Nothing Special   »   [go: up one dir, main page]

RU2120913C1 - Способ получения синтез-газа - Google Patents

Способ получения синтез-газа Download PDF

Info

Publication number
RU2120913C1
RU2120913C1 RU98102713A RU98102713A RU2120913C1 RU 2120913 C1 RU2120913 C1 RU 2120913C1 RU 98102713 A RU98102713 A RU 98102713A RU 98102713 A RU98102713 A RU 98102713A RU 2120913 C1 RU2120913 C1 RU 2120913C1
Authority
RU
Russia
Prior art keywords
hydrocarbon
air
cylinder
synthesis gas
mixture
Prior art date
Application number
RU98102713A
Other languages
English (en)
Other versions
RU98102713A (ru
Inventor
В.Н. Генкин
М.В. Генкин
Д.В. Заборских
Ю.А. Колбановский
Original Assignee
ТК СИБУР НН, Институт нефтехимического синтеза им.А.В.Топчиева РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ТК СИБУР НН, Институт нефтехимического синтеза им.А.В.Топчиева РАН filed Critical ТК СИБУР НН, Институт нефтехимического синтеза им.А.В.Топчиева РАН
Priority to RU98102713A priority Critical patent/RU2120913C1/ru
Application granted granted Critical
Publication of RU2120913C1 publication Critical patent/RU2120913C1/ru
Publication of RU98102713A publication Critical patent/RU98102713A/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Изобретение предназначено для переработки углеводородного сырья. Способ получения синтез-газа включает парциональное окисление углеводородного сырья с воздухом в объеме цилиндра двигателя внутреннего сгорания при положении поршня в верхней мертвой точке, расширение и охлаждение продуктов процесса при движении поршня двигателя к нижней мертвой точке, вывод продуктов процесса, содержащих синтез-газ, из реакционного объема при движении поршня к верхней мертвой точке, введение новой порции рабочей смеси при движении поршня к нижней мертвой точке. В рабочий объем цилиндра двигателя внутреннего сгорания подают углеводородное сырье с воздухом при отношении количества кислорода к количеству углеводородного сырья (альфа), равном 0,4 - 0,5, при положении поршня в верхней мертвой точке часть углеводородного сырья с воздухом при отношении количества кислорода к количеству углеводородного сырья, равном 0,8 - 1,2, в количестве 5 - 10 об.% к исходной смеси подвергают изолировано от основной смеси воспламенению и глубокому окислению. Продукты глубокого окисления смешивают с исходной смесью в рабочем объеме цилиндра и воспламеняют ее. Данное изобретение позволяет повысить производительность процесса. 1 ил., 2 табл.

Description

Изобретение относится к технологии переработки углеводородного сырья, в частности, к получению синтез-газа из газообразного углеводородного сырья.
Известны различные способы окисления углеводородного сырья, например метана, для получения синтез-газа.
СН4 + 0,5 О2 = СО + 2Н2
СО + Н2 - синтез-газ, полученный в данном случае в результате неполного окисления метана.
В изобретении "Способ получения синтез-газа из углеводородного сырья" описан способ, включающий смешивание углеводородного сырья с окислителем - кислородом или кислородсодержащим газом, или водяным паром, введение смеси в реакционную зону при температуре, которая не менее чем на 93oС ниже точки самовоспламенения смеси со скоростью турбулентного потока, превышающей скорость проскока пламени, и конверсию смеси в присутствии монолитного катализатора. (Патент СССР N 1831468, Данстер М. и Корнчак Д. "Способ получения синтез-газа из углеводородного сырья". Опубл. БИ N 28, 1993).
Описанный способ требует создания каталитического реактора специальной конструкции и использование высокоселективного катализатора, что усложняет процесс.
Наиболее близким к предлагаемому является способ получения синтез-газа, включающий сжигание смеси углеводородного сырья с воздухом, обогащенным кислородом при отношении количества кислорода к количеству углеводородного сырья альфа = 0,5-0,9, или необогащенным кислородом воздухом при альфа = 0,827-1,2, взрывное парциальное окисление углеводородов в объеме цилиндра двигателя внутреннего сгорания, расширение и охлаждение продуктов процесса при движении поршня двигателя к нижней мертвой точке, вывод продуктов процесса, содержащих синтез-газ, из реакционного объема при движении поршня к верхней мертвой точке, введение новой порции рабочей смеси при движении поршня к нижней мертвой точке.
При этом в качестве сырья используют газ коксовых производств, богатый метановой, этиленовой фракциями и окисью углерода. В цилиндры двигателя внутреннего сгорания подают смесь воздуха с указанным сырьем, а взрывному парциальному окислению предшествует воспламенение искрой. (Казарновский Я.С., Деревянко И.Г., Снежинский И., Кобозев Н.И. Взрывная конверсия метана. - М., Труды ГИАП, т. VШ, 1957, с. 89-105).
Использование в указанном способе газа коксовых производств привязывает производство синтез-газа к коксовым производствам.
Кроме того, при осуществлении способа с использованием необогащенного кислородом воздуха при альфа = 0,827-1,2 в продуктах процесса содержание СО2 в 1,5-2 раза больше, чем СО, содержание водорода не удовлетворяет требованию к составу синтез-газа при получении топлив, метанола и других продуктов, а при альфа > 1 водород вообще отсутствует. Так, например, при работе на необогащенном воздухе при альфа = 0,827 отношение Н2/СО составляет 0,76.
При осуществлении способа на воздухе, обогащенном кислородом, при альфа = 0,5-0,8 соотношение Н2/СО не соответствует требованиям синтеза (в ряде случаев меньше единицы). При альфа = 0,8 содержание СО2 равно содержанию СО.
Как показали экспериментальные исследования, применение указанного способа окисления, например, метана в воздушной среде при альфа = 0,4-0,5 воспламенением всей смеси от искры на промышленных установках, например, двигателях внутреннего сгорания Г98 (6ГЧН 36/45) с рабочим объемом одного цилиндра 45 л, неэффективно из-за малой мощности источника воспламенения и, соответственно, низкой температуры начала реакции, что приводит к нестабильности состава продуктов переработки. Результатом последнего является снижение концентрации синтез-газа и тем самым снижение производительности процесса. Выход синтез-газа в продуктах переработки по указанному выше способу достигает 30%.
Предлагаемое изобретение решает задачу повышения производительности способа.
Сущность изобретения заключается в том, что способ получения синтез-газа осуществляют парциальным окислением смеси углеводородного сырья с воздухом при отношении количества кислорода к количеству углеводородного сырья альфа = 0,4-0,5 в объеме цилиндра двигателя внутреннего сгорания. При этом в момент положения поршня в верхней мертвой точке часть смеси углеводородного сырья с воздухом при отношении количества кислорода к количеству углеводородного сырья альфа = 0,8-1,2 и в количестве 5-10 об.% от объема исходной смеси изолированно от нее подвергают воспламенению и глубокому окислению. Далее способ включает смешивание продуктов глубокого окисления с исходной смесью в рабочем объеме и воспламенение ее, расширение и охлаждение продуктов процесса при движении поршня к нижней мертвой точке, выход продуктов процесса, содержащих синтез-газ, из реакционного объема при движении поршня к верхней мертвой точке, введение новой порции рабочей смеси при движении поршня к нижней мертвой точке.
Новизна изобретения заключается в том, что в рабочий объем цилиндра двигателя внутреннего сгорания подают углеводородное сырье с воздухом при альфа = 0,4-0,5, часть углеводородного сырья с воздухом при альфа = 0,8-1,2 и в количестве 5-10 об.% от объема исходной смеси при положении поршня в верхней мертвой точке подвергают изолированно от основной смеси предварительному воспламенению и глубокому окислению. Продукты глубокого окисления смешивают с исходной смесью в рабочем объеме цилиндра и воспламеняют ее.
Как показали испытания, в данных условиях получения синтез-газа при альфа, меньшем 0,4, возможно сажеобразование, а при альфа, большем 0,5, в продуктах переработки содержание СО2 приближается к содержанию СО, что снижает качество синтез-газа. Кроме того, реакции окисления СО до СО2 и Н2 до Н2О сопровождаются выделением большого количества тепла, что вызывает усложнение конструкции из-за необходимости отвода тепла.
Приведенные значения объемных процентов части углеводородного сырья с воздухом при альфа = 0,8-1,2, подвергнутого воспламенению и глубокому окислению, обусловлены требованием повышения производительности. При объемных процентах части углеводородного сырья с воздухом меньше 5 по отношению к исходной смеси в рабочем объеме не обеспечивается воспламенение, а при объемных процентах больше 10 снижается производительность процесса получения синтез-газа.
Значения альфа = 0,8-1,2 обусловлены требованием глубокого окисления всей изолированной смеси. При альфа, меньшем 0,8 или большем 1,2, не обеспечивается устойчивое воспламенение.
Способ осуществляют следующим образом.
В рабочий объем цилиндра двигателя внутреннего сгорания подают углеводородное сырье и воздух при отношении количества кислорода к количеству углеводородного сырья альфа = 0,4-0,5.
При положении поршня в верхней мертвой точке часть углеводородного сырья с воздухом при альфа = 0,8-1,2 в количестве 5-10 об.% подвергают изолированно с основной глубокому окислению.
Продукты глубокого окисления смешивают в рабочем объеме цилиндра с исходной смесью и подвергают воспламенению и парциальному окислению.
Охлаждают продукты процесса при движении поршня к нижней мертвой точке.
Выводят продукты процесса, содержащие синтез-газ, из цилиндра двигателя при движении поршня к верхней мертвой точке.
Вводят новую порцию рабочей смеси при движении поршня к нижней мертвой точке.
Способ получения синтез-газа поясняется чертежом, на котором изображена схема установки.
Установка содержит основанный на двигателе внутреннего сгорания химический реактор сжатия, включающий цилиндр 1, представляющий собой замкнутый реакционный объем, в котором размещены поршень 2, впускные клапаны 3, 4 и 5 для подвода углеводородного сырья, а также выпускной клапан 6. С цилиндром 1 через отверстие трубки (диаметром около 2 см) 7 связана камера предварительного воспламенения 8.
Установка имеет также систему подготовки исходных веществ, дозирующие и измерительные устройства.
Работа установки и осуществление способа происходит следующим образом.
В цилиндр 1 и камеру 8 через клапан 3 подают углеводородное сырье. Воздух дозируют через клапан 5 в камеру предварительного воспламенения 8 до достижения в ней значений альфа = 0,8-1,2 и количества смеси, равной 5-10 об. % от объема исходной смеси, а через клапан 4 в рабочий объем цилиндра 1 до достижения в нем значения альфа = 0,4-0,5. При положении поршня вблизи верхней мертвой точки углеводород-воздушную смесь указанного состава в камере 8 подвергают воспламенению от искры.
Реакция глубокого окисления в камере, например для метана, происходит следующим образом:
СН4 + 2О2 = СО2 + 2Н2О + Q
где Q - выделяемая тепловая энергия.
В данном примере Q около 892 кДж.
Из-за большой разницы давлений внутри объемов камеры предварительного воспламенения 8 и цилиндра 1 двигателя внутреннего сгорания, равных 40 и 250 атм. соответственно, высокоэнергичная струя сильно турбулизированного газа вбрасывается со скоростью около 10-3 м/c в рабочий объем цилиндра в течение 10-3 - 10-2 с.
В рабочем объеме цилиндра 1 исходная смесь подвергается смешиванию с продуктами глубокого окисления и воспламенению. При этом достигается температура реакций 1800-2300oС. В зоне реакции парциальное окисление происходит следующим образом:
СН4 + 0,5 О2 = СО + 2Н2 + 36,5 кДж (1)
2СО + О2 = 2СО2 + 565 кДж (2)
2 + О2 = 2Н2О + 573 кДж (3)
СН4 = с (сажа) + 2Н2 газ.
(Билера И. В. и другие. Обзорно-информационный материал "Метод импульсного сжатия и его применение в химической технологии". М.: Институт нефтехимического синтеза им. А.В.Топчиева. 1997).
Из уравнений кинетики известно, что при температурах 1800-2300oС скорость образования СО (реакция 1) в 3,0-4,5 раза больше скорости образования СО2 (реакция 2) при одинаковых концентрациях исходных веществ, и в 1,5-2 раза больше образования Н2О (реакция 3). Кроме того, на начальном этапе реакции 2 и 3 дискриминированы концентрацией исходных реагентов СО и Н2 (Даутов Н. Г., Старик А.М. К вопросу о выборе кинетической схемы при описании объемной реакции метана с воздухом. Кинетика и катализ, 1997, т. 38, N 2, с. 207-230).
При движении поршня 2 в цилиндре 1 к нижней мертвой точке происходит расширение продуктов процесса, охлаждение их и закалка, причем тепловая энергия этих продуктов превращается в механическую энергию механизма движения. При последующем движении поршня 2 к верхней мертвой точке продукты процесса выводят из цилиндра 1 через выпускной клапан 6. Подача в цилиндр 1 и камеру 8 свежей рабочей смеси происходит при движении поршня 2 к нижней мертвой точке и открытии впускных клапанов 3, 4 и 5.
Примеры осуществления способа получения синтез-газа приведены в табл. 1 и 2.
Способ осуществлен на установке, включающей модифицированный двигатель внутреннего сгорания Г98 (6ГЧН36/45) с рабочим объемом одного цилиндра 45 л, перерабатывающей углеводородное сырье.
В табл. 1 приведены результаты испытаний для примера, когда объем камеры 8 составляет 10 об.% от свободного объема цилиндра 1 при положении поршня 2 в верхней мертвой точке и отношении количества кислорода к количеству углеводородного сырья альфа в камере 8, равном 1.
В табл. 2 приведены результаты испытаний для примера, когда объем камеры 8 составляет 5 об.% от свободного объема цилиндра 1, при положении поршня в верхней мертвой точке и альфа в камере 8, равном 1.
Как видно из таблиц, производительность способа, реализованного по предлагаемому изобретению, достигает более высоких значений, и в приведенных примерах выход синтез-газа в продуктах переработки достигает 39%.

Claims (1)

  1. Способ получения синтез-газа, включающий парциальное окисление углеводородного сырья с воздухом в объеме цилиндра двигателя внутреннего сгорания при положении поршня в верхней мертвой точке, расширение и охлаждение продуктов процесса при движении поршня двигателя к нижней мертвой точке, вывод продуктов процесса, содержащих синтез-газ, из реакционного объема при движении поршня к верхней мертвой точке, введение новой порции рабочей смеси при движении поршня к нижней мертвой точке, отличающийся тем, что в рабочий объем цилиндра двигателя внутреннего сгорания подают углеводородное сырье с воздухом при отношении количества кислорода к количеству углеводородного сырья альфа, равном 0,4-0,5, при положении поршня в верхней мертвой точке часть углеводородного сырья с воздухом при отношении количества кислорода к количеству углеводородного сырья альфа, равном 0,8-1,2 в количестве 5-10 об. % к исходной смеси подвергают изолированно от основной смеси воспламенению и глубокому окислению, продукты глубокого окисления смешивают с исходной смесью в рабочем объеме цилиндра и воспламеняют ее.
RU98102713A 1998-02-24 1998-02-24 Способ получения синтез-газа RU2120913C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98102713A RU2120913C1 (ru) 1998-02-24 1998-02-24 Способ получения синтез-газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98102713A RU2120913C1 (ru) 1998-02-24 1998-02-24 Способ получения синтез-газа

Publications (2)

Publication Number Publication Date
RU2120913C1 true RU2120913C1 (ru) 1998-10-27
RU98102713A RU98102713A (ru) 1999-03-10

Family

ID=20202311

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98102713A RU2120913C1 (ru) 1998-02-24 1998-02-24 Способ получения синтез-газа

Country Status (1)

Country Link
RU (1) RU2120913C1 (ru)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025650A1 (en) * 2011-08-12 2013-02-21 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials and associated systems and methods
US8624072B2 (en) 2010-02-13 2014-01-07 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8671870B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8888408B2 (en) 2011-08-12 2014-11-18 Mcalister Technologies, Llc Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Колбановский Ю.А., Щипачев В.С., Черняк Н.Я., Чернышева А.С., Григорьев А.С. Импульсное сжатие газов, - М.: Наука, 1982, с. 148-152. *
Труды ГИАП, М., 1957, т. VII, с. 89-105. *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US8673220B2 (en) 2010-02-13 2014-03-18 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US8926908B2 (en) 2010-02-13 2015-01-06 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9541284B2 (en) 2010-02-13 2017-01-10 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8624072B2 (en) 2010-02-13 2014-01-07 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US9103548B2 (en) 2010-02-13 2015-08-11 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8888408B2 (en) 2011-08-12 2014-11-18 Mcalister Technologies, Llc Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
WO2013025650A1 (en) * 2011-08-12 2013-02-21 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials and associated systems and methods
US9222704B2 (en) 2011-08-12 2015-12-29 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8671870B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9309473B2 (en) 2011-08-12 2016-04-12 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal

Similar Documents

Publication Publication Date Title
RU2120913C1 (ru) Способ получения синтез-газа
GB1503422A (en) Operation of internal combustion engines using gaseous fuel
EP1643116A2 (en) System and method for reducing emission from a combustion engine
RU2320531C2 (ru) Способ получения синтез-газа при горении и устройство для его осуществления
US6793693B1 (en) Method for utilizing a fuel by using exothermic pre-reactions in the form of a cold flame
US3976034A (en) Method for producing a combustible gas by partial oxidation for use in internal combustion engines
RU2535308C2 (ru) Способ организации рабочего процесса газового поршневого двигателя с искровым зажиганием
D'ANNA et al. Low temperature oxidation chemistry of iso-octane under high pressure conditions
US4575383A (en) Process for producing acetylene using a heterogeneous mixture
EP1269006B1 (en) Gas powered engine having improved emissions
WO2007094702A1 (fr) Procédé de production de gaz de synthèse dans une installation comprenant un moteur à combustion interne de type à compression
NO303061B1 (no) Anordning og fremgangsmÕte for fremstilling av syntesegass, samt anvendelse derav
GB1465510A (en) Process of reforming hydrocarbon fuel into hydrogen-rich fuel
GB709035A (en) Improvements relating to the production of pyrogenic chemical reactions
RU98102713A (ru) Способ получения синтез-газа
WO2009154512A2 (ru) Способ получения синтез-газа и устройство для его осуществления
RU2096313C1 (ru) Способ получения синтез-газа
RU2361809C2 (ru) Способ получения синтез-газа и устройство для его осуществления
US1939018A (en) Process of making oxidation products
US2727932A (en) Method for controlling reactions in hot gaseous reaction mixtures
Karim et al. The production of hydrogen by the partial oxidation of methane in a dual fuel engine
GB1460312A (en) Method of and apparatus for burning hydrocarbon fuels with air
US2727933A (en) Partial oxidation and pyrolysis of saturated hydrocarbons
GB2159153A (en) Process for the production of oxygenated hydrocarbons
GB1354073A (en) Process and apparatus for the oxygenative cracking of hydrocarbons