Nothing Special   »   [go: up one dir, main page]

RU2677574C1 - Способ лазерного скрайбирования полупроводниковой заготовки с использованием разделенных лазерных лучей - Google Patents

Способ лазерного скрайбирования полупроводниковой заготовки с использованием разделенных лазерных лучей Download PDF

Info

Publication number
RU2677574C1
RU2677574C1 RU2017142632A RU2017142632A RU2677574C1 RU 2677574 C1 RU2677574 C1 RU 2677574C1 RU 2017142632 A RU2017142632 A RU 2017142632A RU 2017142632 A RU2017142632 A RU 2017142632A RU 2677574 C1 RU2677574 C1 RU 2677574C1
Authority
RU
Russia
Prior art keywords
primary
pulsed
pulses
scribing
substrate
Prior art date
Application number
RU2017142632A
Other languages
English (en)
Inventor
Эгидьюс ВАНАГАС
Дзьюгас КИМБАРАС
Лауринас ВЕСЕЛИС
Original Assignee
Эвана Текнолоджис, Уаб
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эвана Текнолоджис, Уаб filed Critical Эвана Текнолоджис, Уаб
Application granted granted Critical
Publication of RU2677574C1 publication Critical patent/RU2677574C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67282Marking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • H01L2223/5446Located in scribe lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

Изобретение относится к способу лазерного скрайбирования полупроводниковой заготовки и может использоваться для эффективного и быстрого разделения полупроводниковых устройств, выполненных на твердых и сплошных подложках (6). Создают разлом по траектории скрайбирования, который заходят глубоко в объем заготовки (6). Тепловые напряжения индуцируют, подавая по меньшей мере два обрабатывающих (сверхкороткий импульс) импульсных лучей (7), содержащих по меньшей мере первичные и вторичные импульсы. Первичные импульсы используют для создания зоны аккумуляции тепла, которая обеспечивает более эффективную абсорбцию вторичных импульсов, которые создают градиент тепла, достаточный для получения механических повреждений, необходимых для механического разделения заготовки (6) на отдельные части. 8 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящий способ относится к лазерной обработке материалов. Более конкретно, он относится к способам и системам для разделения твердых и хрупких полупроводниковых подложек или пластин.
ПРЕДПОСЫЛКИ ДЛЯ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Резка полупроводниковых пластин играет очень важную роль в изготовлении полупроводниковых устройств, которые становятся все меньше или все сложнее. В электронных устройствах нового поколения для высокочастотной (ВЧ) связи и преобразователей большой мощности используются подложки из карбида кремния (SiC) и нитрида галлия (GaN). Изготовление таких устройств требует современных способов обработки пластин, чтобы минимизировать появление внутренних и внешних дефектов как в подложке, так и в разных функциональных слоях (покрытиях) во время резки (разделения) полупроводниковых пластин, поскольку карбид кремния (SiC) и нитрид галлия (GaN) являются исключительно твердыми материалами. Этот процесс усложняется тем, что исходные пластины или подложки покрыты сложными системами функциональных слоев вместе с металлическими электродами, и материал подложек должен относиться к особенно твердым материалам, таким как карбид кремния (SiC). В таких случаях необходимы решения, которые помогают увеличить скорость обработки, поскольку функциональные поверхности обычно имеют свойства, отличающиеся от свойств подложки, и известная лазерная резка и ей подобные способы, которые используют наиболее часто, больше применять нельзя.
В патенте США US 8551792 (В2), опубликованном 08.10.2013, раскрыт способ резки полупроводниковой пластины. Этот способ включает скрайбирование по меньшей мере одного диэлектрического слоя по линиям резки, чтобы удалить материал с поверхности пластины, используя лазер с длительностью импульса от 1 пикосекунды до 1000 пикосекунд и с частотой повторения, соответствующей интервалам между импульсами короче чем время тепловой релаксации скрайбируемого материала. Затем пластину разрезают через металлический слой и, по меньшей мере частично, через подложку полупроводниковой пластины.
В патенте США US 6562698 (В2), опубликованном 13.05.2003, раскрыт способ разделения полупроводниковых пластин на кристаллы, который включает этапы направления первого и второго лазерного луча на верхнюю поверхность подложки, формирование линий скрайбирования в слое покрытия путем сканирования этого слоя первым лазерным лучом и резка подложки по линиям скрайбирования вторым лазерным лучом для получения соответствующего надреза. Устройство включает первый лазер, имеющий первую длину волны, которым действуют на слой покрытия подложки, и второй лазер, имеющий вторую длину волны, отличную от длины волны первого лазера, которым действуют на поверхность подложки. Слой покрытия имеет первый коэффициент поглощения относительно длины волны первого лазера, и полупроводниковая подложка имеет второй коэффициент поглощения, который меньше чем первый коэффициент поглощения. Энергия луча первого лазера поглощается слоем покрытия для формирования в нем линий скрайбирования, и луч второго лазера через подложку по линиям скрайбирования.
В патентной заявке Японии JP 2005116844 (А), опубликованной 28.04.2005, раскрыт способ изготовления полупроводникового устройства. Цель изобретения заключается в том, чтобы уменьшить образование сколов и устранить создание сколов и отслоений на поверхностном слое заготовки, даже если поверхностный слой выполнен из материала, отличного от материала полупроводниковой подложки. Способ включает процесс формирования канавки посредством сканирования поверхности линии скрайбирования, на которой полупроводниковые элементы выполняют на полупроводниковой подложке лучом первого лазера, сведенным на поверхности линии скрайбирования, и процесс формирования области, реформированной поглощением множества фотонов, посредством луча второго лазера, действующего на внутреннюю сторону полупроводниковой подложки по первой линии скрайбирования. Заявлено, что, поскольку канавку на поверхности выполняют по линии скрайбирования лучом первого лазера, создания сколов или трещин можно избежать независимо от поверхности полупроводниковой подложки, и последнюю можно легко разрезать после формирования реформированной области, применяя абсорбцию множества фотонов второго лазерного луча.
Известные способы имеют ограничения по толщине подложки, типу материала и качеству обработки при разделении полупроводниковых пластин. Для обработки твердых и хрупких материалов, таких как SiC или GaN, с несколькими функциональными покрытиями, такие способы требуют повышения мощности лазера или увеличения числа проходов лазерным лучом по линии разделения. Также в некоторых случаях необходимо модифицировать не только слои материала. Как следствие, это оказывает неблагоприятное воздействие как на характеристики полупроводникового устройства, так и на объем производства.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Для устранения вышеуказанных недостатков настоящее изобретение предлагает эффективный и быстрый способ обработки лазером для разделения полупроводниковых устройств, выполненных на твердых сплошных подложках. Во время подготовки устройства или подложки для раскалывания/резки (разделения) область повреждения (также может называться "модификация") находится там, где тепловое напряжение индуцировало появление трещины или разлома, проходящего от первой поверхности предпочтительно плоской заготовки по намеченной траектории разделения. Это напряжение индуцируется локальным тепловым нагревом и последующим охлаждением материала в способе с одним проходом, за счет чего увеличивают объем производства. Ниже термин "заготовка" будет использоваться как включающий термины подложка, многослойная подложка, полупроводниковая пластина, лист полупроводниковой пластины, устройство (или устройства) и им подобные, которые подготовлены для обработки и последующего механического разделения (раскалывания по плоскостям резки) и будут использоваться взаимозаменяемо.
Изобретение раскрывает способ лазерного скрайбирования полупроводниковой заготовки, причем заготовка включает по меньшей мере один слой подложки из материала, имеющего запрещенную энергетическую зону в интервале от 2,5 до 4 эВ, и причем заготовка имеет первую и вторую параллельные поверхности, и используется источник лазерного излучения в виде импульсного луча, при этом заготовка или лазерные лучи относительно перемещаются по намеченной траектории скрайбирования. Способ отличается тем, что он включает следующие этапы: формирование по меньшей мере двух импульсных лучей (обрабатывающих импульсных лучей) из начального луча, подаваемого источником лазерного импульсного луча, которые включают по меньшей мере первичные и вторичные импульсы; подача упомянутых импульсов через средство конвергенции на и в заготовку, которая относительно перемещается по отношению к по меньшей мере одному первичному и вторичному импульсному лучу. Импульсы задерживаются на интервал времени, который немного превышает время электрон-фононной релаксации материала слоя подложки, другими словами время абсорбции фононов решеткой материала, при этом интервал времени устанавливают в пределах от десятков до сотен пикосекунд, и первичные импульсы в области скрайбирования используют для инициации и поддержания поверхностной абляции и аккумуляции тепла по меньшей мере в одной зоне, на которую влияет тепло, соответствующие вторичные импульсы перекрываются с упомянутой зоной воздействия тепла, так что из-за накопившейся энергии (тепла) и "подогретой" (испытывающей влияние тепла) зоны, индуцируемая вторичными импульсами абляция и абсорбция энергии становится гораздо более эффективной. "Подогрев" и последующая абляция вызывает появление структур повреждений на поверхности этого слоя подложки, и эти структуры повреждений действуют как прекурсор для больших разломов и трещин (проходящих в глубину слоя подложки), которые вызваны градиентом тепла и быстрым неравномерным охлаждением. Такие трещины и разломы созданы напряжениями в объеме материала слоя в плоскости разделения по траектории скрайбирования.
ОПИСАНИЕ ЧЕРТЕЖЕЙ
Для более лучшего понимания способа и оценки его практического применения представлены следующие чертежи, на которые делаются ссылки ниже. Фигуры чертежей даны только как примеры и никоим образом не должны ограничивать объем изобретения.
Фиг. 1 - изменения в реальном времени на поверхности заготовки, обрабатываемой конфигурация двух парных импульсов. Заготовка линейно перемещается в направлении 1.
Фиг. 2 - напряжения, создаваемые в объеме вследствие абсорбции энергии одной пары первичных и вторичных импульсов подложкой SiC.
Фиг. 3 - обобщенная базовая структура для лазерной обработки при реализации раскрытого способа.
Фиг. 4 - конкретная структура, необходимая для обработки с целью реализации раскрытого способа.
Фиг. 5 - поверхность подложки с золотым покрытием после скрайбирования.
Фиг. 6 - вид сбоку подложки с золотым покрытием после разделения.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Настоящее изобретение предлагает способ лазерной обработки для разделения полупроводниковых устройств, выполненных на одной подложке, включающей по меньшей мере один слой твердого и хрупкого материала, предпочтительно SiC. Во время подготовки образца для резки/раскалывания/разделения получают объемную структуру повреждения, которая помогает разделить заготовку по намеченным плоскостям разделения с минимальными дефектами (способы разделения скрайбированной пластины на кристаллы ИС или чипы должны быть известны специалисту в данной области техники).
В наиболее предпочтительном варианте осуществления заготовка включает основной слой подложки из карбида кремния, политип 4Н (4H-SiC) (также можно использовать другие варианты), с металлическим, полупроводниковым или диэлектрическим покрытием. Заготовка имеет первую и вторую параллельные поверхности. Источник импульсного лазерного луча подает излучение с длиной волны в интервале от ближнего УФ до среднего ИК спектрального диапазона (например, 515 или 1030 нм) при продолжительности импульса меньше чем 1 пс, предпочтительно в интервале от 200 до 500 фс (длительность на уровне половины амплитуды / 1,41). Начальный луч направляется узлом манипуляции лучом, имеющим, например, по меньшей мере два оптических делителя луча и линию задержки по времени (два подвижных зеркала). Первый делитель луча разделяет начальный луч на первичный и вторичный импульсные лучи, тогда как второй делитель луча объединяет эти лучи на одном оптическом пути после введения контролируемой задержки по времени между первичными и вторичными импульсами. Специалист в данной области техники должен понимать, что узел манипуляции лучом может быть расположен по-разному, чтобы продуцировать первичные и вторичные импульсы. Оба импульсных луча направляют через средство для конвергенции лучей (фокусирующее зеркало, линза объектива и т.д.), предпочтительно имеющее цифровую апертуру в интервале от 0,1 до 0,4, в намеченную область скрайбирования по меньшей мере по одной траектории скрайбирования. Такой случай показан на Фиг. 1, где первичный и вторичный лучи 2 конвергированы на поверхности заготовки.
Заготовку линейно перемещают таким образом, чтобы подавать первичные и вторичные импульсы в намеченную область скрайбирования пачками импульсов от 2 до 8 импульсов на 1 микрометр. Каждый первичный импульс сопровождается по меньшей мере одним соответствующим вторичным импульсом, задержанным на более короткий интервал времени, немного превышающий время электрон-фононной релаксации основного материала подложки, в предпочтительном случае такая задержка составляет половину периода повторения импульсов в начальном лазерном источнике, установленном, например, на частоту 200 кГц. В других случаях она должна быть выбрана в интервале от 10 до 1000 пс. Первичные импульсы, подаваемые на область скрайбирования используют для инициации и поддержания поверхности, которая может соответствовать функциональному слою 3 или системе слоев, нанесенных на основной слой подложки, абляции и аккумуляции тепла (путем приложения дополнительного тепла - "подогрева"). Первичные импульсы также инициируют небольшие физические изменения на поверхности этого слоя подложки, что приводит к снижению порога повреждения для индуцируемых напряжениями механических повреждений, таким образом формируя прекурсор 4 трещины или разлома. Поскольку длительность импульса выбирают в диапазоне фемтосекунд и интервал времени межу поступлениями вторичных импульсов сравним с временем электрон-фононной релаксации SiC, формируется по меньшей мере одна локализованная область воздействия тепла. При последующих импульсах абляция и абсорбция энергии становятся гораздо более эффективными в пределах этой зоны теплового воздействия. Соответствующие вторичные импульсы, которые поступают после каждого последовательного первичного импульса, перекрываются с упомянутой областью теплового воздействия, так что возникает достаточно крутой градиент тепла и быстрое неравномерное охлаждение, которые создают высокие напряжение в объеме материала подложки и структуру повреждения 5 - систему распространяющихся механических повреждений, проходящих от поверхности слоя подложки. Следует понимать, что вторичные импульса служат не только для подачи тепла в зону теплового воздействия, но и могут поддерживать процесс абляции поверхности подложки и покрытий 3. Кроме того, поскольку принципы такого способа обработки основаны на кумулятивном эффекте больше чем одного импульса, и первичный импульс может функционировать как вторичный импульс для последующего первичного импульса. Этот процесс показан на Фиг. 1, где показаны: входящие импульсные лучи, подающие пары импульсов 2, слой покрытия 3, полупроводниковая подложка 6, прекурсор трещины 4, приблизительная линия 5 нижнего края роста трещины, пара первичного и вторичного импульсов, создающих профили напряжений 7 (пары профилей для пар импульсов), направление 1 движения заготовки. Напряжения, создаваемые в объеме вследствие абсорбции энергии одной пары первичного и вторичного импульса подложкой SiC, показаны на Фиг. 2. Для получения наилучших результатов энергия обрабатывающего импульса должна быть выбрана в интервале от 4 до 50 мкДж.
В еще одном предпочтительном варианте осуществления по меньшей мере один первичный и вторичный импульсный луч направляют через элементы манипуляции лучом в узел манипуляции лучом, где модифицируются параметры по меньшей мере одного импульсного луча, такие как длина волны, длительность импульса, временная форма огибающей импульса или спектр, расходимость луча, пространственный спектр, временная или пространственная фазовая модуляция и т.д.
В еще одном предпочтительном варианте осуществления для упомянутых первичного и вторичного импульсных лучей устанавливают идентичные параметры луча.
В еще одном предпочтительном варианте осуществления заготовка включает слой подложки и два или больше слоев покрытия из разных материалов.
В еще одном варианте осуществления первичный импульсный луч фокусируют на первой поверхности заготовки или ниже (точку конвергенции или фокальную точку располагают/формируют под первой поверхностью заготовки), осуществляя абляцию слоев покрытия, при этом толщину слоя покрытия уменьшают или покрытие полностью удаляют, открывая упомянутый, по меньшей мере один, твердый и хрупкий слой подложки, создают зону воздействия тепла и точку конвергенции вторичного импульсного лазерного луча располагают ниже первой поверхности заготовки.
В еще одном варианте осуществления вторичный импульсный луч модифицируют для повышения расходимости перед тем, как сфокусировать на намеченной области скрайбирования, чтобы его фокальная точка была расположена ниже фокальной точки (или точек конвергенции лучей) первичного импульсного луча, и чтобы он перекрывался с зоной воздействия тепла, увеличивая количество тепла за счет многофотонной абсорбции, так как коэффициент поперечного сечения многофотонной абсорбции увеличивается с увеличением температуры материала.
В еще одном варианте осуществления материалом по меньшей мере одного слоя подложки в заготовке является нитрид галлия.
В еще одном предпочтительном варианте осуществления заготовка включает слой подложки и два или больше слоев покрытия из разных материалов, далее генерируют лучи обработки для постепенного удаления упомянутых слоев и постепенного создания зоны аккумуляции тепла.
В еще одном предпочтительном варианте осуществления заготовка включает неплоские поверхности, и во время обработки активно поддерживается постоянное расстояние между первой поверхностью заготовки и средством конвергенции.
Для того, чтобы специалист в данной области техники мог правильно реализовать раскрытое изобретение, представлены Фиг. 3 и Фиг. 4. На Фиг. 3 показана простая, наиболее обычная система, необходимая для получения результатов, связанных с раскрытым способом, в котором импульсный лазерный источник 8 используют для получения начального импульсного луча 11, который направляют через общий узел манипуляции лучом 9, в котором происходит разделение импульсного лазерного луча, и вводят задержку между по меньшей мере первичными и вторичными импульсами. Так как по меньшей мере один первичный и один вторичный импульсные лучи выходят из упомянутого узла манипуляции лучом 9, их направляют через средство 10 для конвергенции лучей. Средством для конвергенции лучей может служить сферическая линза, асферическая линза, линза объектива или изогнутое фокусирующее зеркало. Следует сказать, что начальный импульсный луч 11 в узле манипуляции лучом должен быть разделен так, чтобы получить два или больше первичных, вторичных и т.д. импульсов, поскольку импульсы обработки, которые содержатся в по меньшей мере одном первичном и вторичном обрабатывающем луче обработки 12 получают парами или пучками импульсов. Также, согласно способу, обрабатывающие лучи 12, или заготовка 13, или все они должны перемещаться в поперечном направлении, и наиболее простым способом осуществить это является установка заготовки 13 на моторизованный комплекс для ступенчатого линейного перемещения 14 во время обработки, или смещение самой обрабатывающей системы, или использование гальванометрического сканера и т.д.
На Фиг. 4 показано, как следует выбирать узел манипуляции импульсным лучом для способа, в котором начальный импульсный луч 11 разделяют в узле манипуляции импульсным лучом 9, содержащем два делителя луча 15 и линию задержки, состоящую по меньшей мере из двух подвижных зеркал 16, которые можно заменить подвижным отражателем или диэлектрической призмой, поскольку они являются стандартными решениями, известными в данной области техники. Другое решение, включающее использование электрооптического модулятора, акустооптического модулятора, дифракционной оптики, элементов, изготовленных из двоякопреломляющих материалов, можно использовать для разделения и задержки импульсов, не удаляя их с основной оптической оси начального импульсного луча 11. Также по меньшей мере один элемент или устройство 17 манипуляции лучом может быть включено в соответствующий оптический путь для изменения параметров импульсного луча, таких как длина волны, ширина импульса, временная огибающая, пространственное распределение интенсивности или фазовая модуляция, расходимость, поляризация, по меньшей мере одного из разделенных импульсных лучей. Элементом манипуляции 17 может служить дифракционный элемент для разделения луча на множественные параллельные лучи, фазовая пластинка, кристалл для генерации нелинейных гармоник, фокусирующая или рассеивающая линза, фазовый модулятор на жидком кристалле, адаптивный оптический элемент или любой другой элемент, изменяющий пространственные, временные или спектральные свойства по меньшей мере одного из импульсных лучей. Узел манипуляции лучом и средство для конвергенции также могут быть интегрированы в одном устройстве.
Для того, чтобы лучше раскрыть настоящее изобретение, представлены следующие примеры. Тем не менее, раскрытые примеры и упомянутые параметры представлены для помощи в понимании изобретения, а не для ограничения его объема. Эти параметры можно изменять в широком интервале с воспроизведением подобных или разных результатов, но при этом основная идея процесса разделения остается неизменной.
Пример 1.
Материалом подложки заготовки является SiC (4H-SiC) с одним металлическим золотым покрытием. Равнообъединенная энергия первичного и вторичного импульса составляет 10 микроджоулей. Лазерным источником является фемтосекундный лазер с длиной волны выходного излучения 1030 нм, шириной импульса меньше 300 фс (длительность на уровне половины амплитуды/1,41), установленный на частоту на выходе 200 кГц. Первичный и вторичный лучи изменяют с помощью кристалла для генерации нелинейной второй гармоники с длиной волны 515 нм. Задержка 100 пс установлена для первичных и вторичных импульсов. Фокусирующий блок снабжен фокусирующей линзой объектива 0.15 NA в качестве средства для конвергенции лучей с фокусным расстоянием 15 мм. Линейная скорость перемещения заготовки установлена на 100 мм/с. Результат такой обработки показан на Фиг. 5 и Фиг. 6.

Claims (9)

1. Способ лазерного скрайбирования полупроводниковой заготовки, выполненной в виде подложки с по меньшей мере одним слоем из твердого и хрупкого материала, имеющего энергетическую запрещенную зону в интервале от 2,5 до 4 эВ, и с первой и второй параллельными поверхностями, включающий использование источника импульсных лазерных пучков, при этом заготовку или обрабатывающие лазерные пучки перемещают относительно друг друга по намеченной траектории скрайбирования, отличающийся тем, что импульсный лазерный пучок делят по меньшей мере на один первичный импульсный пучок, содержащий первичные импульсы, и один вторичный импульсный пучок, содержащий вторичные импульсы, для чего используют узел манипуляции пучком, выполненный с возможностью разделения исходного пучка от источника импульсного лазерного пучка, через который направляют импульсный лазерный пучок, при этом упомянутые пучки подают по меньшей мере по одной траектории скрайбирования заготовки, для чего используют средства для сведения пучков в намеченную область скрайбирования, причем первичные и вторичные импульсы подают в заданную область скрайбирования в виде пакетов импульсов от 2 до 8 импульсов на 1 микрон, причем каждый первичный импульс сопровождают по меньшей мере одним соответствующим вторичным импульсом, который задерживают на интервал времени, немного превышающий время электрон-фононной релаксации материала слоя подложки, при этом в области скрайбирования инициируют и поддерживают поверхностную абляцию и аккумуляцию тепла по меньшей мере в одной зоне теплового воздействия посредством первичных импульсов и перекрывают зону теплового воздействия посредством соответствующих вторичных импульсов, при этом посредством создания градиента тепла и быстрого неравномерного охлаждения получают трещины и разломы, проходящие от поверхности слоя подложки в глубь подложки по плоскости разделения.
2. Способ по п. 1, отличающийся тем, что по меньшей мере один из по меньшей мере одного первичного и по меньшей мере одного вторичного импульсных пучков модифицируют в узле манипуляции пучка, причем модификация включает в себя изменение по меньшей мере одного из параметров импульсного пучка, включающих длину волны, длительность импульса, форму/спектр временной огибающей импульса, расходимость пучка, пространственный спектр.
3. Способ по п. 1, отличающийся тем, что для первичного и вторичного импульсных пучков устанавливают идентичные параметры пучка.
4. Способ по п. 1, отличающийся тем, что первая поверхность подложки может содержать один или больше слоев покрытия из разных материалов.
5. Способ по п. 1, отличающийся тем, что используют источник импульсного лазерного пучка, который испускает излучение с длиной волны в диапазоне от УФ до ИК и продолжительностью импульса от 200 до 1000 фс.
6. Способ по п. 1, отличающийся тем, что энергии по меньшей мере одного первичного и вторичного импульсов выбирают в диапазоне от 4 до 50 мкДж.
7. Способ по п. 1, отличающийся тем, что первичный импульсный пучок фокусируют на первую поверхность заготовки или ниже ее, осуществляя абляцию слоев покрытия, при этом толщину слоя покрытия уменьшают или полностью удаляют, открывая по меньшей мере один слой подложки из твердого и хрупкого материала и создавая зону теплового воздействия.
8. Способ по п. 1, отличающийся тем, что вторичный импульсный пучок модифицируют, увеличивая расходимость пучка перед тем, как сфокусировать его в заданной области скрайбирования, с обеспечением расположения точки сведения пучка ниже точки сведения пучка первичного импульсного пучка и перекрытия с зоной теплового воздействия для увеличения количества тепла, выделяемого в связи с многофотонной абсорбцией в объеме слоя подложки.
9. Способ по п. 1, отличающийся тем, что заготовка включает по меньшей мере один материал слоя подложки из карбида кремния или нитрида галлия.
RU2017142632A 2015-06-01 2015-06-01 Способ лазерного скрайбирования полупроводниковой заготовки с использованием разделенных лазерных лучей RU2677574C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2015/054143 WO2016193786A1 (en) 2015-06-01 2015-06-01 Method of laser scribing of semiconductor workpiece using divided laser beams

Publications (1)

Publication Number Publication Date
RU2677574C1 true RU2677574C1 (ru) 2019-01-17

Family

ID=53491650

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017142632A RU2677574C1 (ru) 2015-06-01 2015-06-01 Способ лазерного скрайбирования полупроводниковой заготовки с использованием разделенных лазерных лучей

Country Status (9)

Country Link
US (1) US10916461B2 (ru)
EP (1) EP3302866B1 (ru)
JP (1) JP2018523291A (ru)
KR (1) KR101944657B1 (ru)
CN (1) CN108472765B (ru)
LT (1) LT3302866T (ru)
RU (1) RU2677574C1 (ru)
TW (1) TWI592242B (ru)
WO (1) WO2016193786A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747424C1 (ru) * 2019-08-29 2021-05-04 АЦУР СПЭЙС Золяр Пауер ГмбХ Способ разъединения полупроводниковой пластины, включающей несколько стопок солнечных элементов
RU2784517C1 (ru) * 2022-05-12 2022-11-28 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Способ лазерного скрайбирования неметаллической пластины

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6802094B2 (ja) * 2017-03-13 2020-12-16 株式会社ディスコ レーザー加工装置
JP6781649B2 (ja) * 2017-03-13 2020-11-04 株式会社ディスコ レーザー加工装置
JP6802093B2 (ja) * 2017-03-13 2020-12-16 株式会社ディスコ レーザー加工方法およびレーザー加工装置
JP6781650B2 (ja) * 2017-03-13 2020-11-04 株式会社ディスコ レーザー加工装置
DE102020134197A1 (de) 2020-12-18 2022-06-23 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung und Verfahren zum Trennen eines Materials
DE102020134751A1 (de) * 2020-12-22 2022-06-23 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Trennen eines Werkstücks
DE102021122754A1 (de) 2021-09-02 2023-03-02 Trumpf Laser Gmbh Vorrichtung zum Bearbeiten eines Materials
CN114851352B (zh) * 2022-05-23 2023-11-28 松山湖材料实验室 电阻加热元件及其制造方法
CN117020446B (zh) * 2023-10-09 2023-12-26 江苏芯德半导体科技有限公司 一种硅衬底氮化镓晶圆的切割方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562698B2 (en) * 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
US20090032511A1 (en) * 2007-07-31 2009-02-05 Adams Bruce E Apparatus and method of improving beam shaping and beam homogenization
RU2401185C2 (ru) * 2006-03-02 2010-10-10 Корея Рисерч Инститьют Оф Стэндардс Энд Сайенс Способ лазерной обработки и устройство обработки, основанные на обычных вызванных лазером изменениях материала
RU2459691C2 (ru) * 2010-11-29 2012-08-27 Юрий Георгиевич Шретер Способ отделения поверхностного слоя полупроводникового кристалла (варианты)
US20130128910A1 (en) * 2010-08-04 2013-05-23 Ushio Inc. Laser lift-off apparatus
US20130256286A1 (en) * 2009-12-07 2013-10-03 Ipg Microsystems Llc Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
RU2516216C2 (ru) * 2008-07-25 2014-05-20 Р.Т.М. С.П.А. Установка лазерного скрайбирования для поверхностной обработки трансформаторных листов посредством пятен эллиптической формы

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955956B2 (en) * 2000-12-26 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2005116844A (ja) 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2005138143A (ja) * 2003-11-06 2005-06-02 Disco Abrasive Syst Ltd レーザ光線を利用する加工装置
US7486705B2 (en) * 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US8093530B2 (en) * 2004-11-19 2012-01-10 Canon Kabushiki Kaisha Laser cutting apparatus and laser cutting method
JP4856931B2 (ja) * 2004-11-19 2012-01-18 キヤノン株式会社 レーザ割断方法およびレーザ割断装置
US7301981B2 (en) * 2004-12-09 2007-11-27 Electro Scientific Industries, Inc. Methods for synchronized pulse shape tailoring
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP2008147406A (ja) * 2006-12-08 2008-06-26 Cyber Laser Kk レーザによる集積回路の修正方法および装置
JP5103054B2 (ja) * 2007-04-27 2012-12-19 サイバーレーザー株式会社 レーザによる加工方法およびレーザ加工装置
GB2459669A (en) 2008-04-30 2009-11-04 Xsil Technology Ltd Dielectric layer pulsed laser scribing and metal layer and semiconductor wafer dicing
JP5240272B2 (ja) * 2010-10-15 2013-07-17 三星ダイヤモンド工業株式会社 レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP5912287B2 (ja) * 2011-05-19 2016-04-27 株式会社ディスコ レーザー加工方法およびレーザー加工装置
JP2014011358A (ja) * 2012-06-29 2014-01-20 Toshiba Mach Co Ltd レーザダイシング方法
JP5836998B2 (ja) * 2013-04-23 2015-12-24 株式会社豊田中央研究所 クラックの生成方法、レーザによる割断方法およびクラック生成装置
KR101533336B1 (ko) * 2013-05-30 2015-07-03 주식회사 이오테크닉스 레이저 가공 장치 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562698B2 (en) * 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
RU2401185C2 (ru) * 2006-03-02 2010-10-10 Корея Рисерч Инститьют Оф Стэндардс Энд Сайенс Способ лазерной обработки и устройство обработки, основанные на обычных вызванных лазером изменениях материала
US20090032511A1 (en) * 2007-07-31 2009-02-05 Adams Bruce E Apparatus and method of improving beam shaping and beam homogenization
RU2516216C2 (ru) * 2008-07-25 2014-05-20 Р.Т.М. С.П.А. Установка лазерного скрайбирования для поверхностной обработки трансформаторных листов посредством пятен эллиптической формы
US20130256286A1 (en) * 2009-12-07 2013-10-03 Ipg Microsystems Llc Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
US20130128910A1 (en) * 2010-08-04 2013-05-23 Ushio Inc. Laser lift-off apparatus
RU2459691C2 (ru) * 2010-11-29 2012-08-27 Юрий Георгиевич Шретер Способ отделения поверхностного слоя полупроводникового кристалла (варианты)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747424C1 (ru) * 2019-08-29 2021-05-04 АЦУР СПЭЙС Золяр Пауер ГмбХ Способ разъединения полупроводниковой пластины, включающей несколько стопок солнечных элементов
RU2747424C9 (ru) * 2019-08-29 2022-01-17 АЦУР СПЭЙС Золяр Пауер ГмбХ Способ разъединения полупроводниковой пластины, включающей несколько стопок солнечных элементов
US11380814B2 (en) 2019-08-29 2022-07-05 Azur Space Solar Power Gmbh Dicing method for separating wafers comprising a plurality of solar cell stacks
RU2784517C1 (ru) * 2022-05-12 2022-11-28 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Способ лазерного скрайбирования неметаллической пластины

Also Published As

Publication number Publication date
WO2016193786A1 (en) 2016-12-08
LT3302866T (lt) 2019-09-10
KR101944657B1 (ko) 2019-01-31
CN108472765A (zh) 2018-08-31
KR20180015167A (ko) 2018-02-12
TW201714693A (zh) 2017-05-01
TWI592242B (zh) 2017-07-21
US10916461B2 (en) 2021-02-09
CN108472765B (zh) 2020-07-28
EP3302866B1 (en) 2019-06-26
EP3302866A1 (en) 2018-04-11
JP2018523291A (ja) 2018-08-16
US20190139799A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
RU2677574C1 (ru) Способ лазерного скрайбирования полупроводниковой заготовки с использованием разделенных лазерных лучей
KR101839505B1 (ko) 버스트 초고속 레이저 펄스들의 필라멘테이션에 의한 실리콘의 레이저 가공을 위한 방법 및 장치
US10074565B2 (en) Method of laser processing for substrate cleaving or dicing through forming “spike-like” shaped damage structures
TWI652129B (zh) 多區段聚焦透鏡元件以及供切割或裁切晶圓之雷射加工系統之操作方法
EP2837462B1 (en) Photo acoustic compression method for machining a transparent target
TWI639479B (zh) 用於片狀基板之雷射加工的方法與系統以及玻璃製品
JP6804441B2 (ja) 平面結晶性基板、特に半導体基板のレーザ加工方法及び装置
RU2226183C2 (ru) Способ резки прозрачных неметаллических материалов
EP2944412B1 (en) Method and apparatus for laser cutting of transparent media
TW201201945A (en) Improved method and apparatus for laser singulation of brittle materials
US20130256286A1 (en) Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
KR101181718B1 (ko) 펨토초 펄스 레이저의 시간에 따른 광강도 조절을 통한 절단방법
KR101232008B1 (ko) 깊이에 따른 개질면의 특성 조합을 통한 절단 장치
JP6952092B2 (ja) 半導体加工対象物のスクライブ方法
WO2014194179A1 (en) Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
US20240174545A1 (en) Methods of separating a substrate
JP2024504652A (ja) 透明なワークピースを分割する方法