Nothing Special   »   [go: up one dir, main page]

KR960006238B1 - Process for the preparation of ferrite - Google Patents

Process for the preparation of ferrite Download PDF

Info

Publication number
KR960006238B1
KR960006238B1 KR1019930030635A KR930030635A KR960006238B1 KR 960006238 B1 KR960006238 B1 KR 960006238B1 KR 1019930030635 A KR1019930030635 A KR 1019930030635A KR 930030635 A KR930030635 A KR 930030635A KR 960006238 B1 KR960006238 B1 KR 960006238B1
Authority
KR
South Korea
Prior art keywords
ferrite
sintering
powder
oxides
composition
Prior art date
Application number
KR1019930030635A
Other languages
Korean (ko)
Other versions
KR950017841A (en
Inventor
김경용
김왕섭
이창호
장광호
Original Assignee
한국과학기술연구원
김은영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 김은영 filed Critical 한국과학기술연구원
Priority to KR1019930030635A priority Critical patent/KR960006238B1/en
Publication of KR950017841A publication Critical patent/KR950017841A/en
Application granted granted Critical
Publication of KR960006238B1 publication Critical patent/KR960006238B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The ferrite containing liquid phase former for low temperature sintering is used for electronic parts, EMI noise filter, chip inductor etc. The ferrite is produced by (1)calcining the ferrite powder composed of NiO, ZnO and Fe2O3 at 900deg.C for 2hr, (2)mixing V2O5 and other oxides as the liquid phase former, (3)calcining the mixed oxides for formation of stable phase or oxide solid solution at 600deg.C for 2 hr, (4)mixing the calcinted oxide solid solution powder of 1 to 10 wt.% and calcinted ferrite powder, (5)cold compacting the mixed powders to toroid type green compact, and (6)sintering the green compact at 900deg.C for 2 hr. Frictions of V2O5 and other oxides are the compositions of liqudus line between 750 and 850deg.C. The other oxides as mentioned above are ZrO2, ZnO, T2O3, SrO, SiO2, MgO, CuO, CaO, BaO and Al2O3. Sintering of this powder at low temperature is practicable and this powder does not react on Ag inner electrode. So a lot of problems such as delamination, porosity and microcrack are solved.

Description

저온소결 페라이트의 제조방법Low Temperature Sintered Ferrite Manufacturing Method

제1도 및 제2도는 페라이트 소결체의 전극부분에 대한 주사현미경 사진으로서, 제1도는 본 발명 실시예 시편에 대한 것이고,1 and 2 are scanning micrographs of the electrode portion of the ferrite sintered body, and FIG. 1 is for the specimen of the embodiment of the present invention.

제2도는 비교예 시편에 대한 것이다.2 is for comparative specimens.

본 발명은 지온소결 페라이트의 제조방법에 관한 것으로, 특히 하소된 페라이트 분말에 별도로 혼합 및 열처리를 행한 저온소결용 액상형성조제를 첨가하여 소결함으로써 저온소결이 가능하면서도 내부전극과의 반응이 없는 페라이트 소결체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a geothermally sintered ferrite, in particular, a sintered ferrite sintered body which is capable of low-temperature sintering but does not react with an internal electrode by sintering by adding a liquid forming aid for low temperature sintering separately mixed and heat treated to the calcined ferrite powder. It relates to a method of manufacturing.

최근, 컴퓨터산업 및 전자통신산업등에 사용되는 주요부품들은 전자회로의 집적화, 고성능화에 대응하기위하여 소형화 및 칩(chip)화의 추세로 나아가고 있으며, 이를 수용하기 위하여 표면실장기술(SMT)의 이용이 날로 확대되고 있는 실정이다.Recently, in order to cope with the integration and high performance of electronic circuits, the main components used in the computer industry and the electronic communication industry are moving toward the trend of miniaturization and chip, and the use of surface mount technology (SMT) has been adopted to accommodate them. It is expanding day by day.

이와같이 칩화되고 있는 많은 전자부품중에서 페라이트를 사용하고 있는 부품의 수가 증가되고 있는데,페라이트를 사용하고 있는 부품의 대표적인 예로는 노이즈필터(noisefilter), 인덕터(inductor)등이 알려지고 있다.The number of components using ferrite is increasing among many electronic components that are being chipped. As a representative example of the components using ferrite, noise filters and inductors are known.

페라이트는 그 조성에 따라 다소의 차이가 있긴 하나 대략 1200∼1300℃ 온도에서의 소견을 통해 제조되고 있다.Ferrites are produced by findings at temperatures of approximately 1200 to 1300 ° C, although there are some differences depending on their composition.

한편, 페라이트 재료를 사용하여 칩부품을 제작함에 있어서는 페라이트 내부로 전극이 통과하여야 하므로 페라이트의 조성과 소결조건등은 전극의 선정에 매우 중요한 역할을 하게 된다.On the other hand, in manufacturing a chip component using a ferrite material, since the electrode must pass through the ferrite, the composition and sintering conditions of the ferrite play a very important role in the selection of the electrode.

칩부품의 제조를 위해 전극과 세라믹을 동시에 소성하는 경우로서 우수한 전기적 특성을 갖는 칩부품을 얻기 위해서는 다음과 같은 문제점이 고려되어야 한다.In the case of simultaneously firing the electrode and the ceramic for the manufacture of the chip component, the following problems should be considered in order to obtain a chip component having excellent electrical characteristics.

첫째, 내부전극의 산화환원반응으로 인한 부피변화로 전기전도성과 구조적 결함의 발생, 화학반응등의 문제점.First, problems of electrical conductivity, structural defects, and chemical reactions due to volume change due to redox reaction of internal electrodes.

둘째, 동시소결시 전극과 세라믹간의 수축율 차이로 인한 박리(delamination)의 문제점.Second, the problem of delamination due to the difference in shrinkage between the electrode and the ceramic during sintering.

셋째, 내부전극과 세라믹간의 화학반응으로 인한 계면에서의 새로운 상의 생성이나 상호확산으로 인한 특성저하의 문제점.Third, there is a problem of deterioration due to the formation or interdiffusion of a new phase at the interface due to the chemical reaction between the internal electrode and the ceramic.

페라이트 칩인덕터등의 내부전극으로 사용되는 금속의 종류로는 값이 저렴한 Ni, Cu, Pb/Sn 등과 고가의 귀금속류인 Au, Ag, Pt, Pd, Ag-Pd 등이 있다.Examples of metals used as internal electrodes of ferrite chip inductors include inexpensive Ni, Cu, Pb / Sn, and expensive precious metals such as Au, Ag, Pt, Pd, and Ag-Pd.

이러한 종래의 내부전극용 금속의 특성을 살펴보면 다음과 같다.Looking at the characteristics of such a conventional internal electrode metal is as follows.

먼저, Ni, Cu는 녹는점(melting point)이 각각 l453℃ 및 1083℃로서 값이 저렴하다는 장점 이외에 Ni은고온에서, 그리고 Cu는 저온에서 소결하여 제조되는 부품의 내부전극으로 사용될 수 있다는 이점을 지니고있다.First, in addition to the advantages that Ni and Cu have low melting points at l453 ° C and 1083 ° C, respectively, Ni and Cu can be used as internal electrodes of components manufactured by sintering at high temperatures and Cu at low temperatures. Carry.

그러나, 이러한 장점에도 불구하고 이들 두 금속은 산화성이 매우 낮아 소결시 Ni의 경우 산소의 분압을10-9atm 이하로 낮추어야 하고, Cu의 경우 산소의 분압을 10-5atm 이하로 제어하여야 하는 제조공정상의 어려움 때문에 널리 사용되고 있지 못한 형편이다.However, despite these advantages, these two metals have very low oxidizing properties, and thus, the sintering process requires that the partial pressure of oxygen be lowered to 10 -9 atm or less for Ni and the partial pressure of oxygen to 10 -5 atm or less for Cu. It is not widely used because of normal difficulties.

다음, Pb/Sn 합금은 값은 비교적 저렴하나 세라믹과의 젖음성(wettabi1ity)이 좋지 않기 때문에 전극의 단락이나 제품의 신뢰성 면에서 문제점을 지니고 있다.Next, Pb / Sn alloys are relatively inexpensive but have poor wettability with ceramics, and thus have problems in terms of short circuit of electrodes and reliability of products.

Au와 Pt를 함유한 전극은 가격이 비싸기 때문에 고전압 캐패시터(high-voltage capacitor)등의 특별한 경우에만 한정적으로 사용되고 있다.Electrodes containing Au and Pt are expensive and are only used in special cases such as high-voltage capacitors.

Ag/Pd 전극은 Pd의 함량에 따라 넓은 소결온도 범위를 가지며 Pd가 Ag의 이동(migration)을 억제시키는 이점은 있으나 Pd의 첨가로 인해 전극의 전기적 특성이 떨어지고 Pd의 산화시 부피변화에 의한 박리(delamination), 기공(porosity) 및 미세균열(microcrack)등의 문제가 발생한다.Ag / Pd electrodes have a wide range of sintering temperatures depending on the content of Pd, and Pd has the advantage of inhibiting migration of Ag, but due to the addition of Pd, the electrical properties of the electrode are lowered and delamination due to volume change during oxidation of Pd Problems such as delamination, porosity and microcrack occur.

Ag는 전기저항이 낮아 전기전도도가 우수하고 내산화성이 뛰어나 소결시 분위기를 제어해야 하는 공정상의 어려움도 피할 수 있을 뿐만 아니라 가격면에서도 비교적 저렴하여 페라이트 칩부품의 내부전극으로 많이 사용되고 있다.Ag has low electrical resistance, has excellent electrical conductivity and excellent oxidation resistance, which can avoid process difficulties in controlling the atmosphere during sintering, and is relatively inexpensive in terms of price, so it is widely used as an internal electrode of ferrite chip parts.

그러나 Ag는 녹는점이 961℃이기 때문에 동시 소성하는 세라믹계의 소결온도가 920℃ 이하이어야 한다는 제약이 따르고 있다.However, since the melting point of Ag is 961 ° C, there is a restriction that the sintering temperature of the co-fired ceramic system should be 920 ° C or less.

이와같은 이유때문에 900℃ 근방에서 소결되는 페라이트 부품의 제조를 위해서는 통상 저온에서 액상을 형성시킬 수 있는 조제를 첨가하여 소결하는 방법이 행해지고 있다.For this reason, in order to manufacture a ferrite component sintered in the vicinity of 900 ° C, a method of sintering is usually performed by adding an additive capable of forming a liquid phase at a low temperature.

가장 널리 쓰이고 있는 소결조제로는 CuO와 V2O5등을 들 수 있으며, 이러한 CuO나 V2O5를 약 5wt% 정도 첨가하여 소결하게 되면 900∼920℃ 부근에서 치밀한 페라이트 소결체를 얻을 수 있다.The most widely used sintering aids include CuO and V 2 O 5 , and when sintered by adding about 5 wt% of CuO or V 2 O 5 , a dense ferrite sintered body can be obtained at around 900 to 920 ° C. .

그러나, V2O5의 경우에는 내부전극으로 사용되는 Ag와 반응하여 Ag를 이동시키기 때문에 칩부품 제조시에는 사용이 불가능하다는 단점을 지니고 있다.However, in the case of V 2 O 5 has a disadvantage that it is impossible to use in the manufacture of chip parts because the Ag moves by reacting with Ag used as the internal electrode.

따라서, 본 발명은 소결조제인 V2O5가 단독으로 사용되는 경우 은(Ag)전극과의 반응을 일으킴으로써 초래되는 상기의 문제점을 해결하기 위하여 액상형성조제로서 V2O5에 다른 산화물을 혼합하여, 열처리함으로써 안정한 상을 형성한 후, 이 액상형성조제를 하소된 페라이트 분말에 첨가하여 소결함에 의해 내부전극인Ag와의 반응이 방지되도록 한 저온소결 페라이트의 제조방법을 제공하는데 발명의 목적이 있다.Therefore, in order to solve the above problems caused by the reaction with the silver (Ag) electrode when the sintering aid V 2 O 5 is used alone, another oxide is added to V 2 O 5 as the liquid forming aid. An object of the present invention is to provide a method for producing low-temperature sintered ferrite by mixing and heat treatment to form a stable phase, and then adding the liquid forming aid to the calcined ferrite powder to prevent the reaction with Ag as an internal electrode. have.

본 발명은 V2O5에 ZrO2, ZnO, Y2O3, SrO, SiO2, MgO, CuO, CaO, BaO, Al2O3등의 산화물을 적당한 비율로 혼합하여 이를 열처리함으로써 안정한 상으로 형성한 액상형성조제를 하소를 행한 페라이트 분말에 첨가하여 소결하는 데에 기술적 특징이 있다.The present invention is a stable phase by mixing an oxide of ZrO 2 , ZnO, Y 2 O 3 , SrO, SiO 2 , MgO, CuO, CaO, BaO, Al 2 O 3 with V 2 O 5 in an appropriate ratio There is a technical feature in sintering by adding the formed liquid forming aid to the calcined ferrite powder.

이때, 상기 V2O5와 함께 저온소결용 액상형성조제를 구성하는 산화물의 분율은 상태도상에서 액상선(liquidus)의 온도가 750∼850℃ 사이인 조성이 바람직하다.At this time, the fraction of the oxide constituting the liquid crystal forming aid for low temperature sintering together with the V 2 O 5 is preferably a composition in which the temperature of the liquidus (liquidus) in the state diagram between 750 ~ 850 ℃.

한편, 본 발명자들은 같은 조성을 따로 열처리하지 않고 함께 페라이트 분말과 혼합소결한 때에는 소결은 같은 정도로 진행되지만 내부전극과의 반응이 심해지는 것을 발견하였고, 이에따라 본 발명에서는 액상형성조제를 페라이트 분말과는 별도로 열처리하고 있다.On the other hand, the present inventors found that when the mixture is sintered with ferrite powder without separately heat-treating the same composition, the sintering proceeds to the same level, but the reaction with the internal electrode is increased. Heat treatment.

이와같이 페라이트 분말과 소결조제를 함께 소결한 경우 내부전극과의 반응이 심화되는 이유는 V2O5의 융점이 너무 낮기 때문에 소결이 진행되기 전에 미리 내부전극과의 반응이 시작되기 때문인 것으로 밝혀졌다.As such, when the ferrite powder and the sintering aid are sintered together, the reaction with the internal electrode is found to be because the melting point of the V 2 O 5 is so low that the reaction with the internal electrode starts before the sintering proceeds.

본 발명의 액상형성조제인 V2O5와 다른 산화물의 혼합조성은 상태도에서 액상선온도가 750∼850℃ 정도가 바람직한데, 그 이유는 액상선온도가 낮을수록(750℃ 이하) 소결성은 증진되나 내부전극과의 반응이 심해지고, 온도가 너무 높으면(850℃ 이상) 내부전극과의 반응은 억제되나 소결성이 떨어지기 때문이다.The mixed composition of V 2 O 5 and other oxides of the liquid forming aid of the present invention preferably has a liquidus temperature of about 750 ° C. to 850 ° C. in the state diagram. However, if the reaction with the internal electrode is severe, and the temperature is too high (850 ℃ or more), the reaction with the internal electrode is suppressed, but the sinterability is inferior.

본 발명은 저온소결이 가능하고, 내부전극인 Ag와 반응하지 않으며 우수한 전기적 특성을 나타냄에 따라 EMI 노이즈필터, 적층칩 인덕터 및 하이칩(high chip)임피더등의 재료로 적합하다.The present invention is suitable for materials such as EMI noise filter, multilayer chip inductor and high chip impeller as it can be sintered at low temperature, does not react with Ag as an internal electrode, and exhibits excellent electrical characteristics.

본 발명의 구체적인 제조공정과 본 발명의 방법에 의해 제조된 저온소결 페라이트의 제반특성은 다음의 실시예를 통하여 보다 명확하게 이해될 것이다.The specific manufacturing process of the present invention and the general characteristics of the low-temperature sintered ferrite produced by the method of the present invention will be more clearly understood through the following examples.

(실시예 1)(Example 1)

NiO, ZnO, Fe2O3를 각각 Nio.3Zno.7Fe2O4조성에 맞추어 평량한 후 24시간 습식혼합을 하였다. 혼합 후 건조한 분말을 대기중에서 900℃,2시간 하소하였다. V2O5와 MgO를 아래의 표 1과 같은 분율로 평량하여 같은 방법으로 혼합한 후 건조하여 600℃에서 2시간 하소하여 산화물고용체를 형성시켰다. 산화물의 분율은 상태도에서 액상선온도가 700∼900℃인 범위에서 선정하였다. 하소된 페라이트 분말에 대하여 산화물고용체분말을 1∼10wt% 첨가하여 혼합한 후 600kg/㎠의 압력을 가하여 외경 3cm, 내경 2.3cm, 두께 2mm의 토로이드(toroid)형 성형체로 성형한 후 900℃에서 2시간 소결하였다. 소결체에 에나멜선을 20회 감은 후 LCR 미터(HP 4262A)를 사용하여 100KHz에서의 인덕턴스를 측정하고 계산에 의하여 100KHz에서의 투자율을 얻었다.NiO, ZnO, Fe 2 O 3 are each Nio. 3 Zno. 7 Fe 2 O 4 The composition was weighed and wet mixed for 24 hours. After mixing, the dried powder was calcined at 900 ° C. for 2 hours in the atmosphere. V 2 O 5 and MgO were weighed in the same ratio as in Table 1 below, mixed in the same manner, dried, and calcined at 600 ° C. for 2 hours to form an oxide solid. The fraction of oxide was selected in the range where the liquidus temperature was 700 to 900 ° C in the state diagram. 1 to 10 wt% of oxide solid powder was added to the calcined ferrite powder, and then mixed into a toroid shaped body having an outer diameter of 3 cm, an inner diameter of 2.3 cm and a thickness of 2 mm by applying a pressure of 600 kg / cm 2, and then at 900 ° C. Sintering was carried out for 2 hours. After enameled wire was wound 20 times on the sintered body, the inductance at 100 KHz was measured using an LCR meter (HP 4262A), and the permeability at 100 KHz was obtained by calculation.

Ag전극과의 반응여부를 판단하기 위해서 같은 조건으로 직경 1.5cm, 두께 2mm의 디스크형성형체를 제조한 후 그 위에 Ag전극을 도포하고 다시 혼합분말을 충진하여 전체 두께가 4mm인 성형체를 제조하였다. 이것을 같은 조건에서 동시소성하고 파단면을 주사전자현미경으로 관찰하여 내부에 형성시킨 Ag전극의 잔류여부를 판단하였다. 소결체 시편에 대한 측정결과는 표 1에 나타나 있다.In order to determine the reaction with the Ag electrode, a disk forming body having a diameter of 1.5 cm and a thickness of 2 mm was prepared under the same conditions, and then the Ag electrode was applied thereon, and the mixed powder was filled again to prepare a molded body having a total thickness of 4 mm. This was co-fired under the same conditions, and the fracture surface was observed under a scanning electron microscope to determine whether the Ag electrode formed therein remained. The measurement results for the sintered specimens are shown in Table 1.

제1도는 Ag 내부전극이 소결체와 반응하지 않고 남아 있는 실시예 시편의 단면사진이며 제2도는 전극이 반응,이동하여 전극이 형성되어 있던 부분이 공동으로 남아 있는 비교예 시편의 단면사진이다.FIG. 1 is a cross-sectional photograph of an example specimen in which Ag internal electrodes remain unreacted with the sintered body. FIG. 2 is a cross-sectional photograph of comparative specimens in which a portion where electrodes are formed by reacting and moving an electrode remains in the cavity.

[표 1] 소결시편의 조성과 특성[Table 1] Composition and Properties of Sintered Specimens

(실시예 2)(Example 2)

상기 실시예 1과 같은 페라이트 조성을 사용하여 같은 방법으로 제조 및 측정을 행하였다. 저온소결용 액상형성조제로는 V2O5와 ZnO를 사용하였다.Using the same ferrite composition as in Example 1 was prepared and measured in the same manner. Low temperature sintering liquid forming aids were used V 2 O 5 and ZnO.

[표 2] 소결시편의 조성과 특성[Table 2] Composition and Properties of Sintered Specimens

(실시예 3)(Example 3)

상기 실시예 1과 같은 페라이트 조성을 사용하여 같은 방법으로 제조 및 측정을 행하였다. 저온소결용 액상형성조제로는 V2O5와 SiO2를 사용하였다.Using the same ferrite composition as in Example 1 was prepared and measured in the same manner. V 2 O 5 and SiO 2 were used as liquid forming aids for low temperature sintering.

[표 3] 소결시편의 조성과 특성[Table 3] Composition and Properties of Sintered Specimens

(실시예 4)(Example 4)

상기 실시예 1과 같은 페라이트 조성을 사용하여 같은 방법으로 제조 및 측정을 행하였다. 저온소결용 액상형성조제로는 V2O5와 Y2O3를 사용하였다.Using the same ferrite composition as in Example 1 was prepared and measured in the same manner. V 2 O 5 and Y 2 O 3 were used as liquid forming aids for low temperature sintering.

[표 4] 소결시편의 조성과 특성[Table 4] Composition and Properties of Sintered Specimens

(실시예 5)(Example 5)

상기 실시예 1과 같은 페라이트 조성을 사용하여 같은 방법으로 제조 및 측정을 행하였다. 저온소결용 액상형성조제로는 V2O5와 ZrO2를 사용하였다.Using the same ferrite composition as in Example 1 was prepared and measured in the same manner. Low temperature sintering liquid forming aids were used V 2 O 5 and ZrO 2 .

[표 5] 소결시편의 조성과 특성[Table 5] Composition and Properties of Sintered Specimens

(실시예 6)(Example 6)

상기 실시예 1과 같은 페라이트 조성을 사용하여 같은 방법으로 제조 및 측정을 행하였다. 저온소결용 액상형성조제로는 V2O5와 Al2O3를 사용하였다.Using the same ferrite composition as in Example 1 was prepared and measured in the same manner. V 2 O 5 and Al 2 O 3 were used as liquid forming aids for low temperature sintering.

[표 6] 소결시편의 조성과 특성[Table 6] Composition and Properties of Sintered Specimens

(실시예 7)(Example 7)

상기 실시예 1과 같은 페라이트 조성을 사용하여 같은 방법으로 제조 및 측정을 행하여싸. 저온소결용 액상형성조제로는 V2O5와 SrO를 사용하였다.Prepare and measure in the same manner using the same ferrite composition as in Example 1. Low temperature sintering liquid forming aids were used V 2 O 5 and SrO.

[표 7] 소결시편의 조성과 특성[Table 7] Composition and Properties of Sintered Specimens

(실시예 8)(Example 8)

상기 실시예 1과 같은 페라이트 조성을 사용하여 같은 방법으로 제조 및 측정을 행하였다. 저온소결용 액상형성조제로는 V2O5와 CaO를 사용하였다.Using the same ferrite composition as in Example 1 was prepared and measured in the same manner. Low temperature sintering liquid forming aids were used V 2 O 5 and CaO.

[표 8] 소결시편의 조성과 특성[Table 8] Composition and Properties of Sintered Specimens

(실시예 9)(Example 9)

상기 실시예 1과 같은 페라이트 조성을 사용하여 같은 방법으로 제조 및 측정을 행하었다. 저온소결용 액상형성조제로는 V2O5와 BaO를 사용하였다.Using the same ferrite composition as in Example 1 was prepared and measured in the same manner. V 2 O 5 and BaO were used as liquid forming aids for low temperature sintering.

[표 9] 소결시편의 조성과 특성[Table 9] Composition and Properties of Sintered Specimens

(실시예 10)(Example 10)

상기 실시예 1과 같은 페라이트 조성을 사용하여 같은 방법으로 제조 및 측정을 행하였다. 저온소결용 액상형성조제로는 V2O5와 CuO를 사용하였다.Using the same ferrite composition as in Example 1 was prepared and measured in the same manner. Low temperature sintering liquid forming aids were used V 2 O 5 and CuO.

[표 10] 소결시편의 조성과 특성[Table 10] Composition and Properties of Sintered Specimens

(비교예)(Comparative Example)

본 발명 실시예 시편과의 비교를 위하여 상기 실시예 1에서 10까지 사용된 V2O5와 다른 산화물을 따로열처리하지 않고 하소처리된 페라이트 분말에 5wt%씩 첨가하여 동일한 방법으로 제조 및 측정을 행하였다.In order to compare the inventive specimens with V 2 O 5 and other oxides used in Examples 1 to 10, 5 wt% of the calcined ferrite powder was added to the calcined ferrite powder without being heat-treated separately. It was.

[표 11] 소결시편의 조성과 특성[Table 11] Composition and Properties of Sintered Specimens

Claims (3)

하소된 페라이트 분말에 V2O5와 다른 산화물을 혼합하여 열처리하여 안정한 상을 형성시킨 액상형성조제를 첨가하여 소결함을 특징으로 하는 저온소결 페라이트의 제조방법.A method for producing low-temperature sintered ferrite, characterized in that the calcined ferrite powder is mixed with V 2 O 5 and other oxides, followed by heat treatment to form a stable phase, followed by sintering. 제1항에 있어서, 액상형성조제의 V2O5와 다른 산화물의 분율은 상태도상 액상선온도가 750∼850℃ 사이인 조성인 것을 특징으로 하는 저온소결 페라이트의 제조방법.The method for producing low-temperature sintered ferrite according to claim 1, wherein the fraction of V 2 O 5 and other oxides in the liquid forming aid has a composition in which the liquidus temperature is between 750 and 850 ° C. 제2항에 있어서, 다른 산화물은 ZrO2, ZnO, Y2O3, SrO, SiO2, MgO, CuO, CaO, BaO 또는 Al2O3인것을 특징으로 하는 저온소결 페라이트의 제조방법.The method of claim 2, wherein the other oxide is ZrO 2 , ZnO, Y 2 O 3 , SrO, SiO 2 , MgO, CuO, CaO, BaO or Al 2 O 3 .
KR1019930030635A 1993-12-29 1993-12-29 Process for the preparation of ferrite KR960006238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930030635A KR960006238B1 (en) 1993-12-29 1993-12-29 Process for the preparation of ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930030635A KR960006238B1 (en) 1993-12-29 1993-12-29 Process for the preparation of ferrite

Publications (2)

Publication Number Publication Date
KR950017841A KR950017841A (en) 1995-07-20
KR960006238B1 true KR960006238B1 (en) 1996-05-11

Family

ID=19373635

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930030635A KR960006238B1 (en) 1993-12-29 1993-12-29 Process for the preparation of ferrite

Country Status (1)

Country Link
KR (1) KR960006238B1 (en)

Also Published As

Publication number Publication date
KR950017841A (en) 1995-07-20

Similar Documents

Publication Publication Date Title
KR100271726B1 (en) Ceramic composirion and multilayer ceramic capacitor made therefrom
JPH08169774A (en) Ceramics and its production
JP3305626B2 (en) Dielectric porcelain composition and ceramic electronic component using this dielectric porcelain composition
JP4813659B2 (en) Reduction-stable ceramic material
JP2004504712A (en) Ceramic material and capacitor having the ceramic material
US6171988B1 (en) Low loss glass ceramic composition with modifiable dielectric constant
JP2990494B2 (en) Multilayer ceramic capacitors
KR960006238B1 (en) Process for the preparation of ferrite
JP7099212B2 (en) Dielectric compositions and electronic components
KR960011351B1 (en) Process for the preparation of ferrite
JP2002198213A (en) Low-temperature baked high-performance ferrite material and ferrite part
KR100380720B1 (en) A dielectric ceramic composition and multilayer ceramic capacitor using it
JP2000086337A (en) Dielectric porcelain composition for low-temperature firing
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2867196B2 (en) Ceramic inductor parts and composite laminated parts
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
US7435697B2 (en) Ceramic powder composition, ceramic material, and laminated ceramic condenser comprised thereof
JPH0945581A (en) Laminated capacitor
JP3978689B2 (en) Low-temperature fired porcelain composition and microwave component using the same
JP4577956B2 (en) Glass ceramic sintered body and wiring board using the same
EP0869514B1 (en) A method for manufacturing a dielectric ceramic composition, dielectric ceramic and multilayer high frequency device
KR100372687B1 (en) A method for manufacturing multilayer ceramic capacitor having low deviation in dielectric properties
JPH04359810A (en) Dielectric ceramic composition and dielectric filter using dielectric ceramic composition and its manufacture
JPH04359806A (en) Dielectric ceramic composition and dielectric filter using dielectric ceramic composition and its manufacture
JPS6333808A (en) Semiconductor porcelain capacitor and manufacture of the same

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020322

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee