Nothing Special   »   [go: up one dir, main page]

RU2184009C1 - Способ непрерывной разливки стали - Google Patents

Способ непрерывной разливки стали Download PDF

Info

Publication number
RU2184009C1
RU2184009C1 RU2001102272A RU2001102272A RU2184009C1 RU 2184009 C1 RU2184009 C1 RU 2184009C1 RU 2001102272 A RU2001102272 A RU 2001102272A RU 2001102272 A RU2001102272 A RU 2001102272A RU 2184009 C1 RU2184009 C1 RU 2184009C1
Authority
RU
Russia
Prior art keywords
temperature
thickness
steel
workpiece
billet
Prior art date
Application number
RU2001102272A
Other languages
English (en)
Inventor
А.М. Ламухин
А.В. Зиборов
Н.Г. Савинова
Б.Н. Николаев
А.В. Куклев
Ю.М. Айзин
В.М. Паршин
В.С. Луковников
Original Assignee
Открытое акционерное общество "Северсталь"
Общество с ограниченной ответственностью "Корад"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Северсталь", Общество с ограниченной ответственностью "Корад" filed Critical Открытое акционерное общество "Северсталь"
Priority to RU2001102272A priority Critical patent/RU2184009C1/ru
Application granted granted Critical
Publication of RU2184009C1 publication Critical patent/RU2184009C1/ru

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

Изобретение относится к области металлургии, в частности к непрерывной разливке стали. Сущность способа состоит в том, что в процессе разливки определяют положение конца жидкой фазы и температурный градиент по толщине корочки в месте измерения температуры поверхности заготовки по формуле
Figure 00000001
где ΔT - температурный градиент, oС, Тк - температура кристаллизации стали, oС, Тп - температура поверхности заготовки на выходе из зоны вторичного охлаждения, oС, l - расстояние от мениска металла до места измерения температуры, м, V - рабочая скорость вытягивания заготовки, м/мин, К - коэффициент затвердевания заготовки, равный 2,5-2,8 см/мин1/2, δ - толщина затвердевшей корочки в месте установки пирометра, см. Кроме того, при положении конца жидкой фазы в точке измерения температуры поверхности заготовки температурный градиент определяют по формуле ΔT/δ = 2(Tк-Tп)/h, где h - толщина непрерывно-литой заготовки, см; δ - толщина затвердевшей корочки заготовки в месте установки пирометра, см. Желаемый технический результат - получение необходимой структуры слитка для конкретных марок стали, в частности для листовой стали, толщиной до 100 мм, которая в условиях малых обжатий обеспечивает требуемые свойства металла в направлении, перпендикулярном поверхности листа, а также обеспечение возможности получения толстого листа для корпусов судов, подвергающихся различным степеням нагрузки. 1 з.п. ф-лы.

Description

Изобретение относится к области металлургии, в частности к непрерывной разливке стали.
Известен способ непрерывной разливки стали, включающий подачу металла в кристаллизатор, вытягивание из него заготовки с переменной скоростью охлаждения заготовки в зоне вторичного охлаждения путем подачи охладителя по зонам вдоль технологической оси машины и измерение температуры ее поверхности на выходе из зоны вторичного охлаждения (см. авт.св. СССР 865497, МКИ В 22 D 11/00, 1981 г. - прототип).
Однако предложенный способ не позволяет получить слиток с заданной макроструктурой, с развитой осевой зоной в виде равноосных кристаллов, обеспечивающих получение требуемых свойств при прокатке полученной заготовки, в том числе из конкретных марок стали.
Задачей изобретения является получение слитка с заданной макроструктурой, с развитой осевой зоной в виде равноосных кристаллов, обеспечивающих получение требуемых свойств при прокатке непрерывно-литой заготовки, в том числе на толстый лист из конкретных марок стали.
Желаемым техническим результатом является получение необходимой структуры слитка для конкретных марок стали, в частности для листовой стали, толщиной 100 мм, которая в условиях малых обжатий обеспечивает требуемые свойства металла в направлении, перпендикулярном поверхности листа, а также возможности получения толстого листа для корпусов судов, подвергаемых различным степеням нагрузки.
Сущность изобретения состоит в том, что способ непрерывной разливки стали включает подачу металла в промежуточный ковш и далее в кристаллизатор, измерение температуры металла в промежуточном ковше, вытягивание заготовки с переменной скоростью, вторичное охлаждение заготовки подачей охладителя по зонам вдоль технологической оси, измерение пирометром температуры поверхности заготовки на выходе из зоны вторичною охлаждения.
При этом в процессе разливки определяется положение конца жидкой фазы и температурный градиент по толщине корочки в месте измерения температуры поверхности заготовки, который определяют по формуле
Figure 00000003

где ΔT - температурный градиент по толщине корочки в месте измерения температуры поверхности заготовки, oС;
Тк - температура кристаллизации стали oС;
Тn - температура поверхности заготовки на выходе из зоны вторичного охлаждения oС;
l - расстояние от мениска металла до места измерения температуры, м;
V - рабочая скорость вытягивания заготовки, м/мин;
k - коэффициент затвердевания заготовки, равный 2,5-2,8 см/мин1/2;
δ - толщина затвердевшей корочки в месте установки пирометра, см, и поддерживают его в минимальных пределах, при этом верхний предел значения температурного градиента соответствует низкоуглеродистым маркам стали, а нижний предел - углеродистым и/или высокоуглеродистым маркам стали.
При положении конца жидкой фазы в точке измерения температуры поверхности заготовки температурный градиент определяют по формуле
ΔT/δ = 2(Tк-Tn)/h,
где ΔT - температурный градиент по толщине корочки в месте измерения температуры поверхности заготовки, oС;
Тк - температура кристаллизации стали, oС;
Тn - температура поверхности заготовки на выходе из зоны вторичного охлаждения, oС;
δ - толщина затвердевшей корочки в месте установки пирометра, см;
h - толщина непрерывно-литой заготовки, м.
Таким образом, предложенный способ позволит получить необходимую структуру слитка для конкретных марок стали, в частности листовой до 100 мм, которая в условиях малых обжатий обеспечивает требуемые свойства металла.
Раньше при непрерывной разливке для получения листа структура металла не принималась во внимание, а охлаждение металла рассчитывалось без учета структуры металла, при этом получалась дендритная структура. В данном случае критерием кристаллизации является не коэффициент затвердевания, а температурный градиент, при поддержании которого в требуемых пределах совместно со вторичным охлаждением и скоростью вытягивания обеспечивается необходимая структура металла.
В случае окончания жидкой фазы в точке измерения температуры поверхности заготовки температурный градиент определяется по формуле
ΔT/δ = (Tк-Tn)/(h/2),
где δ - толщина затвердевшей корочки в месте установки пирометра, см;
h - толщина непрерывно-литой заготовки, м;
Температурный градиент для различных марок стали необходимо поддерживать в определенных пределах, зависящих от температуры поверхности слитка, изменяющейся в пределах 900 - 1100oС, в зависимости от скорости вытягивания (V= 0,5-0,7 м/мин) и марки стали.
Таким образом, минимальный градиент обеспечивает получение макроструктуры слитка, в том числе при производстве толстого листа толщиной до 100 мм. В этом случае при малых степенях обжатия получают требуемые свойства металла в перпендикулярном направлении к поверхности, что необходимо для листовой стали, из которой изготавливают корпуса судов.
Протяженность жидкой фазы L можно рассчитать по формуле, что не исключает и другие варианты расчета
L = τп.з.V,
где τп.з. - время полного затвердевания непрерывно-литой заготовки, мин;
V - скорость вытягивания заготовки, м/мин.
Примеры выполнения способа.
1. Разливку стали марки Ст.10 производят на слябовой МНЛЗ со скоростью вытягивания непрерывно-литой заготовки 0,7 м/мин. Сечение получаемой заготовки 200•1100 мм. Вторичное охлаждение осуществляют водовоздушной смесью, подаваемой в зазор между роликами. Температуру поверхности заготовки измеряют на выходе из зоны вторичного охлаждения перед входом заготовки в тянущуюся клеть с помощью пирометра, установленного на расстоянии 9,8 м от мениска металла. Температура поверхности заготовки составляет 1050oС.
В этом случае длина жидкой фазы составит:
L = τп.з.V = 17,0•0,7 = 11,9 м (т.е. больше 9,8),
где 17,0 - время полного затвердевания непрерывнолитой заготовки, толщиной 200 мм из Ст.10, т.е. больше 9,8.
В этом случае температурный градиент по толщине корочки в месте измерения температуры поверхности заготовки можно рассчитать по формуле
Figure 00000004
подставляя исходные данные, получим
Figure 00000005

Поддерживая это значение температурного градиента по толщине корочки, мы обеспечиваем получение заданной макроструктуры заготовки с равноосными кристаллами в осевой зоне.
2. Разливают сталь 65Г на слябовой МНЛЗ сечением заготовки 200•1100 мм со скоростью вытягивания 0,6 м/мин. Охлаждение осуществляют водовоздушной смесью. Температура поверхности заготовки 1000oС. Длина жидкой фазы составит
L = τп.з.V = 19,0•0,6 = 11,4 м, т.е. больше 9,8 м.
Температурный градиент по толщине корочки составит
Figure 00000006

Поддерживая это значение градиента температуры по толщине корки в процессе разливки, мы получим заданную структуру заготовки.
3. Частный случай. Разливают сталь марки Ст.10 на слябовой МНЛЗ с сечением заготовки 200•1000 мм со скоростью 0,55 м/мин. Вторичное охлаждение осуществляется водовоздушной смесью. Температура поверхности заготовки в месте установки пирометра на выходе из зоны вторичного охлаждения составляет 950oС. Длина жидкой фазы в этом случае составит
L = τп.з.V = 17,0•0,55 = 9,35 м (т.е. меньше 9,8), где 17,0 - время полного затвердевания непрерывно-литой заготовки, толщиной 200 мм из Ст.10, а температурный градиент определяем по формуле
к-Tn)/(h/2)=(1520-950)/10=570/10=57.
Из вышесказанного следует, что в этом случае корочка полностью затвердевает. Тогда последний расчет и является частным случаем.
Поддержание температурного градиента обеспечивает получение заданной макроструктуры слитка, а именно получение равноосных кристаллов, что необходимо для требуемых физических свойств металла.
Таким образом, предложенный способ позволит получить необходимую структуру слитка для конкретных марок стали, в частности для листовой стали толщиной до 100 мм, которая в условиях малых обжатий обеспечивает требуемые свойства металла в перпендикулярном поверхности листа направлении.
С использованием предложенного способа предоставляется возможность получения толстого листа для корпусов судов, подвергающихся различным степеням нагрузки.

Claims (2)

1. Способ непрерывной разливки стали, включающий подачу металла в промежуточный ковш и далее в кристаллизатор, измерение температуры металла в промежуточном ковше, вытягивание заготовки с переменной скоростью, вторичное охлаждение заготовки путем подачи охладителя по зонам вдоль технологической оси, измерение пирометром температуры поверхности заготовки на выходе из зоны вторичного охлаждения, отличающийся тем, что в процессе разливки определяют положение конца жидкой фазы и температурный градиент по толщине корочки в месте измерения температуры поверхности заготовки, который определяют по следующей формуле
Figure 00000007

где ΔT - температурный градиент по толщине корочки в месте измерения температуры поверхности заготовки, oС;
Тk - температура кристаллизации стали, oС;
Тп - температура поверхности заготовки на выходе из зоны вторичного охлаждения, oС;
l - расстояние от мениска металла до места измерения температуры, м;
V - рабочая скорость вытягивания заготовки, м/мин;
k - коэффициент затвердевания, равный 2,5-2,8 см/мин1/2;
δ - толщина затвердевшей корочки в месте установки пирометра, см,
и поддерживают его в минимальных пределах, при этом верхний предел значения температурного градиента соответствует низкоуглеродистым маркам стали, а его нижний предел - углеродистым и/или высокоуглеродистым.
2. Способ по п. 1, отличающийся тем, что при положении конца жидкой фазы в точке измерения температуры поверхности заготовки температурный градиент по толщине корочки определяют по следующей формуле
Figure 00000008

где Тк - температура кристаллизации стали, oС;
Тп - температура поверхности заготовки на выходе из зоны вторичного охлаждения, oС;
δ - толщина затвердевшей корочки на месте установки пирометра, см;
h - толщина непрерывно-литой заготовки, м.
RU2001102272A 2001-01-26 2001-01-26 Способ непрерывной разливки стали RU2184009C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001102272A RU2184009C1 (ru) 2001-01-26 2001-01-26 Способ непрерывной разливки стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001102272A RU2184009C1 (ru) 2001-01-26 2001-01-26 Способ непрерывной разливки стали

Publications (1)

Publication Number Publication Date
RU2184009C1 true RU2184009C1 (ru) 2002-06-27

Family

ID=20245250

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001102272A RU2184009C1 (ru) 2001-01-26 2001-01-26 Способ непрерывной разливки стали

Country Status (1)

Country Link
RU (1) RU2184009C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663393A (zh) * 2018-07-27 2018-10-16 彩虹显示器件股份有限公司 一种tft液晶基板玻璃析晶温度的测试方法
RU2718442C1 (ru) * 2016-09-16 2020-04-06 Ниппон Стил Стэйнлесс Стил Корпорейшн Способ непрерывной разливки

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718442C1 (ru) * 2016-09-16 2020-04-06 Ниппон Стил Стэйнлесс Стил Корпорейшн Способ непрерывной разливки
CN108663393A (zh) * 2018-07-27 2018-10-16 彩虹显示器件股份有限公司 一种tft液晶基板玻璃析晶温度的测试方法

Similar Documents

Publication Publication Date Title
RU2433885C2 (ru) Способ непрерывного литья заготовки с небольшим поперечным сечением
US4519439A (en) Method of preventing formation of segregations during continuous casting
RU2184009C1 (ru) Способ непрерывной разливки стали
JP3401785B2 (ja) 連続鋳造における鋳片の冷却方法
JP2727887B2 (ja) 水平連続鋳造法
NZ192672A (en) Continuous cast steel product having reduced microsegregation
JP2000334552A (ja) 薄鋳片の連続鋳造方法
JP3319379B2 (ja) 鋼ビレットの連続鋳造方法
RU2226138C2 (ru) Способ непрерывного литья заготовок
JPH08276258A (ja) 連続鋳造鋳片の凝固シェル厚推定方法
RU2269395C1 (ru) Способ непрерывного литья заготовок
KR840001298B1 (ko) 주강제품의 연속 주조방법
JPH0346217B2 (ru)
JPH11179509A (ja) ビレット鋳片の連続鋳造方法
CA1188910A (en) Continuous cast steel product having reduced microsegregation
JPS60137562A (ja) 薄板連続鋳造方法
RU2009005C1 (ru) Способ получения полосовой заготовки из алюминия и его сплавов
JP3570224B2 (ja) 厚鋼板用大断面鋳片の連続鋳造方法
RU2422242C2 (ru) Способ охлаждения заготовок на машинах непрерывного литья
JP3395674B2 (ja) 連続鋳造方法
SU703227A1 (ru) Способ непрерывной разливки металлов
JP2000094101A (ja) 連続鋳造鋳片、その連続鋳造方法および厚鋼板の製造方法
Brada Characterization of continuously cast AISI 4140 steel and the effects of hot-reduction ratio on structure and axial fatigue
RU2145267C1 (ru) Способ получения непрерывнолитых заготовок
JPS644868B2 (ru)