Nothing Special   »   [go: up one dir, main page]

RU2025544C1 - Электролизер фильтрпрессного типа - Google Patents

Электролизер фильтрпрессного типа Download PDF

Info

Publication number
RU2025544C1
RU2025544C1 SU904831763A SU4831763A RU2025544C1 RU 2025544 C1 RU2025544 C1 RU 2025544C1 SU 904831763 A SU904831763 A SU 904831763A SU 4831763 A SU4831763 A SU 4831763A RU 2025544 C1 RU2025544 C1 RU 2025544C1
Authority
RU
Russia
Prior art keywords
anodes
cathodes
anode
paragraphs
cell according
Prior art date
Application number
SU904831763A
Other languages
English (en)
Inventor
Гнанн Михаэль
Россбергер Эрвин
Original Assignee
Пероксид-Хеми ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6393684&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2025544(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Пероксид-Хеми ГмбХ filed Critical Пероксид-Хеми ГмбХ
Application granted granted Critical
Publication of RU2025544C1 publication Critical patent/RU2025544C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Использование: электролитическая ячейка типа фильтрпресса для получения пероксо- и пергалогенатных соединений из попеременно расположенных, снабженных подводами электролита катодов и анодов, причем катоды и аноды состоят из кубических полых тел, между которыми находятся рамкообразные уплотнения, и которые через эти уплотнения герметично для жидкости и изолированно друг от друга связаны ячеечный пакет. Катодные полые тела жидкостно- и газопроницаемы, анодные полые тела выше и ниже платинового покрытия имеют отверстия для подачи и вывода анолита. Активная поверхность анода состоит из вентильной металлической основы и находящейся в ней платиновой фольги, которая получается путем горячего изостатического прессования платиновой фольги на носитель из вентильного металла. Электролитическая ячейка имеет высокий срок службы и делает возможным высокую плотность тока при низком расходе энергии. 7 з.п. ф-лы, 7 ил.

Description

Изобретение относится к электролитической ячейке для анодного получения пероксосоединений, например, пероксодисульфатов, пероксомоносульфатов, пероксодифосфатов, а также соответствующих кислот и пергалогенатных соединений и их кислот, в особенности перхлоратов или хлорной кислоты.
Известны электролитические ячейки, выполненные при применении частично контактированных комбинированных электродов.
Задачей изобретения является увеличение производительности за счет увеличения плотности тока.
Это достигается тем, что катоды и аноды состоят из квадерных (кубических) полых тел, между которыми находятся рамкообразные уплотнения и которые через эти уплотнения герметично для жидкости и изолированно друг от друга связаны в ячеечный пакет, причем катодные полые тела проницаемы для жидкости и газа, анодные полые тела выше и ниже платиновой подложки (основания) и обладают отверстиями для подачи и отвода анолитов, и эффективная поверхность анода образуется за счет слоя металлической платины из вентильной металлической основы и находящегося на ней платинового покрытия, которая получается путем горячего прессования платиновой фольги на вентильный металлический носитель.
Предпочтительно платиновая фольга имеет толщину 20-100 мкм, и в особенности 50 мкм.
В качестве вентильного металла применяют тантал или ниобий, особенно титан. Толщина вентильного металлического носителя (лист из вентильного металла) выбирается так, чтобы его легко можно было перерабатывать в электроды и стабильно встраивать в соответствующие конструкции ячеек толщина которых составляет 1-6 мм, особенно 2-4 мм.
Сваривание полученных путем горячего изостатического прессования комбинированных металлических листов можно осуществлять с помощью известных способов сварки, например, путем IG-сварки или с помощью лазерной техники. Зона сварки должна быть свободна от платины, так как иначе образуются сплавы, которые коррозионно неустойчивы.
На фиг. 1 и фиг.2 показана конструкция предлагаемой электролитической ячейки.
Электролитическая ячейка состоит из концевых катодов 7, квадерных прямоугольных полых тел для катодов 1 и анодов 2, уплотнений 6, впрессованных между попеременно расположенными анодами и катодами посредством стержня 8 с винтовой нарезкой герметично для жидкости. Электроды противоположной полярности изолируются друг от друга. В случае необходимости имеются сепараторы, которые отделяют друг от друга электролиты катодного и анодного пространств, причем в качестве сепараторов применяют известные для хлорщелочного электролиза сепараторы, в особенности катионообменные мембраны типа NAFION 423. Сепараторы расположены между уплотнением 6 и рамкой катода 1 таким образом, что ввод электролита надежно предотвращается за счет выступающего края уплотнения.
Каждое из квадерных прямоугольных катодных соответственно анодных полых тел имеет патрубки 9-12 для подвода и вывода католита соответственно анолита. Эти патрубки гибко связаны с подводящими 13, и отводящими 14 распределительными трубопроводами 15, 16 ячеечного пакета. Анодные полые тела дополнительно имеют патрубки 4 для подвода и отвода 5 холодной (охлаждающей) воды.
Охлаждение анодных полых тел делает воможным осуществление процесса электролита с плотностью тока вплоть до 15 кА/м2 и более.
Анодные полые тела с обеих сторон или с одной стороны имеют присоединительные гребешки для подвода тока (положительная полярность), который с помощью гибких медных угольников осуществляет направление медь-подводящий ток провод. Аналогичным образом катодные полые тела 1 связаны с отрицательным полем выпрямителя; подвод тока при этом осуществляется выше и/или ниже катодов.
На фиг. 3-5 показаны варианты осуществления конструкции анодных полых тел в поперечном сечении (фиг.3), в горизонтальной проекции (фиг.4) и разрезе плоскости А-А (фиг.5).
Плоское, квадерное анодное полое тело охватывает две противолежащие анодные базисные плоскости из покрытых платиновой фольгой (пленкой) анодных частей 17, боковых ограничителей 18 и диаметрально расположенных подводов хладагента. Предусмотрены подводы и отводы электролита ниже и выше анодных частей с помощью патрубков 11, 12 и отсекающей пластины. Патрубки диаметрально противоположны анодному полому телу.
Части анода, обеспечивающие электролитом приварены к анодному полому телу так, что между анодной частью 17 и завершающей (отсекающей) пластиной расположены щель или ряд просверленных отверстий для подвода и отвода анолита.
Анодная опора (анодная подложка) выполнена из вентильных металлов, например из титана. Сварку полученных горячим изостатическим прессованием комбинированных металлических листов (например, платиновой фольги толщиной 50 мкм с титановым листом толщиной 3 мм) можно осуществлять с помощью сварочной техники, например IG-сварка или лазерная техника. Зона сваривания без платины, ибо в противном случае образуются сплавы, которые коррозионно неустойчивы. После сварки анодное полое тело на краях, которые контактируют с уплотнением (см. фиг.1), в случае необходимости за счет дополнительной обработки, переводятся в плоское состояние.
Анодная часть внутри может содержать элементы для повышения числа Рейнольдса, например гасители потока. Таким образом, части анодного полого тела, обеспечивающие электролитом, могут быть снабжены включениями для выравнивания потока.
На фиг. 6 и 7 представлены варианты осуществления для конструкции катодного полого тела.
Плоское, квадерное катодное полое тело состоит из электрохимически эффективных катодных частей 3, которые приварены к боковым краям с П-профилями 19 и 20, причем катодные части 3, например, могут быть выполнены в виде вальцованного металла, перфорированной жести или в виде жалюзийных пластин. В случае ячейки без сепаратора катод также может быть оснащен металлическими листами (вместо вальцованного металла), причем катод тогда сконструирован как анод и таким образом также может охлаждаться. Трубопроводы для подвода 9 и отвода 10 электролита находятся ниже и выше катодных частей 3. Патрубки расположены диаметрально противоположно катодному полому телу.
Обе катодные части сварены друг с другом, благодаря чему образуется закрытое катодное полое тело.
В качестве материала для катодного тела предпочтительно применяют высококачественную сталь. Для получения пероксо- или пергалогенатных соединений особенно оказывается пригодной высококачественная сталь WST. N 1. 4539. Сваривание частей из высококачественной стали осуществляют с помощью известных способов сварки. После сваривания катодное тело на его краях 21, которые контактируют с рамковым уплотнением и сепаратором путем дополнительной механической обработки переводят в плоское состояние.
Для достижения низкой поляризации катода осуществляют шерохование катодных пластин 3 с помощью обработки пескоструйным аппаратом и/или с помощью травильной пасты. Для дальнейшего усиления эффекта деполяризации катодные пластины можно покрывать, например, никелем Ренея или термически смешенными оксидами, с одной стороны, из титана, тантала и/или циркония, и, с другой стороны, платины, рутения и/или иридия. Если необходимо (например, при покрытии никелем Ренея), экстрагируемые части (например, алюминий или магний) удаляют в щелочных или кислых растворах.
Конечные катоды 7 электролитической ячейки состоят из закрытых с одной стороны полых тел; обращенная к внутренней части ячейки сторона состоит либо из просветов, следовательно газо- и жидкопроницаемая, или из гладкого, освобожденного на верхнем и нижнем крае от патрубков или просверленных отверстий металлического листа, а противолежащая сторона состоит из массивной металлической пластины 22 и образует стенку ячейки (фиг.1).
Электролитическая ячейка состоит из n анодов и n + 1 катодов. Сконструированный согласно изобретению (двойной) анод с двукратно 0,06 м2 платиновой поверхностью в случае используемых плотностей тока 5 кА/м2 поглощает 0,6 кА тока на анод. Предлагаемая электролитическая ячейка однако может функционировать с 1 кА в качестве длительной нагрузки и с 1,8 кА пиковой нагрузки.
Предлагаемая электролитическая ячейка не имеет потребности в пространстве, например, для функционирующей с 8,33 кА/м2 электролитической ячейки для получения пероксодисульфата аммония (АРS) для номинального поглощения тока 7 кА (соответственно производству примерно 28 кг/час APS) требуется место сборки размером 0,7х0,7 м2 высотой примерно 1 м.
При соответствующем выборе материала уплотнения между электродными полыми телами можно достигать сроков службы ячеек по меньшей мере 5 лет; расходы на техобслуживание благодаря этому значительно снижаются.
Электролитические ячейки согласно изобретению могут функционировать также без сепараторов, например для получения пероксодисульфата калия или натрия при одновременном осаждении солей и для получения перхлората натрия (при добавке дихромата натрия в качестве катодного образователя покровного слоя).
П р и м е р 1. Предлагаемая ячейка выполнена из семи анодов, покрытых размером по 0,06 м2 (0,255 х 235) платиновой фольгой толщиной 50 ммк на толщиной 3 мм титановом листе благодаря горячему изостатическому прессованию (HIP) и восемь катодных тел, активные катодные поверхности которых состоят из вальцованного металла с размером отверстий 12,7 х 6 мм, шириной перегородки 2 мм. Ячейка оснащена KIA-мембраной NAFION 423 толщиной 330 ммк (основная ткань PIFE), которая наложена на катод и с помощью IT-опорного VIТOM R-уплотнения установлена на расстоянии 2,5 мм от поверхности анода.
Катодные поверхности благодаря пескоструйному аппарату и химическому протравливанию в разбавленной серной кислоте (1:1) обработаны так, что достигается шероховатость поверхности средней степени (серая окраска).
Анолит состоит из 0,2 М H2SO4, 2,6 M (NH4)2SO4, 0,9 M (NH4)2S2O8 и добавки тиоцианата аммония [4,5 г/кг полученного (NH4)2S2O8 при 40оС]. В качестве католита служит 1 м раствор серной кислоты и 3,5 М (NH4)2SO4.
При поглощении тока 7 кА соответственно анодной плотности тока 8,33 кА/м2 получается пероксодисульфат аммония с выходом по току 92-96%, при времени пребывания анолита в электродном зазоре 0,35 с, установленном с помощью циркуляционного насоса. В течение 40 ч получают 1,120 кг продукта (высушенного, химически чистого) путем выкристаллизовывания, центрифугирования, промывки и высушивания. Напряжение электролитической ячейки при этом сохраняется в области 6,4-6,6 В. Отсюда следует потребность в энергии 1,6 кВт/кг продукта.
П р и м е р 2. В электролитической ячейке согласно примеру 1 в качестве анолита используют 5 М серную кислоту. При плотности тока 10 кА/м2, соответственно поглощении тока 9,4 кА, получают при 8оС пероксодисерную кислоту с выходом по току 88%, причем для ее поддержания в надлежащем состоянии требуется добавка NH4SCN.
П р и м е р 3. Для получения пероксодисульфата калия применяют электролитическую ячейку согласно примеру 1 предпочтительно без катионообменной мембраны, при следующих условиях:
Электролит: 2,1 M H2SO4, 1,4 M K2SO4, 0,3 M K2S2O8; 1,5 MaSCN/кг получаемого K2S2О8. Плотность тока: 9 кА/м2, соответственно 7,56 кА силы тока ячейки; температура: 25оС.
При напряжении ячейки 5,9 В пероксодисульфат калия осаждается из электролита с выходом по току 75% (суспензионный электролит) и с помощью обычных стадий отделения и очистки извлекается из электролита. Потребность энергии: 1,56 кВт/кг.
П р и м е р 4. В электролитической ячейке согласно примеру 3 электролизуют раствор 3,0 М H2SO4, 2,8 M Na2SO4 и 0,2M Na2S2O8 при добавке 12 г NaSCN на кг полученного Na2S2O8 при 8 кА/м2. Температура: 25оС, время пребывания электролита в электродном зазоре не превышает 0,4 с. При постоянном поддержании состава электролита пероксодисульфат натрия (NPS) осаждается с выходом по току 62% из суспензионного электролита. При напряжении 6,2 В получается потребность в энергии 2,25 кВт/кг.
П р и м е р 5. В электролитической ячейке согласно примеру 3 получают из раствора NaСlO3 перхлорат натрия, причем поддерживают следующие условия: исходные величины: 4-6 M NaClO3, 0,5-1 M NaClO4;
конечные величины: 0,3-0,5 М MaClO3, 7-9 M NaClO4 в электролите поддерживаются с целью образования катодного покровного слоя концентрации 2-5 г/л Na2Cr2O7; плотность тока 5 кА/м2 (вплоть до 15 кА/м2 пиковой нагрузки); поглощение тока 6 кА; выход по току 95%; напряжение в ячейке 4,6 В; потребление энергии примерно 2600 кВт/т; температура 35оС; рН 4,4-5,3.
Во всех, функционирующих при применении катионообменных мембран электролиза на катоде образуется чистый водород, который после прохождения системы промывки может непосредственно применяться далее для химических и термических целей.

Claims (8)

1. ЭЛЕКТРОЛИЗЕР ФИЛЬТРПРЕССНОГО ТИПА для получения пероксо- и пергалоидных соединений, включающий аноды и катоды, причем аноды выполнены с основой из вентильного металла с нанесенной на нее платиновой фольгой, отличающийся тем, что, с целью увеличения производительности за счет увеличения плотности тока, аноды и катоды выполнены в виде кубических полых тел, между которыми размещены рамообразные уплотнения, боковые стенки катодов выполнены перфорированными, платиновая фольга размещена на боковых стенках анодов в центральной части и в верхней и нижней частях выполнены отверстия для ввода и вывода анолита, причем платиновая фольга нанесена на основу методом горячего изостатического прессования и аноды выполнены охлаждаемыми.
2. Электролизер по п.1, отличающийся тем, что платиновая фольга выполнена толщиной 20 - 100 мкм.
3. Электролизер по пп. 1 и 2, отличающийся тем, что в качестве вентильного металла используют тантал, ниобий или титан.
4. Электролизер по пп. 1 - 3, отличающийся тем, что основа из вентильного металла выполнена толщиной 1 - 6 мм.
5. Электролизер по пп. 1 - 4, отличающийся тем, что он снабжен сепаратором, установленным между катодом и анодом.
6. Электролизер по пп. 1 - 5, отличающийся тем, что сепаратор выполнен из фторированной, содержащей сульфокислотные группы катионообменной мембраны.
7. Электролизер по пп. 1 - 6, отличающийся тем, что сепаратор установлен на расстоянии от перфорированной катодной поверхности.
8. Электролизер по пп. 1 - 7, отличающийся тем, что сепаратор установлен на расстоянии 0,5 - 5 мм от поверхности анода.
SU904831763A 1989-11-16 1990-11-15 Электролизер фильтрпрессного типа RU2025544C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3938160.9 1989-11-16
DE3938160A DE3938160A1 (de) 1989-11-16 1989-11-16 Elektrolysezelle zur herstellung von peroxo- und perhalogenatverbindungen

Publications (1)

Publication Number Publication Date
RU2025544C1 true RU2025544C1 (ru) 1994-12-30

Family

ID=6393684

Family Applications (1)

Application Number Title Priority Date Filing Date
SU904831763A RU2025544C1 (ru) 1989-11-16 1990-11-15 Электролизер фильтрпрессного типа

Country Status (7)

Country Link
US (1) US5082543A (ru)
EP (1) EP0428171B1 (ru)
JP (1) JPH03173789A (ru)
DE (2) DE3938160A1 (ru)
ES (1) ES2059959T3 (ru)
RU (1) RU2025544C1 (ru)
TR (1) TR25047A (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU224709U1 (ru) * 2023-11-20 2024-04-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева) Мембранный электролизёр для получения пероксодисерной кислоты

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221452A (en) * 1990-02-15 1993-06-22 Asahi Glass Company Ltd. Monopolar ion exchange membrane electrolytic cell assembly
US5254233A (en) * 1990-02-15 1993-10-19 Asahi Glass Company Ltd. Monopolar ion exchange membrane electrolytic cell assembly
CN1042659C (zh) * 1994-03-23 1999-03-24 王国诚 垂直供电棒单极压滤机式电解槽
DE4419683C2 (de) * 1994-06-06 2000-05-04 Eilenburger Elektrolyse & Umwelttechnik Gmbh Bipolare Filterpressenzelle für anodische Oxidationen an Platin
JP3555197B2 (ja) * 1994-09-30 2004-08-18 旭硝子株式会社 複極型イオン交換膜電解槽
DE4438110A1 (de) * 1994-10-26 1996-05-02 Eilenburger Elektrolyse & Umwelttechnik Gmbh Verfahren zum anodischen, oxidativen Abbau von organischen Schadstoffen in Prozeßlösungen und Abwässern
US7824532B2 (en) * 1995-04-26 2010-11-02 Life Technologies Corporation Apparatus and method for electrophoresis
DE19530218A1 (de) * 1995-08-17 1997-02-20 Eilenburger Elektrolyse & Umwelttechnik Gmbh Verfahren zur kombinierten elektrochemischen Herstellung von Natriumperoxodisulfat und Natronlauge
US6027620A (en) * 1995-11-03 2000-02-22 Huron Tech Corp Filter press electrolyzer
US6200440B1 (en) 1995-11-03 2001-03-13 Huron Tech Corp Electrolysis cell and electrodes
US5643437A (en) * 1995-11-03 1997-07-01 Huron Tech Canada, Inc. Co-generation of ammonium persulfate anodically and alkaline hydrogen peroxide cathodically with cathode products ratio control
DE19624024A1 (de) * 1996-06-17 1997-12-18 Verein Fuer Kernverfahrenstech Verfahren zur Herstellung von Halogenen, Oxoverbindungen der Halogene sowie zur Herstellung von Peroxyverbindungen durch Elektrolyse
DE19962672A1 (de) * 1999-12-23 2001-06-28 Eilenburger Elektrolyse & Umwelttechnik Gmbh Verfahren und Vorrichtung zur Herstellung oder Regenerierung von Peroxodisulfaten
DE10019683A1 (de) * 2000-04-20 2001-10-25 Degussa Verfahren zur Herstellung von Alkalimetall- und Ammoniumperoxodisulfat
DE10022592B4 (de) * 2000-05-09 2010-03-04 Peroxid-Chemie Gmbh & Co. Kg Bipolare Mehrzweckelektrolysezelle für hohe Strombelastungen
NL1019070C2 (nl) * 2001-10-01 2003-04-02 Gerrit Albert Zilvold Inrichting voor het uitvoeren van een elektrolyse van een halogenideverbinding.
AU2003225421B2 (en) * 2003-03-27 2008-02-07 Hendrik Martin Zilvold Apparatus for carrying out an electrolytic process on a halogenide compound
GB2427373A (en) * 2005-03-05 2006-12-27 Catal Internat Ltd A reactor
US7374645B2 (en) * 2006-05-25 2008-05-20 Clenox, L.L.C. Electrolysis cell assembly
US20080116144A1 (en) 2006-10-10 2008-05-22 Spicer Randolph, Llc Methods and compositions for reducing chlorine demand, decreasing disinfection by-products and controlling deposits in drinking water distribution systems
US20100283169A1 (en) * 2009-05-06 2010-11-11 Emmons Stuart A Electrolytic cell diaphragm/membrane
JP5387250B2 (ja) * 2009-09-09 2014-01-15 株式会社Ihi 過塩素酸塩の製造方法及び製造装置
JP2011256431A (ja) * 2010-06-09 2011-12-22 Ihi Corp 過塩素酸塩の製造装置
EP2546389A1 (de) 2011-07-14 2013-01-16 United Initiators GmbH & Co. KG Verfahren zur Herstellung eines Ammonium- oder Akalimetallperosodisulfats im ungeteilten Elektrolyseraum
PL2872673T3 (pl) 2012-07-13 2020-12-28 United Initiators Gmbh Niepodzielone ogniwo elektrolityczne i jego zastosowanie
TW201406998A (zh) 2012-07-13 2014-02-16 United Initiators Gmbh & Co Kg 無分隔電解槽及其用途
US20140209466A1 (en) * 2013-01-31 2014-07-31 Wyatt Technology Corporation Corrosion resistant electrodes for electrophoretic mobility measurements and method for their fabrication
JP6189655B2 (ja) * 2013-06-14 2017-08-30 Kyb株式会社 アノードの製造方法
JP6189656B2 (ja) 2013-06-14 2017-08-30 Kyb株式会社 給電部材及びそれを備えた高速めっき装置
JP6193005B2 (ja) 2013-06-14 2017-09-06 Kyb株式会社 保持装置及びそれを備えた高速めっき装置
US8617403B1 (en) 2013-06-25 2013-12-31 Blue Earth Labs, Llc Methods and stabilized compositions for reducing deposits in water systems
NL2014542B1 (nl) 2015-03-27 2017-01-06 Van Den Heuvel Watertechnologie B V Werkwijze en inrichting voor het behandelen van een effluentstroom afkomstig van een of meer elektrolysecellen.
CN107557809A (zh) * 2017-08-10 2018-01-09 云南龙蕴科技环保股份有限公司 一种新型框式电解槽

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE427248A (ru) * 1937-05-21
DE2346945C3 (de) * 1973-09-18 1982-05-19 Peroxid-Chemie GmbH, 8023 Höllriegelskreuth Verfahren zur direkten elektrolytischen Herstellung von Natriumperoxodisulfat
JPS51119681A (en) * 1975-04-15 1976-10-20 Asahi Glass Co Ltd A cell frame for an electrolizer
US4217199A (en) * 1979-07-10 1980-08-12 Ppg Industries, Inc. Electrolytic cell
US4626327A (en) * 1985-06-06 1986-12-02 Fmc Corporation Electrolytic process for manufacturing potassium peroxydiphosphate
US4828660A (en) * 1986-10-06 1989-05-09 Athens Corporation Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids
US4802959A (en) * 1987-06-16 1989-02-07 Tenneco Canada Inc. Electrosynthesis of persulfate
DE3823760A1 (de) * 1988-07-13 1990-01-18 Peroxid Chemie Gmbh Ventilmetall/platinverbundelektrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Фиошин М.Я. и Смирнова М.Г. Электросинтез окислителей и восстановителей. Л.: Химия, 1981, с.137-138. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU224709U1 (ru) * 2023-11-20 2024-04-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева) Мембранный электролизёр для получения пероксодисерной кислоты

Also Published As

Publication number Publication date
JPH03173789A (ja) 1991-07-29
US5082543A (en) 1992-01-21
ES2059959T3 (es) 1994-11-16
EP0428171B1 (de) 1993-09-29
TR25047A (tr) 1992-09-01
DE3938160A1 (de) 1991-05-23
DE59002925D1 (de) 1993-11-04
EP0428171A1 (de) 1991-05-22

Similar Documents

Publication Publication Date Title
RU2025544C1 (ru) Электролизер фильтрпрессного типа
US4279731A (en) Novel electrolyzer
US4217199A (en) Electrolytic cell
EP1274884A2 (en) Electrolytic cell and method for electrolysis
JP2003531300A5 (ru)
JPS5949318B2 (ja) 次亜ハロゲン酸アルカリ金属塩の電解製造法
SU1291029A3 (ru) Бипол рный электрод
US4584080A (en) Bipolar electrolysis apparatus with gas diffusion cathode
US4488948A (en) Channel flow cathode assembly and electrolyzer
CA1073846A (en) Electrolysis method and apparatus
SU1286109A3 (ru) Монопол рный электролизер
SU878202A3 (ru) Способ электролиза водного раствора хлорида натри
US4236989A (en) Electrolytic cell
EP3161185B1 (en) Narrow gap, undivided electrolysis cell
CA1175780A (en) Internal downcomer for electrolytic recirculation
US4568433A (en) Electrolytic process of an aqueous alkali metal halide solution
CA1134779A (en) Electrolysis cell
US5593553A (en) Electrolytic cell and electrode therefor
US4271004A (en) Synthetic separator electrolytic cell
JPH01234585A (ja) ガス拡散電極を用いる電解方法及び装置
JPS6147230B2 (ru)
CA1221657A (en) Channel flow cathode assembly and electrolyzer
JPS60262988A (ja) 有機電解用フイルタ−プレス型イオン交換膜法電解槽
JPH0216389B2 (ru)
JPH06240482A (ja) ガス電極を使用する電解槽及び電解方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091116