент последовательностью, кодирующей указанный фермент CRISPR, содержащий последовательность ядерной локализации. В некоторых вариантах осуществления набор содержит компоненты (а) и (b), находящиеся в одном и том же или в разных векторах системы. В некоторых вариантах осуществления компонент (а) дополнительно содержит tracr-последовательность ниже парной tracr-последовательности под контролем первого регуляторного элемента. В некоторых вариантах осуществления компонент (а) дополнительно содержит две или более направляющие последовательности, функционально связанные с первым регуляторным элементом, где при экспрессии каждая из двух или более направляющих последовательностей управляет специфичным к последовательности связыванием комплекса CRISPR со своей целевой последовательностью в эукариотической клетке. В некоторых вариантах осуществления система дополнительно содержит третий регуляторный элемент, такой как промотор полимеразы III, функционально связанный с указанной tracr-последовательностью. В некоторых вариантах осуществления tracr-последовательность характеризуется по меньшей мере 50%, 60%, 70%, 80%, 90%, 95% или 99% комплементарности последовательности по длине парной tracr-последовательности при оптимальном выравнивании. В некоторых вариантах осуществления фермент CRISPR содержит одну или несколько последовательностей ядерной локализации, достаточно эффективных, чтобы управлять накоплением указанного фермента CRISPR в обнаруживаемом количестве в ядре эукариотической клетки. В некоторых вариантах осуществления фермент CRISPR является ферментом системы CRISPR II типа. В некоторых вариантах осуществления фермент CRISPR является ферментом Cas9. В некоторых вариантах осуществления фермент Cas9 представляет собой Cas9 S. pneumoniae, S. pyogenes или S. thermophilus и может включать мутированный Cas9, полученный из этих организмов. Фермент может быть гомологом или ортологом Cas9. В некоторых вариантах осуществления фермент CRISPR кодон-оптимизирован для экспрессии в эукариотической клетке. В некоторых вариантах осуществления фермент CRISPR управляет расщеплением одной или двух нитей в определенной точке целевой последовательности. В некоторых вариантах осуществления у фермента CRISPR отсутствует активность для расщепления нитей ДНК. В некоторых вариантах осуществления первый регуляторный элемент является промотором полимеразы III. В некоторых вариантах осуществления второй регуляторный элемент является промотором полимеразы II. В некоторых вариантах осуществления направляющая последовательность составляет по меньшей мере 15, 16, 17, 18, 19, 20, 25 нуклеотидов, или от 10 до 30, или от 15 до 25, или от 15 до 20 нуклеотидов в длину.
В одном аспекте настоящее изобретение предусматривает способ модификации целевого полинуклеотида в эукариотической клетке. В некоторых вариантах осуществления способ включает обеспечение связывания комплекса CRISPR с целевым полинуклеотидом для осуществления расщепления указанного целевого полинуклеотида с модификацией, таким образом, целевого полинуклеотида, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с направляющей последовательностью, гибридизирующейся с целевой последовательностью в указанном целевом полинуклеотиде, где указанная направляющая последовательность связана с парной tracr-последовательностью, которая, в свою очередь, гибридизируется с tracr-последовательностью. В некоторых вариантах осуществления указанное расщепление включает расщепление одной или двух нитей в определенной точке целевой последовательности указанным ферментом CRISPR. В некоторых вариантах осуществления указанное расщепление приводит к сниженной транскрипции целевого гена. В некоторых вариантах осуществления способ дополнительно включает репарацию указанного расщепленного целевого полинуклеотида при помощи гомологичной рекомбинации с экзогенным матричным полинуклеотидом, где указанная репарация приводит к мутации, включающей вставку, делецию или замену одного или нескольких нуклеотидов указанного целевого полинуклеотида. В некоторых вариантах осуществления указанная мутация приводит к одной или нескольким аминокислотным заменам в белке, экспрессируемом с гена, содержащего целевую последовательность. В некоторых вариантах осуществления способ дополнительно включает доставку одного или нескольких векторов в указанную эукариотическую клетку, где один или несколько векторов управляют экспрессией одного или нескольких из: фермента CRISPR, направляющей последовательности, связанной с парной tracr-последовательностью, и tracr-последовательности. В некоторых вариантах осуществления указанные векторы доставляют в эукариотическую клетку в субъекте. В некоторых вариантах осуществления указанная модификация имеет место в указанной эукариотической клетке в клеточной культуре. В некоторых вариантах осуществления способ дополнительно включает выделение указанной эукариотической клетки из субъекта перед указанной модификацией. В некоторых вариантах осуществления способ дополнительно включает возвращение указанной эукариотической клетки и/или клеток, полученных из субъекта, указанному субъекту.
В одном аспекте настоящее изобретение предусматривает способ модификации экспрессии полинуклеотида в эукариотической клетке. В некоторых вариантах осуществления способ включает обеспечение связывания комплекса CRISPR с полинуклеотидом так, что указанное связывание приводит к повышенной или пониженной экспрессии указанного полинуклеотида; где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с направляющей последовательностью, гибридизирующейся с целевой последовательностью в указанном целевом полинуклеотиде, где указанная направляющая последовательность связана с парной tracr-последовательностью, которая, в свою очередь, гибридизируется с tracr-последовательностью. В некоторых вариантах осуществления способ дополнительно включает доставку одного или нескольких векторов в указанные эукариотические клетки, где один или несколько векторов управляют экспрессией одного или нескольких из: фермента CRISPR, направляющей последовательности, связанной с парной tracr-последовательностью, и tracr-последовательности.
В одном аспекте настоящее изобретение предусматривает способ получения модельной эукариотической клетки, содержащей мутированный ген, ответственный за развитие заболевания. В некоторых вариантах осуществления ген, ответственный за развитие заболевания, является любым геном, ассоциированным с повышением риска наличия или развития заболевания. В некоторых вариантах осуществления способ включает (а) введение одного или нескольких векторов в эукариотическую клетку, где один или несколько векторов управляют экспрессией одного или нескольких из: фермента CRISPR, направляющей последовательности, связанной с парной tracr-последовательностью, и tracr-последовательности; и (b) обеспечение связывания комплекса CRISPR с целевым полинуклеотидом для осуществления расщепления целевого полинуклеотида в указанном гене, ответственном за развитие заболевания, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с (1) направляющей последовательностью, которая гибридизируется с целевой последовательностью в целевом полинуклеотиде, и (2) парной tracr-последовательностью, которая гибридизируется с tracr-последовательностью, таким образом, получая модельную эукариотическую клетку, содержащую мутированный ген, ответственный за развитие заболевания. В некоторых вариантах осуществления указанное расщепление включает расщепление одной или двух нитей в определенной точке целевой последовательности указанным ферментом CRISPR. В некоторых вариантах осуществления указанное расщепление приводит к сниженной транскрипции целевого гена. В некоторых вариантах осуществления способ дополнительно включает репарацию указанного расщепленного целевого полинуклеотида при помощи гомологичной рекомбинации с экзогенным матричным полинуклеотидом, где указанная репарация приводит к мутации, включающей вставку, делецию или замену одного или нескольких нуклеотидов указанного целевого полинуклеотида. В некоторых вариантах осуществления указанная мутация приводит к одной или нескольким аминокислотным заменам при экспрессии белка с гена, содержащего целевую последовательность.
В одном аспекте настоящее изобретение предусматривает способ получения биологически активного средства, которое модулирует процесс передачи сигнала в клетке, ассоциированный с геном, ответственным за развитие заболевания. В некоторых вариантах осуществления ген, ответственный за развитие заболевания, является любым геном, ассоциированным с повышением риска наличия или развития заболевания. В некоторых вариантах осуществления способ включает (а) приведение тестового соединения в контакт с модельной клеткой по любому одному из описанных вариантов осуществления и (b) обнаружение изменения при считывании, которое свидетельствует об уменьшении или усилении процесса передачи сигнала в клетке, ассоциированного с указанной мутацией в указанном гене, ответственном за развитие заболевания, с получением, таким образом, указанного биологически активного средства, которое модулирует указанный процесс передачи сигнала в клетке, ассоциированный с указанным геном, ответственным за развитие заболевания.
В одном аспекте настоящее изобретение предусматривает рекомбинантный полинуклеотид, содержащий направляющую последовательность выше парной tracr- последовательности, где направляющая последовательность при экспрессии управляет специфичным к последовательности связыванием комплекса CRISPR с соответствующей целевой последовательностью, присутствующей в эукариотической клетке. В некоторых вариантах осуществления целевая последовательность является вирусной последовательностью, присутствующей в эукариотической клетке. В некоторых вариантах осуществления целевая последовательность является протоонкогеном или онкогеном.
В одном аспекте настоящее изобретение предусматривает способ отбора одной или нескольких прокариотических клеток путем введения одной или нескольких мутаций в ген в одной или нескольких прокариотических клетках, при этом способ включает введение одного или нескольких векторов в прокариотическую(ие) клетку(и), где один или несколько векторов управляют экспрессией одного или нескольких из: фермента CRISPR, направляющей последовательности, связанной с парной tracr-последовательностью, tracr-последовательности и матрицы редактирования; где матрица редактирования содержит одну или несколько мутаций, которые прекращают расщепление фермента CRISPR; обеспечение гомологичной рекомбинации матрицы редактирования с целевым полинуклеотидом в отбираемой(ых) клетке(ах); обеспечение связывания комплекса CRISPR с целевым полинуклеотидом для осуществления расщепления целевого полинуклеотида в указанном гене, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с (1) направляющей последовательностью, которая гибридизируется с целевой последовательностью в целевом полинуклеотиде, и (2) парной tracr-последовательностью, которая гибридизируется с tracr-последовательностью, где связывание комплекса CRISPR с целевым полинуклеотидом индуцирует гибель клеток, с обеспечением тем самым отбора одной или нескольких прокариотических клеток, в которые были введены одна или несколько мутаций. В предпочтительном варианте осуществления фермент CRISPR представляет собой Cas9. В другом аспекте настоящего изобретения отбираемая клетка может быть эукариотической клеткой. Аспекты настоящего изобретения предусматривают отбор конкретных клеток без необходимости наличия маркера отбора или двухстадийного способа, который может включать систему негативного отбора.
В некоторых аспектах настоящее изобретение предусматривает не встречающуюся в природе или сконструированную композицию, содержащую полинуклеотидную последовательность химерной РНК (chiRNA) системы CRISPR-CAS, где полинуклеотидная последовательность содержит (а) направляющую последовательность, способную гибридизироваться с целевой последовательностью в эукариотической клетке, (b) парную tracr-последовательность и (с) tracr-последовательность, где (а), (b) и (с) расположены в 5'-3' ориентации, где при транскрипции парная tracr-последовательность гибридизируется с tracr-последовательностью, а направляющая последовательность управляет специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с (1) направляющей последовательностью, которая гибридизируется с целевой последовательностью, и (2) парной tracr-последовательностью, которая гибридизируется с tracr-последовательностью,
или
ферментную систему CRISPR, где система кодируется векторной системой, содержащей один или несколько векторов, которые содержат I. первый регуляторный элемент, функционально связанный с полинуклеотидной последовательностью химерной РНК (chiRNA) системы CRISPR-CAS, где полинуклеотидная последовательность содержит (а) одну или несколько направляющих последовательностей, способных гибридизироваться с одной или несколькими целевыми последовательностями в эукариотической клетке, (b) парную tracr-последовательность и (с) одну или несколько tracr-последовательностей, и II. второй регуляторный элемент, функционально связанный с кодирующей фермент последовательностью, кодирующей фермент CRISPR, содержащий по меньшей мере одну или несколько последовательностей ядерной локализации, где (а), (b) и (с) расположены в 5'-3' ориентации, где компоненты I и II находятся в одном и том же или в разных векторах системы, где при транскрипции парная tracr-последовательность гибридизируется с tracr-последовательностью, а направляющая последовательность управляет специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с (1) направляющей последовательностью, которая гибридизируется с целевой последовательностью, и (2) парной tracr-последовательностью, которая гибридизируется с tracr-последовательностью, или мультиплексную ферментную систему CRISPR, где система кодируется векторной системой, содержащей один или несколько векторов, которые содержат I. первый регуляторный элемент, функционально связанный с (а) одним или несколькими направляющими последовательностями, способными гибридизироваться с целевой последовательностью в клетке, и (b) по меньшей мере одной или несколькими парными tracr-последовательностями, II. второй регуляторный элемент, функционально связанный с кодирующей фермент последовательностью, кодирующей фермент CRISPR, и III. третий регуляторный элемент, функционально связанный с tracr-последовательностью, где компоненты I, II и III находятся в одном и том же или в разных векторах системы, где при транскрипции парная tracr-последовательность гибридизируется с tracr-последовательностью, а направляющая последовательность управляет специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с (1) направляющей последовательностью, которая гибридизируется с целевой последовательностью, и (2) парной tracr-последовательностью, которая гибридизируется с tracr-последовательностью, и где в мультиплексной системе используется множество направляющих последовательностей и одна tracr-последовательность; и где одна или несколько из направляющих, tracr- и парных tracr-последовательностей модифицируются с повышением стабильности.
В аспектах настоящего изобретения модификация включает сконструированную вторичную структуру. Например, модификация может включать уменьшение участка гибридизации между парной tracr-последовательностью и tracr-последовательностью. Например, модификация также может включать слияние парной tracr-последовательности и tracr-последовательности посредством искусственной петли. Модификация может включать tracr-последовательность с длиной от 40 до 120 п.о. В вариантах осуществления настоящего изобретения tracr-последовательность составляет от 40 п.о. до полной длины tracr. В определенных вариантах осуществления длина tracRNA включает по меньшей мере нуклеотиды 1-67, а в некоторых вариантах осуществления по меньшей мере нуклеотиды 1-85 tracRNA дикого типа. В некоторых вариантах осуществления можно использовать по меньшей мере нуклеотиды, соответствующие нуклеотидам 1-67 или 1-85 tracRNA Cas9 S. pyogenes дикого типа. В тех случаях, когда в системе CRISPR используются ферменты, отличные от Cas9 или отличные от SpCas9, тогда в релевантной tracRNA дикого типа могут присутствовать соответствующие нуклеотиды. В некоторых вариантах осуществления длина tracRNA включает не более чем нуклеотиды 1-67 или 1-85 tracRNA дикого типа. Модификация может включать оптимизацию последовательности. В определенных аспектах оптимизация последовательности может включать снижение частоты встречаемости полиТ-последовательностей в tracr- и/или парной tracr-последовательности. Оптимизацию последовательности можно совмещать с уменьшением участка гибридизации между парной tracr-последовательностью и tracr- последовательностью; например, tracr-последовательностью уменьшенной длины.
В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает уменьшение полиТ- последовательностей в tracr- и/или парной tracr-последовательности. В некоторых аспектах настоящего изобретения один или несколько Т, присутствующих в полиТ-последовательности соответствующей последовательности дикого типа (то есть, фрагмент из более 3, 4, 5, 6 или более смежных Т-оснований; в некоторых вариантах осуществления фрагмент из не более 10, 9, 8, 7, 6 смежных Т-оснований), могут быть заменены на отличный от Т нуклеотид, к примеру, А, так что цепочка распадается на меньшие фрагменты из Т, при этом каждый фрагмент имеет 4 или менее 4 (например, 3 или 2) смежных Т. Основания, отличные от А можно использовать для замены, например, С или G, или не встречающиеся в природе нуклеотиды, или модифицированные нуклеотиды. Если цепочка из Т участвует в образовании "шпильки" (или структуры по типу "петля-на-стебле"), тогда предпочтительно, чтобы комплементарное основание для отличного от Т основания было изменено на комплементарное отличному от Т нуклеотиду. Например, если отличным от Т основанием является А, тогда его комплементарное основание может быть изменено на Т, к примеру, для сохранения или содействия сохранению вторичной структуры. К примеру, 5'-ТТТТТ может быть изменено с получением 5'-ТТТАТ, а комплементарная 5'-ААААА может быть изменена на 5'- АТААА.
В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает добавление терминаторной полиТ-последовательности. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает добавление терминаторной полиТ-последовательности в tracr- и/или парные tracr-последовательности. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает добавление терминаторной полиТ-последовательности в направляющую последовательность. Терминаторная полиТ-последовательность может содержать 5 смежных Т-оснований или более 5.
В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает изменение петель и/или "шпилек". В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает обеспечение минимум двух "шпилек" в направляющей последовательности. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает обеспечение "шпильки", образованной при помощи комплементации между tracr- и парной tracr-последовательностью (прямой повтор). В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает обеспечение одной или нескольких дополнительных "шпилек" на 3'-конце последовательности tracrRNA или по направлению к нему. Например, "шпилька" может быть образована путем обеспечения самокомплементарных последовательностей в последовательности tracRNA, соединенных петлей так, что "шпилька" образуется при самосворачивании. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает обеспечение дополнительных "шпилек", добавленных на 3' направляющей последовательности. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает удлинение 5'-конца направляющей последовательности. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает обеспечение одной или нескольких "шпилек" на 5'-конце направляющей последовательности. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает введение последовательности (5'-AGGACGAAGTCCTAA) на 5'-конце направляющей последовательности. Другие последовательности, подходящие для образования "шпилек", известны специалисту в данной области, и их можно использовать в определенных аспектах настоящего изобретения. В некоторых аспектах настоящего изобретения предусмотрено по меньшей мере 2, 3, 4, 5 или более дополнительных "шпилек". В некоторых аспектах настоящего изобретения предусмотрено не более 10, 9, 8, 7, 6 дополнительных "шпилек". В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает две "шпильки". В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает три "шпильки". В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает самое большее пять "шпилек".
В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает обеспечение образования перекрестных связей или обеспечение одного или нескольких модифицированных нуклеотидов в полинуклеотидной последовательности. Модифицированные нуклеотиды и/или образование перекрестных связей могут предусматриваться в любой или во всех из tracr-, парных tracr- и/или направляющих последовательностей, и/или кодирующей фермент последовательности, и/или в векторных последовательностях. Модификации могут включать включение по меньшей мере одного не встречающегося в природе нуклеотида или модифицированного нуклеотида, или их аналогов. Модифицированные нуклеотиды могут быть модифицированы по фрагменту рибозы, фосфата и/или основания. Модифицированные нуклеотиды могут включать 2'-O-метил-аналоги, 2'-дезокси-аналоги или 2'-фтор-аналоги. Остов нуклеиновой кислоты можно модифицировать, например, можно использовать фосфотиоатный остов. Также возможно использование закрытых нуклеиновых кислот (LNA) или мостиковых нуклеиновых кислот (BNA). Дополнительные примеры модифицированных оснований включают без ограничения 2-аминопурин, 5-бромуридин, псевдоуридин, инозин, 7-метилгуанозин.
Будет понятно, что любая или все из вышеперечисленных модификаций могут быть предусмотрены в отдельности или в комбинации в данной системе CRISPR-Cas или ферментной системе CRISPR. Такая система может включать одну, две, три, четыре, пять или более указанных модификаций.
В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где фермент CRISPR является ферментом системы CRISPR II типа, к примеру, ферментом Cas9. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где фермент CRISPR состоит менее чем из одной тысячи аминокислот, или менее чем из четырех тысяч аминокислот. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где фермент Cas9 представляет собой StCas9 или StlCas9, или фермент Cas9 является ферментом Cas9 из организма, выбранного из группы, состоящей из рода Streptococcus, Campylobacter, Nitratifractor, Staphylococcus, Parvibaculum, Roseburia, Neisseria, Gluconacetobacter, Azospirillum, Sphaerochaeta, Lactobacillus, Eubacterium или Corynebacter. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где фермент CRISPR является нуклеазой, управляющей расщеплением обеих нитей в определенной точке целевой последовательности.
В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где первый регуляторный элемент является промотором полимеразы III. В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где второй регуляторный элемент является промотором полимеразы II.
В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где направляющая последовательность содержит по меньшей мере пятнадцать нуклеотидов.
В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где модификация включает оптимизированную tracr- последовательность, и/или оптимизированную направляющую последовательность РНК, и/или совместно свернутую структуру tracr-последовательности и/или парной(ых) tracr- последовательности(ей), и/или стабилизирующие вторичные структуры tracr- последовательности, и/или tracr-последовательности с уменьшенным участком спаривания оснований, и/или tracr-последовательности, слитой с РНК-элементами; и/или в мультиплексной системе находятся две РНК, содержащие tracer и содержащие множество гидов, или одна РНК, содержащая множество химерных элементов.
В аспектах настоящего изобретения архитектура химерной РНК дополнительно оптимизирована в соответствии с результатами исследований мутационного процесса. В химерной РНК с двумя или более "шпильками" мутации в проксимальном прямом повторе для стабилизации "шпильки" могут привести к разрушению активности комплекса CRISPR. Мутации в дистальном прямом повторе для укорачивания или стабилизации "шпильки" могут не производить никакого воздействия на активность комплекса CRISPR. Рандомизация последовательности в петлевом участке между проксимальным и дистальным повторами может значительно снизить активность комплекса CRISPR. Замены одной пары оснований или рандомизация последовательности в линкерном участке между "шпильками" может привести к полной потере активности комплекса CRISPR. Стабилизация "шпильки" дистальных "шпилек", которые следуют за первой "шпилькой" после направляющей последовательности, может привести к сохранению или улучшению активности комплекса CRISPR. Соответственно, в предпочтительных вариантах осуществления настоящего изобретения архитектура химерной РНК может быть дополнительно оптимизирована путем получения меньшей химерной РНК, которая может иметь практическую значимость в отношении возможностей доставки для терапевтических целей и других применений, и этого можно достичь путем изменения дистального прямого повтора для того, чтобы укоротить или стабилизировать "шпильку". В дополнительных предпочтительных вариантах осуществления настоящего изобретения архитектура химерной РНК может быть дополнительно оптимизирована путем стабилизации одной или нескольких дистальных "шпилек". Стабилизация "шпилек" может включать модификацию последовательностей, подходящих для образования "шпилек". В некоторых аспектах настоящего изобретения предусмотрено по меньшей мере 2, 3, 4, 5 или более дополнительных "шпилек". В некоторых аспектах настоящего изобретения предусмотрено не более 10, 9, 8, 7, 6 дополнительных "шпилек". В некоторых аспектах настоящего изобретения стабилизацией может быть образование перекрестных связей и другие модификации. Модификации могут включать включение по меньшей мере одного не встречающегося в природе нуклеотида или модифицированного нуклеотида, или их аналогов. Модифицированные нуклеотиды могут быть модифицированы по фрагменту рибозы, фосфата и/или основания. Модифицированные нуклеотиды могут включать 2'-O-метил-аналоги, 2'-дезокси-аналоги или 2'-фтор-аналоги. Остов нуклеиновой кислоты можно модифицировать, например, можно использовать фосфотиоатный остов. Также возможно использование закрытых нуклеиновых кислот (LNA) или мостиковых нуклеиновых кислот (BNA). Дополнительные примеры модифицированных оснований включают без ограничения 2-аминопурин, 5-бромуридин, псевдоуридин, инозин, 7-метилгуанозин.
В одном аспекте настоящее изобретение предусматривает систему CRISPR-Cas или ферментную систему CRISPR, где фермент CRISPR кодон-оптимизирован для экспрессии в эукариотической клетке.
Соответственно, в некоторых аспектах настоящего изобретения длина tracRNA, необходимая для конструкции согласно настоящему изобретению, к примеру, химерной конструкции, необязательно должна быть фиксированной, и в некоторых аспектах настоящего изобретения она может составлять от 40 до 120 п.о., а в некоторых аспектах настоящего изобретения может составлять до полной длины tracr, к примеру, в некоторых аспектах настоящего изобретения, до 3'-конца tracr, которая прерывается сигналом терминации транскрипции в бактериальном геноме. В определенных вариантах осуществления длина tracRNA включает по меньшей мере нуклеотиды 1-67, а в некоторых вариантах осуществления по меньшей мере нуклеотиды 1-85 tracRNA дикого типа. В некоторых вариантах осуществления можно использовать по меньшей мере нуклеотиды, соответствующие нуклеотидам 1-67 или 1-85 tracRNA Cas9 S. pyogenes дикого типа. В тех случаях, когда в системе CRISPR используются ферменты, отличные от Cas9 или отличные от SpCas9, тогда в релевантной tracRNA дикого типа могут присутствовать соответствующие нуклеотиды. В некоторых вариантах осуществления длина tracRNA включает не более чем нуклеотиды 1-67 или 1-85 tracRNA дикого типа. В отношении оптимизации последовательности (к примеру, уменьшения полиТ-последовательностей), к примеру, касательно цепочек из Т, внутренних по отношению к парной tracr (прямой повтор) или tracrRNA, в некоторых аспектах настоящего изобретения один или несколько Т, присутствующих в полиТ-последовательности соответствующей последовательности дикого типа (то есть фрагмент из более 3, 4, 5, 6 или более смежных Т-оснований; в некоторых вариантах осуществления фрагмент из не более 10, 9, 8, 7, 6 смежных Т-оснований), могут быть заменены на отличный от Т нуклеотид, к примеру, А, так что цепочка распадается на меньшие фрагменты из Т, при этом каждый фрагмент имеет 4 или менее 4 (например, 3 или 2) смежных Т. Если цепочка из Т участвует в образовании "шпильки" (или структуры по типу "петля-на-стебле"), тогда предпочтительно, чтобы комплементарное основание для отличного от Т основания было изменено на комплементарное отличному от Т нуклеотиду. Например, если отличным от Т основанием является А, тогда его комплементарное основание может быть изменено на Т, к примеру, для сохранения или содействия сохранению вторичной структуры. К примеру, 5'-ТТТТТ может быть изменено с получением 5'-ТТТАТ, а комплементарная 5'-ААААА может быть изменена на 5'-ATAAA. В отношении присутствия терминаторных полиТ-последовательностей в транскрипте tracr + парная tracr, к примеру, поли-Т-терминатора (ТТТТТ или больше), в некоторых аспектах настоящего изобретения предпочтительно, чтобы таковой был добавлен к концу транскрипта, будь то в форме с двумя РНК (tracr и парной tracr) или с одной направляющей РНК. Касательно петель и "шпилек" в транскриптах tracr и парной tracr, в некоторых аспектах настоящего изобретения предпочтительно, чтобы минимум две "шпильки" присутствовали в химерной направляющей РНК. Первая "шпилька" может быть "шпилькой", образованной при помощи комплементации между tracr-последовательностью и парной tracr-последовательностью (прямой повтор). Вторая "шпилька" может быть на 3'-конце последовательности tracrRNA, и это может обеспечивать вторичную структуру для взаимодействия с Cas9. Дополнительные "шпильки" могут быть добавлены на 3' направляющей РНК, к примеру, в некоторых аспектах настоящего изобретения для того, чтобы повысить стабильность направляющей РНК. Кроме того, 5'-конец направляющей РНК в некоторых аспектах настоящего изобретения может быть удлинен. В некоторых аспектах настоящего изобретения можно рассматривать 20 п.о. на 5'-конце в качестве направляющей последовательности. 5'-часть может быть удлинена. Одна или несколько "шпилек" могут быть предусмотрены на 5'-части, к примеру, в некоторых аспектах настоящего изобретения это также может повышать стабильность направляющей РНК. В некоторых аспектах настоящего изобретения конкретная "шпилька" может быть обеспечена путем введения последовательности (5'-AGGACGAAGTCCTAA) на 5'-конце направляющей последовательности, а в некоторых аспектах настоящего изобретения это может помочь повысить стабильность. Другие последовательности, подходящие для образования "шпилек", известны специалисту в данной области, и их можно использовать в определенных аспектах настоящего изобретения. В некоторых аспектах настоящего изобретения предусмотрено по меньшей мере 2, 3, 4, 5 или более дополнительных "шпилек". В некоторых аспектах настоящего изобретения предусмотрено не более 10, 9, 8, 7, 6 дополнительных "шпилек". Вышеизложенное также предусматривает аспекты настоящего изобретения, включающие вторичную структуру в направляющие последовательности. В некоторых аспектах настоящего изобретения могут иметь место образование перекрестных связей и другие модификации, к примеру, для повышения стабильности. Модификации могут включать включение по меньшей мере одного не встречающегося в природе нуклеотида или модифицированного нуклеотида, или их аналогов. Модифицированные нуклеотиды могут быть модифицированы по фрагменту рибозы, фосфата и/или основания. Модифицированные нуклеотиды могут включать 2'-O-метил-аналоги, 2'-дезокси-аналоги или 2'-фтор-аналоги. Остов нуклеиновой кислоты можно модифицировать, например, можно использовать фосфотиоатный остов. Также возможно использование закрытых нуклеиновых кислот (LNA) или мостиковых нуклеиновых кислот (BNA). Дополнительные примеры модифицированных оснований включают без ограничения 2-аминопурин, 5-бромуридин, псевдоуридин, инозин, 7-метилгуанозин. Такие модификации или образование перекрестных связей могут иметь место в направляющей последовательности или других последовательностях, смежных с направляющей последовательностью.
Соответственно, целью настоящего изобретения не является охват в пределах настоящего изобретения любого ранее известного продукта, способа получения продукта или способа применения продукта, так что заявители оставляют за собой право и настоящим раскрывают отказ от прав на любой ранее известный продукт, процесс или способ. Следует дополнительно отметить, что настоящее изобретение не предназначено охватывать в пределах объема настоящего изобретения любой продукт, способ получения продукта или способ применения продукта, который не соответствует письменному описанию и требованиям достаточного раскрытия сути изобретения USPTO (первый пункт § 112 статьи 35 USC) или ЕРО (статья 83 ЕРС), так что заявители оставляют за собой право и настоящим раскрывают отказ от прав на любой ранее описанный продукт, способ получения продукта или способ применения продукта.
Следует отметить, что в данном раскрытии и особенно в формуле изобретения и/или параграфах такие выражения, как "содержит", "содержащийся", "содержащий" и т.п., могут иметь значение, приписываемое им в патентном законодательстве США, например, они могут означать "включает", "включенный", "включающий" и т.п., и что такие выражения, как "состоящий, по сути, из" и "состоит, по сути, из" имеют значение, приписываемое им в патентном законодательстве США, например, они допускают не указанные прямо элементы, но исключают элементы, которые имеются в известном уровне техники или которые влияют на основные или новые характеристики настоящего изобретения. Эти и другие варианты осуществления раскрыты или являются очевидными, исходя из следующего подробного описания, и охвачены им.
Краткое описание графических материалов
Новые признаки настоящего изобретения изложены с характерными особенностями в прилагаемой формуле изобретения. Лучшее понимание признаков и преимуществ настоящего изобретения будет доступно благодаря ссылке на следующее подробное описание, в котором изложены показательные варианты осуществления, в которых используют принципы настоящего изобретения, и на сопутствующие графические материалы.
На фигуре 1 изображена схематическая модель системы CRISPR. Нуклеаза Cas9 из Streptococcus pyogenes (желтый) нацелена на геномную ДНК при помощи синтетической направляющей РНК (sgRNA), состоящей из 20-нуклеотидной направляющей последовательности (голубой) и каркаса (красный). Направляющая последовательность образует пары оснований с ДНК-мишенью (голубой) непосредственно выше необходимого мотива, смежного с протоспейсером (РАМ; пурпурный) 5'-NGG, и Cas9 опосредует двухцепочечный разрыв (DSB) на ~3 п.о. выше РАМ (красный треугольник).
На фигурах 2A-F изображена показательная система CRISPR, возможный механизм действия, иллюстративная адаптация для экспрессии в эукариотических клетках и результаты тестов, оценивающих ядерную локализацию и активность CRISPR.
На фигурах 3А-С изображена показательная кассета экспрессии для экспрессии элементов системы CRISPR в эукариотических клетках, предсказанные структуры иллюстративных направляющих последовательностей и активность системы CRISPR, которая измерена в эукариотических и прокариотических клетках.
На фигурах 4A-D показаны результаты оценивания специфичности SpCas9 в отношении иллюстративной мишени.
На фигурах 5A-G изображена показательная векторная система и результаты ее применения при управлении гомологичной рекомбинацией в эукариотических клетках.
На фигурах 6А-С показано сравнение различных транскриптов tracrRNA для опосредованного Cas9 целенаправленного воздействия на ген.
На фигурах 7A-D изображена показательная система CRISPR, иллюстративная адаптация для экспрессии в эукариотических клетках и результаты тестов, оценивающих активность CRISPR.
На фигурах 8А-С изображены иллюстративные манипуляции с системой CRISPR для целенаправленного воздействия на локусы генома в клетках млекопитающего.
На фигурах 9А-В показаны результаты анализа с помощью нозерн-блоттинга процессинга crRNA в клетках млекопитающего.
На фигурах 10А-С показаны схематическое изображение химерных РНК и результаты анализа с помощью SURVEYOR относительно активности системы CRISPR в эукариотических клетках.
На фигурах 11А-В показано графическое изображение результатов анализа с помощью SURVEYOR относительно активности системы CRISPR в эукариотических клетках.
На фигуре 12 показаны предсказанные вторичные структуры для показательных химерных РНК, содержащих направляющую последовательность, парную tracr- последовательность и tracr-последовательность.
На фигуре 13 представлено филогенетическое дерево генов Cas.
На фигурах 14A-F показан филогенетический анализ, выявляющий пять семейств Cas9, включая три группы больших Cas9 (~1400 аминокислот) и две малых Cas9 (~1100 аминокислот).
На фигуре 15 показан график, показывающий функцию разных оптимизированных направляющих РНК.
На фигуре 16 показана последовательность и структура разных направляющих химерных РНК.
На фигуре 17 показана совместно свернутая структура tracrRNA и прямого повтора.
На фигуре 18А и В показаны данные, полученные в результате in vitro оптимизации химерной направляющей РНК StlCas9.
На фигуре 19А-В показано расщепление либо неметилированных, либо метилированных мишеней при помощи клеточного лизата с SpCas9.
На фигурах 20A-G показана оптимизация архитектуры направляющей РНК для SpCas9-опосредованного редактирования генома млекопитающих, (а) Схематическое изображение бицистронного вектора экспрессии (РХ330) для управляемой промотором U6 одиночной направляющей РНК (sgRNA) и управляемого промотором CBh человеческого кодон-оптимизированного Cas9 Streptococcus pyogenes (hSpCas9), применяемых для всех последующих экспериментов. sgRNA, усеченная в разных указанных положениях, состоит из 20-нт направляющей последовательности (голубой) и каркаса (красный). (b) Анализ с помощью SURVEYOR в отношении опосредованных SpCas9 вставок/делеций в локусах ЕМХ1 и PVALB человека. Стрелки указывают на ожидаемые фрагменты, полученные в результате расщепления с помощью SURVEYOR (n=3). (с) Анализ с помощью нозерн-блотгинга для четырех усеченных архитектур sgRNA с U1 в качестве загрузочного контроля, (d) Как SpCas9 дикого типа (wt), так и никаза-мутант (D10A) SpCas9 способствовали вставке сайта HindIII. в ген ЕМХ1 человека. Однонитевые о лито нуклеотиды (ssODN), ориентированные либо в смысловом, либо антисмысловом направлении по отношению к геномной последовательности, использовали в качестве матриц для гомологичной рекомбинации, (е) Схематическое изображение локуса SERPINB5 человека. sgRNA и РАМ указаны при помощи цветных полос над последовательностями; метилцитозины (Me) выделены (розовый) и пронумерованы по отношению к сайту инициации транскрипции (TSS, +1). (f) Статус метилирования SERPINB5, оцененный при помощи бисульфитного секвенирования 16 клонов. Заполненные круги, метилированный CpG; белые круги, неметилированный CpG. (g) Эффективность модификации у трех sgRNA, нацеливающих на метилированный участок SEKPINB5, оцененная при помощи "глубокого" секвинирования (n=2). "Усы" указывают на интервалы Уилсона (способы он-лайн).
На фигурах 21А-В показана дополнительная оптимизация архитектуры sgRNA CRISPR-Cas. (а) Схематическое изображение четырех дополнительных архитектур sgRNA, I-IV. Каждая состоит из 20-нт направляющей последовательности (голубой), соединенной с прямым повтором (DR, серый), который гибридизируется с tracrRNA (красный). Гибрид DR-tracrRNA усечен в +12 или +22, которые указаны, искусственной структурой по типу "петля-на-стебле" GAAA. Положения усечения tracrRNA пронумерованы в соответствии с предварительно сообщенным сайтом инициации транскрипции для tracrRNA. Архитектуры II и IV sgRNA несут мутации в их полиU отрезках, которые могут служить в качестве терминаторов для осуществления преждевременной терминации транскрипции. (b) Анализ с помощью SURVEYOR в отношении опосредованных SpCas9 вставок/делеций в локусе ЕМХ1 человека для целевых сайтов 1-3. Стрелки указывают на ожидаемые фрагменты, полученные в результате расщепления с помощью SURVEYOR (n=3).
На фигуре 22 показана визуализация некоторых целевых сайтов в геноме человека.
На фигурах 23А-В показаны (А) схематическое изображение sgRNA и (В) анализ при помощи SURVEYOR пяти вариантов sgRNA касательно SaCas9 в отношении оптимальной усеченной архитектуры с наивысшей эффективностью расщепления.
Фигуры приведены в данном документе только в целях иллюстрации, и они не обязательно изображены в масштабе.
Подробное описание изобретения
Выражения "полинуклеотид", "нуклеотид", "нуклеотидная последовательность", "нуклеиновая кислота" и "олигонуклеотид" используют взаимозаменяемо. Они обозначают полимерную форму нуклеотидов любой длины, как дезоксирибонуклеотидов, так и рибонуклеотидов или их аналогов. Полинуклеотиды могут обладать любой пространственной структурой и могут выполнять любую функцию, известную или неизвестную. Неограничивающими примерами полинуклеотидов являются следующие: кодирующие или некодирующе участки гена или фрагмента гена, локусы(локус), определенные в результате анализа сцепления, экзоны, интроны, информационная РНК (иРНК), транспортная РНК, рибосомная РНК, короткая интерферирующая РНК (siRNA), короткая шпилечная РНК (shRNA), микроРНК (miRNA), рибозимы, кДНК, рекомбинантные полинуклеотиды, разветвленные полинуклеотиды, плазмиды, векторы, выделенная ДНК любой последовательности, выделенная РНК любой последовательности, зонды для нуклеиновых кислот и праймеры. Полинуклеотид может содержать один или несколько модифицированных нуклеотидов, как, например, метилированные нуклеотиды и аналоги нуклеотидов. При наличии, модификации в нуклеотидную структуру могут быть внесены до или после сборки полимера. Последовательность нуклеотидов может прерываться отличными от нуклеотидов компонентами. Полинуклеотид можно дополнительно модифицировать после полимеризации, как, например, путем конъюгации с компонентом для мечения.
В аспектах настоящего изобретения выражения "химерная РНК", "химерная направляющая РНК", "направляющая РНК", "одиночная направляющая РНК" и "синтетическая направляющая РНК" используют взаимозаменяемо, и они обозначают полинуклеотидную последовательность, содержащую направляющую последовательность, tracr-последовательность и парную tracr-последовательность. Выражение "направляющая последовательность" обозначает последовательность из приблизительно 20 п.о. в пределах направляющей РНК, которая определяет целевой сайт, и ее можно использовать взаимозаменяемо с выражениями "гид" или "спейсер". Выражение "парная tracr-последовательность" также можно использовать взаимозаменяемо с выражением "прямой(ые) повтор(ы)".
Используемое в данном документе выражение "дикий тип" является выражением из данной области, понятным специалисту в данной области, и означает типичную форму организма, штамма, гена или характеристики, которые встречаются в природе в отличие от мутантных или вариантных форм.
Используемое в данном документе выражение "вариант" следует понимать как означающее проявление качеств, которые характеризуются паттерном, который отличается от такового, встречающегося в природе.
Выражение "не встречающийся в природе" или "сконструированный" используют взаимозаменяемо, и оно указывает на вмешательство человека. Выражения, в тех случаях, когда они касаются молекул нуклеиновых кислот или полипептидов, означают, что молекула нуклеиновой кислоты или полипептид по меньшей мере практически не содержат по меньшей мере один отличный компонент, с которым они естественным образом связаны в природе и встречаются в природе.
"Комплементарность" означает способность нуклеиновой кислоты образовывать водородную(ые) связь(и) с другой последовательностью нуклеиновой кислоты при помощи либо традиционного спаривания оснований по Уотсону-Крику, либо других нетрадиционных типов. Процент комплементарности показывает процентную долю остатков в молекуле нуклеиновой кислоты, которые могут образовывать водородные связи (к примеру, образование пар по Уотсону-Крику) со второй последовательностью нуклеиновой кислоты (к примеру, при этом 5, 6, 7, 8, 9, 10 из 10 будут на 50%, 60%, 70%, 80%, 90% и 100% комплементарны). "Точная комплементарность" означает, что все граничащие остатки последовательности нуклеиновой кислоты будут связаны водородными связями с тем же количеством граничащих остатков во второй последовательности нуклеиновой кислоты. Выражение "практически комплементарный", используемое в данном документе, означает степень комплементарности, которая составляет по меньшей мере 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% или 100% в пределах участка из 8, 9,10, 11, 12, 13,14, 15, 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 30, 35,40, 45, 50 или более нуклеотидов, или относится к двум нуклеиновым кислотам, которые гибиридизируются при жестких условиях.
Используемые в данном документе "жесткие условия" в отношении гибридизации означают условия, при которых нуклеиновая кислота с комплементарностью к целевой последовательности преимущественно гибридизируется с целевой последовательностью и практически не гибридизируется с нецелевыми последовательностями. Жесткие условия, как правило, являются зависимыми от последовательности и изменяются в зависимости от ряда факторов. Как правило, чем длиннее последовательность, тем выше температура, при которой последовательность специфично гибридизируется с целевой последовательностью. Неограничивающие примеры жестких условий описаны подробно в Tijssen (1993), Laboratory Techniques In Biochemistry And Molecular Biology-Hybridization With Nucleic Acid Probes Part I, Second Chapter "Overview of principles of hybridization and the strategy of nucleic acid probe assay", Elsevier, N.Y.
"Гибридизация" означает реакцию, при которой один или несколько полинуклеотидов реагируют с образованием комплекса, который стабилизируется посредством образования водородных связей между основаниями нуклеотидных остатков. Образование водородных связей может происходить по принципу спаривания оснований по Уотсону-Крику, Хугстиновского связывания или любым другим специфичным к последовательности образом. Комплекс может содержать две нити, образующие дуплексную структуру, три или более нитей, образующих многонитевой комплекс, одиночную самогибридизирующуюся нить или любую их комбинацию. Реакция габридизапии может представлять собой стадию в более обширном способе, такую как начальная стадия ПЦР или расщепление полинуклеотида при помощи фермента. Последовательность, способную гибридизироваться с данной последовательностью, называют "комплементарной последовательностью" данной последовательности.
Используемое в данном документе выражение "стабилизация" или "повышение стабильности" в отношении компонентов системы CRISPR относится к предохранению или обеспечению устойчивости структуры молекулы. Это можно выполнить путем введения одной или нескольких мутаций, в том числе замен одной или нескольких пар оснований, увеличения количества "шпилек", образования перекрестных связей, разрушения определенных фрагментов нуклеотидов и других модификаций. Модификации могут включать включение по меньшей мере одного не встречающегося в природе нуклеотида или модифицированного нуклеотида, или их аналогов. Модифицированные нуклеотиды могут быть модифицированы по фрагменту рибозы, фосфата и/или основания. Модифицированные нуклеотиды могут включать 2'-O-метил-аналоги, 2'-дезокси-аналоги или 2'-фтор-аналоги. Остов нуклеиновой кислоты можно модифицировать, например, можно использовать фосфотиоатный остов. Также возможно использование закрытых нуклеиновых кислот (LNA) или мостиковых нуклеиновых кислот (BNA). Дополнительные примеры модифицированных оснований включают без ограничения 2-аминопурин, 5-бромуридин, псевдоуридин, инозин, 7-метилгуанозин. Такие модификации можно применять по отношению к любому компоненту системы CRISPR. В предпочтительных вариантах осуществления такие модификации осуществляют с РНК-компонентами, к примеру, направляющей РНК или химерной полинуклеотидной последовательностью.
Используемое в данном документе выражение "экспрессия" означает процесс, при котором полинуклеотид транскрибируется с ДНК-матрицы (как, например, с образованием мРНК или другого РНК-транскрипта), и/или способ, при помощи которого транскрибированная мРНК далее транслируется с образованием пептидов, полипептидов или белков. Транскрипты и кодируемые полипептиды можно в совокупности называть "продукт гена". Если полинуклеотид получен из геномной ДНК, то экспрессия может включать сплайсинг иРНК в эукариотической клетке.
Выражения "полипептид", "пептид" и "белок" используют взаимозаменяемо в данном документе для обозначения полимеров из аминокислот любой длины. Полимер может быть линейным или разветвленным, он может содержать модифицированные аминокислоты, и его структура может прерываться отличными от аминокислот компонентами. Выражения также охватывают полимер из аминокислот, который был модифицирован; например, образованием дисульфидных связей, гликозилированием, липидизацией, ацетилированием, фосфорилированием или любой другой манипуляцией, такой как соединение с компонентом для мечения. Используемое в данном документе выражение "аминокислота" включает природные и/или неприродные или синтетические аминокислоты, в том числе глицин и как D-, так и L-оптические изомеры, и аналога аминокислот, и пептидомиметики.
Выражения "субъект", "индивидуум" и "пациент" используют взаимозаменяемо в данном документе для обозначения позвоночного, предпочтительно млекопитающего, более предпочтительно человека. Млекопитающие включают без ограничения мышей, обезьян, людей, сельскохозяйственных животных, животных для спорта и домашних животных. Также охватываются ткани, клетки и их потомство биологического организма, полученные in vivo или культивированные in vitro. В некоторых вариантах осуществления субъектом может быть беспозвоночное животное, например, насекомое или нематода; в то время как в других субъектом может быть растение или гриб.
Выражения "терапевтическое средство", "оказывающее терапевтический эффект средство" или "средство для лечения" используют взаимозаменяемо, и они означают молекулу или соединение, которые оказывают некоторое благоприятное воздействие при введении субъекту. Благоприятное воздействие включает осуществление диагностических определений; облегчение заболевания, симптома, нарушения или патологического состояния; ослабление или предупреждение начала проявления заболевания, симптома, нарушения или состояния; а также общее противодействие заболеванию, симптому, нарушению или патологическому состоянию.
Используемые в данном документе выражения "лечение", или "осуществление лечения", или "временное ослабление", или "облегчение" используют взаимозаменяемо. Эти выражения означают подход для получения благоприятных или желательных результатов, в том числе без ограничения терапевтической полезности и/или профилактической полезности. Под терапевтическим эффектом понимают любые терапевтически значимые улучшение или действие в отношении одного или нескольких заболеваний, состояний или симптомов при лечении. Для профилактического эффекта композиции можно вводить субъекту с риском развития конкретного заболевания, состояния или симптома или субъекту, который сообщает об одном или нескольких физиологических симптомах заболевания, даже если заболевание, состояние или симптом могли еще не проявиться.
Выражение "эффективное количество" или "терапевтически эффективное количество" означает количество средства, которого достаточно для обеспечения благоприятных или желательных результатов. Терапевтически эффективное количество может изменяться в зависимости от одного или нескольких из: субъекта и болезненного состояния, которые подлежат лечению, веса и возраста субъекта, тяжести болезненного состояния, способа введения и подобного, что специалист в данной области легко может определить. Выражение также применимо к дозе, с помощью которой можно получить изображение для определения любым одним из способов визуализации, описанных в данном документе. Конкретная доза может изменяться в зависимости от одного или нескольких из: конкретного выбранного средства, режима дозирования, которому следуют, того, вводят ли его в комбинации с другими средствами, выбора времени введения, визуализируемой ткани и физической системы доставки, в которой оно заключено.
Практическое применение настоящего изобретения предусматривает, если не указано иное, традиционные методики иммунологии, биохимии, химии, молекулярной биологии, микробиологии, клеточной биологии, геномики и технологию рекомбинантной ДНК, которые находятся в пределах квалификации специалиста в данной области. См. Sambrook, Fritsch and Maniatis, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd edition (1989); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F.M. Ausubel, et al. eds., (1987)); серия METHODS IN ENZYMOLOGY (Academic Press, Inc.): PCR 2: A PRACTICAL APPROACH (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995)), Harlow and Lane, eds. (1988) ANTIBODIES, A LABORATORY MANUAL, and ANIMAL CELL CULTURE (R.I. Freshney, ed. (1987)).
Некоторые аспекты настоящего изобретения касаются векторных систем, содержащих один или несколько векторов, или векторов как таковых. Векторы могут быть разработаны для экспрессии транскриптов CRISPR (к примеру, транскриптов нуклеиновых кислот, белков или ферментов) в прокариотических или эукариотических клетках. Например, транскрипты CRISPR могут экспрессироваться в бактериальных клетках, как, например, Escherichia coli, клетках насекомых (с использованием бакуловирусных векторов экспрессии), клетках дрожжей или клетках млекопитающих. Подходящие клетки-хозяева дополнительно рассматриваются в Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). В качестве альтернативы рекомбинантный вектор экспрессии может транскрибироваться и транслироваться in vitro, например, при помощи регуляторных последовательностей промотора Т7 и полимеразы Т7.
Векторы можно вводить и размножать в прокариоте. В некоторых вариантах осуществления прокариота используют для амплификации копий вектора, который предполагается вводить в эукариотическую клетку, или в качестве промежуточного вектора при получении вектора, который предполагается вводить в эукариотическую клетку (к примеру, путем амплификации плазмиды как части системы упаковки вирусного вектора). В некоторых вариантах осуществления прокариота используют для амплификации копий вектора и экспрессии одной или нескольких нуклеиновых кислот, как, например, для обеспечения источника одного или нескольких белков для доставки в клетку-хозяина или организм-хозяин. Экспрессию белков в прокариотах наиболее часто осуществляют в Escherichia coli с векторами, содержащими конститутивные или индуцибельные промоторы, управляющие экспрессией либо слитых белков, либо отличных от слитых белков. В слитых векторах добавляют некоторое количество аминокислот к белку, закодированному в них, как, например, к амино-концу рекомбинантного белка. Такие слитые векторы могут служить для одной или нескольких целей, как например: (i) для повышения экспрессии рекомбинантного белка; (ii) для повышения растворимости рекомбинантного белка и (iii) для содействия очистке рекомбинантного белка посредством функционирования в качестве лиганда при аффинной очистке. Часто в слитые векторы экспрессии сайт протеолигического расщепления вводят в место соединения фрагмента слияния и рекомбинантного белка для облегчения отделения рекомбинантного белка от фрагмента слияния после очистки слитого белка. Такие ферменты и их когнатные распознающие последовательности включают фактор Ха, тромбин и энтерокиназу. Иллюстративные слитые векторы экспрессии включают pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Беверли, Массачусетс) и pRTT5 (Pharmacia, Пискатауэй, Нью-Джерси), в которых глутатион-S-трансфераза (GST), мальтоза-связывающий белок Е или белок А, соответственно, слиты с целевым рекомбинантным белком.
Примеры подходящих индуцибельных не являющихся слитыми векторов экспрессии Е. coli включают pTrc (Amrann et al., (1988) Gene 69: 301-315) и pET 11d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
В некоторых вариантах осуществления вектор является вектором экспрессии для дрожжей. Примеры векторов для экспрессии в дрожжах Saccharomyces cerivisae включают pYepSecl (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kuijan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, Сан-Диего, Калифорния) и picZ (InVitrogen Corp, Сан-Диего, Калифорния).
В некоторых вариантах осуществления вектор управляет экспрессией белка в клетках насекомых при помощи бакуловирусных векторов экспрессии. Бакуловирусные векторы, доступные для экспрессии белков в культивируемых клетках насекомых (к примеру, клетках SF9), включают группу рАс (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) и группу pVL (Lucklow and Summers, 1989. Virology 170: 31-39).
В некоторых вариантах осуществления вектор способен управлять экспрессией одной или нескольких последовательностей в клетках млекопитающих при помощи вектора экспрессии для млекопитающих. Примеры векторов экспрессии для млекопитающих включают pCDM8 (Seed, 1987. Nature 329: 840) и рМТ2РС (Kaufman, et al., 1987. EMBO J. 6: 187-195). При использовании клеток млекопитающих функции контроля вектора экспрессии, как правило, обеспечиваются одним или несколькими регуляторными элементами. Например, широко используемые промоторы получают из вируса полиомы, аденовируса 2, цитомегаловируса, вируса обезьян 40 и других, раскрытых в данном документе и известных в уровне техники. Что качается других подходящих систем экспрессии как для прокариотических, так и для эукариотических клеток, см., к примеру, главы 16 и 17 в Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
В некоторых вариантах осуществления рекомбинантные векторы экспрессии для млекопитающих способны управлять экспрессией нуклеиновой кислоты преимущественно в определенном типе клеток (к примеру, тканеспецифичные регуляторные элементы используют для экспрессии нуклеиновой кислоты). Тканеспецифичные регуляторные элементы известны из уровня техники. Неограничивающие примеры подходящих тканеспецифичных промоторов включают промотор гена альбумина (специфичный к печени; Pinkert, et al., 1987. Genes Dev. 1: 268-277), специфичные к лимфоидной ткани промоторы (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), в частности, промоторы рецепторов Т-клеток (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) и иммуноглобулины (Baneiji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), нейрон-специфичные промоторы (к примеру, промотор гена нейрофиламента; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), специфичные к клеткам поджелудочной железы промоторы (Edlund, et al., 1985. Science 230: 912-916) и специфичные к клеткам молочной железы промоторы (к примеру, промотор молочной сыворотки; патент США №4873316 и публикация европейской заявки №264166). Регулируемые стадией развития промоторы также охвачены, к примеру, промоторы генов hox мыши (Kessel and Grass, 1990. Science 249: 374-379) и промотор гена α-фетопротеина (Campes and Tilghman, 1989. Genes Dev. 3: 537- 546).
В некоторых вариантах осуществления регуляторный элемент является функционально связанным с одним или несколькими элементами системы CRISPR так, чтобы управлять экспрессией одного или нескольких элементов системы CRISPR. В целом, CRISPR (короткие палиндромные повторы, регулярно расположенные группами), также известные как SPIDR (чередующиеся со спейсерами прямые повторы), составляют семейство локусов ДНК, которые, как правило, специфичны для определенного вида бактерий. Локус CRISPR включает определенный класс чередующихся коротких повторов последовательностей (SSR), которые были обнаружены у Е. coli (Ishino et al., J. Bacteriol., 169: 5429-5433 [1987]; и Nakata et al., J. Bacteriol., 171: 3553-3556 [1989]), и ассоциированные гены. Подобные чередующиеся SSR были идентифицированы у Haloferax mediterranei, Streptococcus pyogenes, Anabaena и Mycobacterium tuberculosis (см., Groenen et al., Mol. Microbiol., 10: 1057-1065 [1993]; Hoe et al., Emerg. Infect. Dis., 5: 254-263 [1999]; Masepohl et al., Biochim. Biophys. Acta 1307: 26-30 [1996]; и Mojica et al., Mol. Microbiol., 17: 85-93 [1995]). Локусы CRISPR, как правило, отличаются от других SSR по структуре повторов, которые были названы короткими повторами с регулярными интервалами (SRSR) (Janssen et al., OMICS J. Integ. Biol, 6:23-33 [2002]; и Mojica et al., Mol. Microbiol., 36:244-246 [2000]). В целом, повторы являются короткими элементами, которые встречаются группами, которые регулярно разделены уникальными вставочными последовательностями с практически постоянной длинной (Mojica et al., [2000], выше). Несмотря на то, что последовательности повторов высоко консервативны между штаммами, некоторое количество чередующихся повторов и последовательностей спейсерных участков, как правило, отличаются от штамма к штамму (van Embden et al., J. Bacteriol., 182: 2393-2401 [2000]). Локусы CRISPR были идентифицированы у более чем 40 видов прокариот (см., к примеру, Jansen et al., Mol. Microbiol., 43: 1565-1575 [2002]; и Mojica et al., [2005]), в том числе, без ограничения, Aeropyrum, Pyrobaculum, Sulfolobus, Archaeoglobus, Halocarcula, Methanobacterium, Methanococcus, Methanosarcina, Methanopyrus, Pyrococcus, Picrophilus, Thermoplasma, Corynebacterium, Mycobacterium, Streptomyces, Aquifex, Porphyromonas, Chlorobium, Thermus, Bacillus, Listeria, Staphylococcus, Clostridium, Thermoanaerobacter, Mycoplasma, Fusobacterium, Azarcus, Chromobacterium, Neisseria, Nitrosomonas, Desulfovibrio, Geobacter, Myxococcus, Campylobacter, Wolinella, Acinetobacter, Erwinia, Escherichia, Legionella, Methylococcus, Pasteurella, Photobacterium, Salmonella, Xanthomonas, Yersinia, Treponema и Thermotoga.
В целом, "система CRISPR" означает в совокупности транскрипты и другие элементы, участвующие в экспрессии CRISPR-ассоциированных ("Cas") генов или управлении их активностью, в том числе последовательности, кодирующие ген Cas, tracr-(транс-активируемую CRISPR) последовательность (к примеру, tracrRNA или активную частичную tracrRNA), парную tracr-последовательность (охватывающую "прямой повтор" и tracrRNA-процессированный неполный прямой повтор в контексте эндогенной системы CRISPR), направляющую последовательность (также называемую "спейсером" в контексте эндогенной системы CRISPR) или другие последовательности и транскрипты с локуса CRISPR. В некоторых вариантах осуществления один или несколько элементов системы CRISPR получены из системы CRISPR I типа, II типа или Ш типа. В некоторых вариантах осуществления один или несколько элементов системы CRISPR получены из определенного организма, содержащего эндогенную систему CRISPR, как, например, Streptococcus pyogenes. В целом, система CRISPR характеризуется элементами, которые способствуют образованию комплекса CRISPR на сайте целевой последовательности (также называемой протоспейсером в контексте эндогенной системы CRISPR). В контексте образования комплекса CRISPR "целевая последовательность" означает последовательность, по отношению к которой направляющая последовательность разработана так, чтобы обладать комплементарностью, где гибридизация между целевой последовательностью и направляющей последовательностью способствует образованию комплекса CRISPR. Полная комплементарность не обязательна при условии, что имеет место достаточная комплементарность для осуществления гибридизации и способствования образованию комплекса CRISPR. Целевая последовательность может содержать любой полинуклеотид, как, например, ДНК- или РНК-полинуклеотиды. В некоторых вариантах осуществления целевая последовательность расположена в ядре или цитоплазме клетки. В некоторых вариантах осуществления целевая последовательность может находиться в органелле эукариотической клетки, например, митохондрии или хлоропласте. Последовательность или матрицу, которую можно применять для рекомбинации в целевом локусе, содержащем целевые последовательности, называют "матрицей редактирования", или "полинуклеотидом для редактирования", или "последовательностью для редактирования". В аспектах настоящего изобретения экзогенный матричный полинуклеотид можно называть матрицей редактирования. В одном аспекте настоящего изобретения рекомбинация является гомологичной рекомбинацией.
Как правило, в контексте эндогенной системы CRISPR образование комплекса CRISPR (содержащего направляющую последовательность, гибридизирующуюся с целевой последовательностью и образующую комплекс с одним или несколькими белками Cas) приводит к расщеплению одной или обеих нитей в или около (к примеру, в пределах 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50 или более пар оснований от) целевой последовательности. Не желая быть связанными теорией, полагают, что tracr-последовательность, которая может содержать или состоять из всей или части tracr-последовательности дикого типа (к примеру, приблизительно или более чем приблизительно 20, 26, 32, 45, 48, 54, 63, 67, 85 или более нуклеотидов tracr-последовательности дикого типа), может также образовывать часть комплекса CRISPR, как, например, путем гибридизации вдоль по меньшей мере части tracr-последовательности со всей или частью парной tracr-последовательности, которая функционально связана с направляющей последовательностью. В некоторых вариантах осуществления tracr-последовательность обладает достаточной комплементарностью с парной tracr-последовательностью для гибридизации и участия в образовании комплекса CRISPR. Как и в случае с целевой последовательностью, полагают, что полная комплементарность не является необходимой при условии, что она является достаточной для выполнения функции. В некоторых вариантах осуществления tracr-последовательность характеризуется по меньшей мере 50%, 60%, 70%, 80%, 90%, 95% или 99% комплементарности последовательности по длине парной tracr-последовательности при оптимальном выравнивании. В некоторых вариантах осуществления один или несколько векторов, управляющих экспрессией одного или нескольких элементов системы CRISPR, вводят в клетку-хозяина, так что экспрессия элементов системы CRISPR управляет образованием комплекса CRISPR на одном или нескольких целевых сайтах. Например, каждое из фермента Cas, направляющей последовательности, связанной с парной tracr-последовательностью, и tracr-последовательности может быть функционально связано с отдельными регуляторными элементами в отдельных векторах. В качестве альтернативы, два или более элементов, экспрессируемых с одних и тех же или разных регуляторных элементов, можно объединять в одном векторе, с одним или несколькими дополнительными векторами, обеспечивая любые компоненты системы CRISPR, не включенные в первый вектор. Элементы системы CRISPR, которые объединены в один вектор, могут быть расположены в любой удобной ориентации, как, например, один элемент, расположенный 5' ("выше") относительно или 3' ("ниже") относительно второго элемента. Кодирующая последовательность одного элемента может быть расположена на той же или противоположной нити кодирующей последовательности второго элемента и направлена в том же или противоположном направлении. В некоторых вариантах осуществления один промотор управляет экспрессией транскрипта, кодирующего фермент CRISPR, и одной или нескольких из направляющей последовательности, парной tracr-последовательности (необязательно функционально связанной с направляющей последовательностью) и tracr-последовательности, встроенных в одну или несколько интронных последовательностей (к примеру, каждая в разном интроне, две или более по меньшей мере в одном интроне или все в одном интроне). В некоторых вариантах осуществления фермент CRISPR, направляющая последовательность, парная tracr-последовательность и tracr-последовательность функционально связаны с одним и тем же промотором и экспрессируются с него.
В некоторых вариантах осуществления вектор содержит один или несколько сайтов встраивания, как, например, последовательность узнавания рестрикционной эндонуклеазой (также называемая "сайтом клонирования"). В некоторых вариантах осуществления один или несколько сайтов встраивания (к примеру, приблизительно или более чем приблизительно 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или более сайтов встраивания) расположены выше и/или ниже одного или нескольких элементов последовательности одного или нескольких векторов. В некоторых вариантах осуществления вектор содержит сайт встраивания выше парной tracr-последовательности и необязательно ниже регуляторного элемента, функционально связанного с парной tracr-последовательностью, так что после встраивания направляющей последовательности в сайт встраивания и при экспрессии направляющая последовательность управляет специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью в эукариотической клетке. В некоторых вариантах осуществления вектор содержит два или более сайта встраивания, при этом каждый сайт встраивания расположен между двумя парными tracr-последовательностями с тем, чтобы обеспечить возможность встраивания направляющей последовательности в каждый сайт. В таком расположении две или более направляющие последовательности могут содержать две или более копий одной направляющей последовательности, две или более различных направляющих последовательностей или их комбинации. В тех случаях, когда применяют несколько различных направляющих последовательностей, может быть использована одна экспрессирующая конструкция для целенаправленного воздействия активности CRISPR на несколько различных соответствующих целевых последовательностей в клетке. Например, один вектор может содержать приблизительно или более чем приблизительно 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 или более направляющих последовательностей. В некоторых вариантах осуществления приблизительно или более чем приблизительно 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или более таких содержащих направляющие последовательности векторов могут быть предусмотрены и необязательно доставлены в клетку.
В некоторых вариантах осуществления вектор содержит регуляторный элемент, функционально связанный с кодирующей фермент последовательностью, кодирующей фермент CRISPR, как, например, белок Cas. Неограничивающие примеры белков Cas включают Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (также известный как Csn1 и Csx12), Cas10, Csy1, Csy2, Csy3, Csc1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csxl5, Csf1, Csf2, Csf3, Csf4, их гомологи или их модифицированные варианты. Эти ферменты известны; например, аминокислотную последовательность белка Cas9 S. pyogenes можно найти в базе данных SwissProt под номером доступа Q99ZW2. В некоторых вариантах осуществления немодифицированный фермент CRISPR характеризуется активностью для расщепления ДНК, как, например, Cas9. В некоторых вариантах осуществления фермент CRISPR представляет собой Cas9, и им может быть Cas9 из S. pyogenes или S. pneumoniae. В некоторых вариантах осуществления фермент CRISPR управляет расщеплением одной или обеих нитей в определенной точке целевой последовательности, как, например, в пределах целевой последовательности и/или в пределах комплементарной последовательности целевой последовательности. В некоторых вариантах осуществления фермент CRISPR управляет расщеплением одной или обеих нитей в пределах приблизительно 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500 или более пар оснований от первого или последнего нуклеотида целевой последовательности. В некоторых вариантах осуществления вектор кодирует фермент CRISPR, который является мутированным по отношению к соответствующему ферменту дикого типа, так что у мутированного фермента CRISPR отсутствует способность расщеплять одну или обе нити целевого полинуклеотида, содержащего целевую последовательность. Например, замена аспартата на аланин (D10A) в каталитическом домене RuvC I Cas9 из S. pyogenes трансформирует Cas9 из нуклеазы, которая расщепляет обе нити, в никазу (расщепляет одну нить). Другие примеры мутаций, которые превращают Cas9 в никазу, включают без ограничения Н840А, N854A и N863A. В некоторых вариантах осуществления никазу Cas9 можно использовать в комбинации с направляющей(ими) последовательностью(ями), к примеру, двумя направляющими последовательностями, которые целенаправленно воздействуют, соответственно, на смысловую и антисмысловую нити ДНК-мишени. Эта комбинация позволяет надрезать обе нити и использовать их для индукции NHEJ. Авторы данной заявки показали (данные не показаны) эффективность двух мишеней для никаз (т.е. sgRNA, нацеленных на одну и ту же точку, но на различные нити ДНК) при индуцировании мутагенного NHEJ. Одиночная никаза (Cas9-D10A с одной sgRNA) не способна индуцировать NHEJ и создавать вставки/делеции, но авторы данной заявки показали, что двойная никаза (Cas9- D10A и две sgRNA, нацеленные на различные нити в одной и той же точке) способна делать это в эмбриональных стволовых клетках человека (hESC). Эффективность составляет приблизительно 50% таковой нуклеазы (т.е. нормального Cas9 без мутации D10) в hESC.
В качестве дополнительного примера два или более каталитических доменов Cas9 (RuvC I, RuvC II и RuvC III) можно подвергать мутациям с получением мутированного Cas9, у которого практически отсутствует вся активность для расщепления ДНК. В некоторых вариантах осуществления мутацию D10A объединяют с одной или несколькими из мутаций Н840А, N854A или N863A с получением фермента Cas9, у которого практически отсутствует вся активность для расщепления ДНК. В некоторых вариантах осуществления фермент CRISPR рассматривают как такой, у которого практически отсутствует вся активность для расщепления ДНК, в случаях, когда активность для расщепления ДНК мутированного фермента составляет менее приблизительно 25%, 10%, 5%, 1%, 0,1%, 0,01% или меньше по отношению к его не мутированной форме. Могут быть целесообразными другие мутации; в тех случаях, когда Cas9 или другой фермент CRISPR получен из вида, отличного от S. pyogenes, могут быть произведены мутации в соответствующих аминокислотах для достижения подобных эффектов.
В некоторых вариантах осуществления кодирующая фермент последовательность, кодирующая фермент CRISPR, является кодон-оптимизированной для экспрессии в определенных клетках, как, например, эукариотических клетках. Эукариотические клетки могут быть клетками определенного организма или полученными из него, как, например, млекопитающего, в том числе, без ограничения, человека, мыши, крысы, кролика, собаки или отличного от человека примата. В целом, оптимизация кодонов означает способ модификации последовательности нуклеиновой кислоты для повышения экспрессии в представляющих интерес клетках-хозяевах путем замещения по меньшей мере одного кодона (к примеру, приблизительно или более чем приблизительно 1, 2, 3, 4, 5, 10, 15, 20, 25, 50 или более кодонов) нативной последовательности кодонами, которые чаще или наиболее часто используют в генах этой клетки-хозяина, в то же время сохраняя нативную аминокислотную последовательность. Разные виды проявляют определенное "предпочтение" в отношении конкретных кодонов определенной аминокислоты. "Предпочтение" кодонов (различия в частоте использования кодонов между организмами) часто соотносят с эффективностью трансляции информационной РНК (иРНК), которая, в свою очередь, как полагают, зависит, среди прочего, от свойств кодонов, которые транслируются, и доступности конкретных молекул транспортной РНК (тРНК). Преобладание выбранных тРНК в клетке, как правило, является отражением кодонов, используемых наиболее часто при синтезе пептидов. Соответственно, гены могут быть приспособлены для оптимальной экспрессии генов в данном организме с использованием оптимизации кодонов. Таблицы частоты использования кодонов общедоступны, например, в "Базе данных частот использования кодонов" ("Codon Usage Database"), и эти таблицы можно адаптировать различными способами. См. Nakamura, Y., et al. "Codon usage tabulated from the international DNA sequence databases: status for the year 2000" Nucl. Acids Res. 28:292 (2000). Также доступны компьютерные алгоритмы для оптимизации кодонов определенной последовательности для экспрессии в определенной клетке-хозяине, как, например, также доступный Gene Forge (Aptagen; Джакобус, Пенсильвания). В некоторых вариантах осуществления один или несколько кодонов (к примеру, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50 или более или все кодоны) в последовательности, кодирующей фермент CRISPR, соответствуют наиболее часто используемому кодону для определенной аминокислоты.
В некоторых вариантах осуществления вектор кодирует фермент CRISPR, содержащий одну или несколько последовательностей ядерной локализации (NLS), как, например, приблизительно или более чем приблизительно 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или более NLS. В некоторых вариантах осуществления фермент CRISPR содержит приблизительно или более чем приблизительно 1, 2, 3, 4, 5, 6, 7, 8, 9,10 или более NLS на амино-конце или рядом с ним, приблизительно или более чем приблизительно 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или более NLS на карбокси-конце или рядом с ним или комбинацию этого (к примеру, одну или несколько NLS на амино-конце и одну или несколько NLS на карбокси-конце). В тех случаях, когда присутствуют несколько NLS, каждая может быть выбрана независимо от других, так что одна NLS может присутствовать в нескольких копиях и/или в комбинации с одной или несколькими другими NLS, присутствующими в одной или нескольких копиях. В предпочтительном варианте осуществления настоящего изобретения фермент CRISPR содержит самое большее 6 NLS. В некоторых вариантах осуществления считают, что NLS находится рядом с N- или С-концом в тех случаях, когда самая близкая аминокислота NLS находится в пределах приблизительно 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 или более аминокислот вдоль полипетидной цепи от N- или С-конца. Обычно, NLS состоит из одной или нескольких коротких последовательностей положительно заряженных молекул лизина или аргинина, расположенных на поверхности белка, но известны другие типы NLS. Неограничивающие примеры NLS включают NLS-последовательности, полученные из: NLS из большого Т-антигена вируса SV40 с аминокислотной последовательностью PKKKRKV; NLS из нуклеоплазмина (к примеру, двойной NLS из нуклеоплазмина с последовательностью KRPAATKKAGQAKKKK); NLS из c-myc с аминокислотной последовательностью PAAKRVKLD или RQRRNELKRSP; NLS из hRNPA1 М9 с последовательностью NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY; последовательность RMRIZFKNKGKTDTAELRRRRVEVSVELRKAKKDEQILKRRNV домена IBB из импортина-альфа; последовательности VSRKRPRP и PPKKARED из Т-белка миомы; последовательность POPKKKPL из р53 человека; последовательность SALIKKKKKMAP из c-abl IV мыши; последовательности DRLRR и PKQKKRK из NS1 вируса гриппа; последовательность PKLKKKIKKL из дельта-антигена вируса гепатита; последовательность REKKKFLKRR из белка Mxl мыши; последовательность KRKGDEVDGVDEVAKKKSKK из поли(АДФ-рибоза)-полимеразы человека и последовательность RKCLQAGMNLEARKTKK из рецепторов стероидных гормонов для глюкокортикоидов (человека).
В целом, одна или несколько NLS являются достаточно эффективными, чтобы управлять накоплением фермента CRISPR в обнаруживаемом количестве в ядре эукариотической клетки. В целом, степень проявления активности ядерной локализации может быть результатом следующего: количества NLS в ферменте CRISPR, конкретных(ой) используемых(ой) NLS или комбинации этих факторов. Обнаружение накопления в ядре можно выполнять при помощи любой подходящей методики. Например, детектируемый маркер может быть слит с ферментом CRISPR, так что расположение в клетке может быть визуализировано, как, например, в комбинации со средствами для обнаружения расположения ядра (к примеру, окрашивающим средством, специфичным к ядру, таким как DAPI). Примеры детектируемых маркеров включают флуоресцентные белки (такие как зеленые флуоресцентные белки или GFP; RFP; CFP) и эпитопные метки (НА-метку, flag-метку, SNAP-метку). Ядра клеток также можно выделять из клеток, содержимое которых можно затем анализировать при помощи любого подходящего способа для обнаружения белка, как, например, иммуногистохимии, вестерн-блоттинга или анализа на активность фермента. Накопление в ядре также можно определить опосредованно, как, например, при помощи анализа действия образования комплекса CRISPR (к примеру, анализа на расщепление ДНК или мутацию в целевой последовательности или анализа на измененную при помощи образования комплекса CRISPR и/или активности фермента CRISPR активность экспрессии генов) по сравнению с контролем, который не подвергали воздействию фермента или комплекса CRISPR или подвергали воздействию фермента CRISPR, у которого отсутствуют одна или несколько NLS.
В целом, направляющая последовательность представляет собой любую полинуклеотидную последовательность, обладающую достаточной комплементарностью с целевой полинуклеотидной последовательностью для габридизапии с целевой последовательностью и управления специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью. В некоторых вариантах осуществления степень комплементарности между направляющей последовательностью и ее соответствующей целевой последовательностью при оптимальном выравнивании с использованием подходящего алгоритма выравнивания составляет приблизительно или более чем приблизительно 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97,5%, 99% или более. Оптимальное выравнивание можно определять при помощи любого подходящего алгоритма для выравниваемых последовательностей, неограничивающие примеры которого включают алгоритм Смита-Ватермана, алгоритм Нидлмана-Вунша, алгоритмы, основанные на преобразовании Барроуза-Уилера (к примеру, Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies), ELAND (Illumina, Сан-Диего, Калифорния), SOAP (доступный на soap.genomics.org.cn) и Maq (доступный на maq.sourceforge.net). В некоторых вариантах осуществления направляющая последовательность составляет приблизительно или более чем приблизительно 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75 или более нуклеотидов в длину. В некоторых вариантах осуществления направляющая последовательность составляет менее чем приблизительно 75, 50, 45, 40, 35, 30, 25, 20,15, 12 или менее нуклеотидов в длину. Способность направляющей последовательности управлять специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью можно оценить при помощи любого подходящего анализа. Например, компоненты системы CRISPR, достаточные для образования комплекса CRISPR, в том числе направляющая последовательность, которую необходимо исследовать, могут быть доставлены в клетку-хозяина с соответствующей целевой последовательностью, как, например, при помощи трансфекции векторами, кодирующими компоненты последовательности CRISPR, с последующей оценкой предпочтительного расщепления в пределах целевой последовательности, как, например, при помощи анализа с помощью Surveyor, который описан в данном документе. Подобным образом, расщепление целевой полинуклеотидной последовательности может быть установлено в пробирке путем обеспечения целевой последовательности, компонентов комплекса CRISPR, в том числе направляющей последовательности, которую необходимо исследовать, и контрольной направляющей последовательности, отличной от тестовой направляющей последовательности, и сравнения воздействий тестовой и контрольной направляющей последовательности на связывание или скорость расщепления целевой последовательности. Другие анализы возможны и будут очевидны специалисту в данной области.
Направляющая последовательность может быть выбрана для целенаправленного воздействия на любую целевую последовательность. В некоторых вариантах осуществления целевая последовательность является последовательностью в пределах генома клетки. Иллюстративные целевые последовательности включают те, которые являются уникальными в целевом геноме. Например, для Cas9 S. pyogenes уникальная целевая последовательность в геноме может включать целевой сайт для Cas9 в виде , где (N представляет собой A, G, Т или С; и X может быть любым) характеризуется единичным появлением в геноме. Уникальная целевая последовательность в геноме может включать целевой сайт для Cas9 S. pyogenes в виде где (N представляет собой A, G, T или С; и X может быть любым) характеризуется единичным появлением в геноме. Для Cas9 CRISPR1 S. thermophilus уникальная целевая последовательность в геноме может включать целевой сайт для Cas9 в виде , где (N представляет собой A, G, Т или С; X может быть любым; и W представляет собой А или Т) характеризуется единичным появлением в геноме. Уникальная целевая последовательность в геноме может включать целевой сайт для Cas9 CRISPR1 S. thermophilus в виде , где (N представляет собой A, G, Т или С; X может быть любым; и W представляет собой А или Т) характеризуется единичным появлением в геноме. Для Cas9 S. pyogenes уникальная целевая последовательность в геноме может включать целевой сайт для Cas9 в виде , где (N представляет собой A, G, Т или С; и X может быть любым) характеризуется единичным появлением в геноме. Уникальная целевая последовательность в геноме может включать целевой сайт для Cas9 S. pyogenes в виде где (N представляет собой A, G, Т или С; и X может быть любым) характеризуется единичным появлением в геноме. В каждой из этих последовательностей "М" может представлять собой A, G, Т или С и не должен учитываться при идентификации последовательности как уникальной.
В некоторых вариантах осуществления направляющая последовательность выбрана для снижения доли вторичной структуры в направляющей последовательности. Вторичную структуру можно определить при помощи любого подходящего алгоритма сворачивания полинуклеотида. Некоторые программы основаны на вычислении минимальной свободной энергии Гиббса. Примером одного такого алгоритма является mFold, который описан Zuker и Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Другим примером алгоритма сворачивания является доступный в режиме онлайн веб-сервер RNAfold, разработанный в Институте теоретической химии при Венском университете, в котором используется алгоритм прогнозирования структуры на основе центроидного метода (см., к примеру, A.R. Gruber et al., 2008, Cell 106(1): 23-24; и PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62). Дополнительные алгоритмы можно найти в заявке на патент США с серийным номером ТВА (общая ссылка В1-2012/084 44790.11.2022); включенной в данный документ при помощи ссылки.
В общем, парная tracr-последовательность включает любую последовательность, которая характеризуется достаточной комплементарностью с tracr-последовательностью для содействия одному или нескольким из следующих: (1) вырезания направляющей последовательности, фланкированной парными tracr-последовательностями, в клетке, содержащей соответствующую tracr-последовательность; и (2) образования комплекса CRISPR на целевой последовательности, где комплекс CRISPR содержит парную tracr-последовательность, габридизирующуюся с tracr-последовательностью. В общем, степень комплементарности указана на основании оптимального выравнивания парной tracr-последовательности и tracr-последовательности по длине более короткой из двух последовательностей. Оптимальное выравнивание можно определить при помощи любого подходящего алгоритма выравнивания и можно дополнительно высчитать для вторичных структур, как, например, самокомплементарность в пределах либо tracr-последовательности, либо парной tracr-последовательности. В некоторых вариантах осуществления степень комплементарности между tracr-последовательностью и парной tracr-последовательностью по длине более короткой из двух при оптимальном выравнивании составляет приблизительно или более чем приблизительно 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97,5%, 99% или более. Примерные иллюстрации оптимального выравнивания между tracr-последовательностью и парной tracr-последовательностью представлены на фигурах 12В и 13В. В некоторых вариантах осуществления tracr-последовательность составляет приблизительно или более чем приблизительно 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50 или более нуклеотидов в длину. В некоторых вариантах осуществления tracr-последовательность и парная tracr-последовательность содержатся в одном транскрипте, так что габридизация между ними двумя дает транскрипт со вторичной структурой, такой как "шпилька". Предпочтительные петлеобразующие последовательности для использования в "шпилечных" структурах составляют четыре нуклеотида в длину и наиболее предпочтительно имеют последовательность GAAA. Однако можно использовать более короткие или длинные последовательности петли, а также альтернативные последовательности. Последовательности предпочтительно включают нуклеотидный триплет (например, AAA) и дополнительный нуклеотид (например, С или G). Примеры петлеобразующих последовательностей включают СААА и AAAG. В одном варианте осуществления настоящего изобретения транскрипт или транскрибированная полинуклеотидная последовательность характеризуются по меньшей мере двумя или более "шпильками". В предпочтительных вариантах осуществления транскрипт характеризуется двумя, тремя, четырьмя или пятью "шпильками". В дополнительном варианте осуществления настоящего изобретения транскрипт характеризуется самое большее пятью "шпильками". В некоторых вариантах осуществления один транскрипт дополнительно включает последовательность терминапии транскрипции; предпочтительно она является полиТ-последовательностью, например, из шести нуклеотидов Т. Примерная иллюстрация такой "шпилечной" структуры представлена в нижней части фигуры 13В, где часть последовательности в 5' направлении по отношению к концевому "N" и выше петли соответствует парной tracr-последовательности, а часть последовательности в 3' направлении по отношению к петле соответствует tracr-последовательности. Дополнительными неограничивающими примерами отдельных полинуклеотидов, содержащих направляющую последовательность, парную tracr-последовательность и tracr-последовательность, являются следующие (перечисленные от 5' к 3'), где "N" представляет собой основание направляющей последовательности, первый блок букв нижнего регистра представляет собой парную tracr-последовательность, а второй блок букв нижнего регистра представляет собой tracr-последовательность, и конечная поли-Т-последовательность представляет собой терминатор транскрипции:
и (6) . В некоторых вариантах осуществления последовательности (1)-(3) используют в комбинации с Cas9 из CRISPR1 S. thermophilus. В некоторых вариантах осуществления последовательности (4)-(6) используют в комбинации с Cas9 из S. pyogenes. В некоторых вариантах осуществления tracr-последовательность является транскриптом, отдельным от транскрипта, содержащего парную tracr-последовательность (как, например, показанная в верхней части фигуры 13В).
В некоторых вариантах осуществления также предусмотрена матрица для рекомбинации. Матрица для рекомбинации может быть компонентом другого вектора, который описан в данном документе, может содержаться в отдельном векторе или предусматриваться в виде отдельного полинуклеотида. В некоторых вариантах осуществления матрица для рекомбинации разработана так, чтобы служить в качестве матрицы при гомологичной рекомбинации, как, например, в пределах или рядом с целевой последовательностью, надрезанной или расщепленной ферментом CRISPR, в качестве части комплекса CRISPR. Матричный полинуклеотид может быть любой подходящей длины, как, например, приблизительно или более чем приблизительно 10, 15, 20, 25, 50, 75, 100, 150, 200, 500, 1000 или более нуклеотидов в длину. В некоторых вариантах осуществления матричный полинуклеотид комплементарен части полинуклеотида, содержащего целевую последовательность. При оптимальном выравнивании матричный полинуклеотид может перекрываться с одним или несколькими нуклеотидами целевых последовательностей (к примеру, с приблизительно или более чем приблизительно 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 или более нуклеотидами). В некоторых вариантах осуществления при оптимальном выравнивании матричной последовательности и полинуклеотида, содержащего целевую последовательность, наиболее близкий нуклеотид матричного полинуклеотида находится в пределах приблизительно 1, 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 5000, 10000 или более нуклеотидов от целевой последовательности.
В некоторых вариантах осуществления фермент CRISPR является частью слитого белка, содержащего один или несколько доменов гетерологичного белка (к примеру, приблизительно или более чем приблизительно 1, 2, 3, 4, 5, 6, 7, 8, 9,10 или более доменов в дополнение к ферменту CRISPR). Слитый белок, содержащий фермент CRISPR, может содержать любую дополнительную последовательность белка и необязательно линкерную последовательность между любыми двумя доменами. Примеры белковых доменов, которые могут быть слиты с ферментом CRISPR, включают, без ограничения, эпитопные метки, последовательности генов-репортеров и белковые домены с одним или несколькими из следующих видов активности: метилазной активности, деметилазной активности, активности для активации транскрипции, активности для репрессии транскрипции, активности фактора освобождения при транскрипции, активности для модификации гистонов, активности для расщепления ДНК и активности для связывания нуклеиновой кислоты. Неограничивающие примеры эпитопных меток включают гастидиновые (His) метки, V5-метки, FLAG-метки, метки гемагглютинина вируса гриппа (НА), Мус-метки, VSV-G-метки и тиоредоксиновые (Trx) метки. Примеры генов-репортеров включают, без ограничения, глутатион-S-трансферазу (GST), пероксидазу хрена (HRP), хлорамфеникол-ацетилтрансферазу (CAT), бета-галактозидазу, бета-глюкуронидазу, люциферазу, зеленый флуоресцентный белок (GFP), HcRed, DsRed, голубой флуоресцентный белок (CFP), желтый флуоресцентный белок (YFP) и автофлуорисцирующие белки, в том числе синий флуоресцевлный белок (BFP). Фермент CRISPR может быть слит с последовательностью гена, кодирующей белок или фрагмент белка, которые связываются с молекулой ДНК или связываются с другими клеточными молекулами, в том числе, без ограничения, связывающим мальтозу белком (МБР), S-меткой, продуктами слияния Lex А и ДНК-связывающего домена (DBD), продуктами слияния GAL4 и ДНК-связывающего домена и продуктами слияния белка BP 16 вируса простого герпеса (HSV). Дополнительные домены, которые могут образовывать часть слитого белка, содержащего фермент CRISPR, описаны в US 20110059502, включенном в данный документ при помощи ссылки. В некоторых вариантах осуществления меченный фермент CRISPR используют для идентификации расположения целевой последовательности.
В некоторых аспектах настоящее изобретение предусматривает способы, включающие доставку одного или нескольких полинуклеотидов, как, например, или одного или нескольких векторов, которые описаны в данном документе, одного или нескольких их транскриптов и/или одного или нескольких белков, транскрибируемых с них, в клетку-хозяина. В некоторых аспектах настоящее изобретение дополнительно предусматривает клетки, полученные при помощи таких способов, и организмы (такие как животные, растения или грибы), содержащие такие клетки или полученные из них. В некоторых вариантах осуществления фермент CRISPR в комбинации с (и необязательно образующий комплекс с) направляющей последовательностью доставляют в клетку. Традиционные способы переноса генов с использованием вирусов и без использования вирусов можно применять для введения нуклеиновых кислот в клетки млекопитающих или целевые ткани. Такие способы можно использовать для введения нуклеиновых кислот, кодирующих компоненты системы CRISPR, в клетки в культуре и в организме-хозяине. Системы доставки на основе отличных от вирусных векторов включают ДНК-плазмиды РНК (к примеру, транскрипт вектора, описанного в данном документе), "оголенную" нуклеиновую кислоту и нуклеиновую кислоту, образующую комплекс со средством доставки, как, например, липосому. Системы доставки на основе вирусного вектора включают ДНК- и РНК-вирусы, которые имеют либо эписомальный, либо интегрированный геномы после доставки в клетку. В отношении обзора процедур генной терапии см. Anderson, Science 256: 808-813 (1992); Nabel & Feigner, TIBTECH 11: 211-217 (1993); Mitani & Caskey, TIBTECH 11: 162-166 (1993); Dillon, TIBTECH 11: 167-175 (1993); Miller, Nature 357: 455-460 (1992); Van Brunt, Biotechnology 6(10): 1149-1154 (1988); Vigne, Restorative Neurology and Neuroscience 8: 35-36 (1995); Kremer & Perricaudet, British Medical Bulletin 51(1): 31-44 (1995); Haddada et al., в Current Topics in Microbiology and Immunology, Doerfler and (eds) (1995); и Yu et al., Gene Therapy 1: 13-26 (1994).
Способы отличной от вирусной доставки нуклеиновых кислот включают липофекцию, нуклеофекцию, микроинъекцию, баллистическую трансфекцию, виросомы, липосомы, иммунолипосомы, поликатион или конъюгаты липид: нуклеиновая кислота, "оголенную" ДНК, искусственные вирионы и повышенное при помощи средства поглощение ДНК. Липофекция описана, например, в патентах США №№5049386, 4946787 и 4897355), и реагенты для липофекции реализуются в промышленных масштабах (к примеру, Transfectam™ и Lipofectin™). Катионные и нейтральные липиды, которые подходят для эффективной липофекции полинуклеотидов с узнаванием рецептора, включают таковые из Feigner, WO 91/17424; WO 91/16024. Доставка может осуществляться в клетки (к примеру, in vitro или ex vivo введение) или целевые ткани (к примеру, in vivo введение).
Получение комплексов липид: нуклеиновая кислота, в том числе целенаправленно воздействующих липосом, как, например, иммунолилидных комплексов, хорошо известно специалистам в данной области (см., к примеру, Crystal, Science 270: 404-410 (1995); Blaese et al., Cancer Gene Ther. 2: 291-297 (1995); Behr et al., Bioconjugate Chem. 5: 382-389 (1994); Remy et al., Bioconjugate Chem. 5: 647-654 (1994); Gao et al., Gene Therapy 2: 710-722 (1995); Ahmad et al., Cancer Res. 52: 4817-4820 (1992); патенты США №№4186183, 4217344, 4235871, 4261975, 4485054, 4501728, 4774085, 4837028 и 4946787).
При применении систем на основе РНК- и ДНК-вирусов для доставки нуклеиновых кислот используют тщательно разработанные способы обеспечения целенаправленного воздействия вируса на конкретные клетки в организме и перемещения полезных последовательностей вируса в ядро. Вирусные векторы можно вводить непосредственно пациентам (in vivo) или их можно использовать для обработки клеток in vitro и модифицированные клетки можно необязательно вводить пациентам (ex vivo). Традиционные системы на основе вирусов могут включать ретровирусные, лентивирусные, аденовирусные векторы, векторы на основе аденоассоциированного вируса и вируса простого герпеса для переноса генов. Интеграция в геном хозяина возможна со способами переноса генов на основе ретровируса, лентивируса и аденоассоциированного вируса, что часто приводит к длительной экспрессии встроенного трансгена. Кроме того, высокие показатели эффективности трансдукции наблюдали у многих различных типов клеток и целевых тканей.
Тропизм ретровирусов может быть изменен путем включения чужеродных белков оболочки с расширением возможной целевой популяции целевых клеток. Лентивирусные векторы являются ретровирусными векторами, которые способны трансфицировать или инфицировать неделящиеся клетки и, как правило, дают высокие вирусные титры. Выбор системы переноса генов на основе ретровирусов, таким образом, будет зависеть от целевой ткани. Ретровирусные векторы состоят из действующих в цис-положении длинных концевых повторов с упаковывающей способностью до 6-10 п.о. чужеродной последовательности. Минимальных действующих в цис-положении LTR достаточно для репликации и упаковки векторов, которые затем используют для интеграции терапевтического гена в целевую клетку с получением постоянной экспрессии трансгена. Широко применяемые ретровирусные векторы включают такие, которые основаны на вирусе лейкоза мышей (MuLV), вирусе лейкоза гиббонов (GaLV), вирусе иммунодефицита обезьян (SIV), вирусе иммунодефицита человека (HTV) и их комбинациях (см., к примеру, Buchscher et al., J. Virol. 66: 2731-2739 (1992); Johann et al., J. Virol. 66: 1635-1640 (1992); Sommnerfelt et al., Virol. 176:58-59 (1990); Wilson et al., J. Virol. 63: 2374-2378 (1989); Miller et al., J. Virol. 65: 2220-2224 (1991); PCT/US94/05700).
В применениях, в которых транзиентная экспрессия является предпочтительной, можно применять системы на основе аденовирусов. Векторы на основе аденовирусов способны проявлять очень высокую эффективность трансдукции во многих типах клеток и не требуют деления клеток. С такими векторами были получены высокие титры и уровни экспрессии. Такой вектор можно получать в больших количествах в относительно простой системе. Векторы на основе аденоассоциированного вируса ("AAV") также можно использовать для трансдукции клеток целевыми нуклеиновыми кислотами, к примеру, при получении in vitro нуклеиновых кислот и пептидов, и для процедур генной терапии in vivo и ex vivo (см., к примеру, West et al., Virology 160: 38-47 (1987); патент США №4797368; WO 93/24641; Kotin, Human Gene Therapy 5: 793-801 (1994); Muzyczka, J. Clin. Invest. 94: 1351 (1994). Создание рекомбинантных AAV-векторов описано в ряде публикаций, в том числе в патенте США №5173414; Tratschin et al., Mol. Cell. Biol. 5: 3251-3260 (1985); Tratschin, et al., Mol. Cell. Biol. 4: 2072-2081 (1984); Hermonat & Muzyczka, PNAS 81: 6466-6470 (1984); и Samulski et al., J. Virol. 63: 03822-3828 (1989).
Упаковывающие клетки, как правило, используют для получения вирусных частиц, которые способны инфицировать клетку-хозяина. Такие клетки включают клетки 293, которые упаковывают аденовирус, и клетки ψ2 или клетки РАЗ 17, которые упаковывают ретровирус. Вирусные векторы, используемые в генной терапии, как правило, создают путем получения линии клеток, которые упаковывают вектор на основе нуклеиновой кислоты в вирусную частицу. Векторы обычно содержат минимальные вирусные последовательности, необходимые для упаковки и последующей интеграции в хозяина, при этом другие вирусные последовательности замещены кассетой экспрессии для экспрессии полинуклеотида(ов). Отсутствующие вирусные функции, как правило, обеспечивают во вспомогательном объекте при помощи линии упаковывающих клеток. Например, AAV-векторы, применяемые в генной терапии, как правило, имеют только ITR-последовательности из генома AAV, которые необходимы для упаковки и интеграции в геном хозяина. Вирусная ДНК упакована в линии клеток, которая содержит вспомогательную плазмиду, кодирующую другие гены AAV, а именно rep и cap, но без ITR-последовательностей. Линия клеток также может быть инфицирована аденовирусом в качестве вируса-помощника. Вирус-помощник способствует репликации AAV-вектора и экспрессии генов AAV из вспомогательной плазмиды. Вспомогательная плазмида не упакована в значительном количестве в связи с отсутствием ITR-последовательностей. Контаминация аденовирусом может быть снижена, к примеру, при помощи тепловой обработки, к которой аденовирус более чувствителен, чем AAV. Дополнительные способы доставки нуклеиновых кислот в клетки известны специалистам в данной области. См., например, US 20030087817, включенный в данный документ при помощи ссылки.
В некоторых вариантах осуществления клетка-хозяин транзиентно или не транзиентно трасфипирована одним или несколькими векторами, описанными в данном документе. В некоторых вариантах осуществления клетка трансфицирована так, как это в естественных условиях происходит у субъекта. В некоторых вариантах осуществления клетка, которую трансфицируют, взята от субъекта. В некоторых вариантах осуществления клетка получена из клеток, взятых от субъекта, как, например, линия клеток. Широкий спектр линий клеток для культуры тканей известен из уровня техники. Примеры линий клеток включают, без ограничения, С8161, CCRF-CEM, MOLT, mIMCD-3, NHDF, HeLa-S3, Huh1, Huh4, Huh7, HUVEC, HASMC, HEKn, HEKa, MiaPaCell, Panc1, PC-3, TF1, CTLL-2, C1R, Rat6, CV1, RPTE, A10, T24, J82, A375, ARH-77, Calu1, SW480, SW620, SKOV3, SK-UT, CaCo2, P388D1, SEM-K2, WEHI-231, HB56, TIB55, Jurkat, J45.01, LRMB, Bcl-1, BC-3, IC21, DLD2, Raw264.7, NRK, NRK-52E, MRC5, MEF, Hep G2, HeLa B, HeLa T4, COS, COS-1, COS-6, COS-M6A, эпителиальные клетки почки обезьяны BS-C-1, эмбриональные фибробласты мыши BALB/ 3T3, 3T3 Swiss, 3T3-L1, фетальные фибробласты человека 132-d5; фибробласты мыши 10.1, 293-Т, 3Т3, 721, 9L, А2780, A2780ADR, A2780cis, А172, А20, А253, А431, А-549, ALC, В16, В35, клетки ВСР-1, BEAS-2B, bEnd.3, BHK-21, BR 293, BxPC3, C3H-10Т1/2, С6/36, Cal-27, СНО, СНО-7, CHO-IR, СНО-K1, СНО-K2, СНО-Т, СНО Dhfr -/-, COR-L23, COR-L23/CPR, COR-L23/5010, COR-L23/R23, COS-7, COV-434, CML T1, СМТ, СТ26, D17, DH82, DU145, DuCaP, EL4, ЕМ2, ЕМ3, EMT6/AR1, EMT6/AR10.0, FM3, Н1299, Н69, НВ54, НВ55, НСА2, HEK-293, HeLa, Hepa1c1c7, HL-60, НМЕС, НТ-29, Jurkat, клетки JY, клетки K562, Ku812, KCL22, KG1, KY01, LNCap, Ma-Mel 1-48, MC-38, MCF-7, MCF-10A, MDA-MB-231, MDA-MB-468, MDA-MB-435, MDCK II, MDCK II, MOR/0.2R, MONO-MAC 6, MTD-1A, MyEnd, NCI-H69/CPR, NCI-H69/LX10, NCI-H69/LX20, NCI-H69/LX4, NIH-3T3, NALM-1, NW-145, линии клеток OPCN/OPCT, Peer, PNT-1A/PNT 2, RenCa, RIN-5F, RMA/RMAS, клетки Saos-2, Sf-9, SkBr3, T2, T-47D, T84, линию клеток THP1, U373, U87, U937, VCaP, клетки Vero, WM39, WT-49, X63, YAC-1, YAR и их трансгенные варианты. Линии клеток доступны из ряда источников, известных специалистам в данной области (см., к примеру, Американскую коллекцию типовых культур (АТСС) (Манассас, Вирджиния)). В некоторых вариантах осуществления клетку, трансфицированную одним или несколькими векторами, описанными в данном документе, используют для получения новой линии клеток, содержащей одну или несколько полученных из вектора последовательностей. В некоторых вариантах осуществления клетку, транзиентно трансфицированную компонентами системы CRISPR, которая описана в данном документе (как, например, путем транзиентной трансфекции одним или несколькими векторами или трансфекции РНК), и модифицированную при помощи активности комплекса CRISPR, используют для получения новой линии клеток, содержащей клетки, которые содержат модификацию, но у которых отсутствует любая другая экзогенная последовательность. В некоторых вариантах осуществления клетки, транзиентно или не транзиентно трансфицированные одним или несколькими векторами, описанными в данном документе, или линии клеток, полученные из таких клеток, использовали при оценивании одного или нескольких тестовых соединений.
В некоторых вариантах осуществления один или несколько векторов, описанных в данном документе, используют для получения отличного от человека трансгенного животного или трансгенного растения. В некоторых вариантах осуществления трансгенным животным является млекопитающее, как, например, мышь, крыса или кролик. В определенных вариантах осуществления организмом или субъектом является растение. В определенных вариантах осуществления организмом, или субъектом, или растением является водоросль. Способы получения трансгенных растений и животных известны в уровне техники и, как правило, начинаются со способа трансфекции клетки, такого как описанный в данном документе. Также представлены трансгенные животные, как и трансгенные растения, в частности, сельскохозяйственные культуры и водоросли. Трансгенное животное или растение могут быть полезными в других путях применения, помимо обеспечения модели заболевания. Они могут включать производство пищи или кормопроизводство посредством биосинтеза, например, белков, углеводов, питательных веществ или витаминов на более высоких уровнях, чем будет наблюдаться в обычных условиях у дикого типа. В этом отношении предпочтительными являются трансгенные растения, в особенности зернобобовые и клубнеплоды, и животные, в особенности млекопитающие, такие как крупный рогатый скот (коровы, овцы, козы и свиньи), но также домашняя птица и съедобные насекомые.
Трансгенные водоросли или другие растения, такие как рапс, могут быть особенно применимыми в производстве растительных масел или таких видов биотоплива, как, например, спирты (особенно метанол и этанол). Они могут быть сконструированы для синтеза или сверхсинтеза масла или спиртов на высоких уровнях для применения в масложировой или биотопливной промышленности.
В одном аспекте настоящее изобретение предусматривает способы модификации целевого полинуклеотида в эукариотической клетке. В некоторых вариантах осуществления способ включает обеспечение связывания комплекса CRISPR с целевым полинуклеотидом для осуществления расщепления указанного целевого полинуклеотида с модификацией, таким образом, целевого полинуклеотида, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с направляющей последовательностью, гибридизирующейся с целевой последовательностью в указанном целевом полинуклеотиде, где указанная направляющая последовательность связана с парной tracr-последовательностью, которая, в свою очередь, гибридизируется с tracr-последовательностью.
В одном аспекте настоящее изобретение предусматривает способ модификации экспрессии полинуклеотида в эукариотической клетке. В некоторых вариантах осуществления способ включает обеспечение связывания комплекса CRISPR с полинуклеотидом так, что указанное связывание приводит к повышенной или пониженной экспрессии указанного полинуклеотида; где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с направляющей последовательностью, гибридизирующейся с целевой последовательностью в указанном целевом полинуклеотиде, где указанная направляющая последовательность связана с парной tracr-последовательностью, которая, в свою очередь, гибридизируется с tracr-последовательностью.
С учетом недавних достижений в области геномики сельскохозяйственных культур возможность применения системы CRISPR-Cas для осуществления эффективных и экономичных редактирования генов и манипуляции с ними обеспечит возможность быстрого отбора и сравнения одиночных и мультиплексных генетических манипуляций для трансформирования таких геномов в отношении повышенного производства и улучшенных признаков. В связи с этим делается ссылка на патенты США и публикации патентов США: патент США №6603061 - опосредованный агробактериями способ трансформации растений (Agrobacterium-Mediated Plant Transformation Method); патент США №7868149 - последовательности генома растений и их применение (Plant Genome Sequences and Uses Thereof) и US 2009/0100536 - трансгенные растения с улучшенными агротехническими признаками (Transgenic Plants with Enhanced Agronomic Traits), все содержания и раскрытия каждого из которых включены в данный документ при помощи ссылки в полном объеме. При осуществлении на практике настоящего изобретения содержание и раскрытие Morrell et al "Crop genomics:advances and applications" Nat Rev Genet. 2011 Dec 29;13(2): 85-96 также включены в данный документ при помощи ссылки в полном объеме. В преимущественном варианте осуществления настоящего изобретения систему CRISPR/Cas9 используют для конструирования микроводорослей (пример 14). Соответственно, в данном документе ссылка на клетки животных также может быть применима, с учетом необходимых изменений, по отношению к клеткам растений, если явно не следует иное.
В одном аспекте настоящее изобретение предусматривает способы модификации целевого полинуклеотида в эукариотической клетке, что может происходить in vivo, ex vivo или in vitro. В некоторых вариантах осуществления способ включает забор клетки или популяции клеток от человека, или отличного от человека животного, или растения (в том числе микроскопических водорослей) и модификацию клетки или клеток. Культивирование можно осуществлять на любой стадии ex vivo. Клетку или клетки можно даже повторно вводить отличному от человека животному или в растение (в том числе микроскопические водоросли).
В одном аспекте настоящее изобретение предусматривает наборы, содержащие любой один или несколько из элементов, раскрытых в приведенных выше способах и композициях. В некоторых вариантах осуществления набор содержит векторную систему и инструкции по применению набора. В некоторых вариантах осуществления векторная система содержит (а) первый регуляторный элемент, функционально связанный с парной tracr-последовательностью и одним или несколькими сайтами встраивания для встраивания направляющей последовательности выше парной tracr-последовательности, где при экспрессии направляющая последовательность управляет специфичным к последовательности связыванием комплекса CRISPR с целевой последовательностью в эукариотической клетке, где комплекс CRISPR содержит фермент CRISPR, образующий комплекс с (1) направляющей последовательностью, которая гибридизируется с целевой последовательностью, и (2) парной tracr-последовательностью, которая гибридизируется с tracr-последовательностью; и/или (b) второй регуляторный элемент, функционально связанный с кодирующей фермент последовательностью, кодирующей указанный фермент CRISPR, содержащий последовательность ядерной локализации. Элементы могут быть предоставлены отдельно или в комбинациях и могут быть предоставлены в любом подходящем контейнере, как, например, пузырьке, флаконе или пробирке. В некоторых вариантах осуществления набор включает инструкции на одном или нескольких языках, например, на более чем одном языке.
В некоторых вариантах осуществления набор содержит один или несколько реагентов для применения в способе, в котором используется один или несколько элементов, описанных в данном документе. Реагенты могут быть предоставлены в любом подходящем контейнере. Например, набор может предусматривать один или несколько реакционных буферов или буферов для хранения. Реагенты могут быть предоставлены в форме, которая применима в конкретном анализе, или в форме, которая предусматривает добавление одного или нескольких других компонентов перед применением (к примеру, в форме концентрата или лиофилизированной форме). Буфер может быть любым буфером, в том числе без ограничения буфером с карбонатом натрия, буфером с бикарбонатом натрия, боратным буфером, Tris-буфером, буфером MOPS, буфером HEPES и их комбинациями. В некоторых вариантах осуществления буфер является щелочным. В некоторых вариантах осуществления буфер имеет значение рН от приблизительно 7 до приблизительно 10. В некоторых вариантах осуществления набор содержит один или несколько олигонуклеотидов, соответствующих направляющей последовательности, для встраивания в вектор для того, чтобы имела место функциональная связь направляющей последовательности и регуляторного элемента. В некоторых вариантах осуществления набор содержит матричный полинуклеотид для гомологичной рекомбинации.
В одном аспекте настоящее изобретение предусматривает способы применения одного или нескольких элементов системы CRISPR. Комплекс CRISPR по настоящему изобретению обеспечивает эффективное средство модификации целевого полинуклеотида. Комплекс CRISPR по настоящему изобретению характеризуется большим разнообразием полезных свойств, включая модификацию (например, делению, вставку, транслокацию, инактавацию, активацию) целевого полинуклеотида во множестве типов клеток. Комплекс CRISPR по настоящему изобретению как таковой имеет широкий спектр применений, к примеру, в генной терапии, скрининге лекарственных средств, диагностике и прогнозировании заболеваний. Иллюстративный комплекс CRISPR содержит фермент CRISPR, образующий комплекс с направляющей последовательностью, которая гибридизируется с целевой последовательностью в целевом полинуклеотиде. Направляющая последовательность связана с парной tracr-последовательностью, которая, в свою очередь, гибридизируется с tracr-последовательностью.
Целевым полинуклеотидом комплекса CRISPR может быть любой полинуклеотид, эндогенный или экзогенный по отношению к эукариотической клетке. Например, целевой полинуклеотид может быть полинуклеотидом, находящимся в ядре эукариотической клетки. Целевой полинуклеотид может быть последовательностью, кодирующей продукт гена (к примеру, белок), или некодирующей последовательностью (к примеру, регуляторным полинуклеотидом или избыточной ДНК). Не желая быть связанными теорией, полагают, что целевая последовательность должна быть ассоциирована с РАМ (мотивом, смежным с протоспейсером); то есть короткой последовательностью, узнаваемой комплексом CRISPR. Определенные требования в отношении последовательности и длины РАМ различаются в зависимости от применяемого фермента CRISPR, но РАМ, как правило, является последовательностью в 2-5 пар оснований, смежной с протоспейсером (то есть целевой последовательности). Примеры последовательностей РАМ приведены в разделе "Примеры" ниже, и специалист в данной области сможет выявить дополнительные последовательности РАМ для применения с данным ферментом CRISPR.
Целевой полинуклеотид комплекса CRISPR может включать некоторое количество ассоциированных с заболеваниями генов и полинуклеотидов, а также ассоциированных с биохимическими путями проведения сигнала генов и полинуклеотидов, которые перечислены в предварительных заявках на патент США 61/736527 и 61/748427 с общей ссылкой BI-2011/008/WSGR, номер в реестре 44063-701.101, и BI-2011/008/WSGR, номер в реестре 44063-701.102, соответственно, обе озаглавленные "СИСТЕМЫ, СПОСОБЫ И КОМПОЗИЦИИ ДЛЯ МАНИПУЛЯЦИЯ С ПОСЛЕДОВАТЕЛЬНОСТЯМИ" (SYSTEMS METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION), поданные 12 декабря 2012 г. и 2 января 2013 г., соответственно, содержания всех из которых включены в данный документ при помощи ссылки в полном объеме.
Примеры целевых полинуклеотидов включают последовательность, ассоциированную с биохимическими путями передачи сигнала, к примеру, ген или полинуклеотид, ассоциированные с биохимическими путями передачи сигнала. Примеры целевых полинуклеотидов включают ассоциированный с заболеванием ген или полинуклеотид. "Ассоциированный с заболеванием" ген или полинуклеотид означает любой ген или полинуклеотид, который обеспечивает продукты транскрипции или трансляции на отклоняющемся от нормы уровне или в отклоняющейся от нормы форме в клетках, полученных из пораженных заболеванием тканей, по сравнению с тканями или клетками контроля без заболевания. Это может быть ген, который начинает экспрессироваться при ненормально высоком уровне; это может быть ген, который начинает экспрессироваться при ненормально низком уровне, где измененная экспрессия коррелирует с появлением и/или развитием заболевания. Ассоциированный с заболеванием ген также означает ген, несущий мутацию(и) или генетическое изменение, который непосредственно ответственен или находится в неравновесном сцеплении с геном(ами), который(е) ответственен(ны) за этиологию заболевания. Транскрибируемые или транслируемые продукты могут быть известными или неизвестными и могут быть на нормальном уровне или на отклоняющемся от нормального уровне.
Примеры ассоциированных с заболеваниями генов и полинуклеотидов доступны от Института генетической медицины Маккьюсика-Натанса (McKusick-Nathans Institute of Genetic Medicine) при Университете Джонса Хопкинса (Johns Hopkins University) (Балтимор, Мэриленд) и Национального центра биотехнологической информации (National Center for Biotechnology Information) при Национальной библиотеке медицины (National Library of Medicine) (Бетесда, Мэриленд), доступных во всемирной сети Интернет.
Примеры ассоциированных с заболеваниями генов и полинуклеотидов перечислены в таблицах А и В. Конкретная информация в отношении заболеваний доступна от Института генетической медицины Маккьюсика-Натанса (McKusick-Nathans Institute of Genetic Medicine) при Университете Джонса Хопкинса (Johns Hopkins University) (Балтимор, Мэриленд) и Национального центра биотехнологической информации (National Center for Biotechnology Information), Национальной библиотеки медицины (National Library of Medicine) (Бетесда, Мэриленд), доступных во всемирной сети Интернет. Примеры ассоциированных с биохимическими путями передачи сигнала генов и полинуклеотидов перечислены в таблице С.
Мутации в этих генах и путях могут приводить к продуцированию несоответствующих белков или белков в несоответствующих количествах, которые воздействуют на функцию. Дополнительные примеры генов, заболеваний и белков, таким образом, включены при помощи ссылки из предварительных заявок на патент США 61/736527 и 61/748427. Такие гены, белки и пути могут быть целевым полинуклеотидом комплекса CRISPR.
Варианты осуществления настоящего изобретения также относятся к способам и композициям, связанным с нокаутированием генов, амплифицированием генов и репарацией конкретных мутаций, ассоциированных с нестабильностью ДНК-повторов и неврологическими нарушениями (Robert D. Wells, Tetsuo Ashizawa, Genetic Instabilities and Neurological Diseases, Second Edition, Academic Press, Oct 13, 2011 - Medical). Как было обнаружено, определенные аспекты последовательностей тандемных повторов ответственны за более двадцати заболеваний человека (New insights into repeat instability: role of RNA•DNA hybrids. Mclvor EI, Polak U, Napierala M. RNA Biol. 2010 Sep-Oct; 7(5): 551-8). Система CRISPR-Cas может быть приспособлена для корректировки таких дефектов геномной нестабильности.
Дополнительный аспект настоящего изобретения относится к использованию системы CRISPR-Cas для корректирования дефектов в генах ЕМР2А и ЕМР2 В, которые, как было обнаружено, ассоциированы с болезнью Лафора. Болезнь Лафора представляет собой аутосомно-рецессивное состояние, которое характеризуется прогрессирующей миоклонус-эпилепсией, которая может начинаться как эпелиптический приступ в подростковом возрасте. Некоторые случаи заболевания могут вызываться мутациями в генах, которые уже были выявлены. Заболевание вызывает приступы, мышечные спазмы, затрудненную ходьбу, слабоумие и, в конечном итоге, смерть. В настоящее время не существует терапии, которая показала эффективность против развития заболевания. На другие генетические расстройства, ассоциированные с эпилепсией, также можно целенаправленно воздействовать при помощи системы CRISPR-Cas, и лежащая в основе генетика дополнительно описана в Genetics of Epilepsy and Genetic Epilepsies, edited by Giuliano Avanzini, Jeffrey L. Noebels, Mariani Foundation Paediatric Neurology: 20; 2009).
В еще одном аспекте настоящего изобретения систему CRISPR-Cas можно использовать для корректировки офтальмологических дефектов, которые являются результатом нескольких генетических мутаций, дополнительно описанных в Genetic Diseases of the Eye, Second Edition, edited by Elias I. Traboulsi, Oxford University Press, 2012.
Некоторые дополнительные аспекты настоящего изобретения связаны с корректированием дефектов, ассоциированных с широким спектром генетических заболеваний, которые дополнительно описаны на веб-сайте Национальных институтов здравоохранения (National Institutes of Health) в тематическом подразделе "Наследственные заболевания" ("Genetic Disorders"). Наследственные заболевания головного мозга могут включать без ограничения адренолейкодистрофию, агенезию мозолистого тела, синдром Айкарди, синдром Альперса, болезнь Альцгеймера, синдром Барта, болезнь Баттена, CADASIL, мозжечковую дегенерацию, болезнь Фабри, синдром Герстмана-Штраусслера-Шейнкера, болезнь Гентингтона и другие связанные с триплетным повтором нарушения, болезнь Лея, синдром Леша-Найхана, болезнь Менкеса, типы митохондриальной миопатии и кольпоцефалию по критериям NTNDS. Такие заболевания дополнительно описаны на веб-сайте Национальных институтов здравоохранения (National Institutes of Health) в тематическом подразделе "Наследственные заболевания головного мозга" ("Genetic Brain Disorders").
В некоторых вариантах осуществления состоянием может быть неоплазия. В некоторых вариантах осуществления, где состоянием является неоплазия, гены, на которые целенаправленно воздействуют, являются любыми из перечисленных в таблице А (в данном случае PTEN и так далее). В некоторых вариантах осуществления состоянием может быть возрастная дегенерация желтого пятна. В некоторых вариантах осуществления состоянием может быть шизофреническое нарушение. В некоторых вариантах осуществления состоянием может быть связанное с тринуклеотидным повтором нарушение. В некоторых вариантах осуществления состоянием может быть синдром ломкой Х-хромосомы. В некоторых вариантах осуществления состоянием может быть связанное с активностью секретазы нарушение. В некоторых вариантах осуществления состоянием может быть связанное с прионами нарушение. В некоторых вариантах осуществления состоянием может быть ALS. В некоторых вариантах осуществления состоянием может быть привыкание к наркотическим средствам. В некоторых вариантах осуществления состоянием может быть аутизм. В некоторых вариантах осуществления состоянием может быть болезнь Альцгеймера. В некоторых вариантах осуществления состоянием может быть воспаление. В некоторых вариантах осуществления состоянием может быть болезнь Паркинсона.
Примеры белков, ассоциированных с болезнью Паркинсона, включают без ограничения α-синуклеин, DJ-1, LRRK2, PINK1, паркин, UCHL1, синфилин-1 и NURR1.
Примеры связанных с привыканием белков могут включать, например, АВАТ.
Примеры связанных с воспалением белков могут включать, например, моноцитарный хемоаттрактантный белок-1 (monocyte chemoattractant protein-1) (МСР1), кодируемый геном Ccr2, С-С рецептор хемокина 5 типа (С-С chemokine receptor type 5) (CCR5), кодируемый геном Ccr5, IgG-рецептор IIB (IgG receptor IIB) (FCGR2b, также называемый CD32), кодируемый геном Fcgr2b, или белок Fc-эпсилон-R1g (Fc epsilon R1g) (FCER1g), кодируемый геном Fcer1g.
Примеры ассоциированных с заболеваниями сердечно-сосудистой системы белков могут включать, например, IL1B (интерлейкин 1, бета (interleukin 1, beta)), XDH (ксантиндегидрогеназу (xanthine dehydrogenase)), TP53 (опухолевый белок р53 (tumor protein р53)), PTGIS (простагландин-I2(простациклин)-синтазу (prostaglandin I2 (prostacyclin) synthase)), MB (миоглобин (myoglobin)), IL4 (интерлейкин 4 (interleukin 4)), ANGPT1 (ангиопоэтин 1 (angiopoietin 1)), ABCG8 (АТФ-связывающую кассету, подсемейство G (WHITE), представитель 8 (ATP-binding cassette, sub-family G (WHITE), member 8)) или CTSK (катепсин K (cathepsin K)).
Примеры ассоциированных с болезнью Альцгеймера белков могут включать, например, белок, представляющий собой рецептор липопротеинов очень низкой плотности (very low density lipoprotein receptor protein) (VLDLR), кодируемый геном VLDLR, убиквитин-подобный модификатор-активирующий фермент 1 (ubiquitin-like modifier activating enzyme 1) (UBA1), кодируемый геном UBA1, или белок, являющийся каталитической субъединицей NEDD8-aKTHBHpyioniero фермента E1 (NEDD8-activating enzyme E1 catalytic subunit protein) (UBE1C), кодируемый геном UBA3.
Примеры белков, ассоциированных с расстройствами аутистического спектра, могут включать, например, белок 1, ассоциированный с периферическим бензодиазепиновым рецептором (benzodiazapine receptor (peripheral) associated protein 1) (BZRAP1), кодируемый геном BZRAP1, белок, представитель 2 семейства AF4/FMR2 (AF4/FMR2 family member 2 protein) (AFF2), кодируемый геном AFF2 (также называемый MFR2), белок-аутосомный гомолог 1, ассоциированный с умственной отсталостью, связанной с ломкой Х-хромосомой (fragile X mental retardation autosomal homolog 1 protein) (FXR1), кодируемый геном FXR1, или белок-аутосомный гомлог 2, ассоциированный с умственной отсталостью, связанной с ломкой Х-хромосомой (fragile X mental retardation autosomal homolog 2 protein) (FXR2), кодируемый геном FXR2.
Примеры белков, ассоциированных с дегенерацией желтого пятна, могут включать, например, АТФ-связываюшую кассету, белок-представитель 4 подсемейства А (АВС1) (ATP-binding cassette, sub-family А (АВС1) member 4 protein) (ABCA4), кодируемый геном ABCR, белок-аполипротеин E (apolipoprotein E protein) (APOE), кодируемый геном APOE, или белок-лиганд 2 хемокина (С-С мотив) (chemokine (С-С motif) Ligand 2 protein) (CCL2), кодируемый геном CCL2.
Примеры белков, ассоциированных с шизофренией, могут включать NRG1, ErbB4, CPLX1, ТРН1, ТРН2, NRXN1, GSK3A, BDNF, DISCI, GSK3B и их комбинации.
Примеры белков, вовлеченных в подавление опухоли, могут включать, например, ATM (мутированный, атаксия-телеангиэктазия (ataxia telangiectasia mutated)), ATR (атаксия-телеангиэктазия- и Rad3-родственный (ataxia telangiectasia and Rad3 related)), EGFR (рецептор эпидермального фактора роста (epidermal growth factor receptor)), ERBB2 (гомолог 2 v-erb-b2 эритробластического лейкоза вирусного онкогена (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2)), ERBB3 (гомолог 3 v-erb-b2 эритробластического лейкоза вирусного онкогена (v-erb-b2 erythroblastic leukemia viral oncogene homolog 3)), ERBB4 (гомолог 4 v-erb-b2 эритробластического лейкоза вирусного онкогена (v-erb-b2 erythroblastic leukemia viral oncogene homolog 4)), Notch 1, Notch 2, Notch 3 или Notch 4.
Примеры белков, ассоциированных с нарушением, связанным с активностью секретазы, могут включать, например, PSENEN (presenilin enhancer 2 homolog (С. elegans)), CTSB (катепсин В (cathepsin В)), PSEN1 (пресенилин 1 (presenilin 1)), APP (белок-предшественник бета-амилоида (A4) (amyloid beta (A4) precursor protein)), APH1B (anterior pharynx defective 1 homolog В (С.elegans)), PSEN2 (пресенилин 2 (болезнь Альцгеймера 4) (presenilin 2 (Alzheimer disease 4)) или BACE1 (АРР-расщепляющий фермент 1 по бета-сайту (beta-site APP-cleaving enzyme 1)).
Примеры белков, ассоциированных с амиотрофическим латеральным склерозом, могут включать, например, SOD1 (супероксиддисмутазу 1 (superoxide dismutase 1)), ALS2 (белок, ассоциированный с амиотрофическим латеральным склерозом 2 (amyotrophic lateral sclerosis 2)), FUS (РНК-связывающий белок FUS (fused in sarcoma)), TARDBP (TAR-ДНК связывающий белок (TAR DNA binding protein)), VAGFA (фактор роста эндотелия сосудов A (vascular endothelial growth factor A)), VAGFB (фактор роста эндотелия сосудов В (vascular endothelial growth factor В)) и VAGFC (фактор роста эндотелия сосудов С (vascular endothelial growth factor С)) и любую их комбинацию.
Примеры белков, ассоциированных с прионными болезнями, могут включать SOD1 (супероксиддисмутазу 1), ALS2 (белок, ассоциированный с амиотрофическим латеральным склерозом 2 (amyotrophic lateral sclerosis 2)), FUS (РНК-связывающий белок FUS (fused in sarcoma)), TARDBP (TAR-ДНК связывающий белок (TAR DNA binding protein)), VAGFA (фактор роста эндотелия сосудов A (vascular endothelial growth factor A)), VAGFB (фактор роста эндотелия сосудов В (vascular endothelial growth factor В)) и VAGFC (фактор роста эндотелия сосудов С (vascular endothelial growth factor С)) и любую их комбинацию.
Примеры белков, связанных с нейродегенеративными состояниями при прионных болезнях, могут включать, например, А2М (альфа-2-макроглобулин (Alpha-2-Macroglobulin)), AATF (фактор транскрипции, противодействующий апоптозу (Apoptosis antagonizing transcription factor)), ACPP (простатоспецифическую кислую фосфатазу (Acid phosphatase prostate)), ACTA2 (альфа-актин 2 гладкой мускулатуры аорты (Actin alpha 2 smooth muscle aorta)), ADAM22 (ADAM, металлопептидазный домен (ADAM metallopeptidase domain)), ADORA3 (аденозиновыи рецептор A3 типа (Adenosine A3 receptor)) или ADRA1D (альфа-1D адренергический рецептор для альфа-1D адренорецептора (Alpha-1D adrenergic receptor for Alpha-1D adrenoreceptor)).
Примеры белков, ассоциированных с иммунодефицитом, могут включать, например, А2М [альфа-2-макроглобулин (alpha-2-macroglobulin)]; AANAT [арилалкиламин-N-ацетилтрансферазу (arylalkylamine N-acetyltransferase)]; АВСА1 [АТФ-связывающую кассету, подсемейство А (АВС1), представитель 1 (ATP-binding cassette, sub-family А (АВС1), member 1)]; ABCA2 [АТФ-связывающую кассету, подсемейство А (АВС1), представитель 2 (ATP-binding cassette, sub-family A (ABC1), member 2)] или АВСАЗ [АТФ-связывающую кассету, подсемейство А (АВС1), представитель 3 (ATP-binding cassette, sub-family А (АВС1), member 3)].
Примеры белков, ассоциированных с нарушениями, связанными с тринуклеотидным повтором, включают, например, AR (андрогеновый рецептор (androgen receptor)), FMR1 (белок 1, ассоциированный с умственной отсталостью, связанной с ломкой Х-хромосомой (fragile X mental retardation 1)), НТТ (хантигтин (huntmgtin)) или DMPK (протеинкиназу, ассоциированную с мышечной дистрофией (dystrophia myotonica-protein kinase)), FXN (фратаксин (frataxin)), ATXN2 (атаксин 2 (ataxin 2)).
Примеры белков, ассоциированных с нарушениями передачи нервных импульсов включают, например, SST (соматостатин (somatostatin)), NOS1 (синтазу оксида азота 1 (нейрональную) (nitric oxide synthase 1 (neuronal)), ADRA2A (адренергический, альфа-2А-, рецептор (adrenergic, alpha-2A-, receptor)), ADRA2C (адренергический, альфа-2С-, рецептор (adrenergic, alpha-2C-, receptor)), TACR1 (тахикининовый рецептор 1 (tachykinin receptor 1)) или HTR2c (5-гадрокситриптаминовый (серотониновый) рецептор 2С (5- hydroxytryptamine (serotonin) receptor 2C)).
Примеры последовательностей, ассоциированных с неврологическим развитием, включают, например, А2 ВР1 [атаксин 2-связывающий белок 1 (ataxin 2-binding protein 1)], AADAT [аминоадипатаминотрансферазу (aminoadipate aminotransferase)], AANAT [арилалкиламин-Н-ацетилтрансферазу (arylalkylamine N-acetyltransferase)], ABAT [4- аминобутиратаминтрансферазу (4-aminobutyrate aminotransferase)], ABCA1 [АТФ-связывающую кассету, подсемейство A (ABC1), представитель 1 (ATP-binding cassette, sub-family A (ABC1), member 1)] или ABCA13 [АТФ-связывающую кассету, подсемейство А (АВС1), представитель 13 (ATP-binding cassette, sub-family А (АВС1), member 13)].
Дополнительные примеры предпочтительных состояний, которые подлежат лечению с помощью данной системы, включают те, которые могут быть выбраны из синдрома Айкарди-Гутьереса; болезни Александера; синдрома Аллана-Херндона-Дадли; связанных с геном POLG нарушений; альфа-маннозидоза (II и III тип); синдрома Альстрема; синдрома Ангельмана; атаксии-телеангиэктазии; нейронного высоковидного липофусциноза; бета-талассемии; двусторонней атрофии зрительного нерва и (инфантильной) атрофии зрительного нерва 1 типа; ретинобластомы (двусторонней); болезни Канавана; церебро-окуло-фацио-скелетного синдрома 1 [COFS1]; церебротендинального ксантоматоза; синдрома Корнелии де Ланге; связанных с геном МАРТ нарушений; наследственных прионных болезней; синдрома Драве; семейной болезни Альцгеймера с ранним началом; атаксии Фридрейха [FRDA]; синдрома Фринса; фукозидоза; врожденной мышечной дистрофии Фукуямы; галактосиалидоза; болезни Гоше; органической ацидемии; гемофагоцитарного лимфогистиоцитоза; синдрома прогерии Гетчинсона-Гилфорда; муколипидоза II; инфантильной болезни накопления свободной сиаловой кислоты; ассоциированной с геном PLA2G6 нейродегенерации; синдрома Джервелла-Ланге-Нильсена; узелкового врожденного буллезного эпидермолиза; болезни Гентингтона; болезни Краббе (инфантильной); ассоциированного с митохондриальной ДНК синдрома Ли и NARP; синдрома Леша-Найхана; ассоциированной с геном LIS1 лиссэнцефалии; синдрома Лоу; болезни "кленового сиропа"; синдрома дупликации МЕСР2; связанных с геном АТР7А нарушений обмена меди; связанной с геном LAMA2 мышечной дистрофии; недостаточности арилсульфатазы А; мукополисахаридоза I, II или III типов; связанных с биогенезом пероксисом нарушений, спектра заболеваний по типу синдрома Цельвегера; нарушений по типу нейродегенерации с накоплением железа в головном мозге; недостаточности кислой сфингомиелиназы; болезни Ниманна-Пика С типа; глициновой энцефалопатии; связанных с геном ARX нарушений; нарушений орнитинового цикла; связанного с геном COL1A1/2 несовершенного остеогенеза; синдромов удаления митохондриальной ДНК; связанных с геном PLP1 нарушений; синдрома Перри; синдрома Фелана-МакДермида; болезни накопления гликогена II типа (болезни Помпе) (инфантильной); связанных с геном МАРТ нарушений; связанных с геном МЕСР2 нарушений; эпифизарной точечной хондродисплазии 1 типа костей верхних конечностей или бедренной кости; синдрома Робертса; болезни Сандхоффа; болезни Шиндлера - 1 типа; аденозиндезаминазной недостаточности; синдрома Смита-Лемли-Опитца; спинальной мышечной атрофии; спинально-церебеллярной атаксии с возникновением в младенческом возрасте; недостаточности гексозаминидазы А; танатофорной дисплазии 1 типа; связанных с геном коллагена VI типа нарушений; синдрома Ашера I типа; врожденной мышечной дистрофии; синдрома Вольфа-Хиршхорна; недостаточности лизосомной кислой липазы и пигментной ксеродермы.
Длительное введение белковых терапевтических средств может вызвать нежелательные иммунные ответы на данный белок. Иммуногенность белковых лекарственных средств может объясняться наличием нескольких иммунодоминантных эпитопов для Т-лимфоцитов-хелперов (HTL). Путем снижения аффинности связывания этих эпитопов для HTL, содержащихся в данных белках, с МНС можно создавать лекарственные средства с более низкой иммуногенностью (Tangri S, et al. ("Rationally engineered therapeutic proteins with reduced immunogenicity" J Immunol. 2005 Mar 15; 174(6): 3187-96.) В настоящем изобретении иммуногенность фермента CRISPR, в частности, можно снизить, следуя подходу, впервые изложенному Tangri и соавт. в отношении эритропоэтина и впоследствии получившему развитие. Соответственно, для снижения иммуногенности фермента CRISPR (например, Cas9) у вида-хозяина (человека или другого вида) можно применять направленную эволюцию или рациональное проектирование.
У растений патогены часто являются специфичными по отношению к хозяину. Например, Fusarium oxysporum f. sp. lycopersici вызывает фузариозный вилт томата, но поражает только томат, a F. oxysporum f. dianthii и Puccinia graminis f. sp.tritici поражают только пшеницу. Растения обладают присущими и индуцированньгми защитными реакциями, обеспечивающими устойчивость к большинству патогенов. Мутации и события рекомбинации в поколениях растений приводят к генетической изменчивости, которая обуславливает восприимчивость, тем более, что патогены размножаются с большей частотой, чем растения. У растений может наблюдаться устойчивость видов - нехозяев, например, хозяин и патоген являются несовместимыми. Также может наблюдаться горизонтальная устойчивость, например, частичная устойчивость ко всем расам патогена, обычно контролируемая многими генами, и вертикальная устойчивость, например, полная устойчивость к некоторым расам патогена, но не к другим расам, обычно контролируемая несколькими генами. На уровне взаимодействия генов растения и патогены эволюционируют совместно, а генетические изменения одного уравновешивают изменения другого. Соответственно, используя естественную изменчивость, селекционеры комбинируют наиболее полезные гены для урожайности, качества, однородности, выносливости, устойчивости. Источники генов устойчивости включают нативные или чужеродные сорта, старинные сорта, родственные дикорастущие растения и индуцированные мутации, например, при обработке растительного материала мутагенными средствами. Применяя настоящее изобретение, селекционеры растений получают новый инструмент для индукции мутаций. Соответственно, специалист в данной области может проанализировать геном источников генов устойчивости, а в отношении сортов, имеющих желаемые характеристики или признаки, использовать настоящее изобретение для индукции появления генов устойчивости с большей точностью, чем в случае применявшихся ранее мутагенных средств, и, следовательно, ускорять и улучшать программы селекции растений.
Как будет понятно, предусматривается, что настоящую систему можно использовать для целенаправленного воздействия на любую представляющую интерес полинуклеотидную последовательность. Некоторые состояния или заболевания, которые можно эффективно лечить с использованием настоящей системы, включены в таблицы выше, и примеры известных на данный момент генов, ассоциированных с такими состояниями, также предоставлены в них. Тем не менее, гены, приведенные в качестве примеров, не являются исчерпывающими.
ПРИМЕРЫ
Следующие примеры приведены с целью иллюстрации различных вариантов осуществления настоящего изобретения и не предназначены для ограничения настоящего изобретения каким-либо образом. Данные примеры совместно со способами, описанными в данном документе, в настоящее время отражают предпочтительные варианты осуществления, являются иллюстративными и не предназначены для ограничения объема настоящего изобретения. Изменения в данном документе и другие применения, которые охватываются сутью настоящего изобретения, как определено объемом формулы изобретения, будут очевидны специалистам в данной области.
Пример 1: Активность комплекса CRISPR в ядре эукариотической клетки
Примером системы CRISPR II типа является локус CRISPR II типа из Streptococcus pyogenes SF370, который содержит кластер из 4 генов Cas9, Cas1, Cas2 и Csn1, а также два некодирующих элемента РНК, tracrRNA и характерный массив повторяющихся последовательностей (прямых повторов), чередующихся с короткими фрагментами неповторяющихся последовательностей (спейсерами, примерно 30 п.о. каждый). В этой системе двухцепочечный разрыв (DSB) целевой ДНК образовывается в ходе четырех последовательных стадий (фигура 2А). Во-первых, две некодирующие РНК, массив pre-crRNA и tracrRNA транскрибируются с локуса CRISPR. Во-вторых, tracrRNA гибридизируется с прямыми повторами pre-crRNA, которая затем процессируется в зрелые crRNA, содержащие индивидуальные спейсерные последовательности. В-третьих, комплекс зрелая crRNA: tracrRNA направляет Cas9 к ДНК-мишени, состоящей из протоспейсера и соответствующего РАМ, посредством образования гетеродуплекса между спейсерным участком crRNA и протоспейсерной ДНК. И наконец, Cas9 опосредует расщепление целевой ДНК выше РАМ с образованием DSB внутри протоспейсера (фигура 2А). В данном примере описывается иллюстративный способ для приспособления этой РНК-программируемой нуклеазной системы к управлению активностью комплекса CRISPR в ядрах эукариотических клеток.
Для улучшения экспрессии компонентов CRISPR в клетках млекопитающих два гена из локуса 1 SF370 Streptococcus pyogenes (S. pyogenes) были кодон-оптимизированы, Cas9 (SpCas9) и РНКаза III (SpRNase III). Для обеспечения ядерной локализации клеточный сигнал ядерной локализации (NLS) включали в амино(N-) или карбоксильные(С-) терминальные области и SpCas9, и SpRNase III (Фигура 2В). Для обеспечения визуализации экспрессии белков ген флуоресцентного белка в качестве маркера также включали в N- или С-терминальные области обоих белков (фигура 2В). Также был создан вариант SpCas9 с NLS, прикрепленным и к N-, и к С-терминальным областям (2xNLS-SpCas9). Конструкции, содержащие слитый с NLS SpCas9 и SpRNase III трансфицировали в клетки почки эмбриона человека (HEK) 293FT, и было обнаружено, что относительное положение NLS относительно SpCas9 и SpRNase III влияет на их эффективность ядерной локализации. Хотя С-терминального NLS было достаточно для нацеливания SpRNase III в ядро, прикрепление одной копии этих конкретных NLS либо к N-, либо к C-терминальной области SpCas9 не было способно обеспечить адекватную ядерную локализацию в этой системе. В этом примере C-терминальный NLS был из нуклеоплазмина (KRPAATKKAGQAKKKK), а C-терминальный NLS был из большого Т-антигена SV40 (PKKKRKV). Из тестируемых вариантов SpCas9 только 2xNLS-SpCas9 проявлял ядерную локализацию (фигура 2 В).
tracrRNA из локуса CRISPR S. pyogenes SF370 содержал два сайта инициации транскрипции, дающие начало двум транскриптам из 89 нуклеотидов (нт) и 171 нт, которые затем подвергались процессингу в идентичные зрелые tracrRNA из 75 нт. Более короткие tracrRNA из 89 нт отбирали на предмет экспрессии в клетках млекопитающих (экспрессирующая конструкция изображена на фигуре 6, с функциональностью, как определено по результатам анализа с помощью Surveryor, показанным на фигуре 6В). Сайты инициации транскрипции обозначены как +1, а также указаны терминатор транскрипции и последовательность, гибридизирующаяся с зондом при нозерн-блоттинге. Экспрессию подвергнутой процессингу tracrRNA также подтверждали с помощью нозерн-блоттинга. На фигуре 7С показаны результаты анализа с помощью нозерн-блоттинга общей РНК, экстрагированной из клеток 293FT, трансфицированных экспрессирующими конструкциями U6, несущими длинную или короткую tracrRNA, а также SpCas9 и DR-EMX1(1)-DR. Левая и правая секции получены с клетками 293FT, трансфицированными без или с SpRNase III, соответственно. U6 являются показателем для контроля загрузки при блоттинге с зондом, нацеленным на малую ядерную РНК (snRNA) U6 человека. Трансфекция экспрессирующей конструкции с короткой tracrRNA приводит к избыточным уровням подвергшейся процессингу формы tracrRNA (~75 п.о.). Очень низкие количества длинных tracrRNA обнаруживали при нозерн-блоттинге.
Для стимуляции точной инициации транскрипции промотор U6 на основе РНК-полимеразы III выбирали для управления экспрессией tracrRNA (фигура 2С). Подобным образом, конструкцию на основе промотора U6 разрабатывали для экспрессии массива pre-crRNA, состоящего из одного спейсера, фланкированного двумя прямыми повторами (DR, также включены в выражение "парные tracr-последовательности"; фигура 2С). Исходный спейсер был разработан для целенаправленного воздействия на целевой сайт из 33 пар оснований (п.о.) (протоспейсер из 30 п.о., а также последовательность мотива CRISPR (РАМ) из 3 п.о., соответствующая мотиву узнавания NGG у Cas9) в локусе ЕМХ1 человека (фигура 2С), ключевом гене в развитии коры головного мозга.
Клетки НЕК 293FT трансфицировали комбинациями компонентов CRISPR для того, чтобы определить, возможно ли при гетерологичной экспрессии системы CRISPR (SpCas9, SpRNase III, tracrRNA и pre-crRNA) в клетках млекопитающих достичь целенаправленного расщепления хромосом млекопитающего. Поскольку DSB в ядрах млекопитающих подвергаются частичной репарации с помощью пути негомологичного соединения концов (NHEJ), который приводит к образованию вставок/делений, анализ с помощью Surveyor использовали для выявления возможной активности для расщепления в целевом локусе ЕМХ1 (см., например, Guschin et al., 2010, Methods Mol Biol 649: 247). Котрансфекция всех четырех компонентов CRISPR была способна индуцировать расщепления в протоспейсере до 5,0% (см. фигуру 2D). Котрансфекция всех компонентов CRISPR, за исключением SpRNase III, также индуцировала образование вставок/делеций в протоспейсере на уровне до 4,7%, что указывало на то, что могут существовать эндогенные РНКазы млекопитающих, которые способны помогать созреванию crRNA, такие как, например, родственные ферменты Dicer и Drosha. Удаление любого из трех остальных компонентов ликвидировало активность системы CRISPR для расщепления генома (фигура 2D). Секвенирование по Сэнгеру ампликонов, содержащих целевой локус, подтверждало активность для расщепления: на 43 подвергшихся секвенированию клонов было обнаружено 5 мутированных аллелей (11,6%). В подобных экспериментах с использованием ряда направляющих последовательностей процентные значения содержания вставок/делеций составляли до 29% (см. фигуры 4-7, 12 и 13). Эти результаты определяют трехкомпонентную систему для эффективной опосредованной CRISPR модификации генома в клетках млекопитающих.
Для оптимизации эффективности расщепления авторы данной заявки также определяли, влияют ли различные изоформы tracrRNA на эффективность расщепления, и обнаружили, что в этой иллюстративной системе только короткая (89 п.о.) форма транскрипта была способна опосредовать расщепление локуса генома ЕМХ1. На фигуре 9 представлен дополнительный анализ процессинга crRNA в клетках млекопитающих с помощью нозерн-блоттинга. На фигуре 9А показано схематическое изображение вектора экспрессии для одного спейсера, фланкированного двумя прямыми повторами (DR-EMX1(1)-DR). Спейсер из 30 п.о. нацеленный на протоспейсер 1 локуса ЕМХ1 человека и последовательности прямых повторов показаны в последовательности внизу фигуры 9А. Линия указывает на участок, обратно комплементарную последовательность которого использовали для создания зондов для нозерн-блоттинга для выявления crRNA ЕМХ1(1). На фигуре 9В показаны результаты анализа с помощью нозерн-блоттинга общей РНК, экстрагированной из клеток 293FT, трансфицированных экспрессирующими конструкциями U6, несущими DR-EMX1(1)-DR. Левая и правая секции получены с клетками 293FT, трансфицированными без или с SpRNase III, соответственно. DR-EMX1(1)-DR подвергался процессингу в зрелые crRNA только в присутствии SpCas9 и короткой tracrRNA и не зависел от присутствия SpRNase III. Зрелая crRNA, обнаруженная в общей РНК трансфицированных 293FT, имела длину ~33 п.о. и была короче, чем зрелая crRNA из S. pyogenes длиной 39-42 п.о. Данные результаты демонстрируют, что систему CRISPR можно перенести в эукариотические клетки и перепрограммировать для облегчения расщепления эндогенных целевых полинуклеотидов млекопитающих.
На фигуре 2 показана бактериальная система CRISPR, описанная в этом примере. На фигуре 2А показано схематическое изображение локуса 1 CRISPR из Streptococcus pyogenes SF370 и предполагаемый механизм опосредованного CRISPR расщепления ДНК с помощью этой системы. Зрелая crRNA, подвергшаяся процессингу из массива прямых повторов-спейсеров, направляет Cas9 к мишеням в геноме, состоящим из комплементарных протоспейсеров и мотива, смежного с протоспейсером (РАМ). При спаривании оснований мишень-спейсер Cas9 опосредует двухцепочечный разрыв в целевой ДНК. На фигуре 2 В показано конструирование Cas9 S. pyogenes (SpCas9) и РНКазы III (SpRNase III) с клеточными сигналами ядерной локализации (NLS) для обеспечения импорта в ядро млекопитающих. На фигуре 2С показана экспрессия SpCas9 и SpRNase III у млекопитающих, управляемая конститутивным промотором EF1a, и массива tracrRNA и pre-crRNA (DR-cneftcep-DR), управляемая промотором U6 РНК-полимеразы 3 для стимуляции точной инициации и терминации транскрипции. Протоспейсер из локуса ЕМХ1 человека с удовлетворительной последовательностью РАМ использовали в качестве спейсера в массиве pre-crRNA. На фигуре 2D показан анализ с помощью нуклеазы Surveyor для опосредованных SpCas9 минорных вставок и делеций. SpCas9 экспрессировался с SpRNase III, tracrRNA и массивом pre-crRNA, несущим целевой спейсер для ЕМХ1, и без таковых. На фигуре 2Е показано схематическое изображение спаривания оснований между целевым локусом и нацеленной на ЕМХ1 crRNA, а также иллюстративная хроматограмма, на которой показана микроделеция, смежная по отношению к сайту расщепления SpCas9. На фигуре 2F показаны мутированные аллели, идентифицированные в результате анализа секвенирования 43 клональных ампликонов, показывающие разнообразие микровставок и микроделеций. Штрихами указаны удаленные основания, а невыровненные или несовпадающие основания указывают на вставки или мутации. Масштабная метка =10 мкм.
Для дальнейшего упрощения трехкомпонентной системы адаптировали химерную crRNA-tracrRNA гибридную структуру, в которой зрелую crRNA (содержащую направляющую последовательность) сливали с частичной tracrRNA при помощи структуры по типу стебель-петля для имитации естественного дуплекса crRNA : tracrRNA (фигура 3А).
Направляющие последовательности можно встроить между сайтами BbsI с использованием гибридизированных олигонуклеотидов. Протоспейсеры на смысловой и антисмысловой нитях указаны выше и ниже последовательностей ДНК, соответственно. Степень модификации для локусов PVALB человека и Th мыши достигали 6,3% и 0,75%, соответственно, демонстрируя широкую применимость системы CRISPR при модификации различных локусов у многих организмов. Хотя при использовании химерных конструкций расщепление обнаруживали только с одним из трех спейсеров для каждого локуса, все целевые последовательности расщеплялись с эффективностью получения вставок/делений, достигающей 27%, при использовании схемы с коэкспрессируемой pre-crRNA (фигуры 4 и 5).
На фигуре 5 представлена дополнительная иллюстрация того, что SpCas9 можно перепрограммировать для целенаправленного воздействия на несколько локусов генома в клетках млекопитающих. На фигуре 5А представлено схематическое изображение локуса ЕМХ1 человека, на котором показано положение пяти протоспейсеров, указанных с помощью подчеркнутых последовательностей. На фигуре 5В представлено схематическое изображение комплекса pre-crRNA/trcrRNA, на котором показана гибридизация между участком прямого повтора в pre-crRNA и tracrRNA (вверху), и схематическое изображение химерной структуры РНК, содержащей направляющую последовательность из 20 п.о. и парную tracr-последовательность и tracr-последовательность, состоящие из неполного прямого повтора и последовательностей tracrRNA, гибридизованных в "шпилечную" структуру (внизу). Результаты анализа с помощью Surveyor со сравнением эффективности опосредованного Cas9 расщепления в пяти протоспейсерах в локусе ЕМХ1 человека показаны на фигуре 5С. Целенаправленное воздействие на каждый протоспейсер осуществляли либо с использованием подвергнутого процессингу комплекса pre-crRNA/tracrRNA (crRNA), либо с использованием химерной РНК (chiRNA).
Поскольку вторичная структура РНК может быть важной для межмолекулярных взаимодействий, алгоритм предсказания структуры на основе минимальной свободной энергии и ансамбля взвешенных структур по Больцману использовали для сравнения предполагаемой вторичной структуры всех направляющих последовательностей, используемых в эксперименте с целенаправленным воздействием на геном (фигура 3В) (см., например, Gruber et al., 2008, Nucleic Acids Research, 36: W70). Анализ выявил, что в большинстве случаев эффективные направляющие последовательности в контексте химерной crRNA, по сути, не содержали мотивов вторичной структуры, тогда как неэффективные направляющие последовательности с большей вероятностью образовывали внутренние вторичные структуры, которые могут препятствовать спариванию оснований с ДНК целевого протоспейсера. Следовательно, возможно, что вариабельность во вторичной структуре спейсера может оказывать воздействие на эффективность опосредованной CRISPR интерференции при использовании химерной crRNA.
На фигуре 3 показан пример векторов экспрессии. На фигуре 3А представлено схематическое изображение бицистронного вектора для управления экспрессией химерной синтетической конструкции crRNA-tracrRNA (химерной РНК), а также SpCas9. Химерная направляющая РНК содержит направляющую последовательность из 20 п.о., соответствующую протоспейсеру в геномном целевом сайте. На фигуре 3В представлено схематическое изображение, на котором показаны направляющие последовательности, нацеленные на локусы ЕМХ1, PVALB человека и Th мыши, а также их предсказанные вторичные структуры. Эффективность модификации в каждом целевом сайте указана ниже рисунка вторичной структуры РНК (ЕМХ1, n=216 считываемых фрагментов при секвенировании ампликонов; PVALB, n=224 считываемых фрагментов; Th, n=265 считываемых фрагментов). Представлены результаты по алгоритму укладки каждого основания, окрашенного соответственно его возможности принятия предсказанной вторичной структуры, как указано с помощью цветной шкалы, воспроизведенной на фигуре 3B в виде серой шкалы. Структуры дополнительных векторов для SpCas9 показаны на фигуре 3А, в том числе отдельные векторы экспрессии, включающие промотор U6, сцепленный с сайтом встраивания для направляющего олигонуклеотида, и промотор Cbh, сцепленный с кодирующей последовательностью SpCas9.
Для того, чтобы определить, способны ли спейсеры с вторичными структурами функционировать в прокариотических клетках, где в естественных условиях функционируют CRISPR, интерференцию при трансформации плазмидами, несущими протоспейсеры, исследовали в штамме Е. coli, гетерологично экспрессирующем локус 1 CRISPR S. pyogenes SF370 (фигура 3С). Локус CRISPR клонировали в низкокопийный вектор экспрессии Е. coli и массив crRNA замещали одним спейсером, фланкированным парой DR (pCRISPR). Штаммы E. coli, несущие разные плазмиды pCRISPR, трансформировали контрольными плазмидами, содержащими соответствующие протоспейсер и последовательности РАМ (фигура 3С). При анализе у бактерий все спейсеры способствовали эффективной CMSPR-интерференпии (фигура 3С). Эти результаты указывают на то, что могут существовать дополнительные факторы, влияющие на эффективность активности CRISPR в клетках млекопитающих.
Для исследования специфичности опосредованного CRISPR расщепления эффект однонуклеотидных мутаций в направляющей последовательности в отношении расщепления протоспейсера в геноме млекопитающих анализировали с использованием ряда целенаправленно воздействующих на ЕМХ химерных crRNA с единичными точковыми мутациями (фигура 4А). На фигуре 4 В показаны результаты анализа с помощью нуклеазы Surveyor со сравнением эффективности расщепления Cas9 при спаривании с различными мутантными химерными РНК. Несовпадение одного основания в участке вплоть до 12 п.о. с 5' в РАМ, по сути, прекращало расщепление генома SpCas9, тогда как спейсеры с мутациями в положениях, расположенных в более отдаленных положениях выше относительно хода транскрипции сохраняли активность в отношении исходного протоспейсера-мишени (фигура 4В). В дополнение к РАМ, SpCas9 характеризуется специфичностью в отношении одного основания в последних 12 п.о. спейсера. Кроме того, CRISPR способен опосредовать расщепление генома столь же эффективно, как и пара нуклеаз TALE (TALEN), целенаправленно воздействующих на тот же протоспейсер ЕМХ1. На фигуре 4С представлено схематическое изображение, на котором показана структура TALEN, целенаправленно воздействующих на ЕМХ1, и на фигуре 4D показано сравнение эффективности TALEN и Cas9 (n=3) при разгонке в геле продуктов, полученных в результате анализа с помощью Surveyor.
Установив набор компонентов для достижения опосредованного CRISPR редактирования генов в клетках млекопитающих посредством склонного к ошибкам механизма NHEJ, исследовали способность CRISPR к стимуляции гомологичной рекомбинации (HR), высокоточный путь репарации генов для создания точных редакционных изменений в геноме. SpCas9 дикого типа способен опосредовать сайт-специфические DSB, которые могут репарироваться как с помощью NHEJ, так и HR. Кроме того, замену аспартата на аланин (D10A) в каталитическом домене RuvCI в SpCas9 производили посредством методик генетической инженерии для превращения нуклеазы в никазу (SpCas9n; проиллюстрировано на фигуре 5А) (см., например, Sapranausaks et al., 2011, Cucleic Acis Research, 39: 9275; Gasiunas et al., 2012, Proc. Natl. Acad. Sci. USA, 109: E2579) так, чтобы надрезанная геномная ДНК подвергалась высокоточной репарации с использованием гомологичной рекомбинации (HDR). Анализ с помощью Surveyor подтвердил, что SpCas9n не создает вставок/делеций в протоспейсере-мишени ЕМХ1. Как показано на фигуре 5В, коэкспрессия целенаправленно воздействующей на ЕМХ1 химерной crRNA с SpCas9 давала вставки/делеции в целевом сайте, тогда как коэкспрессия с SpCas9n - нет (n=3). Более того, при секвенировании 327 ампликонов не обнаружили каких-либо вставок/делеций, индуцированных SpCas9n. Для исследования опосредованной CRISPR HR при совместной трансфекции клеток НЕК 293FT химерной РНК, целенаправленно воздействующей на ЕМХ1, hSpCas9 или hSpCas9n, выбирали тот же локус, также как и матрицу для HR для введения пары сайтов рестрикции (HindIII и NheI) возле протоспейсера. На фигуре 5 С приведена схематическая иллюстрация стратегии HR с относительными положениями точек рекомбинации и последовательностей для гибридизации праймеров (стрелки). SpCas9 и SpCas9n действительно катализировали интеграцию матрицы для HR в локус ЕМХ1. ПЦР амплификация целевого участка с последующим рестрикционным расщеплением HindIII выявила продукты расщепления, соответствующие ожидаемым размерам фрагментов (стрелки на результатах анализа полиморфизма длин рестрикционных фрагментов с помощью гель-электрофореза, показанных на фигуре 5D), причем SpCas9 и SpCas9n опосредуют подобные уровни эффективности HR. Заявители дополнительно подтверждали HR с использованием секвенирования геномных ампликонов по Сэнгеру (фигура 5Е). Эти результаты демонстрировали пригодность CRISPR для облегчения целенаправленной вставки генов в геном млекопитающего. С учетом специфичности к мишени в 14 п.о. (12 п.о. от спейсера и 2 п.о. от РАМ) SpCas9 дикого типа доступность никазы может значительно снизить вероятность нецелевой модификации, поскольку одноцепочечные разрывы не являются субстратами для склонного к ошибкам пути NHEJ.
Экспрессирующие конструкции, имитирующие естественную архитектуру локусов CRISPR с собранными в массив спейсерами (фигура 2А), создавали для исследования возможности мультиплексного целенаправленного воздействия на последовательности. При использовании одного массива CRISPR, кодирующего пару спейсеров, нацеленных на ЕМХ1 и PVALB, обнаруживали эффективное расщепление в обоих локусах (фигура 4F, на которой показаны как схематическая структура массива crRNA, так и блот, полученный после анализа с помощью Surveyor, показывающий эффективное опосредование расщепления). Также исследовали целенаправленную делецию геномных участков большего размера посредством одновременных DSB с использованием спейсеров против двух мишеней в ЕМХ1, разделенных 119 п.о., и обнаруженная эффективность делении составляла 1,6% (3 из 182 ампликонов; фигура 5G). Это демонстрирует, что система CRISPR может опосредовать мультиплексное редактирование в пределах одного генома.
Пример 2: модификации и альтернативы системы CRISPR
Возможность применения РНК для программирования специфичного к последовательности расщепления ДНК определяет новый класс инструментов для конструирования генома для разнообразных исследовательских и промышленных применений. Несколько аспектов системы CRISPR можно дополнительно улучшить для повышения эффективности и универсальности целенаправленного воздействия с помощью CRISPR. Оптимальная активность Cas9 может зависеть от доступности несвязанного Mg2+ на уровнях, которые превышают имеющиеся в ядре млекопитающего (см., например, Jinek et al., 2012, Science, 337: 816), и предпочтение в отношении мотива NGG непосредственно ниже протоспейсера ограничивает способность к целенаправленному воздействию в среднем на каждые 12 п.о. в геноме человека. Некоторые из этих затруднений можно преодолеть путем изучения разнообразия локусов CRISPR в микробном метагеноме (см., например, Makarova et al., 2011, Nat Rev Microbiol, 9: 467). Другие локусы CRISPR можно переместить в микроокружение клетки млекопитающего с помощью способа, подобного описанному в примере 1. Эффективность модификации в каждом целевом сайте указана ниже вторичных структур РНК. Алгоритм, генерирующий цвета структуры каждого основания соответственно его возможности принятия предсказанной вторичной структуры. РНК направляющих спейсеров 1 и 2 индуцировали 14% и 6,4%, соответственно. Статистический анализ активности для расщепления по биологическим копиям в этих двух протоспейсерных сайтах также приведен на фигуре 7.
Пример 3: алгоритм выбора примерной целевой последовательности
Создали компьютерную программу для идентификации кандидатных целевых последовательностей CRISPR на обеих нитях вводимой последовательности ДНК на основе длины желаемой направляющей последовательности и мотива последовательности CRISPR (РАМ) для определенного фермента CRISPR. Например, целевые сайты для Cas9 из S. pyogenes с последовательностями РАМ NGG можно идентифицировать путем поиска в отношении 5'-Nx-NGG-3' как на вводимой последовательности, так и на последовательности, обратно-комплементарной вводимой. Подобным образом, целевые сайты для Cas9 CRISPR1 S. thermophilus с последовательностью РАМ NNAGAAW, можно идентифицировать путем поиска в отношении 5'-Nx-NNAGAAW-3' как на вводимой последовательности, так и на последовательности, обратно-комплементарной вводимой. Подобным образом, целевые сайты для Cas9 CRISPR3 S. thermophilus с последовательностью РАМ NGGNG можно идентифицировать путем поиска в отношении 5'-Nx-NGGNG-3' как на вводимой последовательности, так и на последовательности, обратно-комплементарной вводимой. Значение "х" в Nx может фиксироваться программой или может быть определено пользователем, как, например, 20.
Поскольку несколько случаев появления целевого сайта ДНК в геноме могут приводить к неспецифическому редактированию генома, после идентификации всех возможных сайтов программа профильтровывает последовательности, исходя из количества раз, когда они встречаются в соответствующем эталонном геноме. Для тех ферментов CRISPR, для которых специфичность к последовательности определяется "затравочной" последовательностью, такой как находящаяся в 11-12 п.о. в направлении 5' от последовательности РАМ, в том числе сама последовательность РАМ, стадия фильтрования может основываться на "затравочной" последовательности. Следовательно, во избежание редактирования в дополнительных локусах генома результаты фильтруют, исходя из числа случаев обнаружения последовательности затравки: РАМ в подходящем геноме. Пользователь может иметь возможность выбора длины затравочной последовательности. Пользователь также может иметь возможность определять число случаев обнаружения последовательности затравки: РАМ в геноме применительно к прохождению фильтра По умолчанию установлен скрининг в отношении уникальных последовательностей. Уровень фильтрования изменяют путем изменения как длины затравочной последовательности, так и числа случаев обнаружения последовательности в геноме. В качестве дополнения или альтернативы, программа может обеспечивать последовательность направляющей последовательности, комплементарную сообщенной(ым) целевой(ым) последовательности(ям) путем обеспечения последовательности, обратно комплементарной идентифицированной(ым) целевой(ым) последовательности(ям).
Дальнейшие детали способов и алгоритмов для оптимизации выбора последовательности можно найти в заявке на патент США с серийным номером ТВА (общая ссылка В1-2012/084 44790.11.2022); включенной в данный документ при помощи ссылки.
Пример 4: оценка гибридов нескольких химерных crRNA-tracrRNA
В данном примере описаны результаты, полученные для химерных РНК (chiRNA; содержащие направляющую последовательность, парную tracr-последовательность и tracr-последовательность в одном транскрипте), имеющих tracr-последовательности, которые включают фрагменты последовательности tracrRNA дикого типа с разной длиной. На фигуре 18а показано схематическое изображение бицистронного вектора экспрессии для химерной РНК и Cas9. Cas9 управляется промотором CBh, а химерная РНК управляется промотором U6. Химерная направляющая РНК состоит из направляющей последовательности (Ns) из 20 п.о., соединенной с tracr-последовательностью (проходящей от первого "U" в нижней нити к концу транскрипта), которая усечена в разных указанных положениях. Направляющие и tracr-последовательности разделены парной tracr-последовательностью GUUUUAGAGCUA, за которой следует последовательность петли GAAA. Результаты анализов с помощью SURVEYOR в отношении опосредованных Cas9 вставок/делеций в локусах ЕМХ1 и PVALB человека показаны на фигурах 18b и 18с, соответственно. Стрелки указывают на ожидаемые фрагменты, полученные в результате расщепления с помощью SURVEYOR. ChiRNA показаны путем обозначения их "+n", a crRNA относится к гибридной РНК, в которой направляющие и tracr-последовательности экспрессируются в виде раздельных транскриптов. Количественный анализ этих результатов, выполненный в трех повторностях, проиллюстрирован с помощью гистограмм на фигурах 11а и 11b, соответствующих фигурам 10b и 10с, соответственно ("N.D." означает отсутствие обнаруженных вставок/делеций). ID (идентификационные данные) протоспейсеров и их соответствующей мишени в геноме, последовательность протоспейсера, последовательность РАМ и положение нити приведены в таблице D. Направляющие последовательности разработаны так, чтобы они были комплементарны полной последовательности протоспейсера в случае отдельных транскриптов в гибридной системе или только подчеркнутой части в случае химерных РНК.
Клеточная культура и трансфекция
Линию клеток почки эмбриона человека (HEK) 293FT (Life Technologies) поддерживали в среде Игла в модификации Дульбекко (DMEM), дополненной 10% фетальной бычьей сыворотки (HyClone), 2 мМ GlutaMAX (Life Technologies), 100ЕД/мл пенициллина и 100 мкг/мл стрептомицина, при 37°C с инкубированием при 5% СО СО2. Клетки 293FT засевали в 24-луночные планшеты (Corning) за 24 часа до трансфекции при плотности 150000 клеток на лунку. Клетки трансфицировали с применением Lipofectamine 2000 (Life Technologies), следуя рекомендованному производителем протоколу. Для каждой лунки 24-луночного планшета использовали в общей сложности 500 нг плазмид.
Анализ с помощью SURVEYOR на предмет наличия модификации генома
Клетки 293FT трансфицировали плазмидной ДНК, как описано выше. Клетки инкубировали при 37°C в течение 72 часов после трансфекции перед экстракцией геномной ДНК. Геномную ДНК экстрагировали с помощью раствора QuickExtract DNA Extraction Solution (Epicentre), следуя протоколу производителя. Вкратце, осажденные центрифугированием клетки ресуспендировали в растворе QuickExtract solution и инкубировали при 65°C в течение 15 минут и 98°C в течение 10 минут. Геномный участок, фланкирующий целевой сайт CRISPR каждого гена, амплифипировали с помощью ПЦР (праймеры перечислены в таблице Е) и продукты очищали с применением колонки QiaQuick Spin Column (Qiagen), следуя протоколу производителя. В общей сложности 400 нг очищенных ПЦР-продуктов смешивали с 2 мкл 10Х ПЦР-буфера для ДНК- полимеразы Taq (Enzymatics) и воды сверхвысокой чистоты до конечного объема 20 мкл и подвергали процессу повторного отжига для обеспечения образования гетеродуплекса: 95°C в течение 10 мин., линейное снижение температуры с 95°C до 85°C со скоростью 2°C/с, с 85°C до 25°C со скоростью 0,25°C/с и с выдерживанием при 25°C в течение 1 минуты. После повторного отжига продукты обрабатывали нуклеазой SURVEYOR и энхансером S SURVEYOR (Transgenomics), следуя рекомендованному производителем протоколу, и анализировали в 4-20% полиакриламидных гелях Novex ТВЕ (Life Technologies). Гели окрашивали красителем ДНК SYBR Gold (Life Technologies) в течение 30 минут и получали изображение с помощью системы обработки изображений Gel Doc gel imaging system (Bio-rad). Количественный анализ основывался на относительных интенсивностях полос.
Вычислительная идентификация уникальных целевых сайтов CRISPR
Для идентификации уникальных целевых сайтов для фермента Cas9 (SpCas9) S. pyogenes SF370 в геноме человека, мыши, крысы, данио, плодовой мухи и С. elegans был разработан пакет программ для сканирования обеих нитей последовательности ДНК и идентификации всех возможных целевых сайтов SpCas9. Для этого примера каждый целевой сайт SpCas9 был оперативно определен как последовательность из 20 п.о., за которой следует последовательность мотива, смежного с протоспейсером, (РАМ) NGG, при этом были определены все последовательности, удовлетворяющие определению 5'-N20-NGG-3' на всех хромосомах. Для предотвращения неспецифического редактирования генома после идентификации всех потенциальных сайтов все целевые сайты фильтровали, исходя из количества раз, когда они встречаются в соответствующем эталонном геноме. Для того чтобы извлечь пользу из специфичности к последовательности активности Cas9, обеспечиваемой "затравочной" последовательностью, которой может быть, например, последовательность из приблизительно 11-12 п.о. 5' от последовательности РАМ, при этом последовательности 5'-NNNNNNNNNN-NGG-3' выбирали как уникальные в соответствующем геноме. Все геномные последовательности загружали из геномного браузера UCSC (геном человека hg19, геном мыши mm9, геном крысы rn5, геном данио danRer7, геном D. melanogaster dm4 и геном С. elegans се10). Все результаты поиска доступны для просмотра с использованием информации из геномного браузера UCSC. Иллюстративная визуализация некоторых целевых сайтов в геноме человека представлена на фигуре 22.
Первоначально целенаправленному воздействию подвергали три сайта в пределах локуса ЕМХ1 в клетках HEK 293FT человека. Эффективность модификации генома каждой сhiРНК оценивали с использованием анализа с помощью нуклеазы SURVEYOR, который позволяет обнаруживать мутации, возникающие в результате двухцепочечных разрывов (DSB) ДНК и их последующей репарации с помощью пути репарации повреждения ДНК за счет негомологичного соединения концов (NHEJ). В конструкциях, обозначенных chiRNA(+n), указывается, что нуклеотиды в количестве до +n нуклеотида tracrRNA дикого типа включены в химерную РНК-конструкцию, при этом для n используются значения 48, 54, 67 и 85. Химерные РНК, содержащие более длинные фрагменты tracrRNA дикого типа (chiRNA(+67) и chiRNA(+85)), опосредовали расщепление ДНК во всех трех целевых сайтах ЕМХ1, причем chiRNA(+85), в частности, демонстрировал значительно более высокие уровни расщепления ДНК, чем соответствующие гибриды crRNA/tracrRNA, у которых направляющие и tracr-последовательности экспрессируются в отдельных транскриптах (фигуры 10b и 10а). Два сайта в локусе PVALB, которые не давали обнаруживаемого расщепления с использованием гибридной системы (направляющая последовательность и tracr-последовательность, экспрессируемые в виде отдельных транскриптов), также подвергались целенаправленному воздействию с использованием chiRNA. chiRNA(+67) и chiRNA(+85) были способны опосредовать значительное расщепление в двух протоспейсерах в PVALB (фигуры 10с и 10b).
Для всех пяти мишеней в локусах ЕМХ1 и PVALB наблюдали соответствующее повышение эффективности модификации генома с увеличением длины tracr-последовательности. Не вдаваясь в какую-либо теорию, вторичная структура, формируемая 3' концом tracrRNA, может играть роль в увеличении скорости образования комплекса CRISPR. Иллюстрация предсказанных вторичных структур для каждой химерной РНК, использованной в этом примере, представлена на фигуре 21. Вторичную структуру предсказывали с применением RNAfold (http://RNA.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) с использованием минимальной свободной энергии и алгоритма функции распределения. Псевдоцвет для каждого основания (воспроизведен в серой шкале) указывает на возможность спаривания. По причине того, что chiRNA с более длинными tracr-последовательностями были способны расщеплять мишени, которые не были расщеплены нативными гибридами crRNA/tracrRNA CRISPR, возможно, что химерная РНК может загружаться на Cas9 более эффективно, чем ее нативный гибридный аналог. Для обеспечения применения Cas9 для сайт-специфического редактирования генома в эукариотических клетках и организмах все предсказанные уникальные целевые сайты для Cas9 S. pyogenes определяли путем вычислений в геномах человека, мыши, крысы, данио, С. elegans и D. melanogaster. Химерные РНК можно разрабатывать для ферментов Cas9 из других микроорганизмов для расширения целевого пространства CRISPR РНК-программируемых нуклеаз.
На фигурах 11 и 21 показаны примерные бицистронные векторы экспрессии для экспрессии химерной РНК, включающие tracr-последовательность РНК дикого типа вплоть до нуклеотида +85 и SpCas9 с последовательностями ядерной локализации SpCas9 экспрессируется с промотора CBh и терминируется polyA-сигналом bGH (bGH рА). Расширенная последовательность, показанная непосредственно под схематическим изображением, соответствует участку, окружающему направляющую последовательность сайта встраивания, и включает от 5' до 3', 3'-часть промотора U6 (первый заштрихованный участок), сайты расщепления BbsI (стрелки), неполный прямой повтор (парная tracr-последовательность GTTTTAGAGCTA, подчеркнутая), последовательность петли GAAA и +85 tracr-последовательность (подчеркнутая последовательность, следующая за последовательностью петли). Иллюстративное встраивание направляющей последовательности изображено ниже сайта встраивания направляющей последовательности, при этом нуклеотиды направляющей последовательности для выбранной мишени представлены как "N".
Последовательности, описанные в приведенных выше примерах, представляют собой следующие (полинуклеотидные последовательности представлены от 5' к 3').
U6 с короткой tracrRNA (Streptococcuspyogenes SF370):
(жирный шрифт = последовательность tracrRNA; подчеркивание = терминаторная последовательность).
U6 с длинной tracrRNA (Streptococcus pyogenes SF370):
U6-DR-BbsI-остов-DR (Streptococcus pyogenes SF370):
U6-химерная PHK-BbsI-остов (Streptococcus pyogenes SF370)
NLS-SpCas9-EGFP:
NLS-SpCas9-EGFP-NLS:
NLS-SpCas9-NLS:
SpRNase3-mCherry-NLS:
NLS-SpCas9n-NLS (D10A мутация никазы представлена в нижнем регистре):
hEMX1-HR-матрица-HindII-NheI:
U6-St_tracrRNA(7-97):
U6-DR-спейсер-DR (S. pyogenes SF370)
(нижний регистр, подчеркивание - прямой повтор; N = направляющая последовательность; жирный шрифт = терминатор).
Химерная РНК, содержащая +48 tracr RNA (S. pyogenes SF370)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Химерная РНК, содержащая +54 tracr RNA (S. pyogenes SF370)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Химерная РНК, содержащая +67 tracr RNA (S. pyogenes SF370)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор) Химерная РНК, содержащая +85 tracr RNA (S. pyogenes SF370)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
CBh-NLS-SpCas9-NLS
Иллюстративная химерная РНК для Cas9 из CRISPR1 LMD-9 S. thermophilus (с РАМ NNAGAAW)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Иллюстративная химерная РНК для Cas9 из CRISPR1 LMD-9 S. thermophilus (с РАМ NNAGAAW)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Иллюстративная химерная РНК для Cas9 из CRISPR1 LMD-9 S. thermophilus (с РАМ NNAGAAW)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Иллюстративная химерная РНК для Cas9 из CRISPR1 LMD-9 S. thermophilus (с РАМ NNAGAAW)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Иллюстративная химерная РНК для Cas9 из CRISPR1 LMD-9 S. thermophilus (с РАМ NNAGAAW)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Иллюстративная химерная РНК для Cas9 из CPJSPR1 LMD-9 S. thermophilus (с РАМ NNAGAAW)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Иллюстративная химерная РНК для Cas9 из CRISPR1 LMD-9 S. thermophilus (с РАМ NNAGAAW)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Иллюстративная химерная РНК для Cas9 из CRISPR1 LMD-9 £ thermophilus (с РАМ NNAGAAW)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Иллюстративная химерная РНК для Cas9 из CRISPR1 LMD-9 S. thermophilus (с РАМ NNAGAAW)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Иллюстративная химерная РНК для Cas9 из CRISPR1 LMD-9 S. thermophilus (с РАМ NGGNG)
(N = направляющая последовательность; первое подчеркивание = парная tracr-последовательность; второе подчеркивание = tracr-последовательность; жирный шрифт = терминатор).
Кодон-ошимизированный вариант Cas9 из локуса CRISPR3 LMD-9 S. thermophilus (с NLS и на 5'-, и на 3'-концах)
Пример 5: оптимизация направляющей РНК для Cas9 Streptococcus pyogenes (называемого SpCas9)
Авторы данной заявки вносили мутации в tracrRNA и последовательности прямых повторов или вносили мутации в химерную направляющую РНК для повышения экспрессии РНК в клетках.
Оптимизация основана на наблюдении, что присутствовали фрагменты тимина (Ts) в tracrRNA и направляющей РНК, которые могли приводить к ранней терминации транскрипции посредством промотора pol 3. Таким образом заявители создавали следующие оптимизированные последовательности. Оптимизированная tracrRNA и соответствующий оптимизированный прямой повтор представлены в парах.
Оптимизированная tracrRNA 1 (мутация подчеркнута):
Оптимизированная tracrRNA 2 (мутация подчеркнута):
Оптимизированный прямой повтор 2 (мутация подчеркнута):
Авторы данной заявки также оптимизировали химерную направляющую РНК для оптимальной активности в эукариотических клетках. Исходная направляющая РНК:
Оптимизированная химерная направляющая последовательность РНК 1:
Оптимизированная химерная направляющая последовательность РНК 2:
Оптимизированная химерная направляющая последовательность РНК 3:
Авторы данной заявки показали, что оптимизированная химерная направляющая РНК работает лучше, как показано на фигуре 9. Эксперимент проводили путем котрансфекции клеток 293FT Cas9 и ДНК-кассетой с U6-направляющей РНК для экспрессии одной из четырех форм РНК, показанных выше. Мишень направляющей РНК является таким же целевым сайтом в локусе ЕМХ1 человека: "GTCACCTCCAATGACTAGGG".
Пример 6: оптимизация Cas9 из CRISPR1 LMD-9 Streptococcus thermophilus (называемого St1Cas9)
Авторы данной заявки разрабатывали направляющие химерные РНК, как показано на фигуре 12.
Направляющие РНК St1Cas9 можно подвергать такому же типу оптимизации, как и направляющие РНК SpCas9, путем разрушения политиминовых фрагментов (Ts).
Пример 7: улучшение системы Cas9 для применения in vivo
Авторы данной заявки проводили поиск с использованием метагеномного подхода в отношении Cas9 с малым молекулярным весом. Большинство гомологов Cas9 являются достаточно большими. Например, SpCas9 имеет длину около 1368 а.к., что слишком много для легкой упаковки в вирусные векторы для доставки. Некоторые из последовательностей могли быть неверно аннотированы, и, таким образом, точная частота каждой длины не обязательно может быть достоверной. Тем не менее она дает некоторое представление о распределении белков Cas9 и указывает на то, что существуют более короткие гомологи Cas9.
С помощью анализа на основе расчетов авторы данной заявки обнаружили, что у штамма бактерии Campylobacter присутствуют два белка Cas9 с менее чем 1000 аминокислот. Последовательность для одного Cas9 из Campylobacter jejuni представлена ниже. При такой длине CjCas9 может быть легко упакован в AAV, лентивирусы, аденовирусы и другие вирусные векторы для надежной доставки в первичные клетки и in vivo в животные модели.
>Cas9 Campylobacter jejuni (CjCas9)
Последовательность прямого повтора представляет собой:
Совместно свернутая структура tracrRNA и прямой повтор представлены на фигуре 6.
Пример химерной направляющей РНК для CjCas9 представляет собой:
Авторы данной заявки также оптимизировали направляющую РНК для Cas9 с применением способов in vitro. На фигуре 18 показаны данные, полученные в результате in vitro оптимизации химерной направляющей РНК St1Cas9.
Несмотря на то, что предпочтительные варианты осуществления настоящего изобретения были показаны и описаны в данном документе, для специалиста в данной области будет очевидно, что такие варианты осуществления предоставлены только в качестве примера. Многочисленные вариации, изменения и замены теперь будут очевидны для специалиста в данной области без отступления от сути настоящего изобретения. Следует понимать, что различные альтернативные варианты вариантов осуществления настоящего изобретения, раскрытые в данном документе, можно применять при практическом осуществлении настоящего изобретения. Предполагают, что следующая формула изобретения определяет объем настоящего изобретения, и что, таким образом, охвачены способы и структуры в пределах объема данной формулы изобретения и их эквиваленты.
Пример 8: оптимизация Sa sgRNA
Авторы данной заявки разрабатывали пять вариантов sgRNA для SaCas9 для оптимальной усеченной архитектуры с наивысшей эффективностью расщепления. Кроме того, дуплексную систему нагивный прямой повтор : tracr исследовали совместно с sgRNA. Гиды с указанными длинами совместно трансфицировали SaCas9 и исследовали в клетках HEK 293FT в отношении активности. Посредством в общей сложности 100 нг sgRNA U6-ПЦР-ампликона (или 50 нг прямого повтора и 50 нг tracrRNA) и 400 нг плазмид с SaCas9 совместно трансфицировали 200000 гепатоцитов мыши Hepa1-6 и ДНК собирали через 72 часа после трансфекции для анализа при помощи SURVEYOR. Результаты показаны на фиг. 23.
Библиографические ссылки:
1. Urnov, F.D., Rebar, E.J., Holmes, М.С., Zhang, H.S. & Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636-646 (2010).
2. Bogdanove, A.J. & Voytas, D.F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843-1846 (2011).
3. Stoddard, B.L. Homing endonuclease structure and function. Q. Rev. Biophys. 38, 49-95 (2005).
4. Bae, T. & Schneewind, O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55, 58-63 (2006).
5. Sung, C.K., Li, H., Claverys, J.P. & Morrison, D.A. An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl. Environ. Microbiol. 67,5190-5196(2001).
6. Sharan, S.K., Thomason, L.C., Kuznetsov, S.G. & Court, D.L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206-223 (2009).
7. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
8. Deveau, H., Garneau, J.E. & Moineau, S. CRISPR-Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64, 475-493 (2010).
9. Horvath, P. & Barrangou, R. CRISPR-Cas, the immune system of bacteria and archaea. Science 327,167-170 (2010).
10. Terns, M.P. & Terns, R.M. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14, 321-327 (2011).
11. van der Oost, I., Jore, M.M., Westra, E.R., Lundgren, M. & Brouns, S.J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends. Biochem. Sci. 34, 401-407 (2009).
12. Brouns, S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964 (2008).
13. Carte, J., Wang, R., Li, H., Terns, R.M. & Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489-3496 (2008).
14. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011).
15. Hatoum-Asian, A., Maniv, I. & Marraffini, L.A. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc. Natl. Acad. Sci. U.S.A. 108, 21218-21222 (2011).
16. Haurwitz, R.E., Jinek, M., Wiedenheft, В., Zhou, K. & Doudna, J.A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329,1355-1358 (2010).
17. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190,1390-1400 (2008).
18. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. (2012).
19. Makarova, K.S., Aravind, L., Wolf, Y.I. & Koonin, E.V. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct. 6,38(2011).
20. Barrangou, R. RNA-mediated programmable DNA cleavage. Nat. Biotechnol. 30, 836-838 (2012).
21. Brouns, S.J. Molecular biology. A Swiss army knife of immunity. Science 337, 808-809 (2012).
22. Carroll, D. A CRISPR Approach to Gene Targeting. Mol. Ther. 20, 1658-1660 (2012).
23. Bikard, D., Hatoum-Aslan, A., Mucida, D. & Marraffrni, L.A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12,177-186 (2012).
24. Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR-Cas system provides immunity in Escherichia coli. Nucleic Acids Res. (2011).
25. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad Sci. U.S.A. (2011).
26. Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl. Acad. Sci. U.S.A. (2011).
27. Zahner, D. & Hakenbeck, R. The Streptococcus pneumoniae beta-galactosidase is a surface protein. J. Bacteriol. 182, 5919-5921 (2000).
28. Marraffrni, L.A., Dedent, A.C. & Schneewind, O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol. Mol. Biol. Rev. 70, 192-221 (2006).
29. Motamedi, M.R., Szigety, S.K. & Rosenberg, S.M. Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo. Genes Dev. 13, 2889-2903 (1999).
30. Hosaka, T. et al. The novel mutation K87E in ribosomal protein S12 enhances protein synthesis activity during the late growth phase in Escherichia coli. Mol. Genet. Genomics 271, 317-324(2004).
31. Costantino, N. & Court, D.L. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc. Natl. Acad. Sci. U.S.A. 100, 15748-15753 (2003).
32. Edgar, R. & Qimron, U. The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. J. Bacteriol. 192, 6291-6294 (2010).
33. Marraffini, L.A. & Sontheimer, E.J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568-571 (2010).
34. Fischer, S. et al. An archaeal immune system can detect multiple Protospacer Adjacent Motifs (PAMs) to target invader DNA. J. Biol. Chem. 287, 33351-33363 (2012).
35. Gudbergsdottir, S. et al. Dynamic properties of the Sulfolobus CRISPR-Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol. Microbiol. 79, 35-49 (2011).
36. Wang, H.H. et al. Genome-scale promoter engineering by coselection MAGE. Nat Methods 9, 591-593 (2012).
37. Cong, L. et al. Multiplex Genome Engineering Using CRISPR-Cas Systems. Science в печати (2013).
38. Mali, P. et al. RNA-Guided Human Genome Engineering via Cas9. Science в печати (2013).
39. Hoskins, J. et al. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183, 5709-5717 (2001).
40. Havarstein, L.S., Coomaraswamy, G. & Morrison, D.A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. U.S.A. 92, 11140-11144 (1995).
41. Horinouchi, S. & Weisblum, B. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J. Bacteriol. 150, 815-825 (1982).
42. Horton, R.M. In Vitro Recombination and Mutagenesis of DNA: SOEing Together Tailor-Made Genes. Methods Mol. Biol. 15, 251-261 (1993).
43. Podbielski, A., Spellerberg, В., Woischnik, M., Pohl, B. & Lutticken, R. Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS). Gene 177, 137-147 (1996).
44. Husmann, L.K., Scott, J.R., Lindahl, G. & Stenberg, L. Expression of the Arp protein, a member of the M protein family, is not sufficient to inhibit phagocytosis of Streptococcus pyogenes. Infection and immunity 63, 345-348 (1995).
45. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343-345 (2009).
46. Tangri S, et al. ("Rationally engineered therapeutic proteins with reduced immunogenicity" J Immunol. 2005 Mar 15; 174(6): 3187-96.
* * * *
Несмотря на то, что предпочтительные варианты осуществления настоящего изобретения были показаны и описаны в данном документе, для специалиста в данной области будет очевидно, что такие варианты осуществления предоставлены только в качестве примера. Многочисленные вариации, изменения и замены будут теперь будут очевидны для специалиста в данной области без отступления от сути настоящего изобретения. Следует понимать, что различные альтернативные варианты вариантов осуществления настоящего изобретения, раскрытые в данном документе, можно применять при практическом осуществлении настоящего изобретения.
Claims (64)
1. Сконструированная система CRISPR-Cas для редактирования генома в эукариотической клетке, содержащая:
белок Cas9, содержащий по меньшей мере одну последовательность ядерной локализации, и
химерную РНК (chiRNA) системы CRISPR-Cas, содержащую:
(a) направляющую последовательность, способную гибридизироваться с целевой последовательностью в эукариотической клетке,
(b) парную tracr-последовательность, способную гибридизоваться с tracr-последовательностью, и
(c) tracr-последовательность,
где (a), (b) и (c) расположены в 5’-3’ ориентации,
где одна или несколько из направляющей, tracr- и парной tracr-последовательностей модифицированы для повышения стабильности и где необязательно белок Cas9 образует комплекс с химерной РНК (chiRNA) системы CRISPR-Cas.
2. Система CRISPR-Cas по п. 1, где модификация включает сконструированную вторичную структуру.
3. Система CRISPR-Cas по п. 1, где модификация включает уменьшение участка гибридизации между парной tracr-последовательностью и tracr-последовательностью.
4. Система CRISPR-Cas по п. 1, где модификация включает слияние парной tracr- последовательности и tracr-последовательности посредством искусственной петли.
5. Система CRISPR-Cas п. 1, где модификация включает tracr-последовательность длиной от 40 до 120 п.о.
6. Система CRISPR-Cas п. 1, где tracr-последовательность составляет от 40 п.о. до полной длины tracr.
7. Система CRISPR-Cas по п. 1, где tracr-последовательность включает по меньшей мере нуклеотиды 1-67 соответствующей tracrRNA дикого типа.
8. Система CRISPR-Cas п. 1, где tracr-последовательность включает по меньшей мере нуклеотиды 1-85 соответствующей tracrRNA дикого типа.
9. Система CRISPR-Cas по п. 1, где tracr-последовательность содержит нуклеотиды, соответствующие нуклеотидам 1-67 tracrRNA Cas9 S. pyogenes дикого типа.
10. Система CRISPR-Cas по п. 1, где tracr-последовательность содержит нуклеотиды, соответствующие нуклеотидам 1-85 tracrRNA Cas9 S. pyogenes дикого типа.
11. Система CRISPR-Cas по п. 9, где tracr-последовательность состоит, по сути, из нуклеотидов, соответствующих нуклеотидам 1-67 tracrRNA Cas9 S. pyogenes дикого типа.
12. Система CRISPR-Cas по п. 10, где tracr-последовательность состоит, по сути, из нуклеотидов, соответствующих нуклеотидам 1-85 tracrRNA Cas9 S. pyogenes дикого типа.
13. Система CRISPR-Cas по п. 1, где модификация включает оптимизацию последовательности.
14. Система CRISPR-Cas по п. 13, где модификация включает уменьшение полиТ-последовательностей в tracr- и/или парной tracr-последовательностях.
15. Система CRISPR-Cas по п. 14, где один или несколько T, присутствующие в полиТ-последовательности, соответствующей последовательности дикого типа, были заменены на отличный от Т нуклеотид.
16. Система CRISPR-Cas по пп. 13, 14 или 15, где модифицированная последовательность не содержит какую-либо полиТ-последовательность, имеющую более 4 смежных T.
17. Система CRISPR-Cas по п. 1, где модификация включает добавление терминаторной полиТ-последовательности.
18. Система CRISPR-Cas по п. 17, где модификация включает добавление терминаторной полиТ-последовательности в tracr- и/или парную tracr-последовательности.
19. Система CRISPR-Cas по п. 17 или 18, где модификация включает добавление терминаторной полиТ-последовательности в направляющую последовательность.
20. Система CRISPR-Cas по п. 1, где модификация включает изменение петель и/или "шпилек".
21. Система CRISPR-Cas по п. 20, где модификация включает обеспечение минимум двух "шпилек" в направляющей последовательности.
22. Система CRISPR-Cas по п. 20 или 21, где модификация включает обеспечение "шпильки", образованной при помощи комплементации между tracr- и парной tracr-последовательностями.
23. Система CRISPR-Cas по п. 20 или 21, где модификация включает обеспечение одной или нескольких дополнительных "шпилек" на 3'-конце последовательности tracrRNA.
24. Система CRISPR-Cas по п. 20 или 21, где модификация включает обеспечение одной или нескольких дополнительных "шпилек", добавленных на 3' направляющей последовательности.
25. Система CRISPR-Cas по п. 1, где модификация включает удлинение 5'-конца направляющей последовательности.
26. Система CRISPR-Cas по п. 25, где модификация включает обеспечение одной или нескольких "шпилек" на 5'-конце направляющей последовательности.
27. Система CRISPR-Cas по п. 25 или 26, где модификация включает введение последовательности (5'-AGGACGAAGTCCTAA) на 5'-конце направляющей последовательности.
28. Система CRISPR-Cas по п. 1, где модификация включает обеспечение образования перекрестных связей или обеспечение одного или нескольких модифицированных нуклеотидов в полинуклеотидной последовательности.
29. Система CRISPR-Cas по п. 28, где модифицированные нуклеотиды предусматриваются в любой или во всех из tracr-, парной tracr- и/или направляющей последовательностей.
30. Система CRISPR-Cas по п. 28 или 29, где обеспечение модифицированных нуклеотидов предусматривает включение по меньшей мере одного не встречающегося в природе нуклеотида, или модифицированного нуклеотида, или их аналогов.
31. Система CRISPR-Cas по п. 30, где модифицированные нуклеотиды модифицированы по компоненту, представляющему собой рибозу, фосфат и/или основание.
32. Система CRISPR-Cas по п. 30, где модифицированный нуклеотид выбран из группы, состоящей из 2'-O-метил-аналогов, 2'-дезокси-аналогов или 2'-фтор-аналогов.
33. Система CRISPR-Cas по п. 30, где модифицированный нуклеотид выбран из группы, состоящей из 2-аминопурина, 5-бромуридина, псевдоуридина, инозина, 7-метилгуанозина.
34. Система CRISPR-Cas по п. 1, где модификация включает две "шпильки".
35. Система CRISPR-Cas по п. 1, где модификация включает три "шпильки".
36. Система CRISPR-Cas по п. 1, где модификация включает самое большее пять "шпилек".
37. Система CRISPR-Cas по п. 1, где белок Cas9 является SpCas9.
38. Система CRISPR-Cas по п. 1, где белок Cas9 является SaCas9.
39. Система CRISPR-Cas по п. 1, где белок Cas9 состоит менее чем из одной тысячи аминокислот.
40. Система CRISPR-Cas по п. 1, где белок Cas9 состоит менее чем из четырех тысяч аминокислот.
41. Система CRISPR-Cas по п. 1, где белок Cas9 представляет собой StCas9 или StlCas9.
42. Система CRISPR-Cas по п. 1, где белок Cas9 является ферментом Cas9 из организма, выбранного из группы, состоящей из рода Streptococcus, Campylobacter, Nitratifractor, Staphylococcus, Parvibaculum, Roseburia, Neisseria, Gluconacetobacter, Azospirillum, Sphaerochaeta, Lactobacillus, Eubacterium или Corynebacter.
43. Система CRISPR-Cas по п. 1, где белок Cas9 является нуклеазой, управляющей расщеплением обеих нитей в определенной точке целевой последовательности.
44. Система CRISPR-Cas по п. 1, где направляющая последовательность содержит по меньшей мере пятнадцать нуклеотидов.
45. Система CRISPR-Cas по п. 1, где модификация включает оптимизированную tracr-последовательность и/или оптимизированную направляющую последовательность РНК, и/или совместно свернутую структуру tracr-последовательности и/или парной(ых) tracr-последовательности(ей), и/или стабилизирующие вторичные структуры tracr-последовательности, и/или tracr-последовательности с уменьшенным участком спаривания оснований, и/или tracr-последовательность, слитую с элементами РНК.
46. Система CRISPR-Cas по любому из пп. 1-45, где белок Cas9 кодон-оптимизирован для экспрессии в эукариотической клетке.
47. Сконструированная векторная система CRISPR-Cas для модификации целевой последовательности в эукариотической клетке, содержащая один или несколько векторов, содержащих:
I. первый регуляторный элемент, функционально связанный с нуклеотидной последовательностью, кодирующей химерную РНК (chiRNA) системы CRISPR-Cas, содержащую:
(a) направляющую последовательность, способную гибридизироваться с целевой последовательностью в эукариотической клетке,
(b) парную tracr-последовательность, способную гибридизоваться с tracr-последовательностью, и
(c) tracr-последовательность,
где (a), (b) и (c) расположены в 5’-3’ ориентации, и
II. второй регуляторный элемент, функционально связанный с нуклеотидной последовательностью, кодирующей белок Cas9, содержащий по меньшей мере одну последовательность ядерной локализации,
где компоненты I и II находятся в одном и том же или в разных векторах системы,
где одна или несколько из направляющей, tracr- и парной tracr-последовательностей модифицированы для повышения стабильности.
48. Векторная система по п. 47, где компоненты I и II находятся в одном и том же векторе системы.
49. Векторная система по п. 47, где первый регуляторный элемент является промотором полимеразы II или промотором полимеразы III.
Applications Claiming Priority (25)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261736527P | 2012-12-12 | 2012-12-12 | |
US61/736,527 | 2012-12-12 | ||
US201361748427P | 2013-01-02 | 2013-01-02 | |
US61/748,427 | 2013-01-02 | ||
US201361758468P | 2013-01-30 | 2013-01-30 | |
US61/758,468 | 2013-01-30 | ||
US201361769046P | 2013-02-25 | 2013-02-25 | |
US61/769,046 | 2013-02-25 | ||
US201361802174P | 2013-03-15 | 2013-03-15 | |
US201361791409P | 2013-03-15 | 2013-03-15 | |
US61/791,409 | 2013-03-15 | ||
US61/802,174 | 2013-03-15 | ||
US201361806375P | 2013-03-28 | 2013-03-28 | |
US61/806,375 | 2013-03-28 | ||
US201361814263P | 2013-04-20 | 2013-04-20 | |
US61/814,263 | 2013-04-20 | ||
US201361819803P | 2013-05-06 | 2013-05-06 | |
US61/819,803 | 2013-05-06 | ||
US201361828130P | 2013-05-28 | 2013-05-28 | |
US61/828,130 | 2013-05-28 | ||
US201361836127P | 2013-06-17 | 2013-06-17 | |
US201361835931P | 2013-06-17 | 2013-06-17 | |
US61/836,127 | 2013-06-17 | ||
US61/835,931 | 2013-06-17 | ||
PCT/US2013/074819 WO2014093712A1 (en) | 2012-12-12 | 2013-12-12 | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019127300A Division RU2796017C2 (ru) | 2012-12-12 | 2013-12-12 | Конструирование систем, способы и оптимизированные направляющие композиции для манипуляции с последовательностями |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2015128098A3 RU2015128098A3 (ru) | 2019-03-28 |
RU2015128098A RU2015128098A (ru) | 2019-03-28 |
RU2701850C2 true RU2701850C2 (ru) | 2019-10-01 |
Family
ID=49920627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015128098A RU2701850C2 (ru) | 2012-12-12 | 2013-12-12 | Конструирование систем, способы и оптимизированные направляющие композиции для манипуляции с последовательностями |
Country Status (16)
Country | Link |
---|---|
US (5) | US20140242664A1 (ru) |
EP (2) | EP4279588A3 (ru) |
JP (10) | JP2016504026A (ru) |
KR (1) | KR20150105633A (ru) |
CN (2) | CN105121648B (ru) |
AU (4) | AU2013359123B2 (ru) |
CA (1) | CA2894701A1 (ru) |
DK (1) | DK2771468T3 (ru) |
ES (4) | ES2536353T3 (ru) |
HK (5) | HK1202586A1 (ru) |
IL (2) | IL239344B2 (ru) |
MX (1) | MX2015007549A (ru) |
PL (2) | PL2771468T3 (ru) |
PT (4) | PT2896697E (ru) |
RU (1) | RU2701850C2 (ru) |
WO (1) | WO2014093712A1 (ru) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
Families Citing this family (571)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014163886A1 (en) | 2013-03-12 | 2014-10-09 | President And Fellows Of Harvard College | Method of generating a three-dimensional nucleic acid containing matrix |
US11021737B2 (en) | 2011-12-22 | 2021-06-01 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
GB201122458D0 (en) | 2011-12-30 | 2012-02-08 | Univ Wageningen | Modified cascade ribonucleoproteins and uses thereof |
US9637739B2 (en) * | 2012-03-20 | 2017-05-02 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
BR112014026294B1 (pt) | 2012-04-25 | 2021-11-23 | Regeneron Pharmaceuticals, Inc | Método para modificar um lócus genômico alvo em uma célula tronco embrionária (es) de camundongo |
EP2841572B1 (en) | 2012-04-27 | 2019-06-19 | Duke University | Genetic correction of mutated genes |
MA37663B1 (fr) | 2012-05-25 | 2019-12-31 | Univ California | Procédés et compositions permettant la modification de l'adn cible dirigée par l'arn et la modulation de la transcription dirigée par l'arn |
EP2861737B1 (en) | 2012-06-19 | 2019-04-17 | Regents Of The University Of Minnesota | Gene targeting in plants using dna viruses |
US10648001B2 (en) | 2012-07-11 | 2020-05-12 | Sangamo Therapeutics, Inc. | Method of treating mucopolysaccharidosis type I or II |
AU2013289206B2 (en) | 2012-07-11 | 2018-08-09 | Sangamo Therapeutics, Inc. | Methods and compositions for the treatment of lysosomal storage diseases |
WO2014018423A2 (en) * | 2012-07-25 | 2014-01-30 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
US10400280B2 (en) | 2012-08-14 | 2019-09-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10273541B2 (en) | 2012-08-14 | 2019-04-30 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9951386B2 (en) | 2014-06-26 | 2018-04-24 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9701998B2 (en) | 2012-12-14 | 2017-07-11 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10323279B2 (en) | 2012-08-14 | 2019-06-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11591637B2 (en) | 2012-08-14 | 2023-02-28 | 10X Genomics, Inc. | Compositions and methods for sample processing |
EP2885418A4 (en) | 2012-08-14 | 2016-03-02 | 10X Genomics Inc | MICROCAPSE COMPOSITIONS AND METHOD THEREFOR |
US10752949B2 (en) | 2012-08-14 | 2020-08-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
KR102052286B1 (ko) * | 2012-10-23 | 2019-12-06 | 주식회사 툴젠 | 표적 DNA에 특이적인 가이드 RNA 및 Cas 단백질을 암호화하는 핵산 또는 Cas 단백질을 포함하는, 표적 DNA를 절단하기 위한 조성물 및 이의 용도 |
PT2925864T (pt) | 2012-11-27 | 2019-02-06 | Childrens Medical Ct Corp | Elementos reguladores distais de bcl11a como alvo para a reindução de hemoglobina fetal |
DK3138910T3 (en) | 2012-12-06 | 2017-10-16 | Sigma Aldrich Co Llc | CRISPR-BASED RE-MODIFICATION AND REGULATION |
IL300461A (en) | 2012-12-12 | 2023-04-01 | Harvard College | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
ES2536353T3 (es) | 2012-12-12 | 2015-05-22 | The Broad Institute, Inc. | Ingeniería de sistemas, métodos y composiciones de guía optimizadas para manipulación de secuencias |
BR112015013786B1 (pt) | 2012-12-12 | 2022-03-15 | President And Fellows Of Harvard College | Sistemas de componente crispr-cas, métodos e composições para manipulação de sequência |
ES2701749T3 (es) | 2012-12-12 | 2019-02-25 | Broad Inst Inc | Métodos, modelos, sistemas y aparatos para identificar secuencias diana para enzimas Cas o sistemas CRISPR-Cas para secuencias diana y transmitir resultados de los mismos |
EP2784162B1 (en) | 2012-12-12 | 2015-04-08 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
DK2931898T3 (en) | 2012-12-12 | 2016-06-20 | Massachusetts Inst Technology | CONSTRUCTION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH FUNCTIONAL DOMAINS |
RU2721275C2 (ru) | 2012-12-12 | 2020-05-18 | Те Брод Инститьют, Инк. | Доставка, конструирование и оптимизация систем, способов и композиций для манипуляции с последовательностями и применения в терапии |
AU2013359165B2 (en) | 2012-12-14 | 2019-09-12 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10533221B2 (en) | 2012-12-14 | 2020-01-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
CA2895155C (en) | 2012-12-17 | 2021-07-06 | President And Fellows Of Harvard College | Rna-guided human genome engineering |
AU2014207618A1 (en) | 2013-01-16 | 2015-08-06 | Emory University | Cas9-nucleic acid complexes and uses related thereto |
CN105102697A (zh) | 2013-02-08 | 2015-11-25 | 10X基因组学有限公司 | 多核苷酸条形码生成 |
DK2971167T3 (da) | 2013-03-14 | 2019-11-04 | Caribou Biosciences Inc | Sammensætninger og fremgangsmåder til targeting af nucleinsyre med nucleinsyrer |
AU2014228981B2 (en) * | 2013-03-15 | 2019-11-28 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
US9234213B2 (en) | 2013-03-15 | 2016-01-12 | System Biosciences, Llc | Compositions and methods directed to CRISPR/Cas genomic engineering systems |
AU2014227831B2 (en) * | 2013-03-15 | 2020-01-30 | Regents Of The University Of Minnesota | Engineering plant genomes using CRISPR/Cas systems |
WO2014204578A1 (en) | 2013-06-21 | 2014-12-24 | The General Hospital Corporation | Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing |
US10760064B2 (en) | 2013-03-15 | 2020-09-01 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
CN115261411A (zh) | 2013-04-04 | 2022-11-01 | 哈佛学院校长同事会 | 利用CRISPR/Cas系统的基因组编辑的治疗性用途 |
ES2888250T3 (es) | 2013-04-16 | 2022-01-03 | Regeneron Pharma | Modificación direccionada del genoma de rata |
CA3176690A1 (en) | 2013-06-04 | 2014-12-11 | President And Fellows Of Harvard College | Rna-guided transcriptional regulation |
US20140356956A1 (en) * | 2013-06-04 | 2014-12-04 | President And Fellows Of Harvard College | RNA-Guided Transcriptional Regulation |
WO2014204729A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components |
KR20160030187A (ko) | 2013-06-17 | 2016-03-16 | 더 브로드 인스티튜트, 인코퍼레이티드 | 간의 표적화 및 치료를 위한 CRISPRCas 시스템, 벡터 및 조성물의 전달 및 용도 |
EP3011033B1 (en) | 2013-06-17 | 2020-02-19 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof |
EP3011030B1 (en) | 2013-06-17 | 2023-11-08 | The Broad Institute, Inc. | Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation |
CN106062197A (zh) | 2013-06-17 | 2016-10-26 | 布罗德研究所有限公司 | 用于序列操纵的串联指导系统、方法和组合物的递送、工程化和优化 |
US10349733B2 (en) | 2013-06-19 | 2019-07-16 | Kolibree | Toothbrush system with sensors for a dental hygiene monitoring system |
WO2015006498A2 (en) * | 2013-07-09 | 2015-01-15 | President And Fellows Of Harvard College | Therapeutic uses of genome editing with crispr/cas systems |
JP7019233B2 (ja) * | 2013-07-11 | 2022-02-15 | モデルナティエックス インコーポレイテッド | CRISPR関連タンパク質をコードする合成ポリヌクレオチドおよび合成sgRNAを含む組成物ならびに使用方法 |
MX361154B (es) | 2013-08-22 | 2018-11-28 | Pioneer Hi Bred Int | Modificación del genoma usando sistemas guía de polinucleótido/cas endonucleasa y métodos de uso. |
EP3988649A1 (en) | 2013-09-18 | 2022-04-27 | Kymab Limited | Methods, cells and organisms |
WO2015054507A1 (en) | 2013-10-10 | 2015-04-16 | Pronutria, Inc. | Nutritive polypeptide production systems, and methods of manufacture and use thereof |
WO2015065964A1 (en) | 2013-10-28 | 2015-05-07 | The Broad Institute Inc. | Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof |
JP2016536021A (ja) | 2013-11-07 | 2016-11-24 | エディタス・メディシン,インコーポレイテッド | CRISPR関連方法および支配gRNAのある組成物 |
BR112016013400B1 (pt) | 2013-12-11 | 2023-02-14 | Regeneron Pharmaceuticals, Inc. | Método in vitro para modificar um genoma em um lócus genômico de interesse em uma célula pluripotente |
KR20160089527A (ko) | 2013-12-12 | 2016-07-27 | 더 브로드 인스티튜트, 인코퍼레이티드 | 게놈 편집을 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료적 응용 |
EP3080261B1 (en) | 2013-12-12 | 2019-05-22 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
WO2015089364A1 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Crystal structure of a crispr-cas system, and uses thereof |
JP2017501149A (ja) | 2013-12-12 | 2017-01-12 | ザ・ブロード・インスティテュート・インコーポレイテッド | 粒子送達構成成分を用いた障害及び疾患の標的化のためのcrispr−cas系及び組成物の送達、使用及び治療適用 |
WO2015089486A2 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems |
EP3653704A1 (en) | 2013-12-12 | 2020-05-20 | The Broad Institute, Inc. | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
EP4219699A1 (en) | 2013-12-12 | 2023-08-02 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation |
WO2015089427A1 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Crispr-cas systems and methods for altering expression of gene products, structural information and inducible modular cas enzymes |
EP4063503A1 (en) | 2014-02-11 | 2022-09-28 | The Regents of the University of Colorado, a body corporate | Crispr enabled multiplexed genome engineering |
JP2017506893A (ja) | 2014-02-18 | 2017-03-16 | デューク ユニバーシティ | ウイルス複製不活化組成物並びにその製造方法及び使用 |
EP3971283A1 (en) | 2014-02-27 | 2022-03-23 | Monsanto Technology LLC | Compositions and methods for site directed genomic modification |
JP2017508457A (ja) | 2014-02-27 | 2017-03-30 | ザ・ブロード・インスティテュート・インコーポレイテッド | T細胞バランス遺伝子発現、組成物およびその使用方法 |
EP3957735A1 (en) | 2014-03-05 | 2022-02-23 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa |
WO2015133554A1 (ja) | 2014-03-05 | 2015-09-11 | 国立大学法人神戸大学 | 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 |
US11141493B2 (en) | 2014-03-10 | 2021-10-12 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
US11339437B2 (en) | 2014-03-10 | 2022-05-24 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
DK3116997T3 (da) | 2014-03-10 | 2019-08-19 | Editas Medicine Inc | Crispr/cas-relaterede fremgangsmåder og sammensætninger til behandling af lebers kongenitale amaurose 10 (lca10) |
WO2015148863A2 (en) | 2014-03-26 | 2015-10-01 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating sickle cell disease |
MX2016012492A (es) | 2014-03-26 | 2017-06-26 | Univ Maryland | Edicion de genoma dirigida en cigotos de animales grandes domesticos. |
EP3126497B1 (en) * | 2014-04-01 | 2018-12-12 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus type 1 (hsv-1) |
CN106413896B (zh) | 2014-04-10 | 2019-07-05 | 10X基因组学有限公司 | 用于封装和分割试剂的流体装置、系统和方法及其应用 |
KR102390629B1 (ko) | 2014-04-25 | 2022-04-26 | 칠드런'즈 메디컬 센터 코포레이션 | 헤모글로빈병증을 치료하기 위한 조성물 및 방법 |
WO2015184262A1 (en) | 2014-05-30 | 2015-12-03 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods of delivering treatments for latent viral infections |
CA2952121A1 (en) | 2014-06-13 | 2015-12-17 | Childrens' Medical Center Corporation | Products and methods to isolate mitochondria |
CA2953362A1 (en) | 2014-06-23 | 2015-12-30 | The General Hospital Corporation | Genomewide unbiased identification of dsbs evaluated by sequencing (guide-seq) |
WO2015200555A2 (en) * | 2014-06-25 | 2015-12-30 | Caribou Biosciences, Inc. | Rna modification to engineer cas9 activity |
CN106795553B (zh) | 2014-06-26 | 2021-06-04 | 10X基因组学有限公司 | 分析来自单个细胞或细胞群体的核酸的方法 |
CN106687594A (zh) | 2014-07-11 | 2017-05-17 | 纳幕尔杜邦公司 | 用于产生对草甘膦除草剂具有抗性的植物的组合物和方法 |
CN104195177B (zh) * | 2014-08-05 | 2017-06-09 | 南京大学 | 一种显著提高鱼类基因组编辑效率的方法 |
EP3686279B1 (en) | 2014-08-17 | 2023-01-04 | The Broad Institute, Inc. | Genome editing using cas9 nickases |
EP3183367B1 (en) | 2014-08-19 | 2019-06-26 | Pacific Biosciences Of California, Inc. | Compositions and methods for enrichment of nucleic acids |
CA2959070C (en) | 2014-08-27 | 2020-11-10 | Caribou Biosciences, Inc. | Methods for increasing cas9-mediated engineering efficiency |
WO2016036754A1 (en) | 2014-09-02 | 2016-03-10 | The Regents Of The University Of California | Methods and compositions for rna-directed target dna modification |
CA2956487A1 (en) | 2014-09-12 | 2016-03-17 | E. I. Du Pont De Nemours And Company | Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use |
WO2016049024A2 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo |
WO2016049251A1 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes |
WO2016049163A2 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder |
US10040048B1 (en) | 2014-09-25 | 2018-08-07 | Synthego Corporation | Automated modular system and method for production of biopolymers |
WO2016049258A2 (en) | 2014-09-25 | 2016-03-31 | The Broad Institute Inc. | Functional screening with optimized functional crispr-cas systems |
US20170247762A1 (en) | 2014-10-27 | 2017-08-31 | The Board Institute Inc. | Compositions, methods and use of synthetic lethal screening |
US9975122B2 (en) | 2014-11-05 | 2018-05-22 | 10X Genomics, Inc. | Instrument systems for integrated sample processing |
US11680268B2 (en) | 2014-11-07 | 2023-06-20 | Editas Medicine, Inc. | Methods for improving CRISPR/Cas-mediated genome-editing |
EP3218508A4 (en) * | 2014-11-10 | 2018-04-18 | Modernatx, Inc. | Multiparametric nucleic acid optimization |
KR101833433B1 (ko) * | 2014-11-25 | 2018-02-28 | 한국생명공학연구원 | 돼지 t 세포 및 b 세포 면역결핍 세포주 생산 및 그의 제조 방법 |
EP3224381B1 (en) | 2014-11-25 | 2019-09-04 | The Brigham and Women's Hospital, Inc. | Method of identifying a person having a predisposition to or afflicted with a cardiometabolic disease |
WO2016086227A2 (en) | 2014-11-26 | 2016-06-02 | The Regents Of The University Of California | Therapeutic compositions comprising transcription factors and methods of making and using the same |
GB201421096D0 (en) | 2014-11-27 | 2015-01-14 | Imp Innovations Ltd | Genome editing methods |
WO2016089866A1 (en) | 2014-12-01 | 2016-06-09 | President And Fellows Of Harvard College | Rna-guided systems for in vivo gene editing |
WO2016089433A1 (en) * | 2014-12-03 | 2016-06-09 | Agilent Technologies, Inc. | Guide rna with chemical modifications |
AU2015360502A1 (en) | 2014-12-10 | 2017-06-29 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
EP3230452A1 (en) | 2014-12-12 | 2017-10-18 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
EP3230451B1 (en) | 2014-12-12 | 2021-04-07 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
WO2016094880A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs) |
CA2970683A1 (en) | 2014-12-18 | 2016-06-23 | Integrated Dna Technologies, Inc. | Crispr-based compositions and methods of use |
WO2016100974A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing |
WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
WO2016106244A1 (en) | 2014-12-24 | 2016-06-30 | The Broad Institute Inc. | Crispr having or associated with destabilization domains |
WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
CN112126675B (zh) | 2015-01-12 | 2022-09-09 | 10X基因组学有限公司 | 用于制备核酸测序文库的方法和系统以及用其制备的文库 |
WO2016114972A1 (en) | 2015-01-12 | 2016-07-21 | The Regents Of The University Of California | Heterodimeric cas9 and methods of use thereof |
WO2016123243A1 (en) | 2015-01-28 | 2016-08-04 | The Regents Of The University Of California | Methods and compositions for labeling a single-stranded target nucleic acid |
CA2975166C (en) | 2015-01-28 | 2020-01-14 | Pioneer Hi-Bred International, Inc. | Crispr hybrid dna/rna polynucleotides and methods of use |
US20180030438A1 (en) | 2015-02-23 | 2018-02-01 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
WO2016135559A2 (en) | 2015-02-23 | 2016-09-01 | Crispr Therapeutics Ag | Materials and methods for treatment of human genetic diseases including hemoglobinopathies |
US10697000B2 (en) | 2015-02-24 | 2020-06-30 | 10X Genomics, Inc. | Partition processing methods and systems |
WO2016138488A2 (en) | 2015-02-26 | 2016-09-01 | The Broad Institute Inc. | T cell balance gene expression, compositions of matters and methods of use thereof |
US11261466B2 (en) | 2015-03-02 | 2022-03-01 | Sinai Health System | Homologous recombination factors |
US9944912B2 (en) | 2015-03-03 | 2018-04-17 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US20180112213A1 (en) * | 2015-03-25 | 2018-04-26 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
EP3553178A1 (en) | 2015-03-27 | 2019-10-16 | E. I. du Pont de Nemours and Company | Soybean u6 small nuclear rna gene promoters and their use in constitutive expression of small rna genes in plants |
ES2884838T3 (es) * | 2015-04-06 | 2021-12-13 | Univ Leland Stanford Junior | ARN guía químicamente modificados para la regulación génica mediada por CRISPR/CAS |
GB201506509D0 (en) | 2015-04-16 | 2015-06-03 | Univ Wageningen | Nuclease-mediated genome editing |
JP2018522249A (ja) | 2015-04-24 | 2018-08-09 | エディタス・メディシン、インコーポレイテッド | Cas9分子/ガイドrna分子複合体の評価 |
CA2988854A1 (en) | 2015-05-08 | 2016-11-17 | President And Fellows Of Harvard College | Universal donor stem cells and related methods |
WO2016182893A1 (en) | 2015-05-08 | 2016-11-17 | Teh Broad Institute Inc. | Functional genomics using crispr-cas systems for saturating mutagenesis of non-coding elements, compositions, methods, libraries and applications thereof |
ES2835861T3 (es) | 2015-05-08 | 2021-06-23 | Childrens Medical Ct Corp | Direccionamiento de regiones funcionales del potenciador de BCL11A para la reinducción de hemoglobina fetal |
WO2016182959A1 (en) | 2015-05-11 | 2016-11-17 | Editas Medicine, Inc. | Optimized crispr/cas9 systems and methods for gene editing in stem cells |
US10117911B2 (en) | 2015-05-29 | 2018-11-06 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
WO2016196655A1 (en) | 2015-06-03 | 2016-12-08 | The Regents Of The University Of California | Cas9 variants and methods of use thereof |
WO2016196887A1 (en) | 2015-06-03 | 2016-12-08 | Board Of Regents Of The University Of Nebraska | Dna editing using single-stranded dna |
US20180296537A1 (en) | 2015-06-05 | 2018-10-18 | Novartis Ag | Methods and compositions for diagnosing, treating, and monitoring treatment of shank3 deficiency associated disorders |
CA2986262A1 (en) | 2015-06-09 | 2016-12-15 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for improving transplantation |
US20160362667A1 (en) * | 2015-06-10 | 2016-12-15 | Caribou Biosciences, Inc. | CRISPR-Cas Compositions and Methods |
AU2016278959A1 (en) | 2015-06-17 | 2018-01-18 | The Uab Research Foundation | CRISPR/Cas9 complex for introducing a functional polypeptide into cells of blood cell lineage |
WO2016205728A1 (en) | 2015-06-17 | 2016-12-22 | Massachusetts Institute Of Technology | Crispr mediated recording of cellular events |
CN107949641A (zh) | 2015-06-17 | 2018-04-20 | Uab研究基金会 | 用于基因组编辑的crispr/cas9复合物 |
WO2016205759A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation |
EP3436575A1 (en) | 2015-06-18 | 2019-02-06 | The Broad Institute Inc. | Novel crispr enzymes and systems |
EP3430134B1 (en) | 2015-06-18 | 2022-09-21 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US10648020B2 (en) | 2015-06-18 | 2020-05-12 | The Broad Institute, Inc. | CRISPR enzymes and systems |
WO2016205745A2 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Cell sorting |
US9790490B2 (en) | 2015-06-18 | 2017-10-17 | The Broad Institute Inc. | CRISPR enzymes and systems |
RU2752834C2 (ru) | 2015-06-18 | 2021-08-09 | Те Брод Инститьют, Инк. | Мутации фермента crispr, уменьшающие нецелевые эффекты |
WO2017004279A2 (en) * | 2015-06-29 | 2017-01-05 | Massachusetts Institute Of Technology | Compositions comprising nucleic acids and methods of using the same |
AU2016285724A1 (en) | 2015-06-29 | 2017-11-16 | Ionis Pharmaceuticals, Inc. | Modified CRISPR RNA and modified single CRISPR RNA and uses thereof |
EP3328399B1 (en) | 2015-07-31 | 2023-12-27 | Regents of the University of Minnesota | Modified cells and methods of therapy |
US9580727B1 (en) | 2015-08-07 | 2017-02-28 | Caribou Biosciences, Inc. | Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides |
EP3337908A4 (en) | 2015-08-18 | 2019-01-23 | The Broad Institute, Inc. | METHOD AND COMPOSITIONS FOR CHANGING THE FUNCTION AND STRUCTURE OF CHROMATIN GRINDING AND / OR DOMAINS |
CA2996001A1 (en) * | 2015-08-25 | 2017-03-02 | Duke University | Compositions and methods of improving specificity in genomic engineering using rna-guided endonucleases |
US9926546B2 (en) | 2015-08-28 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
JP6799586B2 (ja) | 2015-08-28 | 2020-12-16 | ザ ジェネラル ホスピタル コーポレイション | 遺伝子操作CRISPR−Cas9ヌクレアーゼ |
CN107922949A (zh) * | 2015-08-31 | 2018-04-17 | 安捷伦科技有限公司 | 用于通过同源重组的基于crispr/cas的基因组编辑的化合物和方法 |
ES2938623T3 (es) | 2015-09-09 | 2023-04-13 | Univ Kobe Nat Univ Corp | Método para convertir una secuencia del genoma de una bacteria gram-positiva mediante una conversión específica de una base de ácido nucleico de una secuencia de ADN seleccionada como diana y el complejo molecular utilizado en el mismo |
EP3347467B1 (en) | 2015-09-11 | 2021-06-23 | The General Hospital Corporation | Full interrogation of nuclease dsbs and sequencing (find-seq) |
US12109274B2 (en) | 2015-09-17 | 2024-10-08 | Modernatx, Inc. | Polynucleotides containing a stabilizing tail region |
US11008555B2 (en) | 2015-09-17 | 2021-05-18 | The Regents Of The University Of California | Variant Cas9 polypeptides comprising internal insertions |
WO2017053431A2 (en) * | 2015-09-21 | 2017-03-30 | Arcturus Therapeutics, Inc. | Allele selective gene editing and uses thereof |
US11667911B2 (en) | 2015-09-24 | 2023-06-06 | Editas Medicine, Inc. | Use of exonucleases to improve CRISPR/CAS-mediated genome editing |
WO2017059313A1 (en) | 2015-09-30 | 2017-04-06 | The General Hospital Corporation | Comprehensive in vitro reporting of cleavage events by sequencing (circle-seq) |
US20190255107A1 (en) | 2015-10-09 | 2019-08-22 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
EP3362571A4 (en) | 2015-10-13 | 2019-07-10 | Duke University | GENOMIC ENGINEERING WITH TYPE I CRISPRISMS IN EUKARYOTIC CELLS |
US20170211142A1 (en) | 2015-10-22 | 2017-07-27 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US9677090B2 (en) | 2015-10-23 | 2017-06-13 | Caribou Biosciences, Inc. | Engineered nucleic-acid targeting nucleic acids |
EP3368687B1 (en) | 2015-10-27 | 2021-09-29 | The Broad Institute, Inc. | Compositions and methods for targeting cancer-specific sequence variations |
EP3368689B1 (en) | 2015-10-28 | 2020-06-17 | The Broad Institute, Inc. | Composition for modulating immune responses by use of immune cell gene signature |
US11092607B2 (en) | 2015-10-28 | 2021-08-17 | The Board Institute, Inc. | Multiplex analysis of single cell constituents |
WO2017075465A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3 |
WO2017075294A1 (en) | 2015-10-28 | 2017-05-04 | The Board Institute Inc. | Assays for massively combinatorial perturbation profiling and cellular circuit reconstruction |
WO2017075451A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1 |
MX2018005611A (es) | 2015-11-03 | 2018-11-09 | Harvard College | Metodo y aparato para la formacion de imagenes volumetricas de una matriz tridimensional que contiene acido nucleico. |
ES2942309T3 (es) | 2015-11-04 | 2023-05-31 | Vertex Pharma | Materiales y métodos para el tratamiento de hemoglobinopatías |
EP3374502B1 (en) | 2015-11-13 | 2021-10-27 | Avellino Lab USA, Inc. | Methods for the treatment of corneal dystrophies |
EA201891192A1 (ru) * | 2015-11-16 | 2019-01-31 | Рисёрч Инститьют Эт Нейшнвайд Чилдрен'С Хоспитал | Средства и способы лечения миопатий, связанных с титином, и других титинопатий |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
US11371094B2 (en) | 2015-11-19 | 2022-06-28 | 10X Genomics, Inc. | Systems and methods for nucleic acid processing using degenerate nucleotides |
WO2017087910A1 (en) * | 2015-11-19 | 2017-05-26 | 10X Genomics, Inc. | Transformable tagging compositions, methods, and processes incorporating same |
DK3382019T3 (da) | 2015-11-27 | 2022-05-30 | Univ Kobe Nat Univ Corp | Fremgangsmåde til omdannelse af enkimet plantegenomsekvens, hvori nukleinsyrebase i målrettet DNA-sekvens specifikt omdannes, og molekylært kompleks anvendt deri |
EP3383411A4 (en) | 2015-11-30 | 2019-07-03 | Flagship Pioneering Innovations V, Inc. | METHODS AND COMPOSITIONS RELATING TO CHONDRISOMES FROM CULTIVATED CELLS |
EP4144861B1 (en) | 2015-12-04 | 2024-09-11 | 10X Genomics, Inc. | Methods and compositions for nucleic acid analysis |
NZ742040A (en) * | 2015-12-04 | 2019-08-30 | Caribou Biosciences Inc | Engineered nucleic-acid targeting nucleic acids |
US9988624B2 (en) | 2015-12-07 | 2018-06-05 | Zymergen Inc. | Microbial strain improvement by a HTP genomic engineering platform |
WO2017100376A2 (en) | 2015-12-07 | 2017-06-15 | Zymergen, Inc. | Promoters from corynebacterium glutamicum |
US11208649B2 (en) | 2015-12-07 | 2021-12-28 | Zymergen Inc. | HTP genomic engineering platform |
US11761007B2 (en) * | 2015-12-18 | 2023-09-19 | The Scripps Research Institute | Production of unnatural nucleotides using a CRISPR/Cas9 system |
US12110490B2 (en) | 2015-12-18 | 2024-10-08 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11118194B2 (en) | 2015-12-18 | 2021-09-14 | The Regents Of The University Of California | Modified site-directed modifying polypeptides and methods of use thereof |
BR112018013074A2 (pt) | 2015-12-30 | 2018-12-11 | Novartis Ag | terapias de célula efetora imune com eficácia real-çada |
SG11201805792PA (en) | 2016-01-11 | 2018-08-30 | Univ Leland Stanford Junior | Chimeric proteins and methods of regulating gene expression |
JP7012645B2 (ja) | 2016-01-11 | 2022-01-28 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | キメラタンパク質および免疫治療の方法 |
WO2017136794A1 (en) * | 2016-02-03 | 2017-08-10 | Massachusetts Institute Of Technology | Structure-guided chemical modification of guide rna and its applications |
US10876129B2 (en) | 2016-02-12 | 2020-12-29 | Ceres, Inc. | Methods and materials for high throughput testing of mutagenized allele combinations |
EP3417061B1 (en) | 2016-02-18 | 2022-10-26 | The Regents of the University of California | Methods and compositions for gene editing in stem cells |
US20190144942A1 (en) | 2016-02-22 | 2019-05-16 | Massachusetts Institute Of Technology | Methods for identifying and modulating immune phenotypes |
SG11201807025SA (en) * | 2016-02-26 | 2018-09-27 | Lanzatech New Zealand Ltd | Crispr/cas systems for c-1 fixing bacteria |
JP2019507610A (ja) | 2016-03-04 | 2019-03-22 | インドア バイオテクノロジーズ インコーポレイテッド | CRISPR−Casゲノム編集に基づく、Fel d1ノックアウト並びに関連組成物及び方法 |
WO2017161043A1 (en) | 2016-03-16 | 2017-09-21 | The J. David Gladstone Institutes | Methods and compositions for treating obesity and/or diabetes and for identifying candidate treatment agents |
EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
US11427861B2 (en) | 2016-03-17 | 2022-08-30 | Massachusetts Institute Of Technology | Methods for identifying and modulating co-occurant cellular phenotypes |
US12012436B2 (en) | 2016-03-23 | 2024-06-18 | The Regents Of The University Of California | Methods of treating mitochondrial disorders |
US12011488B2 (en) | 2016-03-23 | 2024-06-18 | The Regents Of The University Of California | Methods of treating mitochondrial disorders |
WO2017165859A1 (en) * | 2016-03-24 | 2017-09-28 | Research Institute At Nationwide Children's Hospital | Modified viral capsid proteins |
US11597924B2 (en) | 2016-03-25 | 2023-03-07 | Editas Medicine, Inc. | Genome editing systems comprising repair-modulating enzyme molecules and methods of their use |
EP3433364A1 (en) | 2016-03-25 | 2019-01-30 | Editas Medicine, Inc. | Systems and methods for treating alpha 1-antitrypsin (a1at) deficiency |
EP3443086B1 (en) | 2016-04-13 | 2021-11-24 | Editas Medicine, Inc. | Cas9 fusion molecules, gene editing systems, and methods of use thereof |
SG11201808920RA (en) * | 2016-04-14 | 2018-11-29 | Boco Silicon Valley Inc | Genome editing of human neural stem cells using nucleases |
AU2017253089B2 (en) * | 2016-04-19 | 2023-07-20 | Massachusetts Institute Of Technology | Novel CRISPR enzymes and systems |
EP3445853A1 (en) | 2016-04-19 | 2019-02-27 | The Broad Institute, Inc. | Cpf1 complexes with reduced indel activity |
JP7259182B2 (ja) | 2016-04-25 | 2023-04-18 | プレジデント アンド フェローズ オブ ハーバード カレッジ | in situ分子検出のためのハイブリダイゼーション連鎖反応法 |
WO2017197338A1 (en) | 2016-05-13 | 2017-11-16 | 10X Genomics, Inc. | Microfluidic systems and methods of use |
US10767175B2 (en) * | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
KR20190019168A (ko) * | 2016-06-17 | 2019-02-26 | 더 브로드 인스티튜트, 인코퍼레이티드 | 제vi형 crispr 오솔로그 및 시스템 |
CA3029254A1 (en) | 2016-06-24 | 2017-12-28 | The Regents Of The University Of Colorado, A Body Corporate | Methods for generating barcoded combinatorial libraries |
EP3474849A4 (en) | 2016-06-27 | 2020-07-29 | The Broad Institute, Inc. | COMPOSITIONS AND METHODS FOR DETECTION AND TREATMENT OF DIABETES |
US20190359992A1 (en) | 2016-06-28 | 2019-11-28 | Cellectis | Altering expression of gene products in plants through targeted insertion of nucleic acid sequences |
KR102345899B1 (ko) | 2016-06-30 | 2021-12-31 | 지머젠 인코포레이티드 | 박테리아 헤모글로빈 라이브러리를 생성하는 방법 및 이의 용도 |
KR102345898B1 (ko) | 2016-06-30 | 2022-01-03 | 지머젠 인코포레이티드 | 글루코오스 투과 효소 라이브러리를 생성하는 방법 및 이의 용도 |
CA3030783A1 (en) | 2016-07-13 | 2018-01-18 | Vertex Pharmaceuticals Incorporated | Methods, compositions and kits for increasing genome editing efficiency |
CA3032822A1 (en) | 2016-08-02 | 2018-02-08 | Editas Medicine, Inc. | Compositions and methods for treating cep290 associated disease |
US11078481B1 (en) | 2016-08-03 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for screening for cancer targets |
CA3033736C (en) | 2016-08-12 | 2023-10-24 | Toolgen Incorporated | Manipulated immunoregulatory element and immunity altered thereby |
CN110114461A (zh) | 2016-08-17 | 2019-08-09 | 博德研究所 | 新型crispr酶和系统 |
US20210166783A1 (en) | 2016-08-17 | 2021-06-03 | The Broad Institute, Inc. | Methods for identifying class 2 crispr-cas systems |
WO2018035364A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute Inc. | Product and methods useful for modulating and evaluating immune responses |
US11810649B2 (en) | 2016-08-17 | 2023-11-07 | The Broad Institute, Inc. | Methods for identifying novel gene editing elements |
EP3500677A4 (en) | 2016-08-20 | 2020-04-01 | Avellino Lab USA, Inc. | UNIQUE GUIDE RNA, CRISPR / CAS9 SYSTEMS AND METHODS OF USE |
WO2020225754A1 (en) | 2019-05-06 | 2020-11-12 | Mcmullen Tara | Crispr gene editing for autosomal dominant diseases |
US11078483B1 (en) | 2016-09-02 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for measuring and improving CRISPR reagent function |
WO2018049025A2 (en) | 2016-09-07 | 2018-03-15 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses |
US20190225974A1 (en) | 2016-09-23 | 2019-07-25 | BASF Agricultural Solutions Seed US LLC | Targeted genome optimization in plants |
CA3034931A1 (en) | 2016-09-23 | 2018-03-29 | Board Of Trustees Of Southern Illinois University | Tuning crispr/cas9 activity with chemically modified nucleotide substitutions |
JP2019532644A (ja) | 2016-09-30 | 2019-11-14 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Rna誘導型核酸修飾酵素及びその使用方法 |
US10669539B2 (en) | 2016-10-06 | 2020-06-02 | Pioneer Biolabs, Llc | Methods and compositions for generating CRISPR guide RNA libraries |
KR20230164759A (ko) | 2016-10-07 | 2023-12-04 | 인티그레이티드 디엔에이 테크놀로지스 아이엔씨. | S. 피오게네스 cas9 돌연변이 유전자 및 이에 의해 암호화되는 폴리펩티드 |
WO2018067991A1 (en) | 2016-10-07 | 2018-04-12 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
US11242542B2 (en) | 2016-10-07 | 2022-02-08 | Integrated Dna Technologies, Inc. | S. pyogenes Cas9 mutant genes and polypeptides encoded by same |
GB201617559D0 (en) | 2016-10-17 | 2016-11-30 | University Court Of The University Of Edinburgh The | Swine comprising modified cd163 and associated methods |
GB2605883B (en) | 2016-10-18 | 2023-03-15 | Univ Minnesota | Tumor infiltrating lymphocytes and methods of therapy |
US20180245065A1 (en) | 2016-11-01 | 2018-08-30 | Novartis Ag | Methods and compositions for enhancing gene editing |
EP3535416A4 (en) | 2016-11-04 | 2020-05-13 | Flagship Pioneering Innovations V. Inc. | NEW PLANT CELLS, PLANTS AND SEEDS |
EP3545085A4 (en) | 2016-11-22 | 2020-10-28 | Integrated Dna Technologies, Inc. | CRISPR / CPF1 SYSTEMS AND METHODS |
US9816093B1 (en) | 2016-12-06 | 2017-11-14 | Caribou Biosciences, Inc. | Engineered nucleic acid-targeting nucleic acids |
US11293022B2 (en) | 2016-12-12 | 2022-04-05 | Integrated Dna Technologies, Inc. | Genome editing enhancement |
CA3045134A1 (en) | 2016-12-14 | 2018-06-21 | Ligandal, Inc. | Compositions and methods for nucleic acid and/or protein payload delivery |
US10815525B2 (en) | 2016-12-22 | 2020-10-27 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10550429B2 (en) | 2016-12-22 | 2020-02-04 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
WO2018129368A2 (en) | 2017-01-06 | 2018-07-12 | Editas Medicine, Inc. | Methods of assessing nuclease cleavage |
WO2018140899A1 (en) | 2017-01-28 | 2018-08-02 | Inari Agriculture, Inc. | Novel plant cells, plants, and seeds |
EP4310183A3 (en) | 2017-01-30 | 2024-02-21 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
TW201839136A (zh) | 2017-02-06 | 2018-11-01 | 瑞士商諾華公司 | 治療血色素異常症之組合物及方法 |
US10995333B2 (en) | 2017-02-06 | 2021-05-04 | 10X Genomics, Inc. | Systems and methods for nucleic acid preparation |
JP2020507312A (ja) | 2017-02-10 | 2020-03-12 | ザイマージェン インコーポレイテッド | 複数の宿主用の複数のdnaコンストラクトのアセンブリ及び編集のためのモジュラーユニバーサルプラスミド設計戦略 |
WO2018170184A1 (en) | 2017-03-14 | 2018-09-20 | Editas Medicine, Inc. | Systems and methods for the treatment of hemoglobinopathies |
EP4361261A3 (en) | 2017-03-15 | 2024-07-10 | The Broad Institute Inc. | Novel cas13b orthologues crispr enzymes and systems |
US20200115753A1 (en) | 2017-03-17 | 2020-04-16 | Massachusetts Institute Of Technology | Methods for identifying and modulating co-occurant cellular phenotypes |
WO2018183908A1 (en) | 2017-03-31 | 2018-10-04 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
US11913075B2 (en) | 2017-04-01 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer |
EP3610009A1 (en) | 2017-04-12 | 2020-02-19 | The Broad Institute, Inc. | Novel type vi crispr orthologs and systems |
WO2018191520A1 (en) | 2017-04-12 | 2018-10-18 | The Broad Institute, Inc. | Respiratory and sweat gland ionocytes |
US20200071773A1 (en) | 2017-04-12 | 2020-03-05 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
US20200405639A1 (en) | 2017-04-14 | 2020-12-31 | The Broad Institute, Inc. | Novel delivery of large payloads |
EP3612629A1 (en) | 2017-04-18 | 2020-02-26 | The Broad Institute, Inc. | Compositions for detecting secretion and methods of use |
MX2019012567A (es) | 2017-04-20 | 2020-02-13 | Egenesis Inc | Metodos para generar animales geneticamente modificados. |
US11591589B2 (en) | 2017-04-21 | 2023-02-28 | The General Hospital Corporation | Variants of Cpf1 (Cas12a) with altered PAM specificity |
EP3612232A1 (en) | 2017-04-21 | 2020-02-26 | The Broad Institute, Inc. | Targeted delivery to beta cells |
EP3615672A1 (en) | 2017-04-28 | 2020-03-04 | Editas Medicine, Inc. | Methods and systems for analyzing guide rna molecules |
WO2018204777A2 (en) | 2017-05-05 | 2018-11-08 | The Broad Institute, Inc. | Methods for identification and modification of lncrna associated with target genotypes and phenotypes |
US20210147798A1 (en) * | 2017-05-08 | 2021-05-20 | Toolgen Incorporated | Artificially Manipulated Immune Cell |
WO2018209158A2 (en) | 2017-05-10 | 2018-11-15 | Editas Medicine, Inc. | Crispr/rna-guided nuclease systems and methods |
CA3063739A1 (en) | 2017-05-18 | 2018-11-22 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
US20200140842A1 (en) | 2017-05-25 | 2020-05-07 | The General Hospital Corporation | Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing |
US11788087B2 (en) | 2017-05-25 | 2023-10-17 | The Children's Medical Center Corporation | BCL11A guide delivery |
EP3445876B1 (en) | 2017-05-26 | 2023-07-05 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
US10844372B2 (en) | 2017-05-26 | 2020-11-24 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
EP3409104A1 (en) | 2017-05-31 | 2018-12-05 | Vilmorin et Cie | Tomato plant resistant to tomato yellow leaf curl virus, powdery mildew, and nematodes |
WO2020249996A1 (en) | 2019-06-14 | 2020-12-17 | Vilmorin & Cie | Resistance in plants of solanum lycopersicum to the tobamovirus tomato brown rugose fruit virus |
EP3409106A1 (en) | 2017-06-01 | 2018-12-05 | Vilmorin et Cie | Tolerance in plants of solanum lycopersicum to the tobamovirus tomato brown rugose fruit virus (tbrfv) |
CA3102054A1 (en) | 2017-06-05 | 2018-12-13 | Fred Hutchinson Cancer Research Center | Genomic safe harbors for genetic therapies in human stem cells and engineered nanoparticles to provide targeted genetic therapies |
KR20200026874A (ko) | 2017-06-06 | 2020-03-11 | 지머젠 인코포레이티드 | 대장균 개량을 위한 htp 게놈 공학 플랫폼 |
KR20200026878A (ko) | 2017-06-06 | 2020-03-11 | 지머젠 인코포레이티드 | 균류 균주를 개량하기 위한 htp 게놈 공학 플랫폼 |
US10428319B2 (en) | 2017-06-09 | 2019-10-01 | Editas Medicine, Inc. | Engineered Cas9 nucleases |
BR112019026226A2 (pt) | 2017-06-13 | 2020-06-30 | Flagship Pioneering Innovations V, Inc. | composições compreendendo curóns e usos dos mesmos |
WO2018232195A1 (en) | 2017-06-14 | 2018-12-20 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
US10011849B1 (en) | 2017-06-23 | 2018-07-03 | Inscripta, Inc. | Nucleic acid-guided nucleases |
US9982279B1 (en) | 2017-06-23 | 2018-05-29 | Inscripta, Inc. | Nucleic acid-guided nucleases |
KR20200031618A (ko) | 2017-06-26 | 2020-03-24 | 더 브로드 인스티튜트, 인코퍼레이티드 | 표적화된 핵산 편집을 위한 crispr/cas-아데닌 데아미나아제 기반 조성물, 시스템 및 방법 |
CN111511375A (zh) | 2017-06-30 | 2020-08-07 | 因提玛生物科学公司 | 用于基因治疗的腺相关病毒载体 |
EP3645721A1 (en) | 2017-06-30 | 2020-05-06 | Novartis AG | Methods for the treatment of disease with gene editing systems |
WO2019014564A1 (en) | 2017-07-14 | 2019-01-17 | Editas Medicine, Inc. | SYSTEMS AND METHODS OF TARGETED INTEGRATION AND GENOME EDITING AND DETECTION THEREOF WITH INTEGRATED PRIMING SITES |
CN111278980A (zh) * | 2017-07-14 | 2020-06-12 | 苏州克睿基因生物科技有限公司 | 一种基因编辑系统及基因编辑的方法 |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
WO2019018440A1 (en) | 2017-07-17 | 2019-01-24 | The Broad Institute, Inc. | HUMAN COLON CELL ATLAS IN GOOD HEALTH AND WITH HEMORRHAGIC RECTO-COLITIS |
AU2018320865B2 (en) | 2017-08-23 | 2023-09-14 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US11534471B2 (en) | 2017-09-21 | 2022-12-27 | Dana-Farber Cancer Institute, Inc. | Isolation, preservation, compositions and uses of extracts from justicia plants |
JP2020535802A (ja) | 2017-09-21 | 2020-12-10 | ザ・ブロード・インスティテュート・インコーポレイテッド | 標的化核酸編集のための系、方法、及び組成物 |
US11572574B2 (en) | 2017-09-28 | 2023-02-07 | Toolgen Incorporated | Artificial genome manipulation for gene expression regulation |
SG11202002130WA (en) * | 2017-09-28 | 2020-04-29 | Toolgen Inc | Artificial genome manipulation for gene expression regulation |
WO2019070755A1 (en) | 2017-10-02 | 2019-04-11 | The Broad Institute, Inc. | METHODS AND COMPOSITIONS FOR DETECTING AND MODULATING A GENETIC SIGNATURE OF IMMUNOTHERAPY RESISTANCE IN CANCER |
WO2019071054A1 (en) | 2017-10-04 | 2019-04-11 | The Broad Institute, Inc. | METHODS AND COMPOSITIONS FOR MODIFYING THE FUNCTION AND STRUCTURE OF BUCKLES AND / OR CHROMATIN DOMAINS |
EP3694993A4 (en) | 2017-10-11 | 2021-10-13 | The General Hospital Corporation | METHOD OF DETECTING A SITE-SPECIFIC AND UNDESIRED GENOMIC DESAMINATION INDUCED BY BASE EDITING TECHNOLOGIES |
US11680296B2 (en) | 2017-10-16 | 2023-06-20 | Massachusetts Institute Of Technology | Mycobacterium tuberculosis host-pathogen interaction |
WO2019079772A1 (en) | 2017-10-20 | 2019-04-25 | Fred Hutchinson Cancer Research Center | SYSTEMS AND METHODS FOR GENETICALLY MODIFIED B-LYMPHOCYTES FOR EXPRESSING SELECTED ANTIBODIES |
US11547614B2 (en) | 2017-10-31 | 2023-01-10 | The Broad Institute, Inc. | Methods and compositions for studying cell evolution |
EP3704245A1 (en) | 2017-11-01 | 2020-09-09 | Novartis AG | Synthetic rnas and methods of use |
WO2019084664A1 (en) * | 2017-11-02 | 2019-05-09 | The Governors Of The University Of Alberta | Chemically-modified guide rnas to improve crispr-cas protein specificity |
EP3710039A4 (en) | 2017-11-13 | 2021-08-04 | The Broad Institute, Inc. | METHODS AND COMPOSITIONS FOR CANCER TREATMENT BY TARGETING THE CLEC2D-KLRB1 PATH |
EP3625361A1 (en) | 2017-11-15 | 2020-03-25 | 10X Genomics, Inc. | Functionalized gel beads |
CN111448313A (zh) * | 2017-11-16 | 2020-07-24 | 阿斯利康(瑞典)有限公司 | 用于改善基于Cas9的敲入策略的有效性的组合物和方法 |
US10829815B2 (en) | 2017-11-17 | 2020-11-10 | 10X Genomics, Inc. | Methods and systems for associating physical and genetic properties of biological particles |
CN111601883B (zh) | 2017-11-17 | 2024-06-21 | 艾欧凡斯生物治疗公司 | 由细针抽吸物和小活检物扩增til |
CA3083118A1 (en) | 2017-11-22 | 2019-05-31 | Iovance Biotherapeutics, Inc. | Expansion of peripheral blood lymphocytes (pbls) from peripheral blood |
US11332736B2 (en) | 2017-12-07 | 2022-05-17 | The Broad Institute, Inc. | Methods and compositions for multiplexing single cell and single nuclei sequencing |
WO2019126037A1 (en) | 2017-12-19 | 2019-06-27 | City Of Hope | Modified tracrrnas grnas, and uses thereof |
RU2652899C1 (ru) * | 2017-12-28 | 2018-05-03 | Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) | РНК-проводники для подавления репликации вируса гепатита B и для элиминации вируса гепатита B из клетки-хозяина |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
AU2019207409B2 (en) | 2018-01-12 | 2023-02-23 | Basf Se | Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a |
CN111770921B (zh) | 2018-01-17 | 2024-03-22 | 沃泰克斯药物股份有限公司 | 用于提高基因组编辑效率的喹喔啉酮化合物,组合物,方法和试剂盒 |
EA202091709A1 (ru) | 2018-01-17 | 2020-11-10 | Вертекс Фармасьютикалз Инкорпорейтед | Ингибиторы днк-пк |
AU2019209293B2 (en) | 2018-01-17 | 2023-07-27 | Vertex Pharmaceuticals Incorporated | DNA-PK inhibitors |
WO2019147743A1 (en) | 2018-01-26 | 2019-08-01 | Massachusetts Institute Of Technology | Structure-guided chemical modification of guide rna and its applications |
US11926835B1 (en) | 2018-01-29 | 2024-03-12 | Inari Agriculture Technology, Inc. | Methods for efficient tomato genome editing |
MA51787A (fr) | 2018-02-05 | 2020-12-16 | Vertex Pharma | Substances et méthodes de traitement d'hémoglobinopathies |
MA51788A (fr) | 2018-02-05 | 2020-12-16 | Vertex Pharma | Substances et méthodes pour traiter des hémoglobinopathies |
EP3749764A1 (en) | 2018-02-08 | 2020-12-16 | Zymergen, Inc. | Genome editing using crispr in corynebacterium |
EP3752832A1 (en) | 2018-02-12 | 2020-12-23 | 10X Genomics, Inc. | Methods characterizing multiple analytes from individual cells or cell populations |
EP3755792A4 (en) | 2018-02-23 | 2021-12-08 | Pioneer Hi-Bred International, Inc. | NEW CAS9 ORTHOLOGIST |
WO2019178426A1 (en) | 2018-03-14 | 2019-09-19 | Editas Medicine, Inc. | Systems and methods for the treatment of hemoglobinopathies |
PL235163B1 (pl) * | 2018-04-05 | 2020-06-01 | Inst Hodowli I Aklimatyzacji Roslin Panstwowy Inst Badawczy | Sekwencja nukleotydowa syntetycznego genu Cas9, kaseta kierująca sgRNA do edytowania genomu roślinnego i wydajny system do ukierunkowanej mutagenezy wybranego regionu genomu roślinnego |
WO2019195738A1 (en) | 2018-04-06 | 2019-10-10 | Children's Medical Center Corporation | Compositions and methods for somatic cell reprogramming and modulating imprinting |
EP3775271A1 (en) | 2018-04-06 | 2021-02-17 | 10X Genomics, Inc. | Systems and methods for quality control in single cell processing |
JP7460539B2 (ja) | 2018-04-17 | 2024-04-02 | ザ ジェネラル ホスピタル コーポレイション | 核酸を結合、修飾、および切断する物質の基質選択性および部位のためのin vitroでの高感度アッセイ |
SG11202009783WA (en) | 2018-04-19 | 2020-11-27 | Univ California | Compositions and methods for gene editing |
EP3781711A4 (en) | 2018-04-19 | 2022-01-26 | Massachusetts Institute Of Technology | SINGLE STRAND BREAK DETECTION IN DOUBLE STRAND DNA |
EP3560330B1 (en) | 2018-04-24 | 2022-06-15 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
EP3788094A2 (en) | 2018-04-27 | 2021-03-10 | Genedit Inc. | Cationic polymer and use for biomolecule delivery |
KR20210005138A (ko) | 2018-04-27 | 2021-01-13 | 이오반스 바이오테라퓨틱스, 인크. | 종양 침윤 림프구의 확장 및 유전자 편집을 위한 폐쇄 방법 및 면역요법에서의 그의 용도 |
US20210147831A1 (en) | 2018-04-27 | 2021-05-20 | The Broad Institute, Inc. | Sequencing-based proteomics |
EP3788144A4 (en) * | 2018-05-01 | 2022-05-11 | The Children's Medical Center Corporation | DELIVERY AND EDITING OF EXTENDED BCL11A-RNP/CRISPR USING A 3XNLS-CAS9 |
WO2019213660A2 (en) | 2018-05-04 | 2019-11-07 | The Broad Institute, Inc. | Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses |
US20210363547A1 (en) | 2018-05-06 | 2021-11-25 | Emendobio Inc. | Differential knockout of an allele of a heterozygous elane gene |
WO2019217758A1 (en) | 2018-05-10 | 2019-11-14 | 10X Genomics, Inc. | Methods and systems for molecular library generation |
WO2019222545A1 (en) | 2018-05-16 | 2019-11-21 | Synthego Corporation | Methods and systems for guide rna design and use |
CN108707628B (zh) * | 2018-05-28 | 2021-11-23 | 上海海洋大学 | 斑马鱼notch2基因突变体的制备方法 |
US20210371932A1 (en) | 2018-06-01 | 2021-12-02 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
US11866719B1 (en) | 2018-06-04 | 2024-01-09 | Inari Agriculture Technology, Inc. | Heterologous integration of regulatory elements to alter gene expression in wheat cells and wheat plants |
BR112020024979A2 (pt) | 2018-06-07 | 2021-04-20 | The Brigham And Women's Hospital, Inc. | métodos para geração de células-tronco hematopoiéticas |
EP3806888B1 (en) | 2018-06-12 | 2024-01-31 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
BR112020025349A2 (pt) | 2018-06-15 | 2021-03-09 | KWS SAAT SE & Co. KGaA | Métodos para melhorar a engenharia e regeneração do genoma em planta |
BR112020025319A2 (pt) | 2018-06-26 | 2021-03-09 | The Broad Institute Inc. | Composições, sistemas e métodos de amplificação baseada em crispr/cas e transposase |
MX2020013836A (es) | 2018-06-26 | 2021-05-27 | Massachusetts Inst Technology | Métodos, sistemas y diagnósticos de amplificación basados en el sistema efector crispr. |
US11629179B2 (en) | 2018-06-29 | 2023-04-18 | Stichting Het Nederlands Kanker Instituut—Antoni van Leeuwenhoek Ziekenhuis | TWEAK-receptor agonists for use in combination with immunotherapy of a cancer |
CA3105658A1 (en) | 2018-07-13 | 2020-01-16 | The Regents Of The University Of California | Retrotransposon-based delivery vehicle and methods of use thereof |
US20200032335A1 (en) | 2018-07-27 | 2020-01-30 | 10X Genomics, Inc. | Systems and methods for metabolome analysis |
KR20210053898A (ko) | 2018-07-31 | 2021-05-12 | 더 브로드 인스티튜트, 인코퍼레이티드 | 신규 crispr 효소 및 시스템 |
EP3830301B1 (en) | 2018-08-01 | 2024-05-22 | Mammoth Biosciences, Inc. | Programmable nuclease compositions and methods of use thereof |
JP2021532815A (ja) | 2018-08-07 | 2021-12-02 | ザ・ブロード・インスティテュート・インコーポレイテッド | 新規Cas12b酵素およびシステム |
EP3607819A1 (en) | 2018-08-10 | 2020-02-12 | Vilmorin et Cie | Resistance to xanthomonas campestris pv. campestris (xcc) in cauliflower |
EP3821020A4 (en) | 2018-08-15 | 2022-05-04 | Zymergen Inc. | APPLICATIONS OF CRISPRI IN HIGH-THROUGHPUT METABOLIC ENGINEERING |
WO2020041387A1 (en) | 2018-08-20 | 2020-02-27 | The Brigham And Women's Hospital, Inc. | Degradation domain modifications for spatio-temporal control of rna-guided nucleases |
WO2020041380A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | Methods and compositions for optochemical control of crispr-cas9 |
US20230021641A1 (en) * | 2018-08-23 | 2023-01-26 | The Broad Institute, Inc. | Cas9 variants having non-canonical pam specificities and uses thereof |
SG11202101801RA (en) | 2018-08-23 | 2021-03-30 | Sangamo Therapeutics Inc | Engineered target specific base editors |
US11459551B1 (en) | 2018-08-31 | 2022-10-04 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
US20210317479A1 (en) | 2018-09-06 | 2021-10-14 | The Broad Institute, Inc. | Nucleic acid assemblies for use in targeted delivery |
EP4268831A3 (en) | 2018-09-12 | 2024-05-22 | Fred Hutchinson Cancer Center | Reducing cd33 expression to selectively protect therapeutic cells |
JP7344300B2 (ja) | 2018-09-18 | 2023-09-13 | ブイエヌブイ ニューコ インク. | Arcベースのカプシドおよびその使用 |
WO2020069029A1 (en) | 2018-09-26 | 2020-04-02 | Emendobio Inc. | Novel crispr nucleases |
WO2020076976A1 (en) | 2018-10-10 | 2020-04-16 | Readcoor, Inc. | Three-dimensional spatial molecular indexing |
WO2020077236A1 (en) | 2018-10-12 | 2020-04-16 | The Broad Institute, Inc. | Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues |
US20210379057A1 (en) | 2018-10-16 | 2021-12-09 | Massachusetts Institute Of Technology | Nutlin-3a for use in treating a mycobacterium tuberculosis infection |
EP3870600A1 (en) | 2018-10-24 | 2021-09-01 | Obsidian Therapeutics, Inc. | Er tunable protein regulation |
WO2020086910A1 (en) | 2018-10-24 | 2020-04-30 | Genedit Inc. | Cationic polymer with alkyl side chains and use for biomolecule delivery |
US11407995B1 (en) | 2018-10-26 | 2022-08-09 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
MX2021005028A (es) | 2018-10-31 | 2021-08-24 | Zymergen Inc | Ensamble determinista multiplexado de genotecas de adn. |
JP2022505440A (ja) * | 2018-11-01 | 2022-01-14 | キージーン ナムローゼ フェンノートシャップ | 植物細胞におけるCRISPR/Casゲノム編集のためのデュアルガイドRNA |
US11434477B1 (en) | 2018-11-02 | 2022-09-06 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
JP2022506508A (ja) | 2018-11-05 | 2022-01-17 | アイオバンス バイオセラピューティクス,インコーポレイテッド | Akt経路阻害剤を利用したtilの拡大培養 |
CA3118634A1 (en) | 2018-11-05 | 2020-05-14 | Iovance Biotherapeutics, Inc. | Treatment of nsclc patients refractory for anti-pd-1 antibody |
WO2020096988A2 (en) | 2018-11-05 | 2020-05-14 | Iovance Biotherapeutics, Inc. | Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy |
US20230039976A1 (en) | 2018-11-05 | 2023-02-09 | Iovance Biotherapeutics, Inc. | Selection of improved tumor reactive t-cells |
MX2021005444A (es) | 2018-11-08 | 2021-06-15 | Triton Algae Innovations Inc | Procedimientos para la superproduccion de protoporfirina ix en algas y composiciones de la misma. |
US11459607B1 (en) | 2018-12-10 | 2022-10-04 | 10X Genomics, Inc. | Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes |
US11166996B2 (en) | 2018-12-12 | 2021-11-09 | Flagship Pioneering Innovations V, Inc. | Anellovirus compositions and methods of use |
JP2022514493A (ja) | 2018-12-14 | 2022-02-14 | パイオニア ハイ-ブレッド インターナショナル, インコーポレイテッド | ゲノム編集のための新規なcrispr-casシステム |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
EP3898958A1 (en) | 2018-12-17 | 2021-10-27 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
JP2022514023A (ja) | 2018-12-19 | 2022-02-09 | アイオバンス バイオセラピューティクス,インコーポレイテッド | 操作されたサイトカイン受容体対を使用して腫瘍浸潤リンパ球を拡大培養する方法及びその使用 |
WO2020142754A2 (en) | 2019-01-04 | 2020-07-09 | Mammoth Biosciences, Inc. | Programmable nuclease improvements and compositions and methods for nucleic acid amplification and detection |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
US11845983B1 (en) | 2019-01-09 | 2023-12-19 | 10X Genomics, Inc. | Methods and systems for multiplexing of droplet based assays |
WO2020160044A1 (en) | 2019-01-28 | 2020-08-06 | The Broad Institute, Inc. | In-situ spatial transcriptomics |
WO2020163396A1 (en) | 2019-02-04 | 2020-08-13 | The General Hospital Corporation | Adenine dna base editor variants with reduced off-target rna editing |
US20220098621A1 (en) | 2019-02-05 | 2022-03-31 | Emendobio Inc. | Crispr compositions and methods for promoting gene editing of ribosomal protein s19 (rps19) gene |
WO2020163856A1 (en) | 2019-02-10 | 2020-08-13 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Modified mitochondrion and methods of use thereof |
US11851683B1 (en) | 2019-02-12 | 2023-12-26 | 10X Genomics, Inc. | Methods and systems for selective analysis of cellular samples |
US20220133795A1 (en) | 2019-03-01 | 2022-05-05 | Iovance Biotherapeutics, Inc. | Expansion of Tumor Infiltrating Lymphocytes From Liquid Tumors and Therapeutic Uses Thereof |
WO2020181101A1 (en) | 2019-03-07 | 2020-09-10 | The Regents Of The University Of California | Crispr-cas effector polypeptides and methods of use thereof |
SG11202109172TA (en) | 2019-03-08 | 2021-09-29 | Obsidian Therapeutics Inc | Human carbonic anhydrase 2 compositions and methods for tunable regulation |
US11053515B2 (en) | 2019-03-08 | 2021-07-06 | Zymergen Inc. | Pooled genome editing in microbes |
KR20210136997A (ko) | 2019-03-08 | 2021-11-17 | 지머젠 인코포레이티드 | 미생물에서 반복적 게놈 편집 |
US20220162649A1 (en) | 2019-04-01 | 2022-05-26 | The Broad Institute, Inc. | Novel nucleic acid modifiers |
KR20210148286A (ko) | 2019-04-05 | 2021-12-07 | 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 | 녹인 세포의 제작 방법 |
BR112021021095A2 (pt) | 2019-04-23 | 2022-02-08 | Genedit Inc | Polímero catiônico com cadeias laterais alquila |
US20220249559A1 (en) | 2019-05-13 | 2022-08-11 | Iovance Biotherapeutics, Inc. | Methods and compositions for selecting tumor infiltrating lymphocytes and uses of the same in immunotherapy |
EP3969607A1 (en) | 2019-05-13 | 2022-03-23 | KWS SAAT SE & Co. KGaA | Drought tolerance in corn |
WO2020236972A2 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
WO2020236967A1 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Random crispr-cas deletion mutant |
AR118995A1 (es) | 2019-05-25 | 2021-11-17 | Kws Saat Se & Co Kgaa | Mejorador de la inducción de haploides |
JP2022534245A (ja) | 2019-05-28 | 2022-07-28 | ジーンエディット インコーポレイテッド | 生体分子送達のための複数の機能化側鎖を含むポリマー |
WO2020243661A1 (en) | 2019-05-31 | 2020-12-03 | The Broad Institute, Inc. | Methods for treating metabolic disorders by targeting adcy5 |
WO2020254850A1 (en) | 2019-06-21 | 2020-12-24 | Vilmorin & Cie | Improvement of quality and permanence of green color of peppers at maturity and over-maturity |
SG11202112092TA (en) | 2019-06-25 | 2021-11-29 | Inari Agriculture Technology Inc | Improved homology dependent repair genome editing |
KR20220038362A (ko) | 2019-07-02 | 2022-03-28 | 프레드 헛친슨 켄서 리서치 센터 | 재조합 ad35 벡터 및 관련 유전자 요법 개선 |
WO2021019272A1 (en) | 2019-07-31 | 2021-02-04 | Vilmorin & Cie | Tolerance to tolcndv in cucumber |
EP3772542A1 (en) | 2019-08-07 | 2021-02-10 | KWS SAAT SE & Co. KGaA | Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2 |
WO2021028359A1 (en) | 2019-08-09 | 2021-02-18 | Sangamo Therapeutics France | Controlled expression of chimeric antigen receptors in t cells |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
US11116798B2 (en) | 2019-09-05 | 2021-09-14 | Crispr Therapeutics Ag | Universal donor cells |
EP4025690A1 (en) | 2019-09-05 | 2022-07-13 | CRISPR Therapeutics AG | Universal donor cells |
US20220348937A1 (en) | 2019-09-06 | 2022-11-03 | Obsidian Therapeutics, Inc. | Compositions and methods for dhfr tunable protein regulation |
CN115175996A (zh) | 2019-09-20 | 2022-10-11 | 博德研究所 | 新颖vi型crispr酶和系统 |
WO2021061815A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4α) GENE EXPRESSION |
AU2020355000A1 (en) | 2019-09-23 | 2022-03-17 | Omega Therapeutics, Inc. | Compositions and methods for modulating apolipoprotein B (APOB) gene expression |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
EP4045522A1 (en) | 2019-10-17 | 2022-08-24 | KWS SAAT SE & Co. KGaA | Enhanced disease resistance of crops by downregulation of repressor genes |
EP4048295A1 (en) | 2019-10-25 | 2022-08-31 | Iovance Biotherapeutics, Inc. | Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy |
GB201916020D0 (en) | 2019-11-04 | 2019-12-18 | Univ Of Essex Enterprise Limited | Crispr-mediated identification of biotinylated proteins and chromatin regions |
WO2021094805A1 (en) | 2019-11-14 | 2021-05-20 | Vilmorin & Cie | Resistance to acidovorax valerianellae in corn salad |
WO2021118990A1 (en) | 2019-12-11 | 2021-06-17 | Iovance Biotherapeutics, Inc. | Processes for the production of tumor infiltrating lymphocytes (tils) and methods of using the same |
JP2023510872A (ja) | 2020-01-13 | 2023-03-15 | サナ バイオテクノロジー,インコーポレイテッド | 血液型抗原の修飾 |
CA3165346A1 (en) | 2020-01-23 | 2021-07-29 | George Q. Daley | Stroma-free t cell differentiation from human pluripotent stem cells |
EP3872190A1 (en) | 2020-02-26 | 2021-09-01 | Antibodies-Online GmbH | A method of using cut&run or cut&tag to validate crispr-cas targeting |
US20240191248A1 (en) | 2020-02-28 | 2024-06-13 | KWS SAAT SE & Co. KGaA | Method for rapid genome modification in recalcitrant plants |
US20230081632A1 (en) | 2020-02-28 | 2023-03-16 | KWS SAAT SE & Co. KGaA | Immature inflorescence meristem editing |
EP4118207A1 (en) | 2020-03-11 | 2023-01-18 | Omega Therapeutics, Inc. | Compositions and methods for modulating forkhead box p3 (foxp3) gene expression |
US12057197B2 (en) | 2020-04-03 | 2024-08-06 | Creyon Bio, Inc. | Oligonucleotide-based machine learning |
WO2021216623A1 (en) | 2020-04-21 | 2021-10-28 | Aspen Neuroscience, Inc. | Gene editing of lrrk2 in stem cells and method of use of cells differentiated therefrom |
WO2021216622A1 (en) | 2020-04-21 | 2021-10-28 | Aspen Neuroscience, Inc. | Gene editing of gba1 in stem cells and method of use of cells differentiated therefrom |
JP2023523855A (ja) | 2020-05-04 | 2023-06-07 | アイオバンス バイオセラピューティクス,インコーポレイテッド | 腫瘍浸潤リンパ球の製造方法及び免疫療法におけるその使用 |
US20230193212A1 (en) | 2020-05-06 | 2023-06-22 | Orchard Therapeutics (Europe) Limited | Treatment for neurodegenerative diseases |
EP4156913A1 (en) | 2020-05-29 | 2023-04-05 | KWS SAAT SE & Co. KGaA | Plant haploid induction |
WO2021245435A1 (en) | 2020-06-03 | 2021-12-09 | Vilmorin & Cie | Melon plants resistant to scab disease, aphids and powdery mildew |
WO2021248052A1 (en) | 2020-06-05 | 2021-12-09 | The Broad Institute, Inc. | Compositions and methods for treating neoplasia |
CA3186284A1 (en) | 2020-06-05 | 2021-12-09 | Vilmorin & Cie | Resistance in plants of solanum lycopersicum to the tobrfv |
EP4172340A1 (en) | 2020-06-29 | 2023-05-03 | KWS SAAT SE & Co. KGaA | Boosting homology directed repair in plants |
US20240011030A1 (en) | 2020-08-10 | 2024-01-11 | Novartis Ag | Treatments for retinal degenerative diseases |
MA60153A1 (fr) | 2020-10-02 | 2023-08-31 | Vilmorin & Cie | Melon à durée de conservation prolongée |
WO2022076606A1 (en) | 2020-10-06 | 2022-04-14 | Iovance Biotherapeutics, Inc. | Treatment of nsclc patients with tumor infiltrating lymphocyte therapies |
CA3195019A1 (en) | 2020-10-06 | 2022-04-14 | Maria Fardis | Treatment of nsclc patients with tumor infiltrating lymphocyte therapies |
WO2022090224A1 (en) | 2020-10-27 | 2022-05-05 | KWS SAAT SE & Co. KGaA | Use of enhanced pol theta activity for eukaryotic genome engineering |
US20230147779A1 (en) | 2020-10-28 | 2023-05-11 | GeneEdit, Inc. | Polymer with cationic and hydrophobic side chains |
US20230416709A1 (en) | 2020-11-06 | 2023-12-28 | Editforce, Inc. | Foki nuclease domain mutant |
WO2022101286A1 (en) | 2020-11-11 | 2022-05-19 | Leibniz-Institut Für Pflanzenbiochemie | Fusion protein for editing endogenous dna of a eukaryotic cell |
EP4001429A1 (en) | 2020-11-16 | 2022-05-25 | Antibodies-Online GmbH | Analysis of crispr-cas binding and cleavage sites followed by high-throughput sequencing (abc-seq) |
JP2023551722A (ja) | 2020-12-03 | 2023-12-12 | ビルモラン エ コンパニー | ToBRFV、TMV、ToMV、およびToMMVに対する耐性を有するトマト植物および対応する耐性遺伝子 |
EP4262827A1 (en) | 2020-12-17 | 2023-10-25 | Iovance Biotherapeutics, Inc. | Treatment of cancers with tumor infiltrating lymphocytes |
AU2021401302A1 (en) | 2020-12-17 | 2023-07-06 | Iovance Biotherapeutics, Inc. | Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors |
EP4267159A2 (en) * | 2020-12-22 | 2023-11-01 | Ensoma, Inc. | Adenoviral serotype 35 helper vectors |
MX2023007643A (es) | 2020-12-23 | 2023-09-04 | Flagship Pioneering Innovations V Inc | Ensamblaje in vitro de cápsides de anellovirus que encierran arn. |
EP4271795A1 (en) | 2020-12-31 | 2023-11-08 | CRISPR Therapeutics AG | Universal donor cells |
WO2022165260A1 (en) | 2021-01-29 | 2022-08-04 | Iovance Biotherapeutics, Inc. | Methods of making modified tumor infiltrating lymphocytes and their use in adoptive cell therapy |
CA3212439A1 (en) | 2021-03-19 | 2022-09-22 | Michelle SIMPSON-ABELSON | Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd69 selection and gene knockout in tils |
WO2022213118A1 (en) | 2021-03-31 | 2022-10-06 | Entrada Therapeutics, Inc. | Cyclic cell penetrating peptides |
WO2022208489A1 (en) | 2021-04-02 | 2022-10-06 | Vilmorin & Cie | Semi-determinate or determinate growth habit trait in cucurbita |
US20240207318A1 (en) | 2021-04-19 | 2024-06-27 | Yongliang Zhang | Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies |
CA3217862A1 (en) | 2021-05-05 | 2022-11-10 | Radius Pharmaceuticals, Inc. | Animal model having homologous recombination of mouse pth1 receptor |
WO2022240721A1 (en) | 2021-05-10 | 2022-11-17 | Entrada Therapeutics, Inc. | Compositions and methods for modulating interferon regulatory factor-5 (irf-5) activity |
EP4337264A1 (en) | 2021-05-10 | 2024-03-20 | Entrada Therapeutics, Inc. | Compositions and methods for modulating tissue distribution of intracellular therapeutics |
EP4337261A2 (en) | 2021-05-10 | 2024-03-20 | Entrada Therapeutics, Inc. | Compositions and methods for modulating mrna splicing |
CA3219148A1 (en) | 2021-05-17 | 2022-11-24 | Frederick G. Vogt | Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy |
EP4341403A1 (en) | 2021-05-17 | 2024-03-27 | Nogra Pharma Limited | Il-34 antisense agents and methods of using same |
GB202107057D0 (en) | 2021-05-18 | 2021-06-30 | Univ York | Glycosylation method |
WO2022243437A1 (en) | 2021-05-19 | 2022-11-24 | KWS SAAT SE & Co. KGaA | Sample preparation with oppositely oriented guide polynucleotides |
CA3222023A1 (en) | 2021-06-01 | 2022-12-08 | Arbor Biotechnologies, Inc. | Gene editing systems comprising a crispr nuclease and uses thereof |
WO2022256448A2 (en) | 2021-06-01 | 2022-12-08 | Artisan Development Labs, Inc. | Compositions and methods for targeting, editing, or modifying genes |
CA3222341A1 (en) | 2021-06-11 | 2022-12-15 | Kunwoo Lee | Biodegradable polymer comprising side chains with polyamine and polyalkylene oxide groups |
EP4370676A2 (en) | 2021-06-18 | 2024-05-22 | Artisan Development Labs, Inc. | Compositions and methods for targeting, editing or modifying human genes |
EP4359006A1 (en) | 2021-06-23 | 2024-05-01 | Entrada Therapeutics, Inc. | Antisense compounds and methods for targeting cug repeats |
WO2023283359A2 (en) | 2021-07-07 | 2023-01-12 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
WO2023004074A2 (en) | 2021-07-22 | 2023-01-26 | Iovance Biotherapeutics, Inc. | Method for cryopreservation of solid tumor fragments |
EP4377446A1 (en) | 2021-07-28 | 2024-06-05 | Iovance Biotherapeutics, Inc. | Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors |
EP4376596A1 (en) | 2021-07-30 | 2024-06-05 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
IL310564A (en) | 2021-08-06 | 2024-03-01 | Vilmorin & Cie | Resistance to Leveillula Taurica in pepper plant |
AU2022343300A1 (en) | 2021-09-10 | 2024-04-18 | Agilent Technologies, Inc. | Guide rnas with chemical modification for prime editing |
EP4166670A1 (en) | 2021-10-18 | 2023-04-19 | KWS SAAT SE & Co. KGaA | Plant-tag-based weeding control |
US20230187042A1 (en) | 2021-10-27 | 2023-06-15 | Iovance Biotherapeutics, Inc. | Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy |
KR20240099393A (ko) | 2021-11-01 | 2024-06-28 | 톰 바이오사이언시스, 인코포레이티드 | 유전자 편집 기구와 핵산 카고의 동시 전달을 위한 단일 작제물 플랫폼 |
CA3237482A1 (en) | 2021-11-03 | 2023-05-11 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Precise genome editing using retrons |
WO2023086803A1 (en) | 2021-11-10 | 2023-05-19 | Iovance Biotherapeutics, Inc. | Methods of expansion treatment utilizing cd8 tumor infiltrating lymphocytes |
WO2023093862A1 (en) | 2021-11-26 | 2023-06-01 | Epigenic Therapeutics Inc. | Method of modulating pcsk9 and uses thereof |
GB202118058D0 (en) | 2021-12-14 | 2022-01-26 | Univ Warwick | Methods to increase yields in crops |
US20230279442A1 (en) | 2021-12-15 | 2023-09-07 | Versitech Limited | Engineered cas9-nucleases and method of use thereof |
TW202342757A (zh) | 2021-12-17 | 2023-11-01 | 美商薩那生物科技公司 | 經修飾副黏液病毒科附著醣蛋白 |
WO2023115039A2 (en) | 2021-12-17 | 2023-06-22 | Sana Biotechnology, Inc. | Modified paramyxoviridae fusion glycoproteins |
EP4453196A1 (en) | 2021-12-21 | 2024-10-30 | Alia Therapeutics Srl | Type ii cas proteins and applications thereof |
IL313765A (en) | 2021-12-22 | 2024-08-01 | Tome Biosciences Inc | Joint provision of a gene editor structure and a donor template |
CN118679257A (zh) | 2021-12-23 | 2024-09-20 | 马萨诸塞大学 | 用于脆性x相关病症的治疗性治疗 |
WO2023133595A2 (en) | 2022-01-10 | 2023-07-13 | Sana Biotechnology, Inc. | Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses |
WO2023141602A2 (en) | 2022-01-21 | 2023-07-27 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
WO2023147488A1 (en) | 2022-01-28 | 2023-08-03 | Iovance Biotherapeutics, Inc. | Cytokine associated tumor infiltrating lymphocytes compositions and methods |
WO2023150518A1 (en) | 2022-02-01 | 2023-08-10 | Sana Biotechnology, Inc. | Cd3-targeted lentiviral vectors and uses thereof |
WO2023150647A1 (en) | 2022-02-02 | 2023-08-10 | Sana Biotechnology, Inc. | Methods of repeat dosing and administration of lipid particles or viral vectors and related systems and uses |
WO2023167882A1 (en) | 2022-03-01 | 2023-09-07 | Artisan Development Labs, Inc. | Composition and methods for transgene insertion |
WO2023194359A1 (en) | 2022-04-04 | 2023-10-12 | Alia Therapeutics Srl | Compositions and methods for treatment of usher syndrome type 2a |
WO2023196877A1 (en) | 2022-04-06 | 2023-10-12 | Iovance Biotherapeutics, Inc. | Treatment of nsclc patients with tumor infiltrating lymphocyte therapies |
EP4256950A1 (en) | 2022-04-06 | 2023-10-11 | Vilmorin et Cie | Tolerance to cgmmv in cucumber |
WO2023201369A1 (en) | 2022-04-15 | 2023-10-19 | Iovance Biotherapeutics, Inc. | Til expansion processes using specific cytokine combinations and/or akti treatment |
WO2023205744A1 (en) | 2022-04-20 | 2023-10-26 | Tome Biosciences, Inc. | Programmable gene insertion compositions |
WO2023215831A1 (en) | 2022-05-04 | 2023-11-09 | Tome Biosciences, Inc. | Guide rna compositions for programmable gene insertion |
WO2023219933A1 (en) | 2022-05-09 | 2023-11-16 | Entrada Therapeutics, Inc. | Compositions and methods for delivery of nucleic acid therapeutics |
WO2023220608A1 (en) | 2022-05-10 | 2023-11-16 | Iovance Biotherapeutics, Inc. | Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with an il-15r agonist |
WO2023225410A2 (en) | 2022-05-20 | 2023-11-23 | Artisan Development Labs, Inc. | Systems and methods for assessing risk of genome editing events |
WO2023225670A2 (en) | 2022-05-20 | 2023-11-23 | Tome Biosciences, Inc. | Ex vivo programmable gene insertion |
WO2023230573A2 (en) | 2022-05-25 | 2023-11-30 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for modulation of immune responses |
WO2023230566A2 (en) | 2022-05-25 | 2023-11-30 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for modulating cytokines |
WO2023230549A2 (en) | 2022-05-25 | 2023-11-30 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for modulation of tumor suppressors and oncogenes |
WO2023230578A2 (en) | 2022-05-25 | 2023-11-30 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for modulating circulating factors |
WO2023230570A2 (en) | 2022-05-25 | 2023-11-30 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for modulating genetic drivers |
WO2023250511A2 (en) | 2022-06-24 | 2023-12-28 | Tune Therapeutics, Inc. | Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression |
EP4299733A1 (en) | 2022-06-30 | 2024-01-03 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
WO2024005864A1 (en) | 2022-06-30 | 2024-01-04 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
GB2621813A (en) | 2022-06-30 | 2024-02-28 | Univ Newcastle | Preventing disease recurrence in Mitochondrial replacement therapy |
EP4299739A1 (en) | 2022-06-30 | 2024-01-03 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
WO2024005863A1 (en) | 2022-06-30 | 2024-01-04 | Inari Agriculture Technology, Inc. | Compositions, systems, and methods for genome editing |
JP7152094B1 (ja) * | 2022-06-30 | 2022-10-12 | リージョナルフィッシュ株式会社 | tracrRNAユニット、及びゲノム編集方法 |
WO2024020346A2 (en) | 2022-07-18 | 2024-01-25 | Renagade Therapeutics Management Inc. | Gene editing components, systems, and methods of use |
WO2024020587A2 (en) | 2022-07-22 | 2024-01-25 | Tome Biosciences, Inc. | Pleiopluripotent stem cell programmable gene insertion |
WO2024044655A1 (en) | 2022-08-24 | 2024-02-29 | Sana Biotechnology, Inc. | Delivery of heterologous proteins |
WO2024044723A1 (en) | 2022-08-25 | 2024-02-29 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
WO2024042199A1 (en) | 2022-08-26 | 2024-02-29 | KWS SAAT SE & Co. KGaA | Use of paired genes in hybrid breeding |
KR20240034661A (ko) * | 2022-09-06 | 2024-03-14 | 주식회사 툴젠 | 캄필로박터 제주니 유래 Cas9의 가이드 RNA 구조변화를 통한 유전자교정 향상 시스템 |
WO2024056880A2 (en) | 2022-09-16 | 2024-03-21 | Alia Therapeutics Srl | Enqp type ii cas proteins and applications thereof |
WO2024064838A1 (en) | 2022-09-21 | 2024-03-28 | Sana Biotechnology, Inc. | Lipid particles comprising variant paramyxovirus attachment glycoproteins and uses thereof |
WO2024081820A1 (en) | 2022-10-13 | 2024-04-18 | Sana Biotechnology, Inc. | Viral particles targeting hematopoietic stem cells |
WO2024098024A1 (en) | 2022-11-04 | 2024-05-10 | Iovance Biotherapeutics, Inc. | Expansion of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof |
WO2024098027A1 (en) | 2022-11-04 | 2024-05-10 | Iovance Biotherapeutics, Inc. | Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd103 selection |
WO2024102434A1 (en) | 2022-11-10 | 2024-05-16 | Senda Biosciences, Inc. | Rna compositions comprising lipid nanoparticles or lipid reconstructed natural messenger packs |
WO2024105162A1 (en) | 2022-11-16 | 2024-05-23 | Alia Therapeutics Srl | Type ii cas proteins and applications thereof |
WO2024112571A2 (en) | 2022-11-21 | 2024-05-30 | Iovance Biotherapeutics, Inc. | Two-dimensional processes for the expansion of tumor infiltrating lymphocytes and therapies therefrom |
WO2024118836A1 (en) | 2022-11-30 | 2024-06-06 | Iovance Biotherapeutics, Inc. | Processes for production of tumor infiltrating lymphocytes with shortened rep step |
WO2024119157A1 (en) | 2022-12-02 | 2024-06-06 | Sana Biotechnology, Inc. | Lipid particles with cofusogens and methods of producing and using the same |
WO2024137533A1 (en) | 2022-12-19 | 2024-06-27 | Graphite Bio, Inc. | Improved peptide inhibitors of p53 binding protein 53bp1 |
WO2024138194A1 (en) | 2022-12-22 | 2024-06-27 | Tome Biosciences, Inc. | Platforms, compositions, and methods for in vivo programmable gene insertion |
WO2024141599A1 (en) | 2022-12-29 | 2024-07-04 | Vilmorin & Cie | Tomato plants resistant to resistance-breaking tswv strains and corresponding resistance genes |
CN115982034B (zh) * | 2022-12-30 | 2023-11-28 | 云舟生物科技(广州)股份有限公司 | 载体构建系统虚拟终端的测试方法、存储介质及电子设备 |
WO2024149810A2 (en) | 2023-01-11 | 2024-07-18 | Alia Therapeutics Srl | Type ii cas proteins and applications thereof |
WO2024168265A1 (en) | 2023-02-10 | 2024-08-15 | Possible Medicines Llc | Aav delivery of rna guided recombination system |
WO2024168253A1 (en) | 2023-02-10 | 2024-08-15 | Possible Medicines Llc | Delivery of an rna guided recombination system |
US20240301447A1 (en) | 2023-02-15 | 2024-09-12 | Arbor Biotechnologies, Inc. | Gene editing method for inhibiting aberrant splicing in stathmin 2 (stmn2) transcript |
WO2024175308A1 (en) | 2023-02-22 | 2024-08-29 | KWS SAAT SE & Co. KGaA | Plants with improved performance |
WO2024206911A2 (en) | 2023-03-30 | 2024-10-03 | Children's Hospital Medical Center | Clinical-grade organoids |
WO2024211287A1 (en) | 2023-04-03 | 2024-10-10 | Seagen Inc. | Production cell lines with targeted integration sites |
WO2024220598A2 (en) | 2023-04-18 | 2024-10-24 | Sana Biotechnology, Inc. | Lentiviral vectors with two or more genomes |
WO2024220560A1 (en) | 2023-04-18 | 2024-10-24 | Sana Biotechnology, Inc. | Engineered protein g fusogens and related lipid particles and methods thereof |
WO2024220574A1 (en) | 2023-04-18 | 2024-10-24 | Sana Biotechnology, Inc. | Universal protein g fusogens and adapter systems thereof and related lipid particles and uses |
US20240352485A1 (en) | 2023-04-19 | 2024-10-24 | Flagship Pioneering Innovations Vii, Llc | Compositions and methods for the production of libraries |
WO2024218295A1 (en) | 2023-04-21 | 2024-10-24 | Vib Vzw | Allelic combinations in crops for yield increase |
WO2024226499A1 (en) | 2023-04-24 | 2024-10-31 | The Broad Institute, Inc. | Compositions and methods for modifying fertility |
WO2024223900A1 (en) | 2023-04-28 | 2024-10-31 | Vilmorin & Cie | Genetic determinants conferring improved tobrfv resistance |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2009136452A (ru) * | 2007-03-02 | 2011-04-10 | Даниско А/С (Dk) | Культуры с повышенной устойчивостью к фагам |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217344A (en) | 1976-06-23 | 1980-08-12 | L'oreal | Compositions containing aqueous dispersions of lipid spheres |
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4186183A (en) | 1978-03-29 | 1980-01-29 | The United States Of America As Represented By The Secretary Of The Army | Liposome carriers in chemotherapy of leishmaniasis |
US4261975A (en) | 1979-09-19 | 1981-04-14 | Merck & Co., Inc. | Viral liposome particle |
US4485054A (en) | 1982-10-04 | 1984-11-27 | Lipoderm Pharmaceuticals Limited | Method of encapsulating biologically active materials in multilamellar lipid vesicles (MLV) |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4946787A (en) | 1985-01-07 | 1990-08-07 | Syntex (U.S.A.) Inc. | N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US5049386A (en) | 1985-01-07 | 1991-09-17 | Syntex (U.S.A.) Inc. | N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4897355A (en) | 1985-01-07 | 1990-01-30 | Syntex (U.S.A.) Inc. | N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4797368A (en) | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
US4774085A (en) | 1985-07-09 | 1988-09-27 | 501 Board of Regents, Univ. of Texas | Pharmaceutical administration systems containing a mixture of immunomodulators |
DE122007000007I1 (de) | 1986-04-09 | 2007-05-16 | Genzyme Corp | Genetisch transformierte Tiere, die ein gewünschtes Protein in Milch absondern |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US4873316A (en) | 1987-06-23 | 1989-10-10 | Biogen, Inc. | Isolation of exogenous recombinant proteins from the milk of transgenic mammals |
US5264618A (en) | 1990-04-19 | 1993-11-23 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
WO1991017424A1 (en) | 1990-05-03 | 1991-11-14 | Vical, Inc. | Intracellular delivery of biologically active substances by means of self-assembling lipid complexes |
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
US7150982B2 (en) * | 1991-09-09 | 2006-12-19 | Third Wave Technologies, Inc. | RNA detection assays |
US5587308A (en) | 1992-06-02 | 1996-12-24 | The United States Of America As Represented By The Department Of Health & Human Services | Modified adeno-associated virus vector capable of expression from a novel promoter |
US6534261B1 (en) | 1999-01-12 | 2003-03-18 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
US7868149B2 (en) | 1999-07-20 | 2011-01-11 | Monsanto Technology Llc | Plant genome sequence and uses thereof |
US6603061B1 (en) | 1999-07-29 | 2003-08-05 | Monsanto Company | Agrobacterium-mediated plant transformation method |
US7033744B2 (en) * | 2001-03-16 | 2006-04-25 | Naoya Kobayashi | Method for proliferating a liver cell, a liver cell obtained thereby, and use thereof |
US20090100536A1 (en) | 2001-12-04 | 2009-04-16 | Monsanto Company | Transgenic plants with enhanced agronomic traits |
CA2615532C (en) * | 2005-07-26 | 2016-06-28 | Sangamo Biosciences, Inc. | Targeted integration and expression of exogenous nucleic acid sequences |
US9677123B2 (en) * | 2006-03-15 | 2017-06-13 | Siemens Healthcare Diagnostics Inc. | Degenerate nucleobase analogs |
US8546553B2 (en) | 2008-07-25 | 2013-10-01 | University Of Georgia Research Foundation, Inc. | Prokaryotic RNAi-like system and methods of use |
US20100076057A1 (en) * | 2008-09-23 | 2010-03-25 | Northwestern University | TARGET DNA INTERFERENCE WITH crRNA |
US9404098B2 (en) | 2008-11-06 | 2016-08-02 | University Of Georgia Research Foundation, Inc. | Method for cleaving a target RNA using a Cas6 polypeptide |
EP3156494B8 (en) * | 2008-12-04 | 2018-09-19 | Sangamo Therapeutics, Inc. | Genome editing in rats using zinc-finger nucleases |
US8586526B2 (en) * | 2010-05-17 | 2013-11-19 | Sangamo Biosciences, Inc. | DNA-binding proteins and uses thereof |
US8889394B2 (en) | 2009-09-07 | 2014-11-18 | Empire Technology Development Llc | Multiple domain proteins |
EP2504439B1 (en) * | 2009-11-27 | 2016-03-02 | BASF Plant Science Company GmbH | Optimized endonucleases and uses thereof |
US10087431B2 (en) | 2010-03-10 | 2018-10-02 | The Regents Of The University Of California | Methods of generating nucleic acid fragments |
CA2798703A1 (en) | 2010-05-10 | 2011-11-17 | The Regents Of The University Of California | Endoribonuclease compositions and methods of use thereof |
US9405700B2 (en) | 2010-11-04 | 2016-08-02 | Sonics, Inc. | Methods and apparatus for virtualization in an integrated circuit |
EP2702160B1 (en) * | 2011-04-27 | 2020-05-27 | Amyris, Inc. | Methods for genomic modification |
US20140113376A1 (en) | 2011-06-01 | 2014-04-24 | Rotem Sorek | Compositions and methods for downregulating prokaryotic genes |
GB201122458D0 (en) | 2011-12-30 | 2012-02-08 | Univ Wageningen | Modified cascade ribonucleoproteins and uses thereof |
US9637739B2 (en) | 2012-03-20 | 2017-05-02 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
WO2013141680A1 (en) | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
MA37663B1 (fr) * | 2012-05-25 | 2019-12-31 | Univ California | Procédés et compositions permettant la modification de l'adn cible dirigée par l'arn et la modulation de la transcription dirigée par l'arn |
KR102052286B1 (ko) | 2012-10-23 | 2019-12-06 | 주식회사 툴젠 | 표적 DNA에 특이적인 가이드 RNA 및 Cas 단백질을 암호화하는 핵산 또는 Cas 단백질을 포함하는, 표적 DNA를 절단하기 위한 조성물 및 이의 용도 |
DK3138910T3 (en) * | 2012-12-06 | 2017-10-16 | Sigma Aldrich Co Llc | CRISPR-BASED RE-MODIFICATION AND REGULATION |
WO2014093479A1 (en) | 2012-12-11 | 2014-06-19 | Montana State University | Crispr (clustered regularly interspaced short palindromic repeats) rna-guided control of gene regulation |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
ES2536353T3 (es) * | 2012-12-12 | 2015-05-22 | The Broad Institute, Inc. | Ingeniería de sistemas, métodos y composiciones de guía optimizadas para manipulación de secuencias |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
CA2895155C (en) | 2012-12-17 | 2021-07-06 | President And Fellows Of Harvard College | Rna-guided human genome engineering |
-
2013
- 2013-12-12 ES ES13818570.7T patent/ES2536353T3/es active Active
- 2013-12-12 US US14/104,990 patent/US20140242664A1/en not_active Abandoned
- 2013-12-12 PT PT151545399T patent/PT2896697E/pt unknown
- 2013-12-12 AU AU2013359123A patent/AU2013359123B2/en active Active
- 2013-12-12 PT PT141703835T patent/PT2784162E/pt unknown
- 2013-12-12 KR KR1020157018614A patent/KR20150105633A/ko not_active Application Discontinuation
- 2013-12-12 CN CN201380070567.XA patent/CN105121648B/zh active Active
- 2013-12-12 IL IL239344A patent/IL239344B2/en unknown
- 2013-12-12 WO PCT/US2013/074819 patent/WO2014093712A1/en active Application Filing
- 2013-12-12 EP EP23193042.1A patent/EP4279588A3/en active Pending
- 2013-12-12 PT PT138185707T patent/PT2771468E/pt unknown
- 2013-12-12 CN CN202110406914.8A patent/CN113528577A/zh active Pending
- 2013-12-12 RU RU2015128098A patent/RU2701850C2/ru active
- 2013-12-12 DK DK13818570.7T patent/DK2771468T3/en active
- 2013-12-12 IL IL307735A patent/IL307735A/en unknown
- 2013-12-12 MX MX2015007549A patent/MX2015007549A/es unknown
- 2013-12-12 ES ES15154539.9T patent/ES2553782T3/es active Active
- 2013-12-12 CA CA2894701A patent/CA2894701A1/en not_active Abandoned
- 2013-12-12 EP EP13818570.7A patent/EP2771468B1/en not_active Revoked
- 2013-12-12 PL PL13818570T patent/PL2771468T3/pl unknown
- 2013-12-12 PT PT151545662T patent/PT2921557T/pt unknown
- 2013-12-12 PL PL15154566T patent/PL2921557T3/pl unknown
- 2013-12-12 ES ES15154566.2T patent/ES2598115T3/es active Active
- 2013-12-12 JP JP2015547573A patent/JP2016504026A/ja active Pending
- 2013-12-12 ES ES14170383.5T patent/ES2542015T3/es active Active
-
2014
- 2014-05-29 US US14/290,575 patent/US8906616B2/en active Active
-
2015
- 2015-03-31 HK HK15103251.1A patent/HK1202586A1/xx not_active IP Right Cessation
- 2015-05-04 US US14/703,511 patent/US20150232882A1/en active Pending
- 2015-05-05 US US14/704,551 patent/US20150247150A1/en active Pending
- 2015-10-02 HK HK15109702.3A patent/HK1209154A1/xx not_active IP Right Cessation
- 2015-10-02 HK HK15109700.5A patent/HK1209153A1/zh not_active IP Right Cessation
- 2015-11-09 HK HK15111023.1A patent/HK1210221A1/xx unknown
-
2016
- 2016-02-15 JP JP2016025710A patent/JP6203879B2/ja active Active
- 2016-03-30 JP JP2016067687A patent/JP6420273B2/ja active Active
- 2016-04-21 HK HK16104577.5A patent/HK1216759A1/zh unknown
- 2016-06-14 JP JP2016117740A patent/JP2016165307A/ja active Pending
- 2016-08-05 US US15/230,025 patent/US20160340662A1/en active Pending
- 2016-10-12 AU AU2016244241A patent/AU2016244241C1/en active Active
-
2017
- 2017-08-30 JP JP2017165304A patent/JP6495395B2/ja active Active
-
2018
- 2018-03-20 JP JP2018053045A patent/JP6726225B2/ja active Active
-
2019
- 2019-03-05 JP JP2019039724A patent/JP6960951B2/ja active Active
- 2019-03-05 JP JP2019039723A patent/JP6960950B2/ja active Active
- 2019-09-13 AU AU2019229420A patent/AU2019229420B2/en active Active
-
2021
- 2021-10-12 JP JP2021167368A patent/JP7198328B2/ja active Active
-
2022
- 2022-06-01 AU AU2022203762A patent/AU2022203762A1/en active Pending
- 2022-12-16 JP JP2022200815A patent/JP7542595B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2009136452A (ru) * | 2007-03-02 | 2011-04-10 | Даниско А/С (Dk) | Культуры с повышенной устойчивостью к фагам |
Non-Patent Citations (1)
Title |
---|
Dana Carrall et al. A CRISPR Approach to Gene Targeting, Mol. Ther., 2012 sep. 4; 20(9): 1658-1660. * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7463436B2 (ja) | 遺伝子産物の発現を変更するためのCRISPR-Cas系および方法 | |
JP7542595B2 (ja) | 配列操作のための系、方法および最適化ガイド組成物のエンジニアリング | |
JP7542681B2 (ja) | 配列操作のためのCRISPR-Cas成分系、方法および組成物 | |
RU2701662C2 (ru) | Компоненты системы crispr-cas, способы и композиции для манипуляции с последовательностями | |
DK2921557T3 (en) | Design of systems, methods and optimized sequence manipulation guide compositions | |
JP2020511931A (ja) | 改良された遺伝子編集 |