KR20240120623A - ESS Charging and Discharging Control System and Method using the Same - Google Patents
ESS Charging and Discharging Control System and Method using the Same Download PDFInfo
- Publication number
- KR20240120623A KR20240120623A KR1020230114250A KR20230114250A KR20240120623A KR 20240120623 A KR20240120623 A KR 20240120623A KR 1020230114250 A KR1020230114250 A KR 1020230114250A KR 20230114250 A KR20230114250 A KR 20230114250A KR 20240120623 A KR20240120623 A KR 20240120623A
- Authority
- KR
- South Korea
- Prior art keywords
- power
- battery
- section
- ess
- charging
- Prior art date
Links
- 238000007599 discharging Methods 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 70
- 238000004146 energy storage Methods 0.000 claims abstract description 7
- 229910001456 vanadium ion Inorganic materials 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000011149 active material Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 206010036618 Premenstrual syndrome Diseases 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000314 poly p-methyl styrene Polymers 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZRXYMHTYEQQBLN-UHFFFAOYSA-N [Br].[Zn] Chemical compound [Br].[Zn] ZRXYMHTYEQQBLN-UHFFFAOYSA-N 0.000 description 1
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001803 electron scattering Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000002580 esophageal motility study Methods 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/24—Using the vehicle's propulsion converter for charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/53—Batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/63—Monitoring or controlling charging stations in response to network capacity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/66—Data transfer between charging stations and vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L55/00—Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
본 문서는 ESS(Energy Storage System) 충방전 제어 시스템 및 이를 이용한 ESS 충방전 제어 방법에 대한 것이다.
이를 위해, 충방전 제어 시스템은, 배터리를 구비하는 ESS; 전력 그리드(grid) 및 상기 ESS와 연결되어, 상기 전력 그리드와 상기 ESS 사이의 전력 형태를 변환하는 전력 변환 장치(PCS); 및 상기 전력 변환 장치의 전력 변환 효율에 기반한 제 1 전력 구간과 상기 배터리의 충방전 효율에 기반한 제 2 전력 구간이 상이한 경우, 상기 제 1 전력 구간 내의 전력으로 상기 배터리에 대한 충방전을 수행하도록 제어하는 제어기를 포함하는 것을 특징으로 한다.This document is about the ESS (Energy Storage System) charge/discharge control system and the ESS charge/discharge control method using it.
To this end, the charge/discharge control system includes an ESS equipped with a battery; A power conversion device (PCS) connected to a power grid and the ESS to convert the form of power between the power grid and the ESS; And when the first power section based on the power conversion efficiency of the power conversion device and the second power section based on the charging and discharging efficiency of the battery are different, controlling to charge and discharge the battery with power within the first power section. It is characterized in that it includes a controller that.
Description
이하의 설명은 ESS(Energy Storage System)의 충방전 제어 시스템 및 이를 이용한 ESS 충방전 제어 방법에 대한 것으로서, 구체적으로 전력 변환 장치(PCS)의 전력 변환 효율에 기반한 전력 구간을 우선적으로 고려하여 ESS 충방전을 효율적으로 제어하는 방법 및 시스템에 대한 것이다.The following description is about the charging and discharging control system of the ESS (Energy Storage System) and the ESS charging and discharging control method using the same. Specifically, the ESS charging is performed by first considering the power section based on the power conversion efficiency of the power conversion device (PCS). This relates to a method and system for efficiently controlling discharge.
최근 전기차(EV)의 이용이 확대되면서 전기차 충전기가 다양한 공간에 배치된다. 그런데 전기차 충전기의 사용은 그리드의 전기 사용량을 증가시키며 해당 공간 내의 다른 전기 사용량에 영향을 줄 수 있다. 특히 전기 사용량이 폭증하는 경우, 전기차 충전기의 사용이 제한되는 문제가 있다.Recently, as the use of electric vehicles (EVs) has expanded, electric vehicle chargers are being placed in various spaces. However, the use of electric vehicle chargers increases electricity usage on the grid and can affect other electricity usage in the space. In particular, when electricity usage increases rapidly, there is a problem that the use of electric vehicle chargers is limited.
아울러, 배터리 충전이 필요한 이동장치로는 현재의 전기차뿐만 아니라, UAV (Uncrewed Aerial Vehicle), 퍼스널 모빌리티 등 다양한 전기구동 이동장치가 제안되고 있다.In addition, various electric mobility devices such as UAV (Uncrewed Aerial Vehicle) and personal mobility are being proposed as mobility devices that require battery charging, in addition to current electric vehicles.
이에, 충전기가 배치된 공간에서 상술한 다양한 전기구동 이동장치를 안정적으로 충전을 수행하고, 이를 지원하기 위해 ESS를 포함하는 전력 시스템이 제안되고 있다. Accordingly, a power system including ESS has been proposed to stably charge the various electric mobile devices described above in a space where a charger is placed and to support this.
다만, 현재 가장 대중적으로 사용되는 리듐 이온 배터리(LIB)의 경우, ESS에 적용 시 배터리 안전성을 고려한 제한된 충전율이 적용되어, ESS를 포함하는 전력 시스템에 최적의 충방전 효율을 도출할 수 없는 문제를 가진다.However, in the case of lithium ion batteries (LIBs), which are currently the most popular, a limited charging rate is applied considering battery safety when applied to ESS, which has the problem that it is impossible to derive the optimal charge/discharge efficiency for the power system including ESS.
상술한 바와 같은 문제를 해결하기 위해 본 발명의 일 측면에서는, 전력 변환 장치(PCS)의 전력 변환 효율에 기반한 전력 구간을 우선적으로 고려하여 ESS 충방전을 효율적으로 제어하는 방법 및 이를 위한 시스템을 제안하고자 한다.In order to solve the problems described above, in one aspect of the present invention, a method and system for efficiently controlling ESS charging and discharging are proposed by prioritizing the power section based on the power conversion efficiency of the power conversion device (PCS). I want to do it.
또한, 본 발명의 바람직한 실시예에서는 전력 변환 장치의 전력 구간을 우선 고려하여 충방전을 수행하기 위해, 적합한 배터리의 요건에 대해 살펴보고, 이를 이용한 충방전 제어 시스템을 제안한다.In addition, in a preferred embodiment of the present invention, in order to perform charging and discharging by first considering the power section of the power conversion device, the requirements for a suitable battery are examined and a charging and discharging control system using these is proposed.
본 발명에서 해결하고자 하는 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the description below. You will be able to.
상술한 바와 같은 과제를 해결하기 위한 본 발명의 일 측면에서는, 배터리를 구비하는 ESS; 전력 그리드(grid) 및 상기 ESS와 연결되어, 상기 전력 그리드와 상기 ESS 사이의 전력 형태를 변환하는 전력 변환 장치(PCS); 및 상기 전력 변환 장치의 전력 변환 효율에 기반한 제 1 전력 구간과 상기 배터리의 충방전 효율에 기반한 제 2 전력 구간이 상이한 경우, 상기 제 1 전력 구간 내의 전력으로 상기 배터리에 대한 충방전을 수행하도록 제어하는 제어기를 포함하는 것을 특징으로 하는 ESS 충방전 제어 시스템을 제안한다.In one aspect of the present invention for solving the problems described above, an ESS including a battery; A power conversion device (PCS) connected to a power grid and the ESS to convert the form of power between the power grid and the ESS; And when the first power section based on the power conversion efficiency of the power conversion device and the second power section based on the charging and discharging efficiency of the battery are different, controlling to charge and discharge the battery with power within the first power section. We propose an ESS charge/discharge control system characterized by including a controller.
또한, 본 발명의 다른 일 측면에서는, ESS의 배터리 충방전을 제어하는 방법에 있어서, 전력 그리드(grid)와 상기 ESS 사이의 전력 형태를 변환하는 전력 변환 장치(PCS)의 전력 변환 효율에 기반한 제 1 전력 구간과 상기 배터리의 충방전 효율에 기반한 제 2 전력 구간을 비교하고; 상기 제 1 전력 구간과 상기 제 2 전력 구간이 상이한 경우, 상기 제 1 전력 구간 내의 전력으로 상기 배터리에 대한 충방전을 수행하는 것을 포함하는, ESS 충방전 제어 방법을 제안한다.In addition, in another aspect of the present invention, in a method of controlling battery charging and discharging of an ESS, a method based on the power conversion efficiency of a power conversion device (PCS) that converts the power form between a power grid and the ESS Compare the first power section with a second power section based on the charging and discharging efficiency of the battery; We propose an ESS charging and discharging control method, which includes performing charging and discharging of the battery with power within the first power section when the first power section and the second power section are different.
상술한 바와 같은 본 발명의 실시예들에 따르면, 전력 변환 장치(PCS)의 전력 변환 효율에 기반한 전력 구간을 우선적으로 고려하여 전력 변환 장치에서의 전력 손실을 최소화할 수 있다.According to the embodiments of the present invention as described above, power loss in the power conversion device (PCS) can be minimized by preferentially considering a power section based on the power conversion efficiency of the power conversion device (PCS).
또한, 본 발명의 바람직한 실시예에서는 전력 변환 장치의 전력 구간을 우선 고려하여 충방전을 수행하더라도 배터리의 안전에 문제가 없는 배터리를 사용하여, ESS의 안전성과 전력 효율을 동시에 추구할 수 있다.In addition, in a preferred embodiment of the present invention, the safety and power efficiency of the ESS can be pursued at the same time by using a battery that does not cause problems with the safety of the battery even when charging and discharging is performed by first considering the power section of the power conversion device.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects that can be obtained from the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description below. will be.
도 1 및 도 2는 전력 변환 장치의 전력 변환 효율에 대해 설명하기 위한 도면이다.
도 3은 ESS에 LIB가 적용되는 경우의 전력 손실에 대해 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 ESS 충방전 제어 시스템의 개념을 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시예에 따라 ESS에 적용되는 배터리 타입에 대해 설명하기 위한 도면이다.
도 6은 본 발명의 일 실시예에 따른 VIB ESS의 구조를 설명하기 위한 도면이다.
도 7은 본 발명의 바람직한 일 실시예에 따라 VIB ESS를 활용한 충방전 제어 방법을 설명하기 위한 도면이다.
도 8은 본 발명의 다른 일 실시예에 따라 VIB ESS를 활용한 충방전 제어에서 배터리 안전을 고려한 전력 구간의 개념을 설명하기 위한 도면이다.
도 9는 본 발명의 일 실시예에 따라 제 1 전력 구간과 제 2 전력 구간의 관계에 따라 충방전 전력을 결정하는 방법을 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 따라 ESS의 충전이 수행되는 메커니즘을 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시예에 따라 ESS의 방전이 수행되는 메커니즘을 설명하기 위한 도면이다. 1 and 2 are diagrams for explaining the power conversion efficiency of the power conversion device.
Figure 3 is a diagram to explain power loss when LIB is applied to ESS.
Figure 4 is a diagram for explaining the concept of an ESS charging/discharging control system according to an embodiment of the present invention.
Figure 5 is a diagram for explaining the battery type applied to the ESS according to an embodiment of the present invention.
Figure 6 is a diagram for explaining the structure of VIB ESS according to an embodiment of the present invention.
Figure 7 is a diagram for explaining a charging and discharging control method using VIB ESS according to a preferred embodiment of the present invention.
Figure 8 is a diagram to explain the concept of a power section considering battery safety in charge/discharge control using VIB ESS according to another embodiment of the present invention.
FIG. 9 is a diagram illustrating a method of determining charge/discharge power according to the relationship between a first power section and a second power section according to an embodiment of the present invention.
Figure 10 is a diagram for explaining the mechanism by which ESS charging is performed according to an embodiment of the present invention.
Figure 11 is a diagram for explaining the mechanism by which ESS discharge is performed according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts unrelated to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
일반적으로, ESS는 다양한 에너지 저장 수단에 에너지를 저장한 후, 필요시 그리드에 다시 저장된 전력을 공급할 수 있는 장치를 의미한다. 이러한 ESS 중 배터리를 에너지 저장 수단으로 활용하는 ESS를 특히 BESS (Battery Energy Storage System)으로 지칭하나, 이하의 설명에서 다른 특별한 언급이 없는 한 ESS는 BESS인 것을 가정한다.Generally, ESS refers to a device that stores energy in various energy storage means and then supplies the stored power back to the grid when necessary. Among these ESSs, the ESS that uses batteries as a means of energy storage is specifically referred to as BESS (Battery Energy Storage System), but in the following description, unless otherwise specified, it is assumed that the ESS is a BESS.
일반적으로, ESS는 배터리, 배터리 관리 시스템(BMS), 전력 변환 시스템(Power Conversion System: PCS), 에너지 관리 시스템(EMS) 등으로 구성되어 있다. 배터리는 하나 이상의 셀(cell)이 있으며, 복수 개의 셀들은 하나의 모들(module)을 이루며, 복수 개의 모듈들은 하나의 랙(rack)을 형성할 수 있다. 이렇게 구성된 ESS는 전력망, 전기망, 전력 그리드(grid) 등과 연결되어 전력을 공급받을 수 있다.Generally, ESS consists of a battery, a battery management system (BMS), a power conversion system (PCS), and an energy management system (EMS). A battery has one or more cells, a plurality of cells can form one module, and a plurality of modules can form a rack. The ESS configured in this way can be connected to the power grid, electric grid, etc. to receive power.
이하의 설명에 있어서, 배터리의 상태는 대표적으로 충전 상태(state-of-charge: SoC)를 기준으로 표현할 수 있으며, 배터리의 충/방전 속도는 충/방전율(C-Rate)를 기준으로 설명할 수 있다.In the following description, the state of the battery can be representatively expressed based on the state-of-charge (SoC), and the charge/discharge speed of the battery can be explained based on the charge/discharge rate (C-Rate). You can.
먼저, 배터리의 충전율 및/또는 배터리의 방전율은 충/방전율(C-Rate)에 의해 제어될 수 있다. 충/방전율(C-Rate)은 배터리의 충전 및/또는 방전에 사용되는 전류의 측정을 의미한다. 일예로, 특정 배터리가 1C-Rate 또는 1C로 방전한다는 의미는, 10Ah (즉, 10A(암페어) 전류가 1시간 동안 흘렀을 때의 전기량)의 용량을 가진 배터리가 완전히 충전된 상태에서 1시간 동안 10A(암페어)를 방전할 수 있다는 것을 의미한다. First, the charging rate and/or the discharging rate of the battery can be controlled by the charging/discharging rate (C-Rate). Charge/discharge rate (C-Rate) refers to the measurement of current used to charge and/or discharge a battery. For example, discharging a specific battery at 1C-Rate or 1C means that a battery with a capacity of 10Ah (i.e., the amount of electricity when 10A (ampere) current flows for 1 hour) is fully charged and discharges at 10A for 1 hour. It means that (ampere) can be discharged.
특정한 C-Rate로 충전되는 배터리를 측정해보면 해당 충전 상태(SoC)를 확인할 수 있다. ESS를 이용하여 전기차를 충전할 때에 ESS 내부 배터리의 SoC, 전기차 내부 배터리의 SoC 등을 확인하여 충전에 대한 각종 제어를 수행할 수 있다.By measuring a battery charged at a specific C-Rate, you can check its state of charge (SoC). When charging an electric vehicle using an ESS, various controls for charging can be performed by checking the SoC of the battery inside the ESS and the SoC of the battery inside the electric vehicle.
이러한 설명을 바탕으로 이하에서는 도면을 참조하여 구체적으로 실시예들에 대해 설명한다.Based on this description, embodiments will be described in detail below with reference to the drawings.
도 1 및 도 2는 전력 변환 장치의 전력 변환 효율에 대해 설명하기 위한 도면이다.1 and 2 are diagrams for explaining the power conversion efficiency of the power conversion device.
전력 변환 장치는 교류(AC) 전력을 직류(DC) 전력으로 변환하는 컨버터(이하 'AC/DC 컨버터') 및 직류(DC) 전력을 교류(AC) 전력으로 변환하는 인버터(이하 'DC/AC 인버터')를 포함할 수 있다. Power conversion devices include a converter that converts alternating current (AC) power into direct current (DC) power (hereinafter referred to as 'AC/DC converter') and an inverter that converts direct current (DC) power into alternating current (AC) power (hereinafter referred to as 'DC/AC'). Inverter') may be included.
구체적으로, AC/DC 컨버터를 이용하여 AC 전압을 가변하여 DC 출력을 만들기 위해서는 스위칭 제어가 필요하며, 도 1은 AC/DC 컨버터에서 PWM(Pulse Width Modulation) 방식을 시간에 따른 전압으로 나타낸 도면이다. 도 1에서 도면부호 110은 저전력을 출력하는 경우, 도면부호 120은 중간전력을 출력하는 경우, 도면부호 130은 고전력을 출력하는 경우를 나타내고 있다.Specifically, switching control is required to produce DC output by varying the AC voltage using an AC/DC converter, and Figure 1 is a diagram showing the PWM (Pulse Width Modulation) method in the AC/DC converter as voltage over time. . In FIG. 1,
도 1에 도시된 바와 같이 스위칭 속도에 따라 출력되는 전력을 제어하는 것이 가능하며, 저전력 출력 시에는 스위칭 속도가 낮고, 고전력 출력 시에는 스위칭 속도가 높은 것을 확인할 수 있다.As shown in Figure 1, it is possible to control the output power according to the switching speed, and it can be seen that the switching speed is low when outputting low power, and the switching speed is high when outputting high power.
도 2는 스위칭 속도에 따른 저항값과 이에 따른 전력 손실의 개념을 설명하기 위한 도면이다.Figure 2 is a diagram to explain the concept of resistance value according to switching speed and resulting power loss.
구체적으로 도면부호 210은 턴-오프 시 발생하는 노이즈를 나타내며, 도면부호 220은 턴-오프 시 스위칭 손실을 개념화하여 나타낸다.Specifically,
특히, 도면부호 220에서는 스위칭 속도에 따라 스위칭 속도가 높은 경우(Case 1)와 스위칭 속도가 낮은 경우(Case 2)를 구분하여 나타내고 있으며, 스위칭 속도가 높은 경우(Case 1) 작은 저항값으로 인하여 전력 손실이 작은 반면, 스위칭 속도가 낮은 경우(Case 2) 큰 저항 값으로 인하여 전력 손실이 큰 것을 확인할 수 있다.In particular,
정리하면, AC/DC 컨버터의 경우 출력 전력이 높을수록 효율이 우수한 것을 알 수 있다.In summary, in the case of AC/DC converters, the higher the output power, the better the efficiency.
한편, DC/AC 인버터를 통해 DC 전압을 AC 전압으로 변경할 때, 동일하게 스위칭을 수행하지만 계통 전압은 고정되어 있으므로 필요한 전력(W)으로 출력을 결정할 수 있다. Meanwhile, when changing DC voltage to AC voltage through a DC/AC inverter, the same switching is performed, but the grid voltage is fixed, so the output can be determined by the required power (W).
즉, 전압이 높을수록 전류가 낮아지는 형태로, 전압이 높을수록 효율이 상승하게 된다. In other words, the higher the voltage, the lower the current, and the higher the voltage, the higher the efficiency.
예를 들어, 전환 효율이 90%의 DC/AC 인버터를 사용하는 경우, 인버터 출력 전류(A)는 다음과 같이 나타낼 수 있다.For example, when using a DC/AC inverter with a conversion efficiency of 90%, the inverter output current (A) can be expressed as follows.
<수학식 1><
인버터 출력전류(A) = 교류출력(W)/교류전압(V)Inverter output current (A) = AC output (W)/AC voltage (V)
인버터 입력전류(A) = 인버터 출력전류(A) * 교류전압(V) / (시스템전압(V)*변환 효율)Inverter input current (A) = Inverter output current (A) * AC voltage (V) / (System voltage (V) * Conversion efficiency)
예를 들어, 배터리는 DC 12V, 부하용량은 220V 440W인 경우 아래와 같이 나타낼 수 있다.For example, if the battery is DC 12V and the load capacity is 220V 440W, it can be expressed as follows.
<수학식 2><
상술한 검토를 통해 DC/AC 인버터의 경우, 배터리 전압이 높을수록 전력 변환 장치에 입력되는 전류가 낮아져 효율이 상승하는 것을 알 수 있으며, 이를 통해 전력 변환 장치의 효율 제어를 위해 일정 수준 이상의 배터리 전압이 요구되는 것을 알 수 있다.Through the above-mentioned review, it can be seen that in the case of DC/AC inverters, the higher the battery voltage, the lower the current input to the power conversion device, increasing the efficiency. This allows the battery voltage to exceed a certain level to control the efficiency of the power conversion device. You can see that this is required.
이하의 설명에 있어서, 상술한 바와 같은 컨버터의 효율에 기반한 전력량 및 상술한 바와 같은 인버터의 효율에 기반한 전압 수준 중 하나 이상에 기반하여 결정되는 전력 변환 장치의 전력 구간을 제 1 전력 구간으로 지칭하기로 한다.In the following description, the power section of the power conversion device determined based on one or more of the power amount based on the efficiency of the converter as described above and the voltage level based on the efficiency of the inverter as described above is referred to as the first power section. Do this.
한편, 현재 가장 대중적으로 사용되는 LIB의 경우, 상술한 전력 변환 장치의 제 1 전력 구간 범위 내로 충방전이 어려운 문제점을 가진다.Meanwhile, in the case of LIB, which is currently the most popular, there is a problem in that it is difficult to charge and discharge within the range of the first power section of the power conversion device described above.
도 3은 ESS에 LIB가 적용되는 경우의 전력 손실에 대해 설명하기 위한 도면이다.Figure 3 is a drawing to explain power loss when LIB is applied to ESS.
도 3에 도시된 예에서 전력 변환 장치(320)는 전력 그리드(310)로부터 교류 전력을 입력 받아 직류 전력으로 변환하여 LIB ESS (330-1)애 제공할 수 있으며, 반대로 LIB ESS (330-1)의 직류 전력을 교류로 변환하여 전력 그리드(310)에 제공할 수도 있다.In the example shown in FIG. 3, the power conversion device 320 can receive alternating current power from the power grid 310, convert it into direct current power, and provide it to the LIB ESS 330-1. Conversely, the LIB ESS 330-1 ) of direct current power may be converted to alternating current and provided to the power grid 310.
도 3의 예에서 전력 변환 장치(320)의 효율을 고려한 최적 전력 구간인 제 1 전력 구간은 50 kW ~ 100 kW로 결정되는 것을 가정한다. In the example of FIG. 3, it is assumed that the first power section, which is the optimal power section considering the efficiency of the power conversion device 320, is determined to be 50 kW to 100 kW.
다만, LIB의 경우 배터리의 화재 위험 등으로 인하여 0.2 C - 0.5 C의 충전율로 충방전이 제한되며, 이때 1 C는 100 A에 대응한다. 현재 ESS의 전압이 700 V인 경우, 위 충전율의 제한은 충방전 속도를 14 kW - 35 kW로 제한하게 되며, 도 3은 이러한 LIB의 제약 조건에 의해 전력 그리드(310)와 전력 변환 장치(320) 사이의 전력 교환이 14 kW - 35 Kw로 제한되고, 전력 변환 장치(320)와 LIB ESS (330-1) 사이의 충방전이 20 ~ 50 A로 제한되는 것을 도시하고 있다.However, in the case of LIB, charging and discharging is limited to a charging rate of 0.2 C - 0.5 C due to the risk of battery fire, where 1 C corresponds to 100 A. If the current voltage of the ESS is 700 V, the above charging rate limitation limits the charging and discharging rate to 14 kW - 35 kW, and Figure 3 shows the power grid 310 and the power conversion device 320 due to these LIB constraints. ) shows that power exchange between them is limited to 14 kW - 35 Kw, and charging and discharging between the power conversion device 320 and LIB ESS (330-1) is limited to 20 to 50 A.
상술한 바와 같이 ESS의 충방전이 전력 변환 장치(320)의 전력 변환 효율에 기반한 제 1 전력 구간(50kW - 100 kW)를 벗어나 수행하게 되는 경우, 전력 변환 장치(320)에 의한 전력 손실이 증가하게 되며, 이에 따라 전체 시스템의 전력 낭비가 발생할 수 있다.As described above, when charging and discharging of the ESS is performed outside the first power range (50 kW - 100 kW) based on the power conversion efficiency of the power conversion device 320, power loss due to the power conversion device 320 increases. This may result in power wastage of the entire system.
도 4는 본 발명의 일 실시예에 따른 ESS 충방전 제어 시스템의 개념을 설명하기 위한 도면이다.Figure 4 is a diagram for explaining the concept of an ESS charging/discharging control system according to an embodiment of the present invention.
본 실시예에 따른 ESS 충방전 제어 시스템은, 배터리를 구비하는 ESS(330); 전력 그리드(310) 및 상기 ESS(330)와 연결되어, 전력 그리드(310)와 ESS(330) 사이의 전력 형태를 변환하는 전력 변환 장치(320); 및 전력 변환 장치(320)의 전력 변환 효율에 기반한 제 1 전력 구간과 배터리의 충방전 효율에 기반한 제 2 전력 구간이 상이한 경우, 상기 제 1 전력 구간 내의 전력으로 ESS(330)의 배터리에 대한 충방전을 수행하도록 제어하는 제어기(미도시)를 포함할 수 있다.The ESS charge/discharge control system according to this embodiment includes an ESS (330) equipped with a battery; A power conversion device 320 connected to the power grid 310 and the ESS 330 and converting the form of power between the power grid 310 and the ESS 330; And when the first power section based on the power conversion efficiency of the power conversion device 320 and the second power section based on the charging and discharging efficiency of the battery are different, the battery of the ESS 330 is charged with the power within the first power section. It may include a controller (not shown) that controls discharge.
즉, ESS(330)의 배터리 충방전 시, 배터리의 충방전 효율보다 전력 변환 장치(320)의 전력 변환 효율에 우선순위를 두고 충방전을 제어하는 것을 제안하며, 이를 위해 바람직하게 ESS(330)에 적용되는 배터리는 도 3과 같이 제 1 전력 구간에 대응하는 전류로 충방전을 수행할 때 안전상의 문제가 없는 배터리인 것이 바람직하다. That is, when charging and discharging the battery of the ESS (330), it is proposed to control charging and discharging by giving priority to the power conversion efficiency of the power conversion device 320 over the charging and discharging efficiency of the battery. To this end, it is preferable to use the ESS (330) It is desirable that the battery applied is a battery that does not cause safety problems when charging and discharging with a current corresponding to the first power section, as shown in FIG. 3.
또한, 본 발명의 바람직한 일 실시예에 따른 배터리는, 배터리의 충방전 효율을 고려한 제 2 전력 구간을 벗어난 범위에서 충방전이 이루어지더라도 전력 손실이 소정 기준 이하로 최소화되는 배터리인 것이 바람직하며, 이에 대해서는 구체적으로 후술하기로 한다.In addition, the battery according to a preferred embodiment of the present invention is preferably a battery whose power loss is minimized below a predetermined standard even when charging and discharging occurs outside the second power range considering the charging and discharging efficiency of the battery, This will be described in detail later.
ESS의 배터리 타입ESS battery type
상술한 실시예들에 대한 설명에서 ESS에 사용하는 배터리는 특정 타입으로 한정하여 해석할 필요는 없다. 다만, 상술한 바와 같이 ESS(330)에 적용되는 배터리가 도 3과 같이 제 1 전력 구간에 대응하는 전류로 충방전을 수행할 때 안전상의 문제가 없고, 또한 바람직하게 배터리의 충방전 효율을 고려한 제 2 전력 구간을 벗어난 범위에서 충방전이 이루어지더라도 전력 손실이 소정 기준 이하로 최소화되는 배터리인 것이 바람직하며, 이를 위해 본 출원인에 의해 제안된 바나듐 이온 배터리(VIB) 기반의 ESS에 대해 설명한다.In the description of the above-described embodiments, there is no need to limit the interpretation of the battery used in the ESS to a specific type. However, as described above, there is no safety problem when the battery applied to the ESS (330) performs charging and discharging with a current corresponding to the first power section as shown in FIG. 3, and it is also desirable to consider the charging and discharging efficiency of the battery. It is desirable to have a battery whose power loss is minimized below a predetermined standard even when charging and discharging occurs outside the second power range. To this end, an ESS based on a vanadium ion battery (VIB) proposed by the present applicant will be described. .
도 5는 본 발명의 일 실시예에 따라 ESS에 적용되는 배터리 타입에 대해 설명하기 위한 도면이다.Figure 5 is a diagram for explaining the battery type applied to the ESS according to an embodiment of the present invention.
상술한 바와 같이 ESS에 적용 가능한 배터리로는 다양한 형태가 존재하며, 예를 들어, 납산화물(lead-acid) 배터리, 납탄소(lead carbon) 배터리, NAS (Sodium Sulfur) 배터리, 리듐이온배터리(LIB), 흐름전지 등이 활용될 수 있다. 도 5의 (A)는 이러한 다양한 ESS용 배터리 중 현재 가장 대중적으로 주목받고 있는 LIB가 적용된 LIB ESS(210)가 적용된 시스템을 예시적으로 도시하고 있다.As mentioned above, there are various types of batteries applicable to ESS, for example, lead-acid battery, lead carbon battery, NAS (Sodium Sulfur) battery, and lithium ion battery (LIB). ), flow batteries, etc. can be used. Figure 5 (A) exemplarily shows a system to which the LIB ESS (210), which is currently receiving the most popular attention among these various ESS batteries, is applied.
LIB는 높은 에너지밀도와 출력밀도를 가지며, 기존의 납축전지보다 약 3배 더 가벼우며, 높은 전력밀도로 공간 차지 비율을 50~80% 감소가 가능한 점에서 주목받고 있다. 그리고, 한달에 충전량의 1~2% 방전하고 긴 사용수명의 유지가 가능하며, 10년 정도 사용 가능한 장점과 조건에 따라 5,000회의 배터리 사이클 가진다고 볼 수 있다. LIB has high energy density and power density, is about 3 times lighter than existing lead acid batteries, and is attracting attention because it can reduce space occupancy by 50-80% with high power density. In addition, it is possible to discharge 1-2% of the charge per month and maintain a long service life, and can be considered to have 5,000 battery cycles depending on the advantages and conditions of about 10 years of use.
다만, LIB의 경우, ESS로 운영 시 0.2~0.5C를 기본 조건으로 충방전을 수행하며, 높은 C-rate로 구동시에 열발생으로 인하여 연속 구동이 힘들며, 화재발생 위험성이 높은 단점을 가진다. However, in the case of LIB, when operating as an ESS, charging and discharging are performed under the basic condition of 0.2~0.5C, and when operating at a high C-rate, continuous operation is difficult due to heat generation, and it has the disadvantage of having a high risk of fire.
또한, 알카리성(alkaline) 및 납(lead) 배터리의 경우, 열발생으로 인한 배터리 용량저하(성능감소)를 피하기 위해 0.05C(= 20시간 방전)로 구동되는 것이 일반적이다.Additionally, in the case of alkaline and lead batteries, they are generally operated at 0.05C (= 20 hours of discharge) to avoid battery capacity degradation (performance reduction) due to heat generation.
이에 반해, 본 출원인에 의해 개발된 VIB는 바나듐 이온을 활물질로 하여 전기 화학적으로 에너지를 저장/방출하는 이차 전지를 말한다. 기존 바나듐 계열 배터리는 전기화학 반응에 참여하는 활물질(예를 들어, 바나듐 이온, H+ 양이온, 물, 황산 등)이 외부 동력으로 동작하는 펌프 등에 의하여 강제로 순환/이송/저장되며 전기에너지를 저장/방출하는 반면, VIB는 셀 및/또는 모듈 내의 활물질이 내부의 전기장, 삼투압, 농도차 등을 이용한 이온 변화 및 이동을 이루며, 해당 활물질은 해당 셀 및/또는 모듈 내에서 전기화학 반응을 통해 에너지를 저장/방출하는 역할을 수행한다. On the other hand, VIB developed by the present applicant refers to a secondary battery that stores/releases energy electrochemically using vanadium ions as an active material. In existing vanadium-based batteries, active materials that participate in electrochemical reactions (e.g., vanadium ions, H+ cations, water, sulfuric acid, etc.) are forcibly circulated/transferred/stored by a pump operated by external power, thereby storing/storing electrical energy. On the other hand, in VIB, the active material within the cell and/or module changes and moves ions using internal electric fields, osmotic pressure, concentration difference, etc., and the active material releases energy through an electrochemical reaction within the cell and/or module. It performs a storage/release role.
특히, VIB의 경우, 0.5 ~ 5C(MAX 10C)로 충방전이 가능하다. 또한, 수용성 전해액을 사용하여 구동되기 때문에 화재 위험으로부터 자유로우며, 넓은 SoC의 활용이 가능한 장점을 가진다.In particular, in the case of VIB, charging and discharging is possible at 0.5 to 5C (MAX 10C). In addition, since it is driven using an aqueous electrolyte, it is free from fire risk and has the advantage of being able to utilize a wide range of SoCs.
따라서, 도 5의 (B)에서는 본 발명의 일 실시예에 따라 이러한 VIB를 이용한 VIB ESS(140)가 적용된 구성을 도시하고 있다. Accordingly, Figure 5(B) shows a configuration in which the VIB ESS 140 using such a VIB is applied according to an embodiment of the present invention.
예컨대, LIB의 경우, 고출력 시 발열 및 배터리 수명에 영향이 있으나 VIB의 경우 안정적인 고출력이 가능하다. 또한, LIB의 경우 1C 충전 1C 방전 등의 제한이 있으나 VIB는 고출력으로 입출력 유동 제어가 가능하며, 예를 들어 그리드(110)의 정전 발생 시, VIB ESS(140)는 그리드(110)와 충전기 모두 고출력으로 보조가 가능하므로 VIB ESS(140)의 활용은 매우 효율적인 ESS 충방전 관리를 수행할 수 있는 장점을 가진다.For example, in the case of LIB, heat generation and battery life are affected at high output, but in the case of VIB, stable high output is possible. In addition, LIB has limitations such as 1C charging and 1C discharging, but VIB is capable of controlling input and output flow with high output. For example, when a power outage occurs in the
특히, VIB의 경우 과부하로 인한 화재위험이 없으므로, 이러한 VIB를 본 실시예의 ESS에 적용하는 경우 다양한 부대설비에서 본 발명의 시스템이 안전을 담보하면서 바람직하게 적용될 수 있다는 점에서 매우 효과적인 전력공급 시스템이라고 할 수 있을 것이다. 또한, VIB ESS(140)의 활용인 안전하고 효율적인 에너지 공급이 가능하기 때문에, 에너지 절약이나 에너지 환경, 탄소중립의 실현 등에서 매우 효과적이고 안전하면서도 친환 경적인 에너지 공급수단으로 활용될 수 있다.In particular, in the case of VIB, there is no risk of fire due to overload, so when this VIB is applied to the ESS of this embodiment, the system of the present invention is a very effective power supply system in that it can be preferably applied while ensuring safety in various auxiliary facilities. You can do it. In addition, since safe and efficient energy supply is possible through the use of VIB ESS (140), it can be used as a very effective, safe, and eco-friendly energy supply means for energy conservation, energy environment, and carbon neutrality.
추가적으로, 도 5의 (B)에 도시된 바와 같이 VIB ESS(140)를 활용하는 경우, 상술한 바와 같이 VIB의 고속 충방전 성능을 활용하여 복수의 전력량계(211, 212, 220)를 통해 계측되는 전력량을 보다 효율적으로 활용할 수 있다. 예를 들어, 충전기로 유입되는 전력량을 계측하는 전력 계측기(212)의 측정값이 급격하게 감소하였을 때 이를 고속 방전으로 지원할 수 있으며, ESS외 부하단에서 계측하는 전력 계측기(220)의 측정값이 소정 기준 이하인 경우, VIB ESS(140)를 고속으로 충전할 수 있다.Additionally, when using the VIB ESS (140) as shown in (B) of FIG. 5, the high-speed charging and discharging performance of the VIB is utilized as described above to measure the energy measured through a plurality of power meters (211, 212, and 220). Electric power can be used more efficiently. For example, when the measured value of the power meter 212, which measures the amount of power flowing into the charger, decreases rapidly, this can be supported by high-speed discharge, and the measured value of the
한편, LIB의 경우, 상한 전압과 하한 전압이 존재하여 상대적으로 좁은 전압 범위(윈도우)를 사용한다. 구체적으로, LIB는 0 V 또는 가혹방전상태(상기 하한전압보다 낮은 상태)가 되면 덴드라이트(Dendlite)하는 물질이 생성되어 분리막 손상에 의한 단락(쇼트)이 발생하여 열폭주(Thermal Runaway) 발생할 수 있다. Meanwhile, in the case of LIB, there is an upper and lower limit voltage, so a relatively narrow voltage range (window) is used. Specifically, when LIB reaches 0 V or a severe discharge state (lower than the above lower limit voltage), dendrite material is generated, which may cause a short circuit due to damage to the separator, resulting in thermal runaway. there is.
이에 반해, VIB의 경우, 상한 전압은 존재하나, 하한 전압이 존재하지 않아 상대적으로 넓은 전압 범위(윈도우)를 사용 가능한 장점을 가진다. 즉, 0 V 또는 완방 상태가 되어도 특별한 문제가 발생하지 않아, 복수의 전력량계의 계측 상황에 따라 보다 유연하게 동작할 수 있다.On the other hand, in the case of VIB, there is an upper limit voltage but no lower limit voltage, so it has the advantage of being able to use a relatively wide voltage range (window). In other words, no special problems occur even if it is in a 0 V or full power state, and it can operate more flexibly depending on the measurement status of multiple watt-hour meters.
또한, LIB의 경우, 충방전 사이클 반복 시, 상 변화로 인한 비가역적 반응(표면석출현상, Solid Electrolyte Interphase, 크랙킹현상)이 존재하여, 일정 사이클 작동 시 용량 차이가 발생하는 문제를 가지나, VIB의 경우 가역 반응을 이용하여 처음 용량과 일정 사이클 작동 후 용량에 차이가 없는 장점을 가진다. In addition, in the case of LIB, when charging and discharging cycles are repeated, there is an irreversible reaction (surface precipitation phenomenon, solid electrolyte interphase, cracking phenomenon) due to phase change, so there is a problem of capacity difference occurring during certain cycle operation, but VIB's In this case, it has the advantage of using a reversible reaction so that there is no difference between the initial capacity and the capacity after a certain cycle of operation.
한편, 상술한 바와 같은 상한 전압/하한 전압과 연결하여 LIB의 경우, 실제(이론상) SoC 20% 이하에서 사용하는 것이 불가능하나, VIB의 경우 하한 전압이 존재하지 않아 실제(이론상) SoC 20% 이하에서 사용이 가능하다.Meanwhile, in the case of LIB, it is impossible to use it below 20% of the actual (theoretical) SoC by connecting it to the upper/lower limit voltage as described above, but in the case of VIB, there is no lower limit voltage, so the actual (theoretical) SoC is 20% or less. It can be used in
여기서, 실제(이론상) SoC라는 용어는 제조사에서 제공하는 SoC와 구분하기 위한 개념으로써, 제조사는 일반적으로 안전상의 이유로 실제 SoC 범위 중 안전상 문제 없는 범위를 0% - 100%로 표기하여 제공한다. 이에 반해, 실제(이론상) SoC는 배티러의 완전 충전을 100%, 완전 방전을 0%로 산정하는 SoC를 의미한다.Here, the term actual (theoretical) SoC is a concept to distinguish it from the SoC provided by the manufacturer. For safety reasons, the manufacturer generally provides the range without safety problems as 0% - 100% of the actual SoC range. In contrast, the actual (theoretical) SoC refers to an SoC that calculates the battery's full charge as 100% and full discharge as 0%.
이러한 LIB와 VIB의 주요 특징은 아래 [표 1]과 같이 요약할 수 있다.The main characteristics of these LIBs and VIBs can be summarized as in [Table 1] below.
도 6은 본 발명의 일 실시예에 따른 VIB ESS의 구조를 설명하기 위한 도면이다.Figure 6 is a diagram for explaining the structure of VIB ESS according to an embodiment of the present invention.
도 6에 도시된 바와 같이 VIB ESS 역시 배터리, BMS, PCS, EMS 등의 구성을 포함하고 있다. As shown in Figure 6, VIB ESS also includes components such as battery, BMS, PCS, and EMS.
구체적으로 배터리는 가장 작은 셀 단위에서부터, 10-20개의 셀이 그룹화된 모듈을 구성하고, 복수의 모듈은 팩을 구성하며, 복수의 팩은 시스템 레벨을 구성할 수 있으며, 이러한 구조에 대응하여 BMS 역시 셀 BMS(미도시), 모듈 BMS(31; 레벨 1), 팩 BMS(32; 레벨 2), 시스템 BMS(33; 레벨 3)의 계층 구조를 가질 수 있다. Specifically, the battery consists of a module in which 10-20 cells are grouped starting from the smallest cell unit, multiple modules constitute a pack, and multiple packs may constitute a system level, and in response to this structure, the BMS It may also have a hierarchical structure of cell BMS (not shown), module BMS (31; level 1), pack BMS (32; level 2), and system BMS (33; level 3).
여기서, 각 레벨은 상술한 BMS뿐만 다른 제어 구성을 포함하는 동작 레벨을 의미한다. 예를 들어, 레벨 2에서는 상술한 팩 BMS(32)의 레벨 1 제어단과의 제어, 그리고 스위치 기어(34)에 대한 제어 동작을 규정하고, 레밸 3에서는 상술한 시스템 BMS(33)와 PMS(35) 사이의 제어 동작을 규정할 수 있다. 또한, 최종적인 레벨 4는 복수의 PMS(35)와 EMS(36) 사이의 제어 동작을 규정할 수 있다.Here, each level refers to an operation level that includes not only the above-described BMS but also other control configurations. For example,
여기서, 스위치 기어(34)는 배터리와 전력선(컨텍터, 프리차지, 퓨즈)을 제어할 수 있으며, Linear IC(37)는 팩 BMS(32)로부터 명령을 받아 스위치(38) 턴온을 수행할 수 있다. 이때, 스위치 턴온 = 저항에 의한 밸런싱 수행을 의미할 수 있으며, 여기서 저항은 보드에 구리선이 패턴으로 형성된 패턴저항일 수 있다.Here, the switch gear 34 can control the battery and power lines (contactor, precharge, fuse), and the linear IC 37 can turn on the switch 38 by receiving a command from the pack BMS 32. there is. At this time, turning on the switch = may mean performing balancing by resistance, and here the resistance may be a pattern resistor formed in a pattern of copper wires on the board.
도 5 및 도 6에서 설명한 실시예에서는 ESS에 적용되는 배터리의 타입을 LIB (도 5의 (A))와 대비하여, VIB (도 5의 (B) 및 도 6)로서 예시적으로 설명하였으나, ESS에 적용되는 배터리의 타입은 VIB로 제한될 필요는 없다. 예를 들어, 본 명세서에서 ESS는 VRB(Vanadium Redox Battery), PSB(polysulfide bromide battery), ZBB(zinc-bromine battery) 등을 활용할 수도 있다.In the embodiment described in FIGS. 5 and 6, the type of battery applied to the ESS is exemplarily described as VIB (FIGS. 5(B) and 6) in contrast to LIB (FIG. 5(A)). The type of battery applied to ESS does not need to be limited to VIB. For example, in this specification, the ESS may utilize a vanadium redox battery (VRB), polysulfide bromide battery (PSB), or zinc-bromine battery (ZBB).
도 7은 본 발명의 바람직한 일 실시예에 따라 VIB ESS를 활용한 충방전 제어 방법을 설명하기 위한 도면이다.Figure 7 is a diagram for explaining a charging and discharging control method using VIB ESS according to a preferred embodiment of the present invention.
도 7에 도시된 실시예에서 ESS 충방전 제어 시스템은 도 3 및 도 4와 동일하게 전력 그리드(310)와 ESS (330-2) 사이의 전력 형태를 변환하는 전력 변환 장치(320)를 포함하며, 전력 변환 장치(320)의 전력 변환 효율에 기반한 제 1 전력 구간은 도 3의 예와 동일하게 50 kW - 100 kW인 경우를 가정하였다.In the embodiment shown in FIG. 7, the ESS charging/discharging control system includes a power conversion device 320 that converts the power form between the power grid 310 and the ESS 330-2 in the same manner as in FIGS. 3 and 4. , the first power section based on the power conversion efficiency of the power conversion device 320 was assumed to be 50 kW - 100 kW, similar to the example in FIG. 3.
다만, 도 7에 도시된 예에서 ESS는 VIB ESS (330-2)인 것을 가정하며, VIB는 1C가 100 A인 조건에서, 0.2 C - 1 C의 충방전율이 가장 효율적인 충방전 구간에 해당하며, 현재 전압이 700 V인 경우, 배터리의 충반전 효율을 고려한 제 2 전력 구간은 14kW ~ 70 kW임을 도시하고 있다. However, in the example shown in FIG. 7, it is assumed that the ESS is a VIB ESS (330-2), and the VIB has a charge/discharge rate of 0.2 C - 1 C under the condition that 1C is 100 A, which corresponds to the most efficient charge/discharge section. , when the current voltage is 700 V, the second power section considering the charging and discharging efficiency of the battery is 14 kW to 70 kW.
이와 같이 제 1 전력 구간(50kW - 100 kW)과 제 2 전력 구간(14kW - 70 kW)이 상이한 경우, 상기 제 1 전력 구간 내의 전력(50 - 70 kW)으로 VIB ESS (330-2)의 배터리에 대한 충방전을 수행하도록 제어하는 것을 제안한다.In this way, when the first power section (50kW - 100 kW) and the second power section (14kW - 70 kW) are different, the battery of the VIB ESS (330-2) uses the power (50 - 70 kW) within the first power section. It is proposed to control to perform charging and discharging.
도 7은 위와 같이 결정된 전력 변환 장치(320)의 변환 전력 구간(50 - 70 kW)에 대응하여 VIB ESS(330-2)가 72 ~ 100 A로 충방전 되는 것을 도시하고 있다.Figure 7 shows that the VIB ESS (330-2) is charged and discharged at 72 to 100 A corresponding to the conversion power section (50 - 70 kW) of the power conversion device 320 determined as above.
한편, 도 7의 예에서는 제 1 전력 구간(50kW - 100 kW)과 제 2 전력 구간(14kW - 70 kW)이 중첩되는 전력 구간이 있는 경우, 이와 같이 중첩된 전력 구간(50kW - 70 kW)에 대응하는 전력으로 ESS (330-2)가 충방전되는 예를 도시하고 있다. Meanwhile, in the example of FIG. 7, if there is a power section in which the first power section (50kW - 100 kW) and the second power section (14kW - 70 kW) overlap, the overlapping power section (50kW - 70 kW) An example in which the ESS (330-2) is charged and discharged with the corresponding power is shown.
이에 반해, 만일, 제 1 전력 구간이 제 2 전력 구간보다 큰 경우, 충방전 전력은 제 1 전력 구간 내 최소 전력으로 결정하고, 반대로 제 1 전력 구간이 제 2 전력 구간보다 작은 경우, 제 1 전력 구간 내 최대 전력으로 결정하는 것이 바람직하며, 이에 대해서는 도 9와 관련하여 후술한다.On the other hand, if the first power section is larger than the second power section, the charging and discharging power is determined as the minimum power in the first power section, and conversely, if the first power section is smaller than the second power section, the first power It is desirable to determine the maximum power within the section, which will be described later with reference to FIG. 9.
도 8은 본 발명의 다른 일 실시예에 따라 VIB ESS를 활용한 충방전 제어에서 배터리 안전을 고려한 전력 구간의 개념을 설명하기 위한 도면이다.FIG. 8 is a drawing for explaining the concept of a power section that takes battery safety into consideration in charge/discharge control using a VIB ESS according to another embodiment of the present invention.
도 8에 도시된 실시예에서는 도 7과 달리 전력 변환 장치(320)의 사양이 높아져, 제 1 전력 구간이 100 kW - 200 kW로 높아진 상황을 가정하고 있다. In the embodiment shown in FIG. 8, unlike FIG. 7, it is assumed that the specifications of the power conversion device 320 have been increased, and the first power section has been increased to 100 kW - 200 kW.
이러한 상황에서 충방전을 위해 전력 변환 장치(320)와 교환되는 전력은 제 2 전력 구간이 여전히 14 kW - 70 kW임에 불구하고, 제 1 전력 구간을 우선 고려하여 100 - 200 kW로 결정되고, 이에 따라 VIB ESS (330-2)가 143 - 285 A 구간의 전류로 충방전되는 예를 도시하고 있다.In this situation, the power exchanged with the power conversion device 320 for charging and discharging is determined to be 100 - 200 kW, considering the first power section first, even though the second power section is still 14 kW - 70 kW, Accordingly, an example in which VIB ESS (330-2) is charged and discharged with a current in the range of 143 - 285 A is shown.
이러한 실시예에서 제 2 전력 구간은 VIB의 충방전 효율 구간인 0.2 C - 1C를 고려하여 설정되는 것이나, VIB의 충방전에 있어서 0.2 C - 1C 범위 이상 및/또는 이하의 구간도 안전에 문제 없이 사용 가능하다. 따라서, 즉, 본 실시예에서 배터리의 안전을 고려한 전력 구간을 제 3 전력 구간으로 지칭할 때, 제 3 전력 구간은 제 1 전력 구간을 포함하는 것이 바람직하며, 적어도 제 2 전력 구간과 중첩되는 구간을 포함하는 것이 유리하다.In this embodiment, the second power section is set in consideration of 0.2 C - 1C, which is the charging and discharging efficiency section of the VIB, but the section above and/or below the 0.2 C - 1C range in the charging and discharging of the VIB is also possible without safety problems. Available. Therefore, in this embodiment, when the power section considering the safety of the battery is referred to as the third power section, the third power section preferably includes the first power section and at least a section that overlaps with the second power section. It is advantageous to include
도 8의 실시예에서 상술한 바와 같이 배터리 안전을 고려한 제 3 전력 구간의 개념을 설명하기 위해 VIB ESS (330-2) 의 충방전에 이용되는 전력 구간을 100 - 200 kW로 표기하였으나, 상술한 바와 같이 제 1 전력 구간이 제 2 전력 구간보다 큰 구간인 경우, 바람직하게 제 1 전력 구간의 최소 전력(100 kW)으로 VIB ESS(330-2)의 충방전이 수행되는 것이 바람직하며, 이에 대해 도 9와 관련하여 구체적으로 설명한다.As described above in the embodiment of FIG. 8, in order to explain the concept of the third power section considering battery safety, the power section used for charging and discharging the VIB ESS (330-2) is indicated as 100 - 200 kW. As shown, when the first power section is a section larger than the second power section, it is preferable that charging and discharging of the VIB ESS (330-2) is performed with the minimum power (100 kW) of the first power section. This will be described in detail with reference to FIG. 9 .
도 9는 본 발명의 일 실시예에 따라 제 1 전력 구간과 제 2 전력 구간의 관계에 따라 충방전 전력을 결정하는 방법을 설명하기 위한 도면이다.FIG. 9 is a diagram illustrating a method of determining charge/discharge power according to the relationship between a first power section and a second power section according to an embodiment of the present invention.
도 9에 도시된 바와 같이, 본 실시예에 따른 ESS의 배터리 충방전 제어 방법은, 먼저 제 1 전력 구간(1st PR)과 제 2 전력 구간(2nd PR)의 비교를 수행할 수 있다 (S710). 만일, 제 1 전력 구간(1st PR)과 제 2 전력 구간(2nd PR)이 상이한 경우, 제 1 전력 구간(1st PR) 내의 전력으로 배터리에 대한 충방전을 수행한다.As shown in FIG. 9, the battery charging and discharging control method of the ESS according to this embodiment may first perform a comparison between the first power section (1 st PR) and the second power section (2 nd PR) ( S710). If the first power section (1 st PR) and the second power section ( 2nd PR) are different, charging and discharging of the battery is performed using the power within the first power section (1 st PR).
구체적으로, 도 9에서 제 1 전력 구간이 제 2 전력 구간보다 큰 경우, 제 1 전력 구간 내 최소 전력으로 배터리의 충방전을 수행할 수 있다(S730). 반대로, 제 1 전력 구간이 제 2 전력 구간보다 작은 경우, 제 1 전력 구간 내 최대 전력으로 배터리의 충방전을 수행할 수 있다(S720).Specifically, in FIG. 9 , when the first power section is greater than the second power section, charging and discharging of the battery can be performed with the minimum power within the first power section (S730). Conversely, when the first power section is smaller than the second power section, charging and discharging of the battery can be performed at the maximum power within the first power section (S720).
한편, 제 1 전력 구간과 제 2 전력 구간이 중첩 구간이 존재한다면, 도 7의 예에서와 같이 중첩 구간 내 전력으로 배터리 충방전 전력을 설정할 수 있다(S740).Meanwhile, if there is an overlapping section between the first power section and the second power section, the battery charging and discharging power can be set to the power within the overlapping section as in the example of FIG. 7 (S740).
이와 같이 설정된 배터리 충방전 전력에 대응하는 전류를 통해 ESS 배터리의 충방전이 수행될 수 있다(S750).Charging and discharging of the ESS battery can be performed using a current corresponding to the battery charging and discharging power set in this way (S750).
도 10은 본 발명의 일 실시예에 따라 ESS의 충전이 수행되는 메커니즘을 설명하기 위한 도면이다.Figure 10 is a diagram for explaining the mechanism by which ESS charging is performed according to an embodiment of the present invention.
먼저, ESS를 활용하여 안정적인 전력 저장/공급을 수행하기 위해 그리드의 사용 가능 최대 전력량을 획득하여 저장할 수 있다(S4010). 또한 그리드에서 제공되는 전력 수준으로서 계약 전력량을 획득하여 저장할 수 있다(S4020). 이와 같이 획득된 전력량의 관계를 고려하여 제어기는 사용 가능 전력량 (사용 중인 전력량)을 확인할 수 있다(S4030). First, in order to perform stable power storage/supply using ESS, the maximum available power amount of the grid can be obtained and stored (S4010). Additionally, the contracted amount of power can be obtained and stored as the power level provided from the grid (S4020). Considering the relationship between the amounts of power obtained in this way, the controller can check the amount of power available (the amount of power in use) (S4030).
이를 기반으로, 이후 배터리의 전압을 확인할 수 있다(S4040). 이와 같이 확인한 배터리 전압은 배터리 전압 * 최적 중전 전류의 관계를 활용하여 배티러의 최적 충전 전력량을 산출할 수 있으며(S4050), 이는 상술한 제 2 전력 구간 개념에 대응할 수 있다.Based on this, the voltage of the battery can be checked (S4040). The battery voltage confirmed in this way can be used to calculate the optimal charging power amount of the battery using the relationship between battery voltage * optimal charging current (S4050), which can correspond to the concept of the second power section described above.
이와 같이 산출된 최적 충전 전력량을 기반으로 그리드의 여유 전력 여부를 비교하여 확인할 수 있다(S4060). 만일, 그리드의 여유 전력이 없는 경우 다시 배터리 전압을 확인하는 단계로 복귀할 수 있으며, 반대로 그리드의 여유 전력이 있는 경우, 배터리 충전을 위해 후속 절차를 수행할 수 있다.Based on the optimal charging power amount calculated in this way, the surplus power of the grid can be compared and checked (S4060). If there is no spare power in the grid, you can return to the step of checking the battery voltage. Conversely, if there is spare power in the grid, you can perform subsequent procedures to charge the battery.
배터리 충전을 위한 후속 절차로서, 본 실시예에서는 배터리 충전 전력량이 전력 변환 장치의 최적 효율 구간과 부합하는지를 판단할 수 있다(S4070). 이는 상술한 실시예들에서 제 1 전력 구간과 제 2 전력 구간을 비교하는 것에 대응할 수 있다. As a follow-up procedure for battery charging, in this embodiment, it can be determined whether the battery charging power amount matches the optimal efficiency section of the power conversion device (S4070). This may correspond to comparing the first power period and the second power period in the above-described embodiments.
만일, 전력 변환 장치의 효율 구간이 배터리 전력량보다 작은 경우, 본 실시예에 따른 제어기는 전력 변환 장치의 효율 구간 중 최대치에 기반하여 충전 전력을 설정할 수 있다(S4074). 반대로, 전력 변환 장치의 효율 구간이 배터리 전력량보다 큰 경우, 제어기는 전력 변환 장치의 효율 구간 중 최소치에 기반하여 충전 전력을 설정할 수 있다(S4072).If the efficiency section of the power conversion device is smaller than the battery power amount, the controller according to this embodiment can set the charging power based on the maximum value among the efficiency sections of the power conversion device (S4074). Conversely, when the efficiency range of the power conversion device is greater than the battery power amount, the controller may set the charging power based on the minimum value of the efficiency range of the power conversion device (S4072).
이와 달리, 전력 변환 장치의 효율 구간이 배터리 전력량과 동일하거나, 중첩 구간을 가지는 경우, 중첩 구간에 기반하여 산출된 전력으로 배터리 충전 전력을 설정할 수 있다(S4080).Alternatively, when the efficiency section of the power conversion device is the same as the battery power amount or has an overlapping section, the battery charging power can be set to the power calculated based on the overlapping section (S4080).
이와 같이 충전 전력이 설정되면, 이에 기반하여 ESS 내 배터리의 충전을 수행할 수 있다(S4090).Once the charging power is set in this way, the battery within the ESS can be charged based on this (S4090).
상술한 실시예에서 ESS의 배터리가 VIB인 경우, VIB의 입력 대비 출력의 효율은 0.2 C ~ 1 C 사이가 가장 우수하며, 이에 기반하여 제 2 전력 구간이 설정될 수 있다. 다만, 상술한 의미는 VIB가 0.2C 이하, 1C 이상에서 효율이 나쁘다는 의미가 아니며, 전력 변환 장치가 어떤 출력을 하더라도 VIB는 안정적이게 동작이 가능한 특징을 가진다. In the above-described embodiment, when the battery of the ESS is a VIB, the efficiency of the output to input of the VIB is best between 0.2 C and 1 C, and the second power section can be set based on this. However, the above-mentioned meaning does not mean that the VIB has poor efficiency at temperatures below 0.2C and above 1C, and the VIB has the characteristic of being able to operate stably no matter what output the power conversion device produces.
또한, VIB는 전력 변환 장치의 전력 손실 보다 높은 효율을 가지고 있으므로, 본 실시예에서는 전력 변환 장치의 전력 변환 효율에 우선순위를 두어 충전 전력량을 제어하는 것을 제안한다.In addition, since the VIB has a higher efficiency than the power loss of the power conversion device, this embodiment proposes to control the amount of charging power by giving priority to the power conversion efficiency of the power conversion device.
도 11은 본 발명의 일 실시예에 따라 ESS의 방전이 수행되는 메커니즘을 설명하기 위한 도면이다.Figure 11 is a diagram for explaining the mechanism by which ESS discharge is performed according to an embodiment of the present invention.
ESS의 방전을 수행하기 위해 도 11에 도시된 바와 같이 그리드 사용 가능 최대 전력량을 획득/저장하고(S5010), 계약 전력량을 획득/저장하며(S5020), 사용 가능 전력량을 확인하는 절차(S5030)는 도 10의 충전 메커니즘과 동일하게 수행될 수 있다.In order to perform the discharge of the ESS, as shown in FIG. 11, the process of obtaining/storing the maximum amount of power available to the grid (S5010), obtaining/storing the contracted amount of power (S5020), and checking the amount of available power (S5030) It can be performed in the same way as the charging mechanism in FIG. 10.
본 실시예에서는, 이와 같은 정보 확인에 기반하여 그리드 전력에 여유가 있다고 판단(S5040)되는 경우, 배터리를 충전하여 상술한 제 1 전력 구간 내의 전력에 대응하는 전압이 유지되도록 충전하는 것을 제안한다. 구체적으로, 그리드 전력에 여유가 있다고 판단(S5040)되는 경우, 배터리 전압을 추가적으로 확인하고(S5042), 확인된 전압이 도 4와 관련하여 상술한 바와 같은 제 1 전력 구간 내의 전력에 대응하는 효율 방전 전압보다 부족한 경우, 충전 로직을 제어(S5044)하여 배터리 충전을 수행할 수 있다. In this embodiment, when it is determined that there is surplus grid power based on confirmation of such information (S5040), it is proposed to charge the battery to maintain the voltage corresponding to the power within the above-described first power section. Specifically, when it is determined that there is sufficient grid power (S5040), the battery voltage is additionally confirmed (S5042), and the confirmed voltage is discharged efficiently corresponding to the power in the first power section as described above with reference to FIG. 4. If the voltage is insufficient, battery charging can be performed by controlling the charging logic (S5044).
이와 같은 충전을 통해, 이후 전력 그리드의 전력이 부족한 것으로 판단될 경우(S5040), 상기 제 1 전력 구간에 대응하는 전압(전력 변환 장치의 최대 효율 구간 내 전력 대응 전압)으로 배터리가 방전할 수 있도록 설정하고(S5041), 이에 기반하여 배터리 방전을 수행할 수 있다(S5043). Through this charging, if it is determined that the power of the power grid is insufficient (S5040), the battery can be discharged to a voltage corresponding to the first power section (voltage corresponding to power within the maximum efficiency section of the power conversion device). It can be set (S5041), and battery discharge can be performed based on this (S5043).
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다.A detailed description of preferred embodiments of the invention disclosed above is provided to enable any person skilled in the art to make or practice the invention. Although the present invention has been described above with reference to preferred embodiments, those skilled in the art will understand that various modifications and changes can be made to the present invention without departing from the scope of the present invention. For example, a person skilled in the art may use each configuration described in the above-described embodiments by combining them with each other.
따라서, 본 발명은 여기에 나타난 실시예들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.Therefore, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
상술한 바와 같은 본 발명의 실시예들에 따른 ESS 충방전 제어 시스템 및 이를 이용한 ESS 충방전 제어 방법은 전기구동 이동장치의 충전소, 전력 수급 불균형이 발생하는 현장에 다양하게 활용될 수 있다. The ESS charging/discharging control system and the ESS charging/discharging control method according to the embodiments of the present invention as described above can be utilized in a variety of ways, such as at charging stations for electrically driven mobile devices and in sites where power supply and demand imbalance occurs.
Claims (16)
전력 그리드(grid) 및 상기 ESS와 연결되어, 상기 전력 그리드와 상기 ESS 사이의 전력 형태를 변환하는 전력 변환 장치(PCS); 및
상기 전력 변환 장치의 전력 변환 효율에 기반한 제 1 전력 구간과 상기 배터리의 충방전 효율에 기반한 제 2 전력 구간이 상이한 경우, 상기 제 1 전력 구간 내의 전력으로 상기 배터리에 대한 충방전을 수행하도록 제어하는 제어기를 포함하는 것을 특징으로 하는 ESS 충방전 제어 시스템.ESS (Energy Storage System) equipped with a battery;
A power conversion device (PCS) connected to a power grid and the ESS to convert the form of power between the power grid and the ESS; and
When the first power section based on the power conversion efficiency of the power conversion device and the second power section based on the charging and discharging efficiency of the battery are different, controlling to charge and discharge the battery with power within the first power section ESS charge/discharge control system comprising a controller.
상기 전력 변환 장치는 교류 전력을 직류 전력으로 변환하는 컨버터 및 직류 전력을 교류 전력으로 변환하는 인버터를 포함하며,
상기 제 1 전력 구간은 상기 컨버터의 효율에 기반한 전력량 및 상기 인버터의 효율에 기반한 전압 수준 중 하나 이상에 기반하여 결정되는, ESS 충방전 제어 시스템.According to claim 1,
The power conversion device includes a converter that converts alternating current power into direct current power and an inverter that converts direct current power into alternating current power,
The first power section is determined based on one or more of a power amount based on the efficiency of the converter and a voltage level based on the efficiency of the inverter.
상기 제어기는,
상기 제 1 전력 구간이 상기 제 2 전력 구간보다 큰 경우, 상기 제 1 전력 구간 내 최소 전력으로 상기 배터리의 충방전을 수행하며,
상기 제 1 전력 구간이 상기 제 2 전력 구간보다 작은 경우, 상기 제 1 전력 구간 내 최대 전력으로 상기 배터리의 충방전을 수행하는, ESS 충방전 제어 시스템.According to claim 1,
The controller is,
When the first power section is greater than the second power section, charging and discharging the battery is performed at the minimum power within the first power section,
An ESS charge/discharge control system that performs charging and discharging of the battery at the maximum power within the first power section when the first power section is smaller than the second power section.
상기 제어기는,
상기 제 1 전력 구간과 상기 제 2 전력 구간이 중첩 구간을 포함하는 경우, 상기 중첩 구간 내 전력으로 상기 배터리의 충방전을 수행하는, ESS 충방전 제어 시스템.According to claim 1,
The controller is,
When the first power section and the second power section include an overlapping section, the ESS charging and discharging control system performs charging and discharging of the battery with power within the overlapping section.
상기 제어기는,
상기 전력 그리드의 전력이 여유가 있는 경우, 상기 배터리를 충전하여 상기 제 1 전력 구간 내의 전력에 대응하는 전압이 유지되도록 충전하며,
상기 전력 그리드의 전력이 부족할 경우, 상기 제 1 전력 구간 내의 전력에 대응하는 전압으로 상기 배터리가 방전할 수 있도록 제어하는, ESS 충방전 제어 시스템.According to claim 1,
The controller is,
If there is sufficient power in the power grid, the battery is charged to maintain a voltage corresponding to the power in the first power section,
An ESS charge/discharge control system that controls the battery to be discharged at a voltage corresponding to the power within the first power section when the power of the power grid is insufficient.
상기 배터리는,
상기 배터리의 안전을 고려한 제 3 전력 구간이 상기 제 1 전력 구간과 중첩되는 구간을 포함하는 조건을 만족하는 배터리인, ESS 충방전 제어 시스템.According to claim 1,
The battery is,
An ESS charge/discharge control system, which is a battery that satisfies the condition that the third power section considering the safety of the battery includes a section overlapping with the first power section.
상기 제 2 전력 구간은 0.2 C 내지 1 C 범위에 대응하는 전류로 충방전 되는 전력 구간이며,
상기 제 3 전력 구간은 0.2 C 이하의 범위 및 1 C 이상의 범위 중 하나 이상에 대응하는 전류로 충방전 되는 전력 구간을 포함하는, ESS 충방전 제어 시스템.According to claim 6,
The second power section is a power section that is charged and discharged with a current corresponding to the range of 0.2 C to 1 C,
The third power section includes a power section charged and discharged with a current corresponding to one or more of the range of 0.2 C or less and the range of 1 C or more.
상기 배터리는 바나듐 이온 배터리(VIB)를 포함하는, ESS 충방전 제어 시스템.According to claim 6,
The battery is an ESS charge/discharge control system including a vanadium ion battery (VIB).
상기 제어기는 상기 전력 변환 장치와 결합되어 구성되는, ESS 충방전 제어 시스템.According to claim 1,
The ESS charge/discharge control system wherein the controller is configured in combination with the power conversion device.
전력 그리드(grid)와 상기 ESS 사이의 전력 형태를 변환하는 전력 변환 장치(PCS)의 전력 변환 효율에 기반한 제 1 전력 구간과 상기 배터리의 충방전 효율에 기반한 제 2 전력 구간을 비교하고;
상기 제 1 전력 구간과 상기 제 2 전력 구간이 상이한 경우, 상기 제 1 전력 구간 내의 전력으로 상기 배터리에 대한 충방전을 수행하는 것을 포함하는, ESS 충방전 제어 방법.In a method of controlling battery charging and discharging of an ESS (Energy Storage System),
Compare a first power section based on the power conversion efficiency of a power conversion device (PCS) that converts the power form between a power grid and the ESS with a second power section based on the charge and discharge efficiency of the battery;
When the first power section and the second power section are different, ESS charging and discharging control method comprising performing charging and discharging of the battery with power within the first power section.
상기 배터리에 대한 충방전을 수행하는 것은,
상기 제 1 전력 구간이 상기 제 2 전력 구간보다 큰 경우, 상기 제 1 전력 구간 내 최소 전력으로 상기 배터리의 충방전을 수행하며;
상기 제 1 전력 구간이 상기 제 2 전력 구간보다 작은 경우, 상기 제 1 전력 구간 내 최대 전력으로 상기 배터리의 충방전을 수행하는 것을 포함하는, ESS 충방전 제어 방법.According to claim 10,
Performing charging and discharging of the battery includes:
When the first power section is greater than the second power section, charging and discharging the battery is performed at the minimum power within the first power section;
When the first power section is smaller than the second power section, ESS charging and discharging control method comprising performing charging and discharging of the battery at the maximum power within the first power section.
상기 배터리에 대한 충방전을 수행하는 것은,
상기 제 1 전력 구간과 상기 제 2 전력 구간이 중첩 구간을 포함하는 경우, 상기 중첩 구간 내 전력으로 상기 배터리의 충방전을 수행하는 것을 포함하는, ESS 충방전 제어 방법.According to claim 10,
Performing charging and discharging of the battery includes:
When the first power section and the second power section include an overlapping section, ESS charging and discharging control method comprising performing charging and discharging of the battery with power within the overlapping section.
상기 전력 그리드의 전력이 여유가 있는 경우, 상기 배터리를 충전하여 상기 제 1 전력 구간 내 전력에 대응하는 전압이 유지되도록 충전하고;
상기 전력 그리드의 전력이 부족할 경우, 상기 제 1 전력 구간 내 전력에 대응하는 전압으로 상기 배터리를 방전하는 것을 추가적으로 포함하는, ESS 충방전 제어 방법.According to claim 10,
If the power of the power grid is sufficient, charge the battery to maintain a voltage corresponding to the power within the first power section;
When the power of the power grid is insufficient, the ESS charging and discharging control method additionally includes discharging the battery to a voltage corresponding to the power within the first power section.
상기 배터리는,
상기 배터리의 안전을 고려한 제 3 전력 구간이 상기 제 1 전력 구간을 포함하는 조건을 만족하는 배터리인, ESS 충방전 제어 방법.According to claim 10,
The battery is,
ESS charge/discharge control method, wherein the battery satisfies the condition that the third power section considering the safety of the battery includes the first power section.
상기 제 2 전력 구간은 0.2 C 내지 1 C 범위에 대응하는 전류로 충방전 되는 전력 구간이며,
상기 제 3 전력 구간은 0.2 C 이하의 범위 및 1 C 이상의 범위 중 하나 이상에 대응하는 전류로 충방전 되는 전력 구간을 포함하는, ESS 충방전 제어 방법.According to claim 10,
The second power section is a power section that is charged and discharged with a current corresponding to the range of 0.2 C to 1 C,
The third power section includes a power section charged and discharged with a current corresponding to one or more of the range of 0.2 C or less and the range of 1 C or more.
상기 배터리는 바나듐 이온 배터리(VIB)를 포함하는, ESS 충방전 제어 방법.According to claim 10,
The ESS charge/discharge control method wherein the battery includes a vanadium ion battery (VIB).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230013342 | 2023-01-31 | ||
KR20230013342 | 2023-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240120623A true KR20240120623A (en) | 2024-08-07 |
Family
ID=92147103
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230114249A KR20240120622A (en) | 2023-01-31 | 2023-08-30 | Charging Management System and High Speed Continuous Charging Method using the Same |
KR1020230114250A KR20240120623A (en) | 2023-01-31 | 2023-08-30 | ESS Charging and Discharging Control System and Method using the Same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230114249A KR20240120622A (en) | 2023-01-31 | 2023-08-30 | Charging Management System and High Speed Continuous Charging Method using the Same |
Country Status (2)
Country | Link |
---|---|
KR (2) | KR20240120622A (en) |
WO (2) | WO2024162548A1 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6591230B2 (en) * | 2015-08-12 | 2019-10-16 | 株式会社Nttファシリティーズ | Photovoltaic power generation system control device, solar power generation system, and control program |
JP6686761B2 (en) * | 2016-07-22 | 2020-04-22 | 株式会社豊田自動織機 | Charger |
KR101795301B1 (en) * | 2016-09-13 | 2017-11-08 | 한국전력공사 | Apparatus and method for operating a pcs efficiency considered microgrid |
JP6735507B2 (en) * | 2016-10-31 | 2020-08-05 | パナソニックIpマネジメント株式会社 | Power conversion system, power supply system, power management system |
KR20180102790A (en) * | 2017-03-08 | 2018-09-18 | 엘에스산전 주식회사 | Power storage apparatus |
US10985566B2 (en) * | 2018-03-20 | 2021-04-20 | Honda Motor Co., Ltd. | Energy system, energy management server, energy management method, and non-transitory computer readable medium |
KR102094353B1 (en) * | 2018-06-12 | 2020-03-27 | 경북대학교 산학협력단 | Method of power mobility service per building, apparatus of building energy management for performing the method and power mobility system per building including the apparatus |
KR102145323B1 (en) * | 2020-02-27 | 2020-08-18 | 주식회사 광성계측기 | Monitoring System and Method for Management of Distributed Generation Plant |
KR102338672B1 (en) * | 2020-08-21 | 2021-12-13 | 주식회사 한미이앤씨 | The Energy Management System of Energy Storage System -connected Photovoltaic Power System |
KR102294290B1 (en) * | 2021-02-25 | 2021-08-26 | 이온어스(주) | Method, device and system for providing charging power using ess for power supply of post type electric device |
-
2023
- 2023-08-30 KR KR1020230114249A patent/KR20240120622A/en active Search and Examination
- 2023-08-30 WO PCT/KR2023/012850 patent/WO2024162548A1/en unknown
- 2023-08-30 KR KR1020230114250A patent/KR20240120623A/en active Search and Examination
- 2023-08-30 WO PCT/KR2023/012851 patent/WO2024162549A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024162549A1 (en) | 2024-08-08 |
WO2024162548A1 (en) | 2024-08-08 |
KR20240120622A (en) | 2024-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7212650B2 (en) | Systems and methods for series battery charging and formation | |
JP6211171B2 (en) | Power system | |
US20120047386A1 (en) | Control apparatus and control method | |
KR20130138611A (en) | Energy storage system | |
JP2004215459A (en) | Power controller | |
CN104242474B (en) | A kind of mixed type energy-storage system and using method | |
CN210838986U (en) | Bidirectional DCDC high-voltage charging and discharging energy control management system for communication battery | |
KR20240134977A (en) | Charge and discharge test device | |
Abronzini et al. | Thermal management optimization of a passive bms for automotive applications | |
JP6614010B2 (en) | Battery system | |
US20230402869A1 (en) | Apparatus and method for pcs management in optimal efficiency range | |
JPWO2023170878A5 (en) | ||
CN103367831A (en) | Battery system | |
CN101834325A (en) | Secondary battery pack | |
KR20240120623A (en) | ESS Charging and Discharging Control System and Method using the Same | |
KR102151652B1 (en) | Using Cuk Converter topology Li-ion battery cell balancing strategy | |
US20240030710A1 (en) | Power distribution method and energy storage system using same | |
KR102645452B1 (en) | Charge/discharge device, battery charging method, and charge/discharge system | |
CN101834311A (en) | Lithium secondary battery bank | |
CN203984099U (en) | A kind of mixed type energy-storage system | |
WO2013136413A1 (en) | Power storage system and method for controlling power storage module | |
TWI858594B (en) | Battery life evaluation method | |
KR20240075711A (en) | Battery Life Management System and Battery Charging Method Using the Same | |
Mandrile et al. | Hybrid Battery Systems: An Investigation for Maritime Transport | |
CN220822640U (en) | Power battery system based on microgrid grouping technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |