Nothing Special   »   [go: up one dir, main page]

RU2498099C2 - Система теплообменника, контур циркуляции топлива турбомашины и турбомашина - Google Patents

Система теплообменника, контур циркуляции топлива турбомашины и турбомашина Download PDF

Info

Publication number
RU2498099C2
RU2498099C2 RU2010139859/06A RU2010139859A RU2498099C2 RU 2498099 C2 RU2498099 C2 RU 2498099C2 RU 2010139859/06 A RU2010139859/06 A RU 2010139859/06A RU 2010139859 A RU2010139859 A RU 2010139859A RU 2498099 C2 RU2498099 C2 RU 2498099C2
Authority
RU
Russia
Prior art keywords
heat exchanger
outlet
liquid
inlet
fluid
Prior art date
Application number
RU2010139859/06A
Other languages
English (en)
Other versions
RU2010139859A (ru
Inventor
Жилль БРЕН
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2010139859A publication Critical patent/RU2010139859A/ru
Application granted granted Critical
Publication of RU2498099C2 publication Critical patent/RU2498099C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/01Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using means for separating solid materials from heat-exchange fluids, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filtration Of Liquid (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к области теплотехники. Система теплообменника, через которую протекает жидкость, содержащая теплообменник с входом и выходом для жидкости, перепускной клапан с входом и выходом для жидкости и самоочищающийся фильтр с входом и двумя выходами для жидкости, один из которых является выходом для отфильтрованной жидкости, а второй - для неотфильтрованной жидкости, причем выход для отфильтрованной жидкости соединен с входом теплообменника, а выход для неотфильтрованной жидкости соединен с входом клапана; при этом выход теплообменника подсоединен ниже по потоку относительно выхода клапана. Технический результат - исключение засорения теплообменника. 3 н. и 6 з.п. ф-лы, 3 ил.

Description

Изобретение относится к системе теплообменника, через которую протекает жидкость. Такая система может быть установлена в любом жидкостном (т.е. гидравлическом) контуре, в частности, в контуре циркуляции топлива или в контуре циркуляции масла.
Данная система может использоваться, например, в контуре циркуляции топлива наземной или авиационной турбомашины (турбореактивный двигатель или турбовинтовой двигатель) и, более конкретно, в контуре циркуляции топлива турбореактивного двигателя самолета.
Изобретение относится к системе теплообменника, через которую протекает жидкость, причем система теплообменника содержит теплообменник с входом для жидкости и выходом для жидкости. Во время работы через теплообменник проходит, с одной стороны, топливо, поступающее из топливного бака самолета, причем топливо проходит через указанные вход и выход для жидкости, и, с другой стороны, масло из контура циркуляции масла системы смазки генератора со встроенным приводом самолета, причем масло проходит через другие входы и выходы для жидкости теплообменника.
Топливо имеет температуру ниже температуры масла (которое нагревается при контакте с генератором со встроенным приводом), и теплообменник обеспечивает возможность охлаждения масла.
Далее более подробно рассмотрим, в частности, контур циркуляции топлива, проходящий через теплообменник.
Засорение теплообменника из-за посторонних примесей (также называемых загрязняющие вещества), присутствующих в топливе, является потенциально возможной неисправностью, которая может произойти в любой момент после определенного времени работы турбореактивного двигателя. Частичное засорение теплообменника ведет к потере напора, что может нарушить правильную работу элементов системы, расположенных ниже по потоку относительно теплообменника, и полное засорение теплообменника может разорвать контур циркуляции топлива и тем самым вызвать остановку турбореактивного двигателя.
Среди различных известных типов теплообменников, которые могут использоваться в контуре циркуляции топлива турбореактивного двигателя, следует отметить трубчатые теплообменники и пластинчатые теплообменники.
Трубчатые теплообменники имеют матричную структуру, образованную множеством трубок, которые разделяют две жидкости, проходящие через теплообменник. Проходное сечение трубок должно отвечать требованиям технологической реализуемости. Другими словами, ниже некоторого минимального внутреннего диаметра трубок эти трубки слишком трудно изготовить. Минимальный внутренний диаметр часто заметно больше диаметра примесей, присутствующих в топливе, так что вероятность засорения теплообменника этого типа остается низкой, но она существует. Однако для увеличения тепловой производительности теплообменника трубки обычно имеют штыри на их внутренних поверхностях. Указанные штыри улавливают примеси, и пойманные штырями примеси движутся и постепенно истирают трубку до тех пор, пока в ней не образуются отверстия. Эти отверстия могут повлечь за собой существенные проблемы.
Пластинчатые теплообменники имеют преимущество в том, что они могут иметь проходные сечения для жидкости меньше, чем у трубчатых теплообменников, но чем меньше проходные сечения, тем выше риск засорения. Таким образом, пластинчатые теплообменники сегодня используются в турбореактивных двигателях мало, если вообще используются.
Независимо от типа используемого теплообменника, предпочтительно, чтобы отсутствовала необходимость в контроле засорения теплообменника. Это требует наличия защиты от засорения теплообменника. Поэтому проходные сечения для жидкости в теплообменнике выполняются таким образом, чтобы их размер был больше размера самых больших примесей, которые могут присутствовать в жидкости. Из-за этого указанные проходные сечения, как правило, имеют существенные размеры.
Задачей настоящего изобретения является создание системы теплообменника, обеспечивающей возможность использования, если требуется, теплообменника с небольшими проходными сечениями для жидкости, при этом исключающей контроль засорения теплообменника.
Для решения этой задачи согласно изобретению создана система теплообменника, через которую протекает жидкость, содержащая теплообменник с входом для жидкости и выходом для жидкости, перепускной клапан с входом для жидкости и выходом для жидкости и самоочищающийся фильтр с входом для жидкости и двумя выходами для жидкости, один из которых является выходом для отфильтрованной жидкости и другой является выходом для неотфильтрованной жидкости, причем выход для отфильтрованной жидкости соединен с входом теплообменника, и выход для неотфильтрованной жидкости соединен с входом клапана, причем выход для жидкости теплообменника подсоединен ниже по потоку относительно выхода клапана.
Таким образом, система согласно изобретению содержит самоочищающийся фильтр, соединенный с входом теплообменника. В начале через этот фильтр проходит вся жидкость, поступающая в систему. Вход теплообменника тем самым является входом для жидкости системы. Фильтр улавливает все примеси, имеющие размер больше, чем ячейки переплетения фильтра. Накопление примесей ведет к загрязнению фильтра и тем самым к увеличению потери напора в фильтре. Когда давление на входе перепускного клапана, которое растет, достигает предварительно заданного порогового значения, клапан открывается. Это открытие удерживает потери напора на допустимом уровне и позволяет всей жидкости течь через клапан. Поток жидкости будет заставлять перемещаться примеси, уловленные самоочищающимся фильтром, и тем самым очищать фильтр. Параллельно с этим фильтрующая поверхность, освобожденная от примесей, позволит проходить через нее жидкости, так что потери напора будут уменьшаться. Клапан будет постепенно закрываться, и фильтр возобновит свою нормальную работу.
Независимо от положения (открытое или закрытое) перепускного клапана, теплообменник всегда защищен от примесей с помощью фильтра. Поэтому больше нет риска засорения теплообменника, так что можно исключить контроль его засорения. Более того, в случае трубчатого теплообменника со штырями, указанный риск образования отверстий в трубке также исключается.
Кроме того, вместо трубчатого теплообменника можно использовать пластинчатый теплообменник с небольшими проходными сечениями, который в целом меньше по размерам, легче и имеет большую производительность с точки зрения теплообмена в сравнении с трубчатым теплообменником.
Наконец, так как фильтр является самоочищающимся и теплообменник защищен от примесей, указанные элементы не нужно чистить (или заменять) часто, или возможно даже не нужно чистить совсем, что уменьшает затраты на обслуживание системы.
Другой задачей изобретения является создание контура циркуляции топлива турбомашины, содержащий указанную систему теплообменника. Изобретение применимо для всех типов турбомашин, наземных или авиационных и, в частности, к турбореактивным двигателям самолетов.
Изобретение и его преимущества станут более понятны после прочтения последующего подробного описания, приведенного со ссылкой на прилагаемые чертежи, на которых:
Фиг.1 - пример контура циркуляции топлива согласно изобретению;
Фиг.2 - самоочищающийся фильтр и перепускной клапан одного варианта осуществления системы согласно изобретению, причем клапан находится в закрытом положении; и
Фиг.3 - вид, подобный фиг.2, когда клапан находится в открытом положении.
Фиг.1 схематично иллюстрирует пример контура 10 циркуляции топлива для турбореактивного двигателя самолета.
В данном описании положения «выше по потоку» и «ниже по потоку» определяются для нормального направления течения жидкости (здесь, топливо), проходящей через контур и систему согласно изобретению.
Контур 10 содержит, если смотреть в направлении от стороны выше по потоку к стороне ниже по потоку: топливный бак 11 (в данном случае топливный бак самолета); насос 12 низкого давления, закачивающий топливо в топливный бак 11; систему 14 теплообменника согласно изобретению, питаемую насосом 12; основной фильтр 16; насос 18 высокого давления; сервомеханизм 20, питаемый топливом насосом 18; регулятор 22 подачи топлива, питаемым насосом 18; и топливные инжекторы 24, расположенные ниже по потоку относительно регулятора 22. Инжекторы 24 располагаются в камере сгорания турбореактивного двигателя.
Фиг.1 также иллюстрирует контур 28 циркуляции масла, обеспечивающей смазку электрического генератора (или генератора со встроенным приводом) 26 самолета. Система 14 теплообменника согласно изобретению содержит самоочищающийся фильтр 2, теплообменник 4 и перепускной клапан 6.
Через теплообменник 4 проходит, с одной стороны, топливо от контура 10 циркуляции топлива, и, с другой стороны, масло из контура 28. Топливо имеет температуру ниже температуры масла во время работы турбореактивного двигателя, и теплообменник 4 обеспечивает возможность охлаждения масла.
Как показано на чертеже, система 14 теплообменника располагается выше по потоку относительно основного фильтра 16 контура 10 и ниже по потоку относительно топливного насоса 12 низкого давления контура 10. Самоочищающийся фильтр 2 имеет вход 2а для жидкости и два выхода для жидкости, из которых один является выходом 2b для отфильтрованной жидкости, а другой является выходом 2с для неотфильтрованной жидкости.
Вход 2а является входом для жидкости системы 14, и вся жидкость, проходящая через систему, проходит через вход 2а. В данном примере этот вход соединен с выходом насоса 12.
Выход 2b для отфильтрованной жидкости соединен с входом 4а теплообменника 4, а выход 2с для неотфильтрованной жидкости соединен с входом 6а клапана 6. Кроме того, выход 4b для жидкости теплообменника располагается ниже по потоку относительно выхода 6b клапана, так что жидкость, выходящая из системы 14, содержит жидкость, вышедшую через выход 6b клапана, и/или жидкость, вышедшую через выход 4b системы.
Фиг.2 и 3 показывают более подробно пример самоочищающегося фильтра 2 и перепускного клапана 6. В данном примере фильтр 2 содержит трубчатую фильтрующую мембрану 30 с осью А. Например, мембрана 30 изготовлена из ткани с плетением типа «простое голландское плетение» или типа «простой репс».
Вход 2а для жидкости фильтра 2 располагается на одном конце мембраны 30. Выход 2с для неотфильтрованной жидкости фильтра 2 располагается на другом конце мембраны 30, выход 2b для отфильтрованной жидкости располагается сбоку мембраны 30. Поток жидкости, проходящий через вход 2а и выходящий через выход 2b для отфильтрованной жидкости, обозначенный на фиг.2 стрелкой F, проходит через мембрану 30 (следуя в направлении, перпендикулярном оси А) и тем самым фильтруется последним. Поток жидкости, проходящей через вход 2а и выходящий через выход 2с для неотфильтрованной жидкости, показанный на фиг.3 стрелкой F, проходит внутри мембраны вдоль оси А.
Когда примеси начинают загрязнять мембрану 30, давление жидкости на выходе 2с для неотфильтрованной жидкости увеличивается, вплоть до некоторого значения, после которого перепускной клапан 6 открывается, чтобы позволить жидкости проходить через него. Поток жидкости (стрелки F'), таким образом, становится направленным вдоль оси А внутри мембраны 30. Этот поток жидкости заставляет перемещаться вместе с ним примеси, присутствующие на внутренней поверхности мембраны 30, которые загрязняют ее. Таким образом, фильтрующий элемент 30 очищается от примесей. Давление на выходе 2с для неотфильтрованной жидкости в результате уменьшается, и перепускной клапан 6 постепенно закрывается, пока он не достигнет своего исходного закрытого положения, показанного на фиг.2.
Когда клапан находится в закрытом положении (см. фиг.2), вся жидкость, проходящая через вход 2а, направляется к теплообменнику 4 через выход 2b для отфильтрованной жидкости.
В контуре циркуляции топлива турбореактивного двигателя самолета размер ячеек плетения основного фильтра 16 как правило составляет от 32 до 36 микрометров.
Размер ячеек плетения самоочищающегося фильтра 2 предпочтительно составляет от 55 до 75 микрометров. Этот размер ячеек плетения обеспечивает фильтрацию частиц большого размера, представляющих опасность для теплообменника 4, как с точки зрения износа, так и с точки зрения засорения. Другими словами, частицы, которым фильтр 2 позволяет проходить, не представляют опасности для теплообменника 4. Следует отметить, что самоочищающийся фильтр 2 располагается выше по потоку относительно основного фильтра 16, что закономерно, так как у него размер ячеек плетения больше, чем у основного фильтра.

Claims (9)

1. Система (14) теплообменника, через которую протекает жидкость, содержащая теплообменник (4) с входом (4а) для жидкости и выходом (4b) для жидкости, отличающаяся тем, что она содержит перепускной клапан (6) с входом (6а) для жидкости и выходом (6b) для жидкости и самоочищающийся фильтр (2) с входом (2а) для жидкости и двумя выходами (2b, 2с) для жидкости, один из которых является выходом (2b) для отфильтрованной жидкости и один является выходом (2с) для неотфильтрованной жидкости, причем выход (2b) для отфильтрованной жидкости соединен с входом (4а) теплообменника, а выход (2с) для неотфильтрованной жидкости соединен с входом (6а) клапана; при этом выход (4b) теплообменника подсоединен ниже по потоку относительно выхода (6b) клапана.
2. Система по п.1, отличающаяся тем, что фильтр (2) содержит фильтрующую мембрану (30), имеющую трубчатую форму вокруг оси А, причем жидкость, выходящая через выход (2b) для отфильтрованной жидкости, проходит через мембрану (30), и жидкость, выходящая через выход (2с) для неотфильтрованной жидкости, проходит внутри мембраны (30) вдоль оси А.
3. Система по п.2, отличающаяся тем, что вход (2а) самоочищающегося фильтра (2) расположен на одном конце фильтрующей мембраны (30), выход (2с) для неотфильтрованной жидкости расположен на другом конце мембраны (30), и выход (2b) для фильтрованной жидкости расположен сбоку мембраны (30).
4. Система по п.1, отличающаяся тем, что теплообменник (4) является пластинчатым теплообменником.
5. Контур циркуляции топлива турбомашины, отличающийся тем, что он содержит систему (14) теплообменника по любому из пп.1-4.
6. Контур по п.5, отличающийся тем, что система (14) теплообменника расположена выше по потоку относительно основного фильтра (16) цепи.
7. Контур по п.5, отличающийся тем, что система (14) теплообменника расположена ниже по потоку относительно топливного насоса (12) низкого давления цепи.
8. Контур по п.5, отличающийся тем, что размер ячеек плетения самоочищающегося фильтра (2) составляет от 55 до 75 мкм.
9. Турбомашина, отличающаяся тем, что она содержит контур (10) циркуляции топлива по п.5.
RU2010139859/06A 2008-02-29 2009-02-27 Система теплообменника, контур циркуляции топлива турбомашины и турбомашина RU2498099C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0851315 2008-02-29
FR0851315A FR2928207B1 (fr) 2008-02-29 2008-02-29 Installation d'echangeur thermique
PCT/FR2009/050322 WO2009112779A2 (fr) 2008-02-29 2009-02-27 Installation d'echangeur thermique

Publications (2)

Publication Number Publication Date
RU2010139859A RU2010139859A (ru) 2012-04-10
RU2498099C2 true RU2498099C2 (ru) 2013-11-10

Family

ID=39789443

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010139859/06A RU2498099C2 (ru) 2008-02-29 2009-02-27 Система теплообменника, контур циркуляции топлива турбомашины и турбомашина

Country Status (11)

Country Link
US (1) US8470168B2 (ru)
EP (1) EP2257701B1 (ru)
JP (1) JP5184656B2 (ru)
CN (1) CN101960122B (ru)
AT (1) ATE516433T1 (ru)
BR (1) BRPI0908006B1 (ru)
CA (1) CA2716531C (ru)
ES (1) ES2388774T3 (ru)
FR (1) FR2928207B1 (ru)
RU (1) RU2498099C2 (ru)
WO (1) WO2009112779A2 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928207B1 (fr) * 2008-02-29 2010-03-26 Hispano Suiza Sa Installation d'echangeur thermique
US8580111B2 (en) * 2010-11-29 2013-11-12 Toyota Jidosha Kabushiki Kaisha Device for separating fuel components
FR2999654B1 (fr) * 2012-12-18 2015-02-13 Snecma Circuit de carburant d'une turbomachine
FR2999652B1 (fr) * 2012-12-18 2015-02-13 Snecma Circuit de carburant d'une turbomachine
US9644589B2 (en) * 2013-11-20 2017-05-09 Stanadyne Llc Debris diverter shield for fuel injector
FR3014134B1 (fr) * 2013-12-04 2015-12-11 Snecma Dispositif de retention de fluides draines pour un ensemble propulsif
US10066507B1 (en) * 2015-02-10 2018-09-04 United Technologies Corporation Turbine engine lubrication system with wash flow filter
US11879541B2 (en) 2022-04-01 2024-01-23 General Electric Company Oil scavenge system for a gearbox

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1825077C (ru) * 1991-04-11 1995-08-27 Научно-производственное предпри тие "Наука" Агрегат для подогрева топлива
EP1061243B1 (en) * 1999-06-16 2012-10-31 Rolls-Royce Plc An apparatus for and a method of filtering a fluid

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US511798A (en) * 1894-01-02 rankine
US53803A (en) * 1866-04-10 Improvement in musical instruments
US2729339A (en) * 1953-08-28 1956-01-03 Purolator Products Inc Automatic discriminatory clogging detector for oil filters
US3469697A (en) * 1966-12-14 1969-09-30 Marvel Eng Co Filter and by-pass valve assembly
US3487931A (en) * 1968-03-06 1970-01-06 Universal Oil Prod Co Filter unit with removable selfcleaning screen section
US3853763A (en) * 1973-07-02 1974-12-10 Caterpillar Tractor Co In-tank filter and mounting arrangement therefor
US3970566A (en) * 1974-11-20 1976-07-20 Dale P. Fosdick Fluid filtering device
FR2521446B1 (fr) * 1982-02-15 1987-06-05 Beaudrey & Cie Filtre a crepine fixe en particulier pour eaux industrielles
JPS6144294A (ja) * 1984-08-07 1986-03-03 Nippon Denso Co Ltd 熱交換器
US4645591A (en) * 1986-03-03 1987-02-24 Gerulis Benedict R Self-cleaning fluid filter
USRE35564E (en) * 1986-03-03 1997-07-22 C.I.B., Inc. Self-cleaning fluid filter
GB9008140D0 (en) * 1990-04-10 1990-06-06 Rolls Royce Plc An apparatus for and method of filtering a fluid
US5014775A (en) * 1990-05-15 1991-05-14 Toyo Radiator Co., Ltd. Oil cooler and manufacturing method thereof
US5122264A (en) * 1991-01-11 1992-06-16 Facet Quantek, Inc. Liquid fuel dispensing system including a filtration vessel within a sump
US5207358A (en) * 1991-04-01 1993-05-04 Dresser Industries, Inc. Isolation apparatus for a dispenser delivery system
CA2113519C (en) * 1994-01-14 1999-06-08 Allan K. So Passive by-pass for heat exchangers
US5481876A (en) * 1994-10-05 1996-01-09 New Holland North America, Inc. Inlet screen for tractor hydraulic system
US5600954A (en) * 1994-10-05 1997-02-11 New Holland North America, Inc. Tractor hydraulic reservoir heating element
CA2173380C (en) * 1996-04-03 2001-07-10 Michael G. Mancell Power steering fluid reservoir
DE19736846A1 (de) * 1997-08-23 1999-03-04 Mannesmann Vdo Ag Druckregelanordnung
DE19839190A1 (de) * 1998-08-28 2000-03-02 Argo Gmbh Fuer Fluidtechnik Filtereinsatz
DE19925635B4 (de) * 1999-06-04 2005-11-03 ZF Lemförder Metallwaren AG Hydraulikölbehälter
DE19955635A1 (de) * 1999-11-20 2001-05-31 Argo Gmbh Fuer Fluidtechnik Filtervorrichtung
EP1326693B1 (de) * 2000-10-18 2006-08-23 ARGO-HYTOS GmbH Filtervorrichtung
DE10063285A1 (de) * 2000-12-19 2002-06-20 Ina Schaeffler Kg Siebfilter für Fluidleitungen, insbesondere für hydraulische Druckleitungen in Brennkraftmaschinen
US6810674B2 (en) * 2002-07-18 2004-11-02 Argo-Tech Corporation Fuel delivery system
DE10245005A1 (de) * 2002-09-26 2004-04-08 Mann + Hummel Gmbh Flüssigkeitsfilter-Wärmetauscher-Einheit
US6858134B2 (en) * 2002-12-23 2005-02-22 Arvin Technologies, Inc. Fluid filtration system including replaceable filter module
US7166210B2 (en) * 2003-02-21 2007-01-23 Deere & Company Oil filter cartridge
US7094344B2 (en) * 2003-11-17 2006-08-22 Nok Corporation Filter device
DE102004008879A1 (de) * 2004-02-18 2005-09-15 Hydac Filtertechnik Gmbh Filtervorrichtung
US7479219B2 (en) * 2004-08-05 2009-01-20 Guenther Rassinger Filter device for fluids and method for filtering fluids
US7216487B2 (en) * 2004-09-16 2007-05-15 Hamilton Sundstrand Metering demand fuel system for gas turbine engines
DE102005011221A1 (de) * 2005-03-11 2006-09-14 Mann+Hummel Gmbh Flüssigkeitsfilter-Wärmetauscher-Einheit
DE102006034077A1 (de) * 2005-08-16 2007-02-22 Robert Bosch Gmbh Filtereinrichtung mit einer Heizung
US20070102341A1 (en) * 2005-11-09 2007-05-10 Hamilton Sundstrand Combination wash and barrier filter
US7967980B2 (en) * 2006-11-17 2011-06-28 Kobelco Construction Machinery Co., Ltd. Construction machine having working oil tank with filter case
DE102007005771B4 (de) * 2007-02-06 2017-07-06 Robert Bosch Gmbh Filtereinrichtung, insbesondere Flüssigkeitsfilter, mit einer Heizung
CA2582585A1 (en) * 2007-03-26 2008-09-26 Separatech Canada Inc. Cartridge separator for immiscible liquids
CN101903737B (zh) * 2007-12-17 2012-05-23 松下电器产业株式会社 热交换装置和使用热交换装置的发热体收纳装置
EP2247358A1 (en) * 2008-01-24 2010-11-10 Donaldson Company, Inc. Combination filter arrangement and method
FR2928207B1 (fr) * 2008-02-29 2010-03-26 Hispano Suiza Sa Installation d'echangeur thermique
DE102009016601A1 (de) * 2009-04-08 2010-10-21 Mann + Hummel Gmbh Filtereinrichtung für Fluide, insbesondere für Kraftstoffe
US20120006740A1 (en) * 2010-07-06 2012-01-12 Swift Jr Edwin C Filter assembly with reusable bypass valve
US20120006731A1 (en) * 2010-07-06 2012-01-12 Swift Jr Edwin C Filter with reusable bypass valve and inner assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1825077C (ru) * 1991-04-11 1995-08-27 Научно-производственное предпри тие "Наука" Агрегат для подогрева топлива
EP1061243B1 (en) * 1999-06-16 2012-10-31 Rolls-Royce Plc An apparatus for and a method of filtering a fluid

Also Published As

Publication number Publication date
JP5184656B2 (ja) 2013-04-17
BRPI0908006A2 (pt) 2017-06-06
CA2716531C (fr) 2015-12-01
EP2257701B1 (fr) 2011-07-13
ATE516433T1 (de) 2011-07-15
ES2388774T3 (es) 2012-10-18
JP2011513629A (ja) 2011-04-28
FR2928207B1 (fr) 2010-03-26
US20110061835A1 (en) 2011-03-17
RU2010139859A (ru) 2012-04-10
FR2928207A1 (fr) 2009-09-04
WO2009112779A2 (fr) 2009-09-17
CN101960122B (zh) 2014-06-11
CA2716531A1 (fr) 2009-09-17
WO2009112779A3 (fr) 2009-11-05
EP2257701A2 (fr) 2010-12-08
US8470168B2 (en) 2013-06-25
CN101960122A (zh) 2011-01-26
BRPI0908006B1 (pt) 2020-01-07

Similar Documents

Publication Publication Date Title
RU2498099C2 (ru) Система теплообменника, контур циркуляции топлива турбомашины и турбомашина
US20180347400A1 (en) Turbine engine lubrication system with wash flow filter
US9650960B2 (en) Fuel circuit of a turbine engine
EP2159406B1 (en) An Improved Fuel Pressure Regulation System And An Improved Fuel Pressure Regulator For Use Therein
US10024239B2 (en) Fuel filter and bypass valve arrangement
GB2523691B (en) Turbomachine fuel circuit
JP2019528156A (ja) 船のエンジンなどの舶用機械のための油濾過用濾過システム
DE102013109556A1 (de) Einlass-Luft-Kühlsystem mit Feuchtigkeitssteuerung und Energierückgewinnung
CA2706211A1 (en) Air filtration system for gas turbine engine pneumatic system
EP1812689B1 (en) Integrated turbocharger lubricant filter system
DE102009005550A1 (de) Beheizbarer Flüssigkeitsabscheider, insbesondere zum Reinigen von Kurbelgehäusegasen
KR20070098729A (ko) 내부 바이패스를 갖는 흡입측 및 가압측 유체 필터
US20150152800A1 (en) Fuel pressure regulation system
US20160108876A1 (en) Oil filter
US20150336037A1 (en) Fuel System with Ice and Large Debris Separator Filter
EP4170146B1 (en) Coke catching screen
KR20210012207A (ko) 차량의 연료 시스템용 메쉬필터
CN210087739U (zh) 一种高粘度液压油源回流系统
JP2019513942A (ja) 給油システム
CN118481785A (zh) 用于冷却设备的过滤器的改进
US20150360153A1 (en) Wash-flow filter assembly
DE102012206191A1 (de) Kühlsystem für einen Verbrennungsmotor

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner