RU2123606C1 - Способ и устройство для осуществления термодинамического цикла - Google Patents
Способ и устройство для осуществления термодинамического цикла Download PDFInfo
- Publication number
- RU2123606C1 RU2123606C1 RU94041741A RU94041741A RU2123606C1 RU 2123606 C1 RU2123606 C1 RU 2123606C1 RU 94041741 A RU94041741 A RU 94041741A RU 94041741 A RU94041741 A RU 94041741A RU 2123606 C1 RU2123606 C1 RU 2123606C1
- Authority
- RU
- Russia
- Prior art keywords
- geothermal
- stream
- spent
- substream
- liquid
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/04—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/04—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Изобретение предназначено для использования в устройствах для превращения тепловой энергии источника геотермального тепла, состоящего из смеси геотермальной жидкости и геотермального пара, в электроэнергию. Способ и устройство для осуществления термодинамического цикла, включают: а/ расширение газообразного рабочего потока, преобразование его энергии в пригодную к использованию форму и получение отработавшего рабочего потока; б/ нагрев многокомпонентного поступающего жидкого рабочего потока за счет частичной конденсации отработавшего рабочего потока; и в/ испарение нагретого рабочего потока для образования газообразного рабочего потока с использованием тепла, выделяющегося при совместном охлаждении геотермальной жидкости и конденсации геотермального пара. Изобретение позволяет повысить производительность и эффективность по сравнению с системами, в которых геотермальная жидкость и геотермальный пар используются раздельно. 4 с. и 12 з.п.ф-лы, 1 табл., 2 ил.
Description
Изобретение относится к способу и устройству для превращения тепловой энергии источника геотермального тепла, состоящего из смеси геотермальной жидкости и геотермального пара (геофлюид), в электроэнергию. Это изобретение относится, далее к использованию энергетического потенциала и геотермальной жидкости, и геотермального пара в рамках одной интегрированной системы.
Источники геотермального тепла могут быть в общем разделены на две группы. В первую группу входят "преимущественно жидкие" источники тепла, образующие большей частью горячую геотермальную жидкость (рассол). Во вторую группу входят "преимущественно парообразные" источники тепла, образующие большей частью геотермальный пар с некоторым количеством геотермической жидкости.
Способы превращения тепловой энергии, выделяемой источниками геотермального тепла, в электроэнергию образуют важную и растущую область энергетики. Геотермальные электростанции обычно относятся к одной из двух категорий, а именно к числу паровых станций или к бинарным станциям.
На паровых электростанциях геотермальный источник используют непосредственно для получения пара (например, путем просселирования и вскипания геотермальной жидкости). Затем этот пар расширяется в турбине, вырабатывающей электроэнергию. На бинарных электростанциях тепло, отбираемое у геотермальной жидкости, используют для испарения рабочей жидкости циркулирующей в энергетическом цикле. Рабочая жидкость затем расширяется в турбине, вырабатывая электроэнергию.
Паровые станции обычно используют с преимущественно парообразными источниками геотермального тепла, в то время как бинарные электростанции обычно используют с преимущественно жидкими источниками геотермального тепла. В патенте США N 4982568 описаны способ и устройство для превращения на бинарной электростанции тепловой энергии геотермальной жидкости в электроэнергию. Этот способ позволяет повысить эффективность за счет применения термодинамического цикла с многокомпонентной рабочей жидкостью и за счет внутренней рекуперации.
С одной стороны, изобретение предлагает способ осуществления термодинамического цикла, включающий шаги:
расширения газообразного рабочего потока, преобразования его энергии в пригодную для использования форму и получения отработавшего рабочего потока;
нагрева многокомпонентного поступающего жидкого рабочего потока путем частичной компенсации отработавшего рабочего потока;
испарения нагретого рабочего потока с образованием газообразного рабочего потока путем использования тепла, полученного при объединении охлаждения геотермальной жидкости и конденсации геотермального пара.
расширения газообразного рабочего потока, преобразования его энергии в пригодную для использования форму и получения отработавшего рабочего потока;
нагрева многокомпонентного поступающего жидкого рабочего потока путем частичной компенсации отработавшего рабочего потока;
испарения нагретого рабочего потока с образованием газообразного рабочего потока путем использования тепла, полученного при объединении охлаждения геотермальной жидкости и конденсации геотермального пара.
В предпочтительных вариантах изобретения жидкий рабочий поток перегревают с последующим испарением, используя для этого тепло, образуемое путем охлаждения геотермальной жидкости для получения газообразного рабочего потока. Многокомпонентный поступающий жидкий рабочий поток предпочтительно подогревают путем частичной конденсации отработавшего рабочего потока, после чего его разделяют первый и второй субпотоки. Первый субпоток затем частично испаряют, используя для этого тепло, полученное за счет частичной конденсации отработавшего рабочего потока, в то время как второй субпоток частично испаряют, используя тепло, полученное путем охлаждения геотермальной жидкости. Частично испаренные первый и второй субпотоки после этого объединяют и испаряют с образованием газообразного рабочего потока, используя для этого тепло, полученное при охлаждении геотермальной жидкости и конденсацию геотермального пара. Разница между температурой кипения второго субпотока и температурой геотермальной жидкости предпочтительно превышает разницу между температурой кипения первого субпотока и температурой конденсированного отработавшего рабочего потока.
Геотермальный пар расширяется, преобразуя свою энергию в пригодную к использованию форму и вырабатывая отработавший геотермальный поток. Отработавший геотермальный поток после этого конденсируют с целью нагрева и частичного испарения жидкого рабочего потока, после чего его объединяют с геотермальной жидкостью и используют для дальнейшего испарения жидкого рабочего потока. В случае, если содержание геотермального пара в геофлюиде относительно высоко, предпочтительным является неоднократное расширение геотермального потока. Так, в одном предпочтительно варианте реализации изобретения, отработавший геотермальный пар разделяют на первый и второй геотермальные субпотоки. Первый геотермальный субпоток конденсируют для нагрева и частичного испарения жидкого рабочего потока, после чего объединяют с геотермальной жидкостью. Второй геотермальный субпоток расширяют, преобразуя его энергию в пригодную для использования форму и вырабатывая отработавший геотермальный поток, который затем конденсируют для нагрева и частичного испарения жидкого рабочего потока. Отработавший геотермальный субпоток объединяют затем с геотермальной жидкостью.
С другой стороны, изобретение предлагает устройство для осуществления термодинамического цикла, включающее:
средство для расширения газообразного рабочего потока, преобразования его энергии в пригодную для использования форму и получения отработавшего потока;
теплообменник для частичной конденсации отработавшего потока и для передачи тепла от отработавшего потока к поступающему многокомпонентному жидкому рабочему потоку;
сепаратор для разделения геофлюида на геотермальную жидкость и геотермальный пар; и
множество теплообменников для охлаждения геотермальной жидкости и конденсации геотермального пара, а также для передачи тепла от геотермальной жидкости и геотермального пара для испарения жидкого рабочего потока и образования газообразного рабочего потока.
средство для расширения газообразного рабочего потока, преобразования его энергии в пригодную для использования форму и получения отработавшего потока;
теплообменник для частичной конденсации отработавшего потока и для передачи тепла от отработавшего потока к поступающему многокомпонентному жидкому рабочему потоку;
сепаратор для разделения геофлюида на геотермальную жидкость и геотермальный пар; и
множество теплообменников для охлаждения геотермальной жидкости и конденсации геотермального пара, а также для передачи тепла от геотермальной жидкости и геотермального пара для испарения жидкого рабочего потока и образования газообразного рабочего потока.
В предпочтительных вариантах реализации устройство включает теплообменник для охлаждения геотермальной жидкости и передачи тепла от геотермальной жидкости для перегрева жидкого рабочего потока и получения газообразного рабочего потока. Устройство также включает предпочтительно сепаратор потока для разделения нагретого жидкого рабочего потока на первый и второй субпотоки; теплообменник для частичной конденсации отработавшего рабочего потока и передачи тепла от отработавшего рабочего потока для частичного испарения первого субпотока; теплообменник для охлаждения геотермальной жидкости и передачи тепла от охлажденной геотермальной жидкости для частичного испарения второго субпотока; и смеситель потока для соединения частично испаренных первого и второго субпотоков.
Устройство далее включает предпочтительно средства для расширения геотермального пара, преобразования его энергии в пригодную для использования форму и получения отработавшего геотермального потока;
теплообменник для конденсации отработавшего геотермального потока и передачи тепла от отработавшего геотермального потока для частичного испарения жидкого рабочего потока; и смеситель потока для соединения отработавшего геотермального потока с геотермальной жидкостью. Для того, чтобы иметь возможность принимать геофлюиды с относительно высоким содержанием геотермального пара, устройство включает далее сепаратор потока для разделения отработавшего гетермального потока, полученного при первом расширении, на первый и второй геотермальные субпотоки; теплообменник для конденсирования первого геотермального субпотока и передачи тепла от первого геотермального субпотока для частичного испарения жидкого рабочего потока; смеситель потока для соединения первого геотермального субпотока с геотермальной жидкостью; средства для расширения второго геотермального субпотока, преобразования его энергии в пригодную для использования форму и получения отработавшего геотермального субпотока; теплообменник для конденсации отработавшего геотермального субпотока и передачи тепла от отработавшего геотермального субпотока для частичного испарения жидкого рабочего потока; и смеситель потока для объединения отработавшего геотермального субпотока с геотермальной жидкостью.
теплообменник для конденсации отработавшего геотермального потока и передачи тепла от отработавшего геотермального потока для частичного испарения жидкого рабочего потока; и смеситель потока для соединения отработавшего геотермального потока с геотермальной жидкостью. Для того, чтобы иметь возможность принимать геофлюиды с относительно высоким содержанием геотермального пара, устройство включает далее сепаратор потока для разделения отработавшего гетермального потока, полученного при первом расширении, на первый и второй геотермальные субпотоки; теплообменник для конденсирования первого геотермального субпотока и передачи тепла от первого геотермального субпотока для частичного испарения жидкого рабочего потока; смеситель потока для соединения первого геотермального субпотока с геотермальной жидкостью; средства для расширения второго геотермального субпотока, преобразования его энергии в пригодную для использования форму и получения отработавшего геотермального субпотока; теплообменник для конденсации отработавшего геотермального субпотока и передачи тепла от отработавшего геотермального субпотока для частичного испарения жидкого рабочего потока; и смеситель потока для объединения отработавшего геотермального субпотока с геотермальной жидкостью.
Изобретение предлагает интегрированную систему, использующую энергетический потенциал как геотермального пара, так и геотермальной жидкости (рассола). Система может использовать практически все геотермальные ресурсы при практически любом соотношении между паром и жидкостью. Аналогичным образом возможно использование геофлюидов из различных скважин, имеющих разную температуру и разное соотношение пара и жидкости. Достигается более высокая производительность и эффективность по сравнению с системами, в которых геотермальная жидкость и геотермальный пар используются раздельно. Кроме того, достигаются более высокие производительность и эффективность по сравнению с паровыми электростанциями, которые при меняются в настоящее время для использования таких геотермальных ресурсов.
Поскольку источник тепла для термодинамического цикла представляет собой сочетание охлаждения геотермальной жидкости и конденсации геотермального пара, необходимо только одностадийное расширение рабочей жидкости (в отличие от двухстадийного расширения при промежуточном поэтапном нагреве). Более того, разделение рабочей жидкости на два субпотока, один из которых частично испаряется теплом, передающимся от охлаждающейся геотермальной жидкости, и другой из которых частично испаряется теплом, передающимся от частично конденсирующейся отработавшей рабочей жидкости, позволяет также использовать геофлюин с высокой степенью минерализации (который может быть охлажден только до относительно высоких температур).
Другие особенности и преимущества изобретения будут очевидны из следующего далее описания предпочтительных вариантов его реализации, а также из пунктов формулы изобретения.
На фиг. 1 схематически представлен один из вариантов реализации способа и устройства, являющихся предметом настоящего изобретения; на фиг. 2 - второй вариант реализации способа и устройства, являющихся предметом настоящего изобретения.
На схеме, приведенной на фиг. 1 показан вариант реализации предпочтительно устройства, которое может быть использовано в описанном выше цикле. Конкретно на фиг. 1 показана система 100, которая включает гравитационный сепаратор 101, устройство предварительного нагрева в форме теплообменника 109, пароперегреватель в форме теплообменника 104 и котел в форме теплообменников 103, 106, 107 и 108. Кроме того, система 100 включает турбины 102 и 114, насосы 105 и 111 и конденсатор 110. Кроме того, система 100 включает сепаратор потока 112 и смеситель потока 113.
Конденсатор 110 может относиться к любому известному типу устройства отвода тепла. Так, например, конденсатор 110 может иметь форму теплообменника, такого как водоохлаждаемая система, или конденсирующего устройства другого типа.
Как показано на фиг. 1, поступающий из геотермальной скважины геофлюид, состоящий из геотермальной жидкости (рассол) и геотермального пара, направляют в гравитационный сепаратор 101, где геотермальную жидкость и геотермальный пар разделяют. Пар покидает сепаратор 101 с параметрами, соответствующими точке 51. После этого пар направляют в паровую турбину 102, в которой он расширяется, вырабатывая энергию, которая превращается в электроэнергию, и покидает турбину с параметрами, соответствующими точке 43. После этого пар направляют в теплообменник 103, где он конденсируется с выделением тепла конденсации и полностью превращается в конденсат. Конденсат покидает теплообменник 103 с параметрами, соответствующими точке 44. Тепло конденсации пара передают в теплообменник 103 к рабочей жидкости энергетического цикла.
Геотермальная жидкость, с параметрами, соответствующими точке 51, охлаждают в теплообменнике 104, который она покидает с параметрами, соответствующими точке 52 и передает тепло рабочей жидкости энергетического цикла. Температура конденсата пара в точке 44 по существу равна температуре геотермальной жидкости в точке 52. Конденсат пара с параметрами, соответствующими точке 44, перекачивают насосом 105 под давлением, равным давлению геотермической жидкости в точке 52, получая параметры, соответствующие точке 45. После этого конденсат пара с параметрами, соответствующими точке 45, объединяют с геотермальной жидкостью, параметры которой соответствуют точке 52, получая параметры, соответствующие точке 53.
Объединенную жидкость с параметрами, соответствующими точке 53, пропускают через теплообменник 106, в котором она дополнительно охлаждается, выделяя тепло, которое передается рабочей жидкости энергетического цикла, и получает параметры, соответствующие точке 56. В заключении жидкость с параметрами, соответствующими точке 56, пропускают через теплообменник 107, в котором их дополнительно охлаждают, выделяя тепло, которое передается рабочей жидкости энергетического цикла, и получая параметры, соответствующие точке 57. После этого геотермическую жидкость удаляют из системы и возвращают в геотермические пласты.
Из приведенного описания можно видеть, что термодинамический энергетический цикл, являющийся предметом настоящего изобретения, использует два источника геотермического тепла, т.е. тепло, выделяемое в процессе конденсации геотермического пара и тепло, выделяемое при охлаждении жидкости и конденсата пара (геотермической жидкости). Энергетический цикл осуществляется следующим образом.
Полностью сконденсированную рабочую жидкость энергетического цикла с параметрами, соответствующими точке 21, пропускают через рекуперативное подогревающее устройство 109, в котором его подогревают до температуры кипения. Она покидает подогреватель 109 с параметрами, соответствующими точке 60. После этого рабочую жидкость разделяют в сепараторе потока 112 на два субпотока, имеющие параметры, соответственно, как в точке 61 и 62. Первый субпоток с параметрами, соответствующими точке 61, пропускают через теплообменник 107, в котором его нагревают потоком жидкого геофлюида и частично испаряют. Он покидает теплообменник 107 с параметрами, соответствующими точке 63.
Второй субпоток с параметрами, соответствующими точке 62, пропускают через теплообменник 108, где его также нагревают и частично испаряют. Он покидает теплообменник 108 с параметрами, соответствующими точке 64. После этого оба субпотока объединяют в смесителе потока 113, получая параметры, соответствующие точке 66. Объединенные субпотоки направляют после этого в теплообменник 106, где происходит дальнейшее испарение с использованием тепла, передающегося от потока жидкого геофлюида.
Разность температур между точкой кипения рабочей жидкости с параметрами, соответствующими точке 62 и температурой потока конденсирующейся рабочей жидкости в точке 38 сводится к минимуму. Однако разность температур между первоначальной температурой кипения и конечной температурой геотермальной жидкости, применяемой для испарения в теплообменнике 107, может значительно превысить минимальную разность температур между точками 62 и 38 в теплообменнике 108. Таким образом, имеется возможность оптимизировать температуру и соответствующее давление в точке 60 даже в том случае, когда геотермальную жидкость можно охладить только до относительно высоких температур из-за высокой степени минерализации.
Рабочая жидкость покидает теплообменник 106 с параметрами, соответствующими точке 69 и поступает в теплообменник 103, где испарение завершается за с чет использования тепла, выделяемого при конденсации геотермального пара. Рабочая жидкость покидает теплообменник 103 с параметрами, соответствующими точке 68 и поступает в теплообменник 104, где ее перегревают потоком геотермальной жидкости. После этого рабочая жидкость, покидающая теплообменник 104 с параметрами, соответствующими точке 30, поступает в турбину 114, где она расширяется, вырабатывая энергию. Поток расширившейся рабочей жидкости покидает затем турбину 114 с параметрами, соответствующими точке 36.
Расширенная рабочая жидкость в точке 36 обычно имеет форму сухого или влажного насыщенного пара. Затем он проходит через теплообменник 108, где частично конденсируется. Тепло, выделяющееся в процессе конденсации, используется для начального закипания рабочей жидкости. После этого расширившаяся рабочая жидкость покидает теплообменник 108 с параметрами, соответствующими точке 38 и проходит через теплообменник 109, где конденсация продолжается. Тепло конденсации используется для предварительного нагрева поступающей рабочей жидкости. Частично сконденсированная рабочая жидкость с параметрами, соответствующими точке 29, покидает теплообменник 109 и поступает в теплообменник 110, где она конденсируется полностью, получая параметры, соответствующие точке 14. Конденсация может осуществляться с помощью охлаждающей воды, охлаждающего воздуха или любой другой охлаждающей среды. Сконденсированную рабочую жидкость после этого перекачивают насосом III с получением параметров, соответствующих точке 21. После этого цикл повторяется.
Давление в точке 43, до которого расширяется геотермальный пар, выбирают таким образом, чтобы достичь максимальной суммарной выработки энергии как на паровой турбине 102, так и на турбине 114, работающей на рабочей жидкости. Состав многокомпонентной рабочей жидкости (включающей жидкость с более низкой температурой кипения и жидкость с более высокой температурой кипения) аналогичным образом подбирают так, чтобы максимизировать суммарную выработку энергии. Более конкретно состав подбирают так, чтобы температура, при которой конденсируется расширившаяся рабочая жидкость с параметрами, соответствующими точке 36, была выше температуры, при которой закипает та же рабочая жидкость с параметрами, соответствующими точке 60. Примерами подходящих многокомпонентных рабочих жидкостей могут служить смесь аммиака с водой, два или более углеводорода, два или более фреона, смеси углеводорода и фреонов и тому подобное. В особенности предпочтительном варианте реализации применяется смесь воды и аммиака. Многокомпонентный рабочий поток предпочтительно включает от приблизительно 55% до приблизительно 95% компонента с низкой температурой кипения.
Предпочтительные параметры для точек, соответствующих точкам, указанным на фиг. 1, представлены в таблице для системы с водно-аммиачным рабочим потоком. Из приведенных данных следует, что предлагаемая система позволяет повысить выработку энергии по сравнению с обычной паровой системой в 1,55 раза, а в сравнении с системой раздельного использования тепла рассола и пара в 1,077 раза.
В случае, если исходный геофлюид, выходящий из геотермальной скважины, содержит относительно большое количество пара, предпочтительными являются расширение и последующая конденсация геотермального пара в две или более ступени, вместо одной ступени, показанной на фиг. 1. В таком случае нагрев и испарение рабочей жидкости осуществляются попеременно путем охлаждения геотермальной жидкости и конденсации геотермального пара.
На фиг. 2 показана система, включающая двухступенчатое расширение геотермального пара. Она отличается от системы, показанной на фиг. 1 тем, что после первой ступени часть расширившегося пара с параметрами, соответствующими точке 43, направляется в теплообменник 103. Часть частично расширившегося пара расширяется далее в паровой турбине второй ступени 204, после чего конденсируется в конденсаторе второй ступени, показанном как теплообменник 203, затем перекачивается под давлением насосом 201 и вновь соединяется с геотермальной жидкостью.
Геотермальная жидкость используется для нагрева рабочей жидкости энергетического цикла между указанными двумя пароконденсаторами в теплообменнике 204.
Хотя настоящее изобретение описано на примере ряда предпочтительных вариантов реализации, специалисты в данной области техники могут представить себе ряд вариаций и изменений этих вариантов. Например, возможно увеличение или уменьшение количества теплообменников. Кроме того, геотермальный пар может пройти более двух расширений в зависимости от содержания пара в геофлюиде. Таким образом намечается, чтобы прилагаемые пункты формулы изобретения охватывали все такие вариации и модификации, как отвечающие истинному существу и объему настоящего изобретения.
Claims (16)
1. Способ осуществления термодинамического цикла путем расширения газообразного рабочего потока, преобразования его энергии в пригодную для использования форму и получения отработавшего рабочего потока, нагрева поступающего жидкого рабочего потока при частичной конденсации отработавшего рабочего потока, испарения нагретого рабочего потока с образованием вторичного рабочего потока за счет использования тепла, полученного путем сочетания охлаждения геотермальной жидкости и конденсации геотермального пара, отличающийся тем, что поступающий жидкий рабочий поток является многокомпонентными и последний после испарения перегревают с использованием тепла, полученного путем охлаждения геотермальной жидкости с образованием вторичного газообразного рабочего потока.
2. Способ по п.1, отличающийся тем, что он содержит: предварительный нагрев многокомпонентного поступающего жидкого рабочего потока за счет частичной конденсации отработавшего рабочего потока; разделение подогретого жидкого рабочего потока на первый и второй субпотоки; частичное испарение первого субпотока с использованием тепла, выделяющегося при конденсации отработавшего рабочего потока; частичное испарение второго субпотока с использованием тепла, выделяющегося при охлаждении геотермальной жидкости; объединение частично испаренных первого и второго субпотоков и испарение частично испаренных первого и второго субпотоков для получения газообразного рабочего потока с использованием тепла, полученного путем сочетания охлаждения геотермальной жидкости и конденсации геотермального пара.
3. Способ по п.2, отличающийся тем, что разность между температурой кипения второго субпотока и температурой геотермальной жидкости превышает разность между температурой кипения первого субпотока и температурой конденсированного отработавшего рабочего потока.
4. Способ по п.1, отличающийся тем, что он содержит расширение геотермального пара, преобразование его энергии в пригодную для использования форму и получение отработавшего геотермального потока; конденсацию отработавшего геотермального потока для нагрева и частичного испарения жидкого рабочего потока и объединение отработавшего геотермального потока с геотермальной жидкостью.
5. Способ по п.1, отличающийся тем, что он содержит: расширение геотермального пара, преобразование его энергии в пригодную для использования форму и получение отработавшего геотермального потока; разделение отработавшего геотермального потока на первый и второй геотермальные субпотоки; конденсацию первого геотермального субпотока для нагрева и частичного испарения жидкого рабочего потока; объединение первого геотермального субпотока с геотермальной жидкостью; расширение второго геотермального субпотока, преобразование его энергии в пригодную для использования форму и получение отработавшего геотермального субпотока; конденсацию отработавшего геотермального субпотока для нагрева и частичного испарения жидкого рабочего потока; объединение отработавшего геотермального субпотока с геотермальной жидкостью.
6. Способ осуществления термодинамического цикла путем расширения геотермального пара, преобразования его энергии в пригодную для использования форму и получения отработавшего рабочего потока, нагрева поступающего рабочего потока за счет использования тепла, полученного при сочетании охлаждения геотермальной жидкости и конденсации геотермального потока, отличающийся тем, что поступающий рабочий поток является многокомпонентным, последний предварительно нагревают за счет частичной конденсации отработавшего рабочего потока, затем разделяют на первый и второй субпотоки, первый субпоток частично испаряют с использованием тепла, выделяющегося при частичной конденсации отработавшего рабочего потока, второй субпоток частично испаряют с использованием тепла, выделяющегося при охлаждении геотермальной жидкости, объединяют частично испаренные первый и второй субпотоки и после его нагрева перегревают испаренный жидкий рабочий поток с использованием тепла, выделяющегося при охлаждении геотермальной жидкости для получения газообразного рабочего потока.
7. Способ по п.6, отличающийся тем, что разность между температурой кипения второго субпотока и температурой геотермальной жидкости превышает разность между температурой кипения первого субпотока и температурой конденсированного отработавшего рабочего потока.
8. Способ по п.6, отличающийся тем, что он содержит: расширение геотермального пара, преобразование его энергии в пригодную для использования форму и получение отработавшего геотермального потока; конденсацию отработавшего геотермального потока с целью нагрева и частичного испарения жидкого рабочего потока и объединение отработавшего геотермального потока с геотермальной жидкостью.
9. Способ по п.6, отличающийся тем, что он содержит: расширение геотермального пара, преобразование его энергии в пригодную для использования форму и получение отработавшего геотермального потока; разделение отработавшего геотермального потока на первый и второй геотермальные субпотоки; конденсацию первого геотермального субпотока для нагрева и частичного испарения жидкого рабочего потока; объединение первого геотермального субпотока с геотермальной жидкостью, расширение второго геотермального субпотока, преобразование его энергии в пригодную для использования формы и получение отработавшего геотермального субпотока, конденсацию отработавшего геотермального субпотока для нагрева и частичного испарения жидкого рабочего потока, объединение отработавшего геотермального субпотока с геотермальной жидкостью.
10. Устройство для осуществления термодинамического цикла, содержащее средство для расширения газообразного рабочего потока, преобразования его энергии в пригодную для использования форму и получения отработанного потока, теплообменник частичной конденсации отработавшего потока и для передачи тепла от отработавшего потока к поступающему жидкому рабочему потоку, сепаратор для разделения геофлюида на геотермальную жидкость и геотермальный пар, множество теплообменников охлаждения геотермальной жидкости и конденсации геотермального пара, а также для передачи тепла от геотермальной жидкости и геотермального пара для испарения жидкого рабочего потока и образования вторичного газообразного рабочего потока, отличающееся тем, что поступающий рабочий поток является многокомпонентным, а устройство содержит теплообменник для охлаждения геотермальной жидкости и передачи тепла от геотермальной жидкости для перегрева жидкого рабочего потока и образования вторичного газообразного рабочего потока.
11. Устройство по п.10, отличающееся тем, что оно содержит: сепаратор потока для разделения нагретого жидкого рабочего потока на первый и второй субпотоки; теплообменник для частичной конденсации отработавшего рабочего потока и передачи тепла от отработавшего рабочего потока для частичного испарения первого субпотока; теплообменник для охлаждения геотермальной жидкости и передачи тепла от охлажденной геотермальной жидкости для частичного испарения второго субпотока; и смеситель потока для объединения частично испаренных первого и второго субпотоков.
12. Устройство по п.10, отличающееся тем, что оно содержит: средство для расширения геотермального потока, преобразования его энергии в пригодную для использования форму и получения отработавшего геотермального потока; теплообменник для конденсации отработавшего геотермального потока и для передачи тепла от отработавшего геотермального потока и для частичного испарения жидкого рабочего потока; и смеситель потока для объединения отработавшего геотермального потока с геотермальной жидкостью.
13. Устройство по п.10, отличающееся тем, что оно содержит: средство для расширения геотермального пара, преобразования его энергии в пригодную для использования форму и получения отработавшего геотермального потока; разделитель потока для разделения отработавшего геотермального потока на первый и второй геотермальные субпотоки; теплообменник для конденсации первого геотермального субпотока и передачи тепла от первого геотермального субпотока для частичного испарения жидкого рабочего потока; смеситель потока для объединения первого геотермального субпотока с геотермальной жидкостью; средства для расширения второго геотермального субпотока, преобразования его энергии в пригодную для использования форму и получения отработавшего геотермального субпотока; теплообменник для конденсации отработавшего геотермального субпотока и передачи тепла от отработавшего геотермального субпотока для частичного испарения жидкого рабочего потока; смеситель потока для объединения отработавшего геотермального субпотока с геотермальной жидкостью.
14. Устройство для осуществления термодинамического цикла, содержащее средство для расширения газообразного рабочего потока, преобразования его энергии в пригодную для использования форму и получения отработавшего потока, теплообменник для частичной конденсации отработавшего потока и для передачи тепла от отработавшего потока к поступающему многокомпонентному рабочему потоку, сепаратор для разделения геофлюида на геотермальную жидкость и геотермальный пар и множество теплообменников для охлаждения геотермальной жидкости и конденсации геотермального пара, а также для передачи тепла от геотермальной жидкости и геотермального пара для испарения жидкого рабочего потока, отличающееся тем, что поступающий рабочий поток является многокомпонентным, а устройство содержит сепаратор потока для разделения нагретого жидкого рабочего потока на первый и второй субпотоки, теплообменник для частичной конденсации отработавшего рабочего потока и передачи тепла от отработавшего рабочего потока для частичного испарения первого субпотока, теплообменник для охлаждения геотермальной жидкости и передачи тепла от охлаждаемой геотермальной жидкости для частичного испарения второго субпотока, смеситель потока для объединения частично испаренных первого и второго субпотоков и теплообменник для охлаждения геотермальной жидкости для перегрева жидкого рабочего потока и получения газообразного рабочего потока жидкости и конденсации геотермального пара, а также для передачи тепла от геотермальной жидкости и геотермального пара для испарения жидкого рабочего потока; и теплообменник для охлаждения геотермальной жидкости и передачи тепла от геотермальной жидкости для перегрева жидкого рабочего потока и получения газообразного рабочего потока.
15. Устройство по п.1, отличающееся тем, что оно содержит: средство для расширения геотермального потока, преобразования его энергии в пригодную для использования форму и получения отработавшего геотермального потока; теплообменник для конденсации отработавшего геотермального потока и для передачи тепла от отработавшего геотермального потока для частичного испарения жидкого рабочего потока; и смеситель потока для объединения отработавшего геотермального потока с геотермальной жидкостью.
16. Устройство по п.14, отличающееся тем, что оно содержит: средство для расширения геотермального пара, преобразования его энергии в пригодную для использования форму и получения отработавшего геотермального потока; разделитель потока для разделения отработавшего геотермального потока на первый и второй геотермальные субпотоки; теплообменник для конденсации первого геотермального субпотока и передачи тепла от первого геотермального субпотока для частичного испарения жидкого рабочего потока; смеситель потока для объединения первого геотермального субпотока с геотермальной жидкостью; средства для расширения второго геотермального субпотока, преобразования его энергии в пригодную для использования форму и получения отработавшего геотермального субпотока; теплообменник для конденсации отработавшего геотермального субпотока и передачи тепла от отработавшего геотермального субпотока для частичного испарения жидкого рабочего потока; смеситель потока для объединения отработавшего геотермального субпотока с геотермальной жидкостью.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/147,670 US5440882A (en) | 1993-11-03 | 1993-11-03 | Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power |
US08/147670 | 1993-11-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU94041741A RU94041741A (ru) | 1996-10-20 |
RU2123606C1 true RU2123606C1 (ru) | 1998-12-20 |
Family
ID=22522443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU94041741A RU2123606C1 (ru) | 1993-11-03 | 1994-11-02 | Способ и устройство для осуществления термодинамического цикла |
Country Status (14)
Country | Link |
---|---|
US (1) | US5440882A (ru) |
EP (1) | EP0652368B1 (ru) |
JP (1) | JP3789499B2 (ru) |
CN (1) | CN1065593C (ru) |
AT (1) | ATE161074T1 (ru) |
DE (1) | DE69407261T2 (ru) |
DK (1) | DK0652368T3 (ru) |
ES (1) | ES2111258T3 (ru) |
GR (1) | GR3026220T3 (ru) |
GT (1) | GT199400070A (ru) |
IS (2) | IS1849B (ru) |
IT (1) | IT1276054B1 (ru) |
NZ (1) | NZ264705A (ru) |
RU (1) | RU2123606C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2480591C2 (ru) * | 2008-02-01 | 2013-04-27 | Сименс Акциенгезелльшафт | Способ функционирования термодинамического контура и термодинамический контур |
RU172586U1 (ru) * | 2016-07-19 | 2017-07-13 | Общество с ограниченной ответственностью "Геотерм-ЭМ" | Геотермальная электростанция с бинарными циклами |
RU2650447C2 (ru) * | 2016-11-15 | 2018-04-13 | Федеральное государственное бюджетное учреждение науки Институт проблем геотермии Дагестанского научного центра РАН | Способ комплексной утилизации геотермальных вод |
Families Citing this family (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5598706A (en) * | 1993-02-25 | 1997-02-04 | Ormat Industries Ltd. | Method of and means for producing power from geothermal fluid |
US5572871A (en) * | 1994-07-29 | 1996-11-12 | Exergy, Inc. | System and apparatus for conversion of thermal energy into mechanical and electrical power |
US5816048A (en) * | 1995-03-13 | 1998-10-06 | Bronicki; Lucien Y. | Method for utilizing acidic geothermal fluid for generating power in a rankine cycle power plant |
US5649426A (en) * | 1995-04-27 | 1997-07-22 | Exergy, Inc. | Method and apparatus for implementing a thermodynamic cycle |
US5588298A (en) * | 1995-10-20 | 1996-12-31 | Exergy, Inc. | Supplying heat to an externally fired power system |
US5822990A (en) | 1996-02-09 | 1998-10-20 | Exergy, Inc. | Converting heat into useful energy using separate closed loops |
US5950433A (en) * | 1996-10-09 | 1999-09-14 | Exergy, Inc. | Method and system of converting thermal energy into a useful form |
WO2004027221A1 (en) * | 1997-04-02 | 2004-04-01 | Electric Power Research Institute, Inc. | Method and system for a thermodynamic process for producing usable energy |
US5953918A (en) | 1998-02-05 | 1999-09-21 | Exergy, Inc. | Method and apparatus of converting heat to useful energy |
US6052997A (en) * | 1998-09-03 | 2000-04-25 | Rosenblatt; Joel H. | Reheat cycle for a sub-ambient turbine system |
US6195998B1 (en) | 1999-01-13 | 2001-03-06 | Abb Alstom Power Inc. | Regenerative subsystem control in a kalina cycle power generation system |
US6158220A (en) * | 1999-01-13 | 2000-12-12 | ABB ALSTROM POWER Inc. | Distillation and condensation subsystem (DCSS) control in kalina cycle power generation system |
US6116028A (en) * | 1999-01-13 | 2000-09-12 | Abb Alstom Power Inc. | Technique for maintaining proper vapor temperature at the super heater/reheater inlet in a Kalina cycle power generation system |
US6263675B1 (en) | 1999-01-13 | 2001-07-24 | Abb Alstom Power Inc. | Technique for controlling DCSS condensate levels in a Kalina cycle power generation system |
US6105368A (en) * | 1999-01-13 | 2000-08-22 | Abb Alstom Power Inc. | Blowdown recovery system in a Kalina cycle power generation system |
US6155053A (en) * | 1999-01-13 | 2000-12-05 | Abb Alstom Power Inc. | Technique for balancing regenerative requirements due to pressure changes in a Kalina cycle power generation system |
US6167705B1 (en) | 1999-01-13 | 2001-01-02 | Abb Alstom Power Inc. | Vapor temperature control in a kalina cycle power generation system |
US6202418B1 (en) | 1999-01-13 | 2001-03-20 | Abb Combustion Engineering | Material selection and conditioning to avoid brittleness caused by nitriding |
US6035642A (en) * | 1999-01-13 | 2000-03-14 | Combustion Engineering, Inc. | Refurbishing conventional power plants for Kalina cycle operation |
US6253552B1 (en) | 1999-01-13 | 2001-07-03 | Abb Combustion Engineering | Fluidized bed for kalina cycle power generation system |
US6213059B1 (en) | 1999-01-13 | 2001-04-10 | Abb Combustion Engineering Inc. | Technique for cooling furnace walls in a multi-component working fluid power generation system |
US6125632A (en) * | 1999-01-13 | 2000-10-03 | Abb Alstom Power Inc. | Technique for controlling regenerative system condensation level due to changing conditions in a Kalina cycle power generation system |
US6158221A (en) * | 1999-01-13 | 2000-12-12 | Abb Alstom Power Inc. | Waste heat recovery technique |
US6105369A (en) * | 1999-01-13 | 2000-08-22 | Abb Alstom Power Inc. | Hybrid dual cycle vapor generation |
US6155052A (en) * | 1999-01-13 | 2000-12-05 | Abb Alstom Power Inc. | Technique for controlling superheated vapor requirements due to varying conditions in a Kalina cycle power generation system cross-reference to related applications |
US6195997B1 (en) * | 1999-04-15 | 2001-03-06 | Lewis Monroe Power Inc. | Energy conversion system |
ES2301229T3 (es) | 1999-07-23 | 2008-06-16 | Exergy, Inc. | Metodo y aparato de conversion del calor en energia util. |
LT4813B (lt) | 1999-08-04 | 2001-07-25 | Exergy,Inc | Šilumos pavertimo naudinga energija būdas ir įrenginys |
US6347520B1 (en) | 2001-02-06 | 2002-02-19 | General Electric Company | Method for Kalina combined cycle power plant with district heating capability |
WO2003098009A1 (en) * | 2002-05-14 | 2003-11-27 | Hunt Robert D | Vapor power cycles |
CA2393386A1 (en) * | 2002-07-22 | 2004-01-22 | Douglas Wilbert Paul Smith | Method of converting energy |
US6829895B2 (en) | 2002-09-12 | 2004-12-14 | Kalex, Llc | Geothermal system |
US6820421B2 (en) * | 2002-09-23 | 2004-11-23 | Kalex, Llc | Low temperature geothermal system |
US6735948B1 (en) * | 2002-12-16 | 2004-05-18 | Icalox, Inc. | Dual pressure geothermal system |
MXPA05008120A (es) * | 2003-02-03 | 2006-02-17 | Kalex Llc | Ciclo de trabajo y sistema para utilizar fuentes de calor con temperatura moderada y baja. |
US6769256B1 (en) * | 2003-02-03 | 2004-08-03 | Kalex, Inc. | Power cycle and system for utilizing moderate and low temperature heat sources |
US7305829B2 (en) * | 2003-05-09 | 2007-12-11 | Recurrent Engineering, Llc | Method and apparatus for acquiring heat from multiple heat sources |
US6964168B1 (en) | 2003-07-09 | 2005-11-15 | Tas Ltd. | Advanced heat recovery and energy conversion systems for power generation and pollution emissions reduction, and methods of using same |
US7264654B2 (en) * | 2003-09-23 | 2007-09-04 | Kalex, Llc | Process and system for the condensation of multi-component working fluids |
US7065967B2 (en) * | 2003-09-29 | 2006-06-27 | Kalex Llc | Process and apparatus for boiling and vaporizing multi-component fluids |
US7407381B2 (en) * | 2003-10-21 | 2008-08-05 | Pac, Lp | Combustion apparatus and methods for making and using same |
US8272217B2 (en) | 2004-04-16 | 2012-09-25 | Siemens Aktiengesellshaft | Method and device for carrying out a thermodynamic cyclic process |
US8117844B2 (en) * | 2004-05-07 | 2012-02-21 | Recurrent Engineering, Llc | Method and apparatus for acquiring heat from multiple heat sources |
DE102004037417B3 (de) | 2004-07-30 | 2006-01-19 | Siemens Ag | Verfahren und Vorrichtung zur Übertragung von Wärme von einer Wärmequelle an einen thermodynamischen Kreislauf mit einem Arbeitsmittel mit zumindest zwei Stoffen mit nicht-isothermer Verdampfung und Kondensation |
US7287381B1 (en) * | 2005-10-05 | 2007-10-30 | Modular Energy Solutions, Ltd. | Power recovery and energy conversion systems and methods of using same |
US7827791B2 (en) * | 2005-10-05 | 2010-11-09 | Tas, Ltd. | Advanced power recovery and energy conversion systems and methods of using same |
WO2008106774A1 (en) * | 2007-03-02 | 2008-09-12 | Victor Juchymenko | Controlled organic rankine cycle system for recovery and conversion of thermal energy |
DE102007042541B4 (de) * | 2007-09-07 | 2009-08-13 | Gross, Johannes, Dipl.-Ing. | Anlage zur Energiegewinnung mittels einer Dampfkrafteinrichtung und Verfahren dazu |
US8087248B2 (en) * | 2008-10-06 | 2012-01-03 | Kalex, Llc | Method and apparatus for the utilization of waste heat from gaseous heat sources carrying substantial quantities of dust |
US8695344B2 (en) * | 2008-10-27 | 2014-04-15 | Kalex, Llc | Systems, methods and apparatuses for converting thermal energy into mechanical and electrical power |
US8176738B2 (en) | 2008-11-20 | 2012-05-15 | Kalex Llc | Method and system for converting waste heat from cement plant into a usable form of energy |
US8616323B1 (en) | 2009-03-11 | 2013-12-31 | Echogen Power Systems | Hybrid power systems |
WO2010121255A1 (en) | 2009-04-17 | 2010-10-21 | Echogen Power Systems | System and method for managing thermal issues in gas turbine engines |
CN102575532B (zh) | 2009-06-22 | 2015-03-18 | 艾克竣电力系统股份有限公司 | 用于对入口气体进行温度调节的系统和方法 |
US9316404B2 (en) | 2009-08-04 | 2016-04-19 | Echogen Power Systems, Llc | Heat pump with integral solar collector |
US8613195B2 (en) | 2009-09-17 | 2013-12-24 | Echogen Power Systems, Llc | Heat engine and heat to electricity systems and methods with working fluid mass management control |
US8869531B2 (en) | 2009-09-17 | 2014-10-28 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
US9115605B2 (en) | 2009-09-17 | 2015-08-25 | Echogen Power Systems, Llc | Thermal energy conversion device |
US8813497B2 (en) | 2009-09-17 | 2014-08-26 | Echogen Power Systems, Llc | Automated mass management control |
US8474263B2 (en) | 2010-04-21 | 2013-07-02 | Kalex, Llc | Heat conversion system simultaneously utilizing two separate heat source stream and method for making and using same |
CN103109046B (zh) * | 2010-07-14 | 2015-08-19 | 马克卡车公司 | 具有局部回收的废热回收系统 |
CN102373977A (zh) * | 2010-08-10 | 2012-03-14 | 陈进益 | 利用发电厂废热做第二次发电的方法 |
US8783034B2 (en) | 2011-11-07 | 2014-07-22 | Echogen Power Systems, Llc | Hot day cycle |
US8616001B2 (en) * | 2010-11-29 | 2013-12-31 | Echogen Power Systems, Llc | Driven starter pump and start sequence |
US8857186B2 (en) | 2010-11-29 | 2014-10-14 | Echogen Power Systems, L.L.C. | Heat engine cycles for high ambient conditions |
EP2649311B1 (en) | 2010-12-10 | 2018-04-18 | Schwarck Structure, LLC | Passive heat extraction and power generation |
US8875515B2 (en) * | 2011-04-29 | 2014-11-04 | General Electric Company | Integrated generator cooling system |
US20120324885A1 (en) * | 2011-06-27 | 2012-12-27 | Turbine Air Systems Ltd. | Geothermal power plant utilizing hot geothermal fluid in a cascade heat recovery apparatus |
CN102305113A (zh) * | 2011-09-13 | 2012-01-04 | 上海盛合新能源科技有限公司 | 一种石化行业中使用的低温余热回收设备 |
CN102338047A (zh) * | 2011-09-13 | 2012-02-01 | 上海盛合新能源科技有限公司 | 一种地热发电设备 |
WO2013055391A1 (en) | 2011-10-03 | 2013-04-18 | Echogen Power Systems, Llc | Carbon dioxide refrigeration cycle |
US8955319B2 (en) | 2012-02-06 | 2015-02-17 | Tessema Dosho Shifferaw | Closed-loop geothermal power generation system with turbine engines |
WO2013119681A1 (en) * | 2012-02-06 | 2013-08-15 | Tessema Dosho Shifferaw | Geothermal power generation system with turbine engines and marine gas capture system |
DE102012100967A1 (de) * | 2012-02-07 | 2013-08-08 | Levitec Gmbh | Anordnung zur Vorwärmung eines Fluids in einem Kraftwerk, insbesondere in einem Dampfkraftwerk |
US8833077B2 (en) | 2012-05-18 | 2014-09-16 | Kalex, Llc | Systems and methods for low temperature heat sources with relatively high temperature cooling media |
CA2882290A1 (en) | 2012-08-20 | 2014-02-27 | Echogen Power Systems, L.L.C. | Supercritical working fluid circuit with a turbo pump and a start pump in series configuration |
US9341084B2 (en) | 2012-10-12 | 2016-05-17 | Echogen Power Systems, Llc | Supercritical carbon dioxide power cycle for waste heat recovery |
US9118226B2 (en) | 2012-10-12 | 2015-08-25 | Echogen Power Systems, Llc | Heat engine system with a supercritical working fluid and processes thereof |
US9638175B2 (en) * | 2012-10-18 | 2017-05-02 | Alexander I. Kalina | Power systems utilizing two or more heat source streams and methods for making and using same |
JP6013140B2 (ja) | 2012-11-01 | 2016-10-25 | 株式会社東芝 | 発電システム |
CN103133070B (zh) * | 2013-01-27 | 2015-03-04 | 南京瑞柯徕姆环保科技有限公司 | 蒸汽朗肯-低沸点工质朗肯联合循环发电装置 |
KR20150122665A (ko) | 2013-01-28 | 2015-11-02 | 에코진 파워 시스템스, 엘엘씨 | 초임계 이산화탄소 랭킨 사이클 중에 동력 터빈 스로틀 밸브를 제어하기 위한 프로세스 |
WO2014117068A1 (en) | 2013-01-28 | 2014-07-31 | Echogen Power Systems, L.L.C. | Methods for reducing wear on components of a heat engine system at startup |
EP2964911B1 (en) | 2013-03-04 | 2022-02-23 | Echogen Power Systems LLC | Heat engine systems with high net power supercritical carbon dioxide circuits |
BE1021700B1 (nl) * | 2013-07-09 | 2016-01-11 | P.T.I. | Inrichting voor energiebesparing |
CN103452783B (zh) * | 2013-09-10 | 2016-06-01 | 国家海洋局第一海洋研究所 | 一种小温差热力发电系统 |
US8925320B1 (en) * | 2013-09-10 | 2015-01-06 | Kalex, Llc | Methods and apparatus for optimizing the performance of organic rankine cycle power systems |
CN103410691A (zh) * | 2013-09-10 | 2013-11-27 | 国家海洋局第一海洋研究所 | 一种用于小温差发电的热力循环系统 |
CN103615319B (zh) * | 2013-09-13 | 2016-01-27 | 沈阳黎明航空发动机(集团)有限责任公司 | 一种用于火山能源提取的航空发动机改进装置 |
KR20170077159A (ko) * | 2014-10-31 | 2017-07-05 | 수보드 베르마 | 증발 시의 잠열을 리사이클링하여 고효율 에너지 변환 사이클을 위한 시스템 |
WO2016073252A1 (en) | 2014-11-03 | 2016-05-12 | Echogen Power Systems, L.L.C. | Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system |
US9742196B1 (en) * | 2016-02-24 | 2017-08-22 | Doosan Fuel Cell America, Inc. | Fuel cell power plant cooling network integrated with a thermal hydraulic engine |
ITUA20163869A1 (it) * | 2016-05-27 | 2017-11-27 | Turboden Srl | Impianto geotermico binario ad elevata efficienza |
IT201600078847A1 (it) * | 2016-07-27 | 2018-01-27 | Turboden Spa | Ciclo a scambio diretto ottimizzato |
CN108223317A (zh) * | 2018-01-30 | 2018-06-29 | 中国华能集团清洁能源技术研究院有限公司 | 一种利用太阳能加热地热尾水的耦合发电装置及方法 |
DE102018206311A1 (de) * | 2018-04-24 | 2019-10-24 | Karl Euler | Vorrichtung zur Erzeugung von Elektrizität aus Geothermiewasser |
US11187112B2 (en) | 2018-06-27 | 2021-11-30 | Echogen Power Systems Llc | Systems and methods for generating electricity via a pumped thermal energy storage system |
IT202000000784A1 (it) | 2020-01-17 | 2021-07-17 | Sit Tech | Impianto di potenza a ciclo chiuso organic rankine flash |
US11435120B2 (en) | 2020-05-05 | 2022-09-06 | Echogen Power Systems (Delaware), Inc. | Split expansion heat pump cycle |
JP6844880B1 (ja) * | 2020-08-11 | 2021-03-17 | 株式会社エスト | 地熱交換器および地熱発電装置 |
IL303493A (en) | 2020-12-09 | 2023-08-01 | Supercritical Storage Company Inc | A system with three reservoirs for storing thermal electrical energy |
US11255315B1 (en) | 2021-04-02 | 2022-02-22 | Ice Thermal Harvesting, Llc | Controller for controlling generation of geothermal power in an organic Rankine cycle operation during hydrocarbon production |
US11293414B1 (en) | 2021-04-02 | 2022-04-05 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11359576B1 (en) | 2021-04-02 | 2022-06-14 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11421663B1 (en) | 2021-04-02 | 2022-08-23 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1601003A1 (de) * | 1966-12-02 | 1970-07-16 | Gohee Mamiya | Energieerzeugungssystem |
FR1546326A (fr) * | 1966-12-02 | 1968-11-15 | Générateur d'énergie perfectionné, particulièrement pour créer une énergie enutilisant un réfrigérant | |
US4102133A (en) * | 1977-04-21 | 1978-07-25 | James Hilbert Anderson | Multiple well dual fluid geothermal power cycle |
US4346561A (en) * | 1979-11-08 | 1982-08-31 | Kalina Alexander Ifaevich | Generation of energy by means of a working fluid, and regeneration of a working fluid |
US4361186A (en) * | 1980-11-06 | 1982-11-30 | Kalina Alexander Ifaevich | Formation flow channel blocking |
GB2098666A (en) * | 1981-05-15 | 1982-11-24 | Kalina Alexander Isaevitch | Generation of energy by means of a working fluid and regeneration of a working fluid |
US4489563A (en) * | 1982-08-06 | 1984-12-25 | Kalina Alexander Ifaevich | Generation of energy |
US4542625A (en) * | 1984-07-20 | 1985-09-24 | Bronicki Lucien Y | Geothermal power plant and method for operating the same |
US4548043A (en) * | 1984-10-26 | 1985-10-22 | Kalina Alexander Ifaevich | Method of generating energy |
US4586340A (en) * | 1985-01-22 | 1986-05-06 | Kalina Alexander Ifaevich | Method and apparatus for implementing a thermodynamic cycle using a fluid of changing concentration |
US4754320A (en) * | 1985-02-25 | 1988-06-28 | Kabushiki Kaisha Toshiba | EEPROM with sidewall control gate |
US4604867A (en) * | 1985-02-26 | 1986-08-12 | Kalina Alexander Ifaevich | Method and apparatus for implementing a thermodynamic cycle with intercooling |
US4763480A (en) * | 1986-10-17 | 1988-08-16 | Kalina Alexander Ifaevich | Method and apparatus for implementing a thermodynamic cycle with recuperative preheating |
US4732005A (en) * | 1987-02-17 | 1988-03-22 | Kalina Alexander Ifaevich | Direct fired power cycle |
IL88571A (en) * | 1988-12-02 | 1998-06-15 | Ormat Turbines 1965 Ltd | Method of and apparatus for producing power using steam |
US4899545A (en) * | 1989-01-11 | 1990-02-13 | Kalina Alexander Ifaevich | Method and apparatus for thermodynamic cycle |
US4982568A (en) * | 1989-01-11 | 1991-01-08 | Kalina Alexander Ifaevich | Method and apparatus for converting heat from geothermal fluid to electric power |
US5038567A (en) * | 1989-06-12 | 1991-08-13 | Ormat Turbines, Ltd. | Method of and means for using a two-phase fluid for generating power in a rankine cycle power plant |
US4996846A (en) * | 1990-02-12 | 1991-03-05 | Ormat Inc. | Method of and apparatus for retrofitting geothermal power plants |
US5029444A (en) * | 1990-08-15 | 1991-07-09 | Kalina Alexander Ifaevich | Method and apparatus for converting low temperature heat to electric power |
-
1993
- 1993-11-03 US US08/147,670 patent/US5440882A/en not_active Expired - Lifetime
-
1994
- 1994-10-12 DE DE69407261T patent/DE69407261T2/de not_active Expired - Fee Related
- 1994-10-12 ES ES94307470T patent/ES2111258T3/es not_active Expired - Lifetime
- 1994-10-12 DK DK94307470.8T patent/DK0652368T3/da active
- 1994-10-12 EP EP94307470A patent/EP0652368B1/en not_active Expired - Lifetime
- 1994-10-12 AT AT94307470T patent/ATE161074T1/de active
- 1994-10-14 NZ NZ264705A patent/NZ264705A/en not_active IP Right Cessation
- 1994-10-31 JP JP26742294A patent/JP3789499B2/ja not_active Expired - Lifetime
- 1994-10-31 IT IT94MI002222A patent/IT1276054B1/it active IP Right Grant
- 1994-10-31 IS IS4229A patent/IS1849B/is unknown
- 1994-11-01 CN CN94113791A patent/CN1065593C/zh not_active Expired - Lifetime
- 1994-11-02 RU RU94041741A patent/RU2123606C1/ru active
- 1994-11-02 GT GT199400070A patent/GT199400070A/es unknown
-
1998
- 1998-02-25 GR GR980400399T patent/GR3026220T3/el unknown
-
2002
- 2002-10-21 IS IS6587A patent/IS2544B/is unknown
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2480591C2 (ru) * | 2008-02-01 | 2013-04-27 | Сименс Акциенгезелльшафт | Способ функционирования термодинамического контура и термодинамический контур |
US9790815B2 (en) | 2008-02-01 | 2017-10-17 | Kalina Power Limited | Method for operating a thermodynamic cycle, and thermodynamic cycle |
RU172586U1 (ru) * | 2016-07-19 | 2017-07-13 | Общество с ограниченной ответственностью "Геотерм-ЭМ" | Геотермальная электростанция с бинарными циклами |
RU2650447C2 (ru) * | 2016-11-15 | 2018-04-13 | Федеральное государственное бюджетное учреждение науки Институт проблем геотермии Дагестанского научного центра РАН | Способ комплексной утилизации геотермальных вод |
Also Published As
Publication number | Publication date |
---|---|
DE69407261T2 (de) | 1998-04-23 |
ES2111258T3 (es) | 1998-03-01 |
CN1065593C (zh) | 2001-05-09 |
ATE161074T1 (de) | 1997-12-15 |
US5440882A (en) | 1995-08-15 |
IS6587A (is) | 2002-10-21 |
ITMI942222A1 (it) | 1996-05-01 |
CN1110762A (zh) | 1995-10-25 |
JP3789499B2 (ja) | 2006-06-21 |
IS4229A (is) | 1995-05-04 |
EP0652368A1 (en) | 1995-05-10 |
JPH07208117A (ja) | 1995-08-08 |
ITMI942222A0 (it) | 1994-10-31 |
EP0652368B1 (en) | 1997-12-10 |
IS2544B (is) | 2009-10-15 |
DK0652368T3 (da) | 1998-02-09 |
DE69407261D1 (de) | 1998-01-22 |
GR3026220T3 (en) | 1998-05-29 |
RU94041741A (ru) | 1996-10-20 |
GT199400070A (es) | 1996-04-25 |
NZ264705A (en) | 1995-12-21 |
IS1849B (is) | 2003-02-07 |
IT1276054B1 (it) | 1997-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2123606C1 (ru) | Способ и устройство для осуществления термодинамического цикла | |
JP2962751B2 (ja) | 地熱流体からの熱を電力に変換する方法及び装置 | |
KR940002718B1 (ko) | 직접 연소식(direct fired)동력 사이클을 수행하는 장치 및 방법 | |
US5038567A (en) | Method of and means for using a two-phase fluid for generating power in a rankine cycle power plant | |
JP2716606B2 (ja) | 熱力学サイクルの実施方法および装置 | |
US5822990A (en) | Converting heat into useful energy using separate closed loops | |
US4899545A (en) | Method and apparatus for thermodynamic cycle | |
TW436580B (en) | Gas turbine inlet air cooling method for combined cycle power plants | |
US6923000B2 (en) | Dual pressure geothermal system | |
CA1216433A (en) | Method of generating energy | |
KR101114017B1 (ko) | 열역학 사이클을 수행하기 위한 방법 및 장치 | |
EP0949406A2 (en) | Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures | |
KR860006613A (ko) | 중간 냉각으로 열역학 사이클을 충족시키기 위한 방법과 장치 | |
US4819437A (en) | Method of converting thermal energy to work | |
US8117844B2 (en) | Method and apparatus for acquiring heat from multiple heat sources | |
CA2570654C (en) | Efficient conversion of heat to useful energy | |
JPH0681611A (ja) | ヒートパイプ発電装置 | |
AP170A (en) | Method of and means for using a two-phase fluid for generating power in a ranking cycle power plant. | |
WO2003008767A2 (en) | Mixed working fluid power system with incremental vapor generation | |
MXPA97000995A (en) | Conversion of heat in energy u | |
TH4355B (th) | วิธีการและเครื่องสำหรับเสริมวัฎจักรเทอร์โมไดนามิกด้วยการทำให้เย็นซึ่งกันและกัน |